

Tensions between Scientific Programming

and the Scientific Method

by

DAVID GRAY WIDDER

A THESIS

Presented to the Department of Computer and Information Science
and the Robert D. Clark Honors College

in partial fulfillment of the requirements for the degree of
Bachelor of Science

June 2017

ii

An Abstract of the Thesis of

David Gray Widder for the degree of Bachelor of Arts
in the Department of Computer and Information Science to be taken June 2017

Title: Tensions Between Scientific Programming and the Scientific Method

Approved: _______________________________________

Professor Stephen Fickas

This thesis evaluates eleven scientific programmers against six best practices.

The six best practices extracted from literature are: 1) the presence of a Distinct Design

Phase, 2) Documentation, 3) the Use of Existing, Trustworthy Code, 4) the Use of

Formal Version Control, 5) a Testing procedure, and 6) the Public Release of Code. A

survey and interview were conducted on eleven participants to produce a case study on

each participant’s purpose of their code, their self identified process difficulties, their

tool use, their self identified areas for growth, and their perceptions of the importance of

programming to their discipline. An evaluation of the extent to which the six best

practices were followed is then presented. To conclude, three recommendations on how

to increase adherence to best practices are presented: education about existing processes

and tools, the adaption of existing processes and tools, and incentivizing adherence to

best practices.

iii

Acknowledgements

I would like to thank Professors Stephen Fickas, Boyana Norris, and Helen

Southworth for serving on my thesis committee and for their advice and support

throughout this long but enjoyable process. I would like to extend special thanks to my

primary thesis advisor, Stephen Fickas, for all the opportunities he has provided that

helped get me interested in research in the first place, and for his support throughout my

college career. I would like to thank my CHC advisor, Helen Southworth, for her advice

and support over these past four years. I would like to thank Dr. Kathleen Freeman for

her expert advice as I weighed different course and career options. I would like to also

thank the kind people who agreed to be interviewed as a participant for my thesis.

Finally, I would like to thank all of my friends, teammates and colleagues who kept me

sane through my four years here. Go Ducks!

iv

Table of Contents

Introduction 1
Background 2

Software Development Model 2
Professional End User Programmers 2
The Scientific Method 3

Best Practices for Scientific Programming 4
A Distinct Design Phase 4
Documentation 4
Use Existing, Trustworthy Code 5
Use Formal Version Control 5
Testing 6
Public Release 6

Case Study Methodology 8
Participants 8
Materials 9
Procedure 10

Scientific Programmer Case Studies 11
Participant 1 11
Participant 2 14
Participant 3 16
Participant 4 17
Participant 5 21
Participant 6 22
Participant 7 25
Participant 8 27
Participant 9 30
Participant 10 33
Participant 11 35

Best Practices Evaluation 38
A Distinct Design Phase 40
Documentation 44
Use Existing, Trustworthy Code 46
Use Formal Version Control 47

v

Testing 48
Public Release 49

Conclusions 51
Appendix 55

Pre-Interview Questionnaire 55
Interview Script 56

Bibliography 57

vi

List of Figures

Figure 1: An example of the “mathematical pictures” Participant 1 generates with code
 12
Figure 2: An example of Participant 6’s conceptual models drawn on his whiteboard,
forming part of his design process. 43

vii

List of Tables

Table 1: Participant Information 9
Table 2: Summary of Evaluations 39

Introduction

Programming is increasingly relied on as a tool of scientific discovery, and

therefore we must give the programming process the same scrutiny given to any other

scientific process. While the general public may associate the products of code with the

apps they use on their smartphone or laptop, many are less aware of less visible uses of

code, such as those involved in scientific research. The consequence of sloppy

commercial apps may lead to loss of profit or damage to a company’s reputation, but

the consequence of sloppy scientific code may be the corruption of the scientific

process to the detriment of the scientific community (Carver 2007), arguably an

outcome with more lasting and pervasive negative effects. Therefore, I argue increased

attention should be paid to the use of code in the scientific process, and I offer this

thesis as a small contribution to a growing body of literature focused on this topic.

The contributions of my thesis are: 1) a summary of best practices for

scientifically valid programming extracted from literature, 2) eleven case studies of

scientific programmers and their processes including what their code does, their self

identified process difficulties, their tool use, their self identified areas for growth and

their perceptions of the importance of programming to their discipline, 3) an evaluation

of the manner and extent to which participants conformed to the best practices

identified, 4) an overall conclusion including suggestions of how to effectively

encourage the use of best practices informed by my case studies.

2

Background

Software Development Model

There are many varieties of the Software Development Model, each designed to

meet different needs. One 2010 ACM SIGSOFT article documented 12 distinct

approaches to applying different Software Development Models. (Ruparelia 2010) Most

models include some combination of the following: Requirements Analysis, Design,

Development, Integration, Testing, Deployment, Maintenance and Evaluation. Models

range from the sequential Waterfall method where each stage is completed sequentially

for the whole system, to the Agile method where short development intervals

incrementally add to a growing system. Different models seek to satisfy different

requirements: the Spiral model emphasizes risk reduction and thus is appropriate for

safety critical settings, whereas the Agile model emphasizes rapid progress on

incremental improvements, and thus may be appropriate for settings where being able to

work with stakeholders in a dynamic fashion is of paramount importance. (Ruparelia

2010)

Professional End User Programmers

The term “Professional Programmer” refers to those who write code as their

primary job function in order to build packaged software. In contrast, End User

Programmers are people who write programs in support of their work, but not as their

primary job function. Many End User Programmers use special-purpose languages,

such as spreadsheet languages or Visual Basic, but some use regular programming

languages, such as Python or C. (Myers 2006) However, the term “Professional End

3

User Developer” has been used to describe people who operate in technical, knowledge-

rich domains, who have little formal training in software engineering and would not

describe themselves as software engineers (in common with EUPs) but for whom

learning a regular language does not present a problem (in contrast to most EUPs).

(Segal 2007). Because of this, the set of problems they face and the processes they use

are distinct from that of both Professional Programmers and EUPs. (Segal 2007)

The Scientific Method

The Scientific Method, at a basic level, is characterized by three steps:

observation of a phenomena, proposing an explanation, and testing the explanation.

(Carey 2011) However, to follow this process in a rigorous, efficient, repeatable,

sustainable, open, and honest manner, other steps are necessary.

The principle of “Replication” requires that the tests be repeated, to ensure that

results do not result from chance, or mistakes on the part of the researcher. This

repetition may take part in the original experimental set up by the original researchers,

or by other scientists who may re-analyze data from the original experiment to verify

the conclusions drawn, or may replicate the experimental setup and produce their own

data. Certain activities support replication: publishing full details of the methodology

used so that the experiment may be replicated, publishing complete results so that the

results of future similar can be experiments can be compared to them.

4

Best Practices for Scientific Programming

In this section we will describe several best practices for scientific programming

we have identified in the literature, and explain why each is important to ensure

scientific validity. Many of these best practices have practical advantages, which have

been well studied from the perspective of software engineering, but we seek to justify

each from the viewpoint of good science. Many of these justifications will be made

using analogy to non-programming ways of conducting science. Many of these concern

reproducibility, internal validity, or peer review.

A Distinct Design Phase

Hypotheses should drive the design of the scientific apparatus used, not the

other way round. Because of this, software that serves as a research tool should be

explicitly designed. (Baxter 2006). In scientific programming, the design phase often

includes a consideration of the form of the input data, the required form of the output

data, and the steps (both cleaning and transformational), that will be necessary

intermediate steps. (Baxter 2006, Guo 2012) This phase may include multiple people:

domain experts to specify what the system must do, those who will be doing the coding,

and those who will use the system in its final form. (Carver 2007) The presence of a

distinct design phase is a best practice that we will investigate during our interviews.

Documentation

Documenting methods and results is crucial to good science; it allows scientists

to record their experimental setup, so that experiments could be repeated and their

results reproduced. (Baxter 2006) Because of this, lab notebooks have long been used to

5

record these details. (Guo 2012) Research also shows that scientists have trouble

tracking which settings, code versions, and datasets correspond to which results

mentally, as well as what scientific intentions these changes represent. (Guo 2012) In

light of this, scientists should document their code, as well as relationships between the

data sets it runs on, and the results it produces. The presence of this documentation is a

best practice we will investigate during our interviews.

Use Existing, Trustworthy Code

Following established, standard methodologies allows one to accomplish a

certain scientific task without having to rigorously prove its validity. (National

Academy of Sciences 1992) Using previously vetted external code is an analogous

concept. Using existing scientific codebases allows shorter development times because

less code must be written from scratch. (Carver 2007, Baxter 2006) However, using

commercial code incurs the risk that a product may be discontinued, or that support may

be dropped. Using open source solutions lessens this risk by allowing in house

developers to assume responsibility for external code should community support be

dropped. Additionally, using trusted codebases adds credibility to software quality,

strengthening the internal validity of the experiment when external parties review parts

of the code used in the experiment. (Baxter 2006) The use of existing, trustworthy code

is a best practice we will investigate during our interviews.

Use Formal Version Control

Being able to demonstrate that results are reproducible is required to

demonstrate scientific validity (Carver 2007). Additionally, it is helpful for scientists to

know what dataset matched with which experimental setup corresponds to which set of

6

results. (Carver 2007) Scientists often recognize the need, even if they do not act on it,

to track old versions of files so that they can repeat analyses or make comparisons

between different outputs. (Guo 2012) Version control is used in both industrial and

open source projects to achieve these aims. The extent and manner in which participants

use version control is a best practice we will investigate during our interviews.

Testing

Testing scientific code is important to ensure the internal validity of the

experiment that it supports. Internal validity refers to how well an experiment is able to

establish that an observed result is caused by a known independent variable and not by

some other phenomena (known as a confound). (Moring 2016) Within the context of

scientific programming, inconsistent or buggy code poses a threat to internal validity

(Baxter 2006), and this may be further problematic when the code’s output cannot be

validated against an existing system (Carver 2007). Testing, where each component of a

program is checked for correct output, is one means of ensuring internal validity.

(Adrion 1962) Rigorous testing is important to ensuring scientific validity. The extent

and manner in which that participants test their code is a best practice we will

investigate during our interviews.

Public Release

Peer review, where other researchers can critically examine the validity of

methods and their results, is one of the hallmarks of modern science. Doing so requires

that the work be reported unambiguously and anonymously, with full details of the

design and methodology laid bare. (Hames 2007) In scientific programming, where

code is at the heart of the methodology, it would seem logical that scientific code be

7

published. However, rarely is code published or even preserved, and many reasons are

cited for this surprising phenomena: 1) the fact that it is neither accepted nor required

practice, 2) packaging and polishing code takes time away from producing more

research, and 3) fear that publishing code will impose a further responsibility for its

creators to support others as they attempt to use the code. (Barnes 2010) However, these

reasons do not negate the aforementioned scientific impetus for publishing code. The

extent and manner in which participants publicly release their code is a best practice we

will investigate during our interviews.

8

Case Study Methodology

Participants

Candidates for our study were recruited by asking existing contacts for “faculty

and Ph.D. students in the sciences who may use code as part of their academic work.”

In departments where the we had no existing contacts but where we expected that code

might be used in scientific work, we called or emailed departmental secretaries asking

for candidates. Candidates were then emailed a brief description of the study and a

request to participate. If the candidates agreed to participate, we scheduled a one-hour

interview time slot.

A total of 11 participants were recruited in this manner. Care was taken to

ensure a sample of participants were from as many different scientific fields as possible

to aid the generalizability of any findings. Three participants were Assistant Professors,

four were Full Professors, three participants were Ph.D. students, and one was a

Postdoctoral Research Associate. Participants were polled as to what percent of their

time they spent writing code at work, and the modal bracket was 20-30%, and the mean

was 28%. In general, the more academically senior the participant was, the less likely

they were to spend large portions of their working time writing code.

P# Field Job Title Highest Degree
Completed

% of work
time writing
code

1 Mathematics Assistant Professor PhD, Mathematics 20-30%

2 Astrophysics Professor PhD, Astrophysics 10-20%

3 Physics Professor PhD, Physics 10-20%

4 Chemistry PhD Student BS, Chemistry 40-60%

9

P# Field Job Title Highest Degree
Completed

% of work
time writing
code

5 Climatology Professor PhD, Geography 20-30%

6 Geographic
Information
Science

Assistant Professor PhD, Geography 0-10%

7 Geography PhD Student MS, Computer
Science

20-30%

8 Ecology Postdoctoral Research
Associate

PhD, Plant Biology 80-100%

9 Bioinformatics Professor PhD, Computer
Science

0-10%

10 Biology Professor PhD, Biology 0-10%

11 Business PhD Student MBA 40-60%

Table 1: Participant Information

Materials

Participants were asked to fill out an online Pre-Interview Questionnaire in

advance of their interview (see appendix). During their interview, participants were

asked a standard set of seven interview prompts (see appendix). The Pre-Interview

Questionnaire was designed to provide context to the interviewer so that more relevant

follow-up questions could be asked. We collected information about the participant’s

job, prior training, purpose of the code they write, and limited information about the

participant’s coding process. Early responses from this questionnaire were used to

refine the interview prompts, but the prompts were not modified after the first interview

was conducted.

10

During the interview, participants were then asked a set of seven questions about

the purpose of the code they write, the processes and tools they use to write it,

challenges they face while writing it, how they learned to code, and how they thought

the use of code in their field will change as time progresses.

Procedure

Participants were asked to fill out the “Pre-Interview Questionnaire” in advance

of their time slot. If participants had still not filled out the questionnaire a day before

their time slot, they were reminded. If they still did not fill it out, they were asked to do

so during their time slot. This survey took participants an average of 10 minutes to fill

out.

During their scheduled time slot, an overview of the study was explained to the

participant, and any questions were answered. Participants were then given a Consent

Form to review, and if they did not have any objections, sign. The audio recording was

then started. The interviewer then asked questions found in the “Interview Script” (see

appendix) to the participant, while writing the participant’s summarized answers into

the form. Follow up questions deemed important by the interviewer were asked, and the

answers recorded in an additional box set aside for them at the end of the form. After all

questions had been asked, the audio recording was stopped, the participant was thanked,

and any additional questions they may have thought of about the study were answered.

These interviews took between 30 and 60 minutes to compete.

11

Scientific Programmer Case Studies

Participant 1

Thoughts on Learning to Code
Participant 1 has been learning to code since he was a child. He took

programming classes in university, and coding came to be an integral part of his

research as he pursued and earned a PhD in Mathematics. Nowadays he learns

informally, by consulting online documentation when trying to learn how to use a

language and by asking on Q/A site StackOverflow when he has specific questions he

cannot find answers to elsewhere.

When he is helping new PhD students learn to code, he usually suggests that

they try to do projects on project Euler, a mathematical programming challenge site.

After this, he will give them a programming challenge more suited to their research

area. In general, he recommends that new programmers try pair programming with a

more experienced programmer, because as he sees it, this is the only way to learn Test

Driven Development and Agile methods correctly. He also suggests that in general,

people make a quick and dirty solution first and refactor it later.

Why they use code
Participant 1 is an experimental mathematician, and uses code to generate

sequences, which are the object of his research. He also uses code to discover patterns

in these generated sequences, and he uses these guesses as starting points for further

manual analysis. As he explains, “the computer is the lab, and the computer allows him

to have more data to look at”. He explains that without code, it would be far to time

consuming to manually calculate the sequences he studies.

12

Additionally, he uses code to draw, as he puts it, “mathematical pictures”, which

represent his mathematical discoveries. He says that these findings would be very

difficult to fully explain without the use of these pictures, and further that these pictures

would be very difficult to generate without the use of code.

Figure 1: An example of the “mathematical pictures” Participant 1 generates with code

What causes them difficulty
Participant 1 is a fairly experienced programmer, but expressed a few high level

problems with his process. First, he noted that research projects that require him to write

many lines of code usually end up being prioritized last. In this way, he does not like

that the number of lines of code required to pursue a question determines the kinds of

questions he is able to pursue.

Second, he is annoyed that he cannot embed his code in with his journal papers.

He says that while “software is not a research project”, he does say “it is an experiment”

and thus he feels he should be able to include at least key algorithms, but on multiple

occasions when he has done so, the editor has asked him to remove his code from his

pyg..me window

[Oht<AJ[- •All ... ~
!Otm Bl !Bo<do<Bl l~ l!!lJ

13

manuscript. He thinks that the way that research and researchers are evaluated should

include a greater emphasis on code contributions.

Third, he finds it difficult to keep track of the structure of old code projects,

especially because he does not document his code except for writing its associated

journal article. Thus, he finds it difficult to remember how old projects worked.

What tools they use
Participant 1 uses Python, because he finds it expressive and fairly quick use to

build things. He also says he has a lot of experience with its peculiarities and idioms.

However in his view, Python has poor support for multithreading and application

packaging. On the seldom occasion that he needs to profile Python applications, he uses

GProf.

He wishes that the Sage mathematics library, which he uses extensively, were

better indexed. He often has to determine if given functionality is already implemented

in Sage, and he says it is often difficult to find this out. He finds that Sage can be

difficult to debug, because it hides the stack trace when errors are thrown. However, he

likes that it is open and developed by fellow mathematicians, which means that it

usually fits his needs well.

He uses git for version control.

Where they want to improve
Participant 1 said that if he had more time to seek better training, he would

probably learn to do Test Driven Development properly. Also, right now he writes code

procedurally, and refactors to use an object oriented style. He says that with more

training, he feels he would be able to use object oriented style “from the get go”.

14

Additionally, he feels that if he had experience as a Software Engineer, he would be

more fluent with the git version control tool.

How they value code in their discipline
Participant 1 says that most researchers in his discipline who are in his age range

are proficient in code, and that most people in his field use Sage, illustrating how

important code is to his area of mathematics research. In addition, he says that he thinks

that soon, there will be a coding course for mathematics PhD students so that they can

learn to code in support of their research.

Participant 2

Thoughts on learning to code
Participant 2 took a few coding classes in college, but mainly learned to code on

the job. He also said he has taken a few coding classes at his work. Coding classes were

required as part of the physics curriculum during his undergraduate degree, and he

believes this should also be the case at his current institution. He expects all of his PhD

students to know how to code, but if they are just starting out, he recommends they use

online tutorials, and he will also get them started on a really simple physics project

where he will ask them to “reinvent the wheel”, working on a coding problem with a

known solution.

Why they use code
Participant 2 does research in astrophysics, and uses code to run hydrodynamics

simulations, to perform data analysis, and as a teaching tool. He uses code to simulate

and calculate properties of hydrodynamics configurations, such as analyzing the

stability processes of rotating stars. He says that because he does non-linear

calculations, it is easy to get them wrong, and thus easy to generate bad, spurious

15

results, and because of this, he uses code to validate his results using linear

approximations.

What causes them difficulty
Participant 2 finds it difficult to debug his code, because he has to step through

each line of code using a debugger and do a lot of math to manually verify each

intermediate number. Before usable debuggers were available, he had to do this by

using print statements. Once the code runs, it must be compared to other published

results, which are based on experimentally derived physical realities. This process takes

from a few months to a year. He wants to be able to parallelize his workflow, but he

says that Matlab and Python prevent him from doing this easily.

What tools they use
Participant 2 uses C++ and Fortran. He also uses Matlab to set up the

simulations, to set initial conditions, and to interface with the lower level languages, but

is trying to switch to using Python instead because he says Matlab costs too much. He

also uses GitHub to release code, and to do version control.

Where they want to improve
Participant 2 wants to become more efficient at writing code, because he often

writes using trial and error. He also feels he often doesn’t know about small “tweaks”

might make his code run better or more efficiently, an example he gives is that he might

be able to write code that finds the sum of a series of numbers, but might not be able to

do it in the shortest or most computationally efficient way.

He want to become better about initial planning, and that rather than just having

a general notion of what he wants to do he wants to have a better idea of intended

functionality from the start.

How they value code in their discipline

16

Participant 2 says that being able to program is already a mandatory skill to do

research in his area. However, he notes that because of the advent of higher languages

such as Matlab and Python, you no longer have to know to do low level calculations,

which in turn makes this mandatory skill more accessible.

Participant 3

Thoughts on learning to code
Participant 3 learned to code as a graduate student, by looking at code others had

written, and by occasionally looking at textbooks on the languages he was using.

He says that conferences in his discipline occasionally have workshops to teach

coding skills, usually lead by post-docs, and he would recommend that new PhD

students use these opportunities to develop coding skills.

Why they use code
At a high level, Participant 3 uses code to analyze experimental sensor data.

Before the advent of code, similar kinds of data analysis had to be done with by looking

at high frequency photographs, and this technique only allowed approximately one

frame every two seconds to be analyzed, whereas with code, researchers can analyze on

the order tens of thousands of frames of data per second. Participant 3 said that aside

from simply reducing the manual labor burden of his kind of research, this ability to

analyze more data has enabled new scientific discoveries that are qualitatively different.

What causes them difficulty
Participant 3 said that using good coding style is difficult. Included in this is

ensuring that code is easily reviewable and readable, and that he often has to go back

and include better documentation through the use of code comments.

Participant 3 also said he has major problems with the increasing shift of the

heavy lifting of computation to the “Cloud”. He feels the Cloud is too opaque, using the

17

words “black box” to describe it, explaining that as a classically trained Physicist, he

likes to be “close to his instruments”.

What tools they use
Participant 3 works on a collaborative codebase, which has stringent rules that

must be followed. One of these practices was that he contributes to a central wiki page

which serves as documentation for the codebase, and also serves as the organizing

structure to coordinate the coding effort of different team members.

He chooses to use TextEdit as his editor. He uses the Python “Matplotlib”

library to produce charts and visualizations. Before Python he was using MATLAB, but

he found that Python allowed him to interface with data easier and faster. Many of the

tools he uses have backends written in C, with their interfaces written in Python.

Where they want to improve
Participant 3 feels that if he had more experience writing code, he would feel

more confident pursing research that requires more complex coding projects, instead of

simply making small changes to preexisting tools.

How they value code in their discipline
Participant 3 says that being able to code is already a skill that is required to do

the kind of research he does. When searching for potential students to join his lab, he

states that “What programming experience do you have?” is the first question he asks.

When he was in graduate school, taking courses in software development was a

requirement, but that such courses are not a part of the undergraduate physics

curriculum per se, though they do have lab courses where students explore a physics

topic through the use of code.

Participant 4

Thoughts on learning to code

18

Participant 4 originally learned to code using online tutorials, as well as more

formal online courses. However, he learned a lot of his software engineering skills from

a workshop put on by the Software Sustainability Institute, a consortium of UK

universities dedicated to helping support researchers and software engineers. The

workshop was specifically designed to teach software engineering skills to people in his

field of research, with the view that by writing better software, the “peer reviewability”

and reusability of research code. From this workshop, he says he learned things like

how to package software for release, and how to have different modules written in

different languages communicate effectively.

Were he to advise a new PhD student about how to learn to code, he would

suggest that they learn languages that would strike a balance between usability and

computational efficiency. He would also suggest taking a computer science course,

because he thinks this may teach both a language and the proper conventions which

may make it easier to write sustainable software.

Why they use code
Participant 4 writes code that analyzes output from established simulation

packages. More specifically, he analyzes kinetic models of molecules using Markov

state models. He says that this kind of modeling would be impossible without computer

code, because it depends on performing calculations on many numbers, and also

because to view the output, you must look through multiple graphs which would be

impossible to produce manually. In particular, to simulate accurately, one must simulate

at a small enough timescale that one can assume the molecules undergo constant

acceleration, and for this assumption to hold, one must use a frequency of calculation

that would prohibit manual calculation. To be clear, he did not design the simulation,

19

but his code sets up parameters for an established simulation package and analyzes the

output data it produces.

What causes them difficulty
Participant 4 says that one of the biggest challenges he faces is designing how he

wants the code to work, as well as creating an effective user interface. He wants others,

both scientists in his lab and outside of it, to be able to use his code, but he finds that if

he builds his code “too opaquely” people do not trust the “under the hood stuff”. At a

high level, his code unifies analysis at a large timescale with similar analysis conducted

at a small timescale, and the design decisions he makes to unify these two analyses can

lead people not to trust that his code operates correctly. Additionally, he must use

Fortran for the heavy number crunching due to speed of execution constraints, but he

uses Python for front end interfaces because he thinks it will allow others to make use

of his code more easily, as well as allow him to display and visualize results more

easily. However, bridging these two programming languages adds an additional layer of

opacity contributing to others having what he describes as a low level of trust in his

code.

While he is fairly confident in his coding ability right now, he remembers that

while learning to code, he found it very technically difficult to link his Fortran backend

to his Python interface.

What tools they use
Participant 4 uses Jupyter notebooks to structure a lot of his code. He uses

different cells to build different modules, and likes that he can use this structure to break

down code into chunks, that let him know where problems are. Additionally, he likes

that he can serve Jupyter notebooks on a server containing his large datasets, and thus

20

access and modify his computations from remote locations, allowing him to do work

and present his results wherever he chooses.

He uses the F2PY (which stands for “Fortran to Python”) interface generator to

help bridge pieces of Fortran and Python code. He does not use an IDE, and uses Atom

to write and edit code. He likes Atom because it is built into Github, so he can track

which code has been committed easily, and also because it has a built in file browser

organized in a tree.

He uses GitHub for version control and simply to store his code. He likes that

GitHub lets you display Jupyter Notebooks on the GitHub website, allowing you to

show working examples of your code in a web browser.

The hardware he uses is more powerful than average: he has a server with 32GB

of RAM to handle the computation, and it runs Jupyter Hub, the server software which

allows him to access Jupyter notebooks which can make use of to the hosted data from

anywhere.

Where they want to improve
Participant 4 is confident in his process. He says that because he often interacts

with computer scientists, he has been able to learn from them, including such lessons as

code packaging and modular design. He also refers to the workshop he attended as

making him care deeply about making his code as generally useful and usable as

possible.

How they value code in their discipline
Participant 4 says that in his specific field, coding is already a required skill.

Some people merely build scripts to connect existing code, but many are also able to

build custom applications that fit their specific needs. He says there is a big trend of

21

learning to use NumPy and other Python packages among scientists as of late. He also

gave a specific example of a colleague who had done this, and how this had let him

shorten the time it took to analyze his data from a few days to just one day, which in

turn allows him to use his time to solve problems more fundamental to his research.

Participant 5

Thoughts on learning to code
Participant 5 learned to code as part of his work, mainly by reading textbooks

and by using Google to search when he found an error he did not know how to solve.

He is a Professor, and when he teaches new graduate students to program, he “strong-

arms” them into learning Fortran, usually by walking them through a simple program,

and asking them to make simple modifications, and then by asking them to build

something simple from scratch, such as to write a program that calculates the standard

deviation of some numbers.

Why they use code
Participant 5 says he mainly uses code to make maps so that he can analyze

spatial data visually. He works with climate models, and uses these maps to compare

different models qualitatively. His code also reduces the data from the model to an

appropriate timescale so it can be correctly compared with other data, which may be in

a different timescale.

What causes them difficulty
Participant 5 says that the hardest part of his process is what he calls “code and

data archeology”. He says that it is hard to first find and then understand old pieces of

code he has written. For data, he says he finds it hard to understand the purpose of input

and output files long after the project with which they were associated has been

22

completed. He is often faced with the choice of writing code from scratch, or taking

time to find code from old projects, which would serve the same purpose.

What tools they use
Participant 5 uses the Intel compiler in Visual Studio to build Fortran code. He

says that Fortran is the fastest language to process his data, because it allows him to

exploit parallelism in data reduction. He has notable hardware to process the large

amount of data he uses: a computer with 32 cores, and a server with 32 cores and

192GB of RAM, as well as multiple 6TB hard drives. He uses Kedit and Sublime Text

to write code. Kedit is a text editor that he uses for “looking at data and manipulating

data”. He also uses a dual pane file explorer called “Total Commander” to look through

his code and data files.

Where they want to improve
If he had more time to learn, Participant 5 would work on learning formal

version control, which he thinks would help him with his problems with “data and code

archeology” discussed earlier.

How they value code in their discipline
Participant 5 says that coding ability is important in his discipline (Geography),

so much so that he thinks there should be more departmental support to teach

geographers to code. He thinks that undergraduates, and especially graduate students

should learn Python specifically.

Participant 6

Thoughts on learning to code
In his role as a professor, Participant 6 regularly guides graduate students as they

learn to program. He suggests that they take a Python class offered by his university’s

Computer Science department, as well as a “spatial analysis” course he teaches using

23

the programming language R. When he himself was learning to program, he took an

intro to Java class during his masters degree, and also used Google and Stack Overflow

to search online for answers to specific problems.

Why they use code
Participant 6 uses code to do simulation modeling, to do spatial analysis, to

compute statistics, and to automate his workflow. He simulates forest ecology, and uses

this simulation to study the spread of tree diseases. He says without code, it is

impossible to do simulation modeling, because no existing software package would

allow him to model the natural phenomena he studies. He says that it would be slightly

more possible to do spatial analysis using a software package like Microsoft Excel, but

that he often needs to use statistical methods which require more control than such

software packages can give. Participant 6 (Assistant Professor) oversees Participant 8

(Post-Doctoral Research Associate), thus there is significant overlap in their two use

cases because they work on overlapping projects.

What causes them difficulty
Participant 6 feels that dealing with abstraction is his biggest difficulty. This is a

classic problem when modeling: he wants to ensure that he can build an abstract model

of natural phenomena, but without loosing important detail required for the model to be

usefully accurate. He says that when he builds models that take into account “too many

parameters”, he has to worry about these models being computationally efficient.

Related to this, he says it is difficult to get his collaborators to agree on model

parameters, both in terms of which conceptually relevant at all, and on which are

important enough to be included in the model. This problem is compounded by the fact

that he works with a diverse team spanning many disciplines (including political

24

science, climatology, ecology, wild fire science, and computer science) and that not all

of them understand the difficulty of building a simulation model in code. They also

often disagree on the degree of granularity that parameters should be included (e.g.,

modeling on a spatial resolution of hectares vs acres).

What tools they use
He uses R to compute statistics and to do spatial analysis. He likes it because it

has what he calls “the best support community”, as well as many libraries that make it

easier for him to process spatial data.

In addition to using simulation models in his research, he also teaches students

how to use them in class. For this, he uses an agent-based programming language and

integrated modeling environment named NetLogo. He like this because he feels it is

easy to learn and teach, but is still reasonably powerful.

His Post-Doctoral Research Associate is largely responsible for building the

simulation model, so a discussion of the tools used to build this will be discussed in the

discussion of Participant 8.

Where they want to improve
Participant 6 wishes he had more time to learn to program better so that he could

be more in charge of developing the models, which he currently assigns to his postdoc.

He says that if he had more coding ability, he would have done some of the coding for

these projects, and also would have been able to contribute more to the technical design

discussions that go into creating a model. He also says that this way, he would have

been able to build models faster to demonstrate them to other, less technically inclined

team members.

25

If he had better technical skills, he also says that he would have been able to put

more emphasis on usability, particularly so that other people could open up the model

and change the parameters more easily, and furthermore, allow him to package his

model in a way that would be of more general use.

How they value code in their discipline
Participant 6 says that being able to code, at least in some capacity, is already a

required skill in his discipline, and that this requirement will only become more

stringent in future. He says that in future, it will become expected that PhD students

know how to code, especially if they want to get a job in an industry where they work

with data after they graduate.

Participant 7

Thoughts on learning to code
Participant 7 has a Bachelors and Masters Degree in Computer Science, but now

is pursuing a PhD in Geography, and of our participants, thus had the second most

formal training in Computer Science. As expected, she says that it is through both of

these degrees that she has obtained most of her coding ability.

When asked how she would help a new research contributor learn to code, she

said that she would suggest joining a project lead by a more experienced coder, and start

with small coding tasks to learn in a “hands on” manner. She is careful to emphasize

that she finds it more important to “learn how to complete tasks” rather than spend time

“learning the basics of a language”. She also lists “[learning] versioning, excessive

commenting, testing often” as the top three most important things coders should learn to

do. After doing this, Participant 7 suggests taking an “Intro To Python Programming”

course in the computer science department.

26

Why they use code
Participant 7 uses code to allow people with blindness to access the information,

which would normally be experienced visually through a geographic map. To do this,

she builds a dynamic vocal auditory interface to allow them to experience spatial data.

She also uses eye tracking to understand what data is most useful to sighted people, and

needs code to collect this data. She also uses code to process the data she collects.

Without code, she supposes that she could record the spatial information she wants to

convey, but says that her system would lack the interactive element she wants it to have.

What causes them difficulty
Participant 7 expresses three difficulties. First, she says that she has often had to

change her process to accommodate people with less coding experience, often by

omitting the use of tools she finds supremely helpful. One example she gives is that she

has had to stop using formal version control because her collaborators did not know

how to use it, and it was deemed easier to stop using it than teach the new collaborators

how to use it. She said that she has had more positive experiences too, where she has

had what she termed “workshop days” where non technical collaborators would all

work in the same room as the CS-trained collaborators, where they were able to make

faster incremental progress on their project using paper and whiteboard and back and

forth direct interaction.

Another thing she found difficult was that a library (GeoTools) she uses was

designed to process spatial information, using the “Java Swing” graphical user interface

toolkit, but that she found it difficult to adapt the GeoTools library to a non-visual

approach to outputting spatial data.

27

Finally, she finds that when working in a group of diverse levels of technical

expertise, she finds it is hard to “articulate structures and ways of thinking about

[technical] things which would make it easier to reason through a [code] process”. She

characterizes this as a knowledge gap which makes communication more difficult, and

one example she gives is trying to explain what a design pattern is.

What tools they use
Participant 7 is fairly happy with her tools, but as mentioned previously, she

dislikes that she occasionally has to drop the use of certain tools to accommodate less

technically inclined collaborators.

She uses Java, as well as the Java Sound API to build her spatial data auditory

interface. She uses GeoTools, a Java based Geographic Information Systems ToolKit,

which allows her to process spatial data. She uses Apache Subversion for version

control, and the Eclipse IDE to write her code. When she needs a text editor, she uses

TextMate.

Where they want to improve
Participant 7 mentions that in a research setting, quality is often “good enough”

to meet the fast paced needs of research, but given more time, she would write

“cleaner” code and would document her code more thoroughly by including more

comments.

How they value code in their discipline
Participant 7 says that her field of research, Geographic Information Systems,

requires that people be able to code. She says this need is less present in Physical and

Human geography.

Participant 8

Thoughts on learning to code

28

Participant 8 learned to code using online courses, such as those for Java and

C++ available on Coursera, as well as through textbooks such as “Head First Java”. He

also mentioned that he found YouTube tutorials and StackOverflow questions and

answers to be particularly helpful. If he had the opportunity, he says he would have

taken an Introduction to Programming course offered in the Computer Science

department at this university, where he imagines he would have learned both language

skills as well as good coding practices which he characterizes as harder to pick up by

oneself.

Were he to give advice to someone learning to code for research purposes, he

would suggest they start working on very small pieces of a project, erstwhile working

through an accessible book like “Head First Java”. He would also suggest they take the

time to learn how to use debugging tools early on, because he feels this will save a lot

of time in the long run. He emphasizes the importance of commenting code, reflecting

that he has spent hours looking at old code to try and understand what it does.

Why they use code
Participant 8 works as a Post Doc under Participant 6 to build an agent based

model of invasive grasses and other floral phenomena. He explains that in effect, this

means he “builds a world in a computer, gives agents properties and behaviors so that

they can interact with other agents”. He uses his own and other’s knowledge of invasive

grasses to translate natural phenomena into a model that he can build in code. He says

that the purpose of a model is less to predict the future with precision, but more to

bracket the range of possible outcomes given hypothetical parameters.

29

Participant 8 also uses code to do statistical analysis on large datasets that would

choke software packages such as Microsoft Excel. He also uses code to exert a high

degree of control when making charts and figures for publication.

What causes them difficulty
Participant 8 says that he finds troubleshooting and debugging to be one of his

hardest tasks. He says this is largely because he is typically learning to use the language

he’s using while simultaneously using it to build complex models, and his unfamiliarity

with the language and the algorithms he’s using makes them hard to debug. He

regularly encounters both fundamental flaws in his program, as well as small “one off”

errors.

He also has difficulty communicating the work he’s done with those who are

less familiar with coding or those who are less familiar with the project, and packaging

up his code so that it’s usable by these people. He says because of this technical

knowledge gap, it is hard to elicit feedback on his model from those with domain

knowledge.

He says that it is hard to learn new classes of algorithms. One example he gives

is that he had to learn how to do linear programming for an optimization problem, but

didn’t know any linear algebra, so he wasn’t even aware that linear programming could

do for him. He says that as a result, he had to learn a new technique as well as its

specific implementation.

What tools they use
Participant 8 uses R for analysis and for producing graphics. He has thought of

using Python, but he is comfortable and has so much experience using R that he does

30

not feel compelled to switch. He says that R is not good for modeling, because there is a

lot of overhead, and because it is slow.

He uses Java to build his agent-based model using a modeling framework named

Repast, which includes visualization tools. He uses Eclipse for his IDE, and likes that it

has different perspectives for programming and for debugging. He also uses JUnitTest

to test his code.

Finally, he has taught courses in NetLogo, a lightweight agent-based modeling

system, but does not use it for his own research though others do, because he finds that

it gets really slow when you use it to build large models.

Where they want to improve
While Participant 8 is fairly comfortable with his process, he says that he wishes

he had a more formal way of visualizing projects from the get go, including how code

would have been written and the stages it would go through. He also wishes he had

more time to write formal test batteries.

How they value code in their discipline
Participant 8 says that code is already a required skill in his area of research, and

certainly for those who wish to build and tweak agent based models. He says that even

in Ecology and in the Social Sciences, you need to use R or something like it for spatial

analysis, because GUI software packages are limited and often do not include the

functionality required.

Participant 9

Thoughts on learning to code
Participant 9 is in a fairly unique situation with respect to his CS experience.

Though his current appointment is in Biology he was formerly appointed in the

Computer Science Department, and he has a PhD in Computer Science and does

31

research in Bioinformatics. This means he has a large amount of coding and theoretical

experience, as well as a great degree of formal training in the field.

If he were to help a new PhD student learn to code, he would suggest that they

write code into Jupyter notebooks, a platform which allows people to embed rich text

and graphic documentation with executable code cells. Occasionally, he refers them to a

an introductory programming textbook. He also says that there is a current graduate

level experimental course offered named “Programming for Biologists”, which aims to

give biologists just enough programming so that they can automate and much of their

results analyses. He also says that he likes the website “SoftwareCarpentry.org", a

website specifically designed to teach programming skills to scientists. They also often

offer 1-2 day intensive tutorials at scientific conferences and such.

He is careful to make the point that he thinks biologists do not need to become

well trained programmers, but that often they just need enough skills to do their work

and not much else.

Why they use code
Participant 9 uses code for lower level tasks he terms “workflow management”,

but because he is in Bioinformatics, code is often the language of his research.

Participant 9 described workflow management as connecting existing tools

which must be used sequentially to find results. He writes scripts that connect these

tools to allow him to work faster and process more data.

However, Participant 9’s main use of programming is far more novel. Using his

background in Computer Science, he takes an information theory approach to gene

sequence alignment, which is a common problem in biology. At a high level, he

explains that classically, gene sequence alignments were computed and represented by

32

the “longest common subsequence”, that is the longest string of common elements

between two genes. However, he explains that this is not a useful way to represent

similarity, because it describes similarity effectively by describing gaps in similarity,

rather than describing overall similarity directly. Instead, he describes his approach to

describing similarity as “the amount of information required to describe an unknown

sequence given a known sequence”, where two highly similar sequences will require

less information and two highly different sequences will require more information. He

says that he wanted to use this new approach because he thinks it is a more natural and

unbiased way to represent similarity, alleging that the old way had so many parameters

such that it could be manipulated to render a desired result, and is thus is more

subjective.

What causes them difficulty
Participant 9 says he often wishes that he spent more time building a test suite

and automating unit tests. He thinks this would allow more efficient unit tests

throughout the code writing process, and allow him to spot problems earlier on.

He says that he often finds algorithms conceptually difficult to reason about and

build, but he describes this as “the fun part”.

He also says that he dislikes doing “system administration type stuff”, such as

when package updates cause his code to break. He says that he often has to go back and

fix everything after an update, but this is “becoming more sane” now. Similarly, he also

finds makefiles and configuration files hard to grapple with.

What tools they use
Participant 9 uses C++ for his novel sequence alignment research. He uses

Textmate as his editor, which integrates a tree style file explorer. He uses a document

33

management program called DEVONThink Pro to keep a virtual lab notebook.

Participant 9 uses Jupyter notebooks to teach computer science courses. He partially

fills in code cells, and asks them to complete desired functionality as an assignment. He

says he sometimes also uses Jupyter notebooks for research, because he likes that he

can integrate his documentation with his code.

Where they want to improve
Participant 9 has a PhD in Computer Science and thus much computer science

experience, and he says that because of this, he is fairly happy with his process.

How they value code in their discipline
Participant 9 has a unique perspective, having formerly been appointed as a

Professor of Computer Science but with a current appointment as a Professor of

Biology. In his current appointment, he heads a curriculum reform committee charged

to modify the undergrad curriculum to add more quantitative skills such as

mathematical modeling, statistics, and computer programming. He says he reflects his

opinion that biologists need more quantitative skills, because the nature of biological

data is changing: with cheap gene sequences, more biological discoveries are possible

but only through the use of code to process this large amount of data. He also believes

that code contributions are more valued in the field of Biology than in Computer

Science.

Participant 10

Thoughts on learning to code
Participant 10 has been taking programming classes since high school,

reminiscing that his high school was given one of the first mass production

minicomputers on which he learned to write BASIC. Later, he was introduced to coding

in a research setting by a post doctoral research fellow.

34

Where he to coach a new PhD student as they learned to code, he would sit next

to them and instruct them while they code and introduce them to basic concepts such as

variable declarations, if statements, and for loops. Then, he would give them a small

biology related problem to solve.

Why they use code
Participant 10 uses code to model worm feeding behavior. His code processes

video data of worms crawling on agar plates searching for food, and analyzes this data

to find hidden Markov models, to model this behavior. He says that without code, there

would be no way to do this work by hand, because there would be no way to analyze

this behavior on the thousands of experiments their models are based on, and doing it

with fewer experiments would not allow them to find statistically significant results. His

code also does math that is very difficult to do manually.

What causes them difficulty
Participant 10 says that it was very hard to interpret and analyze video data,

because there were many artifacts in the video, such as vibrations, for which he had to

compensate.

He also wants to put more effort into improving his tool’s user interface, but

also does not want to spend too much time on this task because there are more pressing

concerns, and because his tool is not designed for general use. He finds this tradeoff

difficult to make.

What tools they use
Participant 10 uses a C-like compiled language called “Igor Pro”, designed for

interacting with experimental scientific data, which includes ample image processing

operations. He says he likes it because although it is a compiled language, it compiles

so quickly that it can be readily interacted with. He dislikes that “the built-in editor is

35

bad”, because it requires that he use the mouse in addition to the keyboard, which he

finds slow. He also says that though Igor is C-inspired, it has many idiosyncratic ways

that it differs from C that can occasionally make it difficult to teach others how to use it.

Where they want to improve
He wishes that he was more experienced with a more conventional language or

programming environment, because he feels that he would be able to build a more

robust and easier to share product that way.

How they value code in their discipline
He says that in his lab at least, coding skills are already required. He also says

that he is trying to bring coding instruction into the undergraduate Biology major. He

feels this could be integrated as an active learning exercise, using biology inspired

exercises.

Participant 11

Thoughts on learning to code
Participant 11 mainly used online resources to learn to code, relying heavily on

Mathematica’s online help. He has also taken live online classes, with instructors who

answer your questions. This service was provided free to him through his University’s

institutional subscription. He says he has also taken many classes in Economics, and he

feels that solving the assignments using Mathematica is a good way to use

Mathematica.

Why they use code
Participant 11 uses code to do the mathematical heavy lifting to support his

research in Business Operations. He does mathematical analysis of models. He finds

optimal values for different “players” in a given model. He says that he could do

36

perhaps 45% of this math by hand, but the hardest part is transitioning between different

states of his model, which he describes as “messy without code”

What causes them difficulty
He says that when building large complicated scripts in Mathematica, he often

has to simplify things to allow him to verify that the script’s output is correct. However,

he says that because of this simplification, he finds that he looses the ability to see the

intuition behind the code.

He also finds it difficult to collaborate with coauthors when using code. This is

because when everyone writes different parts of the Mathematica code required for a

paper, it can be very difficult to understand each other’s code.

What tools they use
Participant 11 primarily uses Mathematica and Matlab. He finds that both

packages have complementary strengths and weaknesses. He likes Mathematica

because it can intelligently simplify mathematical functions. He also feels that

Mathematica is good for visualization tasks, such as plotting functions. He uses Matlab

less, but finds it is a better choice for numerical analysis.

Where they want to improve
He says he would like to learn a “normal” programming language like Python or

R, because his colleagues in the Computer Science department have said that these

languages would allow him to solve the same problems but in a more computationally

efficient manner. He also dislikes that Mathematica is not very good at working on

large datasets, and that more conventional programming languages may make this

easier.

How they value code in their discipline

37

Participant 11 says that the use of code is emerging as an important tool in his

area of research, because increasingly real business datasets are available to work on.

He feels coding skills are not yet required, but that that in five to ten years, they will be.

38

Best Practices Evaluation

P

Distinct Design
Phase Documentation

Existing,
Trustworth

y Code

Formal
Version
Control

Testing Public Release

1
frame research
conceptually, discuss
requirements with
collaborators

none beyond
writing
associated
research paper

uses Sage
libraries
when
possible

Git

tries but often
fails to conform
to Test Driven
Development

Yes, on GitHub.
Does not clean
up.

2

looks at similar code,
writes mathematical
equations underlying
code, builds
flowchart, builds
modularly from
flowchart

did not discuss
based on
legacy code
from 1980s

Git, GitHub.
does version
control “very
loosely,
informally”

creates test
problems based
on physical
phenomena, tests
each module in
pipeline
individually

Yes, on GitHub

3

for big systems: draw
diagrams on paper,
assemble code
fragments, ask about
existing code from
collaborators

peer code
review to ensure
code is
“reviewable and
readable”, wiki
page for higher
level
documentation

own
experiments
use code
from
codebase
with 1000s
of
collaborators

Git tests for known
outcomes

does not publicly
release

4

napkin drawing with
collaborators, lit
review, detailed
written diagram,
method and class
definitions

documents
using Jupyter
Notebooks

Python APIs
such as
NumPy,
Pandas,
MatPlotLib

Git, GitHub
writes test cases
with known
values

Yes, on GitHub

5

talks with
collaborators, search
for suitable existing
code, looks at input
data and imagines
desired output data

does not
document code
well enough,
has to do “code
archeology”

minimally,
examples
from
textbook
when using
R

records
version
number and
date for each
code file

inspects output
for “reasonable
results”

Shares with
collaborators,
does not post
publicly

6

designed as part of
grant proposal,
interdisciplinary
discussion for
conceptual design,
pseudocode

did not discuss does not
reuse code Git, GitHub

Sensitivity
Analysis on his
model

does not publicly
release

39

P

Distinct Design
Phase Documentation

Existing,
Trustworth

y Code

Formal
Version
Control

Testing Public Release

7

look for existing
libraries which may
fulfill conceptual
goals, additional
reading, interactive
design with lab
meetings and
prototype testing

feels less
important to
“clean up and
comment” in
research code as
opposed to
industry

reuses
scripts, but
doesn’t reuse
code for
main
application

stores in
Apache
Subversion
repository

paper logic
check, inspecting
verbose output

Yes, via
ScholarsBank
and lab’s website

8

reads through
technical literature to
translate conceptual
design into technical
design

finds scientific
modeling code
poorly
documented,
encourages
learners to
comment well

adapted from
previous
code, but
current
iteration
bears no
resemblance

Git, GitHub unit tests with
JUnit

Yes, as
supplemental
materials to
papers, and
direct to peers

9
minimal design
process, created
prototype then flesh
out different parts

keeps lab
journal,
occasionally
uses Jupyter
Notebooks

sometimes
reuses code
from GitHub
or
academic’s
websites

Git “add hoc” test
suites

Yes, on GitHub
and on lab’s
website

10

consider physical
phenomena to model,
work out
mathematical
underpinning, write
flowchart outline
with collaborators

did not discuss does not
reuse code

does not use
version
control

test with fake
data with known
answers,
including
extreme data

Yes, when
journals accept
code

11

lit review for similar
code problems but
rarely able to find
code, choose
mathematical
functions

did not discuss does not
reuse code

stores
different
versions of
code in
different
folders

verify
mathematical
results by hand

does not publicly
release

Table 2: Summary of Evaluations

40

A Distinct Design Phase

Participant 1 said that his design process usually comprises framing a research

question at the conceptual level and reading papers and discussing the code

requirements with collaborators. He says he then writes inefficient but easily understood

code first, before optimizing this code after he is happy with his design. Participant 2

said that his design process begins by looking in the scientific literature and by talking

to colleagues who may have written code which solve similar problems. He then writes

down the mathematical equations underlying the eventual code on paper, and then he

converts these equations into a flowchart representing the eventual modules of his

system. He says his fundamental algorithms are often adapted from code has found in

his literature search. He then writes each module of code, where each module of code

corresponds to a distinct step in his scientific analysis. Participant 3 says his design

process often begins by considering the physical phenomena that serve as his data, and

by searching for existing tools, which may be similar to those he is trying to build to

interact with this data. When designing bigger systems, he will often draw diagrams on

paper, and then assemble fragments of code he thinks will be useful, often asking

collaborators if they know of any existing code which fulfills his requirements.

Participant 4 latest project’s design phase started with a napkin drawing by one of his

more senior collaborators, which lead to searching through scientific literature and a

continuing series of conversations to discuss the technical requirements in greater depth.

Before he began writing code, he made a diagram with a pen and paper, and then wrote

the structure of code including method and class definitions. Participant 5 begins his

41

design process by talking with collaborators, and by seeing if any code he has written

before or may find in a public repository may fulfill a similar purpose to that which he

is considering writing. He also looks at the data he has, and considers the form in which

he wants the data to be in after being processed. Participant 6 usually applies for

funding for a research project which he knows will require the use of code, so he has

thus already given quite a bit of thought to the design of his code before he begins

building the system. His research often requires collaboration from an interdisciplinary

team, and this team will often design the model to be built in code around a whiteboard

over about two days. After collaborating with his less technically inclined colleagues,

he then translates the model they agree on into pseudocode, and then his post doc

(Participant 8) who is even more technically inclined will translate this pseudocode into

real code. Participant 7 usually begins by looking at what libraries may exist which

align with her conceptual requirements. Based on what she finds, she does additional

reading to understand similar solutions to the one she has in mind. She says that this

often occurs in an iterative process of design, between lab meetings and discussion and

prototype testing with volunteers. Participant 8 works as a post doctoral research

assistant recruited for his programming skills to work under Participant 6. Though he is

not the one who is responsible for determining the original design, he often reads

through a lot of literature to determine the technical design details after being passed the

conceptual design by Participant 6. He will often read through graph theory literature to

understand how the design of his model may borrow concepts from graph theory.

Participant 9’s design process is minimal, because his code project began to

investigate the possibility of implementing an information theory in a biological

42

context. He says that he did not design his system first, but instead began by creating a

prototype and recruiting students to flesh out parts of the system. Participant 10

designed his system by first considering the physical phenomena he wanted to model in

code. Once he had worked out the mathematics underpinning his model, he then

designed his code by writing a flowchart outline on a piece of paper in collaboration

with a colleague working on the same project. Participant 11 begins his design process

with a literature review to see what similar problems have been solved using code, but

is frustrated because he rarely is able to find the actual code used. After this, he chooses

the mathematical functions he will have to implement, and then after this abbreviated

design process, he begins building his system.

43

Figure 2: An example of Participant 6’s conceptual models drawn on his whiteboard,

forming part of his design process.

Due to the nature of academic research, there is often a natural and deliberate

yet brief and informal design phase before coding starts: usually code requirements are

often decided in response to a research question, and code requirements and design

often arise organically out of the literature review and methodology design research

processes. Thus we witness that the scientific programmers we studied usually have

some sort of design process, but these processes are varied and often informal. All of

our participants recognized the importance of having a design process, even if this

resulted in wildly different levels of formality. Their design processes often included

collaborators in their field, and also often included those with less coding experience

than themselves.

44

Documentation

Participant 1 talked at length about why he does not document his code

rigorously. In his view, the only documentation his job (Professor) incentivizes him to

produce is the research paper his code supports, which only documents the results and

purpose of his code at a very high level. He thus is incentivized to move on to

producing more research rather than taking the time to document his code. He also

mentions that if he tries to include snippets in his submitted papers, an editor will

invariably ask that he remove it. As a result, he finds it difficult to understand old code

he has written. This tension between the pressure to move on to publishing new

research and the benefits of rigorous documentation is a theme expressed by many other

participants. Participant 3 explained that one of his biggest challenges was ensuring

that his code is “easily reviewable and readable” by others. He says that he believes that

collaborators reviewing each other’s code is an important vetting process necessary to

doing good science. He says that sometimes code is not transparent or its function is not

obvious and thus people have to go back and improve their documentation. He often

will use a wiki page for high level documentation. Participant 4 mentioned that one of

the reasons he uses Jupyter Notebooks is because it allows him to write code with

interspersed rich text, allowing him to easily document his code. Participant 5

mentions that he often writes code from scratch even though he knows he has written

similar code before but does not want to do what he calls “code archeology” required to

find and understand it. He also mentions that he is excited by a new tool called “R

Studio”, an online interface for the R programming language, which allows embedding

of documentation and visualization in R code. However, he does not yet use this new

45

platform. Participant 7 discussed how code quality seems to be less important of a

concern when producing research software. Comparing her experience writing research

software to her past experience writing code in industry, she stated that “research

software is ‘good enough’, once it works you don’t go back to clean it up or comment

it”. Participant 8 mentioned how he has found it difficult to reuse scientific modeling

code because he found it poorly documented and commented. He advises that people

who are learning to program use good commenting style, should they ever need to

understand their old code. Participant 9 keeps a “lab journal” of sorts by describing his

progress on his coding project in a plain text file as he progresses. He also sometimes

uses Jupyter Notebooks in his research because he likes that he can easily integrate

documentation with his code. Participants 2, 6, 10 and 11 did not discuss their

documentation processes when talking about their development process.

Attitudes towards and practices of producing documentation to accompany the

code researchers write were mixed. Many participants produced documentation as part

of their design process as discussed previously, but few preserved this documentation

for the lifetime of their project or documented other parts of their development process.

Four participants did not discuss documentation while talking about their development

processes. Many scientific programmers do not recognize the importance of

documenting their code, or recognized the importance of doing so but explained that

external factors made it less of a priority. Two participants even talked at length about

the problems neglecting to document their code directly causes them, yet still they do

choose not to document their code.

46

Use Existing, Trustworthy Code

Participant 1 says that he always tries to find a Sage library which will perform

the mathematical functionality he wants to implement, and will only write code from

scratch if his search is unsuccessful. He also wishes that Sage libraries were better

indexed, because he often finds it difficult to determine if his desired functionality

already exists in a sage library. Participant 2’s codebase is based on hydrodynamics

simulation code written in the 1980s, which his lab has taken and significantly

modified. He also describes how he reuses code in a less strict sense, for example by

talking to colleagues about how they may have solved a coding problem on a

conceptual level, and then implementing their conceptual solutions in code. Participant

3 contributes to a codebase with many (thousands) of distributed collaborators, and the

code he uses in his own experiments is often pulled from this codebase. Participant 4

uses many Python APIs in his code such as NumPy, Pandas and MatPlotLib.

Participant 5’s level of code reuse depends on the language he is using. He says that he

rarely reuses code when using Fortran but occasionally uses examples from textbooks

when using R, and when using a visualization language named NCR, he often has to

reuse code because he finds it too “clunky and difficult” to compose from scratch.

Participant 7 that if she is automating a well established data processing pipeline, she

will reuse scripts from other research labs, but if she is writing software, she will start

from scratch but use libraries as appropriate. Participant 8’s current project was

adapted from code written from a previous Post Doctoral Researcher in his role, but he

states that his current codebase bears little resemblance to the code he inherited.

47

Participant 9 only sometimes reuses code, finding on fellow academic’s websites or

downloading it from GitHub. Participants 6, 10 and 11 say that they do not reuse code.

Seven of our eleven participants reuse code in some form, but this reuse runs the

gamut from occasionally using scripts downloaded from other academics’ websites, to

making extensive use of libraries for the core functionality of their codebases.

Participants often talked about considering code reuse as early as the design stage, as

discussed above, where they would look for code that might help implement their

conceptual goals. However, the majority of participants who reused code did so

superficially. Two participants used libraries, and two participants’ systems are

adaptions from legacy code, which bear little resemblance to the original.

Use Formal Version Control

Participants 1, 2, 3, 4, 6, 8 and 9 use Git for at least one of their projects, and

of those, 2, 4, 6 and 8 host their code on GitHub. Participant 2 says that he usually

does version control “very loosely, informally” for the bulk of his code, but uses

GitHub for one of his projects but he finds it hard to convince everyone to use it.

Participant 5 says he simply records the version number and the date for each code file

he writes, but does not use a more formal method of version control because most of

what he writes is in his words “write once, use once”. Participant 7 stores her code in a

repository, typically using the Apache Subversion tool. Participant 10 does not use any

version control for his project, which has been in development for 15 years. He believes

that version control systems add too much overhead. Participant 11 does version

control very informally, storing different versions of his code in different folders.

48

Participants often said that they used a version control system, but later when

talking about their process, they did not talk about how this version control system

integrated with their process, suggesting low degree of commitment to using their

chosen version control system. This was confirmed when a few participants enumerated

perceived flaws of version control systems, such as the introduction of unnecessary

overhead and the difficulty of achieving “buy in” from their whole project’s team. Most

participants are aware of version control systems and have used Git in some context.

Four of these participants also say they release their code publicly on GitHub (discussed

below), suggesting a higher degree of commitment to version control. At the same time,

these participants did not articulate how they use these version control systems when

talking about how they develop software.

Testing

Participant 1 says that he tries to adhere to Test Driven Development practices,

but usually fails. Instead, he usually does unit tests after writing his code. Also, because

he usually uses his code to compute sequences, he will compute the first few elements

in the sequence by hand, and will compare them those his code generates. Participant 2

says that he will create test problems based on known measurements of the physical

phenomena he studies. He also has different modules strung together in a pipeline to

output results, and he notes that he tests each one separately, doing the math by hand.

Participant 3 tests his code similarly, testing for known outcomes. Participant 4 says

he writes specific test cases with known values. Participant 5 merely inspects his

output to see if he finds them to be “reasonable results”. Participant 6, who uses code

to model natural phenomena, uses a technique called “sensitivity analysis” to test his

49

system. This technique is used to determine the how much of the uncertainty in the

output of his model can be apportioned to the uncertainty of each provided input.

Participant 7 uses a “paper logic check” where she traces the logic of her code on

paper, and also will make her program provide verbose output while running different

pieces of her code to confirm each is working. Participant 8 unit tests his code using

JUnit. Participant 9 builds ad-hoc test suites to test his code. Participant 10 will

generate fake data with known answers, and make sure that his code will replicate these

known answers. He makes sure to include extreme (but correct) results in his tests.

Participant 11 will verify the mathematical results of the formulae his code implements

manually, step by step.

Seven of our eleven participants said they tested their systems with some sort of

data with known expected outputs, with varying degrees of formality and rigor. One

used a dedicated testing tool (JUnit), but the rest tested their code with test data

manually. Two of our eleven participants tested their system by merely inspecting its

output. Two others tested their system by using a method suited specifically suited to

their use case (sensitivity analysis, mathematical verification).

Public Release

Participants 1, 2, 4 and 9 all release their code publicly on GitHub.

Participant 1 notes that he does not attempt to package it nicely before doing so, and

also notes that he wishes the journals he submits to were more open to accepting code

as part of his submissions (discussed earlier). Participant 9 will also release his code

on his lab’s website. Participant 5 releases his Fortran and NCL code informally to

collaborators and those who ask via email and FTP, but does not post it in a public

50

location. He hosts his R code on RMarkdown HTML websites. Participant 7 releases

her code via ScholarsBank and via her lab’s website. Participant 8 has released his

code as supplemental material in publications, and he has also shared his code directly

with peers. Participant 10 releases his code via journals which accept and publish his

code separately, but notes that not all journals do this. Participants 3, 6, and 11 do not

release their code publicly.

Seven of our eleven participants release their code publicly at least in some

cases, and one of the remaining four shares his code when asked but does not release it

publicly. Two of these seven participants submit code as part of their journal or

conference submissions, and one additional participants wishes he could do so. We see

that there is a high degree of willingness to release code among our participants.

51

Conclusions

On the whole, a low degree of adherence to best practices was observed.

Nonetheless, a few noteworthy cases of the creative implementation of best practices

leave room for optimism, and such cases be used as examples of what processes are

likely to work in scientific programming contexts. Additionally, in interviews,

participants often discussed problems which could be solved by adhering to best

practices, and even directly and independently expressed the will to learn how to

conform to the best practices we studied, suggesting that scientific programmers may be

receptive to education about and the codification of such best practices.

Of the best practices we studied, the existence of a formal Design stage was the

one we observed to be most closely adhered to. All participants recognized the

importance of an explicit design stage, but not everyone produced tangible documents

in response to this. We noticed that larger teams were more likely to produce written

design documents, and that most design activity occurred in a collaborative meeting

format involving all stakeholders in the research process. Therefore, we suggest that

taking minutes at these meetings may be a first step to formalizing more intuitive, ad

hoc design processes.

Overall, the importance and scope of Documentation was poorly understood.

Many participants spoke of how they advise new coders to learn to comment their code,

and many also complained about problems ostensibly resulting from poor

documentation. One participant explicitly analyzed the reason he gives so little attention

to documenting his code. Only two participants documented their process with

52

significant rigor, and both related their rigorous documentation process to their need to

communicate with the rest of their development team.

The use of Existing, Trustworthy Code was rare. Only two participants made use

of Libraries at all, four participants did not reuse code at all, and the rest mentioned

code reuse that was insignificant. Of the two participants who did use libraries, both

used languages known for an abundance of libraries, perhaps suggesting that the use of

more modern and mainstream languages may encourage more to reuse code. However,

not all participants who used such languages reused code, suggesting that increased

education about the benefits and method of reusing code may help increase adherence

to this best practice.

Many participants had heard of Formal Version Control systems, but few talked

about them as if they were an integral part of their process, and many also expressed

problems which could be solved by using version control systems, suggesting a low

degree of commitment to their use. Increased education as well as more flexibility on

the part of version control tools, will likely help scientists adhere to this best practice.

Most participants engaged in a reasonably methodical Testing procedure

involving manually writing and running test cases, except for two participants for whom

this method would not make sense, and two participants who had a much less

methodical test procedure. Because writing and repeatedly running test cases is time

consuming and can easily be automated using existing tools, increased education about

such tools would likely lead to time savings and increased rigor.

53

Participants displayed a surprising willingness to Publicly Release their code.

Eight participants publicly released their code in some form, and of those, three did so

in a formal manner accompanying published papers.

By and large, it is our opinion that increased adherence to best practices could

be achieved by a three-pronged approach: education, adaption and incentive. Many

participants had problems, which existing tools and processes could solve with no

modification, but they did not know of these tools or did not know how to use them.

Increased education, both about the range of tools and processes available and about

how to use specific tools and processes, can help solve these problems. A few

participants said that they know of tools which almost but do not quite meet their needs,

often because they were overly complex or designed with the needs of professional

software engineers in mind. Therefore, the adaption of existing tools could help solve

these problems. Finally, participants discussed a lack of incentive: their job was not set

up to incentivize adherence to these best practices we identify. To solve this, relevant

decisions, including those involving tenure and journal article acceptance could

integrate the contribution of code, which adheres to these best practices. One way to do

this would be to mandate that authors submit code to accompany the associated journal

article it was used for, so that the code could be judged in the existing peer review

framework.

54

Participants’ development processes were creative and extremely varied, such

that determining whether a participant's activities were in accordance with a given best

practice required the use of considerable subjective interpretive judgment. More work in

the way of defining best practices in concrete granular detail, within the scope of the

scientific process and in collaboration with scientific coders, would go a long way

towards removing this subjectivity.

55

Appendix

Pre-Interview Questionnaire

1. What is your field of research?

2. What is your job title?

3. What and in which field is your highest degree? (eg: MS Computer Science, or PhD
Physics)

4. For what percent of your time at work do you write code?

5. How many other people work on the same code project at your work? (enter 0 if solo
project)

6. If other people work on the same code project, do you lead the project?

7. How did you learn to write code? (check as many as apply, feel free to describe other
methods in the other box)

8. Which programming languages do you use in your research? (choose up to 3)

9. What is the purpose of the code you write at work? Feel free to list many. (eg: end
user software, machine learning algorithms, robot control code, database code, web
design)

10. Do you ever write code for personal or non work related purposes?

11. Is your system based on code from someone else? If so, where did it come from?

12. How did you determine the goals you wanted your system to satisfy?

13. What did you do to design your system before you began writing actual code?

14. How do you keep track of different versions of your system?

15. What process do you use to test your code?

16. What software or tools do you use to write your code?

17. What process do you use to update or maintain your code?

18. Do you release your code publicly? If so, how do you package and release it?

56

Interview Script

1. What does your code do? What does it allow you to do that you couldn't do without
writing code? What created the need?

2. How did your code project start? What were the first steps you took to fill this need?

3. What are the three hardest parts about building or maintaining your code?

4. What tools do you use to build your code (list all)? Why did you choose these tools?
What do they do well? Where do they fall short?

5. If you had several years of experience as a software engineer how do you think this
would change the way you build code? If you had a CS degree?

6. What resources have you used to learn how to build code? If you were to coach
someone else in your discipline on how to learn to code, what advice would you give
them? What would you tell them to do?

7. What role will code play in future advances in your field? Do you think that coding
will soon become a required skill in order to conduct high quality research?

8. Additional questions and follow ups as needed.

57

Bibliography

Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky. "Validation,
verification, and testing of computer software." ACM Computing Surveys
(CSUR) 14.2 (1982): 159-192.

Barnes, Nick. "Publish your computer code: it is good enough." Nature 467.7317
(2010): 753.

Baxter, Susan M., et al. "Scientific software development is not an oxymoron." PLoS
Comput Biol 2.9 (2006): e87.

Carey, Stephen S. A beginner's guide to scientific method. Cengage Learning, 2011.

Carver, Jeffrey C., et al. "Software development environments for scientific and
engineering software: A series of case studies." Software Engineering, 2007.
ICSE 2007. 29th International Conference on. Ieee, 2007.

Guo, Philip J., and Margo Seltzer. "BURRITO: Wrapping Your Lab Notebook in
Computational Infrastructure." TaPP 12 (2012): 7-7.

Guo, Philip Jia. Software tools to facilitate research programming. Diss. Stanford
University, 2012.

Hames, Irene. Peer review and manuscript management in scientific journals: guidelines
for good practice. John Wiley & Sons, 2008.

Morling, Beth. Research methods in psychology: Evaluating a world of information.
WW Norton & Company, 2014.

Myers, Brad A., Andrew J. Ko, and Margaret M. Burnett. "Invited research overview:
end-user programming." CHI'06 extended abstracts on Human factors in
computing systems. ACM, 2006.

Myers, Brad A., Andrew J. Ko, and Margaret M. Burnett. "Invited research overview:
end-user programming." CHI'06 extended abstracts on Human factors in
computing systems. ACM, 2006.

National Academy of Sciences, National Academy of Engineering, and Institute of
Medicine. 1992. Responsible Science, Volume I: Ensuring the Integrity of the
Research Process. Washington, DC: The National Academies Press.
doi:https://doi.org/10.17226/1864.

Ruparelia, Nayan B. "Software development lifecycle models." ACM SIGSOFT
Software Engineering Notes 35.3 (2010): 8-13.

Ruparelia, Nayan B. "Software development lifecycle models." ACM SIGSOFT
Software Engineering Notes 35.3 (2010): 8-13.

58

Segal, Judith. "Some problems of professional end user developers." Visual Languages
and Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on.
IEEE, 2007.

	Introduction
	Background
	Software Development Model
	Professional End User Programmers
	The Scientific Method

	Best Practices for Scientific Programming
	A Distinct Design Phase
	Documentation
	Use Existing, Trustworthy Code
	Use Formal Version Control
	Testing
	Public Release

	Case Study Methodology
	Participants

	Table 1: Participant Information
	Materials
	Procedure

	Scientific Programmer Case Studies
	Participant 1

	Figure 1: An example of the “mathematical pictures” Participant 1 generates with code
	Participant 2
	Participant 3
	Participant 4
	Participant 5
	Participant 6
	Participant 7
	Participant 8
	Participant 9
	Participant 10
	Participant 11

	Best Practices Evaluation
	Table 2: Summary of Evaluations
	A Distinct Design Phase

	Figure 2: An example of Participant 6’s conceptual models drawn on his whiteboard, forming part of his design process.
	Documentation
	Use Existing, Trustworthy Code
	Use Formal Version Control
	Testing
	Public Release

	Conclusions
	Appendix
	Pre-Interview Questionnaire
	Interview Script

	Bibliography

