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DISSERTATION ABSTRACT

Clover May

Doctor of Philosophy

Department of Mathematics

June 2018

Title: A Structure Theorem for RO(C2)-graded Cohomology

Let C2 be the cyclic group of order two. We present a structure theorem

for the RO(C2)-graded Bredon cohomology of C2-spaces using coefficients in the

constant Mackey functor F2. We show that, as a module over the cohomology of

the point, the RO(C2)-graded cohomology of a finite C2-CW complex decomposes

as a direct sum of two basic pieces: shifted copies of the cohomology of a point

and shifted copies of the cohomologies of spheres with the antipodal action. The

shifts are by elements of RO(C2) corresponding to actual (i.e. non-virtual) C2-

representations.
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CHAPTER I

INTRODUCTION

For RO(C2)-graded Bredon cohomology, working with coefficients in the

constant Mackey functor F2 is the closest analogue to using F2 coefficients for

singular cohomology. One might expect computations to be fairly straightforward

in this setting, as they are in singular cohomology. Unfortunately, these

computations are often nontrivial even for simple C2-spaces. The goal of this paper

is to give a structure theorem for the RO(C2)-graded cohomology of finite C2-CW

complexes with coefficients in F2. This structure theorem can be used to make

computations easier.

Let M2 denote the RO(C2)-graded cohomology of a point. Let An denote the

cohomology of the n-dimensional sphere with the antipodal action. We will show

that if X is a finite C2-CW complex, then its cohomology contains only shifted

copies of M2 and shifted copies of An for various n. A bit more precisely, as an M2-

module we can decompose the cohomology of X as

H∗,∗(X;F2) ∼= (⊕iΣpi,qiM2)⊕ (⊕jΣrj ,0Anj
)

for some dimensions nj and bidegrees (pi, qi) and (rj, 0) that correspond to actual

(i.e. non-virtual) C2-representations.

Each copy of Σpi,qiM2 is the reduced cohomology of a representation sphere

Spi,qi . So in some sense the structure theorem means the cohomology of any finite

C2-CW complex looks like cohomologies of representations spheres and suspensions

of antipodal spheres. At first glance, this might appear obvious because spheres are
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the building blocks for CW-complexes. However, we will see it is actually rather

surprising that we only need these two types of objects to describe RO(C2)-graded

cohomology in F2 coefficients. The analogous statement for singular cohomology in

F2 coefficients is trivial because the coefficient ring F2 is a field. But the coefficient

ring M2 is not a field and there are many M2-modules that do not appear as the

cohomology of space. Even the modules that arise in computations as kernels and

cokernels of differentials are typically more complicated than simply shifted copies

of M2 and An.

1.1. Proof Sketch

We briefly outline the proof from Chapter V as a guide for the reader. The

ring M2 is infinite but can be described in terms of particular elements ρ, τ , and

θ. The ring An is isomorphic to F2[τ, τ−1, ρ]/(ρn+1). Let X be a finite C2-CW

complex. The proof that its cohomology contains only shifted copies of M2 and

shifted copies of An begins by showing that copies of M2 in H∗,∗(X) are easily

detected by θ. Accounting for each copy of M2, we will obtain a short exact

sequence of the form

0→ ⊕iΣpi,qiM2 → H∗,∗(X)→ Q→ 0,

which splits because M2 is self-injective. Finally, we will show Q ∼= ⊕jΣrj ,0Anj
.

This will follow from a result about the ρ-localization of H∗,∗(X) together with a

rather surprising higher decomposition of 1 in M2. The higher decomposition of 1 is

given by the Toda bracket 〈τ, θ, ρ〉 = 1, which was first suggested by Dan Isaksen.

We will use ρ-localization and the Toda bracket to show Q is a finitely generated
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F2[τ, τ−1, ρ]-module, i.e. Q is a module over a graded PID. The graded analogue of

the classification of finitely generated modules over a PID completes the proof.

1.2. Organization

In Chapters II and III we provide some of the required background and set

some notation and terminology. Much of this can be found in [7] and [8]. Chapter

IV includes several important facts about M2-modules and their implications for

the cohomology of C2-spaces. This chapter also includes the computation of the

nontrivial Toda bracket of 1 in M2 mentioned above. In Chapter V we prove the

main theorem. Chapter VI demonstrates some applications of the main theorem for

computations. Appendix A is devoted to the proof of a technical proposition from

Chapter IV. Appendix B presents calculations of cohomology for the six C2-actions

on a torus, which provided some of the motivation for the structure theorem.
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CHAPTER II

PRELIMINARIES

We begin with some terminology and notation, much of which appears in [7]

and [8]. Let G be a finite group.

Definition 2.0.1. A G-CW complex is a G-space X with a filtration, where X0

is a disjoint union of orbits G/H and Xn is obtained from Xn−1 by attaching cells

of the form G/Hα × Dn along equivariant maps fα : G/Hα × Sn−1 → Xn−1. The

cells are attached via the usual pushout diagram∐
αG/Hα × Sn−1 Xn−1

∐
αG/Hα ×Dn Xn

where Dn and Sn−1 have the trivial G-action.

The space Xn is the n-skeleton of X and the filtration gives a cell structure

for X. If the filtration is finite, X is a finite-dimensional G-CW complex and

the highest dimension in the filtration is the dimension of X. If there are finitely

many cells of each dimension, X is referred to as locally finite. When X is both

finite-dimensional and locally finite, we call X a finite G-CW complex. The

filtration quotients for X are of the form Xn/Xn−1
∼=
∨
αG/Hα+ ∧ Sn.

One reason we study G-CW complexes is that every CW complex with a

cellular G-action can be given a filtration with the structure of a G-CW complex

(see [8]). It is often convenient to work with pointed G-CW complexes,

meaning G-CW complexes with a fixed basepoint. If X is a G-CW complex, we

may always consider the based space X+, i.e. X with a disjoint basepoint that is

fixed by the action.

4



We now specialize to the case G = C2, the cyclic group of order two.

Although some facts presented here generalize to other groups and other types of

spaces, we restrict our focus to C2-CW complexes. The coefficients for the RO(G)-

graded cohomology of a G-space are given by a Mackey functor. The data of a

Mackey functor for G = C2 is encoded in a diagram of the form

M : M(C2) M(pt)

t

p∗

p∗

where C2/e = C2 and C2/C2 = pt are the two orbits and M(C2) and M(pt) are

abelian groups. The maps must satisfy the following conditions:

1. t2 = id,

2. tp∗ = p∗,

3. p∗t = p∗, and

4. p∗p∗ = id+ t.

We will be using coefficients in F2, the constant Mackey functor with value F2,

which has the diagram

F2 : F2 F2.

id

0

id

A p-dimensional real C2-representation V decomposes as

V ∼= (R1,0)p−q ⊕ (R1,1)q = Rp,q

where R1,0 is the trivial 1-dimensional real representation of C2 and R1,1 is the

sign representation. We call p the topological dimension and q the weight or
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twisted dimension of V = Rp,q. We will also refer to the fixed-set dimension,

which is p − q. We use this same notation and terminology when V is a virtual

representation given by V = Rp1,q1 − Rp2,q2 , in which case we say that V

has topological dimension p1 − p2, weight q1 − q2, and fixed-set dimension

(p1 − q1)− (p2 − q2). If V = Rp,q is an actual representation, we write SV = Sp,q for

the representation sphere given by the one-point compactification of V . Again,

we use this same notation when V is a virtual representation and we are working

stably.

Figure 2.1 shows depictions of some low dimensional representation spheres.

Here S1,1 and S2,1 have the C2-action given by reflection across an equator and S2,2

has the C2-action given by rotation about the axis through the north and south

poles.

S1,0 S1,1 S2,0 S2,1 S2,2

FIGURE 2.1 Some low dimensional representation spheres.

For any virtual representation V = Rp,q, allowing p and q to be integers, we

write HV
G (X;M) = Hp,q(X;M) for the V th graded component of the ordinary

RO(C2)-graded equivariant cohomology of a C2-space X with coefficients in a

Mackey functor M . For a based C2-space we write H̃∗,∗(X;M) for the reduced

cohomology of X. If we give X a disjoint basepoint then H̃∗,∗(X+;M) =

H∗,∗(X;M). For the rest of the paper we will use coefficients in the constant

Mackey functor F2 so we usually suppress the coefficients and write H∗,∗(X) for

H∗,∗(X;F2). When we work non-equivariantly, we write H∗sing(X) for the singular
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cohomology with F2-coefficients of the underlying topological space U(X), where U

is the forgetful functor.

2.1. Cohomology of a Point

Using coefficients in the constant Mackey functor F2, the cohomology of a

point with the trivial C2-action is the ring M2 := H∗,∗(pt;F2) pictured in Figure

2.2. On the left is a more detailed depiction, though in practice it is easier to work

p

q

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

1

ρτ

θ
θ
ρ

θ
τ

p

q

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

M2

FIGURE 2.2 M2 = H∗,∗(pt)

with the more succinct version on the right. Every lattice point inside the cones

represents a copy of the group F2. There are unique nonzero elements ρ ∈ H1,1(pt)

and τ ∈ H0,1(pt). As an F2[ρ, τ ]-module M2 splits as M2 = M+
2 ⊕M−2 where the

top cone M+
2 is a polynomial algebra with generators ρ and τ . The bottom cone

M−2 has a unique nonzero element θ ∈ H0,−2(pt) that is infinitely divisible by both ρ

and τ and satisfies θ2 = 0. We say that every element of the lower cone is ρ-torsion,

meaning it is zero when multiplied by some power of ρ. Likewise, we say that every

element of the lower cone is τ -torsion, since every element is zero when multiplied
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by some power of τ . Notice the lower cone is a non-finitely generated ideal, so M2

is an infinitely generated commutative non-Noetherian F2-algebra.

Since there is always an equivariant map X → pt for any space X, its

cohomology H∗,∗(X) is a bigraded M2-module. We are interested in cohomology,

so throughout this paper we are working in the category of bigraded M2-modules.

By M2-module we always mean bigraded M2-module, and any reference to an

M2-module map means a bigraded homomorphism. In general, computing the

cohomology of a C2-space, even as an M2-module, is nontrivial.

2.2. Cohomology of the Antipodal Sphere

Let Sna denote the n-dimensional sphere with the antipodal C2-action. We

write An for the cohomology of Sna as an M2-module. A picture of An is shown in

Figure 2.3. Again, on the left is a more detailed depiction (actually of A4), while

p

q

0 n

...

...

p

q

0 n

...

...

An

FIGURE 2.3 An = H∗,∗(Sna )

in practice it is more convenient to draw the succinct version on the right. Here

every lattice point in the infinite strip of width n + 1 represents an F2. Diagonal

8



lines represent multiplication by ρ and vertical lines represent multiplication by τ .

Every nonzero element in An is ρ-torsion, in the image of τ , and not τ -torsion. We

allow for n = 0 since C2 = S0
a and the cohomology of C2 can be depicted by a

single vertical line. As a ring An
∼= F2[τ, τ−1, ρ]/(ρn+1) where ρ and τ correspond to

multiplication by the usual elements in M2 and τ−1 has bidegree (0,−1).
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CHAPTER III

COMPUTATIONAL TOOLS

In this chapter we present some common tools for computing RO(C2)-graded

cohomology of C2-spaces. If X is a C2-CW complex then X has a filtration coming

from the cell structure. The filtration quotients Xn/Xn−1 are wedges of copies of

C2+ ∧ Sn and Sn,0 corresponding to the orbit cells that were attached.

More generally, suppose we are given any filtration of a pointed C2-space X

pt ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ Xk+1 ⊆ · · · ⊆ X.

Corresponding to the cofiber sequence

Xk ↪→ Xk+1 → Xk+1/Xk,

for each weight q there is a long exact sequence1

· · · → H̃p,q(Xk+1/Xk)→ H̃p,q(Xk+1)→ H̃p,q(Xk)
d−→ H̃p+1,q(Xk+1/Xk)→ · · · .

Taken collectively for all p and q, each map in the long exact sequence is a graded

M2-module map. By abuse, we often refer to the long exact sequences taken

collectively for all q as “the long exact sequence.” Then d is a graded M2-module

map d : H̃∗,∗(Xk) → H̃∗+1,∗(Xk+1/Xk), which we call “the differential” in the long

exact sequence. From this long exact sequence, there is a short exact sequence of

1As Kronholm discusses in [7], these long exact sequences sew together in the usual way to give
a spectral sequence for each weight q.
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graded M2-modules

0→ cok d→ H̃∗,∗(Xk+1)→ ker d→ 0.

In many cases the modules cok d and ker d are relatively easily determined, and

computing H̃∗,∗(Xk+1) requires solving the extension problem presented in this

short exact sequence.

It is convenient to plot the bigraded cohomology in the plane with the

topological dimension p along the horizontal axis and the weight q along the

vertical axis, as in the depictions of M2 and An. The differential d in the long exact

sequence is depicted by a horizontal arrow since it increases topological dimension

by one. When H̃∗,∗(Xk) is free as an M2-module, i.e. when

H̃∗,∗(Xk) ∼= M2〈γ1, . . . , γk〉

the differential d is determined by its image on the basis elements d(γi).

As a special case of the long exact sequence above, we obtain a long exact

sequence that relates the ordinary RO(C2)-graded cohomology of a C2-space X

to the non-equivariant singular cohomology of the underlying space X. From the

cofiber sequence

C2+ → S0,0 → S1,1

smashing with X gives the cofiber sequence

C2+ ∧X → S0,0 ∧X → S1,1 ∧X

11



which induces a long exact sequence in cohomology for each weight q. Using this

long exact sequence along with the suspension isomorphism and an adjunction2 we

obtain the following lemma as in [7], originally due to Araki-Murayama [1].

Lemma 3.0.1. (Forgetful long exact sequence). Let X be a pointed C2-space. Then

for every q there is a long exact sequence

· · · → H̃p,q(X)
·ρ−→ H̃p+1,q+1(X)

ψ−→ H̃p+1
sing(X)→ H̃p+1,q(X)→ · · ·

where ·ρ is multiplication by ρ ∈ M2 and ψ : H̃p,q(X) → H̃p
sing(X) is the forgetful

map3 to the singular cohomology of the underlying space with F2 coefficients.

2The suspension isomorphism for RO(G)-graded cohomology means that

HV
G (X;M) ∼= H̃V+W

G (X+ ∧ SW ;M).

The adjunction isomorphism implies

[G+ ∧X,Y ]G ∼= [X,U(Y )]e

for any finite group G, where on the left we have homotopy classes of G-equivariant maps and on
the right homotopy classes of non-equivariant maps between the underlying spaces. See [8].

3The forgetful map ψ : H∗,∗(pt)→ H∗sing(pt) sends ρ 7→ 0 and τ 7→ 1.

12



CHAPTER IV

GRADED MODULES AND COHOMOLOGY

We now introduce a number of technical lemmas that will aid in the proof of

Theorem 5.0.1, our main theorem. First we show that θ detects copies of M2 in the

sense that an element in any M2-module with a nonzero θ-multiple generates a free

submodule. Morally this is because there is only one element in M2 with a nonzero

θ-multiple, the generator 1 of the ring. Moreover, since θ is infinitely divisible by ρ

and τ , an element with a nonzero θ-multiple cannot have any ρ or τ torsion.

Lemma 4.0.1. Let N be a graded M2-module containing a nonzero homogeneous

element x. If θx is nonzero, then M2〈x〉 is a graded free submodule of N .

Proof. We will show M2〈x〉 ⊆ N by showing all M2-multiples of x are nonzero,

i.e. that ρmτnx and θ
ρmτn

x are nonzero for all m,n ≥ 0. Since θx is nonzero and

elements of M2 commute we have

0 6= θx =
θ

ρmτn
· ρmτnx = ρmτn · θ

ρmτn
x.

This implies ρmτnx and θ
ρmτn

x cannot be zero for any nonnegative choice of m or n.

So the submodule generated by x is free.

One can show that M2 is self-injective, meaning the regular module is

injective, using a graded version of Baer’s criterion.

Proposition 4.0.2. The regular module M2 is injective as a graded M2-module.

Proof. The proof is somewhat tedious and not particularly enlightening. The

details can be found in Appendix A.
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So far, the results in this chapter have been purely algebraic and hold for

graded M2-modules in general. The next result is specific to the cohomology of a

finite C2-CW complex as an M2-module. We have already observed a relationship

between multiplication by ρ and singular cohomology of the underlying space via

the forgetful long exact sequence. We now show that localization by ρ relates the

equivariant cohomology of a space to the singular cohomology of its fixed set. In

the proof of our main theorem, we will see this restricts the types of M2-modules

that can arise as the cohomology of a space.

Lemma 4.0.3. (ρ-localization) Let X be a finite1 C2-CW complex. Then

ρ−1H∗,∗(X) ∼= ρ−1H∗,∗(XC2) ∼= H∗sing(X
C2)⊗F2 ρ

−1M2.

Proof. The inclusion XC2
i−→ X induces ρ−1H∗,∗(X)

ρ−1i∗−−−→ ρ−1H∗,∗(XC2). For locally

finite, finite-dimensional C2-CW complexes, ρ−1H∗,∗(−) is a cohomology theory

because localization is exact. On the other hand, H∗,∗((−)C2) is a cohomology

theory because the fixed-set functor (−)C2 preserves Puppe sequences. So

ρ−1H∗,∗((−)C2) is also a cohomology theory. It is easily verified that ρ−1H∗,∗(−)

and ρ−1H∗,∗((−)C2) agree on both orbits, C2/C2 = pt and C2/e = C2, and

hence are naturally isomorphic cohomology theories via ρ−1i∗. This proves the

first isomorphism above. The second isomorphism, which relates ρ-localization to

singular cohomology, follows from the fact that XC2 has trivial action and so has a

cellular filtration involving only trivial cells.

1Note that finite-dimensionality is required. A counterexample that is locally finite but not
finite-dimensional is the infinite-dimensional sphere with the antipodal action S∞a . It has empty
fixed-set but A∞ = H∗,∗(S∞a ) ∼= F2[τ, τ−1, ρ] and ρ−1A∞ is nontrivial.
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Remark 4.0.4. An important consequence is that if X is a finite C2-CW complex,

then ρ−1H∗,∗(X) does not have any τ -torsion since ρ−1M2
∼= F2[τ, ρ, ρ−1] and

ρ−1H∗,∗(X) is free over ρ−1M2.

4.1. Toda Brackets

Just as in classical topology, the pairings on H∗,∗(−) give rise to higher

products given by Toda brackets. The next proposition involves a higher order

decomposition of 1 in the ring M2. This result will also restrict the types of M2-

modules that can arise as the cohomology of a space.

Proposition 4.1.1. In M2, we have the following Toda bracket

〈τ, θ, ρ〉 = 1

with zero indeterminacy.

Proof. First notice that the Toda bracket 〈τ, θ, ρ〉 is well defined since θρ = 0 =

τθ in M2 for degree reasons. Also notice there is zero indeterminacy because the

indeterminacy of the bracket is the double coset τH0,−1(pt) + H−1,−1(pt)ρ ≡ 0. So

〈τ, θ, ρ〉 is a set containing a single element of H0,0(pt) ∼= F2. In order to compute

〈τ, θ, ρ〉 we need to determine whether this element is trivial or not.

We will use geometric models for the elements τ , θ, and ρ to prove this Toda

bracket is nontrivial. From [3], a model for the (p, q)-th Eilenberg MacLane space

representing H̃p,q(−;F2) is K(F2(p, q)) ' F2〈Sp,q〉. This is the usual Dold-Thom

model given by configurations of points on Sp,q with labels in F2. The action on the

configurations is inherited from Sp,q.
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We can consider ρ geometrically via

ρ ∈ H1,1(pt) ∼= [S0,0, K(F2(1, 1))]C2
∼= [S0,0,F2〈S1,1〉]C2 .

Or equivalently, using the loop-suspension adjunction

ρ ∈ H1,1(pt) ∼= [S0,0, K(F2(1, 1))]C2

∼= [S0,0,Ω1,1K(F2(2, 2))]C2

∼= [S1,1, K(F2(2, 2))]C2

∼= [S1,1,F2〈S2,2〉]C2 .

On the other hand, we can consider θ geometrically via

θ ∈ H0,−2(pt) ∼= [S0,0, K(F2(0,−2))]C2

∼= [S0,0,Ω2,2K(F2(2, 0))]C2

∼= [S2,2, K(F2(2, 0))]C2

∼= [S2,2,F2〈S2,0〉]C2 .

Both ρ and θ are in the image of the Hurewicz map and factor as

S0,0 F2〈S1,1〉

S1,1

ρ

ρ̃ ι

S2,2 F2〈S2,0〉

S2,0

θ

θ̃ ι

where ι is the canonical map sending each point x to the configuration [x]. Here

ρ̃ includes S0,0 as the fixed-set of S1,1. This is because ρ is the unique nontrivial

element in H1,1(pt) and the composition ι ◦ ρ̃ is not null when restricted to the

fixed-sets. In the following proof we will actually use Σ1,1ρ̃ : S1,1 → S2,2, the
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inclusion of a meridian, which factors ρ viewed as a map ρ : S1,1 → F2〈S2,2〉. Again

ι◦Σ1,1ρ̃ is not null when restricted to fixed-sets. Since the target of θ is fixed by the

C2-action, θ factors through the quotient. The quotient map θ̃ : S2,2 → S2,2/C2 is a

degree 2 map on the underlying sphere S2.

For τ we observe

τ ∈ H0,1(pt) ∼= [S0,0, K(F2(0, 1))]C2

∼= [S0,0,Ω1,0K(F2(1, 1))]C2

∼= [S1,0, K(F2(1, 1))]C2

∼= [S1,0,F2〈S1,1〉]C2

∼= [S2,0,F2〈S2,1〉]C2 .

We will not actually need a geometric model for τ to prove the Toda bracket is

nontrivial. We will need the fact that the forgetful map ψ : H∗,∗(pt) → H∗sing(pt)

sends τ 7→ 1 in the forgetful long exact sequence from Lemma 3.0.1.

We are now ready to compute the Toda bracket via the composition

S1,1 S2,2 S2,0 F2〈S2,1〉.Σ1,1ρ̃ θ̃ τ

Using the Puppe sequence

S1,1 → S2,2 → C2+ ∧ S2 → S2,1 → · · ·

we can choose maps f and g so the following diagram

17



S1,1 S2,2 S2,0 F2〈S2,1〉

C2+ ∧ S2

S2,1

Σ1,1ρ̃ θ̃ τ

f

g

commutes up to homotopy. There is no indeterminacy so 〈τ, θ, ρ〉 = g. It remains

to show g is not nullhomotopic. Notice that we can choose f to be the fold map.

Using the adjunction isomorphism, τ ◦ f is an element of the group

[C2+ ∧ S2,F2〈S2,1〉]C2
∼= [S2,F2〈S2〉]e ∼= [S0,F2〈S0〉]e

corresponding to ψ(τ), which is not null. That is, C2+ ∧ S2 → S2,1 projects each S2

isomorphically onto S2,1. The diagram commutes up to homotopy so g cannot be

null on the underlying spaces. Hence g ' ι and 〈τ, θ, ρ〉 = 1.

The key to this proof is to find nice geometric models for ρ and θ, and then to

recognize we may choose f to be the fold map. A more algebraic proof, suggested

by Dan Isaksen, makes use of the relationship between Toda brackets and “hidden

extensions.” More details about this relationship can be found in Section 3.1.1 of

[6]. In particular, we observe the Toda bracket 〈τ, θ, ρ〉 = 1 is equivalent to a hidden

τ -extension in the cohomology of the cofiber of ρ. Though it is not required, for the

sake of consistency with the previous proof the following discussion demonstrates

this hidden extension argument for the cofiber of Σ1,1ρ̃.

In the previous argument we observed that τ ◦ f was not null geometrically

to deduce that g was not null. The key to the more algebraic proof is to

consider essentially the same diagram and recognize that τ ◦ f is an element of
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H̃2,1(C2+ ∧ S2). We can observe this element is nonzero by an easy computation in

cohomology. Then deduce that g is not null as before.

In the Puppe sequence used to compute the Toda bracket above, we have the

cofiber sequence S2,2 → C2+∧S2 → S2,1. Associated to this cofiber sequence there is

a long exact sequence in cohomology. By construction the differential will send the

generator of Σ2,2M2
∼= H̃∗,∗(S2,2) to ρ times the generator of Σ2,1M2

∼= H̃∗,∗(S2,1) as

depicted in Figure 4.1.
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θ̄

ker d
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τ

FIGURE 4.1 Hidden τ extension in H̃∗,∗(C2+ ∧ S2).

Usually, to compute H̃∗,∗(C2+ ∧ S2) we would need to solve the associated

extension problem

0→ cok d→ H̃∗,∗(C2+ ∧ S2)→ ker d→ 0.

But of course we already know from the suspension isomorphism that

H̃∗,∗(C2+ ∧ S2) ∼= Σ2,0A0.
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In particular, multiplication by τ is an isomorphism here. The element θ ∈ ker d

contributes a nonzero element θ̄ ∈ H̃∗,∗(C2+ ∧ S2) and we see the extension problem

must be solved by a hidden τ -extension given by τ θ̄ 6= 0. If we replace f with θ̄, we

see this is equivalent to showing τ ◦ f is not null in the previous proof. Therefore g

cannot be null and again we conclude 〈τ, θ, ρ〉 = 1.

Armed with this Toda bracket we obtain a matrix Toda bracket.

Lemma 4.1.2. In M2, we have the following matrix Toda bracket

〈[
ρ τ

]
,

τ
ρ

 , θ〉 = 1

with zero indeterminacy.

Proof. Notice the matrix Toda bracket is defined because τθ = 0 = ρθ. Again there

is zero indeterminacy because H0,2(pt)θ ≡ 0, so the matrix Toda bracket is a single

element of H0,0(pt) ∼= F2. Since 〈τ, θ, ρ〉 = 1 we can use a juggling formula to shift

the bracket and write

〈[
ρ τ

]
,

τ
ρ

 , θ〉 · ρ =

[
ρ τ

]
·

〈τ
ρ

 , θ, ρ〉

= ρ · 〈τ, θ, ρ〉+ τ · 〈ρ, θ, ρ〉

= ρ · 1 + τ · 0

= ρ

where 〈ρ, θ, ρ〉 = 0 for degree reasons. The matrix Toda bracket is an element

of H0,0(pt) that is nonzero when multiplied by ρ, so it must be nonzero. This

completes the proof.
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Using these two Toda brackets and juggling formulas we get a number of

results restricting the types of M2-modules we can see in cohomology. We present

these results more generally as restrictions on the homotopy of a spectrum. Let

HF2 denote the genuine equivariant Eilenberg-MacLane spectrum for F2 so that

its bigraded equivariant homotopy π∗,∗HF2 = M2. If C is an HF2-module then

π∗,∗(C) is an M2-module and has Toda brackets. In each of the following lemmas

we take C to be any HF2-module. In particular, if X is a C2-CW complex, the

function spectrum F (X+, HF2) is an HF2-module, and we can realize H∗,∗(X) as

π−∗,−∗F (X+, HF2) ∼= H∗,∗(X).

Lemma 4.1.3. If x ∈ π∗,∗(C) and θx = 0, then x ∈ (ρ, τ)π∗,∗(C).

Proof. Assume θx = 0. Then

x = 1 · x =

〈[
ρ τ

]
,

τ
ρ

 , θ〉 · x
=

[
ρ τ

]
·

〈τ
ρ

 , θ, x〉

= ρ · 〈τ, θ, x〉+ τ · 〈ρ, θ, x〉,

which completes the proof.

Lemma 4.1.4. If x ∈ π∗,∗(C) and ρx = τx = 0 then x ∈ (θ)π∗,∗(C).

Proof. Assume ρx = τx = 0. Then

x = x · 1 = x ·

〈[
ρ τ

]
,

τ
ρ

 , θ〉 =

〈
x,

[
ρ τ

]
,

τ
ρ

〉 · θ,
21



which completes the proof.

Lemma 4.1.5. If x ∈ π∗,∗(C) and τx = 0 then x ∈ (ρ)π∗,∗(C).

Proof. Assume τx = 0. Then x = 1 ·x = x · 〈τ, θ, ρ〉 = 〈x, τ, θ〉 ·ρ so we are done.

Lemma 4.1.6. If x ∈ π∗,∗(C) and ρx = 0 then x ∈ (τ)π∗,∗(C).

Proof. The proof is analogous.

Next we observe two vanishing regions in the cohomology of any finite C2-CW

complex. These regions are depicted on the left side of Figure 4.2.

−2

p

q

m

−2

p

q

m

m

FIGURE 4.2 Vanishing regions and region containing M2 generators.

Lemma 4.1.7. If X is a finite C2-CW complex of dimension m then Hp,q(X) = 0

1. whenever p < 0 and q > p− 2, and

2. whenever p > m and q < p−m.

Proof. Both statements follow easily by induction on the C2-CW filtration for X

since the cohomologies of the orbits M2 = H∗,∗(pt) and A0 = H∗,∗(C2) satisfy these

vanishing regions.
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An immediate corollary restricts the bidegree of a generator for a shifted

copy of M2 in H∗,∗(X). The region where M2 generators can lie is depicted by the

triangle on the right side of Figure 4.2.

Corollary 4.1.8. Let X be a finite C2-CW complex with dimension m. Any

generator for a copy of M2 in H∗,∗(X) must lie in a bidegree (p, q) that corresponds

to an actual representation, with topological dimension p satisfying 0 ≤ p ≤ m and

weight 0 ≤ q ≤ p.

Proof. The proof follows immediately from Lemma 4.1.7 since otherwise the copy of

M2 would intersect one of the vanishing regions.

The last lemma in this chapter is key to the proof of the main theorem as

we now show that if θ acts trivially on a nice submodule of H∗,∗(X), then every

element is not τ -torsion and is infinitely divisible by τ , making the submodule an

F2[τ, τ−1, ρ]-module.

Lemma 4.1.9. Let X be a finite C2-CW complex and let C be an HF2-module with

π∗,∗(C) ⊆ H∗,∗(X). Suppose that, as an M2-module, π∗,∗(C) is a direct summand of

H∗,∗(X), and that θx = 0 for all x ∈ π∗,∗(C). Then ·τ : π∗,∗(C) → π∗,∗(C) is an

automorphism, making π∗,∗(C) naturally an F2[τ, τ−1, ρ]-module.

Proof. First we show that multiplication by τ is injective. If there exists a nonzero

element x ∈ π∗,∗(C) with τx = 0, then there are two cases, either ρx = 0 or ρx 6= 0.

Both cases lead to a contradiction.

1. Suppose ρx = 0. Then by Lemma 4.1.4, x is in the image of multiplication by

θ, contradicting that θ acts trivially on π∗,∗(C).
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2. Suppose ρx 6= 0. Then x is either killed by some power of ρ or x is not ρ-

torsion. Either way we will arrive at a contradiction. Suppose for some n that

ρn+1x = 0 but ρnx 6= 0, then ρnx is killed by τ since ρ and τ commute:

τρnx = ρnτx = 0.

But now ρnx satisfies case (1), which we have already seen gives a

contradiction. If instead x is not ρ-torsion, then x survives ρ-localization,

and again we arrive at a contradiction. By Lemma 4.0.3, any elements

surviving the ρ-localization of the cohomology of a finite space cannot be τ -

torsion. Since π∗,∗(C) is a summand of H∗,∗(X), x cannot be τ -torsion, which

contradicts the assumption that τx = 0.

So indeed, τx is nonzero for all x ∈ π∗,∗(C) and the map ·τ : π∗,∗(C) → π∗,∗(C) is

injective. Said another way, no elements of π∗,∗(C) are τ -torsion.

Notice that injectivity of ·τ means that any nonzero element x ∈ π∗,∗(C)

has τmx 6= 0 for all m. In particular, x cannot be in a bidegree with negative

topological dimension. Otherwise, some τ -multiple of x would land in the first

vanishing region and contradict Lemma 4.1.7. We will use this fact in the proof

of surjectivity.

To show multiplication by τ is surjective, we assume to the contrary there is

some nonzero homogenous element y ∈ π∗,∗(C) not in the image of ·τ . We may

further assume that y is an element of minimal topological dimension satisfying

these hypotheses. We can make this minimality assumption because, as we have

already observed, injectivity of ·τ implies all elements of π∗,∗(C) have nonnegative

topological dimension.
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Since θy = 0, Lemma 4.1.3 implies that y ∈ (ρ, τ)π∗,∗(C). So we can write

y = ρa + τb for some homogeneous elements a, b ∈ π∗,∗(C). Notice that a 6=

0, otherwise y = τb, contradicting our assumption that y is not in the image of

·τ . The topological dimension of a is one less than the topological dimension of y.

Since y had minimal topological dimension and a is nonzero, it must be that a is

in the image of ·τ . This means we can write a = τc for some c ∈ π∗,∗(C), but now

y = ρa+ τb = ρτc+ τb = τ(ρc+ τb), contradicting that y is not in the image of ·τ .

Surjectivity of ·τ completes the proof that multiplication by τ is an

automorphism of π∗,∗(C) and so π∗,∗(C) is a F2[τ, τ−1, ρ]-module.
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CHAPTER V

MAIN THEOREM

We are now ready to state and prove the main theorem.

Theorem 5.0.1. For any finite1 C2-CW complex X, there is a decomposition of the

RO(C2)-graded cohomology of X with constant F2-coefficients as

H∗,∗(X;F2) ∼= (⊕iΣpi,qiM2)⊕ (⊕jΣrj ,0Anj
)

as a module over M2 = H∗,∗(pt;F2), where Rpi,qi and Rrj ,0 are elements of RO(C2)

corresponding to actual representations.

Proof. Recall that θ detects copies of M2. So if x ∈ H∗,∗(X) with θx 6= 0, then by

Lemma 4.0.1 there is a free submodule M2〈x〉 ⊆ H∗,∗(X). The short exact sequence

of M2-modules

0→M2〈x〉 → H∗,∗(X)→ P → 0

splits because M2 is injective (see Proposition 4.0.2). Continuing to split off

summands in this way, we have the split short exact sequence

0→ ⊕iΣpi,qiM2 → H∗,∗(X)→ Q→ 0

where we can assume that every x ∈ Q satisfies θx = 0. By Corollary 4.1.8, each

bidegree (pi, qi) corresponds to an actual representation. Moreover, this process

1Note that finiteness is again required here. One might hope for a generalization to locally
finite C2-CW complexes by allowing shifted copies of A∞. A counterexample is given at the end
of this chapter in Example 5.0.2.
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terminates because by induction any given bidegree of H∗,∗(X) is finite-dimensional

as a vector space.

We would now like to apply Lemma 4.1.9 to Q to show that Q is an

F2[τ, τ−1, ρ]-module. However, in order to apply the lemma we need to realize Q

as the homotopy of an HF2-module. We can realize H∗,∗(X) as the homotopy of a

function spectrum H∗,∗(X) ∼= π−∗,−∗F (X+, HF2). Since F (X+, HF2) is an HF2-

module, each free generator ui of Σpi,qiM2 in H∗,∗(X) gives rise to a map of spectra

given by the composition

S−pi,−qi ∧HF2
ui∧id−−−→ F (X+, HF2) ∧HF2

µ−→ F (X+, HF2).

Taking maps corresponding to each of the free generators of the shifted copies of

M2 in H∗,∗(X), we obtain a map

∨
i

S−pi,−qi ∧HF2 → F (X+, HF2).

Let C be the cofiber of this map. The cofiber sequence induces a long exact

sequence in homotopy of the form

· · · → π∗+1,∗C → ⊕iΣpi,qiM2 → H∗,∗(X)→ π∗,∗C → · · ·

where by construction Σpi,qiM2 ↪→ H∗,∗(X) is the inclusion of the copies of M2

from our original short exact sequence. Because this is an inclusion and M2 is self-

injective, we get a split short exact sequence and π∗,∗C ∼= Q. We have now realized

Q as the homotopy of an HF2-module, so Lemma 4.1.9 applies and indeed Q is an

F2[τ, τ−1, ρ]-module.
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We still need to show Q is finitely generated as an F2[τ, τ−1, ρ]-module, so

we may decompose Q according to the graded version of the structure theorem for

finitely generated modules over a graded PID. Observe that τ−1M2
∼= F2[τ, τ−1, ρ]

and that τ−1H∗,∗(X) is finitely generated as a τ−1M2-module. The latter follows

from induction on the C2-CW filtration for X since τ−1M2 is a graded PID and the

τ -localized cohomology of each orbit is finitely generated as a τ−1M2-module. The

submodule Q ∼= τ−1Q of τ−1H∗,∗(X) is also finitely generated as a τ−1M2-module

since τ−1M2 is Noetherian.

Finally, applying the fundamental theorem for finitely generated graded

modules over a graded PID to Q, it must be the case that

Q ∼= τ−1Q ∼= (⊕kΣpk,qkτ−1M2)⊕ (⊕jΣrj ,0τ−1M2/(ρ
nj+1))

where again we identify τ−1M2
∼= F2[τ, τ−1, ρ]. However, X is a finite C2-CW

complex, so the second vanishing region from Lemma 4.1.7 implies Q cannot

contain any summands of the form Σpk,qkτ−1M2. This means

Q ∼= τ−1Q ∼= ⊕jΣrj ,0τ−1M2/(ρ
nj+1) ∼= ⊕jΣrj ,0Anj

∼= ⊕jΣrj ,0H∗,∗(Snj
a ).

Finally we can conclude that

H∗,∗(X;F2) ∼= (⊕iΣpi,qiM2)⊕Q ∼= (⊕iΣpi,qiM2)⊕ (⊕jΣrj ,0Anj
)

as desired.

The reader may notice we used the condition that X was finite several times

in the previous proof. At first glance, one might expect a generalization of the
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structure theorem to locally finite C2-CW complexes if we allow shifted copies

of A∞. This seems plausible because S∞a is locally finite. As further evidence,

A∞ ∼= τ−1M2
∼= F2[τ, τ−1, ρ] appears near the end of the proof as part of the

fundamental theorem for finitely generated graded modules over a graded PID. The

following counterexample demonstrates that such a generalization would also need

to include other types of M2-modules.
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FIGURE 5.1 Cohomology of S∞,∞.

Example 5.0.2. In this example we consider an infinite-dimensional locally finite

C2-CW complex whose cohomology is not A∞. Consider the C2-CW complex S∞,∞

formed by the colimit of the diagram

S0,0 → S1,1 → S2,2 → · · · → Sn,n → · · ·

where each map is a suspension of ρ̃ : S0,0 → S1,1. Notice that S∞,∞ can be given a

cell structure with two fixed points and a single equivariant n-cell C2×Dn for every

n > 0. Alternatively, S∞,∞ can be realized as the unreduced suspension of S∞a . Its

cohomology is depicted in Figure 5.1. More precisely, we can describe H∗,∗(S∞,∞)
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as Σ0,−1N , where N is the quotient in the category of graded M2-modules in the

short exact sequence

0→M2[ρ−1]→M2[τ−1ρ−1]→ N → 0.
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CHAPTER VI

APPLICATIONS

In this chapter we present some applications of the main theorem.

6.1. Computational Applications

We begin with some examples that illustrate common computational

techniques and demonstrate how the main theorem simplifies computations. In

the first example we will use the following fact, which implies we can compute the

p-axis of the RO(C2)-graded cohomology1 of a space using the singular cohomology

of the quotient.

Lemma 6.1.1. Let X be a C2-space. Then Hp,0(X) ∼= Hp
sing(X/C2).

Proof. This follows from working with coefficients in a constant Mackey functor.

Recall from [3], a model for the (p, q)-th Eilenberg MacLane space is given by

K(F2(p, q)) ' F2〈Sp,q〉, the usual Dold-Thom model given by configurations of

points on Sp,q with labels in F2. In particular, K(F2(p, 0)) ' F2〈Sp,0〉. Since Sp,0 is

fixed, so is the space F2〈Sp,0〉. By adjunction

1The p-axis of the RO(C2)-graded cohomology is the Z-graded equivariant cohomology
originally defined by Bredon.
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Hp,0(X) ∼= [X+, K(F2(p, 0))]C2

∼= [X+,F2〈Sp,0〉]C2

∼= [X+/C2, U(F2〈Sp,0〉)]e

∼= [X+/C2,F2〈Sp〉)]e

∼= Hp
sing(X/C2),

where the last isomorphism follows from the non-equivariant Dold-Thom model for

singular cohomology.

Example 6.1.2. In this example we compute the cohomology of the projective

space RP 2
tw = P(R3,1) using Lemma 6.1.1 and our main theorem. A picture of RP 2

tw

is shown in Figure 6.1. This is the usual diagram for RP 2 given by a disk with

opposite points on the boundary identified. The C2-action is given by rotating the

picture 180◦ leaving a fixed point in the center and a fixed circle on the boundary.

stuff

FIGURE 6.1 RP 2
tw

The long exact sequence associated to the cofiber sequence S1,0 ↪→ RP 2
tw →

S2,2 is depicted on the left side of Figure 6.2. Recall that in these depictions every

lattice point inside the cones represents a copy of F2 and the differential increases

topological dimension by one.
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FIGURE 6.2 Differential in a long exact sequence for H̃∗,∗(RP 2
tw).

The only possible differential, determined by its image on the generator of

the free module H̃∗,∗(S1,0) ∼= Σ1,0M2, must be nonzero by Lemma 6.1.1. This is

because the quotient RP 2
tw/C2 is the cone on S1, which is contractible. The M2-

modules cok d and ker d resulting from this differential are depicted on the right

side of Figure 6.2. Even though we know this differential, computing H̃∗,∗(RP 2
tw)

requires solving the extension problem in the short exact sequence

0→ cok d→ H̃∗,∗(RP 2
tw)→ ker d→ 0.

One might hope for the short exact sequence to be split, but this turns out not to

be the case.

From Theorem 5.0.1, the cohomology of RP 2
tw contains only shifted copies of

M2 and An. Looking at the modules cok d and ker d we see a gap. Along the p-axis

the cohomology is trivial because the quotient RP 2
tw/C2 is contractible. Since An

has no gaps, the cohomology of RP 2
tw must consist only of copies of M2. Finally by

inspecting the rank in each bidegree, we see that H̃∗,∗(RP 2
tw) ∼= Σ1,1M2 ⊕ Σ2,1M2 as

shown in Figure 6.3.
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FIGURE 6.3 Cohomology of RP 2
tw.

In general, many M2-modules arise as kernels and cokernels of differentials

in spectral sequence or long exact sequence computations. One advantage of our

main theorem is to resolve the associated extension problems. In Example 6.1.2 we

saw a differential between two copies of M2 leading to the M2-modules cok d and

ker d depicted in Figure 6.2 and discovered the result must consist only of copies of

M2. Here the generator of one copy of M2 hit an element of the lower cone of the

other M2 and the result was two copies of M2 shifted vertically from their original

position as shown in Figure 6.3. Indeed, any differential from the generator of a

copy of M2 to the lower cone of another copy gives rise to a similar result, as seen

in [7].

We present a few more examples of differentials to give an idea of the range

of possible M2-modules one might encounter in computations. These examples also

illustrate how our main theorem can be used.

Example 6.1.3. In Figure 6.4 we see a differential where the generator of one copy

of M2 hits an element in the upper cone of another, rather than the lower cone.

This differential d is depicted on the left side of Figure 6.4 with cok d and ker d
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pictured on the right. Every element here is τ -torsion but both M2 and An have

elements that are not τ -torsion. This means the usual extension problem cannot be

solved with any number of copies of M2 or An. As a consequence of Theorem 5.0.1,

a differential like this one is impossible when computing the cohomology of a finite

C2-CW complex.
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FIGURE 6.4 Differential to upper cone of M2.

Warning 6.1.4. It is in fact possible to have a nonzero differential into the upper

cone when computing the cohomology of a space. For example, one could have an

isomorphism between two copies of M2. One could also have the generator of one

copy hit ρn times the generator of the other copy. Neither of these contradict our

main theorem. The next example demonstrates the latter type of differential.

Example 6.1.5. Consider the space X = S2,2 ∪ Itriv where a line segment with

the trivial action connects the north and south poles of S2,2. There is a cofiber

sequence S2,2 ↪→ X → S1,0 and the differential in the long exact sequence associated

to this cofiber sequence is depicted in Figure 6.5. This differential must be nonzero

by Lemma 4.0.3 because the fixed-set of X is contractible so ρ−1H̃∗,∗(X) ≡ 0. Here

the generator of one copy of M2 hits ρ2 times the generator of the other copy. As a
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result of the main theorem, the associated extension problem in this example must

be solved by Σ1,0A1.
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FIGURE 6.5 Another differential to an upper cone of M2.

Example 6.1.6. Another example of a differential d that arises in computations

is from the generator of a copy of M2 to a shifted copy of A0. As a trivial example,

one could compute H̃∗,∗(S2,1) via the cofiber sequence S1,0 ↪→ S2,1 → C2+ ∧ S2

as depicted in Figure 6.6. The differential here is nontrivial because the quotient

S2,1/C2 is contractible. Counting the rank in each bidegree, Theorem 5.0.1 implies

the extension problem in the associated short exact sequence

0→ cok d→ H̃∗,∗(S2,1)→ ker d→ 0

must be solved by H̃∗,∗(S2,1) ∼= Σ2,1M2, which agrees with the suspension

isomorphism.
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FIGURE 6.6 Differential to A0.

6.2. Homology

We obtain a structure theorem for RO(C2)-graded homology as an immediate

consequence of our main theorem. Since M2 is self-injective, we can define an

RO(C2)-graded homology theory via graded M2-module maps

Ha,b(X) = HomM2(H
∗,∗(X),Σa,bM2).

One can check this homology theory agrees with the usual RO(C2)-graded Bredon

homology with F2-coefficients on each orbit. We write M∗2 = HomM2(M2,Σ
∗,∗M2)

for the homology of a point and A∗n = HomM2(An,Σ
∗,∗M2) for the homology of Sna .

Then we obtain a decomposition of the homology of any finite C2-CW complex as

an M2-module given by

H∗,∗(X) ∼= (⊕iΣpi,qiM∗2)⊕ (⊕jΣrj ,0A∗nj
).
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6.3. Borel Cohomology

Another application of the main theorem can be observed via Borel

equivariant cohomology. For a C2-space X, by H∗Bor(X) we mean the Borel

equivariant cohomology of X with F2-coefficients. This can be computed as

H∗sing(X ×C2 EC2) ∼= H∗sing(X ×C2 S
∞
a ) using S∞a as a model for EC2.

Using the fiber bundle map X ×C2 EC2 → BC2, H∗Bor(X) is a module over the

graded F2-algebra H∗sing(BC2) = H∗sing(RP∞) ∼= F2[x], where x has degree 1. If X is

a finite C2-CW complex, H∗Bor(X) is a finitely generated module over a graded PID

and there is a decomposition

H∗Bor(X) ∼= (⊕kΣakF2[x])⊕
(
⊕`Σb`F2[x]/(xn`)

)
as a graded F2[x]-module.

The following result relating the τ -localization of the RO(C2)-graded

cohomology with Borel cohomology is well known.

Lemma 6.3.1. For any finite C2-CW complex X, identifying x with τ−1ρ, we have

the following isomorphism of F2[x]-modules

(τ−1H)∗,0(X) ∼= H∗Bor(X).

Applying τ -localization to our main theorem we have

τ−1H∗,∗(X) ∼= τ−1
(
(⊕iΣpi,qiM2)⊕ (⊕jΣrj ,0Anj

)
)

∼=
(
⊕iΣpi,0A∞

)
⊕
(
⊕jΣrj ,0Anj

)
.

38



So identifying x with τ−1ρ, on the p-axis we have

(τ−1H)∗,0(X) ∼= (⊕iΣpiF2[x])⊕
(
⊕jΣrjF2[x]/(xnj+1)

)
.

Now compare this with Borel cohomology using Lemma 6.3.1 and the

decomposition of H∗Bor(X) as a F2[x]-module. We see the torsion components of

Borel cohomology correspond precisely to the shifted copies of Anj
in H∗,∗(X),

and the free components correspond to shifted copies of M2. In particular, if we

know the Borel cohomology of a finite C2-CW complex, to compute RO(C2)-graded

cohomology we only need to determine the weight of each copy of M2. This is often

nontrivial, though.
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APPENDIX A

INJECTIVITY

The purpose of this section is to prove that M2 is self-injective. The proof

will use a graded version of Baer’s criterion (Proposition 9.3.6 in [2]). According to

Baer’s criterion, M2 is injective if and only if for every graded ideal J ⊆ M2, any

map f : Σp,qJ →M2 extends to a map f̄ : Σp,qM2 →M2 as in the diagram below.

Σp,qJ M2

Σp,qM2

f

f̄

Equivalently, it suffices to show that for every map f : Σp,qJ → M2 there is an

element λ ∈M2 such that f(x) = λx for all x ∈ J .

In order to show that Baer’s criterion is satisfied, we first need to investigate

ideals of M2. A few examples are shown in Figure A.1. The first ideal pictured is

generated by three elements in the upper cone and contains the entire lower cone.

The second ideal is generated by 3 elements in the lower cone. The last two ideals

shown here are infinitely generated by elements in the lower cone.

FIGURE A.1 Some ideals in M2.

For our purposes it will be useful to classify graded ideals of M2 as one of two

types. We use the notation J+ = M+
2 ∩ J and J− = M−2 ∩ J .
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Lemma A.0.1. Every graded ideal J ⊆M2 is one of the following two types,

I. J is finitely generated by homogeneous elements x1, . . . , xn with each xi ∈ M+
2

and J− = M−2 ; or

II. J+ = 0.

Proof. Observe that if J contains a nonzero homogeneous element of M+
2 , i.e. there

exists x = ρmτn ∈ J for some m,n ≥ 0, then M−2 ⊆ J . For example, θ ∈ J because

θ =
θ

ρmτn
· ρmτn =

θ

ρmτn
· x ∈ J.

More generally, for any a, b ≥ 0

θ

ρaτ b
=

θ

ρm+aτn+b
· ρmτn =

θ

ρm+aτn+b
· x ∈ J.

So indeed M−2 ⊆ J . Since M+
2
∼= F2[ρ, τ ] is polynomial, any graded ideal of this

form is finitely generated by some number of homogeneous elements in M+
2 .

Alternatively, if J+ = 0, then J only contains elements of M−2 . We have seen

such an ideal may be finitely generated or infinitely generated. In either case we

call J an ideal of type II.

Returning to Figure A.1, we see the first ideal pictured is type I and the rest

are type II. Next we will describe all possible nonzero maps f : Σp,qJ → M2.

We will see there are not really any interesting maps. Any such f is completely

determined by the bidegree (p, q) of the suspension.

Lemma A.0.2. Let J ⊆ M2 be a graded ideal and f : Σp,qJ → M2 be a nontrivial

map. Then exactly one of the following holds,
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I. J is type I and either

(i) f(ρmτn) = ρaτ b for some m,n ≥ 0 and a ≥ m, b ≥ n; or

(ii) f(ρmτn) = θ
ρaτb

for some m,n ≥ 0 and a, b ≥ 0.

II. J is type II and f
(

θ
ρmτn

)
= θ

ρaτb
for some m,n ≥ 0 and m ≥ a ≥ 0, n ≥ b ≥ 0.

Proof. We will consider each type of ideal separately.

I. We begin by assuming J is type I so that J+ is nontrivial and J− = M−2 . If

f(J+) = 0 then f(ρmτn) = 0 for all ρmτn ∈ J+. But then for any a, b ≥ 0

f

(
θ

ρaτ b

)
= f

(
θ

ρa+mτ b+n
· ρmτn

)
=

θ

ρa+mτ b+n
· f(ρmτn) = 0.

So we also have f(J−) = 0, contradicting that f is nontrivial. Hence there

must be some m,n ≥ 0 such that ρmτn ∈ J+ and f(ρmτn) 6= 0. Now there are

two cases, either f(ρmτn) ∈M+
2 or f(ρmτn) ∈M−2 .

(i) Suppose f(ρmτn) ∈ M+
2 so that f(ρmτn) = ρaτ b for some a, b ≥ 0.

We just need to show that a ≥ m and b ≥ n. This follows immediately

because if either a < m or b < n then

0 = f(0) = f

(
θ

ρaτ b
· ρmτn

)
=

θ

ρaτ b
· f(ρmτn) = θ

in M2, a contradiction.

(ii) Now suppose f(ρmτn) ∈ M−2 . Then f(ρmτn) = θ
ρaτb

for some a, b ≥ 0.

There is no further restriction on the values of a and b in this case.

II. Next we consider an ideal of type II, so that J+ = 0. Since f is nontrivial,

there must be some m,n ≥ 0 with f
(

θ
ρmτn

)
6= 0. It is not possible that

42



f
(

θ
ρmτn

)
∈ M+

2 because if f
(

θ
ρmτn

)
= ρaτ b for some a, b ≥ 0, then we get

an immediate contradiction

0 = f

(
ρm+1τn+1 · θ

ρmτn

)
= ρm+1τn+1 · f

(
θ

ρmτn

)
= ρa+m+1τ b+n+1.

So it must be the case that f
(

θ
ρmτn

)
∈ M−2 . Then f

(
θ

ρmτn

)
= θ

ρaτb
for some

m,n ≥ 0 and a, b ≥ 0. It remains to show that m ≥ a and that n ≥ b. If either

m < a or n < b, then again we get a contradiction because

0 = f(0) = f

(
ρaτ b · θ

ρmτn

)
= ρaτ b · f

(
θ

ρmτn

)
= ρaτ b · θ

ρaτ b
= θ.

This completes the proof.

It appears we have not fully described each map in the previous lemma since

we only described the image of a single element. The following lemma implies that

any map of a graded ideal f : Σp,qJ → M2 is completely determined by a single

nonzero element in its image. Hence, Lemma A.0.2 does indeed classify maps of

graded ideals to M2.

Lemma A.0.3. Let J ⊆ M2 be a graded ideal with two maps f, g : Σp,qJ → M2.

If x ∈ J is a nonzero homogeneous element with f(x) 6= 0 and f(x) = g(x), then

f = g.

Proof. We begin by observing that M2 has at most one nonzero element in any

given bidegree. This implies that if m, x, and y are homogeneous elements of M2

with mx 6= 0 and mx = my, then x = y. We call this property P .

Let A = {y ∈ J | f(y) = g(y)}. Our goal is to show that A = J . Notice that

A ⊆ J is a submodule because f and g are both M2-module maps. Furthermore, if
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m ∈ M2 and y ∈ J are homogeneous elements with my ∈ A and f(my) 6= 0, then

y ∈ A. This is because

mf(y) = f(my) = g(my) = mg(y)

and by property P we must have f(y) = g(y). We now proceed with several cases,

considering each type of ideal separately.

I. Suppose J is type I. Then J is finitely generated by some elements of M+
2 and

J− = M−2 .

(a) Suppose x ∈ J+. The ideal generated by x is type I so it contains M−2 .

Since A is a submodule and x is in A by assumption, J− = M−2 ⊆ A.

Consider a homogeneous element y ∈ J − A, which would have to be

in J+. Set z = lcm(x, y) so that z = ρaτ by for some a, b ≥ 0. Either

f(x) ∈ M+
2 or f(x) ∈ M−2 . Using z, we can show in either case that in

fact y must be in A.

i. Suppose f(x) ∈ M+
2 . Since z ∈ A, f(z) = g(z). There is no ρ- or

τ -torsion in M+
2 so f(z) 6= 0. By property P we see that f(y) = g(y)

and indeed y ∈ A.

ii. Suppose f(x) ∈ M−2 . Again f(z) = g(z) since z ∈ A. It is possible

that f(z) = 0 for degree reasons, in which case f(y) = g(y) = 0 for

degree reasons as well. Otherwise, f(z) 6= 0 and again by property P

we have f(y) = g(y).

(b) Now suppose that x ∈ J− (though we still assume J is type I). Then

we can write x = mx′ for some x′ ∈ J+ and m ∈ M−2 . As usual, since

f(x) = f(mx′) 6= 0 and mx′ ∈ A, property P implies that f(x′) = g(x′).
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Now x′ satisfies case (a) above. From the previous argument we have

that A = J .

II. Suppose J is type II. Then x ∈ J− because J+ = 0. Suppose y ∈ J − A

is a nonzero homogeneous element. Set z = lcm(x, y) so that z = ρaτ by for

some a, b ≥ 0 and repeat the argument in case (a)(ii) above. From the proof of

Lemma A.0.2 it is not possible that f(x) ∈M+
2 , so we are done.

This completes the proof that A = J and so f = g.

We are now ready to prove that M2 is self-injective. The following proposition

also appears as Proposition 4.0.2.

Proposition A.0.4. The regular module M2 is injective as an M2-module.

Proof. From the discussion of the graded version of Baer’s criterion above, it

suffices to show that for any graded ideal J ⊆ M2 and any map f : Σp,qJ → M2,

there is an element λ ∈ M2 such that f(x) = λx for all x ∈ J . Let J be an ideal

and f : Σp,qJ → M2. Of course, if f = 0 then we can take λ = 0, so assume f 6= 0.

Every nontrivial map f satisfies one of the cases described in Lemma A.0.2, so we

consider each separately.

I. Assume the ideal J ⊆ M2 is type I so that J+ contains some elements of M+
2

and J− = M−2 .

(i) Suppose f(ρmτn) = ρaτ b for some m,n ≥ 0 and a ≥ m, b ≥ n. Define

g : Σp,qJ → M2 to be multiplication by λ = ρa−mτ b−n so we have

g(x) = ρa−mτ b−n · x for all x ∈ J . Then f(ρmτn) = g(ρmτn) and by

uniqueness from Lemma A.0.3 we have that f = g.
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(ii) Suppose f(ρmτn) = θ
ρaτb

for some m,n ≥ 0 and a, b ≥ 0. Now we

define g : Σp,qJ → M2 to be multiplication by λ = θ
ρa+mτb+n . Again

f(ρmτn) = g(ρmτn) and by uniqueness f = g.

II. Finally assume the ideal J ⊆ M2 is type II so that J+ = 0. We know in this

case f
(

θ
ρmτn

)
= θ

ρaτb
for some m,n ≥ 0 and m ≥ a ≥ 0, n ≥ b ≥ 0. Now f

agrees with multiplication by λ = ρm−aτn−b.

We have shown every map f : Σp,qJ → M2 is multiplication by some element

λ ∈M2, which completes the proof that the regular module is injective.

46



APPENDIX B

MOTIVATION

The following computations of RO(C2)-graded cohomology for the torus

were joint work with Eric Hogle and served as part of the motivation for the main

theorem. There are six C2-actions on the torus T = S1 × S1 up to equivariant

isomorphism (see [4]). In Figure B.1 we see the cohomology of the torus Ttriv with

the trivial action, Trefl with action given by reflection in either the horizontal or

vertical plane, Tspit with action given by rotation about an axis which meets the

torus at four points, Trot with the free rotation action, Tanti with the antipodal

action, and finally Tswap with the action that swaps the two generators of H1
sing(T ).

We see here the cohomology of each torus, as an M2-module, consists only of

some number of shifted copies of the cohomology of a point and some number of

shifted copies of the cohomologies of antipodal spheres.1

1Although Trot and Tanti have the same cohomology in F2-coefficients, they are not isomorphic
C2-spaces as H∗,∗(Trot;Z) 6∼= H∗,∗(Tanti;Z).
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FIGURE B.1 Cohomology of C2-actions on a torus.
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