Lane County Sustainable Business and Jobs

Preliminary List of Existing Firms and Potential Opportunities for the Southern Willamette Valley

Program for Watershed and Community Health
Institute for a Sustainable Environment
130 Hendricks Hall
5247 University of Oregon
Eugene, Oregon, 97403-5247
Phone: 744-7072 or 346-0687
E-Mail: cwch@darkwing.uoregon.edu
Website: http://cwch.uoregon.edu

February 26, 2003
This document has two components. Part I includes a preliminary list of Lane County companies and organizations that can be considered part of the sustainability sector. Part II briefly summarizes information from readily available sources about opportunities for economic development associated with the implementation of sustainable practices by private firms and public agencies in the Pacific Northwest. The section separately presents information regarding sustainable practices in nine areas:

- Renewable Energy Generation
- Energy Efficiency
- Energy Efficient Public Buildings
- Green Building
- Waste Based Economic Development
- Nurseries
- Organic Retail Trade
- Sustainable Agriculture
- Sustainable Forestry

The information in the report strongly supports these conclusions:

A. Lane County already has a small yet growing sustainability sector.

B. Many firms and agencies in the Pacific Northwest already have implemented sustainable practices that curtail wasteful uses of natural resources.

C. The implementation of sustainable practices has generated jobs in the Pacific Northwest via five pathways:
   1. Sustainable practices create directly jobs, e.g., in the construction of renewable-energy energy generators.
   2. The cost savings from adopting sustainable practices can be used to protect jobs that otherwise would be lost or to create new jobs.
   3. When sustainable practices, such as reduced use of toxic materials in a production process, create better working conditions, workers can remain healthier, become more productive, and incur fewer health-related absences from work.
   4. Existing jobs can become more secure and new jobs can be created as firms implement sustainable practices to retain and increase their competitiveness in regional, national, and global markets that are tightening sustainability standards.
   5. Adoption of sustainable practices can enhance economic security by reducing vulnerability to disruptions from market instability and terrorism.

D. Several studies indicate that considerable future growth can reasonably be expected for activities associated with the design, construction, and implementation of sustainable practices. The Pacific Northwest is generally well-positioned to ride the leading edge of this growth.

Graduate students working with the UO Program for Watershed and Community Health (PWCH) prepared Part I of this document, plus the section on sustainable forestry. Part II was prepared for the PWCH by Ernie Niemi and Scott Reed, from the Eugene office of ECONorthwest, the oldest and largest economics consulting firm in the Pacific Northwest. The PWCH is affiliated with the Institute for Sustainable Environment at the University of Oregon and assists businesses, governments, and community groups in developing new approaches to environmental governance to achieve sustainable development.
PART I: Preliminary List of Existing Lane County Companies and Organizations in the Sustainability Sector

(Note: This is an initial list. It will be continually expanded as our research grows).

I. COMPANIES THAT PRODUCE SUSTAINABLE GOODS AND SERVICES

A. Organic Farms
Berg’s Berries & Organic Produce, Alvadore – grapes, berries, and other fruits
Blue Star Farms, Springfield – *misc. vegetables*
Blueberry Hill, Springfield – blueberries
Camas Meadow Farm, Noti – *misc. crops*
Center for Well Being, Eugene – Apples, blackberries, grapes, and walnuts
Collis Family Organic Farm, Creswell – *misc. crops*
Full Moon Farm, Blachly – *misc. crops*
Grateful Harvest Farm, Junction City – *misc. crops*
Green-Hill-Aire Blueberry Farm, Eugene – blueberries
Hand to Mouth, Eugene – *misc. crops*
Healing Ground Farm, Lowell – *misc. vegetables*
Heron’s Nest Farm, Junction City – *misc. vegetables*
Horton Road Organics, Blachly – *misc. crops*
Ji-Ric Farm, Junction City – *misc. crops*
Miller’s Blueberries, Springfield – blueberries
One Step Forward Farm, Junction City – *misc. vegetables*
P&A Egg Kingdom, Eugene – chickens and eggs
Royal Blueberries, Eugene – *misc. crops*
Winter Green Farm, Noti – *misc. crops*

B. Organic Food Products and Services
Alvador Dryer, Alvador – Hazelnuts
Bagel Bakery and Café, Eugene – bagels
Bene Gourmet Pizza, Eugene – pizza restaurant
Bread Stop, Eugene – breads and dips
Cafeto Custom Roasting Coffee Company, Eugene – roasted coffee
Café Yumm, Eugene – organic, vegetarian restaurant
Cosmic Pizza, Eugene – pizza restaurant
De Casa Fine Foods, Eugene – natural foods
Emerald Valley Kitchen, Eugene – dips and salsas
Euphoria Chocolates, Eugene – chocolates
Genesis Juice, Eugene – *misc. fruit juices*
Glory Bee Foods, Eugene – natural food supplier
Golden Temple, Eugene – teas
Grain Millers-Eugene, Eugene – *misc. grains*
Herbie’s Garden & Juice Bar, Eugene – vegan, organic restaurant
Holy Cow, Eugene – ethnic vegetarian restaurant
Jerusalem House, Eugene – natural foods
King Estate Winery, Eugene – wines
Kiva, Eugene – natural food store
Mountain Rose Herbs, Eugene – herbs, oils, and teas
Oregon Ice Cream Company, Eugene – ice cream and frozen treats
Oregon Organic Marketing, Eugene – misc. fruits and vegetables
Organically Grown Coop, Eugene – misc. fruits, vegetables, nuts, and natural foods
Rising Moon Organics, Eugene – ravioli, pesto, and rosemary gnocchi
Royal Blue Organics / Café Mam, Eugene – coffee, cocoa, sugar, and more
Springfield Creamery, Eugene – yogurt, cottage cheese, sour cream, and buttermilk
Sundance Natural Foods, Eugene – natural foods store
Surata Soyfoods Cooperative, Eugene – tofu
Sweet Life Patisserie, Eugene – desserts and pastries
Tofu Palace, Eugene – tofu dips
Wildtime Foods, Eugene – nut and fruit mix, granola, and cereals

II. COMPANIES PRODUCING OR SELLING OTHER NATURAL PRODUCTS & SERVICES
All Natural Pest Elimination, Eugene – pest control services
Cascadia Forest Goods, LLC, Eugene – FSC certified building materials
Down to Earth, Eugene – organic fertilizer and home, kitchen, and garden products
Earth Machine, Eugene – composting products
Living Tree Paper (headquarters/distribution only), Eugene – recycled and tree-free paper
Pedaler’s Express, Eugene – bicycle delivery service
Rexius Forest By-Products, Eugene – compost, soil, mulch, and rock
Sequential Biofuels, Eugene – biofuel, biodiesel distributor
Tyree Oil, Eugene – biofuel distributor
Weyerhaeuser Corp., Springfield – SFI certified wood, recycled paper products
Wildtime Floors, Eugene – non-toxic & sustainable building materials, remodeling services
Sunburst—Environmentally safe weed control
Lane Forest Products—compost, yard debris

III. COMPANIES IN REMANUFACTURING, REUSE & RECYCLING
EcoSort, Eugene – mixed solid waste recycling
NW Resource Recycling, Eugene – mixed solid waste recycling
Peterson Pacific, Eugene – wood processing and recycling equipment
Recycling System, Inc., Eugene – mixed solid waste recycling
RoofGone, Springfield – recycled asphalt roofing
Schnitzer Steel, Eugene – metals recycling and steel products
Scientific Developments, Inc., Eugene – recycled tire rubber traffic and safety products
Quest Solutions, Eugene – refurbished electronics and software for supply chain management
Saint Vincent DePaul of Lane County, Eugene – glass tiles, mattresses, and home décor
Rapid Refill Cartridges—print cartridge recycling
BRING—rescue and recycling
Pacific Pallets—pallet recycling and remanufacturing
Emerald Hydrolics, Springfield – railroad car parts cleaning

IV. COMPANIES THAT SUPPORT OTHERS IN ADOPTING SUSTAINABLE POLICIES AND PRACTICES

A. Consulting
Agro-Ecology Northwest, Eugene – holistic farm management
Good Company, Eugene – sustainability assessments and consulting services
Organic Agriculture Systems Consulting – organic farming consulting services
Organic Materials Review Institute (OMRI), Eugene – research and advisory services

B. Green Building And Product Design
Balzhiser & Hubbard Engineers, Eugene – mechanical, electrical, and civil engineering
Cob Cottage, Cottage Grove – natural building research, design, and building
Common Practice Building Design, Eugene – building design
Craig Builders, Eugene – building and general contracting services
Habitats, Eugene – building and landscape design, building, and general contracting services
Hatten / Johnson Associates, Eugene – energy engineering and energy efficiency analysis
Integrare Architecture, Eugene – architecture
Metanova Studios, Inc., Eugene – product design and marketing, sustainable business consulting
Solarc Architecture and Engineering, Inc., Eugene – architectural design, sustainability planning, energy efficiency consulting, and LEED design
WBGS Architects, Eugene – architecture

C. Investment/Banking/Future Planning
Human Ecology Center, Eugene – life planning, financial planning, estate planning
Progressive Investment Management (branch office), Eugene – investment management
Socially Responsive Investing, Eugene – investment management
D. Realty
Milestone Realty, Eugene – green realty

E. University And Colleges
Numerous UO departments and research programs/institutes
Lane Community College
Lane Workforce Partnership

V. MANUFACTURING COMPANIES THAT CARRY OUT OPERATIONS USING RESOURCE EFFICIENCY PRACTICES

Burley Design Cooperative, Eugene – manufactures bicycles, bike trailers, and accessories
Co-Motion Cycles, Inc., Eugene – manufactures bicycles
Forrest Paint, Eugene – manufactures paints and coatings (reducing toxics, VOCs, emissions)
Hynix, Eugene – semiconductors
Pacific Yurts, Cottage Grove – manufactures yurts
PWPipe, Eugene – pipe products (energy efficiency)
Whittier Wood Products, Eugene – unfinished solid wood furniture (energy efficiency)
PART II: Emerging Trends and Business Opportunities
Clean (Renewable) Energy

In Washington, Oregon, and British Columbia, clean energy is currently a $1.4 billion industry annually. This market is anticipated to be even larger as the nation adopts more strict standards for clean energy. However, even if government does nothing to support these new businesses, this sector is expected to grow to a total of $2.5 billion a year over the next 20 years and over 12,000 jobs in the region. The Pacific Northwest is already a world leader in fuel cells, and has the ability to develop global leadership in power systems and solar photovoltaics as well. Wind, energy efficiency, and biomass energy sources also offer very substantial economic development potential in the region. (Climate Solutions 2001)

Northwest Clean Energy Firms

<table>
<thead>
<tr>
<th>Technology</th>
<th>Representative Company</th>
<th>Technology</th>
<th>Representative Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Global Energy Concepts (WA)</td>
<td>Small Hydro</td>
<td>Canyon Industries (WA)</td>
</tr>
<tr>
<td></td>
<td>Wind Turbine Company (WA)</td>
<td></td>
<td>Dependable Turbines Ltd (BC)</td>
</tr>
<tr>
<td>Solar Photovoltaic</td>
<td>JX Crystals (WA)</td>
<td>Fuel Cells</td>
<td>Ballard (BC)</td>
</tr>
<tr>
<td></td>
<td>Schott Applied Power (WA)</td>
<td></td>
<td>Cellex (BC)</td>
</tr>
<tr>
<td></td>
<td>Siemens Solar (WA)</td>
<td></td>
<td>Idatech (OR)</td>
</tr>
<tr>
<td></td>
<td>Xantrex (BC)</td>
<td></td>
<td>Innovatek (WA)</td>
</tr>
<tr>
<td>Biomass</td>
<td>Dynamotive (BC)</td>
<td>Power System</td>
<td>Avista (WA)</td>
</tr>
<tr>
<td></td>
<td>Heuristic Engineering (BC)</td>
<td></td>
<td>Ballard (BC)</td>
</tr>
<tr>
<td></td>
<td>Pyro Industries (WA)</td>
<td></td>
<td>Cellex (BC)</td>
</tr>
<tr>
<td></td>
<td>Travis Industries (WA)</td>
<td></td>
<td>Idatech (OR)</td>
</tr>
<tr>
<td></td>
<td>Numerous Forest Product Companies (OR, WA, BC)</td>
<td></td>
<td>Innovatek (WA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neah Power (WA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ouestair (BC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xcellisis (BC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The technologies that present the best opportunity for the Pacific Northwest to develop a global clean energy industry are fuel cells, power
systems technologies, and solar photovoltaic system industries. (Climate Solutions 2001)

The renewable-energy industry includes sustainable energy sources, those that will not be depleted as we generate electricity or heat energy from them. Analysts generally consider renewable energy sources to be wind, solar, geothermal, biomass, and small hydropower. The data in the table below show that most of the activity occurred with firms that build and design solar energy systems and related equipment. Firms associated with solar energy generated sales of $71 million and employed more than 420 people. Other renewable-energy firms design, build, or operate biomass fuel systems, small-scale hydroelectric facilities, wind energy generators, geothermal energy plants, fuel cells, and electric vehicles. (ECONorthwest 2001a)

Washington’s Renewable-Energy Firms, 1997

<table>
<thead>
<tr>
<th>Firms</th>
<th>Revenues ($1,000)</th>
<th>Wages ($1,000)</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass, Biofuels, Muni. Solid Waste</td>
<td>26</td>
<td>54,240</td>
<td>325</td>
</tr>
<tr>
<td>Electric Vehicles</td>
<td>6</td>
<td>3,026</td>
<td>16</td>
</tr>
<tr>
<td>Geothermal</td>
<td>10</td>
<td>124</td>
<td>0</td>
</tr>
<tr>
<td>Small-scale hydroelectricity</td>
<td>21</td>
<td>15,452</td>
<td>119</td>
</tr>
<tr>
<td>Solar, Elec. Storage, Inverters</td>
<td>69</td>
<td>71,083</td>
<td>424</td>
</tr>
<tr>
<td>Wind</td>
<td>6</td>
<td>2,255</td>
<td>20</td>
</tr>
<tr>
<td>General</td>
<td>2</td>
<td>635</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>146,815</td>
<td>907</td>
</tr>
</tbody>
</table>

Source: ECONorthwest, 1998

The Pacific Northwest already has developed and installed several renewable-resource electricity generators. Further development is anticipated.

Generating Capacity Using Renewable Energy Sources, Installed since 1991 by Pacific Northwest Utilities

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Capacity (megawatts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Power</td>
<td>660.5</td>
</tr>
<tr>
<td>Biomass</td>
<td>234.1</td>
</tr>
<tr>
<td>Wind</td>
<td>66.3</td>
</tr>
<tr>
<td>Solar</td>
<td>10.0</td>
</tr>
<tr>
<td>Total</td>
<td>970.9</td>
</tr>
</tbody>
</table>

Source: ECONorthwest, with data from the Oregon Energy Office.
Sustainable energy practices also include devices and behaviors that increase energy efficiency. The energy-efficiency industry designs, manufactures, installs, and maintains facilities, equipment and processes that reduce the amount of energy consumed per unit of output or consumption.

In a report for the Washington Department of Community, Trade, and Economic Development, ECONorthwest (1998) found that the state’s energy-efficiency industry generated annual sales of about $780 million. The industry employed approximately 2,900 workers, who earned annual wages of $128 million, with an average wage of $44,000. The analysis took a conservative approach to identifying firms in the industry and, hence, actual activity and employment in the industry probably are larger, and perhaps much larger. (2001a)

Most activity in the industry involves firms that provide a range of energy-management services to reduce the energy use of customers. The data in the table below show that, in 1997, this sector of the industry had revenues of $431 million and employed 1,300 people. Other sectors of the industry include companies that design, build, and install energy-efficient lighting systems; various controls and other electrical equipment; and heating, ventilating, and air conditioning (HVAC) systems. (2001a)

**Washington’s Energy-Efficiency Firms, 1997**

<table>
<thead>
<tr>
<th>Firms</th>
<th>Revenues ($1,000)</th>
<th>Wages ($1,000)</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultants</td>
<td>11</td>
<td>4,553</td>
<td>1,382</td>
</tr>
<tr>
<td>Controls</td>
<td>13</td>
<td>122,347</td>
<td>13,089</td>
</tr>
<tr>
<td>Electrical suppliers and contractors</td>
<td>19</td>
<td>56,980</td>
<td>13,022</td>
</tr>
<tr>
<td>Energy service companies &amp; engineers</td>
<td>47</td>
<td>430,901</td>
<td>67,814</td>
</tr>
<tr>
<td>Heating, ventilation, air conditioning</td>
<td>8</td>
<td>17,558</td>
<td>5,025</td>
</tr>
<tr>
<td>Lighting</td>
<td>16</td>
<td>116,233</td>
<td>20,952</td>
</tr>
<tr>
<td>General</td>
<td>20</td>
<td>28,343</td>
<td>6,593</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>134</strong></td>
<td><strong>776,916</strong></td>
<td><strong>127,877</strong></td>
</tr>
</tbody>
</table>

Source: ECONorthwest, 1998
Green Building

Builders prove every day that conserving the environment does not have to hurt the bottom line. They have shown that using green-building practices for design, construction, and landscaping can help conserve the environment and save money. By incorporating green building practices, Washingtonians and Oregonians could save more than $90 million each year in energy, water, and construction-related costs.

- **Electricity Conservation**: Widespread adoption of common-sense practices to conserve electricity would save about 800 megawatts. At the average retail rate, this conservation would save residential and commercial consumers $77 million per year.

- **Water Conservation**: If simple conservation measures were adopted throughout Washington and Oregon, region-wide water consumption would fall by 14.9 billion gallons each year, and water customers would have a net savings of $12 million annually on their water bills.

- **Erosion**: Excess runoff from each acre also imposes about $110 in costs on others by clogging-stream channels, raising the risk of flood damage, and increasing filtration costs for water users. Each year, construction occurs on 15,500 acres in Washington and Oregon. Eliminating excess sediment would save taxpayers $1.7 million annually.

- **Toxic Pollution**: Landscaping designs greatly influence the amount of pollution harmful to fish. For example, urban use of pesticides in the Puget Sound area—about 1.1 million pounds per year—is more than three times agricultural use and costs about $760,000. Reducing usage to agricultural levels would save about $500,000. With similar reductions throughout the region the total savings would be $900,000 in Washington and $780,000 in Oregon.

**Available case studies of green building projects in Oregon and Washington**

- Tolman Creek Shopping Center, Ashland
- Wieden & Kennedy Headquarters, Portland
- Portland General Electric Gas Transmission Headquarters, Portland
- Double Tree Inns, Portland
- Norm Thompson Outfitters, Hillsboro
- King Street Center, Seattle
- Town and Country, Seattle
- Seven Generation Systems Sustainable Technology Center, Friday Harbor
Public buildings offer a prime opportunity for initiating some important sustainable practices. Extensive research has shown that sustainable practices can reduce wasteful consumption, improve productivity of workers, and create jobs in the process.

One recent study catalogued these potential savings, if sustainable practices were adopted at public buildings in Oregon and Washington (ECONorthwest 2001b).

### Potential Cost Savings and New Jobs from Adoption of Energy-Efficiency Practices: Government Office Buildings, Hospitals, and Schools

<table>
<thead>
<tr>
<th></th>
<th>No. Employees</th>
<th>Annual Energy Cost ($ millions)(^a)</th>
<th>Potential Cost Savings ($ millions)(^b)</th>
<th>Potential New Jobs from Savings(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Oregon</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Government(^d)</td>
<td>24,105(^e)</td>
<td>$13.84</td>
<td>$3.04</td>
<td>20</td>
</tr>
<tr>
<td>Universities/Colleges</td>
<td>13,381 (^e)</td>
<td>$12.40</td>
<td>$2.73</td>
<td>50</td>
</tr>
<tr>
<td>Local Government(^d)</td>
<td>51,122 (^e)</td>
<td>$29.35</td>
<td>$6.46</td>
<td>85</td>
</tr>
<tr>
<td>Elem./Sec. Schools</td>
<td>71,010 (^e)</td>
<td>$65.82</td>
<td>$14.48</td>
<td>285</td>
</tr>
<tr>
<td>Hospitals</td>
<td>40,365 (^e)</td>
<td>$98.10</td>
<td>$21.58</td>
<td>265</td>
</tr>
<tr>
<td><strong>Oregon Total</strong></td>
<td>199,983</td>
<td><strong>$219.50</strong></td>
<td><strong>$48.29</strong></td>
<td><strong>710</strong></td>
</tr>
<tr>
<td><strong>Washington</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Government(^d)</td>
<td>43,234 (^f)</td>
<td>$25.29</td>
<td>$5.56</td>
<td>35</td>
</tr>
<tr>
<td>Universities/Colleges</td>
<td>33,990 (^f)</td>
<td>$32.11</td>
<td>$7.06</td>
<td>130</td>
</tr>
<tr>
<td>Local Government(^d)</td>
<td>78,904 (^f)</td>
<td>$46.16</td>
<td>$10.16</td>
<td>125</td>
</tr>
<tr>
<td>Elem./Sec. Schools</td>
<td>139,275 (^f)</td>
<td>$131.57</td>
<td>$28.95</td>
<td>655</td>
</tr>
<tr>
<td>Hospitals</td>
<td>55,384 (^f)</td>
<td>$137.20</td>
<td>$30.18</td>
<td>355</td>
</tr>
<tr>
<td><strong>Washington Total</strong></td>
<td>350,787</td>
<td><strong>$372.33</strong></td>
<td><strong>$81.91</strong></td>
<td><strong>1300</strong></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>550,770</td>
<td><strong>$591.84</strong></td>
<td><strong>$130.20</strong></td>
<td><strong>2010</strong></td>
</tr>
</tbody>
</table>

\(^a\) Numbers based on these assumptions: (a) electricity prices = $.052 per kWh (Oregon,) and $.053 per kWh (Washington); and (b) energy use per 1,000 employees = 11,039,000 kWh (state and local government), 46,739,000 kWh (hospitals), 17,824,000 kWh (elem./sec. schools and universities) Source: ECONorthwest with data from the EIA, “Estimated U.S. Electric Average Revenue per Kilowatthour to Ultimate Consumers by Sector”, and “1995 Commercial Buildings Energy Consumption Survey”.

\(^b\) Assumes 22 percent savings (High-Performance Commercial Building Systems Program, Lawrence Berkeley National Laboratory).

\(^c\) Assumes labor’s share of savings approximate its estimated current share of total costs per sector (assumptions and sources available upon request). Oregon: state government 25%; universities/colleges 62%; local government 45%; elem./sec. schools 57%; hospitals 43%. Washington: state government 25%; universities/colleges 67%; local government 45%; elem./sec. schools 63%; hospitals 45%.


At a time when agriculture has struggled in the rest of the state and nation, the region’s nursery products producers have flourished, growing almost twice as fast as the industry nationally, and becoming Oregon’s leading agricultural product. Nursery products differ greatly from traditional agriculture. Most of the State’s production is concentrated close to the most densely urbanized part of the state, producing products targeted at high end residential and commercial markets. The Oregon nursery products industry accounts for about 11% of the total US market. (Cortright and Provo 2000)

Oregon’s nursery and greenhouse industry continued its growth in 2001 by establishing yet another record high sales total of $680 million, marking the eleventh straight year that record sales were recorded. The Industry further solidified its place atop all Oregon agricultural commodities by claiming the top ranking for the ninth consecutive year. (Goodwin and Hoddick 2001)

<table>
<thead>
<tr>
<th>Employment and Payroll, Nursery Cluster, Metro Portland &amp; Marion County, 1998</th>
<th>Firms</th>
<th>Jobs</th>
<th>Wages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery products</td>
<td>189</td>
<td>6,408</td>
<td>125,594</td>
</tr>
<tr>
<td>Landscape and horticultural consulting services</td>
<td>57</td>
<td>359</td>
<td>9,677</td>
</tr>
<tr>
<td>Lawn and garden services</td>
<td>520</td>
<td>3,226</td>
<td>72,750</td>
</tr>
<tr>
<td>Shrub and tree services</td>
<td>71</td>
<td>306</td>
<td>8,201</td>
</tr>
<tr>
<td>Wholesale flowers and florist supplies</td>
<td>56</td>
<td>791</td>
<td>15,772</td>
</tr>
<tr>
<td>Retail nursery and garden supply stores</td>
<td>97</td>
<td>740</td>
<td>15,898</td>
</tr>
<tr>
<td><strong>Total</strong>*</td>
<td><strong>990</strong></td>
<td><strong>11,829</strong></td>
<td><strong>247,894</strong></td>
</tr>
</tbody>
</table>

Source: Oregon Employment Department, 1998 Covered Employment and Payroll Data  (*Does not include Clark County, Washington. The most recent data available, 1996, shows Clark County with totals for all segments of 137 firms, 457 workers)
Waste Based Economic Development

Each year businesses divert all kinds of waste material from landfills or waste incinerators, using them instead to make money and create jobs. Currently, there are over 400 such businesses in Oregon who add value through reuse, remanufacturing, and recycling. (Garcia 2002) These firms vary from grocers, to construction, furniture manufacturers, mills, and clothing. Through the development of new technologies and markets, substances that we currently think of as waste become inputs for new products. A growing demand for these products is translating directly into new, well paying jobs for the region. A recent study by the United States Environmental Protection Agency (2001) indicates that the wages earned in the reuse and recycling industry are equally competitive with other major manufacturing jobs in the U.S. The average manufacturing wage for Oregon in 2000 was $45,839, compared to the average wage of $32,776. (Waste to Work Partnership 2002) Firms worldwide are picking up on reuse and remanufacturing trends, fortunately many examples reside here in Oregon.

**Case Study Examples**

- The Lane County affiliate of St. Vincent de Paul re-manufactures appliances, mattresses, furniture, clothing, and most recently, glass, at the Aurora Glass Foundry. St. Vincent de Paul employs 255 people per year, contributing 5 million dollars in annual payroll of which 75% is directly attributed to recycled products. (Barnes 2000)

- Saint Gobain Containers manufacturers wine bottles and other glass containers using recycled glass. Saint Gobain employs 400 people annually. 30-40% of the firm’s payroll is directly attributed to recycled products.
• Rising Star Furnishings of Bend, Oregon, manufactures futon mattresses using recycled polyester from plastic containers. They employ 10 to 14 people annually. 30% of their payroll is attributed to recycled products.

• Agri-Plas collects and processes agricultural plastics and remanufactures it into plastic nursery containers. They employ 41 workers annually, whose wages are solely attributed to recycled products.

• The Rebuilding Center of Our United Villages sells used building material recovered dismantled buildings. They employ over 40 workers annually, whose wages are solely attributed to recycled products.

• Hickory Springs Manufacturing Company makes carpet padding using recycled polyurethane from a variety of sources. They employ 100 workers annually. 55% of their payroll is attributed to recycled products.

### U.S. Recycling and Reuse Manufacturing Industries, 2001

<table>
<thead>
<tr>
<th></th>
<th>Recycling Manufacturing</th>
<th>Reuse and Remanufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firms</td>
<td>8,047</td>
<td>26,716</td>
</tr>
<tr>
<td>Number Employed</td>
<td>759,746</td>
<td>169,183</td>
</tr>
<tr>
<td>Annual Payroll</td>
<td>$29,181,749,000</td>
<td>$2,747,498,000</td>
</tr>
<tr>
<td>Revenues</td>
<td>$178,390,423,000</td>
<td>$14,182,531,000</td>
</tr>
</tbody>
</table>

Source: ECONorthwest using data from the Environmental Protection Agency, 2003
Sustainable Agriculture and Organic Retail Trade

The US Department of Agriculture and regional farmers indicate that using proper conservation tillage methods and applying integrated pest management techniques often result in net savings for the farm. These experts also note that these two production modifications have not been adequately exploited yet in the Pacific Northwest relative to national trends. Besides increasing farmers’ earnings, these practices have substantial environmental benefits, ensure future productivity of land resources, and provide production inputs to organic food processors. (Sable and Doppelt 2000)

Conservation farming through conservation tillage systems:
Soil erosion generates private and public costs in Oregon of between $20-$80 per acre/year and in Washington averages $32 per acre/year. For the average farm (400-acres) this amounts to between $8,000 and $32,000 dollars annually. If you consider all cropland in Oregon and Washington, soil loss costs between $242 million and $968 million annually. Soil conservation practices can greatly reduce these costs.

A recent study of Pacific Northwest Farmers found that no-till farm methods lowered the total cost of growing wheat by an average of 10% per bushel. The cost savings come from not having to replace eroded topsoil and less field preparation. On a farm in Lewis County, Idaho, Steve and Nathan Riggers recently converted their whole farm to no-till. The Riggers state that, "The most notable benefit of direct seeding on our farm has been yield increases in both fall and spring crops.” And, "The fact that we direct-seeded isn't going to turn a dry year into a good year, but it may give us a 10% to 20% higher yield. That can make a big difference.”

Integrated pest management practices:
The Codling Moth Area Wide Management Area Program (CAMP) incorporates 240 growers who have agreed to follow integrated pest
management (IPM) protocols and keep records of pests and pesticide use. The program thus far has succeeded in an average of 75% reduction in synthetic pesticide use and has saved growers between $180-$335 per acre on the cost of materials. Source:

If croplands in Oregon and Washington could realize even just one tenth of these gross savings ($18/acre), the region could save $217 million dollars per year. To be increasingly conservative, if farms in the region could save one one-hundredth of these gross savings, ($1.80/acre) the agricultural community could save approximately $22 million dollars per year. (Sable and Doppelt 2000)

**Introducing riparian buffers:**

It is possible to offset the private costs of installing and maintaining a riparian buffer by planting harvestable trees such as cottonwood, fast growing poplar hybrids, silver maple, willow and green ash. Over a ten-year period, Northwest farmers could expect an average annual net return of at least $300 per acre from selective harvest of fast growing poplars, according to one study. This study estimated total costs to establish and maintain a hybrid poplar "micro" or mini tree system over a 10-year period would range from $4,000 to $6,000 per acre with tree value between $9,000 and $12,000 per acre.

**Organic agriculture:**

The US retail market for organic and natural food was over $6 billion in 1999, $7.8 billion in 2001, $11 billion in 2002, and continues to grow by roughly 20% per year. A recent study by the World Trade Organization and the United Nations expects the US retail market for organic food and beverages to reach $20 billion by 2005. New data and testimonials from farmers show that farmers can receive from 20% to 100% increases over conventional products when they market their products as environmentally certified. (Cunningham 2002; Korbech-Olesen 2002)

Much of the rapidly increasing demand for organic food follows a growing public concern of the possible health and environmental effects of pesticide and fertilizer use in the production of food. This trend which started in the fringes of US markets is becoming increasingly mainstream. Prior to 2000, organic products were distributed predominantly through natural food stores, farmers markets, and similar small venues (1% of total
US foodstores). Today, over 50% of all foodstores are carrying organic products. (Dimitri and Greene 2002)

**Increases in Certified Organic Acreage by State, 1997-2001**

<table>
<thead>
<tr>
<th>State</th>
<th>Percent Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>59%</td>
</tr>
<tr>
<td>Iowa</td>
<td>125%</td>
</tr>
<tr>
<td>North Dakota</td>
<td>75%</td>
</tr>
<tr>
<td>Oregon</td>
<td>62%</td>
</tr>
<tr>
<td>Washington</td>
<td>199%</td>
</tr>
</tbody>
</table>


“Organic farming became one of the fastest growing segments of U.S. agriculture during the 1990's” (Economic Research Service, US Department of Agriculture). "Although part of a high-value niche market, organic products are no longer found exclusively at farmers' markets or health food stores. Instead, mainstream shoppers are finding increasing numbers of organic products on supermarket shelves around the country."

Ron Stewart, owner of Columbia Gorge Organic Fruit Company in Hood River, Oregon, sells organic apples, pears, cherries, and peaches in addition to juices, and some concentrates nationwide. He says, "we get from 50% to 100% more for our fruit than conventional growers." (Sable and Doppelt 2000)

Natural Harvest Farms in Canby, Oregon, gets between 50% to 100% more for his products than conventional growers. "In the beginning of every year I go to market with strawberries at $4 a pint while conventional growers are getting $1.25 per pint and organic strawberries from California get about $2.25 per pint, and we can't keep up with demand. We also sold free-range Duck eggs from our organic farm. We wholesaled them at $3 a dozen, they retailer for $4.50 to $5.00 a dozen, while conventional growers were getting $2.25 a dozen." (Sable and Doppelt 2000)

“In the United States, 0.2% of cropland is now certified organic, compared with nearly 10% in several European nations. Globally, consumers now spend $22 billion a year on organic products. Organic farming is the fastest growing sector in the agricultural economy. Nearly half of the major U. S. supermarkets now carry organic products.” (McGinn 2000)
Sustainable Forestry

Forestry has historically been a vital part of Oregon’s economy. However, for numerous reasons, many communities that were once reliant on forest products for their livelihood have seen a loss of jobs and incomes related to the industry. One emerging solution to this problem is sustainable forestry.

Sustainable forestry is an old concept that is taking on new meaning. It involves the adoption of environmentally sound forest management and harvesting practices, certification of these practices (usually by an independent agency), and marketing and sales of the certified products to consumers. Sustainable forest practices also apply to the processing side of the industry as an increasing number of plywood, particleboard, and hardwood plants adopt resource efficiency measures. As more and more consumers become interested in purchasing wood that is certified as being grown, harvested, and milled in an environmentally sound manner, the demand for sustainable forestry will grow. Today, many wood product producers are promoting their products as “sustainable.” However, not all are certified by an independent third-party.

The idea behind certification is that consumers have an opportunity have a non-biased independent party evaluate a company’s practices to guarantee that it was done so in a sustainable manner. Third-party certification involves scientific evaluation based on management practices in three areas: sustainable harvest, ecosystem health, and community benefits. Biologists, ecologists, silviculturists, and foresters examine and measure the impact of forest practices on wildlife and their habitat, water quality, soil and plant conservation, natural forest sustainability and biodiversity, visual aesthetics, and the total ecological integrity of the forest.

Certification is becoming a market-based approach to forestry around the world. Currently, there are 462 certified forests (456 companies) in 55 countries covering 78,188,459 total acres. The United States has a total of 9,460,755 total acres, including 94 companies that are certified. Oregon has 12 certified forests (12 companies) covering 124,580 total acres. Table 1 lists the certified forests and companies currently in Oregon.

The Forest Stewardship Council (FSC) is an independent, nonprofit, non-governmental organization with diverse representation including environmental institutions, timber and trade organizations, forestry professionals, indigenous peoples’ organizations, community forestry groups, and forest product certification organizations from 25 countries.
Through the Forest Stewardship Council, there are currently two independent companies that certify wood products as sustainable. The two leading certifying organizations in the United States are Scientific Certification Systems of Oakland, California, and Smart Wood cm. Both of these groups perform the field audits and authentications commensurate with the principles and criteria of the Forest Stewardship Council (FSC).\textsuperscript{vi}
Certified Forests in Oregon

Collins Lakeview Forest & Fremont Sawmill

1618 SW 1st Avenue
Suite 500
Portland OR 97201
USA
Contact: Lee Jimerson
ljimerson@collinsco.com
www.collinswood.com

Date First Certified: 3/1/1998  Status: Active
Land Name: Collins Lakeview Forest  Acreage: 72,000
Location: OR, USA
FSC Classification: Natural

O’Neill Pine Company

1640 Liberty SE
Salem OR 97302
USA
Contact: Richard Pine
Phone: 1-503-315-2400  Fax: 1-503-391-2690
rpine@certifiedwood.biz
www.evertrust.org

Certification: SW-FM/COC-120 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 7/1/2000  Status: Active
Land Name: O’Neill Pine Company  Acreage: 2,209
Location: OR, USA
FSC Classification: Mixed Natural/Plantation
Species: Alder: red (*Alnus rubra*), Douglas fir (*Pseudotsuga menziesii*), Cedar: western red (*Thuja plicata*)
Beebe Family Trusts

1807 NW 32nd Avenue
Portland OR 97210-1911
USA
Contact: Spencer Beebe
Phone: 1-503-223-6225
sbeebe@ecotrust.org

Certification: SW-FM/COC-151 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 9/1/2001 Status: Active
Land Name: Beebe Family Trusts Acreage: 3,052
Location: OR, USA
FSC Classification: Natural
Species: Fir: grand (Abies grandis), Alder: red (Alnus rubra), Larch: American/Larch: tamarack (Larix laricina), Spruce: sitka (Picea sitchensis), Pine: ponderosa (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), Cedar: western red (Thuja plicata), Hemlock: western (Tsuga heterophylla)

Bratt Woodland Farm

5317 Thompson Creek Road
Applegate OR 97530
USA
Contact: Chris Bratt
Phone: 1-541-846-6988 Fax: 1-541-846-9434

Certification: SW-FM/COC-105 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 7/1/2001 Status: Active
Land Name: Bratt Woodland Farm Acreage: 145
Location: OR, USA
FSC Classification: Mixed Natural/Plantation
Species: Pine: ponderosa (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), Oak: Oregon White (Quercus garryana)

Ecoforestry Institute: Mountain Grove

785 Barton Road
Glendale OR 97442
USA
Contact: Alan Wittbecker
Phone: 1-541-832-2578 Fax: 1-541-832-2758
forestry@budget.net

Certification: SW-FM/COC-043 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 5/1/1998 Status: Active
Land Name: Ecoforestry Institute: Mountain Grove Acreage: 419
Location: OR, USA
FSC Classification: Natural
Species: Fir: grand (Abies grandis), Madrone (Arbutus menziesii), Cedar: Incense (Calocedrus decurrens), Douglas fir (Pseudotsuga menziesii)
Ecoforestry Management Associates

41545 Swinging Bridge
Port Orford OR 97465
USA
Contact: Jerry Becker
Phone: 1-541-332-7923
ema@harborside.com

Certification: SW-FM/COC-042 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 5/1/1998 Status: Active
Land Name: Ecoforestry Management Associates Acreage: 351
Location: OR, USA
FSC Classification: Natural Forest Type: Douglas Fir
Species: Fir: grand (Abies grandis), Maple: big leaf (Acer macrophyllum), Alder: red (Alnus rubra), Cedar: Port Orford/Cypress: Lawson’s (Chamaecyparis lawsoniana), Tanoak (Lithocarpus densiflorus), Spruce: sitka (Picea sitchensis), Pine: ponderosa (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), Oak: white (Quercus alba), Hemlock: western (Tsuga heterophylla)

Individual Tree Selection Management, Inc.

721 NW 9th Avenue
Suite 228
Portland OR 97209
USA
Contact: Scott Ferguson
Phone: 1-503-222-9772 Fax: 1-503-517-9990
tallforstr@aol.com

Certification: SW-FM/COC-025 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 10/1/1997 Status: Active
Land Name: Individual Tree Selection Mngt Acreage: 5,023
Location: OR, USA
FSC Classification: Natural
Species: Fir: grand (Abies grandis), Maple: big leaf (Acer macrophyllum), Alder: red (Alnus rubra), Cedar: Incense (Calocedrus decurrens), Douglas fir (Pseudotsuga menziesii), Oak: Oregon White (Quercus garryana), Cedar: western red (Thuja plicata)
Integrated Resource Management, Inc. and Forest Restoration Partnership

PO Box 547
Philomath OR 97370
USA
Contact: Marc D Barnes
Phone: 1-541-929-3408  Fax: 1-775-263-4242
marc@irmforestry.com
www.irmforestry.com

Certification: SW-FM/COC-189 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 5/1/2002  Status: Active
Land Name: Integrated Resource Management, Inc. and Forest Restoration Partnership  Acreage: 3,136
Location: OR, USA
FSC Classification: Natural
Species: Fir: white (Abies concolor), Fir: grand (Abies grandis), Alder: red (Alnus rubra), Pine: ponderosa (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), Cedar: western red (Thuja plicata)

J-Spear Ranch Co

PO Box 257
Klamath Falls OR 97601
USA
Contact: Daniel T Applebaker
Phone: 1-541-884-3177  Fax: 1-541-884-2697
aplbaker@cdsnet.net

Certification: SW-FM/COC-069 Forest Mgmt/Chain-of-Custody, Smartwood
Date First Certified: 4/1/1999  Status: Active
Land Name: J-Spear Ranch Co.  Acreage: 15,500
Location: OR, USA
FSC Classification: Natural
Species: Fir: white (Abies concolor), Cedar: Incense (Calocedrus decurrens), Pine: contorta/Pine: beach/Pine: lodgepole (Pinus contorta), Pine: ponderosa (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii)

Potlatch Hybrid Poplar Plantation

P.O. Box 38
Boardman OR 97818
USA
Contact: Greg Uhlorn
Phone: 1-541-481-2620  Fax: 1-541-481-2623
greg.uhlorn@potlatchcorp.com

Date First Certified: 8/1/2001  Status: Active
Land Name: Potlatch Hybrid Poplar Plantation  Acreage: 17,300
Location: OR, USA
FSC Classification: Plantation
Species: Alamo/Poplar *(Populus spp.)*

**Whiskey Creek Timber Company**

4764 Glenwood  
Klamath Falls OR 97603  
USA  
Contact: James M Dahm  
Phone: 1-541-882-9008  
rmezger@cvc.net

Certification: SW-FM/COC-079 Forest Mgmt/Chain-of-Custody, Smartwood  
Date First Certified: 6/1/1999  Status: Active  
Land Name: Whiskey Creek Timber Co  Acreage: 3,645  
Location: OR, USA  
FSC Classification: Natural  Forest Type: Ponderosa Pine  
Species: Cedar: Incense *(Calocedrus decurrens)*, Pine: sugar *(Pinus lambertiana)*

**Zena Timber**

4550 Oak Grove Road  
Rickreall OR 97371  
USA  
Contact: Sarah Deumling  
Phone: 1-503-585-6380  Fax: 1-503-540-8937  
pollicino@igc.org

Certification: SW-FM/COC-061 Forest Mgmt/Chain-of-Custody, Smartwood  
Date First Certified: 12/15/1998  Status: Active  
Land Name: Zena Timber  Acreage: 1,800  
Location: OR, USA  
FSC Classification: Natural  
Species: Maple: big leaf *(Acer macrophyllum)*, Douglas fir *(Pseudotsuga menziesii)*, Oak: Oregon White *(Quercus garryana)*

Source: The Forest Stewardship Council
References


---


ii Ibid


iv Ibid

v Ibid

vi Ibid (entire paragraph)