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Abstract

I survey the literature on network formation in situations where the possible
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1 Introduction

Network structures play an important role in many economic situations. The types of

networks that I consider in this chapter are those that connect many individuals who

each must establish and maintain their own links. I refer to such networks as commu-

nication networks; they describe the bilateral channels through which individuals can

communicate and thereby coordinate their actions. The worth that coalitions of indi-

viduals can obtain by coordinating their actions is modeled by a coalitional game, which

specifies for each coalition S of individuals a worth v(S). Suppose, for example, that

there are three individuals, one seller who has one indivisible unit of a good for sale, and

two potential buyers. Suppose the value of the good is 0 to the seller (s), 1 to the first

buyer (b1), and 2 to the second buyer (b2). This situation can be modeled as a coali-

tional game with player set {s, b1, b2} and v({s}) = v({b1}) = v({b2}) = v({b1, b2}) = 0,

v({s, b1}) = 1, and v({s, b2}) = v({s, b1, b2}) = 2. If only the two buyers are linked (the

only link formed is b1b2), then the seller cannot communicate with any of the buyers,

so that no worth can be generated. If the seller is linked to the first buyer and the

first buyer, in turn, is linked to the second buyer (the two links sb1 and b1b2 have been

formed), then all three can communicate and coordinate their actions (the seller and

the second buyer do so through the first buyer) and a worth of 2 can be generated by

selling the good to the second buyer.

Note that in the approach based on coalitional games as explained above, the worth

that players in a network can obtain primarily depends on which players are connected

with one another (directly or indirectly) and not on how exactly these players are

connected. Hence, issues such as the deterioration of information as it has to travel

along longer paths are not taken into account. When we want to take these types of

issues into account, we end up in the realm of value functions on networks, which are

covered in Jackson (2004). Also, the approach based on coalitional games precludes

externalities between different groups of interconnected players; the worth generated

by a group of interconnected players does not depend on whether or not players not in

the group are connected to each other.

I illustrated above how the worth that the players can obtain depends on the net-

work. The discussion there concentrated on the worth that can be obtained by the

players as a group if they cooperate. This does not address the issue of how this worth

will then be divided among the players. In general, this division will depend on the po-

sitions that the players take in the network. For example, if in the situation described
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above the two links sb1 and b1b2 have been formed and the worth 2 is generated by

selling the good to the second buyer, then the first buyer might get some share of the

profits of the sale because his cooperation is needed for the seller and the second buyer

to make a deal as they cannot communicate directly (link sb2 has not been formed). If,

on the other hand, link sb2 has been formed, then the worth 2 can still be generated by

selling the good to the second buyer, but now the seller and this second buyer do not

need the assistance of the first buyer to complete the transaction and it seems reason-

able that the seller and the second buyer will share the worth 2 between themselves in

some way. The specific way in which the worth generated by the players in a network

is shared among them is specified by an allocation rule. In most of the models that I

describe in this chapter, it is assumed that such an allocation rule is exogenously given

and the players decide which links to form given this allocation rule.1

A network is a collection of bilateral links between players who must establish and

maintain their own links. Forming or not forming certain links is a strategic decision

for each player forming them, as such links have an influence on the position that this

player will take in the network and thereby have an influence on the payoff that the

player expects to obtain, as specified by the allocation rule. Because the formation of

links is a strategic decision, it is appropriate to model network formation as a non-

cooperative game. Perhaps the simplest possible way to model network formation is

by means of a strategic-form game in which players simultaneously announce which

links they want to form and in which a link between two players is formed if and only

if both these players want to form it.2 In this model, every network can emerge in

a Nash equilibrium when the underlying coalitional game and the allocation rule are

such that every player wants to have as many links as possible. This is because it takes

the consent of two players to form a link, so that a single player cannot form any new

links through unilateral deviation. This motivates the study of refinements of Nash

equilibrium for network-formation models.

In this chapter, I discuss the various (non-cooperative) models of network formation

in coalitional games that have been studied in the literature. The questions answered

for these models are which networks can be formed according to Nash equilibria or

refinements thereof and what the payoffs are to the players in such networks. The

models illustrate how differences in the circumstances under which the players are

1The exception is the model in Section 7, in which players bargain over link formation and payoff

division simultaneously.
2This model is described in Section 4.
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forming links and differences in ways in which jointly generated profits are distributed

between them influence the networks they form.

I shall proceed according to the following outline.

1. Introduction

2. Definitions

3. Network-Formation Game in Extensive Form

4. Network-Formation Game in Strategic Form

5. Comparison of the Network-Formation Models in Extensive and Strategic Forms

6. Network Formation with Costs for Establishing Links

7. Simultaneous Bargaining over Network Formation and Payoff Division

8. Related Literature

9. References

2 Definitions

All the models that I cover in this chapter start from a coalitional game (N, v), in

which N = {1, 2, ..., n} is the set of players and v : 2N → IR is the characteristic

function that assigns to each coalition S ⊆ N of players a worth v(S). It is always

assumed that v(∅) = 0. The interpretation of the worth v(S) of a coalition S is that

this is the payoff that the members of S can obtain for themselves if they coordinate

their actions, independently of the actions taken by the players who are not included

in the coalition. However, in order to coordinate their actions, players have to be able

to communicate.

Communication takes place through bilateral channels, which I refer to as (commu-

nication) links. The link between players i and j is denoted by ij and the set of all pos-

sible communication links between the players in N is denoted by gN = {ij | i, j ∈ N,

i 6= j}. In the models that I survey, it takes the consent of both players to form the

link between them and an existing link ij can be used costlessly by both players i and

j. A network is a pair (N, g), where N is the set of players and g ⊆ gN is a set of

links. When this does not lead to confusion, a network (N, g) is identified with its set

of links and is simply denoted g. The network with all possible links, gN , is referred to

as the complete network. In a network g, two players can communicate (and, hence,

coordinate their actions) if and only if there exists a path of communication between

them. A path in g between players i and j is a sequence of players i = i1, i2, ..., it = j

with t ≥ 2 such that ikik+1 ∈ g for each k ∈ {1, 2, ..., t − 1}. If there exists such a
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path with t = 2, then ij ∈ g and players i and j can communicate directly. Players

can communicate indirectly through other players if there exists a longer path between

them. Players who are not connected by a path are in different components of the

network, while players who are connected by a path are in the same component. The

component containing player i is denoted Ci(g) = {j ∈ N | j = i or j and i are

connected by a path in g}, and the set of all components of network (N, g) is denoted

by π(N, g) = {Ci(g) | i ∈ N}. Network (N, g) is connected if it contains only one

component, i.e., if Ci(g) = N for each i ∈ N , so that all players can communicate with

each other.

A coalitional game and a network comprise a communication situation. Formally,

a communication situation is a triple (N, v, g), consisting of a player set N , a charac-

teristic function v, and a set of links g. I am interested in the formation of links given

a coalitional game (N, v) and I denote the set of all communication situations with

player set N and characteristic function v by CSNv .

For a communication situation (N, v, g), the network-restricted game (N, vg) incor-

porates both the possible gains from cooperation for coalitions of players as modeled

by the coalitional game (N, v) and the restrictions on communication reflected by com-

munication network g. The players in a coalition T ⊆ N have available the links in

g(T ) = {ij ∈ g | i ∈ T and j ∈ T} and this induces a partition π(T, g) of this coalition

into the components of the network (T, g(T )). The players in T can only coordinate

their actions within these components. This motivates the definition of the character-

istic function vg as vg(T ) =
P
C∈π(T,g) v(C) for each T ⊆ N . Note that this definition

implicitly assumes that there are no externalities between different components of a

network; the worth of the players in a network is simply the sum of the worths of

its components. Jackson and Wolinsky (1996) refer to this property as component

additivity of the value function that assigns a value to every network. This property

of the network-restricted game derived from a coalitional game is in accordance with

the interpretation of the coalitional game that it assigns to each coalition of players

the worth that they can obtain independently of the other players. In addition, the

definition of the characteristic function vg is such that the worth of a coalition of play-

ers who form a component of a network does not depend on exactly which links exist

between these players, but only on whether or not these players are connected at all.

This reflects the interpretation of the links as (costless) communication channels which

allow players to cooperate.

Using the network-restricted game (N, vg), Myerson (1977) defined an allocation
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rule for communication situations. An allocation rule on a class CS of communication

situations is a function γ that assigns to each communication situation (N, v, g) ∈ CS

a payoff vector γ(N, v, g) ∈ IRN . If allocation rule γ is used, then a player i ∈ N

expects to get a payoff γi(N, v, g) from being in communication situation (N, v, g). The

Myerson value µ is the Shapley value Φ (cf. Shapley (1953)) of the network-restricted

game;

µi(N, v, g) = Φi(N, v
g) =

X
T⊂N :i/∈T

|T |!(|N | − 1− |T |)!

|N |!
(vg(T ∪ i)− vg(T )) .3

The Myerson value is by far the most widely used allocation rule for communication

situations in the literature. One of the reasons for this popularity is undoubtedly the

firm axiomatic grounding of this allocation rule. Myerson (1977) showed that for any

coalitional game (N, v) the Myerson value is the unique allocation rule on CSNv that

satisfies the two properties component efficiency and fairness. Component efficiency

of an allocation rule means that the players in a component distribute the value of

this component, which they can obtain for themselves irrespective of the actions taken

by the players not in the component, among themselves. Fairness reflects the idea

that two players should gain or lose equally from forming the link between them. An

allocation rule is fair if the payoffs of two players i and j in- or decrease by the same

amount whenever the link connecting them is severed.4

Several other allocation rules for communication situations appear in the litera-

ture. The main one is the position value (cf. Borm et al. (1992)), which focuses on

the importance of the communication links rather than the role of the players. Find-

ing an axiomatic characterization of this allocation rule for a fixed coalitional game

and variable networks has proven rather elusive over the years, but Slikker (2003) re-

cently succeeded in finding such an axiomatic characterization. He uses two axioms

in his characterization of the position value, component efficiency and balanced total

threats. Balanced total threats is reminiscent of the balanced contributions axiom that

Myerson (1980) used to axiomatize the Myerson value and that can replace fairness in

a characterization of the Myerson value. The axiomatization of the position value may

well lead to new applications of this allocation rule in the future.

I will cover both extensive-form games of network formation and strategic-form

ones. The network-formation game in extensive form is most easily described casu-

3Here, |T | denotes the number of elements in a set T . Also, following popular tradition, I omit the

set brackets { and } when I don’t think such an omission will cause the reader any confusion.
4Jackson (2003) refers to this property as equal bargaining power.
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ally and I will do exactly that in Section 3. A game in strategic form is a tuple

(N, (Si)i∈N , (fi)i∈N) consisting of a player set N , a strategy set Si for each player
i ∈ N , and a payoff function fi :

Q
i∈N Si → IR for each player i ∈ N . In such a game,

every player i ∈ N chooses one of his strategies si ∈ Si and then each player i gets a

payoff fi(s), where s = (si)i∈N denotes the strategy profile chosen. A strategy profile is
a Nash equilibrium (cf. Nash (1950)) if no player can increase his payoff by unilaterally

deviating to a different strategy. In formula, s ∈
Q
i∈N Si is a Nash equilibrium if for

each player i ∈ N and each strategy ti ∈ Si it holds that fi(si) ≥ fi(ti, s−i), where
s−i = (sj)j∈N\i denotes the (fixed) strategies of the players other than i and (ti, s−i)
denotes the strategy profile in which player i plays his strategy ti and every player

j ∈ N\i plays his strategy sj.

I will use several refinements of Nash equilibria. A strategy si of a player i is

undominated if there is no other strategy that gives this player at least as high a

payoff and sometimes a higher payoff, for all possible strategy choices of the other

players. Hence, si ∈ Si is undominated if there is no other strategy ti ∈ Si such that

fi(si, s−i) · fi(ti, s−i) for all s−i ∈
Q
j∈N\i Sj, with the inequality being strict for at

least one s−i. An undominated Nash equilibrium is a Nash equilibrium in which each

player plays an undominated strategy.

A strong Nash equilibrium (cf. Aumann (1959) and Bernheim et al. (1987)) is

a strategy profile that is stable against deviations not only by single players, but by

any coalition of players. Hence, s ∈
Q
i∈N Si is a strong Nash equilibrium if for each

coalition T ⊆ N it holds that there is no strategy tuple tT = (ti)i∈T ∈
Q
i∈T Si such

that fi(tT , sN\T ) ≥ fi(s) for all i ∈ T and fi(tT , sN\T ) > fi(s) for at least one i ∈ T .
This definition of strong equilibrium is actually slightly different from that put forward

in Aumann (1959) and Bernheim et al. (1987) in that it allows a coalition to deviate

to a strategy profile that strictly increases the payoffs of some of its members without

decreasing those of the other members, whereas the original definition allows only

deviations that strictly increase the payoffs of all members of a deviating coalition.

Both interpretations of strong Nash equilibrium are prominent in the literature, and

in most games the two definitions lead to the same sets of strong Nash equilibria, but

the one that I use here is slightly more appealing in the context of network-formation

games (see, eg. Jackson and van den Nouweland (2001)).

Coalition-proof Nash equilibria (cf. Bernheim et al. (1987)) are similar to strong

Nash equilibria in that they require a strategy profile to be stable against deviations by

all coalitions of players. However, in a coalition-proof Nash equilibrium, the deviations
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are restricted to be stable themselves against further deviations by subcoalitions. To

provide the formal definition of coalition-proof Nash equilibrium, which is inductive,

I need some additional notation. Let Γ = (N ; (Si)i∈N ; (fi)i∈N) be a game in strategic
form, T ⊂ N a coalition, and s∗N\T ∈

Q
i∈N\T Si. The strategic-form game Γ(s∗N\T ) =

(T ; (Si)i∈T ; (f∗i )i∈T ) induced on the players of T by the strategies s∗N\T has payoff
functions f∗i :

Q
i∈T Si → IR given by f∗i (sT ) = fi(sT , s

∗
N\T ) for all sT ∈

Q
i∈T Si, for

each i ∈ T . In a 1-player game ({i};Si; fi), a strategy s∗i ∈ Si is a coalition-proof Nash
equilibrium if s∗i maximizes fi over Si. Let Γ = (N, (Si)i∈N , (fi)i∈N) be a game with
|N | > 1 players and suppose that coalition-proof Nash equilibria have been defined

for games with fewer than |N | players. A strategy profile s∗ ∈
Q
i∈N Si is called self

enforcing if for all T ⊂ N , it holds that s∗T is a coalition-proof Nash equilibrium of the
game Γ(s∗N\T ). A strategy profile s∗ is a coalition-proof Nash equilibrium of Γ if s∗

is self enforcing and there is no other self-enforcing strategy profile s ∈ SN such that

fi(s) > fi(s
∗) for all i ∈ N .

The last refinement of Nash equilibria that I use is defined only for strategic-form

games that are potential games. A game (N ; (Si)i∈N ; (fi)i∈N) is a potential game (cf.
Monderer and Shapley (1996)) if there exists a potential function P :

Q
i∈N Si → IR such

that for every strategy profile s ∈
Q
i∈N Si, every i ∈ N , and every ti ∈ Si, it holds that

fi(si, s−i)−fi(ti, s−i) = P (si, s−i)−P (ti, s−i). The function P provides information on
changes in payoffs for every player when he changes his strategy choice unilaterally. For

a potential game, the potential maximizer selects the strategy profiles that maximize a

potential function P . Monderer and Shapley (1996) prove that the potential maximizer

is a well-defined refinement of Nash equilibria. Ui (2001) shows that Nash equilibria

that maximize a potential function are generically robust, and Garratt and Qin (2001)

provide justification for using the potential maximizer in network-formation games.

3 Network-Formation Game in Extensive Form

Network-formation games in extensive form were introduced by Aumann and Myerson

(1988). The network-formation process in these games is sequential. Pairs of players

get opportunities to form links according to some exogenous rule of order on the links.

Links are formed one at a time and players observe which pairs of players form links

or decline to form links as the game progresses. Moreover, links cannot be broken once

they have been formed. After each pair of players has had an opportunity to form

a link, in the order determined by the exogenous rule of order, every pair of payers
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that has declined to form a link is given another opportunity to do so, in an order

determined by the same rule of order. This processes is repeated as long as new links

are formed in each round but it stops when, after the latest link has been formed, all

pairs of players who have not formed a link have had one final opportunity to change

their minds and form it, but declined. The payoffs to the players are those found

by applying the Myerson value µ to the network that is formed in combination with

an underlying coalitional game. The network-formation game in extensive form as

described above with underlying coalitional game (N, v), exogenous allocation rule µ

(the Myerson value), and exogenous rule of order σ on all possible links between the

players in N , is denoted by ∆nf(N, v, µ,σ).

For the extensive-form games of network formation ∆nf(N, v, µ,σ), no general re-

sults have been obtained to the best of my knowledge. ’Results’ for these games

are limited to a series of examples that illustrate which networks are supported by

subgame-perfect Nash equilibria of the network-formation games for various underly-

ing coalitional games. A subgame-perfect Nash equilibrium is a profile of strategies,

one for each player, that satisfies the requirement that at each point in the game every

player’s strategy gives him the highest possible payoff in the remainder of the game,

given the strategies of the other players.5

The following example is taken from Aumann and Myerson (1988) and shows that

for a superadditive coalitional game, the extensive-form network-formation process

might not lead to the formation of a complete network or even a connected network. A

coalitional game (N, v) is superadditive if any two disjoint coalitions of players T and

R (so, T ∩ R = ∅) can only benefit from joining forces, i.e., v(T ∪ R) ≥ v(T ) + v(R).

Example 1 Consider player set N = {1, 2, 3} and assume that the economic possi-

bilities of the players are captured in the superadditive coalitional game (N, v), where

v(T ) = 0 if |T | · 1, v(T ) = 60 if |T | = 2, and v(N) = 72. For this underlying game,

the payoffs to the players as determined by the Myerson value for the various possible

networks are as follows. In the empty network, every player receives zero;

µi(N, v, ∅) = 0 for each i ∈ N.

In a network with one link, the two linked players equally divide the value of a 2-player

5Subgame-perfect Nash equilibria always exist for these games because they are finite and have

perfect information.
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coalition and the isolated player gets zero;

µk(N, v, {ij}) =

 0 if k /∈ {i, j};

30 if k ∈ {i, j}.

In a network with two links, the payoffs are

µr(N, v, {ij, jk}) =

 44 if r = j;

14 if r ∈ {i, k}.

Finally, in the complete network each player receives the same payoff and

µi(N, v, g
N) = 24 for each i ∈ N.

To find which networks are supported by subgame-perfect Nash equilibria of the

game ∆nf(N, v, µ,σ), first note that each player receives a positive payoff if he forms

any links at all, whereas all players receive zero if no links are formed. It follows that

at least one link will be formed in a subgame-perfect Nash equilibrium. So, suppose

that exactly one link has been formed, say link ij. If no additional links are formed,

players i and j will each receive a payoff of 30. Note that if one of them, say i, forms

a link with the remaining player k, he would increase his payoff to 44. However, in

the network (N, {ij, ik}) players j and k receive only 14 and they can increase their

payoffs to 24 by forming link jk. Hence, none of the players i and j will form a link

with player k, as this will cause the other player to do so as well and both their payoffs

will be only 24, rather than the 30 they each get in the network (N, {ij}). This shows

that in a subgame-perfect Nash equilibrium exactly one link will be formed. The order

σ on the links is not important in the sense that for any order σ and for any one of the

three links, there is a subgame-perfect Nash equilibrium that results in the formation of

this particular link, as is discussed in detail in Slikker (2000).6

As for superadditive coalitional games the extensive-form network-formation process

might not lead to the formation of a complete network, some research has focussed on

strengthening the requirement of superadditivity to convexity. A coalitional game

(N, v) is convex if a player’s contribution to a coalition increases (weakly) with the size

of the coalition he joins, i.e., for any player i and any two coalitions T,R ⊆ N\i with

T ⊆ R, it holds that v(T ∪ i) − v(T ) · v(R ∪ i) − v(R). Convexity of a coalitional

6For some games, the order σ might influence which networks are supported by subgame-perfect

Nash equilibria. Slikker and van den Nouweland (2001a) demonstrate this in example 6.2.
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game seems to provide strong incentives for players to cooperate in the largest possible

coalition. It is a long-standing open conjecture that for a convex coalitional games,

subgame-perfect Nash equilibria of the extensive-form game of network formation sup-

port the complete network. This conjecture was addressed in van den Nouweland

(1993) and later in Slikker and Norde (2000). Van den Nouweland (1993) shows that

the conjecture holds true if a second conjecture holds. This second conjecture is that

for any convex game and any network that is not the complete network, there exist

two players who have not formed a link and whose Myerson values in the network are

weakly smaller than their respective Myerson values in the complete network. How-

ever, this second conjecture was disproved by an example due to R. Holzman (private

communication), which can be found as example 6.3 in Slikker and van den Nouweland

(2001a).

Slikker and Norde (2000) study the extensive-form network-formation games

∆nf(N, v, µ,σ) for underlying games that are convex and symmetric. A coalitional

game (N, v) is symmetric if the worth of every coalition of players depends only on

how many members it has, i.e., v(T ) = v(R) for all coalitions T,R ⊆ N with |T | = |R|.

The additional requirement of symmetry makes it easier to analyze a game because

it reduces its complexity considerably. Slikker and Norde (2000) are able to show

that for convex symmetric coalitional games with at least two and at most five play-

ers the complete network is supported by a subgame-perfect Nash equilibrium of the

extensive-form games of network formation ∆nf(N, v, µ,σ), for any order σ. More-

over, they are able to show that for strictly convex7 symmetric games (N, v) with at

least two and at most five players it holds that any network (N, g) that is supported

by a subgame-perfect Nash equilibrium is payoff equivalent to the complete network,

i.e., µ(N, v, g) = µ(N, v, gN). This result cannot be extended to games with more

than five players. Slikker and Norde (2000) study a 6-player strictly convex symmet-

ric game (N, v) and show that for this game there exist networks that are not payoff

equivalent to the complete network but that are supported by subgame-perfect Nash

equilibria of network-formation games ∆nf(N, v, µ,σ). However, it is still an open

question whether for (strictly) convex (symmetric) games with more than five play-

ers the complete network is supported by a subgame-perfect Nash equilibrium of the

extensive-form network-formation games.

7A game (N, v) is strictly convex if the convexity inequalities all hold with strict inequality, i.e.,

for any player i and any two coalitions T,R ⊆ N\i with T ⊂ R, it holds that v(T ∪ i) − v(T ) <

v(R ∪ i)− v(R).
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Other coalitional games for which the extensive-form network-formation game has

been studied are weighted majority games. A weighted majority game is a game

that results from a situation in which each player i ∈ N has a number of votes, wi,

and in which a coalition of players needs a total of q votes (the quota) to obtain

the surplus, which is normalized to equal 1. The tuple (N, q, (wi)i∈N) is a weighted
majority situation. To avoid the existence of two disjoint coalitions of players that

can obtain the surplus, it is assumed that 1
2

P
i∈N wi < q. The characteristic function

v of the weighted majority game (N, v) associated with weighted majority situation

(N, q, (wi)i∈N) is defined by

v(T ) =

 1 if
P
i∈T wi ≥ q;

0 otherwise

for all T ⊆ N .

The following example considers a weighted majority game with one powerful player

and several small ones, a so-called apex game. This example is due to Aumann and

Myerson (1988).

Example 2 Consider the weighted majority situation (N, q, (wi)i∈N) with player set
N = {1, 2, 3, 4, 5}, quota q = 4, and numbers of votes w1 = 3 and w2 = w3 = w4 =

w5 = 1. Player 1 has more votes than each of the other players, but still needs at least

one of the players with few votes to obtain the surplus. Also, the players with few votes

can obtain the surplus without player 1 if all four of them cooperate. The characteristic

function of the associated weighted majority game (N, v) is

v(T ) =

 1 if T = {2, 3, 4, 5} or if 1 ∈ T and |T | ≥ 2;

0 otherwise.

Note that players 2 through 5 are symmetric in this game. Consequently, it suffices

to only discuss the payoffs for some possible networks and those for other networks can

be found using this symmetry. If only a link between player 1 and player 2 is formed,

then these two players depend on each other to obtain the surplus. This is expressed in

the Myerson value, which gives each of them 1
2
. Of course, all isolated players receive

0. Player 1 can increase his payoff by linking with more players with few votes, as this

will decrease player 1’s dependence on these other players. In a network in which the

three links between players 1, 2, and 3 are formed, player 1 gets 2
3
, while players 2 and

3 get 1
6
each. In a network in which the 6 links between players 1, 2, 3, and 4 are

formed, player 1 gets 3
4
while players 2, 3, and 4 get 1

12
each. When all the players are
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included, player 1’s payoff decreases again as now he is no longer essential in obtaining

the surplus. In the complete network, player 1 gets 3
5
and the other players get only 1

10

each. Players 2, 3, 4, and 5 get more if they do not include player 1; in the network in

which the 6 links between players 2, 3, 4, and 5 are formed, these players get 1
4
each.

However, any one of these players has the highest payoff in a network where he alone

is linked with player 1. But players 2, 3, 4, and 5 prefer to form the 6 links amongst

themselves, excluding player 1, to linking up with player 1 and at least one other player

(with few votes).

It can be shown that only networks in which all links are formed within components

are supported by subgame-perfect Nash equilibria, so I restrict attention to those. I

identify the formation of all links between the players in a coalition T with the formation

of coalition T .

I use backward induction to find the coalitions whose formation is supported by

subgame-perfect Nash equilibria. Suppose coalition {1, 2, 3, 4}̇ has been formed. Then

players 2 and 5 can increase their payoffs (from 1
12
and 0, respectively, to 1

10
) by forming

a link, which eventually will result in the formation of coalition N . Hence, once a

coalition with player 1 and three players with few votes has been formed, the remaining

links will also be formed. Now, suppose that coalition {1, 2, 3} has been formed. It was

just shown that if any one of players 1, 2, or 3 forms an additional link with players

4 or 5, this will eventually result in the formation of coalition N . This would decrease

the payoff of player 1 from 2
3
to 3

5
and that of players 2 and 3 form 1

6
to 1

10
. Hence, no

additional links will be formed once a coalition with player 1 and two players with few

votes has been formed. This implies that once coalition {1, 2} has been formed, player

1 can permanently improve his payoff from 1
2
to 2

3
by forming a link with player 3. As

this will also improve player 3’s payoff, a coalition with player 1 and one player with

few votes cannot be sustained in a subgame-perfect Nash equilibrium.

Alternatively, suppose players 2, 3, 4, and 5 have formed a coalition. If one of

them forms a link with player 1, eventually the complete network will be formed, de-

creasing his payoff from 1
4
to 1

10
. Hence, no additional links will be formed once coalition

{2, 3, 4, 5} has been formed.

The analysis above shows that only two types of networks can possibly be supported in

subgame-perfect Nash equilibria, coalitions like {1, 2, 3} with player 1 and two players

with few votes, and coalition {2, 3, 4, 5}. Note that players 2 through 5 each have a

higher payoff in coalition {2, 3, 4, 5} than in either one of the coalitions that include

player 1 and two players with few votes. This implies that players 2 through 5 will
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refuse to form links with player 1 and form all links with each other. Hence, coalition

{2, 3, 4, 5} will be formed in a subgame-perfect Nash equilibrium.

Aumann and Myerson (1988) mention that in apex games with a large player who

has more than one and less than q votes and several small players with one vote each,

in general the complete network on a minimal winning coalition of small players will

be formed in subgame-perfect Nash equilibria..

To the best of my knowledge, no general results for other types of weighted majority

games have been reported in the literature. Aumann and Myerson (1988) do, however,

report on two weighted majority situations with two large players each in which both

the coalitions with the large players and the coalitions with one large player and all

small ones are supported by subgame-perfect Nash equilibria.

The following example is due to Feinberg (1998). In response to a question posed

in Aumann and Myerson (1988), this example provides a weighted majority game and

a network that is not internally complete with the property that no additional links

will be formed in a subgame-perfect Nash equilibrium.

Example 3 Consider the 8-player weighted majority situation in which the 8 players

have 5, 1, 2, 2, 2, 2, 4, and 1 votes, respectively, and the quota is 12 votes. The

characteristic function of the associated weighted majority game (N, v) assigns a worth

of 1 to every coalition T ⊆ N = {1, 2, 3, 4, 5, 6, 7, 8} if and only if
P
i∈T wi ≥ 12 and

a worth of 0 otherwise. Feinberg (1998) shows that in the network-formation games

∆nf(N, v, µ,σ) it holds that, once the network (N, g) with

g = gN\{37, 47, 57, 67, 18, 48, 58, 68}

has been formed, no further links will be formed by the players. In this network, the

payoffs according to the Myerson value are

µ(N, v, g) =
µ
123

420
,
27

420
,
42

420
,
38

420
,
38

420
,
38

420
,
91

420
,
23

420

¶
.

The payoffs according to the Myerson value in the complete network are

µ(N, v, gN) =
µ
122

420
,
22

420
,
41

420
,
41

420
,
41

420
,
41

420
,
90

420
,
22

420

¶
.

This shows that the complete network is preferred to network (N, g) by players 4, 5, and

6, whereas all other players prefer network (N, g) to the complete network. However,

in network (N, g), players 4, 5, and 6 have already formed all links except those with
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players 7 and 8. Hence, players 7 and 8 can prevent players 4, 5, and 6 from forming

additional links. This shows that once network (N, g) is formed, no additional links will

be formed. It is still unknown whether there exists a subgame-perfect Nash equilibrium

of∆nf(N, v, µ,σ) that results in the formation of network (N, g) if the formation process

is started from the empty network.

4 Network-Formation Game in Strategic Form

The simplest game of network formation in coalitional games is the strategic-form game

that was mentioned briefly in Myerson (1991) (p. 448) and studied more extensively

in Dutta et al. (1998). In this game, the players each independently indicate the

set of other players with whom they would like to form bilateral relations. A link

is then formed between two players if both of them indicate they would like to form

a relation with each other. The payoffs to the players are those found by applying

an exogenous allocation rule to the network that is formed in combination with the

underlying coalitional game.

To describe the network-formation game in strategic form formally, let (N, v) be

a coalitional game and let γ be an allocation rule for communication situations. The

strategy set of player i ∈ N is Si = {T | T ⊆ N\i}, where a particular strategy

si ∈ Si represents the set of players with whom player i would like to form links. If

the players play a strategy tuple s = (si)i∈N ∈
Q
i∈N Si, then a link is formed between

two players i and j if and only if j ∈ si and i ∈ sj . Denote the set of all links that are

formed according to this rule by g(s). The network-formation game in strategic form

Γnf(N, v, γ) is described by the tuple (N ; (Si)i∈N ; (f
γ
i )i∈N), where f

γ
i (s) = γi(N, v, g(s))

for each s ∈ S.

A game Γnf(N, v, γ) will in general have many Nash equilibria. The reason for

this is that if a player i indicates that he does not want to form a link with another

player j, then it does not matter for the network formed (or the payoffs) whether or

not player j wants to form a link with player i, as this link will not be formed in

either case. This reasoning underlies theorem 1. To state this theorem formally, I

need the three logically independent properties of allocation rules for communication

situations that were used in Dutta et al. (1998). The class of allocation rules for

communication situations satisfying these three properties is reasonably large and it

contains, for example, the Myerson value on the class of communication situations with

a superadditive underlying game.
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Component Efficiency An allocation rule γ on a class CS of communication

situations satisfies component efficiency if for every communication situation

(N, v, g) ∈ CS and every component C ∈ π(N, g) it holds that
P
i∈C γi(N, v, g) =

v(C).

Component efficiency of an allocation rule means that the players in a component

distribute the value of this component among themselves.

Weak Link Symmetry An allocation rule γ on a class CS of communication

situations satisfies weak link symmetry if for every communication situation

(N, v, g) ∈ CS and every link ij it holds that if γi(N, v, g ∪ ij) > γi(N, v, g)

then γj(N, v, g ∪ ij) > γj(N, v, g).
8

Weak link symmetry is a form of fairness where the formation of a new link between

two players cannot strictly benefit just one of them.

Improvement Property An allocation rule γ on a class CS of communication

situations satisfies the improvement property if for every communication situation

(N, v, g) ∈ CS and every link ij it holds that if there exists a k ∈ N\{i, j}

such that γk(N, v, g ∪ ij) > γk(N, v, g), then γi(N, v, g ∪ ij) > γi(N, v, g) or

γj(N, v, g ∪ ij) > γj(N, v, g).

This property stipulates that the formation of a new link cannot benefit some player

who is not involved in the link without also benefitting at least one of the two players

forming it.

Dutta et al. (1998) showed that any allocation rule satisfying the three afore-

mentioned properties necessarily satisfies a fourth property, link monotonicity, if the

underlying coalitional game is superadditive. It states that forming an additional link

can never harm a player if the allocation rule is link monotonic.

Link Monotonicity An allocation rule γ on a class CS of communication situations

satisfies link monotonicity if for every communication situation (N, v, g) ∈ CS

and every link ij it holds that γi(N, v, g ∪ ij) ≥ γi(N, v, g).

8I omit details on domains on which a rule γ is defined, as the domains that are considered are

always closed with respect to the operations that appear in the properties.
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Even though link monotonicity plays an important and prominent role in many of

the results that are obtained for network-formation games Γnf(N, v, γ), Slikker and van

den Nouweland (2001a) demonstrate in examples that replacing weak link symmetry by

link monotonicity, even in a context where component efficiency and the improvement

property hold, will not guarantee the validity of the statements in the results that

are described below. Hence, link monotonicity should be viewed as an intermediate

result only, albeit one that is interesting enough to warrant highlighting it as a separate

property.

If an allocation rule satisfies link monotonicity, then a player never has an incentive

to change his strategy to prevent the formation of one or more of his links.9 This

implies that any network g can be supported by a Nash equilibrium of the network-

formation game, namely the strategy profile in which each agent i chooses his strategy

si = {j ∈ N | ij ∈ g}, indicating the will to form exactly the links in g in which he

is involved. In this strategy profile, no single player can induce the formation of an

additional link, as that would require a change in strategy by two players. A single

player could prevent the formation of one or more of his links, but has no incentive to

do so under link monotonicity. This shows the validity of the following theorem.

Theorem 1 (Dutta et al. (1998)) Let (N, v) be a superadditive coalitional game and

let γ be an allocation rule on CSNv that satisfies component efficiency, weak link sym-

metry, and the improvement property. Then any network g can be supported by a Nash

equilibrium of the network-formation game Γnf(N, v, γ).

A driving force behind this theorem is that it takes two players to form a link,

while the Nash equilibrium concept allows only single-player deviations. Hence, if two

players each do not indicate that they want to form a link with each other, then none

of them can unilaterally cause the link to be formed, even if its formation would benefit

the players. There are two ways around this. One is to consider undominated Nash

equilibria, and the other is to look at equilibrium refinements that allow for deviations

by multiple players.

In an undominated Nash equilibrium, if the formation of a link with another player

is beneficial to him, a player should indicate that he wants to form this link, even if the

other player does not do so and therefore the link will not be formed. The reason is

that if the first player is not certain whether the other player will want to form the link

9Note that this shows that link monotonicity implies that the strategy si = N\i is a weakly

dominant strategy for each player i ∈ N .
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or not, then he does not want to block the possibility of the link being formed. For

a superadditive coalitional game, the restriction to undominated strategies narrows

down the set of equilibria considerably. While there may be multiple undominated

Nash equilibria, they all result in the formation of a network in which the payoffs are

equal to those in the complete network, γ(N, v, gN). The complete network gN itself

is also supported by an undominated Nash equilibrium, the strategy profile s̄ defined

by s̄i = N\i for each i ∈ N .

Theorem 2 (Dutta et al. (1998)) Let (N, v) be a superadditive coalitional game and

let γ be an allocation rule on CSNv that satisfies component efficiency, weak link sym-

metry, and the improvement property. Then s is an undominated Nash equilibrium

of the network-formation game Γnf(N, v, γ). Moreover, if s is an undominated Nash

equilibrium of Γnf(N, v, γ), then γ(N, v, g(s)) = γ(N, v, gN).

Considering equilibrium refinements that allow for deviations by multiple players,

the most obvious such refinement is strong Nash equilibrium.. However, strong Nash

equilibria might not exist in the game Γnf(N, v, γ), not even under fairly strong re-

quirements on the underlying coalitional game.10 This motivates the consideration of

coalition-proof Nash equilibria, which also allow for deviations by multiple players,

but where these deviations are restricted to be immune to further allowed deviations

themselves. It turns out that for a superadditive coalitional game (N, v), there are no

existence problems for coalition-proof Nash equilibria in the network-formation game

Γnf(N, v, γ), as the complete network gN is always supported by a coalition-proof Nash

equilibrium. Moreover, even though there might be multiple networks supported by

coalition-proof Nash equilibria, the payoffs are the same in all of these networks. This

shows that, even though undominated Nash equilibria and coalition-proof Nash equilib-

ria may lead to very different payoffs to the players for strategic-form games in general,

for the strategic-form games of network formation coalition-proof Nash equilibria lead

to similar outcomes as undominated Nash equilibria.

Theorem 3 (Dutta et al.(1998)) Let (N, v) be a superadditive coalitional game and let

γ be an allocation rule on CSNv that satisfies component efficiency, weak link symmetry,

and the improvement property. Then the strategy profile s̄ is a coalition-proof Nash

10Slikker and van den Nouweland (2001a) show that convexity of the underlying game does not

guarantee existence of strong Nash equilibria (example 7.4) and that balancedness is not necessary

for existence (example 7.5).
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equilibrium of the network-formation game Γnf(N, v, γ). Moreover, if s is a coalition-

proof Nash equilibrium of Γnf(N, v, γ), then γ(N, v, g(s)) = γ(N, v, gN).

A different approach was taken by Qin (1996). He showed that for any coalitional

game (N, v) and any external allocation rule γ that is component efficient, the strategic-

form network-formation game Γnf(N, v, γ) is a potential game if and only if γ = µ, i.e.,

if the exogenous allocation rule used is the Myerson value. The essence of the proof that

µ is the only component-efficient allocation rule for which Γnf(N, v, γ) is a potential

game, consists of using a potential of Γnf(N, v, γ) to show that γ must satisfy fairness.

In his proof of the other implication, that Γnf(N, v, µ) is a potential game, Qin (1996)

used a sort of cyclicity property for potential games that was shown by Monderer

and Shapley (1996) to characterize games that admit a potential. Slikker and van

den Nouweland (2001a) provide a proof of this implication that uses a representation

theorem by Ui (2000), who shows that there is a relation between the existence of

potential functions for games in strategic form and Shapley values of coalitional games.

Because the network-formation games Γnf(N, v, µ) are potential games, for these

games the potential-maximizing strategy profiles provide an equilibrium refinement.

The following theorem shows that the application of this refinement leads to results

similar to those obtained for other refinements.

Theorem 4 (Qin (1996)) Let (N, v) be a superadditive coalitional game and let P be

a potential function for the network-formation game Γnf(N, v, µ). Then P assumes

its maximum value at s̄ and if s is a strategy profile in which P is maximal, then

µ(N, v, g(s)) = µ(N, v, gN).

The three theorems above show that undominated Nash equilibrium, coalition-proof

Nash equilibrium, and potential-maximizing strategies (when appropriate) all support

the formation of the complete network or a network that is payoff equivalent to the

complete network when the underlying coalitional game is superadditive. Hence, all

three equilibrium concepts provide the same unique prediction on the ultimate payoffs

of the players, namely those associated with the complete network.11 However, the

11I point out that pairwise stability (see the chapter by Jackson (2004) in this volume) does not

provide the same unique predictions. While it is true that the complete network is pairwise stable if

the underlying coalitional game is superadditive, there may be networks that are not payoff equivalent

to the complete network that are pairwise stable. The reason for this is that the pairwise stability

concept only considers the addition of one link at a time and this can make a smaller network pairwise

stable if the addition of more than one link is necessary to increase the payoffs to the players.
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theorems above do not necessarily imply that these three types of equilibria support

the same networks. They leave open the possibility that a non-complete network that is

payoff equivalent to the complete network is supported by one equilibrium concept but

not by the other two. Little is known about exactly which networks are supported by

the various equilibrium concepts. Exceptions are Garratt and Qin (2001) and Garratt

et al. (2002), who shed some light on which networks are supported by potential-

maximizing strategy profiles of network-formation games Γnf(N, v, µ), specifically for

3-player coalitional games.

Slikker at al. (2000a) analyze hypergraph-formation games in strategic form. The

hypergraph-formation games that they study are straightforward extensions of the

strategic-form network-formation games Γnf(N, v, µ) to situations in which payers can

form multilateral relationships rather than just bilateral ones. They derive results

similar to theorems 1, 2, and 3 in this more general setting. In addition, they prove that

hypergraph-formation games are weighted potential games (cf. Monderer and Shapley

(1996)) if and only if a weighted Myerson value is used as exogenous allocation rule.

Using this, they are able to derive a result similar to theorem 4 for weighted potentials.

5 Comparison of the Network-Formation Models in

Extensive and Strategic Forms

The differences between the games of network formation in extensive form and the

games of network formation in strategic form are illustrated by considering the 3-

person game (N, v) with player set N = {1, 2, 3} in which the worth of every 1-player

coalition equals 0, that of every 2-player coalition equals 60, and that of the 3-player

grand coalition equals 72. This is the same game as in example 1. That example

illustrated that the prediction of the network-formation game in extensive form is that

a network with 1 link will be formed. The reason that no additional links are formed

is the following. Suppose that link ij has been formed. Then it seems beneficial for

player i to form a link with the third player, k, to increase the payoff of player i from 30

to 44 and that of player k from 0 to 14. However, this would cause a drop in player j’s

payoff from 30 to 14 and now players j and k have an incentive to form the third link

and increase each of their payoffs from 14 to 24. Note that the payoff of player i falls

to 24 as a result off this. Hence, player i will not form the link with player k because

of player j’s threat to retaliate by forming a link with player k as well. Note that
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executing this threat is in player j’s best interest. Also, if all 3 links are formed, both

players i and j are worse off than then when only link ij is formed. Hence, the network

(N, {ij}) is sustained by a pair of mutual threats of the kind “If you form a link with

k, then so will I.” Note, however, that such mutual threats can only be effective if the

negotiation process is public and player j can observe whether or not player i forms

a link with player k. These threats lose bite if bilateral negotiations are conducted

secretly, or when negotiations over different links are carried out simultaneously rather

than sequentially and links cannot be broken once they have been formed. In such

situations, if player k starts negotiations with players i and j separately after link ij

has been formed, players i and j are basically playing the following game.

l nl

l 24,24 44,14

nl 14,44 30,30

Here, l and nl denote the strategies of forming a link with k and not forming a link

with k, respectively. In this game, it is a dominant strategy for both players i and j to

form a link with k. Note that this game describes a prisoners’ dilemma situation. It

shows that in the network-formation game in strategic form both players i and j will

form a link with player k, and the complete network will be formed, simply because

players i and j cannot sign a binding agreement to abstain from forming a link with k.

6 Network Formation with Costs for Establishing

Links

The network-formation games in extensive form and strategic form that were the sub-

ject of the previous two sections do not allow for the inclusion of costs for forming links.

In these models, the worth of a connected coalition of players is the same, whether they

are connected by a minimum number of links, by all possible links, or something in

between. Slikker and van den Nouweland (2000) investigate the effects of introducing

costs for forming links into the two aforementioned games of link formation. To iso-

late the effect that such costs have on the networks that are formed in equilibrium,

these costs are taken to be as simple as possible, namely constant across links. A

cost-extended communication situation is a tuple (N, v, g, c), in which N is a set of

players, (N, v) a coalitional game, (N, g) a communication network, and c ≥ 0 the cost

for establishing a communication link.
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When links are costly, the worth that a coalition of players can obtain does no longer

just depend on whether they are connected or not, but also on how many links they

have formed. As there are costs associated with forming additional links, players have

incentives to form only as many links as necessary to connect them to others. However,

forming an additional link will put a player in a more central position in a network and

might increase his payoff. Therefore, a player needs to carefully balance the cost of an

additional link against its benefits. The inclusion of costs necessitates extending the

notion of an allocation rule. Slikker and van den Nouweland (2000) extend the Myerson

value and use this allocation rule in the link-formation games. To obtain the worth of

a coalition of players, we need to subtract the costs of the links formed by these players

from the benefits that they can obtain in the presence of these links. Hence, the worth

of a coalition T ⊆ N of players in cost-extended communication situation (N, v, g, c) is

vg,c(T ) =
X

C∈π(T,g)
v(C)− c |g(T )|.

The cost-extended Myerson value ν(N, v, g, c) is the Shapley value of the associated

cost-extended network-restricted game (N, vg,c), i.e.,

ν(N, v, g, c) = Φ(N, vg,c).

Note that ν(N, v, g, c) = µ(N, v, g) whenever c = 0, so that the cost-extended Myerson

value is indeed an extension of the Myerson value. The cost-extended Myerson value

can be interpreted in two methodologically very different ways. One is as a solution

to the bargaining problem in which the players bargain over the benefits and the

costs of forming links simultaneously. This interpretation stems from the fact that the

definition of the cost-extended Myerson value is based on the game (N, vg,c), which

includes both the benefits and the costs of forming links. Another interpretation is

that players first form links and pay the costs for forming them and then, when a

network has been formed and the costs are sunk, bargain over the division of the

benefits. This interpretation stems form the fact that the cost-extended network-

restricted game (N, vg,c) can be written in terms of the network-restricted game (N, vg)

as vg,c = vg − c
P
ij∈g ui,j,12 which implies that

νi(N, v, g, c) = µi(N, v, g)−
1

2

X
ij∈g

c

12ui,j denotes the characteristic function of the unanimity game on coalition {i, j} and is defined

by ui,j(T ) = 1 if {i, j} ⊆ T and ui,j(T ) = 0 otherwise, for all T ⊆ N .
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for each player i. This shows that benefits are allocated according to the Myerson

value, whereas the cost of each link is simply split between the players who form it.

Focusing on the networks rather than the players, a reward function rv,c can be

defined that assigns to each network g the net worth that the players can obtain in

this network;

rv,c(g) =
X

C∈π(N,g)
v(C)− c |g|.

Such a reward function is a special case of a value function as discussed in Jackson

(2004). Slikker and van den Nouweland (2001a) prove that the cost-extended Myerson

value is a special case of the Myerson value that is defined for such value functions in

Jackson and Wolinsky (1996).

The trade-off between the costs and benefits of an additional link can be illustrated

by considering a 3-player symmetric coalitional game in which the worth of every 1-

player coalition equals v1 = 0, that of every 2-player coalition equals v2 ≥ 0, and that

of the grand coalition consisting of all 3 players equals v3 ≥ 0. Then in a network with

two links, a player who is involved in only one link has a cost-extended Myerson value

νi(N, v, {ij, jk}, c) =
1
3
v3 −

1
6
v2 −

1
2
c. If this player were to form a link with the other

player who is involved in only one link, then the complete network would result and each

player’s cost-extended Myerson value would become νi(N, v, {ij, ik, jk}, c) =
1
3
v3 − c.

Hence, player i would prefer to form this third link if and only if c < 1
3
v2, in which

case the extra benefit of being more central in the network (1
6
v2) outweighs the extra

cost of the link (1
2
c).

Using the cost-extended Myerson value, the effect of costs for forming links can be

studied in both the extensive-form network-formation games ∆nf(N, v, c, ν,σ) and the

strategic-form network-formation games Γnf(N, v, c, ν). Slikker and van den Nouwe-

land (2000, 2001a, 2002) provide overviews that identify which networks are supported

by various equilibrium refinements of these games as the costs for forming links change.

They do so for all 3-player games where the underlying coalitional games are symmet-

ric and non-negative. Non-negativity basically means that cooperation is beneficial

in the sense that the worth of any multi-player coalition is at least that of the sum

of the individual worths of its members. I will not reproduce these overviews here.

Overviews for subgame-perfect Nash equilibria of the extensive-form games of network

formation and those for undominated Nash equilibria and coalition-proof Nash equi-

libria of the strategic-form games of network formation were first published in Slikker

and van den Nouweland (2000), while those for Nash equilibria are published in Slikker
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and van den Nouweland (2001a). Slikker and van den Nouweland (2002) extend earlier

results to cost-extended communication situations and show that for any coalitional

game (N, v), any non-negative cost c, and any component-efficient external allocation

rule γ, the strategic-form network-formation game Γnf(N, v, c, γ) is a potential game

if and only if γ = ν, i.e., if the exogenous allocation rule used is the cost-extended

Myerson value. Hence, for the potential games Γnf(N, v, c, ν), potential maximizing

strategy profiles can be used as an equilibrium refinement and Slikker and van den

Nouweland (2002) provide overviews of networks supported by potential-maximizing

strategy profiles.

The most striking results obtained are discussed below.13

It turns out that for 3-player symmetric games (N, v) the pattern of equilibrium

networks as a function of changing costs for forming links depends on whether or

not the underlying game is superadditive and/or convex. This holds for both the

extensive-form games of network-formation and the strategic-form games of network

formation and also for all of the equilibrium concepts studied. It is well-known that

a convex game is superadditive, while the reverse implication is not true in general.

Hence, with respect to the network-formation games with costs for forming links, three

types of underlying games need to be considered. They are non-superadditive games,

superadditive games that are not convex, and convex games.

In strategic-form network-formation games, undominated Nash equilibrium, coalition-

proof Nash equilibrium, and potential-maximizing strategy profiles provide the most

useful predictions. Surprisingly, it turns out that for these games the predictions of

coalition-proof Nash equilibrium refine those of undominated Nash equilibrium at the

network level.14 Also, the patterns of networks supported by potential-maximizing

strategies are almost exactly the same as those for coalition-proof Nash equilibrium.15

Therefore, I concentrate on networks supported by coalition-proof Nash equilibria.

These are as follows. For all underlying coalitional games, the complete network is

supported for very low costs of link formation16 and the empty network (in which

13I remind the reader that the results discussed cover 3-player coalitional games that are symmetric,

zero-normalized, and non-negative.
14Note that coalition-proof Nash equilibrium is not a refinement of undominated Nash equilibrium

on the strategy level, not even for the class of strategic-form network-formation games.
15The only difference appears for nonsuperadditive games, where the level of the cost at which

the transition from the complete network to networks with 1 link occurs is higher for the potential-

maximizing strategy profiles than for coalition-proof Nash equilibria.
16If the game is non-superadditive, then the cut-off for ’very low’ costs might be negative, in which

case the complete network is not supported for any non-negative cost c.
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there are no links and, hence, every player is isolated) is supported for very high costs.

It is for intermediate cost levels that the predictions depend on the structure of the

underlying coalitional game.17 If that game is non-superadditive, then for intermediate

cost levels the formation of exactly one link is supported. If the underlying game is

convex, networks with two links are supported for intermediate cost levels. Finally,

if the coalitional game is superadditive but not convex, then networks with two links

are supported for lower costs, while for higher costs the formation of only one link is

supported.

In extensive-form network-formation games, subgame-perfect Nash equilibrium is

the most appropriate solution concept. The networks supported by subgame-perfect

Nash equilibria are as follows. If the underlying coalitional game is non-superadditive,

then for low costs only networks with one link are supported, while for high costs

only the empty network results. Networks with more than one link are not supported

for any level of the costs if the game is not superadditive. For convex coalitional

games, the complete network is supported for very low costs, networks with two links

are supported for intermediate costs, and the empty network is supported for very

high costs. The most interesting case turns out to be that of superadditive coalitional

games that are not convex. For such games, the number of links whose formation

is supported by coalition-proof Nash equilibria varies with the costs of forming links

in a non-monotonic way. For very low costs, networks with 3 links are supported.18

For somewhat higher costs, networks with one link are supported. Then, if the costs

increase from there, networks with two links are supported (so an increase in the costs

results in the formation of more links). If the costs keep increasing, the number of links

formed in equilibrium decreases again. First networks with 1 link are supported, while

for very high costs the empty network (with 0 links) is supported.

The following example illustrates that an increase in the cost for establishing a

communication link can result in more communication between the players in subgame-

perfect Nash equilibria of the extensive-form game of network formation.

Example 4 Let (N, v) be the 3-player symmetric game (N, v) in which the worth of

every 1-player coalition equals 0, that of every 2-player coalition equals 60, and that

of the 3-player grand coalition equals 72. Note that this game is superadditive but not

17The levels of costs that are considered intermediate vary with the structure of the coalitional

game.
18For some games in this class the cut-off for ’very low’ costs might be negative, in which case the

complete network is not supported for any non-negative cost c.
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convex. It is the same game as was studied in example 1, where it was shown that if

the cost for forming links is 0, only networks with one link are supported by subgame-

perfect Nash equilibria. For low costs of forming links (to be precise, for c < 20), the

discussion in example 1 is still valid, as is its conclusion that exactly one link will be

formed.

But the analysis changes if the costs are larger. I demonstrate this for c = 22. With

these costs, the cost-extended Myerson values are as follows. An isolated player (one

who is does not form any links) gets 0. In a network with 1 link, the two players who

have formed this link each get 19 (which is one half of the revenue of 60 minus the cost

of the link). In a network with 2 links, the central player (who has formed 2 links) gets

22, whereas the other two players each get 3. In the complete network, each player gets

2 (which is one third of the revenue of 72 minus the cots of the three links).

The higher costs change the incentives of the players. In a network with 2 links,

the two players who have not formed a link with each other have no incentive to do so,

because that would reduce their payoffs from 3 to 2. Then, in a network with 1 link, a

player who is involved in this link has an incentive to also form a link with the isolated

player. Doing this will increase his payoff (from 19 to 22) and, unlike for lower levels

of the costs, there is no threat of the third link being formed later on. Clearly, at least

one link will be formed so that some players get a strictly positive payoff. It follows

that networks with 2 links are supported by subgame-perfect Nash equilibria if the costs

are equal to 22. Note that this means that the increase of the cost, from say 19 to 22,

results in the formation of 2 links rather than 1.

The equilibrium concept for network-formation games in strategic form that is most

similar in spirit to subgame perfection is undominated Nash equilibrium. However,

there is a multiplicity of networks resulting from undominated Nash equilibria in the

strategic-form network-formation games and coalition-proof Nash equilibrium provides

a further refinement of these predictions. Therefore, a comparison of the cost-network

patterns for subgame-perfect Nash equilibria in the network-formation games in exten-

sive form with those for coalition-proof Nash equilibria in the network-formation games

in strategic form is appropriate. The predictions according to subgame-perfect Nash

equilibrium in the games in extensive form and those according to coalition-proof Nash

equilibrium in the games in strategic form are remarkably similar. For convex games,

the predictions in the extensive-form games and those in the strategic-form games are

the same for all levels of the costs of link formation. For non-superadditive games, the

predictions in both network-formation games are almost the same. The only difference

26



is that the level of the costs that marks the transition from the complete network to

a network with one link is possibly positive in the strategic-form game, whereas it is

always negative (and therefore does not show up in the overview) in the extensive-form

games.19 The predictions of both types of network-formation games are most dissimilar

if the underlying coalitional game is superadditive but not convex. In the extensive-

form game a network with one link is supported if the costs are fairly low, but not

very low, whereas in the strategic-form game for the same level of costs the complete

network is supported. For all other levels of the cost the predictions of both games are

the same. The difference between the predictions of both network-formation games is

a result of the validity of mutual threats in the network-formation game in extensive

form, as discussed in section 5, which is applicable to all games that are superaddi-

tive but not convex. These mutual threats also drive the remarkable result that higher

costs may result in the formation of more links in the extensive-form network-formation

game. Mutual threats will only be credible for lower costs, as for higher costs a player

who executes such a threat will permanently decrease his payoff.

For games with more than 3 players, it is no longer true that the pattern of networks

formed in equilibrium depends only on whether a game is superadditive and/or convex.

Slikker and van den Nouweland (2000) illustrate this with two examples of symmetric

4-player games that are superadditive but not convex and for which the patterns of

equilibrium networks as a function of the cost of forming links are different. However,

the most interesting result that is obtained for symmetric 3-player games, namely that

in the network-formation games in extensive form it is possible that the number of

links formed in subgame-perfect Nash equilibria increases as the cost for establishing

links increases, is still valid for games with more than 3 players. Slikker and van den

Nouweland (2000) illustrate this in an example of a 4-player game and also for n-player

games with n odd. In contrast, Slikker and van den Nouweland (2002) extend the

result that in strategic-form network-formation games the number of links formed in

potential-maximizing strategy profiles decreases as the costs for forming links increase.

They prove this for coalitional games with an arbitrary number of players that are not

necessarily symmetric.

19This level of the cost is higher and always positive if potential-maximizing strategies are used in

the strategic-form games of network formation.
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7 Simultaneous Bargaining over Network Forma-

tion and Payoff Division

In the three previous sections, an exogenous allocation rule was used to determine

the payoffs to the players in various networks. This can be interpreted as network

formation and bargaining occurring in two sequential stages; the first stage is the

network-formation stage and in the second stage the players bargain over payoffs, given

the network formed in the first stage. The second stage is collapsed into an exogenous

allocation rule that provides the predicted outcome of the process of bargaining over

payoffs. In contrast, Slikker and van den Nouweland (2001b)20 study a model of network

formation in which players bargain over the formation of links and the division of the

payoffs simultaneously. In such a model, the use of an exogenous allocation rule is no

longer justified. The link and claim game provides an integrated approach to network

formation and payoff division. Like in the games of network formation in extensive and

strategic forms of sections 3 and 4, it is built around a coalitional game (N, v) describing

the possibilities of cooperating coalitions of players. To keep notations as simple as

possible, it is assumed the game is zero-normalized, i.e., v(i) = 0 for each player i ∈ N .

The link and claim game Γlc(N, v) is a strategic-form game (N ; (Si)i∈N ; (fi)i∈N) with
strategies and payoff functions as described below. The strategy set of player i is

Si = {c
i ∈ AN | cii = P},

where A := IR+ ∪ {P}, IR+ = [0,∞), and P stands for Pass. A strategy for player i

specifies a cij ∈ IR+ ∪ {P} for any player j ∈ N . The interpretation of c
i
j = P is that

player i is not willing to form a link with player j, and cij ∈ IR+ means that player i is

willing to form a link with player j provided that he gets the amount of his claim cij
for forming it. As player i cannot form a link with himself, it is assumed that cii = P

for all ci ∈ Si. Suppose the players play strategy profile c = (ci)i∈N ∈
Q
i∈N Si. The

resulting payoffs to the players depend on the network that is formed. According to

strategy profile c, the set l(c) of links that the players are willing to form is

l(c) = {ij | cji , c
i
j ∈ IR+}

as the consent of both players is needed to form the link between them. However, the

claims of the players for forming these links might add up to more than is available.

20Most results in this section are taken from Slikker and van den Nouweland (2001b). However,

they also appear in chapter 9 in Slikker and van den Nouweland (2001a), where they are presented

more extensively and where the proofs are clearer, in my opinion.
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Hence, it needs to be determined which of the links in l(c) carry feasible claims. Net-

work (N, l(c)) partitions the player set into components. For every such component,

the links in l(c) between its members can only be formed if the total of the claims for

these links does not exceed the worth of the coalition. Hence, the set g(c) of links that

are formed equals

g(c) = {ij ∈ l(c) |
X

km∈l(c):k,m∈Ci(l(c))
(ckm + c

m
k ) · v(Ci(l(c)))},

where Ci(l(c)) denotes the component of network (N, l(c)) that contains player i. This

construction of g(c) implies that if the players in a component of (N, l(c)) collectively

claim too much, they all end up being isolated.21 The payoffs to the players can be

found by adding their claims for the links that are actually formed;

fi(c) =
X

j:ij∈g(c)
cij.

22

Note that this gives an isolated player his stand-alone payoff of zero.

The link and claim game Γlc(N, v) is illustrated in the following example.

Example 5 Let (N, v) be the 3-person coalitional game with N = {1, 2, 3} and char-

acteristic function v with v(T ) = 0 if |T | = 1, v(T ) = 30 if |T | = 2, and v(T ) = 72 if

T = N . Consider the strategy profile

c = (c1, c2, c3) = ((P, 10, 10), (10, P, 10), (P, 10, P ))

in the link and claim game Γlc(N, v). The link between players 1 and 3 is not in l(c),

because, while player 1 would like to form this link (c13 = 10 ∈ IR+), player 3 does not

(c31 = P ). Link 12 is in l(c), because both players 1 and 2 want to form it. Proceeding

in this way, it is found that l(c) = {12, 23}. The network (N, l(c)) has one component,

π(N, l(c)) = {{1, 2, 3}}. The total of the payoffs claimed for forming the links in l(c)

equals c12 + c
2
1 + c

2
3 + c

3
2 = 40 · 72 = v(N). As these claims are feasible for coalition

N , all links in l(c) are formed and g(c) = {12, 23}. The corresponding payoffs to the

players are f1(c) = c
1
2 = 10, f2(c) = c

2
1 + c

2
3 = 20, and f3(c) = c

3
2 = 10.

21See Slikker and van den Nouweland (2001a) for a discussion of alternative approaches.
22Note that this definition leaves open the possibility that the players claim less than what is

available. This, however, will never happen in a Nash equilibrium and so it does not really matter

whether the remainder is burned (as is the case for the expression that I provide here) or, for example,

divided evenly among the players.
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The profile ĉ = ((P, 20, 20), (20, P, P ), (P, 20, P )) is an example of a strategy profile

in which the players claim too much for all the links in l(ĉ) to be formed. It holds that

l(ĉ) = {12} and ĉ12 + ĉ
2
1 = 40 > 30 = v(1, 2). Hence, g(ĉ) = ∅ and fi(ĉ) = 0 for every

i ∈ N .

For link and claim games the question is not only which networks are supported

by (refinements of) Nash equilibria, but also which payoff vectors are supported. For

any coalitional game (N, v) it holds that a strategy profile in Γlc(N, v) is not a Nash

equilibrium if it results in the formation of a network containing a cycle and if at least

one player claims a positive amount on one of the links in the cycle. A cycle is a path

i1, i2, ..., it+1 in which i1, i2, ..., it are all different players and it+1 = i1.

Theorem 5 (Slikker and van den Nouweland (2001b)) Let (N, v) be a zero-normalized

coalitional game. For every Nash equilibrium c in the link and claim game Γlc(N, v) it

holds that all claims on links in cycles in g(c) are equal to zero.

I illustrate this theorem in the following example.

Example 6 Consider the 3-player game (N, v) in example 5. The complete network

is the only possible network for the 3 players that contains a cycle. This network can

only be formed if the players play a strategy profile c with cij ∈ IR+ for each i, j ∈ N ,

i 6= j, and c12 + c
1
3 + c

2
1 + c

2
3 + c

3
1 + c

3
2 · 72. If c is a Nash equilibrium of Γlc(N, v),

then no player can gain from unilaterally deviating to a strategy in which he simply

raises one of his claims. Hence, c12 + c
1
3 + c

2
1 + c

2
3 + c

3
1 + c

3
2 = 72 has to hold. Without

loss of generality, assume that c12 > 0, so that player 1 gets a positive amount for

forming link 12. Player 2 can increase his payoff by refusing to form link 12 and

claiming the amount c12 for himself by playing strategy ĉ
2 = (P,P, c21 + c

2
3 + c

1
2).

Then network (N, {13, 23}) will be formed, and the players can still obtain v(N) = 72.

Hence, f2(c1, ĉ2, c3) = c
2
1 + c

2
3 + c

1
2 > c

2
1 + c

2
3 = f2(c). This demonstrates that player 2

has a profitable deviation from c, so that c is not a Nash equilibrium.

Theorem 5 implies that for a zero-normalized coalitional game (N, v) with at least

three players and a positive value for the grand coalition (v(N) > 0), Nash equilibria

do not support the formation of the complete network. Therefore, attention is shifted

to connected networks. As is argued in example 6, if a connected network is formed

in a Nash equilibrium, then the payoffs must be efficient for the underlying coalitional

game, i.e. sum up to v(N). Slikker and van den Nouweland (2001b) prove that in
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general a plethora of efficient payoff vectors are supported by Nash equilibria of the

link and claim game Γlc(N, v).23 One of their main results is that all payoffs in the core

are supported by Nash equilibria. The core of a coalitional game (N, v) consists of all

efficient payoff vectors such that the members of each coalition T ⊆ N collectively get

at least the worth v(T ) that they can obtain independently of the players who are not

included in the coalition; core(N, v) = {x ∈ IRN |
P
i∈T xi ≥ v(T ) for all T ⊆ N andP

i∈N xi = v(N)}.

Theorem 6 (Slikker and van den Nouweland (2001b)) For any zero-normalized coali-

tional game (N, v) it holds that for every payoff vector x ∈ core(N, v) there exists a

Nash equilibrium c of the link and claim game Γlc(N, v) such that f(c) = x.

As Nash equilibrium itself supports very many payoff vectors, focus is shifted to

strong Nash equilibria in an attempt to generate clearer predictions. An example shows

that strong Nash equilibria of the link and claim game may support payoff vectors that

are not efficient for the underlying coalitional game.

Example 7 Let (N, v) be the 4-person coalitional game with player set N = {1, 2, 3, 4}

and characteristic function v with v(T ) = 0 if |T | = 1, v(T ) = 2 if |T | = 2 or |T | = 3,

and v(T ) = 3 if T = N . The strategy profile c with c1 = (P, 1, P, P ), c2 = (1, P, P, P ),

c3 = (P, P, P, 1), and c4 = (P,P, 1, P ) is a strong Nash equilibrium of Γlc(N, v). It

results in the formation of the network (N, {12, 34}) and payoff vector f(c) = (1, 1, 1, 1).

This payoff vector is not efficient for the game (N, v) because the sum of the payoffs

equals 4 whereas the worth of the grand coalition equals only 3.

The result in the previous example stems from the fact there exists a partition of

the player set into coalitions such that the sum of the worths of these coalitions is

larger than the worth of the grand coalition. Slikker and van den Nouweland (2001b)

show that if the game (N, v) is such that a partition with this property does not exist,

then every strong Nash equilibrium of the link and claim game Γlc(N, v) results in a

payoff vector that is not only efficient, but even in the core of the coalitional game

(N, v). This, of course, implies that for such a coalitional game the set of strong Nash

equilibria of Γlc(N, v) is empty if the core of (N, v) is empty. The following example

illustrates that not all payoff vectors in the core are necessarily supported by strong

Nash equilibria.

23A Nash equilibrium c supports payoff vector x if f(c) = x.
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Example 8 Consider the coalitional game (N, v) with player set N = {1, 2, 3} and

v(T ) = 0 if |T | = 1, v(1, 2) = 120, v(1, 3) = 60, v(2, 3) = 80, and v(N) = 180.

Payoff vector (60, 60, 60) is in the core of this game. I will show that there is no strong

Nash equilibrium that results in payoff vector (60, 60, 60) by showing that every Nash

equilibrium that supports this payoff vector cannot be strong. Suppose that c is a Nash

equilibrium of Γlc(N, v) such that f(c) = (60, 60, 60). It follows from theorem 5 that

(N, g(c)) must have two links.

Suppose that g(c) = {12, 23}. Together with f(c) = (60, 60, 60), this implies that

c2 = (c21, P, 60 − c
2
1) for some 0 · c21 · 60, c1 = (P, 60, c13), and c

3 = (c31, 60, P ),

where either c13 = P or c31 = P (or both). Because f2(c) = 60, either c
2
1 > 0 or c

2
3 =

60− c21 > 0 (or both). Without loss of generality, assume that c
2
3 > 0. Strategy profile c

is not a strong Nash equilibrium because players 1 and 3 can increase their payoffs by

deviating to strategies (ĉ1, ĉ3) defined by ĉ1 = (P, 60,
c23
2
) and ĉ3 = (60 +

c23
2
, P, P ). The

strategy profile (ĉ1, c2, ĉ3) results in the formation of links 12 and 13 and payoff vector

(60 +
c23
2
, c21, 60 +

c23
2
), which means that players 1 and 3 both improved their payoffs

through the deviation.

It can be demonstrated in a similar manner that c is not a strong Nash equilibrium if

g(c) = {12, 13} or g(c) = {13, 23}. This shows that there is no strong Nash equilibrium

of Γlc(N, v) that supports payoff vector (60, 60, 60).

The reasoning above exploits the feature of the payoff vector (60, 60, 60) that all its

elements are positive, so that any strategy profile c that supports this payoff vector leads

to a middleman who gets a positive payoff. This idea can be extended and leads to the

conclusion that none of the payoff vectors in which all coordinates are positive can be

supported by a strong Nash equilibrium. For a payoff vector in the core like (70, 110, 0),

in which one of the players has a payoff of zero, a similar reasoning as before cannot be

applied. Indeed, the payoff vector (70, 110, 0) is supported by the strong Nash equilibrium

c in which c1 = (P,P, 70), c2 = (P,P, 110), and c3 = (0, 0, P ).

The results in example 8 hold in general. The following theorem identifies the payoff

vectors that are supported by strong Nash equilibria of the link and claim game. The

first part identifies a class of games for which the set of payoff vectors supported by

strong Nash equilibria coincides with the core of the underlying coalitional game, while

the second part describes a class of games for which the payoff vectors supported by

strong Nash equilibria are all the payoff vectors in the core in which at least one of the

players receives a zero payoff.
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Theorem 7 (Slikker and van den Nouweland (2001b)) Let (N, v) be a zero-normalized

coalitional game with the property that v(N) ≥
Pt
k=1 v(Bk) for all partitions {B1, . . . , Bt}

of N , and let Γlc(N, v) be the corresponding link and claim game.

(i) If there exists a partition {B1, . . . , Bt} of N such that |Bk| = 2 for all k ∈ {1, . . . , t}

and v(N) =
Pt
k=1 v(Bk), then

{f(c) | c is a strong Nash equilibrium of Γlc(N, v)} = core(N, v).

(ii) If v(N) >
Pt
k=1 v(Bk) for all partitions {B1, . . . , Bt} of N in which |Bk| = 2 for

each k ∈ {1, . . . , t}24, then

{f(c) | c is a strong Nash equilibrium of Γlc(N, v)} =

{x ∈ core(N, v) | there exists a player i ∈ N such that xi = 0}.

Theorem 7 shows that, while strong Nash equilibria of the link and claim games

often exist, the strong Nash equilibrium concept seems quite restrictive as it results in

at least one of the players receiving a payoff of zero for a large class of coalitional games.

One of the players receiving a zero payoffmight even be the central player in a star. The

reason that the payoff of a player in such a central position is kept low in a strong Nash

equilibrium is that other players can avoid having to communicate via him by forming

new links between themselves. However, such deviations are not necessarily stable

against further deviations. This motivates the consideration of coalition-proof Nash

equilibria. The following example demonstrates how the requirement that deviations

are self-enforcing prevents the players from making certain deviations, so that some

strategies that are not stable against arbitrary deviations become sustainable.

Example 9 Consider the coalitional game (N, v) in example 8 and payoff vector x =

(60, 60, 60), which is in the core of (N, v) but not supported by a strong Nash equilibrium

of the associated link and claim game Γlc(N, v). Consider strategy profile c defined by

c1 = (P, 60, P ), c2 = (0, P, 60), and c3 = (P, 60, P ), for which g(c) = {12, 23} and

f(c) = x. It is shown below that c is a coalition-proof Nash equilibrium of Γlc(N, v),

which shows that x is supported by a coalition-proof Nash equilibrium.

It is easily seen that c is a Nash equilibrium as no player can unilaterally deviate to

a strategy that gives him a higher payoff. Further, there are no deviations by coalition

24Note that this condition is trivially satisfied for a game (N, v) with an odd number of players.
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N that increase the payoffs of all players as x1 + x2 + x3 = 180 = v(N). Hence, to

prove that c is a coalition-proof Nash equilibrium, it suffices to show that there are no

profitable deviations by 2-player coalitions that are stable against further deviations by

members of the deviating coalition.

Start by considering a deviation by coalition {1, 2}. When c is played, players 1 and

2 together receive 120, which is the worth of coalition {1, 2}. Hence, to improve their

payoffs, players 1 and 2 need to deviate to a strategy profile that results in the formation

of at least one link with player 3. Because player 3 is still playing strategy (P, 60, P ),

this will have to be link 23 and player 3 will still receive 60 after the deviation by

coalition {1, 2}. But then players 1 and 2 together cannot obtain more than v(N)−60 =

120 = x1 + x2 after the deviation, so they cannot both improve their payoffs. Similar

arguments show that there are no profitable deviations by coalition {2, 3}.

It remains to consider deviations by coalition {1, 3}. Because x1 + x3 = 120 >

v(1, 3), any profitable deviation by players 1 and 3 has to result in the formation of a

connected network. To improve their payoffs, players 1 and 3 have to break a link with

player 2 on which player 2 has a positive claim. Hence, link 23 will be broken. This is

represented by the strategies

ĉ1 = (P, ĉ12, ĉ
1
3) with ĉ12 + ĉ

1
3 = 60 + 60α, 0 < α < 1,

ĉ3 = (60 + 60β, P, P ) with 0 < β · 1− α.

However, player 1 can deviate from strategy profile (ĉ1, c2, ĉ3) by playing c̃1 = (P, 120, P ),

which induces the formation of network (N, {12}) and improves his payoff from 60+60α

to 120 = v(1, 2) − c21. Because c̃
1 is a coalition-proof Nash equilibrium in the reduced

game that emerges when the strategies of players 2 and 3 are fixed to c2 and ĉ3, re-

spectively, it follows that deviation (ĉ1, ĉ3) is not self-enforcing. We conclude that c is

coalition-proof Nash equilibrium of Γlc(N, v).

Slikker and van den Nouweland (2001a) provide a description of all coalition-proof

Nash equilibria of the link and claim game Γlc(N, v) and corresponding payoffs for

coalitional games (N, v) with three players. A remarkable result is that for some

coalitional games with a non-empty core, some efficient payoff vectors that are not in

the core of the game are nevertheless supported by coalition-proof Nash equilibria. For

the game (N, v) of examples 8 and 9, the efficient payoff vector (100, 10, 70) is supported

by the coalition-proof Nash equilibrium c = (c1, c2, c3) defined by c1 = (P, P, 100),

c2 = (P, P, 10), and c3 = (70, 0, P )25, but it is not in the core of (N, v) (players 1 and 2

25See lemma 9.2 in Slikker and van den Nouweland (2001a).
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get less than v(1, 2)). The results in Slikker and van den Nouweland (2001a) also imply

that there exist coalition-proof Nash equilibria of the link and claim game Γlc(N, v)

that result in efficient payoff vectors even if the core of the game (N, v) is empty, as

long as v(T ) · v(N) for at least one 2-player coalition T .

Slikker (2000) shows that all the results obtained in Slikker and van den Nouwe-

land (2001a) on coalition-proof Nash equilibria still hold for something which he calls

adjusted coalition-proof Nash equilibria. Adjusted coalition-proof Nash equilibrium is

similar to coalition-proof Nash equilibrium, but it limits the size of deviating coalitions

to be less than or equal to two. This is an especially appealing limitation in a setting of

network formation, where each link is formed by two players and where a single player

can break links.

8 Related Literature

In this chapter I have discussed the literature on the formation of networks in coali-

tional games. A coalitional game describes the possible gains from cooperation for all

coalitions of players. The question of which coalitions will be formed by the players in a

coalitional game is still largely unresolved. Models of network formation in coalitional

games approach this question by adding structure to the game and thereby making it

possible to consider bilateral cooperation that facilitates cooperation by larger coali-

tions of players. A network is a collection of bilateral relations between the players and

as such networks can be viewed as a generalization of a coalition structures in the sense

that a coalition of players can be identified with a network in which all the members

of the coalition have formed bilateral links with each other. Hence, a coalition struc-

ture is a collection of complete networks. This is formalized in Slikker and van den

Nouweland (2001a), who show that the value for games with coalition structures intro-

duced in Aumann and Drèze (1974) coincides with the value for games with networks

introduced in Myerson (1977) for the networks that model the coalition structures as

described above. Networks are more general than coalition structures because they

allow for non-transitivity of bilateral relations. This opens up the possibility to model

communication between players who have no direct relation, but who do have indirect

relations via other players who act as intermediates. Just like for coalition structures,

players who have no direct or indirect relations cannot effectively communicate and

hence not cooperate. For players who can communicate, the worth that they can ob-

tain by cooperating is modeled by a coalitional game. In this approach, the value of a
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network primarily depends on which players it connects with one another (directly or

indirectly) and not on how exactly it connects these players (the only exception being

a model in which links are costly, see section 6). Hence, issues such as the deterioration

of information as it has to travel along longer paths are not taken into account. When

we want to take these types of issues into account, we end up with models in which

the worth of players in networks is given by a value function rather than derived from

a coalitional game. The literature on networks with value functions is covered in Jack-

son (2004), Chapter 2 in this volume. Also, the approach based on coalitional games

precludes externalities between different groups of interconnected players. Currarini

(2002) looks at the formation of networks in situations where such externalities can

exist.26

There is a lively literature on the tensions between stability of networks and their

efficiency in the sense of overall payoff maximization. Jackson (2004) includes a discus-

sion of this literature. Mostly, the models that I discuss illustrate this tension, which

was shown in Jackson and Wolinsky (1996) to be quite pervasive even in settings of

more general value functions than those based on coalitional games.

In this chapter, I concentrated on the basic models of network formation in which

players form bilateral relations that are deterministic and symmetric and in which the

possibilities of coalitions of player are given by a coalitional game with transferable

utility. I believe that most of the issues that arise when studying network formation in

coalitional games, arise for this basic model. I refer the reader to Myerson (1980), van

den Nouweland et al. (1992), and Slikker et al. (2000a) for extensions to situations

in which players can form multilateral relations, to Calvo et al. (1999) for extensions

to situations in which bilateral relations are not deterministic, to Slikker and van

den Nouweland (2001a) and Casas-Méndez and Prada-Sánchez (2003) for situations in

which utilities are not transferable, and to Slikker et al. (2000b) for situations in which

players form relations that are not symmetric. For a much more elaborate treatment

of the subject of network formation in coalitional games than I could provide in this

survey, I refer the reader to Slikker and van den Nouweland (2001a), where the reader

will also find most of the proofs that I have omitted in this chapter.

26All of these paper look at static models of network formation. For a survey of the research on

learning in networks I refer the reader to Goyal (2004), Chapter 5 in this volume.
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