

BOTFLOWMON: IDENTIFY SOCIAL BOT TRAFFIC WITH NETFLOW AND

MACHINE LEARNING

by

YEBO FENG

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Master of Science

June 2018

ii

THESIS APPROVAL PAGE

Student: Yebo Feng

Title: BotFlowMon: Identify Social Bot Traffic with NetFlow and Machine Learning

This thesis has been accepted and approved in partial fulfillment of the requirements for
the Master of Science degree in the Department of Computer and Information Science
by:

Jun Li Chairperson
Ramakrishnan Durairajan Member
Lei Jiao Member

and

Sara D. Hodges Interim Vice Provost and Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2018

iii

© 2018 Yebo Feng
This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike (United States) License.

iv

THESIS ABSTRACT

Yebo Feng

Master of Science

Department of Computer and Information Science

June 2018

Title: BotFlowMon: Identify Social Bot Traffic with NetFlow and Machine Learning

With the rapid development of online social networks (OSN), maintaining the

security of social media ecosystems becomes dramatically important for public. Among

all the security threats in OSN, malicious social bot is the most common risk factor.

This paper puts forward a detection method called BotFlowMon that only utilize

NetFlow data to identify OSN bot traffic. The detection procedure takes the raw NetFlow

data as input and use DBSCAN algorithm to aggregate related flows into transaction

level data. Then a special data fusion technique along with a visualization method are

proposed to extract features, normalize values and help analyzing flows. A new clustering

algorithm called Clustering Based on Density Sort and Valley Point Competition is also

designed to subdivide transactions into basic operations. After the above preprocessing

steps, some classic machine learning algorithms are applied to construct the classification

model.

v

CURRICULUM VITAE

NAME OF AUTHOR: Yebo Feng

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

 University of Oregon, Eugene, United States
 Yangzhou University, Yangzhou, China

AREAS OF SPECIAL INTEREST:

 Data Science
 Machine Learning
 Network and Security

PROFESSIONAL EXPERIENCE:

 UO Graduate Research Assistant, Jun 16, 2017 to Sep 15, 2017

 UO Graduate Teaching Fellowship, Sep 16, 2017 to June 15, 2018

vi

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Professors Lei and Ramakrishnan for their

assistance in the preparation of this manuscript. I gratefully appreciate my advisor Prof. Jun

Li’s contributions of time, ideas, and funding to make my master experience productive

and stimulating. Also, I want to give thanks to my parents, who rendered me kind help

when I felt depressed.

Lastly, thanks to all my friends and faculties in University of Oregon, who gave me

supports, happiness and precious memories in the last two years.

vii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 01

II. RELATED WORK ... 03

 Content-Based Approach ... 03

 Topology-Based Approach .. 04

 CrowdSourcing-Based Approach .. 04

III. DATA SOURCE .. 06

 Chat Bot ... 07

 Poster Bot ... 08

 Amplification Bot .. 08

 OSN Crawler .. 09

IV. BOTFLOWMON SCHEMA ... 11

 Preprocessing ... 12

 Aggregation.. 13

 Flow Fingerprint Generation.. 14

 Flow Subdivision ... 19

 Density ... 20

 Potential Point .. 21

 Valley Point ... 21

 Valley Point Competition .. 21

 Machine Learning .. 22

V. EVALUATION ... 24

viii

Chapter Page

VI. CONCLUSION.. 29

REFERENCES CITED .. 30

ix

LIST OF FIGURES

Figure Page

1. Flow chart for BotFlowMon .. 11

2. Quantile to Quantile plot of NetFlow size and Number of Packets 17

3. Quantile to Quantile plot of TOS ... 17

4. A transaction lasting for 35.74s, containing 220 NetFlows. 18

5. More Flow Fingerprint examples... 19

6. Subdivision example .. 22

7. Purity scores with different r values .. 25

8. Scatter Diagram for Subdivision .. 26

9. Result for 6*200 matrix version .. 27

10. Result for 4*200 matrix version .. 27

x

LIST OF TABLES

Table Page

1. Configuration of NetFlow .. 06

2. Configuration of Flow Fingerprint matri ... 15

3. Detailed results for CNN ... 27

 1

CHAPTER I

INTRODUCTION

The definition of online social networks (OSN) encompasses networking for

business, pleasure, and all points in between. Over the past decades, we have witnessed

the rapid expansion of OSN. Based on the statistics from Q1 2018, Facebook achieved

more than 2.196 billion active users around the world, and twitter also reached 336

million.

With such a boom, the security of OSN becomes a severe problem worthy of our

concern. OSNs are increasingly threatened by social bots (E Ferrara, 2016), which are

software-controlled social accounts and visitors that mimic human users or crawl for

private data with abnormal intentions (J Zhang, 2016). In fact, not all the social bots are

malicious, lots of companies and institution use bots for customer service and

information spreading. However, there have been reports on various attacks, abuses, and

manipulations based on social bots (E Ferrara, 2015), such as infiltrating Facebook (Y

Boshmaf, 2011) or Twitter (L Bilge, 2009), launching spam campaign (H Gao, 2010),

performing financial fraud and conducting political astroturf (J Ratkiewicz, 2011).

The Existing works to detect bots on OSNs need to utilize the network topology,

private data in payload or account activity histories, which is sensitive and might violate

privacy. In this paper, a new detection method called BotFlowMon is proposed that inputs

flow level data such as Cisco's NetFlow (B Claise, 2004) to differentiate social bots

traffic from legitimate (human) traffic. From NetFlow data, we can just get low volume,

coarse-grained, non-application specific data (R Sommer, 2002) and cannot touch the

sensitive payload information, making this approach privacy-preserving and can be

 2

deployed by telecommunications companies like AT&T and Xfinity, also adds challenges

to detection procedure. While with the help of some data fusion and machine learning

techniques, it is possible to identify social bot traffic in such scenario.

This BotFlowMon system uses labeled NetFlow data (social bot traffic versus

legitimate traffic) as ground truth and utilize four important modules to perform the

classification. (1) The aggregation module transfers the raw NetFlow data into transaction

level dataset to make the characteristics obvious for detection. (2) Flow fingerprint

generation module extract features from transaction level dataset and normalize the

features into matrix. In this step, a flow fingerprint visualization method is also

developed to help analysis. (3) The subdivision module cut each transaction into more

basic operations, which accelerates the learning model to converge and reduce the data

volume requirement for training. (4) Machine learning module, takes the preprocessed

data as input to construct a classification model and achieves satisfactory accuracy.

 3

CHAPTER II

RELATED WORK

In order to maintain secure and harmonious online social environments for public

users, network security community has been developing innovative techniques to identify

bot users effectively. According to the different kinds of data the techniques require, we

can generally classify the detection approaches into three categories: (A) content-based

detection approaches, (B) detection methods based on OSN topology, (C) approaches

require crowdsourcing on posts and profile analysis (A Karataş, 2011). There are some

other approaches that may be the mixture of these three categories. No doubt, they have

great performances on identifying specific types of OSN bots, but to a certain degree, the

sensitive data they require to utilize intrude upon users' privacy, making these approaches

difficult to be extensively used.

Content-Based Approach

The key idea of content-based bot detection method is to observe the differences

between human being and bot in terms of tweet contents, activity histories and linguistic

features. Nowadays, big data is exploding as more and more information is collected and

stored, it becomes much easier to fetch massive labeled data from ISPs. Meanwhile,

benefitting from rapid development of machine learning, nature language processing and

semantic analysis, constructing a classification model to classify bots becomes very

efficacious. Lots of great content-based detection approaches have been proposed:

"BotOrNot" (CA Davis, 2016), as the first social bot detection framework publicly

available for Twitter, analyzed 15k manually verified social bots and 16k legitimate

 4

accounts and achieved 86\% accuracy; SentiBot (JP Dickerson, 2014), relies on tweet

syntax, semantics and user behaviors to distinguish human and social bots.

The limitations of this approach are that large volume of high-quality labeled

social data is required for the analysis process and the collection of the data needs to be

carefully performed to avoid invasion of privacy. Moreover, as bots are becoming more

and more sophisticated by using AI powered techniques, this approach is facing

unprecedented challenges.

Topology-Based Approach

Approaches based on topology (social network structure) focus on detecting

amplification bots and Sybil account. For these attacks, multiple accounts are controlled

by one master, so we can assume that these malicious accounts are connected to each

other and have some similar attributes. Once the topology structure of the network is

acknowledged, some methods like Random Walk, Bayesian Network and Loopy Belief

Propagation can be applied to identify malicious accounts. In 2009, SybilInfer (G

Danezis, 2009) utilizes the combination of Bayesian inference and Monte-Carlo sampling

techniques to estimate the set of legitimate and Sybil accounts; Sybilbelief (NZ Gong,

2014), identifies Sybil nodes with low false positive rates and low false negative rates by

using Markov Random Field and Belief Propagation.

CrowdSourcing-Based Approach

As crowdsourcing is becoming a valuable method for companies and researchers

to measure scores for tasks, some bot detection schemas based on crowdsourcing have

been put forward. In 2012, Gang Wang (G Wang, 2012) constructed a two-layered bot

detection system containing filtering and crowdsourcing layer. The leverage of this

 5

strategy faces two fundamental issues. First, it is hard to manage security and privacy

issues, strict policy should be implemented when sharing the information with the crowd

to prevent privacy leaks. Second, it is expensive to keep the system running both duo to

the high running time cost of the crowd and cost of crowd workforce.

 6

CHAPTER III

DATA SOURCE

NetFlow is a feature that was introduced on Cisco routers that provides the ability

to collect IP network traffic as it enters or exits an interface. Initially, it is invented for

monitoring overall network traffic, so the information we can leverage from NetFlow is

very basic and limited, only contains partial attributes from the header of IP datagram.

The configuration of the NetFlow is shown in the table below:

Table 1

Configuration of NetFlow

Configuration of NetFlow
Start Time Input Interface num
End Time Output Interface num
Duration Packets
Protocol Bytes
Source Address Flows
Destination Address Packets
Source Address Port TCP Flags
Destination Address Port ToS
Source Port bits per second
Destination Port packets per second
Source AS Bytes per package
Destination AS

The datasets we use to construct and test BotFlowMon come from two sources:

traffic generated and gathered from our own computers and routers, which has superior

flexibility and conveniences for simulation and experiments; datasets generated and

collected from University of Oregon's campus traffic, although it is a relatively small ISP,

still offers realistic scenario verification tests.

For legitimate flows, no API related scripts can be used during the data creation

process, so we created and labeled the legitimate traffic flow by manually doing normal

 7

daily operations on Twitter and Facebook. For social bot traffic, a variety of social bot

programs are used to perform bot activities on Twitter and Facebook. The traffic of them

are collected and labeled as the ground truth. In order to have a comprehensive social bot

simulation and fetch highly credible labeled data, we categorize the social bots to four

types by implementation mechanisms: (A) chat bot, the program or artificial intelligence

based script which conducts a conversation via auditory or textual methods; (B)poster

bot, automatically disseminates fraud information, spam and commercial promotions by

tweeting, posting and commenting; (C) amplification bot, massively amplifies certain

messages or conduct speculations by working as fake follower or forwarding robot; (D)

OSN crawler, a programmed spider that systematically browses and collect private data

for malicious intentions.

Chat Bot

Chat bots are very active on messaging applications such as Twitter DM,

Facebook Messenger or WeChat. They can be artificial intelligence powered or simply

logic-based programs that automatically perform conversations with normal users for

unusual purposes.

The simulation of this abnormal behavior relies on some widely used chat bot

frameworks, APIs and open-sourced programs such as botmaster (RS Wallace, 2003),

Ontbot (H AI-Zubaide, 2011) and python-twitter API. We created hundreds of Twitter

and Facebook accounts and performed these chat bot programs only for research purpose.

Multitudinous flow traffic of the conversations between human beings and these chat bots

are collected, with different frequencies, response times and transmission contents

(include images, audio files, texts and hyperlinks).

 8

Poster Bot

Benefitting from easily used official and third-party APIs, poster bot becomes the

most common social bot in OSN. They have started to distribute spam tweets and

Facebook posts which can be broadly defined as unwanted that contains malicious URLs

in most cases or occasionally malicious texts (J Zhang, 2016) (C Grier, 2010). These

malicious URLs could cause financial, privacy losses to the users and pollute the social

network environment. According to a study in 2010 (C Grier, 2010), roughly 8% of the

URLs in tweets are malicious ones that direct users to scams, malware and phishing sites,

and about 0.13% of the spam URLs will be clicked.

In order to collect data for designing effective spam defenses, we wrote several

poster bot programs based on APIs such as Tweepy (J Roesslein, 2009) and Facebook

API (W Graham, 2008). We ran these bots program during different time periods to post

some harmless messages that contained textual contents, tiny videos, images and external

links on Twitter and Facebook. The related NetFlow traffic data in different activity rates

and network environments are collected to enrich the training dataset.

Amplification Bot

Amplification bot, benefits from its large volume, can be easily used to create

some heat topics for commercial purposes and defraudations. Without creating new

contents, amplification bots often work as fake followers, those Twitter or Facebook

accounts specifically created to inflate the number of followers of a target account. Fake

followers are dangerous for the social platform and beyond, since they may alter concepts

like popularity and influence in the Twittersphere, hence impacting on economy, politics,

 9

and society (S Cresci, 2015). It also serves as forwarding and liking robot, popularizes

some unwanted junk information and helps commercial promotion.

From its operation mechanism, most amplification bots are sybil accounts,

powered by a large botnet and have one bot master to send commands. Since the social

topology is unknown in NetFlow data, we only need to simulate each amplification bot's

interactions with OSNs. OAuth (D Hardt, 2012) software is used for token management

and switching accounts. API-based bot scripts are also implemented for amplification bot

simulation.

OSN Crawler

OSNs such as Facebook and Twitter, contain valuable data about millions of users

that coveted by commercial institutions and fraudulent groups. The core functionality of

OSNs is enabling users to share slices of life, personal perspectives and profiles,

however, can be exploited by crawlers to aggregate data about large numbers of OSN

users for re-publication or other more nefarious purposes that violate users' privacy and

security.

There are two kinds of OSN crawlers in social networks. One is API-based, which

relies on a relative large botnet and to dig users' private sensitive date. Because in OSNs,

lots of users' information can only be seen by their friends, so a large amount of bots are

need to get access to privacy efficiently. Once the relationship is built, private data can be

easily fetched with basic API functions.

Another kind of OSN crawler is page crawler, instead of using API privileges, it

directly reads the HTML files of OSNs and utilize regular expression to extract target

information. The NetFlow traffic of this bot has large resemblance to normal users'

 10

traffic, but still differs on flow density, operation regularity and frequency, making the

trace detectable if properly analyzed.

Both the two kinds of crawlers are roundly simulated during data collection step.

 11

CHAPTER IV

BOTFLOWMON SCHEMA

The flow chart of the BotFlowMon is shown in the figure 1. For the NetFlow data

from University of Oregon campus traffic, a precise preprocessing step is designed to

denoise, filter irrelevant flows, recognize labeled traffic and extract only OSN related

NetFlow. For traffic generated and collected from our own experimental platforms, noise

reduction and OSN flow extraction steps are still required to obtain pure data. Then, the

aggregation module uses DBSCAN (M Ester, 1996) algorithm to aggregate correlative

flows into a group data that can represent user's transaction. We designed a data fusion

method called Bot Flow Fingerprint and implemented in the flow fingerprint generation

module to extract normalized features, also makes the data suitable for machine learning.

Finally, the subdivision module and machine learning module collaborate to output one

classification model that has satisfactory accuracy.

Figure 1. Flow chart for BotFlowMon

 12

Preprocessing

For NetFlow data from campus traffic, the first indispensable step is grouping

flows by user. In campus network environment, thousands of users' network traffic are

mixed together, we need to settle each single user's flows into one group by matching IP

address and address port number. For data amassed from our own experimental

platforms, this process can be skipped because we strictly controlled that only one user's

operations can be performed at one time.

Then, a filtration machine is constructed to wipe out flows with zero Byte, zero

duration, irrelevant protocols (such as ICMP) and external flows that pass by edge router.

For now, we have relatively clean NetFlows, but we still need to extract the traffic

flows only related with the OSNs. The basic thought is for each flow, we check its

interaction IP addresses to test whether it belongs to Facebook, Twitter or other social

websites. However, one concern is the IP blocks of the OSNs may change over time, and

each OSN has a huge number of IP blocks. It is difficult to build a static IP library to

accurately match the result. The breakthrough is that autonomous systems will update

router tables to maintain network reachability information, the access to the dynamic

router table enables us to match the most updated and historical accurate IP blocks. With

those information, a IP block library can be built dynamically to help the extraction

process. In order to obtain that information, BGP stream (C Orsini, 2016) is used in this

step. BGP stream is an open-source software framework for the analysis of both historical

and real-time Border Gateway Protocol (BGP) measurement data. Those BGP data

contain the updated and historical router information including the router tables. By using

 13

the BGPStream API, we can look up what IP blocks are forwarded to Facebook and

Twitter at different time.

The IP address matching process is implemented with the longest prefix match

algorithm (T Hayashi, 1999), which refers to an algorithm used by routers in Internet

Protocol (IP) networking to select an entry from a forwarding table. The algorithm also

needs to be executed in parallel, because for one single day, there could be more than

100GB data generated from campus traffic and around 500MB data collected from our

small experimental platform. The parallelization can significantly increase the efficiency

of the processing.

With the help of BGP stream and parallelized longest prefix match algorithm, we

are able to efficiently extract the only OSN related flow data. Although there still could

contain some tiny noise in the grouped data such as traffic delivered by CDN protocol,

sufficient detailed traffic flows are obtained for analysis and would not affect final result.

Aggregation

Inasmuch as the little information flow-level data contains, DBSCAN (M Ester,

1996), a density-based clustering algorithm, is used to aggregate the related flows into

one transaction, so that the features of both malicious and legitimate traffic become

conspicuous and make it feasible to distinguish. Here, transaction refers to that one user

performs several operations on OSN for some purposes in a relatively short time period.

For example, a transaction can be taking 30 seconds to reply some messages through

Facebook Messenger or tweeting 20 anomalous hyperlinks on twitter within one minute.

We treat flows as points scattered on timeline, DBSCAN groups together points

that are closely packed together (points with many nearby neighbors), marking as outliers

 14

points that lie alone in low-density regions (whose nearest neighbors are too far away).

This one-dimensional DBSCAN algorithm will be used to group the data by taking two

parameters as threshold values, one is density threshold value minPts, refers to bits per

second (bps) in this case; one is radius threshold value ε, refers to time interval between

flows. Based on experimental results, we set minPts as 1500 bps, a relatively small value

for OSN traffic, because some EventListeners in web scripts and API programs

frequently generate some tiny streams between users and OSN servers, these traffic

should definitely be included instead of being labeled as outliers. We set ε as relatively

large values between 10 to 20 seconds, because lots of people may spend some time on

reading content on OSN, with no or very few NetFlow data created during this time

period, but it still needs to be treated as a single transaction. Moreover, if we get very

large patterns after the aggregation process, we can still cut this pattern into pieces in the

following steps to fix the complexity problem, but there are no ways to fix if we get very

tiny patterns containing too few information.

In addition, as a solution for getting a grip on complexity, one transaction's time

duration should be in the range of 1.5 seconds to 60 seconds. Any transactions shorter

than that range will be discarded as noise (could be OSN notifications or status checking

traffic) and any transactions longer than that range will force to be divided evenly until

qualified.

Flow Fingerprint Generation

After the aggregation process, we can obtain transactions level data represented

by different numbers of flows. In order to easily apply machine learning algorithms to

train classification models, we need encode the transactions into normalized data,

 15

transferring both numerical attributes and symbolic attributes into the same format. Here,

a data fusion method named Flow Fingerprint along with a visualization method are

proposed for this reason.

The basic idea of the Flow Fingerprint approach is to transfer the aggregated

flows to a 6 × 200 matrix shown as the table below. For each transaction level data, it

contains specific number of flows that have different start time and end time. The

transaction itself also has an overall start and end time. We perform equal division to

partition the transaction time duration into 200 pieces and extract features from each

piece to fill each column of the matrix respectively.

Table 2

Configuration of Flow Fingerprint matrix

Flow Fingerprint matrix
1: outgoing traffic bps bps𝑜1, bps𝑜2, bps𝑜3,… , bps𝑜200
2: outgoing traffic pps pps𝑜1, pps𝑜2, pps𝑜3,… , pps𝑜200
3: outgoing traffic ToS tos𝑜1, tos𝑜2, tos𝑜3, … , tos𝑜200
4: incoming traffic bps bps𝑖1, bps𝑖2, bps𝑖3,… , bps𝑖200
5: incoming traffic pps pps𝑖1, pps𝑖2, pps𝑖3,… , pps𝑖200
6: incoming traffic ToS tos𝑖1, tos𝑖2, tos𝑖3,… , tos𝑖200

Row 1 to row 3 are features extracted from outgoing NetFlows, while row 4 to

row 6 are features extracted from incoming NetFlows. They both take bits per second

(bps), packets per second (pps) and type of service (ToS) as data entries. At one moment,

several different flows could overlap, so the bps and pps values should be the

accumulation of the overlap NetFlows. Let F be the set of flows overlapped at time t, the

pps and bps values at t can be calculated with the following equations.

bps(t) =∑𝑓.𝑏𝑝𝑠
𝑓∈𝐹

 16

pps(t) = ∑𝑓. 𝑝𝑝𝑠
𝑓∈𝐹

ToS, a 8-bit field that becomes increasingly important as voice and video gain

popularity on today's social networks. It is used for prioritizing traffic to guarantee high

quality datagram transmission service. As it is a symbolic value, we only fill the

dominating flow's ToS value into the matrix when several flows overlapped. Here,

dominating flow means the flow has the largest bps value at the moment. There is one

concern that in NetFlow system, two bits of ToS field are reserved for customization,

theoretically, ISPs can rewrite the whole ToS field for differentiated demands, which

means the classification model may not be universal. So, we will train another

classification model only utilizing 4 × 200 matrix (incoming and outgoing ToS are wiped

off) as a comparison. This comparison model would be more generally applicable but has

weaker performance.

The normalization of the matrix is based on the dispersion of bps, pps and ToS

values in the entire network. In order to achieve that, we fetched 235GB NetFlow data

from campus traffic including internal router flows and performed the same matrix

transformation procedure on these data. Then create a new dataset that have the same

number of values that evenly distribute in the range of 0 to 255. Three gigantic quantile to

quantile plots are drawn based on these two dataset to represent the dispersions of bps,

pps and ToS values respectively (figure 2 and 3 are the quantile to quantile plots of bps

and pps). From now on, three value mapping functions 𝑓𝑟(𝑏𝑝𝑠), 𝑓𝑔(𝑝𝑝𝑠) and 𝑓𝑔(𝑡𝑜𝑠) can

be constructed to normalize the matrix values into the range of 0 to 255 based on the

quantile to quantile plots. The final matrix is called flow fingerprint.

 17

Figure 2. Quantile to Quantile plot of NetFlow size and Number of Packets

Figure 3. Quantile to Quantile plot of TOS

Why should we normalize the matrix values into 0 to 255? Actually, in the

machine learning step, we still convert them into the range of 0 to 1 to fit training

algorithms, but for now, we can easily visualize the matrix for better observation and

analysis with the 0 to 255 range. We visualize the 6 × 200 matrix to two colorful bars in

standard RGB space with the length of 200 pixels.

 18

Figure 4. A transaction lasting for 35.74s, containing 220 NetFlows.

Figure 4 is an example of the visualized flow fingerprint, which represents a

legitimate user that spent 35.74 seconds browsing Facebook and reloaded the page twice

during this transaction. The beginning and ending position of the image represent the

starting time and ending time of the transaction. The bar above denotes the outgoing

traffic, while the bar beneath denotes the incoming traffic. The RGB value of each pixel

is calculated by the following equation. By figuring out the difference value with 255,

column lager bps and pps values tends have deeper color while column with smaller bps

and pps values tends to have lighter color.

RGB(bps, pps, tos) = (255 − 𝑓𝑟(𝑏𝑝𝑠), 255 − 𝑓𝑔(𝑝𝑝𝑠), 255 − 𝑓𝑏(𝑡𝑜𝑠))

Some more examples are shown in figure 5. Flow fingerprint 1 and 2 are two

users conducting a conversation with each other through Twitter DM, the difference is

flow fingerprint 1 was generated by legitimate user while flow fingerprint 2 was

generated by a chat bot; Flow fingerprint 3 was created by a poster bot, using API to

tweet textual messages on Twitter for every 3 seconds; Flow fingerprint 4 is a hybrid bot,

crawling friends' photo albums and posting link spams at the same time.

 19

Figure 5. More Flow Fingerprint examples

Flow Subdivision

After the previous preprocessing steps, we already have normalized dataset can

perfectly fit machine learning algorithms. However, satisfactory results still cannot be

obtained due to two issues: (A) There can be countless kinds of bot and human

transactions existing, with different operation frequencies, combinations of operations

and density dispersions. This makes the limited training set cannot cover all possible

application scenarios; (B) The training sets we have now still features different time

durations, range from two seconds to one minute, increasing challenges for the learning

model convergence.

As a solution for these two issues, we designed a new cluster algorithm named

Clustering Based on Density Sort and Valley Point Competition to subdivide the

 20

transaction level data into more basic operation level data. The key idea is, one OSN

transaction is a combination of different basic operations. When bots and humans are

performing single operation in OSNs (such as tweeting, clicking like button and making

comment), the flow density is relatively higher than other inactive time. We can identify

legitimate users' and bots' transactions by performing the classification of bot operations

versus human operations. Based on experimental results, it is much easier to differentiate

bot operations from human operations through NetFlow data.

The pseudocode of the algorithm is shown above, which takes one dataset and

radius threshold value r as input. We first extract the flow fingerprint matrix's incoming

and outgoing bps rows out, sum the values from the same column together to generate a

new 1 × 200 matrix. Then take the new matrix as input dataset D, treat the value from

each column as single data point.

Density

For one data point p, there is a dataset D containing all the points within a r radius of p.

Then the density of p is summation of all the D's belonging points' bps values.

 21

Potential Point

For a cluster D, its potential point p should be within a r radius of one of D's

belonging point b.

∃b ∈ {x|x ∈ D ∧ dist(x, p) < r}

Valley Point

For point a, if it is the potential point of two or more clusters, then a is the valley

point of the neighboring clusters.

Valley Point Competition

Once some clusters are border by and a valley point appears, we need to make

judgement for how we should label that point. We have three choices here: (1) Combine

all the clusters together and make the point as the combined cluster's belonging; (2)

Combine some of the clusters together and label the point as the combined cluster's

belonging; (3) Do not combine any of them, just assign the valley point to one of the

clusters.

The process of making the choice is called valley point competition. In this

algorithm, if the density of the valley is larger than 50% of its around clusters' center

density, then we combine all the around clusters together and assign the valley point to

the combined cluster. If the density is less than 50% of its around clusters, then we assign

the valley point to the clusters with smallest number of belongings.

 22

Figure 6. Subdivision example

Machine Learning

The machine learning module uses operation level data labeled as bot flows and

legitimate flows to train the classification model. The prediction process also input

operation level data to analyze. Instead of outputting the result directly, it enables each

operation level data vote for its transaction level data's identity. This strategy makes the

sensitivity of the detection method can be controlled by setting different passing lines of

voting.

We used keras (F Chollet, 2015) with TensorFlow (M Abadi, 2016) to construct

the learning model. Since it is nonlinear high-dimensional data training, Multilayer

Perceptron (MLP) and Conventional Neural Network (CNN) are used as training

approaches.

 23

As stated before, due to the customizability of ToS field, two versions of data are

engaged to separately train two versions of models as a comparison to test the

universality. One is the data involves ToS, another is the data without ToS.

 24

CHAPTER V

EVALUATION

We first evaluated the subdivision component to see whether the Clustering Based

on Density Sort and Valley Point Competition algorithm can divide the transaction level

flows into operation level flows correctly.

The algorithm takes one radius threshold parameter r as input, whose unit is pixel

length. Different r values can generate different subdivision results and eventually make

differences to detection outcome. Figure 7 is the line chart that shows the clustering

purity scores with different r values. The horizontal axis represents the values of r and the

vertical axis represents the purity score of the resulted clusters (purity =

1
𝑁
∑ 𝑚𝑎𝑥𝑗|𝑐𝑖 ∩ 𝑡𝑗|𝑘
𝑖=1 , where N is the number of data points, k denotes the number of

clusters, 𝑐𝑖 is a cluster in C, and 𝑡𝑗 is the cluster generated by the algorithm which has the

maximum count for cluster 𝑐𝑖). We can see the algorithm is very sensitive to r parameter,

and optimal results can be generated when r is in the range of 18 to 22. For traffic

generated by bots, the subdivision module works well, can achieve up to 93.58% purity

when r=23, that's because bots' operations mostly utilize API to perform, making the

traffics have very clear flow fingerprint for classification (tend to be short and

concentrate). For legitimate transactions, the clustering result is inferior to bot

transactions. The maximal purity score we can achieve is 78.32% when r=26 and

legitimate transactions are more sensitive to the variation r. One reason is the boundaries

of different operations in legitimate transactions are blurry in flow level data. Almost all

the OSN websites have lots of EventListeners embedded into the HTML to preload the

contents dynamically, which fills in the blanks between operations. In addition, we rely

 25

on manual recording to label legitimate transactions, which adds the impreciseness to

evaluation.

Figure 7. Purity scores with different r values

The ultimate goal of subdivision is not precisely partition all the operations,

instead, it is designed to make the data more diacritical to help the machine learning

process. We randomly sampled 100 legitimate transactions and 100 bot transactions, then

recorded the number of operations and average duration times for each transaction after

subdivision. Figure 8 is the scatter plot of the result. All the bot transactions are divided

into relatively shorter operations compared with legitimate flows. Moreover, bots flow

fingerprints' durations are normalized to the range of 0 second to 15 seconds, while

legitimate operations distribute in the range of 0 second to 40 seconds. This procedure

can significantly help the training process.

 26

Figure 8. Scatter Diagram for Subdivision

Figure 9 shows the test result for machine learning module with 6 × 200 matrix

data (with incoming and outgoing bps, pps and ToS). The test set contains 675 bot

transactions and 420 legitimate transactions. For both Multilayer Perceptron (MLP) and

Conventional Neural Network (CNN) algorithms, we used 10-fold cross-validation to

check whether the model is overfitting. Since multiple actions had been taken to prevent

the model from overfitting, such as controlling the learning rate η and limit the number of

iterations, the cross-validation accuracy is very similar to the testing accuracy. As we can

see in the figure, with subdivision, the accuracy has an improvement of around 20%. As a

true-or-false classification with the bottom line of 50% accuracy, it is a huge

improvement. For here, CNN achieves the greatest result, with 93.61% of accuracy.

 27

Figure 9. Result for 6*200 matrix version

Figure 10. Result for 4*200 matrix version

As stated before, in order to guarantee the universality of BotFlowMon, we used

4 × 200 matrix version data (just with incoming and outgoing bps and pps) to train

another classification model. The result can be seen in figure 10. Surprisingly, the

accuracies only get around 1% lower than the 6 × 200 matrix version. The decrease of

dimensions will reduce the information but also make the model easier to converge,

especially for MLP. Again, CNN gets the best result in this model. The detailed

evaluation score for CNN in these two versions of models can be seen in the table below.

Table 3

Detailed results for CNN

 6*200 Matrix 4*200 Matrix

 28

Accuracy 0.9361 0.9233
Precision 0.9887 0.9821
Recall 0.9067 0.8919
F1 score 0.9459 0.9348

In real environment, with an accuracy of more than 93%, we can detect most of

bot traffic. Because one bot can create several transaction level flow fingerprints in a

specific time range, only one of the transactions is identified as illegimate, the bot can be

identified. Another concern is false alarm, we want legitimate traffic can 100% pass the

BotFlowMon system. Benefitting from voting mechanism in machine learning module,

we can set a strict passing line to adjust the sensitiveness. As experimented, if a

transaction can be labeled as illegimate only when more than 75% of the operations are

judged as illegimate, there will be no false alarms in this system, but the accuracy will

drop down to 89.56%.

 29

CHAPTER VI

CONCLUSION

With the rapid increasing of social bots activities, it becomes more and more

meaningful to develop an efficient social bots detection system. Compared with the

previous methods to limit social bots, BotFlowMon has the following advantages: (1)

Only NetFlow data will be involved to finish the whole detection procedure, which

avoids damaging the privacy of the users; (2) Due to its operating mechanism, this

system is easy to deploy. We only need to mirror NetFlow data from routers to

BotFlowMon system. (3) Have relatively higher accuracy compared with content-based

detection methods.

There are still lots of works need to be done in the future. This detection system

can be transferred into a real-time monitor system, which poses a velocity challenge; the

training and testing set can be further enriched to reinforce the classification model.

 30

REFERENCES CITED

Danezis, G., & Mittal, P. (2009, February). SybilInfer: Detecting Sybil Nodes using
Social Networks. In NDSS (pp. 1-15).

Ferrara, E. (2015). Manipulation and abuse on social media by emilio ferrara with ching-

man au yeung as coordinator. ACM SIGWEB Newsletter, (Spring), 4.

Roesslein, J. (2009). tweepy Documentation. Online] http://tweepy. readthedocs.

io/en/v3, 5.

Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. (2015). Fame for

sale: efficient detection of fake Twitter followers. Decision Support Systems, 80,
56-71.

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social

bots. Communications of the ACM, 59(7), 96-104.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm

for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96,
No. 34, pp. 226-231).

Ratkiewicz, J., Conover, M., Meiss, M. R., Gonçalves, B., Flammini, A., & Menczer, F.

(2011). Detecting and tracking political abuse in social media. ICWSM, 11, 297-
304.

Gong, N. Z., Frank, M., & Mittal, P. (2014). Sybilbelief: A semi-supervised learning

approach for structure-based sybil detection. IEEE Transactions on Information
Forensics and Security, 9(6), 976-987.

Grier, C., Thomas, K., Paxson, V., & Zhang, M. (2010, October). @ spam: the

underground on 140 characters or less. In Proceedings of the 17th ACM
conference on Computer and communications security (pp. 27-37). ACM.

Boshmaf, Y., Muslukhov, I., Beznosov, K., & Ripeanu, M. (2011, December). The

socialbot network: when bots socialize for fame and money. In Proceedings of the
27th annual computer security applications conference (pp. 93-102). ACM.

Bilge, L., Strufe, T., Balzarotti, D., & Kirda, E. (2009, April). All your contacts are

belong to us: automated identity theft attacks on social networks. In Proceedings
of the 18th international conference on World wide web (pp. 551-560). ACM.

Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., & Zhao, B. Y. (2010, November). Detecting

and characterizing social spam campaigns. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement (pp. 35-47). ACM.

 31

Orsini, C., King, A., Giordano, D., Giotsas, V., & Dainotti, A. (2016, November).
BGPStream: a software framework for live and historical BGP data analysis. In
Proceedings of the 2016 Internet Measurement Conference (pp. 429-444). ACM.

Sommer, R., & Feldmann, A. (2002, November). NetFlow: Information loss or win?. In

Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment (pp.
173-174). ACM.

Wang, G., Mohanlal, M., Wilson, C., Wang, X., Metzger, M., Zheng, H., & Zhao, B. Y.

(2012). Social turing tests: Crowdsourcing sybil detection. arXiv preprint
arXiv:1205.3856.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S.

(2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467.

Chollet, F. (2015). Keras.

Claise, B. (2004). Cisco systems netflow services export version 9.

Davis, C. A., Varol, O., Ferrara, E., Flammini, A., & Menczer, F. (2016, April).

Botornot: A system to evaluate social bots. In Proceedings of the 25th
International Conference Companion on World Wide Web (pp. 273-274).
International World Wide Web Conferences Steering Committee.

Zhang, J., Zhang, R., Zhang, Y., & Yan, G. (2016). The rise of social botnets: Attacks

and countermeasures. IEEE Transactions on Dependable and Secure Computing.

Karataş, A., & Şahin, S. A Review on Social Bot Detection Techniques and Research

Directions.

Graham, W. (2008). Facebook API developers guide. Infobase Publishing.

Hardt, D. (2012). The OAuth 2.0 authorization framework.

Al-Zubaide, H., & Issa, A. A. (2011, November). Ontbot: Ontology based chatbot. In

Innovation in Information & Communication Technology (ISIICT), 2011 Fourth
International Symposium on (pp. 7-12). IEEE.

Dickerson, J. P., Kagan, V., & Subrahmanian, V. S. (2014, August). Using sentiment to

detect bots on twitter: Are humans more opinionated than bots?. In Advances in
Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International
Conference on (pp. 620-627). IEEE.

 32

Hayashi, T., & Miyazaki, T. (1999). High-speed table lookup engine for IPv6 longest
prefix match. In Global Telecommunications Conference, 1999. GLOBECOM'99
(Vol. 2, pp. 1576-1581). IEEE.

Wallace, R. S. (2003). Be Your Own Botmaster: The Step By Step Guide to Creating,

Hosting and Selling Your Own AI Chat Bot On Pandorabots. ALICE AI
foundations, Incorporated.

	CHAPTER I
	INTRODUCTION
	CHAPTER II
	RELATED WORK
	Content-Based Approach
	Topology-Based Approach
	CrowdSourcing-Based Approach

	CHAPTER III
	DATA SOURCE
	Chat Bot
	Poster Bot
	Amplification Bot
	OSN Crawler

	CHAPTER IV
	BOTFLOWMON SCHEMA
	Preprocessing
	Aggregation
	Flow Fingerprint Generation
	Flow Subdivision
	Density
	Potential Point
	Valley Point
	Valley Point Competition

	Machine Learning

	CHAPTER V
	EVALUATION
	CHAPTER VI
	CONCLUSION
	REFERENCES CITED

