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Abstract 

Variation in plant community composition has been shown to alter the concentrations of 

soil organic carbon (SOC) within the soil. Climate change, and anthropogenic disturbances have 

altered dominant plant communities across the globe, shifting them to new states of equilibrium, 

with important implications for SOC. The relationship between plant community and SOC is 

well understood in many regions; however, semi-arid ecosystems remain poorly represented in 

existing datasets liking above and belowground ecosystem properties. For example, in the 

Northwestern United States, ecosystems of the Great Basin have been both underfunded and 

understudied in terms of management and scholarship respectively. This is especially true within 

the state of Oregon, where a clear majority of research efforts are devoted to ecosystems West of 

the Cascades as opposed to the semi-arid ecosystems of the East. Ecosystems of eastern Oregon 

are undergoing rapid vegetation regime shifts that include woody encroachment, grass invasions, 

and large scale agricultural expansion simultaneously. To better understand the fundamental 

relationship between changes in plant communities and SOC within typical ecosystems of 

eastern Oregon, 14 plots were deployed to sample soil and vegetation across the Chewaucan 
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Basin. Sampling sites were chosen based on a priori vegetation community type that included 

sagebrush (Artemisia tridentate, & Artemisia arbuscula), western juniper (Juniperus 

occidentalis), ponderosa pine (Pinus ponderosa), western juniper/ponderosa pine, and Alfalfa 

(Medicago sativa). Surface SOC was characterized for each vegetation category at a depth of 10 

cm using the loss on ignition method. Woody vegetation communities showed substantially more 

SOC when compared to sagebrush and Alfalfa crops with plot average values ranging 67-83 Mg 

ℎ𝑎−1  to 33-47 Mg C ℎ𝑎−1 respectively. Sagebrush communities showed intermediate levels of 

SOC with 47 Mg C ℎ𝑎−1, Undeveloped plots directly adjacent to agriculture with 33.5 Mg C 

ℎ𝑎−1, and Alfalfa plots exhibited 43.5 Mg C ℎ𝑎−1. Juniper plots showed 67.8 Mg C ℎ𝑎−1, Pine 

dominated plots exhibited 83.6 Mg C ℎ𝑎−1, and Juniper/Pine dominated displayed 67 Mg C 

ℎ𝑎−1. This pilot study gives valuable insight into the current state of semi-arid ecosystems and 

provides the basis for future assessments of changes in vegetation cover and SOC concentrations. 
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Introduction 

Climate change is part of a larger quite fundamental transformation of Earth’s systems, 

affecting the composition of the atmosphere, biosphere, hydrosphere pedosphere and the cycling 

of carbon in and between them. It is well established that the carbon cycle is essential to the 

continuation and evolution of life on Earth (Wapner & Elver, 2016  and Farmer & Cook, 2012); 

however, many question remain unanswered regarding the evident disequilibrium between 

sources and sinks of carbon on land, with excess carbon leaving terrestrial systems. Due 

primarily to human activity, such disequilibrium has caused the concentration of atmospheric 

carbon dioxide (CO2) to increase by nearly 40% since the start of the industrial revolution 

(Tian et al 2016). Furthermore, it reflects a basic shift in terrestrial ecosystem functions with 

potentially devastating consequences such as climatic instability and changes in composition and 

distribution of plant communities as they to reach ecological thresholds. An ecological threshold 

occurs when external factors, positive feedbacks, or nonlinear instabilities cause changes to 

propagate in a “domino-like” fashion that can in some cases be irreversible (Mavrommati et al 

2016). Sudden changes to ecosystem composition and function are not fully understood, but they 

are unquestionably important if natural resource managers are to succeed in developing 

adaptation strategies in a changing world.  

One example of predicted large scale ecosystem shifts associated with changes in the 

carbon cycle is the decline of savanna and grassland biomes across the globe. Savanna and 

grassland ecosystems cover approximately 3.5 million km2 and are responsible for 

approximately 20 Pg C year−1 of the globe’s net primary productivity (Silva and Anand 2013). 

Specific alterations in vegetation cover associated with changes in climate and the carbon cycle 

include the expansion of woody vegetation into these grassland ecosystems due to CO2  
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stimulation of tree growth (Santana 2017). The shifting dominance among herbaceous and 

woody vegetation within these ecosystems, alters primary production, plant allocation, rooting 

depth and soil faunal communities, potentially meters beneath the soil surface, and in turn are 

expected to alter nutrient cycling and carbon storage (Jackson et. al 2002). 

In addition to CO2-induced changes in vegetation cover, changes in temperature, 

precipitation, and deposition of biologically available nitrogen have increased across large 

regions, and further increases are almost certain in the future. (Farmer & Cook 2012 and Shaw 

et. al 2002). Disequilibrium within terrestrial ecosystems caused by the combined effect of CO2 

and nutrient pollution and changes in vegetation cover and climate have manifested all over the 

world as increasing humidity or aridity depending on the region and portion of the atmosphere 

studied (Bonan et al 2015); increased evaporation of ocean and fresh water and moisture from 

soils (Seneviratne et.al 2010, & Bates et. al 2008); increasing frequency and intensity of storms 

and unusual weather patterns (Mann et al 2017); melting glaciers and melting permafrost and 

release of methane to the atmosphere (Silva and Anand 2013; Silva et al 2016); decreasing snow 

cover in winter and temperature increases over land and sea; as well as increasing animal and 

plant species extinction (Farmer & Cook, 2012 and Glover, Ishee, & Collies, 2009). Taken 

together, these phenomena encompass the most important local and regional manifestations of 

global environmental change. 

 Crucial for planetary stability, forest biomes are known to control much of the global 

carbon budget and are generally considered to be net carbon sinks (Bonan et al 2015). Trees and 

forests are structurally and compositionally diverse and, thus, apt to dealing with at least some of 

the predicted effects of global environmental change (e.g., climate fluctuations). However, in 

many instances, the fast rate of human-induced environmental change has been found to impose 
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severe limitations to the capacity of trees to adapt to new environmental conditions (Alcamo et. 

al, 2007). For example, when combined with land use and pressures and resulting habitat 

fragmentation, the effects of climate change are expected to place unique challenges on forest 

dynamics, such as tree growth decline due to drought and increasing temperatures, which can 

cause higher respiration rates while photosynthetic rates are reduced by dry conditions (Gomez-

Guerrero 2013). Increasingly warm and dry conditions are also expected to increase the severity 

of drastic biotic and abiotic disturbances that can greatly impact forest ecosystems, such as those 

caused by insect infestation and fires (Collins et al 2012 & Harvey 2016). Thus, the impact of 

climate on a forest ecosystem will vary depending upon many other factors that limit tree growth 

and regeneration, including latitude and altitude limitations, and their inherent relationship with 

soils (Bravo, 2008).  

A rough estimate suggests that approximately 18% of global carbon emissions are 

associated with deforestation, a major contributor to rising atmospheric CO2 levels (Stern, 2006). 

To a large extent, the reduction of forest biomes is to blame. Tropical forests make up large areas 

of South America, Africa, and Indonesia are largely due to direct human activities such as 

agricultural expansion and deforestation, which a decade ago had already released approximately 

1.6 (0.5–2.7) GtC yr−1 (Achard et. al, 2007). The tipping point of tropical rainforests due to 

increased CO2 concentrations in the atmosphere could result in developments of savanna type 

ecosystems (Nobre & Borma, 2009). Temperate forest, bordered by boreal forest ecosystems to 

the North 55° N, and tropical ecosystems to the South 30°N, compromise approximately 25% of 

the worlds forest, and act as a sink of atmospheric CO2, taking up 37% of the worlds terrestrial 

carbon uptake (Tyrell, Ross, & Kelty, 2011). Temperate forest that exhibit xeric moisture 

regimes are in part shaped by fire (National Interagency Fire Center, 2011); thus, as climate 
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continues to warm, frequency, intensity, and duration of fire are expected to increase, altering 

successional stages of forest development and reducing the chances of forest reaching old growth 

status, the pinnacle of structural diversity (Tyrell, Ross, & Kelty, 2011 and Rapp, 2002). Boreal 

forests extend northward to about 68° N. These forests contain approximately 13% of the planets 

terrestrial biomass, and contains approximately 43% of the worlds soil carbon stocks within rich 

organic soils (Milakovsky, Frey, & James, 2011). Boreal forests are the most under represented 

biome in terms of research regarding their nutrient and energy networks, due to the intact nature 

of forest stands, and their immense area and narrow study window (Milakovsky, Frey, & James, 

2011). Boreal forests and their soils are the most susceptible to climate warming and unstable 

precipitation, which can cause extensive forest dieback, increased fire disturbance, intense insect 

infestations, and severe permafrost de-thaw (Wooster and Zhang 2004, Kasischke et al. 1995, 

Malmstrom and Raffa 2000, Prokushkin et al. 2005). Interestingly, more rapid climate warming 

in the high latitude regions of the world can influence spatial borders between boreal forests and 

tundra ecosystem. Tundra ecosystems retain approximately 97% of their carbon within their 

soils, and current vegetation shifts northward can potentially release stored soil carbon (Billings, 

1987 and  Soja et. al, 2007).  

Importance of arid ecosystems of eastern Oregon 

As in other parts of the world, the forests of western Oregon are experiencing a process 

of “savannization” that will likely exacerbate climate warming and establish an overall drier 

water regime than that observed in the region today (Baldocchi, Chu, & Reichstein, 2018). In 

addition, as temperatures increase across the mixed coniferous forests, increased fuel loads and 

fire intensity are also promoting a shift toward increasing aridity west of the Cascades (Dalton et 

al, 2017). Similar albeit stronger eco-climatological regime shifts are expected to occur in arid 
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ecosystems east of the Cascades. However, little research is being done to predict the 

consequences of climate changes within those dry systems, which encompass coniferous forest 

and adjacent sagebrush steppe ecosystems. Interestingly, divergent vegetation trajectories are 

juxtaposed in eastern Oregon, where savannaization and woody encroachment are occurring 

simultaneously (Rau 2011a, Rau 2011b Miller and Rose 1999, Miller et al 2013, Miller et al 

2008), allowing a unique opportunity to study the relationship between plant cover and SOC in 

co-located yet contrasting ecological settings. To date, the few studies that have analyzed the 

effects of vegetation shifts in the semi-arid ecosystems of Oregon East of the Cascades, have 

failed to include land conversion to agriculture that totals approximately 13.8 million acres East 

of the Cascades (Oregon State Board of Agriculture 2017). The present study represents a first 

step towards addressing this limitation.  

Arid and semi-arid ecosystems make up approximately 1/3 of the worlds continental land 

surface and face the most serious threats from ongoing and future climate change as major water 

regime shifts could occur on timescales of a few years to decades (Sadoff and Muller 2009, Cook 

et. al 2014, and Chambers and Wisdom 2009). Changes in water availability are predicted to 

alter vegetation communities of the sagebrush steppe ecosystems of the Great Basin  in the 

western US (Miller et. al, 2013), which is the largest semi-arid ecosystem in the US totaling 

approximately 100 million hectares (Miller, 2010). It extends across southern Washington, 

eastern Oregon, northeastern California, southern Idaho, northern two-thirds of Nevada, and the 

western half of Utah, encompassing the Central Basin, Northern Basin, Columbia Basin, Snake 

River Plain, and Blue Mountain ecoregions (Miller et. al, 2013). Its topography is characterized 

by basins, mountains, and plateaus with elevations ranging from 400 to 3000 m but these 

majority falling between 760 to 2300 m. The sagebrush steppe represents vast areas of similar 
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sagebrush/shrub vegetation states that defined as complex of a soil base and a suite of complex 

vegetation communities that are resistant to disturbances (Miller et. al, 2013 & Davies et. al, 

2012). The sagebrush steppe has been identified as one of the most threatened land types in 

North America, and as much as half of this land type has already been lost in the Great Basin. 

Many of the plant communities that remain unaltered in this region are in poor conditions and are 

in need of restoration efforts. As stated above, climate change is threatening the sagebrush steppe 

and its functional dynamics; however, little research is being done to study the effects of a 

changing sagebrush steppe in relation to increased agriculture, and other economically 

productive activities, which are related to woody species encroachment or decline (Chambers 

and Wisdom 2009).  

Ecological regime shifts within the sagebrush steppe include the rapid advance of western 

juniper and the envelopment of sagebrush communities, which in some regions has altered above 

and below ground carbon stocks (Rau 2011a, Miller and Rose 1999, Strand et al 2008, Miller et 

al 2008, Miller et al 2013, Brown et al 1997, Campbell et al 2012 Chambers and Wisdom 2009). 

According to Miller et al 2008, some areas have experienced as much as a 625% increase in 

juniper stands since at 1860 within the sagebrush steppe. Juniper encroachment is viewed as a 

problem, because woody encroachment occurs at the expense of sensitive grass and shrub lands 

already becoming vulnerable to agriculture and urbanization (Campbell et al 2012). Facilitation 

of juniper expansion at such a rapid pace within the sagebrush steppe is caused by intense 

livestock grazing, reduced frequency of fire, and optimal climate conditions during peak 

expansion periods (Miller and Rose 1999). Increased juniper expansion has consequences 

beyond loss of native shrubs and grasslands, as it changes nutrient cycles within the soil profile. 



10 

 

 Scientists have suggested that increased woody expansion increases organic carbon stores 

above and below ground by as much as 0.13 Pg C 𝑦𝑒𝑎𝑟−1, across vast regions of the west 

(Pacala et al, 2001). Specific analysis of below ground carbon accumulation has been measured 

at 5.1 Mg 𝑦𝑒𝑎𝑟−1, due to increased litter accumulation in soils associated with higher densities 

of woody species like juniper (Rau 2011a). The importance of belowground SOC accumulation 

in arid and semi-arid landscapes is the proportion of mean annual temperature and precipitation 

amounts. Arid and semi-arid ecosystems in the west do not receive precipitation amounts in 

excess of 500mm, which is the threshold associated with increased microbial respiration and a 

loss of SOC (Rau 2011a). However, as density of woody cover increases, risk of severe fire also 

increases allowing for exponential losses of sequestered carbon stocks across the west allowing 

for potential and rapid cheatgrass invasion (Miller and Tausch 2001).  

Self organizing non-woody vegetation states within the Great Basin are largely dependent 

on precipitation amounts with Desert shrub communities dominating in areas that receive fewer 

than 150 mm precipitation per year. Sagebrush communities are prominent in areas that receive 

200-300 mm of precipitation that include, Wyoming big sagebrush, basin big sagebrush, low 

sagebrush and others. A mix of woody vegetation and sagebrush communities persist in upland 

areas that receive approximately 300-400 mm of precipitation and include mountain big 

sagebrush, low sagebrush, bitter brush, and western juniper. Lastly, areas that experience an 

average of 400 mm of precipitation per year contain mountain big sagebrush, bitterbrush, curled 

leaf mountain mahogany, Idaho fescue and others (Miller et. al, 2013). Sagebrush dominated 

ecosystems are often subject to disturbances such as fire, climatic changes, as well as 

anthropogenic influences. It is commonplace to see major vegetation community shifts after such 

disturbances have taken place such as woody juniper encroachment, cheatgrass intrusions, and 
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other invasive species (Rau et. al 2011a, Rau et. al 2011b, Campbell et. al 2012, Miler and Rose 

1999).  

 Within the sagebrush steppe ecosystem, documentation of invasive species is occurring at 

unprecedented rates, with at least some presence >10% in approximately 7 million hectares 

(Miller et. al 2008). In salt desert shrub, Wyoming sagebrush, and lower elevation mountain big 

sagebrush vegetation types, the annual grass-fire cycles in response to altered fire regimes, are 

resulting in progressive conversion of native shrub lands to homogenous grasslands dominated 

by nonnative invasive species and a loss of endemic species (Brooks and Pyke 2001 & Chambers 

and Wisdom 2009). The most dominant nonnative invasive grass is cheatgrass, which is thought 

to have increased fire intervals exponentially from historic 60-110 years to modern 3-5 years. 

The increased fire interval creates a negative feedback loop that perpetuates the continuation of 

cheatgrass establishment and invasion. (Brooks and Pyke 2001 & Miller et. al 2013). In contrast 

with woody species expansion, invasive grass invasion is supported by the increased resource 

availability in the first few years after fire disturbance, with above ground fuel loads estimated at 

14.5kg/ha for pre-fire cheatgrass populations, growing to 732kg/ha in the second and third years 

post fire on average (Miller et al 2013). This conversion and increased fire interval can severely 

degrade ecosystems by reducing SOC and nitrogen stocks above the ground and slowing the 

infiltration rates of water into soils (Rau 2011b). Thus, the study of co-located open and woody 

vegetation physiognomies represents a critical step towards addressing land management and 

conservation questions in this region.  

Vegetation Cover and Soil Organic Carbon 

The paucity of studies regarding vegetation community structures and their relationship 

to below ground SOC creates a less robust picture of carbon cycling and storage and the 
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relationships between soil, plants, and the atmosphere on a regional scale. Analyzing these 

relationships within the scope of the sagebrush steppe has the potential increase knowledge about 

carbon storage across a vast land area. However, it is important to define the characteristics of 

SOC to understand its importance to the overall ecosystem function. Current levels of SOC in an 

ecosystem represent a continuum of materials in varying states of decomposition with differing 

residence times following the deposition of plant biomass (Jastrow and Miller 1998). Generally, 

SOC is comprised of protected in soil aggregates within the soils matrix, as well as free particles 

and compounds adsorbed onto mineral surfaces, ranging from inaccessible to readily available 

substrate for microbial activity across a variety of exposure levels to oxygen (Hartemink and 

McSweeny 2014). Thus, the composition of SOC within the soil as well as the degree of its 

recalcitrance is highly dependent upon the molecular structure of the original carbon inputs, 

which are dependent on vegetation cover, allowing for differentiation of SOC within the soil 

across plant communities. Different forms of SOC are typically quantified based on the 

composition of the input and the timescale of SOC decomposition. Nevertheless, it is important 

to note that changes in climate and precipitation have significantly impacted the stability of SOC, 

especially as one travels upward through the soil matrix (Baldock 2007). Of the five forms of 

SOC the least stable is surface plant residue, composed of plant material and litter residing in the 

soils surface. The next least stable is Buried plant residue, consisting of plant material greater 

than 2mm in diameter. Third is Particulate organic matter (POC), which is semi-decomposed 

organic matter smaller than 2 mm and greater than 50 micrometers in diameter. Fourth is Humus 

which is well decomposed organic material smaller than 50 micrometers that is well incorporated 

into soil particles. Humus is very stable and is an important facilitator in soil structure. The most 

stable form of SOC is Resistant organic carbon (ROC) composed of charcoal or charred 
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materials that result from the burning of organic matter (Hartemink and McSweeny 2014). 

Important functions of SOC include, nutrient cycling, soil architecture, soil fertility and yield 

production as well as dynamics in relation to climate change mitigation, management practices 

and modelling (Janzen 2006). Of these functions, climate change mitigation and soil 

functionality stand out as the focal points of soil carbon research and therefore are also the focus 

of this project.  

Soil functionality in relation to SOC is a balance between sequestration of SOC stocks 

and how SOC is used within the soil matrix, as fuel for biological activity (Hartemink and 

McSweeny 2014). Increases of carbon within soils improves a soils quality, in reference to its 

water holding capacity, aggregate stability, fertility, and ion exchange buffering. However, for a 

soil to be functional the carbon sequestered into the soil must be broken down and in a state of 

decay, for it is in this state of decay in which the carbon can be accessed and used for biological 

processes (HH Janzen, J Six, Zvomuya et al, 2005). Although there is evidence that suggests soil 

functionality follows a broken stick regression model, where soil functionality and fertility 

improve to a certain point and flatline, in which soils can be both functional as well as a carbon 

sink. Moreover, SOC concentrations in regard to climate change mitigation is a current focal 

point for soil science research (Sommer & Basio 2014). There is increasing evidence that soils 

can mitigate climate change by reducing greenhouse gas emissions by way of soil carbon 

sequestration (SCS) i.e. the removal of CO2 from the atmosphere and storing it into a long lived 

carbon pools described above. Globally, SCS is recognized as a carbon sink due to the estimated 

size of the soil C pool estimated at 560 Gt of OC (Jobbágy and Jackson 2000).  In addition, 

anthropogenic influences mainly land management, have induced changes in C that have resulted 

in an estimated loss of SOC of up to 78 Gt per annum (Lal 2004). Fortunately, research has been 
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done that estimates of maximum SOC storage potential for a range of soil types and management 

regimes and has been estimated at 31 to 64 Gt in the next century in agricultural soils alone 

(Sommer & Basio 2014). Agricultural soils in particular have increased carbon sequestration 

potential due to their increased C:N ratio, as long as management practices reflect sustainable 

soil stewardship (Rau 2011a, & Wilman 2011). Agriculture in the western US alone 

encompasses approximately 300 million hectares, suggesting massive carbon sequestering 

potential (Office of Technology Assessment, 2004), which must be contrasted with tree-

dominated ecosystems, which typically hold the highest levels of SOC across biomes (Duarte-

Guardia et al., 2018).  

A case of land cover and soil properties in eastern Oregon 

The focus of this study is the relationship between shifting plant community composition 

and structure in agriculture and non-managed lands in the sagebrush steppe of eastern Oregon. 

Differences in the below ground SOC concentrations of the surface soil horizons were compared 

across multiple plant communities to tease apart the differences of surface SOC concentrations in 

in a variety co-located systems, which provide a robust perspective on vegetation effects than 

studying SOC separately at different locations. This study therefore captures a snapshot of the 

current state and potential changes occurring across such a number of climate-sensitive 

ecosystem in eastern Oregon. 

Study Site  

The Chewaucan River Basin in South central Oregon located within the Fremont 

National Forest, 8 km south of Paisley, was chosen as the study site based on previous land 

management regimes, on going vegetation changes, and current agricultural practices in close 
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proximity. The study area encompasses approximately 5,000 ha, and elevation ranged between 

1,450 and 1,875 m above the sea level. Topography is typified by highly dissected “benchland”s 

and “toe slopes” ranging from gentle to moderately steep (Miller and Rose 1999) with slope 

aspect oriented predominantly west to northwest. Soils across the landscape range from deep to 

moderately deep residual soils weathered from breccias and tuffs to shallow clayey soils (Wenzel 

1979). The local climate is classified as cool and semi-arid, characteristic of the northern Great 

Basin, with long-term average precipitation of approximately 400 mm per year (Taylor 1993) 

received primarily as snow in November to January and as rain March through June. The 

vegetation is characterized by 2 predominant plant communities. On moderately deep soils, 

mountain big sagebrush (Artemisia tridentata Nutt.) with Idaho fescue (Festuca idahoensis 

Elmer) dominates. The low sagebrush (Artemisia arbuscula Nutt.)-sandberg bluegrass (Poa 

sandbergii Vasey) community occupies the stony shallow heavy clay soils on the benchlands. 

Associated with these plant communities are western juniper trees in varying levels of density, 

and Ponderosa pine (Pinus ponderosa) at the highest elevations. 

Livestock was introduced to the Chewaucan River Basin in the late 1860s (Oliphant 

1968). By the mid 1870’s a few thousand cattle were documented in the lower basin, with 

several thousand sheep moving in later (Miller and Rose 1999). By the turn of the century 

livestock numbers peaked and remained high until about 1915, with sheep populations declining 

form approximately 400,000 AUM (animal unit months) to less than 1,000 currently (Miller and 

Rose 1999). An AUM is the average amount of dry weight forage required by a lactating 1000-

pound cow and her calf for one month, 30.4, days (Ogle et al 2009). Cattle populations since 

documented decline in 1915 have decreased from 95,000 AUM’s to about 60,000 AUM’s 

currently (Miller and Rose 1999). The inception of the US Forest Service Ranger Station in 
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Paisley in 1908 marks the beginning of fire suppression in the area, but little suppression effort 

was noted because of limited access to effected areas until the 1940’s (Miller and Rose 1999).  

Methods 

Determination of sites within the study area was done based on dominant a priori 

vegetation community characterization that divided the landscape into the following categories:  

mountain big sagebrush (Artemisia tridentata Nutt.) and low sagebrush (Artemisia arbuscula 

Nutt.), western juniper (Juniperus occidentalis), western juniper-Ponderosa Pine, Ponderosa 

Pine, and alfalfa (Medicago sativa). Specific site selection was controlled by prioritizing a north 

by northwest aspect for all sampling locations where a 25 m transect tape (running North to 

South) was placed perpendicular to another 25 m transect (running East and West) creating four 

equally sized quadrants. A spherical photograph was taken at the plot center, along with a GPS 

reading using a Garmin GPSmap 60Csx. Samples were then collected at random within each 

quadrant of the transect using a metal collection cylinder with a volume of 88.09𝑐𝑚3. For 

samples to be analyzed singularly, the core(s) were taken from the top 10 cm of soil profiles and 

placed it in sample bags. Each sample bag was labeled with a clear and unambiguous identifier 

with a permanent marker. The sample identifier made reference to the land parcel, the plot, and 

the position of the sample with respect to the plot. This process was repeated over 14 separate 

sites yielding 55 usable soil samples. For drying and separating, a drying oven was heated to 

60ºC and samples were transferred from plastic collection bags to paper bags, copying vegetation 

type and quadrant number.  

Once samples were adequately dried, soil samples were separated into fine earth and 

coarse fragments using a dry sieving method. Samples were passed through a stack of sieves 

with a 4.75 mm sieve on the top and a 2.00 mm sieve below, and finally a collection pan at the 
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bottom. Samples were dried and sieved for approximately 5 minutes each to adequately separate 

soil particles. Coarse fragments and fine earth materials were weighed independently and placed 

into separate bags. The fine earth portion of the samples were ground after sieving to ensure that 

homogenized samples were analyzed for SOC content. The steps of separation and weighing 

samples individually allows for a more comprehensive analysis of particle size analysis as well 

as bulk density used in SOC stocks calculations. It is important to note the coarse fraction of the 

soil was disregarded as a SOC store. 

To calculate SOC levels, a loss on ignition (LOI) test was conducted using a Fisher 

Scientific Isotemp 650 series muffle furnace. Approximately 5 g of soil was obtained from each 

of the 55 samples collected were re-dried prior to ignition in the furnace. Samples were weighed 

before and after burning of carbon, utilizing a desiccator for transport within the lab space to 

account for reabsorption of atmospheric moisture, and SOC levels were determined based on 

mass differences (Heiri et al 1999). Variables including percent SOC, bulk density, and elevation 

were analyzed to determine the influence of plot type on SOC stocks at the top 10 cm depth of 

the soil profile. Statistical computing packages in R were used in the creation of all graphs and 

standard errors calculations. To create figures depicting the study area within the Chewaucan 

Basin (Figure 1), Google Earth 2018 was used with an NGS topographic overlay.  

Results and Discussion 

Results show significantly greater percent composition of SOC, on a mass basis, in tree-

dominated sites compared to agriculture or shrublands (Figure 2). This trend is also reflected in a 

comparison of percent SOC across elevation, which in this region is a proxy for plant community 

type (Figure 3). Perennial grasses, forbs, and shrub species in the Great Basin tend to have roots 

concentrated in the top 20 cm of soil (Rau 2011), and lower percent SOC in the sagebrush 
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communities (ARTRV and Und), is not what was expected given sampling was limited to the top 

10 cm of the soil profile. However, similar studies in the Great Basin account for the increased 

SOC found in woody vegetation communities, (Juoc/Pipo, Juoc, Pipo), as increased litterfall 

from trees becomes incorporated into near surface soils (Rau 2011). The top 10 cm of soil 

contains a carbon pool that is highly subject to changes associated not only with vegetation 

changes mentioned previously, but fire disturbances as well. Research has shown that as fire 

return intervals increase due to invasive species invasion and increased fuel loads, the greater the 

magnitude of SOC lost from surface soils that readily burn (Muqaddas, Zhou, Lewis, Wild, & 

Chen, 2015, and Miller et. al, 2013). Seasonal precipitation and temperature regime fluctuations 

due to climate change could further alter fire return intervals and exacerbate the already changing 

sagebrush steppe ecosystem.  

On average, agricultural sites had slightly higher SOC levels in the soil surface compared 

to shrub and bunchgrass communities. Agricultural soils typical of the Chewaucan Basin are 

void of a discernable O horizon, leaving little carbon flux into the soils surface layers. Studies 

that researched soil carbon retention determined that increased carbon content is positively 

correlated with increased nitrogen content, and a plant-soil system with a lower C:N ratio can 

efficiently increase SOC within the soil as the rate of below ground root decomposition is 

increased (Lal 2009). Agricultural soils have been predicted to act as a carbon sink if the correct 

management techniques are implemented. Management techniques such as no till agriculture are 

especially effective at preserving SOC in surface soils ass Carbon residue inputs initially enter 

the surface pool where the tillage regime influences their capture and retention. With no-tillage 

practices, the residue is protected and forms SOC, which is transferred to the deeper pool and 

sequestered over an extended period of time (Wilman, 2011).  However, it has been shown that 
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long term synthetic fertilization of crops (<100yrs) can reduce SOC, despite increased below 

ground crop residue growth (Khan, Mulvaney, Ellsworth, & Boast, 2007).  

Extrapolation of soil samples from the Chewaucan Basin (Figure 4) suggests that mean 

SOC stocks under woody vegetation, (juoc, pipo, juoc/pipo) range from 67-83 Mg ℎ𝑎−1 on 

average. While mean SOC stocks under sagebrush and alfalfa communities contain 

approximately 33-47 Mg ℎ𝑎−1 on average. It is important to note that the sampling strategy of 

this study was to collect only the top 10 cm of soils from across the Chewaucan Basin. However, 

a significant portion of the soil profile remains unstudied. There is potential for different 

conclusions to be made if SOC stocks were measured across the entire depth of the soil profile 

(Figure 4.), as rooting depths for alfalfa and woody tree species are significantly deeper that 

sagebrush communities (Rau 2009).  

It is expected that more extensive studies in this region would show that that woody 

vegetation types allocate SOC further below ground than shrub and grass communities, and 

woody encroachment in these areas has the potential to act as a stronger carbon sink that the 

several-fold increase observed here for SOC from open to woody physiognomies (Figure 2). 

Alfalfa communities should display increased SOC as alfalfa’s rooting depth and nitrogen 

content of soil far surpasses those of shrub and grass communities. Furthermore, soils within 

semi-arid ecosystems could potentially sequester carbon for longer periods of time, as 

precipitation and temperature values in these areas seem to suppress microbial activity and lower 

decomposition rates. It is also important to note that soils depleted of vegetation cover, less than 

50%, are at higher risk of desertification and large losses of soil SOC. Therefore, increased 

attention to maintaining increased vegetation cover through agriculture, restoration, or 

conservation of the sagebrush steppe is vital in maintaining SOC stocks in the study region. 
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Finally, semi-arid soils are said to have higher soil inorganic carbon (SIC) than other soil types, 

measurements of these SIC stocks could grant even more information about the nature of the 

soils of semi-arid ecosystems , thus future studies should also take inorganic pools into account.  

It is well known that SOC sequestered in soils and plant biomass can provide a direct 

market value for conservationists and land managers. Indeed, trading C credits offers a new hope 

to resource poor and small land holders of the region prone to desertification, like the sagebrush 

steppe, by creating another income stream (Lal, 2009). The economic gains, through increase in 

production and C sequestration, have a potential to positively impact the economy and the 

environment. The choice of strategies to mitigate C abundance or capture C from the atmosphere 

is also linked to C trading, which is an emerging global market (Lal, 2008). Generating C credits, 

which can create extra income to provide incentives to farmers to adopt recommended land use 

and management options, need a well-defined strategy which is beyond the scope of this study. 

Accordingly, this pilot study has important social and ecological implications as it represents an 

analysis of naturally occurring and agriculture systems simultaneously, which creates a more 

robust mosaic of Oregon’s land as well as much of the west, that adds to a plethora of research 

already completed in western Oregon (Figure 5). Most notably, Bonan et al 2002 describes 

different forest biomes and their respective carbon allocations across Oregon, but fails to capture 

the unique qualities within the biomes of central and eastern Oregon. Bonan’s analysis of 

Oregon’s dominant vegetation regimes in the West reinforces the bias of studies allocated to 

western Oregon, but also points to a promising area of future research. As for this study 

specifically, Bonan’s research acts as a launchpad for more thorough study of sagebrush steppe 

ecosystems throughout Oregon and most of the west to include above ground carbon allocation, 

respiration, and net primary productivity. This pilot study serves as a starting point to map SOC 
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throughout Oregon, if not the Great Basin and set a starting point to which a Carbon market 

could be established. Continued study is needed throughout the Great Basin especially with 

respect to its soils, which holds the key to understanding broader soil, plant, atmosphere 

interactions in Oregon and elsewhere. 
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Figure 5: A East West transect of Oregon up to 225km 

inland, depicting forest zones and carbon allocations from 

Bonan et al 2002. In addition to SOC values in association 

with vegetation community types East of the Cascades from 

this study. It is important to note that allocations of Bonan’s 

carbon allocations are displayed as a rate gC m−2 yr−1, 

while this study presents carbon values as Mg C ha−1. 
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