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DISSERTATION ABSTRACT

Luke Van Wyck Maurer

Doctor of Philosophy

Department of Computer and Information Science

March 2018

Title: The Design of Intermediate Languages in Optimizing Compilers

Every compiler passes code through several stages, each a sort of mini-

compiler of its own. Thus each stage may deal with the code in a different

representation, which may have little to do with the source or target language.

We can describe these in-memory representations as languages in their own

right, which we call intermediate languages.

Each intermediate language is designed to accomodate the stage of

compilation that handles it. Those toward the end of the compilation pipeline,

for instance, tend to have features expressing low-level details of computation.

A subtler case is that of the optimization stage, whose role is to transform the

program so that it runs faster, uses less memory, and so forth. The optimizer

faces tradeoffs: The language should provide enough information to guide

optimization algorithms, but all of this information must be kept up to date as

the program is transformed. Also, establishing invariants in the language can be

helpful both in implementing algorithms and in debugging the implementation,

but each invariant may complicate desirable transformations or rule them out

altogether. Finally, a language where the invariants are obviously correct may

have a form too awkward or otherwise unsuited to the compiler’s needs.
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Given the properties and invariants that we would like the language to

provide, we can approach the design task in a way that gives these features

without necessarily sacrificing implementability. Namely, begin with a formal

language that makes the desired properties obvious, then translate it to one

more suitable for implementation. We can even translate theorems about valid

transformations in the formal language to derive correct algorithms in the

implementation language.

This dissertation explores the connections between different intermediate

languages and how they can be interderived, then demonstrates how translation

lead to an improvement to the Glasgow Haskell Compiler opimization engine.

This dissertation includes previously published coauthored material.
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CHAPTER I

Introduction

The compiler is a complex beast. As a program transforms from a source

code comprehensible to humans into a machine language suitable for hardware

execution, it must pass through several stages, including parsing, optimization,

and code generation. At each stage, the code may be translated from one form

to another. Some of these forms, such as abstract syntax trees (ASTs), are

closely related to the source or target languages, but many fall in between: they

are intermediate representations, or IRs.

IRs serve several purposes. They are essential for mitigating the

complexity of any minimally sophisticated compiler. Also, they make the

compiler more flexible, and thus more useful, by abstracting out finer details

of the source or target language, thus allowing the same compiler to target

different hardware platforms or to implement several source languages.

Here we focus on another use for IRs: Since they represent the program

more abstractly than either the source language or the target, they are ideal

for the sort of manipulation performed by an optimizer. Optimizers must work

carefully to avoid changing behavior, so a simpler IR is better: there are fewer

opportunities to mess something up. However, if we can’t be confident that

it’s improving performance, it’s hardly an optimizer, so a richer IR is better:

optimization decisions can be better informed. The obvious tension here calls

for careful attention when designing an IR.

A good way to have a rich IR while controlling for its complexity is to

formalize it as a mathematical calculus. This is less daunting than it may

sound: there are decades of results in programming-language theory to build
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on. A formalized language is as well-specified as one could ask, eliminating any

question of undocumented corner cases or inconsistent requirements. Of course,

designing a formalized IR still requires ironing out all such wrinkles; we’re not

saving any of that work. But a formal semantics certifies that the work is done.

A formal specification does far more than merely define a language,

however. By establishing the rules for how the language works, it allows

theorems to be proved about what modifications can be made to a program

without changing its validity or its behavior. In turn, these theorems specify

optimization and translation passes that can be implemented with confidence.

Thus the formal specification equips compiler writers to implement transforms

that are correct but not obviously so. Furthermore, it is natural when writing

optimizer code to run into subtle corner cases; writing out the case in the

formal language often makes the correct implementation clear, easing both the

task of writing the implementation and of documenting it in comments. In this

way, a formal IR can help keep compiler code maintainable while implementing

highly sophisticated algorithms.

One further benefit to a formal language is that it can include types

and other invariants in the specification, and these invariants can be checked

programmatically. This can provide an invaluable debugging tool, as

running the optimizer with the internal typechecker enabled will catch most

transformation errors as soon as possible—it is rare that a buggy pass produces

incorrect yet well-typed code.

Just as different languages serve different purposes in the compiler,

different choices of language bring out various aspects of computation. For

example, the pure λ-calculus has no clear representation of control flow: the

sequence of actions to take is entirely implicit in the syntax. This is a natural

perspective for considering the mathematical content of the program, but it is

2



ill-suited for reasoning about sequential execution on hardware. A language in

continuation-passing style, in contrast, is more complex but offers constructs

that directly correspond to labeled sections of code in the running program.

Translating programs is not difficult—certainly it tends to be simpler than

a typical analysis for an optimization pass. Much more difficult is proving that

a translation is correct, i.e. that it preserves the meaning of a program. Once we

have done so, however, we can now “translate” theorems and other facts from

one language to another. In this way, we can reason about code using the best

language for proving the theorems we want, then implement an optimizer that

uses the most convenient language for the actual program.

1.1 Outline

Chapter II introduces several intermediate languages and discuss their

origins, their purposes, and the relationships between them.

In Chapter III, we consider GHC’s Core language and an extension that

adds jumps and labeled blocks for explicit representation of control flow. This

gives code-motion techniques more precision and flexibility, providing more

opportunities to discover interactions at compile time: moving a case analysis

to where a value is produced, for instance, may resolve the decision at compile

time, allowing other branches to be pruned and potentially even avoiding the

allocation of the produced value.

Chapter IV dives deeper into the mechanism of laziness underpinning the

GHC run-time system. By drawing a connection to the π-calculus, a language

for describing intercommunicating processes running in parallel, we derive an IL

that describes the in-place update used by GHC-compiled code to cache results

of suspended computations. We hope that a well-tailored language that includes

this effect may allow updates to participate in code motion as well.
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1.2 Co-Authored Material

This dissertation owes much of its content to co-authored papers already

published.

– Chapter III was a collaboration with Paul Downen (University of Oregon),

Zena M. Ariola (UO), and Simon Peyton Jones (Microsoft Research).

– Chapter IV was a collaboration with Paul Downen, Zena M. Ariola, and

Daniele Varacca (Université Paris Diderot).
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CHAPTER II

Intermediate Languages

Optimizers are necessarily heuristic and conservative—they need to gather

data to make informed decisions, both in the hope of improving the code and

to be certain not to introduce errors. Thus, an informative IR is a must. Each

property the IR tracks has a cost, however, both in the resources for calculating

and storing the property and in the need to maintain it whenever the code

is altered. The design space is large, therefore, and the criteria for a good IR

depend on the form of the source language (or previous IR), the requirements of

the target architecture (or next IR), and the set of algorithms to be performed

by the particular compilation stage. Generally speaking, a good IR is

1. straightforward to build from the incoming code, with a clear mapping for

each language construct;

2. sufficiently informative to support optimization, so that common analyses

need only be implemented once;

3. sufficiently flexible to allow changes to be made while preserving

correctness and consistency; and

4. straightforward to translate into the next representation.

To study the breadth of possibilities, authors and researchers look at IRs

not as mere data structures but as programming languages unto themselves,

with well-defined semantics independent of a particular implementation. Such

an intermediate language (IL) crystallizes the design of an IR, giving it a precise

characterization removed from the intricate details of the implementation, and

allowing its properties to be stated, proved, and compared to those of other

5



languages. This paper will look at a few of the most important kinds of ILs for

optimization, studying their features and differences, and finally proposing one

for use in the Glasgow Haskell Compiler (GHC).

The plan is as follows: Compilers can be broadly categorized by the

families of languages they implement. As such, we will look at ILs for

imperative languages (Section 2.1) and functional languages (Section 2.2)

separately. In Section 2.3, we will look at the specific challenges facing GHC,

stemming from the particular features of the lazy functional language Haskell.

Then, in Section 2.4, we introduce our own IL, which was implemented as an

experimental patch to GHC.

2.1 Languages for Imperative Optimizations
Three-Address Code

A three-address code is a language comprised of linear sequences of

instructions of fixed size, resembling assembly code. A typical instruction might

be

A← B + C,

indicating a destructive assignment of B + C to the variable A. Depending

on the particular language, A, B, and C might be abstract variables, or they

might be well-defined registers or memory locations on a target architecture.

In the latter case, we have abstracted away only the precise syntax of assembly

language, but no other details of the target hardware, making this an ideal

form for peephole optimization (Davidson & Fraser, 1980). This is the lowest-

level form of optimization, operating at the level of individual instructions,

looking only at a small window (a “peephole”) at a time to find opportunities to

combine instructions and save CPU cycles.
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Typically, a three-address code expresses control through labels and jumps.

Each instruction may carry a label identifying it as a possible target for a jump.

A jump can be either conditional, occurring only if some condition is met, or

unconditional. Thus a routine in three-address code to sum the members of an

array a of length n might be:

i ← 0
s ← 0

loop:
c ← i − n
ifge c then done
t ← a @ i
s ← s + t
i ← i + 1
jump loop

done:
return s

Here ifge c done is a conditional jump that executes when c ≤ 0, and

jump loop is an unconditional jump. Note that any complex expressions have

been broken down—the programmer probably wrote s += a[i], but this

three-address code requires the array access and the addition to be separate

instructions.

Control-Flow Graphs

Three-address codes are effective for expressing programs, but a simple list

of instructions is unwieldy for performing analyses and manipulation. Therefore

it is typical to construct a control-flow graph, or CFG, to represent the control

flow as edges connecting fragments of the program.

Note that CFGs do not themselves comprise a language; the CFG is an

in-memory representation that holds code in an underlying language, such as

a three-address code. Nonetheless, it is important to the study of intermediate

7



i← 0

s← 0

jump loop

loop:

c← i− n
ifge c then done else next

next :

t← a@ i

s← s+ t

i← i+ 1

jump loop

done:

return s

FIGURE 1. The control-flow graph for a simple array-sum program.

languages because the static single-assignment form, which we consider next,

exploits the CFG that is assumed to be available.

A vertex in a CFG embodies a basic block, a sequence of instructions that

proceeds in a straight line. No instruction in the program jumps into the middle

of a basic block, and the only jump in the block can come at the end. Thus all

internal jumps go from the end of one basic block to the beginning of another.

The CFG then records each block as a vertex and each jump as an edge. For a

given block, the blocks that may jump to it are its predecessors and the blocks

it may jump to are its successors. See Fig. 1 for an example.

The CFG makes reasoning about and manipulating the control flow

much easier. For instance, the basic form of dead-code elimination (DCE) finds

instructions that will never run and deletes them. Without a CFG, one would

have to scan the code for jumps to find labels that are never targeted; with a

CFG, one simply checks which blocks have no predecessors.
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a ← x + y
b ← a + 3
c ← b + z
d ← a + 3
a ← d + c
e ← a + 3
return e

⇒

a ← x + y
b ← a + 3
c ← b + z
a ← b + c
e ← a + 3
return e

FIGURE 2. An example of common-subexpression elimination.

Static Single-Assignment Form

Consider the code in Fig. 2. Clearly the computation of d is redundant;

we should remove it and replace references to d with b. This is an important

optimization called common-subexpression elimination, or CSE. But note

something crucial to this analysis: the value of a did not change between

the assignments to b and d. We cannot remove e in the same way, because

“a+ 3” is not the same value that it was when b or d computed it. Thus, starting

from simple three-address code, any CSE routine must perform some analysis

involving so-called available expressions and reaching definitions, walking

through the code and working out all the ramifications of each assignment

for other instructions (Appel, 1998a; Aho, Sethi, & Ullman, 1986).

This need is the basis of dataflow analysis. At its core is the question,

“What are the possible values of this computation?”

The chief cause of complexity in dataflow analysis is mutability. If there

is an intervening assignment to a variable, then two different occurrences of

the variable generally don’t refer to the same value, and thus we can’t take an

expression “at face value.” In Fig. 2, the expression a + 3 has no consistent,

well-defined value, since the value of a changes.

Traditionally, it was up to each optimization to take mutability into

account so that the optimizer only makes valid changes. This added complexity
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to many individual algorithms. The static single-assignment form, or SSA form,

makes dataflow obvious by eliminating mutability of variables, thus simplifying

many algorithms and making new ones more feasible.

The code in Fig. 2 is not in SSA form, since there are two assignments to

a. However, in this case we can observe that there are really two “versions” of

a involved, and each occurrence of a refers unambiguously to one or the other.

The assignments to b and d refer to the first version, and the assignment to e

refers to the second. Therefore we can rename the second version to a′: We have

a ← x + y
b ← a + 3
c ← b + z
a ′ ← b + c
e ← a ′ + 3
return e

obtained the SSA form, guaranteeing that a+ 3 has a consistent value so long as

a is in scope.

Renaming suffices for only the simplest cases. Here, for any instruction,

we know which “version” of a is active and thus whether to rename each

occurrence of a to a′. In the presence of control flow, however, one cannot

always know what the “current version” is. Thus we need a way to merge

together different possible values for a given variable.

The φ-Node

The construct at the heart of SSA is the φ-node. A φ-node is an

instruction of the form

A← φ(B1, . . . , Bn)

10



i0 ← 0
s0 ← 0

loop:
i ← φ(i0, i ′)
s ← φ(s0, s ′)
c ← i − n
ifge c then done else next

next :
t ← a @ i
s ′ ← s + t
i ′ ← i + 1
jump loop

done:
return s

FIGURE 3. A routine to sum the elements of an array, in SSA form.

appearing at the beginning of a basic block. There should be one argument

for each predecessor to the block. Operationally, it is understood that A will

get the value Bi if the block is entered from its ith predecessor. Thus the

conditional update of a variable is modeled by the creation of a new variable

whose value depends on the control flow. See Fig. 3 for an example, where the

index i will be zero when loop is entered from the beginning of the program

but i′ when it is entered from the jump. Since i′ is i + 1, this causes i to be

incremented each time through the loop, as expected. The accumulator variable

s works similarly.

In some ways, SSA form does for dataflow what the CFG does for control

flow by making crucial properties obvious. For instance, another form of dead-

code elimination concerns dead stores, which happen when a value is written

that will never be read. This can happen when two writes are made to the

same variable in succession; the first is a dead store and is wasted. Without

SSA, finding dead stores requires performing a liveness analysis by scanning

backward; with SSA, there cannot be two writes to the same variable, so a dead

11



store is simply a variable that is never read. Typical implementations maintain

a def-use chain (Cytron, Ferrante, Rosen, Wegman, & Zadeck, 1991) for each

variable, listing the instructions where it is used; finding a dead store is then a

simple matter of checking for an empty def-use chain.

SSA is powerful enough to make new optimizations practical as well. For

instance, one of the original applications (Rosen, Wegman, & Zadeck, 1988) was

a generalization of CSE called global value numbering : once we can trust the

face value of an expression a + b because the values of a and b can’t change, it

becomes practical to, say, identify a+ b with b+ a.

Since its inception, SSA has become the dominant form of IL both in

the literature and in compilers for imperative languages—GCC, in versions 4.0

onward, uses SSA as its high-level optimization IL (Novillo, 2003; Pop, 2006),

and the LLVM framework’s bytecode language is in SSA form (Lattner & Adve,

2004; “LLVM language reference manual,” 2015).

2.2 Languages for Functional Optimizations

Compilers for functional languages sometimes use or extend

representations from the imperative world. However, especially for high-level

optimization, it is more common to employ a simpler functional language, in

much the same way that the typical three-address code follows the imperative

model.

The λ-Calculus

Three-address codes represent imperative programs by a minimum of

constructs. Similarly, Church’s λ-calculus (Barendregt, 1984) boils functional

programs down to their essentials: functions, variables, and applications. A

function is represented as λx.M , where x is a variable and M is the function

12



Variable: x, y, z, . . .

Term: M,N ::= x
∣∣M N

∣∣ λx.M
FIGURE 4. The syntax of the untyped λ-calculus.

body in which x is bound; application of M to N is written simply as the

juxtaposition M N . See Fig. 4.

An advantage of the λ-calculus is that its semantics can be given purely as

a system of simplification rules, or rewrite rules, on the terms themselves. The

crucial one is called the β-rule, which in its most general conventional form is

(λx.M)N ⇒M{N/x}

This says that to apply a known function λx.M to an argument N , you take

the body M and substitute N for the occurrences of x. (We haven’t yet said

what terms are allowed as N or how to apply the rule on a subterm of a larger

term; these are specified by the evaluation order.) Applying the β-rule is called

β-reduction.

The other rule is the α-rule, which simply says that we can rename a

variable bound by a λ without changing the term’s meaning, so long as we do

so consistently. Applying the α-rule is called α-conversion. Because they are

subject to α-conversion, variables have local scope, in much the way they do in

most programming languages. For instance, since λx. x and λy. y are equivalent

by the α-rule, no program’s behavior can depend on the choice of x or y.

This is the whole of the syntax of the plain untyped λ-calculus, but the

language is already rich enough to have spawned a whole field of research.

Indeed, the untyped λ-calculus is universal, that is, Turing-complete—it is

expressive enough to encode any program we could want to. For use in a
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compiler, however, it would be impractical; besides the sheer awkwardness

of, say, representing the number five as λs. λz. s(s(s(s(s z)))), as is conventional

(Hinze, 2005), the encoding would lose the program’s structure, offering little

help to an optimizer that wishes to perform code motion safely and effectively.

Nonetheless, there is little we need to add. First, we need literals and

primitives to represent arithmetic sensibly; these are no problem. We’ll

deal with literals and other constants shortly, and primitives can simply be

preallocated variable names.

Second, it helps to have a way to declare local variables and functions,

so we want a let/in form, including a recursive version let rec. Again, these

could be encoded easily in terms of application, but at little gain at the price of

lost information.1 The precise semantics of let differs more widely than that of

function application; the simplest form is a variant of the β-rule,

letx = N inM ⇒M{N/x},

but again, the form of N may be restricted. Also, rather than substitute for

all instances of x at once, one can wait for the value of x to be needed (Ariola,

Felleisen, Maraist, Odersky, & Wadler, 1995). For let rec, in particular, one has

to be careful; see, for instance, (Pierce, 2002, chapters 20–21) for a practical

treatment.

More significantly, we want structured data and control, namely data

constructors and pattern matching. A data constructor is a constant with a

particular arity. We write Cn for an unknown data constructor with arity n,

1Arguably, we could go without let rec by using fixpoint combinators such as the Y-
combinator, but explicit knowledge of which functions are recursive is often beneficial. For
example, GHC is aggressive about inlining non-recursive functions because doing so cannot
cause the optimizer to loop.
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but we will often drop the superscript. Applying Cn to n arguments2 packages

the values as a tagged record. Pattern matching is then performed by a case

statement such as this one:

case M of

C n x1 . . . xn → N

Dm y1 . . . ym → P

This expression evaluates M to a constructor and its arguments, then checks

whether the constructor is C or D, binds the corresponding variables to the

arguments, and evaluates the chosen branch.

For example, the functional version of our array-sum example could be:

sum = λxs . case xs of

Nil → 0

Cons x xs ′ → x + sum xs ′

Here Nil is the empty list and Cons x xs prepends x onto the list xs.

Note that Nil has arity zero, as do True and False. Zero-arity, or nullary,

constructors thus act as constants. In fact, we can simply treat literals as

special syntax for particular nullary constructors, so we don’t need them as

a separate construct.

The semantics of case is specified by a rule called the case rule:

case C n M1 · · · Mn of

...

C n x1 · · · xn → N

...

⇒ N {M1/x1} · · · {Mn/xn}

Hence, we reduce a case by finding the matching branch and substituting the

arguments of the constructor.

2Like Haskell, we use curried constructors. For example, Cons x xs is Cons applied to the
arguments x and xs. This avoids needing tuples as a separate construct.
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We also allow a lone variable to act as a wildcard pattern:

case C n M1 · · · Mn of

...

x → N

...

⇒ N {C M1 · · · Mn/x} (if no other match)

Languages such as ML and Haskell also allow for more complex patterns,

but those can be re-expressed using these simple ones (Peyton Jones, 1987).

Also, we don’t need a separate if construct, since we can define:

if M then N else P ,

case M of

True → N

False → P

In all, we have the syntax in Fig. 5. Note that for compactness we

may use braces and semicolons instead of separate lines in case and let rec

expressions.

To make the language useful for writing or compiling programs, we need

to say a bit more about the semantics than just the rewrite rules as we have

seen them. The rules say what to do, but not in what order. Evaluation orders

comprise a field of study all of their own (Plotkin, 1975; Ariola et al., 1995), but

for our purposes, informal descriptions will suffice.

– In all practical languages, evaluation “stops at a lambda.” Bodies of

functions are not evaluated until they are called.

– In call-by-value languages, the arguments to a function are evaluated

before the function is called. This amounts to restricting the β-rule:

(λx.M)V ⇒M{V/x}

Here V stands for a value, which must be a λ-abstraction, a constant, or

a constructor applied to values. The restriction also affects let bindings—
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the definition is evaluated before the body. Call-by-value let rec is usually

allowed to define only λ-abstractions.3

– In lazy languages, function application occurs as soon as the function

body is known, while the arguments are still unevaluated. Lazy let

bindings similarly go unevaluated at first, and let rec needn’t be

restricted, allowing circular or (conceptually) infinite data structures.

To make laziness practical, implementations use a call-by-need strategy

(Ariola et al., 1995), which ensures that each value is still only evaluated

once.

A related concept is purity. A language is called pure if evaluating

an expression never has any side effects, such as overwriting a variable or

performing I/O. An impure language is thus very sensitive to evaluation order—

move the wrong function call, and Hello World! could become World! Hello.

If the language is call-by-value, impurity is manageable, as one can predict from

any function body the order in which terms will be evaluated. However, in a

call-by-need language, if one writes f M N P , the order in which M , N , and P

are evaluated (if at all) depends entirely on the body of f , which may not even

be in the same module. Thus laziness practically necessitates purity.4

In an IL for optimization, the major impact of evaluation order and purity

is the freedom with which terms can be rearranged. Of course, the purpose of

the optimizer is often to change the order in which things are evaluated, but

doing so in an impure language is hazardous. By contrast, the order in which

3In a call-by-value language, a variable always stands for a value. So how do we bind the
value of a let rec inside its own definition while it’s being computed? There are workarounds,
such as using a mutable storage cell, but the need is not great enough to justify additional
complication.

4It gets worse: Besides call-by-need, another class of non-strict languages is parallel
languages. These evaluate the arguments and the body simultaneously. Thus, in the parallel
setting, there is no defined order in which side effects in M , N , and P will run.
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Variable: x, . . .

Constructor: Cn, . . .

Pattern: P ::=
∣∣ Cn x1 · · · xn

Term: M,N ::= x
∣∣ Cn

∣∣M N
∣∣ λx.M∣∣ caseM of P1 → N1; . . . ; Pn → Nn∣∣ letx = M inN∣∣ let recx1 = M1; . . . ; xn = Mn inN

FIGURE 5. A λ-calculus with data constructors, recursion, and case.

expressions appear in a lazy language often does not matter, so the compiler has

a great deal of freedom.

Since it is so rigid, an impure call-by-value λ-calculus is cumbersome as

an optimizing IL, even for call-by-value source languages (though it can serve

as an “abstract source” language (Appel, 1992, chapter 4)). However, if the

source language is lazy, it may happily be optimized using plain λ-terms—in

fact, our λ-calculus is essentially an untyped version of GHC’s Core language

(Peyton Jones & Launchbury, 1991; Santos, 1995; Peyton Jones & Santos, 1998).

Continuation-Passing Style

One advantage of a three-address code as an IL for imperative programs

is that everything is spelled out: Intermediate results are given names. Every

aspect of control flow, including order of operations, is explicit. Manipulating

code is made easier by the regularity, and the similarity to assembly language

makes code generation a simple syntactic translation.

Continuation-passing style (Sussman & Steele, Jr., 1975), or CPS, is a

way for the λ-calculus to play much the same role for functional programs. As

proved formally by Plotkin (Plotkin, 1975), a term written in CPS effectively

specifies its own evaluation order, and any λ-term can be translated into CPS
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CJxK = λk. k x

CJM NK = λk. CJMK(λf. CJNK(λx. f x k))

CJλx.MK = λk. k (λx. λk1. CJMKk1)
CJC0K = λk. k C0

CJC1K = λk. k (λx1. λk1. k1 (C1 x1))

CJCnK = λk. k (λx1. λk1. k1 (· · · (λxn. λkn. kn (Cn x1 · · · xn))))

C

u

www
v

case M of

P1 → N1

...

Pn → Nn

}

���
~

= λk. CJMK


λx . case x of

P1 → CJN1Kk
...

Pn → CJNnKk


CJletx = M inNK = λk. CJMK(λx. CJNKk)

C

u

wwwwwww
v

let rec

f1 = λx1.M1

...

fn = λxn .Mn

in

N

}

�������
~

=

λk . let rec

f1 = λx1. λk1. CJM1Kk1
...

fn = λxn . λkn . CJMnKkn
in

CJN Kk

FIGURE 6. A call-by-value CPS transform.

using a CPS transform. As it happens, CPS gives a name to each intermediate

value, just as a three-address code does. The correspondence to assembly

language is not as clear, often necessitating a lower-level IL acting as an abstract

machine (Appel, 1992, chapter 13). Nonetheless, λ-terms in CPS have proven a

useful IL for optimizations on functional programs.

The CPS method is simple enough that we can demonstrate it on a simple

language by constructing a “compiler” on paper. We take the source language

to be the one in Fig. 5, given call-by-value semantics. The transform is given in

Fig. 6. Note that we assume throughout that k, k1, etc., are fresh (they don’t

clash with existing names); one could always use names not allowed in the

source language to avoid trouble.
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The CPS transform makes each term into a function taking a continuation,

which specifies what to do with the value of the term once it’s computed. Since

the continuation is itself a λ-abstraction, the result of each computation ends up

bound to a variable. This variable then represents either a register or a location

in memory where the value is stored.

We will consider the CPS rules in turn. Since the source language is

call-by-value, any variable x will be bound to a value that has already been

computed; hence, in the variable case, there is nothing more to do and we can

pass x directly to the continuation k.

The key to the CPS transform is the rule for function calls:

CJM NK = λk. CJMK(λf. CJNK(λx. f x k))

Once the CPS term is applied to a continuation k, the first thing to do is to

evaluate the function M . The continuation for M binds its result as f , then

goes on to evaluate the argument N . That result is bound as x. Finally, we

perform the function call proper by invoking f with argument x and the original

continuation k.

Translating a λ-abstraction is straightforward, though the translated

version takes an extra argument for the continuation with which to evaluate the

body.

Constructors appear somewhat more involved, but they are really merely

special cases of functions. It is instructive to derive the CPS form for a

20



constructor applied to arguments5:

CJC2M NK = λk. CJC2MK(λf. CJNK(λy. f y k))

= λk. (λk. CJC2K(λf. CJMK(λx. f x k)))(λf. CJNK(λy. f y k))

⇒ λk. CJC2K(λf. CJMK(λx. f x (λf. CJNK(λy. f y k))))

= λk. (λk0. k0 (λx1. λk1. k1(λx2. λk2. k2(C
2 x1 x2))))

(λf. CJMK(λx. f x (λf. CJNK(λy. f y k))))

⇒∗ λk. CJMK(λx. CJNK(λy. k(C2 x y)))

Once the dust settles, the procedure is to evaluate M , bind it as x, evaluate N ,

bind it as y, then apply the data constructor and return.

The other rules are routine: A case evaluates the scrutinee first, then the

continuation chooses the branch. A let evaluates the bound term first, then the

body. A let rec simply binds the function literals and moves on (as suggested

earlier, we assume that a call-by-value let rec only ever binds λ-abstractions).

The IL we get from the CPS transform is the CPS language given in

Fig. 7. All function calls must involve both a function and an argument (or two)

that are values—compile-time constants, variables standing for intermediate

results, and applications of data constructors to values.

As an example, consider again the functional analog of our array-sum

code:

sum xs = case xs of

Nil → 0

Cons x xs ′ → x + sum xs ′

Its CPS form (after some simplification) is:

5Application associates to the left, so C 2MN parses as (C 2M )N .
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Variable: x, f, k, . . .

Constructor: Cn, . . .

Pattern: P ::= x
∣∣ Cn x1 · · · xn

Value: V,W ::= x
∣∣ λx.M ∣∣ λx. λk.M ∣∣ Cn V1 · · · Vn

Term: M ::= V W
∣∣ V W1W2∣∣ casexof P1 →M1; . . . ;Pn →Mn∣∣ let rec f1 = λx1.M1; . . . ; fn = λxn.Mn inN

FIGURE 7. A CPS language for the λ-calculus in Fig. 5, as produced by the
transform in Fig. 6.

sum = λxs . λk . case xs of

Nil → k 0

Cons x xs ′ → sum xs ′ (λy . k (x + y))

Now sum takes a continuation k as an extra parameter. In the Nil case,

the answer is immediately passed to the continuation. In the Cons case, we

perform a recursive call. Since, in the original expression x + sum xs, the first

computation that would be made is the recursive call sum xs, the code for that

call is now at the top of the CPS term. Its continuation will take the result y

from the the recursion, add x, and return to the caller. (Here we suppose that +

is a primitive in the CPS language and isn’t called using a continuation.)

Administrative Normal Form

CPS is expressive but heavyweight. A less radical alternative with many,

though not all (Kennedy, 2007), of its virtues is the administrative normal form,

better known as A-normal form or simply ANF. An ANF term has names for

all arguments, and its evaluation order is spelled out, but function calls are not

rewritten as tail calls.
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Variable: x, f, . . .

Constructor: Cn, . . .

Pattern: P ::= x
∣∣ Cn x1 · · · xn

Value: V,W ::= x
∣∣ λx.M ∣∣ Cn V1 · · · Vn

Term: M,N ::= V
∣∣ letx = VW inM∣∣ casexof P1 →M1; . . . ; | Pn →Mn∣∣ let rec f1 = λx1.M1; . . . ; fn = λxn.Mn inN∣∣ letx = V inM

FIGURE 8. The ANF language produced by the CPS language in Fig. 35 by an
inverse CPS transform.

ANF emerges naturally by considering the inverse of the CPS transform

(Flanagan, Sabry, Duba, & Felleisen, 1993). In order to see what reductions of

the CPS term do to the original term, we can consider transforming a λ-term to

CPS, performing some reductions, then transforming it back. Not all reductions

in CPS terms are interesting, however: the CPS transform introduces many

λ-abstractions into the program, and β-reduction on these functions doesn’t

correspond to any behavior of the original term. These reductions are called

administrative reductions. In order to see what the CPS transform does from

the perspective of the source language, then, we can consider translating a term

to CPS, performing any administrative reductions we can, then translating

back.

The net result is a language (Fig. 8) in which all nontrivial values have

names, but which is free of the “noise” of administrative reductions. For

instance, the ANF for the sum function, taken using the inverse transform

of the simplified CPS term above, is:
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sum = λxs . case xs of

Nil → 0

Cons x xs ′ → let

y = sum xs ′

in

x + y

Compared to the original code, the only additional syntax is the binding of y for

the partial result from the recursive call.

Many algorithms don’t make direct use of the continuation terms in

CPS, and thus they apply equally well in ANF. For example, conversion to

SSA (to be seen shortly) works broadly the same way (Chakravarty, Keller, &

Zadarnowski, 2003).

Losing explicit continuations is not without cost, however. One downside

is that CPS terms are closed under the β-rule, that is, applying the β-rule

to a CPS term gives another CPS term, so inlining and substitution can be

applied freely in CPS. In contrast, ANF requires some extra renormalization.

More seriously, though ANF enjoys a formal correspondence to CPS, this

correspondence gives no guarantees about important properties such as code

size. We will return to this point in Section 2.4 when we introduce the sequent

calculus.

Comparing functional and imperative approaches
The functional and imperative worlds often express the same concepts

in different terms, such as loops vs. recursion. The same is true of ILs—what

appear to be radically different approaches are often accomplishing the same

things.

In this section, we use ANF for comparison due to its lightweight syntax,

but everything applies to CPS as well.
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Hoisting vs. Floating

Despite coming from such different programming traditions, functional

representations and CFGs share much in common, and many optimizations

apply in either case under different guises. For example, consider a variation

of our array-sum code (Fig. 9a), where we sum the first k entries of an array

starting at index i0. The loop thus exits when i ≥ i0 + k. This being a three-

address code, i0 + k is broken out into its own computation, which we’ve named

h. Notice, however, that i0 and k never change, and hence neither does h. So it

is wasteful to calculate it again each time through the loop, and loop-invariant

hoisting moves the assignment to h before the loop (Fig. 9b).

Now consider an ANF version (Fig. 9c). It uses a tail-recursive function

in place of the block, but it’s otherwise similar. Precisely the same effect is

achieved by let floating—since h’s definition has no free variables defined inside

loop, we can float it outside (Fig. 9d). Note that, in both cases, we need to be

careful that there are no side effects interfering.

Converting between functional and SSA

In the case of SSA, one can do more than show that certain algorithms

accomplish the same goal. SSA, CPS, and ANF are equivalent in the sense that

one can translate faithfully between them (Kelsey, 1995; Appel, 1998b).

Conceptually, it is unsurprising that these forms should be interderivable.

The single-assignment property is fundamental to functional programming, and

the correspondence between gotos and tail calls is well known (Reynolds, 1998).

There remain two apparent differences:

Nested structure As usually understood, the SSA namespace is “flat:” though

we insist that each variable is defined once, all blocks can see each
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i ← i0
s ← 0

loop:
h ← i0 + k
c ← i − h
ifge c then done
t ← a @ i
s ← s + t
i ← i + 1
jump loop

done:
return s

(a) In three-address code.

i ← i0
s ← 0
h ← i0 + k

loop:
c ← i − h
ifge c then done
t ← a @ i
s ← s + t
i ← i + 1
jump loop

done:
return s

(b) After hoisting.

let rec
loop i s =

let
h = i0 + k
c = i − h

in
if c ≥ 0 then

done s
else

let
t = a @ i
s ′ = s + t
i ′ = i + 1

in
loop i ′ s ′

done s = s
in
loop i0 0

(c) In ANF.

let
h = i0 + k

in
let rec

loop i s =
let

c = i − h
in
if c ≥ 0 then

done s
else

let
t = a @ i
s ′ = s + t
i ′ = i + 1

in
loop i ′ s ′

done s = s
in
loop i0 0

(d) After let floating.

FIGURE 9. Two representations of a function to compute a partial sum of the
integers in an array, starting at index i0 and including k elements.
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definition. In contrast, CPS and ANF are defined in terms of nested

functions in languages that employ lexical scope. Thus we must ensure

that each variable’s definition remains visible at each of its occurrences

after translation.

φ-nodes A φ-node has no obvious meaning in a functional language; we

must somehow encode it in terms of the available constructs: functions,

variables, applications, and definitions.

We will consider each of these points in turn. First we turn to scope. The

scoping rule for a functional program is simple: each occurrence of a variable

must be inside the body of its binding. This means something slightly different

for λ-bound and let-bound variables, but the effect is the same.

SSA programs obey a similar invariant: each variable’s definition

dominates each of its uses (Appel, 1998a). A block b1 dominates a block b2

if each path in the CFG from the start of the program to b2 goes through b1

(Prosser, 1959). If we make each block a function, then, we should be able

to satisfy the scoping invariant, so long as we can nest each block’s function

inside the functions for the block’s dominators. For CPS, blocks will naturally

translate into continuations. In ANF, we can simply use regular functions;

functions used for control flow in this way are often called join points, about

which there will be much to say in Section 2.4.

Fortunately, dominance does form a tree structure, which we can use

directly as the nesting structure for the translated program. As it happens,

this dominance tree is something already calculated in the process of efficient

translation to SSA form (Cytron et al., 1991).

Figure 10 demonstrates the dominance tree for a somewhat tangled

section of code (Fig. 10a). The CFG is shown in Fig. 10b and the dominance
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b0:
i0 ← 0
s0 ← 0

b1:
i ← φ(i0, i1)
s ← φ(s0, s3)
c1 ← i − n
ifge c1 then b2 else b6

b2:
c2 ← i%2
ifz c2 then b3 else b4

b3:
t1 ← a@i
t2 ← t1 ∗ 2
s1 ← s + t2
jumpb5

b4:
t3 ← a@i
s2 ← s + t3
ifz t3 then b7 else b5

b5:
s3 ← φ(s1, s2)
i1 ← i + 1
jumpb1

b6:
c3 ← s − 100
ifgt c3 then b7 else b8

b7:
s4 ← −1

b8:
s5 ← φ(s , s4)
returns5

(a) A program in SSA form.

b0

b1

b2

b3 b4

b5

b6

b7 b8

(b) The CFG for (a).

b0

b1

b2

b3 b4 b5

b6 b7 b8

(c) The dominance tree for (a).

FIGURE 10. Translating from SSA to CPS or ANF using the dominance tree.
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tree in Fig. 10c. Notice the impact of the edge from b4 to b7. Since a dominator

must lie on every path from b0, b6 does not dominate b7 or b8. If not for that

edge, it would dominate both.

Now we tackle φ-nodes. As a programming-language construct, a φ-node

is an oddity. It says what a variable’s value should be based on the previous

state of control flow.6 If we are to reinterpret blocks as functions, then, each call

should cause the φ-node to get a different value. The solution is, of course,

that the φ-node should become a parameter to the function, transferring

responsibility for the value from the block (function) to its predecessor

(invoker).

This can be formally justified by altering the way we draw the CFG. Since

each entry in a φ-node relates the block to one of its predecessors, in a sense the

value “belongs” on the edge of the CFG, not a vertex (see Fig. 11). SSA and

CPS then represent the same information, but with the edge labels in different

places.

The result of translating Fig. 10a to ANF is shown in Fig. 12.

2.3 The Glasgow Haskell Compiler (GHC)
Implementing Lazy Evaluation

A compiler for any functional language has different concerns from those

of an imperative language: higher-order functions and their closures are of

paramount importance, interprocedural analysis is absolutely necessary, and

alias analysis is an afterthought at most. But these are matters of emphasis

rather than fundamental differences, as function application still works largely

6Oddly, this has been proposed before as a source language construct! A 1969 paper on
optimization (Lowry & Medlock, 1969) suggested a novel form of declaration that would
insinuate assignments to a variable at given line numbers in a program. Arguably, then, the
φ-node was anticipated nearly twenty years beforehand, though of course its suitability in a
source language is dubious. (To be sure, this was the era where goto was popular, so perhaps
we should not be harsh.)

29



i0 ← 0

s0 ← 0

jump loop

loop:

i← φ(i0, i
′)

s← φ(s0, s
′)

c← i− n
ifge c then done

elsenext

next :

t← a@ i

s′ ← s+ t

i′ ← i+ 1

jump loop

done:

return s

i0 ← 0

s0 ← 0

jump loop

loop:

c← i− n
ifge c then done

elsenext

next :

t← a@ i

s′ ← s+ t

i′ ← i+ 1

jump loop

done:

return s

i = i0
s = s0

i = i′

s = s′

(b) The same, but moving φ-node
values to the edges.

i0 ← 0

s0 ← 0

jump loop(i0, s0)

loop(i , s):

c← i− n
ifge c then done

elsenext

next :

t← a@ i

s′ ← s+ t

i′ ← i+ 1

jump loop(i, s)

done:

return s

(c) A modified CFG form with parameterized labels, similar to continuations in CPS.

FIGURE 11. Modifying the CFG for Fig. 3 by moving the φ-node values into
the predecessors.
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λa. λn.
let rec

b0 = let
i0 = 0
s0 = 0

in
let rec

b1 i s = let
c1 = i − n

in
let rec

b2 = let
c2 = i % 2

in
let rec

b3 = let
t1 = a @ i
t2 = t1 ∗ 2
s1 = s + t2

in
b5 s1

b4 = let
t3 = a @ i
s2 = s + t3

in
if t3 = 0 then b7 else b5 s2

b5 s3 = let
i1 = i + 1

in
b1 i1 s3

in
if c2 = 0 then b3 else b4

b6 = let
c3 = s − 100

in
if c3 > 0 then b7 else b8 s

b7 = let
s4 = −1

in
b8 s4

b8 s5 = s5
in
if c1 ≥ 0 then b2 else b6

in b1 i0 s0
in b0

FIGURE 12. The program from Fig. 10a, in ANF.
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the same way; it is merely that one expects a different sort of function to be

common in an ML program from a C program.

Haskell is a more radical departure. Application is as important an

operation as ever, but lazy evaluation turns it on its head. Variable lookup

is put into particularly dramatic relief, as what was a single read could now be

an arbitrary computation! Furthermore, this is not a benign change of execution

model—a näıve implementation has a disastrous impact on performance.

The classical way to implement lazy evaluation is to use a memo-thunk

(Hatcliff & Danvy, 1997; Okasaki, Lee, & Tarditi, 1994; Steele, Jr. & Sussman,

1976). This is a nullary function closure that will update itself when it finishes

executing; on subsequent invocations, the new version will immediately return

the cached answer. It is an effective strategy, and one might think that it

merely shifts work from before a function is called to the first time its argument

is needed. Unfortunately, this thought overlooks an important fact about

modern hardware: an indirect jump, i.e., one to an address stored in memory

rather than wired into the program, is much slower than a call to a known

function, as it interferes with the pipelining and branch prediction that are

crucial to performance. And in order to have a variable stand for a suspended

computation, it must store the address of some code that will be executed,

thus necessitating an indirect jump for each occurrence of each argument.

Some improvements can be made—we can use tagged pointers to avoid an

indirect call in the already-evaluated case, for instance (Marlow, Yakushev, &

Peyton Jones, 2007)—but we cannot avoid at least one indirect function call per

evaluated memo-thunk.

The GHC optimizer’s fundamental task, then, is to avoid lazy evaluation

as much as possible. Like polymorphism before it, laziness is a luxury for

programming but a catastrophe for performance.
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The Core Language

There were two important design principles (Peyton Jones & Santos, 1998)

behind the design of Core:

1. Provide an operational interpretation. Given the severe penalties

associated with lazy evaluation, GHC cannot afford to be blasé about

fine details of evaluation order. Yet we would not want Core to be bogged

down by operational details. Ideally, then, we want to choose constructs

judiciously, so as to remain focused on the mission to eliminate laziness.

2. Preserve type information. Since type information is erased at run

time, it is tempting to throw away types as soon as possible. But some

passes, such as strictness analysis, can make good use of types if they

are available. Perhaps more importantly, however, a typed IL can be of

enormous use in developing the compiler itself by allowing an IL-level type

checker to detect bugs early (Peyton Jones & Meijer, 1997): “It is quite

difficult to write an incorrect transformation that is type correct.”

Though GHC does not, one can also use typed representations for

formal verification. If the target language of a transform has a suitable

type system, one can prove powerful faithfulness properties such as full

abstraction (Plotkin, 1977), which means roughly that a translation does

not expose implementation details that could not be observed in the

source language. This is an important security property—the detail in

question could be someone’s password! For instance, a typed presentation

of closure conversion (Minamide, Morrisett, & Harper, 1996) has been

proved fully abstract (Ahmed & Blume, 2008), meaning not only that

the conversion preserves meaning, but also that code written in the target
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Variable: x, y, z, . . .

Type Variable: α, . . .

Data Constructor: Cn, . . .

Type: τ ::= (see Fig. 14)

Pattern: P ::=
∣∣ x ∣∣ Cn x1 · · · xn

Term: M,N ::= x
∣∣ Cn

∣∣ λx : τ.M
∣∣ Λα.M

∣∣M N
∣∣M τ∣∣ letx : τ = M inN∣∣ let recx1 : τ1 = M1; . . . ;xn : τn = Mn inN∣∣ caseM of P1 →M1 | · · · | Pn →Mn

FIGURE 13. The GHC Core language as of 2006 (GHC 6.6), before coercions
were added.

language cannot “cheat” by inspecting a function’s closure (perhaps to

find a password). By employing a typed assembly language (Morrisett,

Walker, Crary, & Glew, 1999), a whole compiler could, in principle, be

proved fully abstract.

The first consideration led to refined semantics for let and case and to

the use of unboxed types and values. The second consideration led to the use of

the polymorphic λ-calculus, better known as System F.

Syntax

The syntax of Core is given in Fig. 13. Besides the types, there are few

surprises at the syntactic level.

Semantics

The operational reading of a let is that it allocates a thunk. Thunks are

also allocated for nontrivial function arguments.7 A case of an expression M

always forces the evaluation of M down to weak head-normal form, or WHNF,
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meaning that a pattern match is always done on a λ, a literal, or a constructor

application.

The semantics of let and case allow GHC to reason about space usage

and strictness. An evaluation that might otherwise remain suspended can be

forced by putting it in a case, which doesn’t necessarily actually perform any

pattern matching—the pattern can simply be some x to bind the result of

computation, just as in the CPS form for a call-by-value language.

For example, suppose we are compiling a function application f(x + y),

where it is known that f is a strict function—that is, one that is certain to force

its argument to be evaluated. Since we know that x+ y will be forced, it would

be wasteful to allocate a memo-thunk for it. We’d end up with a closure in

the heap, only for it to overwrite itself with the result of the addition. Possibly

worse, evaluating the thunk would entail an indirect call, when we know right

now what the call will be! Much better, then, to force the evaluation early by

writing casex+ y of z → f z.

Giving let and case these specific meanings relieves Core of needing any

explicit constructs for dealing with memory or evaluation order, keeping the

syntax very light.

Types

The Core type system is shown in Fig. 14. The basis of the language is

System F, or more specifically System Fω, otherwise known as the higher-order

polymorphic λ-calculus. This system describes both types, such as Int and Bool ,

and type constructors, such as Maybe and List . List is not itself a datatype per

7Some older versions of GHC enforced an ANF-like restriction that arguments be atomic;
in these versions of Core, lets were the only terms that allocated thunks. Even in current
GHC, however, Core is translated into a lower IL called STG, which does have this restriction,
so function arguments that aren’t variables still wind up getting let-bound.
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Type Variable: α, . . .

Type Constructor: T, . . .

Type: τ, σ ::= α
∣∣ T ∣∣ τ σ ∣∣ τ → σ

∣∣ ∀α : κ. τ

Kind: κ ::= ?
∣∣ #

∣∣ κ1 → κ2

FIGURE 14. Types in the GHC Core language.

se; it takes a parameter, so that List Int is a type. Thus types, themselves, have

types, which are called kinds.

Kinds come in three varieties: The kind ? is the kind of typical datatypes

like Int and Bool . Arrow kinds κ1 → κ2, like arrow types, describe type

constructors: List and Maybe have kind ? → ?. The kind # is particular to

the Core type system; it is the kind of unboxed datatypes.

Unboxed Types

As mentioned above, a primary objective of Haskell optimization is

to reduce laziness. To this end, GHC made an unusual choice for a lazy-

language compiler by expressing true machine-level values in its high-level IL

(Peyton Jones & Launchbury, 1991). This demonstrates that the difference

between “high-level” and “low-level” is often a matter of design—if some

aspect of execution on the target machine is absolutely crucial, it can be worth

encoding that aspect at the high level.

Boxed types are those represented by a pointer to a heap object (often an

unevaluated thunk) and include all types that appear in standard Haskell code.

Unboxed types are represented by raw memory or registers. For instance, an

Int# is a machine-level integer, what C would call an int. This has two major

ramifications:
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1. A term of unboxed type must be computed strictly, rather than lazily. An

Int# is represented by an actual native integer, not a thunk, so there is no

mechanism for lazily computing it.

Therefore, an argument or let-binding must be a simple variable or

literal (as in ANF), not an expression that performs work8, since these

constructs represent suspended (lazy) computations. Work returning an

unboxed value must take place under a case, which as always serves to fix

evaluation order.

2. Since types are (eventually) erased by the compiler, polymorphic functions

rely on the uniform representation (pointer to heap object) of boxed types.

Since unboxed types have different representations, they cannot be used as

parameters to polymorphic types or functions.

Core enforces this restriction by giving unboxed types the special kind #.

A type variable or type constructor must be of kind ? or an arrow kind

built from ?s (such as (? → ?) → ?). Since List has kind ? → ? and Int#

has kind #, then, List Int# is a kind error.

The payoff is that, in many ways, Int is just like any other datatype, and

the same optimizations that eliminate constructors for other datatypes work to

keep arithmetic unboxed. For instance, this is how GHC defines the addition

operator in Core:9

data Int = I# Int#

8The actual invariant is a bit more subtle. Some expressions of unlifted type can be let-
bound or passed as arguments, but only if they are known to evaluate quickly without side
effects or possible errors. Such expressions are called ok-for-speculation, because there is no
harm in executing them speculatively in the hopes of saving work later, say by moving them
out of a loop.

9Actually, the operator belongs to a type class and is therefore defined for many types
besides Int . This is, however, the implementation of (+) for Int .
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(+) :: Int → Int → Int

x + y = case x of

I# x# → case y of

I# y# → case x# +# y# of

s# → I# s#

Here +# is the primitive addition operator. The innermost case is necessary

because x# +# y# is a term of unboxed type and thus cannot be used directly as

the argument to I#.

Now consider the optimization of the term x + y + z . A näıve

interpretation would compute x + y , getting back a boxed integer s, then

compute s + z . Thus the box created for s is thrown out immediately,

performing unnecessary work and straining the garbage collector.

Let us see, then, what GHC does with it. Since (+) is so small,

applications of it will always be inlined, so after inlining (that is, substituting

and then β-reducing), we have:

(x + y) + z

⇒



case x of

I# x# → case y of

I# y# → case x# +# y# of

s# → I# s#

 + z

⇒ case



case x of

I# x# → case y of

I# y# → case x# +# y# of

s# → I# s#

 of

I# a# → case z of

I# z# → case a# +# z# of

I# t# → I# t#
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Next, we perform the case-of-case transform, to be explored in detail in

Section 2.4. Briefly, consider what happens to evaluate this term: First we

must evaluate the inner case, which will eventually yield the value I# s#. Thus

it is I# s# that will be scrutinized by the outer case, and we can rewrite the

term to reflect this knowledge:

⇒ case x of

I# x# → case y of

I# y# → case x# +# y# of

s# → case I# s# of

I# a# → case z of

I# z# → case a# +# z# of

t# → I# t#

Note that the case-of-case transform has exposed the box-unbox sequence as a

redex—case I# s# of . . . can be reduced at compile time. Thus we eliminate the

case and substitute s# for a#:

⇒ case x of

I# x# → case y of

I# y# → case x# +# y# of

s# → case z of

I# z# → case s# +# z# of

t# → I# t#

Now we have efficient three-way addition, the way one might write it by hand:

unbox x and y ; add them; unbox z ; add to previous sum; box the result.

Moreover, no special knowledge of (+) was required; merely applying the same

algorithms used with all Core code exposed and eliminated the gratuitous

boxing.
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Coercions and System FC

A primary requirement of any typed IL is that it can embed the type

system of the source language. As type systems become more sophisticated,

including features such as dependent types (Xi & Pfenning, 1999; Bove, Dybjer,

& Norell, 2009; Brady, 2013), one might see reason for concern: can we retain

the benefits of typed ILs without making them unwieldy?

Fortunately, the answer appears to be “yes,” at least so far. GHC’s

extensions to Haskell have begun to intermingle typing and computation with

features such as generalized algebraic datatypes (Peyton Jones, Vytiniotis,

Weirich, & Washburn, 2006; Xi, Chen, & Chen, 2003) and type families

(Chakravarty, Keller, & Peyton Jones, 2005). These have been accomodated

in Core by the addition of a much simpler extension, the coercion (Sulzmann,

Chakravarty, Jones, & Donnelly, 2007). This extended λ-calculus is called

System FC .

The essential idea is that complex features of the type system can be

handled entirely by the source-level typechecker, which annotates the generated

Core with pre-calculated evidence, i.e., proofs showing that terms have the

required types. These annotations take the form of type-safe casts

M . γ,

where M has some type τ and γ is a coercion of type10 τ ∼ τ ′, proving that τ

and τ ′ are equivalent—so far as Core is concerned, they are the same type.

10Somewhat confusingly, the literature sometimes refers to coercions as types whose kinds
have the form τ ∼ τ ′. The distinction is not consequential.
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Example: Well-Typed Expressions

For example, consider generalized algebric datatypes (GADTs), a popular

extension to standard Haskell allowing datatypes to express constraints

succinctly. The traditional example of a GADT is one for well-typed

expressions:

data Expr a where

Lit :: a → Expr a

Plus :: Expr Int → Expr Int → Expr Int

Eq :: Expr Int → Expr Int → Expr Bool

If :: Expr Bool → Expr a → Expr a → Expr a

Because different constructors produce terms with different types, a

nonsensical term like Plus (Lit 3) (Lit True) is a compile-time error. Even

better, we can write a well-typed interpreter:

eval :: Expr a → a

eval e = case e of

Lit a → a

Plus x y → eval x + eval y

Eq x y → eval x == eval y

If b x y → if eval b then eval x else eval y

Clearly the GADT representation is convenient, as even though

expressions can denote different types, there is no need to tag the returned

values or to check for error cases. However, the source-level typechecker’s job

is now trickier. Notice that this single case expression has different types in

different branches: the Plus branch returns an Int , but the Eq branch returns

a Bool . So the typechecker needs to keep track of types that change in different
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cases. Here it is only the return type that changes, but if eval took a second

parameter of type a, that parameter’s type would change as well.

We promised that the added complexity of GADTs could be isolated from

the Core type system. GHC’s typechecker keeps this promise by rewriting a

GADT like Expr as a regular datatype:

data Expr a where

Lit :: a → Expr a

Plus :: Expr Int → Expr Int → a ∼ Int → Expr a

Eq :: Expr Int → Expr Int → a ∼ Bool → Expr a

If :: Expr Bool → Expr a → Expr a → Expr a

We have kept the GADT syntax, but Expr is now a traditional datatype—

its constructors all return Expr a, no matter what a is chosen to be. The caveat

is that Plus requires a proof that a is actually Int , and similarly with Eq , so we

still can’t use Plus to create an Expr Bool .

Here is how eval is desugared into Core11:

eval :: Expr a → a

eval e = case e of

Lit a → a

Plus x y γ → (eval x + eval y) . γ−1

Eq x y γ → (eval x == eval y) . γ−1

If b x y → if eval b then eval x else eval y

Now the Plus and Eq branches can access the coercion γ stored in the

Expr . In the Plus case, γ has type a ∼ Int . Now, eval x + eval y has type Int ,

and we must return an a, so γ’s type is “backwards”—we need Int ∼ a. But

of course type equivalence is symmetric, so we can always take the inverse γ−1.

The Eq case is similar.
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Typechecking is now straightforward. The only novelty is checking the

coercions themselves, but this is not hard.

2.4 Sequent Calculus for GHC

As mentioned in Section 2.2, ANF is more concise than CPS, yet it is

formally equivalent. Thus reasoning about the observable behavior of a term’s

CPS translation carries over to its ANF form (Flanagan et al., 1993). However,

an optimizing compiler is concerned with much more than observable behavior—

the equivalence can tell us only which transformations are correct, not which

are desirable. Thus it is worth considering what we might be trading for the

syntactic economy of ANF or plain λ-terms.

Case Floating and Join Points

When dealing with plain λ-terms, one important operation is called case

floating (Santos, 1995; Peyton Jones & Santos, 1998). In general, if the first

step of evaluating some term will be to evaluate a case, then the case can be

brought to the top of the term. For instance, a case might return a function

11Technically, the if becomes a case in Core.
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that will be applied immediately:


case b of

True → λy . x + y

False → λy . x ∗ y

 5⇒

case b of

True → (λy . x + y) 5

False → (λy . x ∗ y) 5

⇒

case b of

True → x + 5

False → x ∗ 5

As can be seen, the purpose of case floating is generally to bring terms together

in the hope of finding a redex, i.e., an opportunity to perform a compile-

time computation. Here, the case was always returning a λ, so moving the

application inward lets the function call happen at compile time.

One possible concern is that the argument has been duplicated. What if

this 5 were instead some large expression?


case b of

True → λy . x + y

False → λy . x ∗ y

 〈BIG〉 ⇒⇒

case b of

True → x + 〈BIG〉

False → x ∗ 〈BIG〉 -- Oops!

The β-reduction may be a Pyrrhic victory if it causes code size to explode—

consider that the branches may, themselves, be case expressions, leading to

exponential blow-up. The obvious solution, which GHC uses whenever a value is
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about to become shared, is to introduce a let-binding:


case b of

True → λy . x + y

False → λy . x ∗ y

 〈BIG〉 ⇒⇒

let

arg = 〈BIG〉

in

case b of

True → x + arg

False → x ∗ arg

The situation is more complex in a call-by-value language: if b were an

expression with side effects, we would need to be careful that 〈BIG〉 is still not

evaluated until afterward.

In contrast, CPS does not need case floating as a special case, and it will

avoid the sharing issue even in a call-by-value language. Here is the call-by-

value CPS form of our term:

λk .


λk1. case b of

True → k1 (λy . λk2. k2 (x + y))

False → k1 (λy . λk2. k2 (x ∗ y))

 (λf . C J〈BIG〉K (λy . f y k))

The CPS form of the case expression is now applied to the continuation that

serves to evaluate 〈BIG〉 and apply it as an argument to whichever function

comes out of the case. A simple β-reduction moves that continuation’s use into

the branches, bringing the case to the top without any special rule:
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λk . let

k1 = λf . C J〈BIG〉K (λy . f y k)

in

case b of

True → k1 (λy . λk2. k2 (x + y))

False → k1 (λy . λk2. k2 (x ∗ y))

Here we have used a variation on β-reduction that let-binds the argument

rather than substituting it.

Eliminating the redex, the way we did with the λ-term, is trickier but

doable. As is, we would need to inline k1 at both call sites, which would

duplicate 〈BIG〉 all over again. But we can instead give 〈BIG〉 its own binding

and (since f was chosen fresh) float it out:

λk . let

arg = λk . C J〈BIG〉K k

k1 = λf . arg (λy . f y k)
in

case b of

True → k1 (λy . λk2. k2(x + y))

False → k1 (λy . λk2. k2(x ∗ y))

⇒∗

λk . let

arg = λk . C J〈BIG〉K k

in

case b of

True → arg (λy . k (x + y))

False → arg (λy . k (x ∗ y))

Since k1 became small, we inlined it in the branches, and now those

branches use x and arg directly, just as in the λ-term.
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None of these procedures were specific to case statements; only floating

and careful inlining were required. And floating can be performed aggressively

on the CPS form, since there is no danger of changing evaluation order (Plotkin,

1975).

What about ANF? Remember that ANF is derived from CPS by

performing all administrative reductions, then translating back to direct style.

So the näıve ANF transform duplicates the context of any case. In practice, of

course, implementations are smarter, avoiding administrative reductions that

would duplicate too much code. The leftover continuations, which would have

disappeared due to administrative reductions, are then called join points :

let

j = λf . let

arg = 〈BIG〉

in

f arg
in

case b of

True → j (λy . x + y)

False → j (λy . x ∗ y)

Now, in CPS, every function call is a tail call and thus function

application, including continuation invocation, is cheap. In ANF, however,

function calls generally entail all the usual overhead12, so if we don’t treat j

specially somehow, we will introduce that overhead in making j a function.

12It may seem from this discussion that ANF itself imposes function-call overhead compared
to CPS. In fact, it merely makes implicit again what CPS expresses explicitly—a continuation
closure represents the call stack, including the return pointer, as a λ-term. If code generation
in turn uses the call stack to implement continuations, or if CPS code is translated back
to direct style before code generation (Kennedy, 2007), then CPS vs. ANF has no lasting
significance after the optimizer. Alternatively, the compiler can simply let the continuations
be values like any other, using heap-allocated “stack frames” and forgoing the stack entirely.
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Fortunately, j is special: like a continuation, it is only ever tail-called.

Furthermore, it is only used in the context that defined it, and not under a λ-

abstraction. Therefore all calls to j will return to the same point. Hence there is

no need to push a stack frame with a return address in order to invoke it, and

we can generate code for it as we would a continuation in a CPS IL.

So we can create join points when translating to ANF, and we can

recognize join points during code generation so that calling them is efficient.

Have we regained everything lost from CPS to ANF? Unfortunately, no. The

problem is that join points may not stay join points during optimization.

Suppose our term, now in ANF with a join point, is part of a bigger

expression:

let

g = λx . let

j = λf . let

arg = 〈BIG〉

in

f arg
in

case b of

True → j (λy . x + y)

False → j (λy . x ∗ y)
in

case g 1 of

〈HUGE〉

By doing the latter, SML/NJ easily implements the call/cc operator, which allows user code
to access its continuation, with little overhead (Appel, 1998a, §5.9).
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Now suppose that this is the only reference to g (it does not appear in

〈HUGE〉). Thus we want to inline the call g 1 so we can remove the binding

for g altogether. We can start by performing the β-reduction:

case



let

j = λf . let

arg = 〈BIG〉

in

f arg
in

case b of

True → j (λy . x + y)

False → j (λy . x ∗ y)



of

〈HUGE〉

This term is no longer in ANF. To renormalize, first we float out the let:

let

j = λf . let

arg = 〈BIG〉

in

f arg
in

case


case b of

True → j (λy . x + y)

False → j (λy . x ∗ y)

 of

〈HUGE〉

Then, as before, we need to perform case floating. This time we’re doing

the case-of-case transformation (Peyton Jones & Santos, 1998; Santos, 1995).

It is similar to the previous “app-of-case” case, so we’ll need to make another

join point. (Incidentally, here GHC would need to make a join point as well; the

trick it used earlier to float out 〈BIG〉 won’t help.)
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let

j = λf . let

arg = 〈BIG〉

in

f arg
j2 = λz . case z of

〈HUGE〉
in

case b of

True → j2 (j (λy . x + y))

False → j2 (j (λy . x ∗ y))

We’re back in ANF, but notice that j is no longer a join point—it’s now called

in non-tail position. Thus the function-call overhead has crept back in.

Introducing Sequent Calculus

Clearly it is hazardous to represent join points as normal functions and

expect to find them later still intact. Thus we would like a representation that

treats them fundamentally differently. In particular, it would help to enforce

syntactically the invariant that a join point must be tail-called. Needing to

systematize the notion of “tail call” leads us to consider an encoding that

makes control flow explicit, like CPS. CPS is syntactically heavy, however.

More importantly, CPS makes too much control flow explicit. As was its

initial purpose (Plotkin, 1975), CPS specifies syntactically the order in which

expressions are evaluated, leaving nothing to the evaluation strategy. This

would be cumbersome for the GHC optimization engine, which takes full

advantage of Haskell’s underspecified evaluation order. Also, since CPS encodes

the evaluation strategy, there is a different transform for each evaluation

strategy, whereas there is a single correspondence between λ-calculi and sequent
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Term Variable: x, f, . . .

Cont. Variable: k, j, . . .

Data Constructor: Cn, . . .

Type: τ ::= (see Fig. 14)

Coercion: γ ::= (omitted)

Pattern: P ::= x
∣∣ Cn x1 . . . xn

Term: M ::= x
∣∣ Cn

∣∣ λx : τ.M
∣∣ Λα : κ.M

∣∣ µk : τ.K

Continuation: E ::= k
∣∣M · E ∣∣ τ · E ∣∣ .γ · E∣∣ case of P1 → K1; . . . ;Pn → Kn

Command: K ::= 〈M |E〉
∣∣ let recB1; . . . ;Bn inK∣∣ letB inK

Binding: B ::= x = M
∣∣ cont k = E

FIGURE 15. The syntax for Sequent Core.

calculi. In other words, the first step to using CPS in GHC would be to worry

over which CPS to use, whereas sequent calculus lets us forget about evaluation

order until later.

The sequent calculus was invented by Gerhard Gentzen in his study

of logic, in order to prove properties of his other system, natural deduction

(Gentzen, 1935). Decades later, it was realized that natural deduction is

intimately related to the λ-calculus by what is now called the Curry–Howard

isomorphism (Howard, 1980). More recently, there has been interest in the

similar way that the sequent calculus can be seen as a programming language

(Herbelin, 1995). We propose an IL called Sequent Core (Fig. 15), based on a

lazy fragment of a sequent calculus, Dual System FC , that incorporates the type

system of System FC .

The sequent calculus divides the expression syntax into three categories:

terms, which produce values; continuations, which consume values; and
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commands, which apply values to continuations. Thus, computation is modeled

as the interaction between a value and its context.

Most of the term forms are familiar. The novel one is the µ-abstraction,

whose syntax is borrowed from Parigot’s λµ-calculus (Parigot, 1992) describing

control operators. It is written µk : τ.K, meaning bind the continuation as k

and then perform the command K. The µ-abstraction arises by analogy with

CPS, which represents each term as a function of a continuation; hence, we

distinguish continuation bindings. Keeping this distinction, as well as other

syntactic restrictions compared to CPS, makes it simple to convert freely

between Core and Sequent Core as needed.

The continuations comprise the observations that can be made of a term:

we can apply an argument to it (either a value or a type argument); we can cast

it using a coercion; we can perform case analysis on it; or we can return it to

some context.

A command either applies a term to a continuation or allocates using

a let binding. Either a term or a continuation may be let-bound, either

recursively or non-recursively. Note that recursive continuations don’t arise

from translating Core, but just as join points could be recognized before, we

can perform contification (Kennedy, 2007; Fluet & Weeks, 2001) to turn a

consistently tail-called function (even a recursive one) into a continuation.

In Sequent Core, however, we do not risk accidentally “ruining” a

continuation. Consider again our problematic term:
case b of

True → λy . x + y

False → λy . x ∗ y

 〈BIG〉

Here it is as a term in Sequent Core:
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µk .

〈
µk1.

〈
b

∣∣∣∣∣∣∣∣
case of

True → 〈λy . µk2. 〈(+) | x · y · k2〉 | k1〉

False → 〈λy . µk2. 〈(∗) | x · y · k2〉 | k1〉

〉 ∣∣∣∣∣∣∣∣ 〈BIG〉 · k

〉

As before, we can share the application between the two branches as a join

point. The lazy form of the µβ rule for applying a continuation is:

〈µk.K |E〉 ⇒ let cont k = E inK

Thus we can perform a µβ-reduction (renaming k1 as j):

µk . let

cont j = 〈BIG〉 · k

in〈
b

∣∣∣∣∣∣∣∣
case of

True → 〈λy . µk2. 〈(+) | x · y · k2〉 | j 〉

False → 〈λy . µk2. 〈(∗) | x · y · k2〉 | j 〉

〉

Now, what happens in the troublesome case-of-case situation in Sequent Core?

Suppose, again, there is a larger context:

case


case b of

True → λy . x + y

False → λy . x ∗ y

 〈BIG〉 of

〈HUGE〉

Our simplified Sequent Core term becomes:

µk0.

〈


µk . let

cont j = 〈BIG〉 · k

in〈
b

∣∣∣∣∣∣∣∣
case of

True → 〈λy . µk2. 〈(+) | x · y · k2〉 | j 〉

False → 〈λy . µk2. 〈(∗) | x · y · k2〉 | j 〉

〉



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
case of

〈HUGE〉

〉

Recall that GHC’s case-of-case transform would be pulling the outer case

into both branches of the inner case. It would make a join point to avoid
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duplicating 〈HUGE〉, but then it would still “ruin” j. But here, a simple µβ-

reduction, subsituting for k afterward, gives:

µk0. let

cont j = 〈BIG〉 · case of

〈HUGE〉
in〈

b

∣∣∣∣∣∣∣∣
case of

True → 〈λy . µk2. 〈(+) | x · y · k2〉 | j 〉

False → 〈λy . µk2. 〈(∗) | x · y · k2〉 | j 〉

〉

We pull the case into j, where it has a chance to interact with 〈BIG〉, perhaps

by matching a known constructor.

Observe that this would be a very unnatural code transformation on

Core: normally, it would never make sense to move an outer context into some

let-bound term. If nothing else, it would change the return type of j, from

that of 〈BIG〉 to that of the branches 〈HUGE〉, which a correct transformation

rarely does. But the invariants of Sequent Core make case-of-case a simple

substitution like any other. In particular, since continuations are only typed

according to their argument type, j has no “return type,” so substituting the

outer context for k preserves types. Also, invariants about how k must be used

(see below) ensure that we haven’t changed the outcome of any code path.

Type and Scope Invariants

A command is simply some code that runs; it has no type of its own. A

well-typed command is simply one whose term and continuation have the same

type. Similarly, a continuation takes its argument and runs, so it doesn’t have

an “outgoing type” any more than a term has an “incoming type.”

This may be worrisome—have we allowed control effects into our

language? Haskell (and hence Core) is supposed to be a lazy language whose
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evaluation order is loosely specified, yet so far, it seems we would allow terms

that discriminate according to evaluation order. For example:

µk . let

cont j1 = case of { → 〈“Left first” | k〉 }

cont j2 = case of { → 〈“Right first” | k〉 }
in

〈(+) | (µk1. 〈() | j1〉) · (µk2. 〈() | j2〉) · k〉

In this term, whichever operand to (+) is evaluated first will pass a string

directly to the continuation k, interrupting the whole computation and revealing

the evaluation order. We have already seen how freely GHC rearranges terms

because such changes are not supposed to be observable to Haskell programs;

thus allowing programs such as this would be disastrous. If nothing else, the

above term has no counterpart in Core, suggesting that the difference between

Core and Sequent Core is so profound as to require rethinking the entire

optimization pipeline.

On the other hand, we do not want to compromise flexibility. A rule

such as “k must occur free in each branch” would disallow having different

branches return through different join points. Selective inlining and known-

case optimizations can cause branches to diverge dramatically. Indeed, there is

nothing objectionable about this term, which is superficially similar to the one

above:

µk . let

cont j1 = case of { → 〈“It was true” | k〉 }

cont j2 = case of { → 〈“It was false” | k〉 }
in〈

b

∣∣∣∣∣∣∣∣
case of

True → 〈() | j1〉

False → 〈() | j2〉

〉
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The solution is simple, as suggested by (Kennedy, 2007). We impose the

scoping rule that continuation variables may not appear free in terms. Thus, we

say terms are continuation-closed. This forbids j1 and j2 from being invoked

from argument terms, where they constitute an impure computation, but not

from case branches, where they are properly used to describe control flow.

It should be clear, then, that if the evaluation of the term µk.K completes

normally, k must be invoked. An informal proof: If K has no let cont bindings,

then invoking k is “the only way out.”13 If there is a local continuation (i.e., a

join point) declared, then it can only recurse to itself or invoke k, and if it only

recurses then computation does not complete normally. If there is a join point

j1 and then another join point j2, then it may be that j2 is invoked, but it must

eventually defer to k or to j1 (and thus eventually to k) or else loop forever; and

so on. By induction, either execution fails, or it succeeds through k.

The “inevitability” of a µ-bound continuation makes translating from

Sequent Core back into Core easy. If we see the command 〈M |E〉, we can say

confidently that the normal flow of control passes to E, so we translate E as the

context of M . That is, we translate it as a fragment of syntax to be wrapped

around M . For instance, writing D (for “direct style”) for the translation to

Core, we have:

D

u

ww
v

〈
M

∣∣∣∣∣∣∣∣
case of

True → K1

False → K2

〉}

��
~ =

caseD JM K of

True → D JK1K

False → D JK2K

13Note that, in general, a command has the structure of a tree of case expressions
with continuation variables at the leaves. Without let cont, there is no way to bring new
continuation variables into scope, and no terms (including arguments in continuations) may
have free continuation variables, so only k may occur free at all. There may be branches with
no continuation variables, since an empty case statement is allowed (typically when it is
known that a term crashes or loops, so its continuation is dead code). Hence the stipulation at
the start that computation “computes normally.”
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D J〈M |E 〉Kk = D JE K [D JM Kk ]
D Jlet B in K Kk = letD JBKk inD JK Kk
D

r
let rec

#»

B in K
z

k
= let rec

#              »

D JBKk inD JK Kk

D Jx = M Kk = x = D JM K
D Jcont j = E Kk = j = λx → D JE Kk [x ]

D JxK = x
D JC K = C
D Jλ x . M K = λ x .D JM K
D JΛ α. M K = Λ α.D JM K
D Jµ k . K K = D JK Kk

D JkKk = �
D Jj Kk = j � (j 6= k)
D JM · E Kk = D JE Kk [D JM K �]
D Jτ · E Kk = D JE Kk [τ �]
D J. γ · E Kk = D JE Kk [� . γ]

D
r
case of

#                 »

P → K
z

k
= case� of {

#                              »

P → D JKKk }

FIGURE 16. The readback translation D from Sequent Core back to Core, as
defined on commands, bindings, terms, and continuations.
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Thus, we can easily return to Core after working in Sequent Core. The

full definition of D is given in Fig. 16. The extra argument k is carried so

that, when translating µk.K, we can distinguish between the k that marks

the current context from other continuation variables introduced as join points.

(Since terms are continuation-closed, only one such k can be µ-bound at a

time.)

There is some overhead in translating back and forth, but early experience

suggests it is tolerable.

2.5 Join Points in Direct Style

While the prototype implementation demonstrated Sequent Core’s

feasibility, the sheer size and disruptiveness of the change posed major

challenges in a production compiler. The central Expr datatype became three

mutually-recursive datatypes for terms, continuations, and commands. Thus

every module being adapted to the Sequent Core world had to have each pass

rewritten, often with one loop turning into three. No mature project undertakes

such disruption unless absolutely necessary—code review alone would have

taken countless hours, to say nothing of the torrent of new bugs.

Thus it is worth seeking a more modest solution providing the same

benefits. The fact that we can translate back and forth offers a clue: by seeing

what is preserved in the round trip and what isn’t, we may hope to find what

we could add to Core so that we might perform the same optimizations on Core

that we were performing on Sequent Core.

To illustrate the need for care, consider:

〈 µ k . let cont j = E1 in K | E2 〉 ⇒ let cont j = E1 {E2/k} in K {E2/k}
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This is a crucial fact, for it deals with the situation where we would be

tempted to ruin a join point. If we translate both sides back to Core using

D and apply a tempting “substitution lemma,” however, we get something

nonsensical (here E stands for an evaluation context):

E [let j = M in N ] ⇒ let j = E [M ] in E [N ]

This would allow us to derive14:

even ( let b = True in if b then 0 else 1)

⇒ let b = even True in even ( if b then 0 else 1)

Not only is this wrong, but even True doesn’t so much as typecheck.

What has gone wrong? Observe from Fig. 16 that D turns both normal

let bindings and continuation bindings into Core let bindings. If we came from

Sequent Core, our “rule” can’t tell whether j came from a join point or not.

Worse, the putative substitution lemma fails, for reasons turning precisely

on whether or not a given identifier is a join point. This is what we would like

to write:

D JK{E/k}Kk ⇔ D JE Kk [D JK Kk ]

(Here ⇔ means equality up to reductions in either direction.) The intuition is

that substituting a continuation for k corresponds to adding more context to

the top level of a term. The “lemma” breaks down completely, however, when

K is an invocation of a join point:

D J〈M | j 〉 {E/k}Kk

= D J〈M | j 〉Kk

= j D JM K

14We can use even � as an evaluation context because even is strict.
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6⇔ D JE Kk [j D JM K]

= D JE Kk [D J〈M | j 〉Kk ]

The problem is that the continuation k does not appear in the invocation

of a join point in Sequent Core. This makes sense, since a join point is

an alternate continuation that retains its own context. But it means that

remembering what’s a join point and what isn’t is crucial for maintaining any

connection between Core and Sequent Core strong enough to start deriving

useful relations.

Hence, anticipating the syntax introduced in Chapter III, we define D′ to

be the same as D except:

D′ Jcont j = E Kk = join j x = D′ JE Kk [x ]

D′ Jj Kk = jump j �

Practically, all we have done is added a Boolean flag to each binding. Yet

this is very powerful information, as the rule

E [let join j x = M in N ] ⇒ let join j x = E [M ] in E [N ]

is not only sound but the key to avoiding ruining join points. To deal with our

trouble with invoking a join point, we will also have this rule:

E [jump j M ] ⇒ jump j M

Together with the usual rules for case floating, we can now give a substitution

lemma to make the desired rules derivable from D:

Lemma 1. For any Sequent Core command K and continuation E:

D′ JK{E/k}Kk ⇔ D′ JE Kk [D′ JK Kk ]
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Thus many of the rules in Chapter III were derived by translating from

Sequent Core. Since we also translated the type system, which enforces the

restrictions on join points, we know that the translated rules are sound. This

is the key advantage of using translation as a strategy for language extension:

delicate matters such as what exactly the constraints on join points are or

how case floating can work with them can be handled simply by appealing

to translation. Since the sequent calculus handles join points so naturally,

the soundness of the rule can be proved easily, and then translation saves us

the implementation trouble of using a brand-new intermediate language for

optimization.
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CHAPTER III

Improving Compilation of Haskell

Most of the text in this chapter comes from (Maurer, Downen, Ariola, &

Peyton Jones, 2017), which was a collaboration with Paul Downen (UO), Zena

M. Ariola (UO), and Simon Peyton Jones (MSR). I led the research and did

most of the writing. I also performed the software development (namely the

extension to GHC), under Simon’s helpful guidance.

Consider this code, in a functional language:

if (if e1 then e2 else e3) then e4 else e5

Many compilers will perform a commuting conversion (Girard, Taylor, & Lafont,

1989), which näıvely would produce:

if e1 then (if e2 then e4 else e5)

else (if e3 then e4 else e5)

Commuting conversions are tremendously important in practice (Sec. 3.1),

but there is a problem: the conversion duplicates e4 and e5. A natural

countermeasure is to name the offending expressions and duplicate the names

instead:

let { j4 () = e4; j5 () = e5 }

in if e1 then (if e2 then j4 () else j5 ())

else (if e3 then j4 () else j5 ())

We describe j4 and j5 as join points, because they say where execution of the

two branches of the outer if joins up again. The duplication is gone, but a new

problem has surfaced: the compiler may allocate closures for locally-defined

functions like j4 and j5. That is bad because allocation is expensive. And it
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is tantalizing because all we are doing here is encoding control flow: it is plain

as a pikestaff that the “call” to j4 should be no more than a jump, with no

allocation anywhere. That’s what a C compiler would do! Some code generators

can cleverly eliminate the closures, but perhaps not if further transformations

intervene.

The reader of Appel’s inspirational book (Appel, 1992) may be thinking

“Just use continuation-passing style (CPS)!” When expressed over CPS terms,

many classic optimizations boil down to β-reduction (i.e.function application),

or arithmetic reductions, or variants thereof. And indeed it turns out that

commuting conversions fall out rather naturally as well. But using CPS comes

at a fairly heavy price: the intermediate language becomes more complicated,

some transformations are harder or out of reach, and (unlike direct style) CPS

commits to a particular evaluation order.

Inspired by Flanagan et al. (Flanagan et al., 1993), the reader may now

be thinking “OK, just use administrative normal form (ANF)!” That paper

shows that many transformations achievable in CPS are equally accessible

in direct style. ANF allows an optimizer to exploit CPS technology without

needing to implement it. The motto is: Think in CPS; work in direct style.

But alas, a subsequent paper by Kennedy shows that there remain

transformations that are inaccessible in ANF but fall out naturally in CPS

(Kennedy, 2007). So the obvious question is this: could we extend ANF in some

way, to get all the goodness of direct style and the benefits of CPS? In this

paper we say “yes!”, making the following contributions:

– We describe a modest extension to a direct-style λ-calculus intermediate

language, namely adding join points (Sec. 3.2). We give the syntax,

type system, and operational semantics, together with optimising

transformations.
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– We describe how to infer which ordinary bindings are in fact join points

(Sec. 3.3). In a CPS setting this analysis is called contification (Kennedy,

2007), but it looks rather different in our setting.

– We show that join points can be recursive, and that recursive join points

open up a new and entirely unexpected (to us) optimization opportunity

for fusion (Sec. 3.4). In particular, this insight fully resolves a long-

standing tension between two competing approaches to fusion, namely

stream fusion (Coutts, Leshchinskiy, & Stewart, 2007) and unfold/destroy

fusion (Svenningsson, 2002).

– We give some metatheory in Sec. 3.5, including type soundness and

correctness of the optimizing transformations. We show the safety of

adding jumps as a control effect by establishing an equivalence with

System F.

– We demonstrate that our approach works at scale, in a state-of-the-art

optimizing compiler for Haskell, GHC (Sec. 3.6). As hoped, adding join

points turned out to be a very modest change, despite GHC’s scale and

complexity. Like any optimization, it does not make every program go

faster, but it has a dramatic effect on some.

Overall, adding join points to ANF has an extremely good power-to-weight

ratio, and we strongly recommend it to any direct-style compiler. Our title is

somewhat tongue-in-cheek, but we now know of no optimizing transformation

that is accessible to a CPS compiler but not to a direct-style one.

3.1 Motivation and Key Ideas
We review compilation techniques for commuting conversions, to expose

the challenge that we tackle in this paper. For the sake of concreteness we
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describe the way things work in GHC. However, we believe that the whole paper

is equally applicable to a call-by-value language.

Case-of-Case Transformation

Consider these function definitions:

isNothing :: Maybe a -> Bool

isNothing x = case x of Nothing -> True

Just _ -> False

mHead :: [a] -> Maybe a

mHead ps = case ps of [] -> Nothing

(p:_) -> Just p

null :: [a] -> Bool

null as = isNothing (mHead as)

Here null is a simple composition of the library functions isNothing and

mHead. When the optimizer works on null, it will inline both isNothing and

mHead to yield:

null as = case (case as of [] -> Nothing

(p:_) -> Just p) of

{ Nothing -> True; Just _ -> False }

Executed directly, this would be terribly inefficient; if the argument list is non-

empty we would allocate a result Just p only to immediately decompose it. We

want to move the outer case into the branches of the inner one, like this:

null as = case as of

[] -> case Nothing of Nothing -> True
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Just z -> False

p:_ -> case Just p of Nothing -> True

Just _ -> False

This is a commuting conversion, specifically the case-of-case transformation. In

this example, it now happens that both inner case expressions scrutinize a data

constructor, so they can be simplified, yielding

null as = case as of { [] -> True; _:_ -> False }

which is exactly the code we would have written for null from scratch.

GHC does a tremendous amount of inlining, including across modules

or even packages, so commuting conversions like this are very important in

practice: they are the key that unlocks a cascade of further optimizations.

Join Points

Commuting conversions have a problem, though: they often duplicate the

outer case. In our example that was OK, but what about

case (case v of { p1 -> e1; p2 -> e2 }) of

{ Nothing -> BIG1; Just x -> BIG2 }

where BIG1 and BIG2 are big expressions? We do not want to duplicate these

large expressions, or we would risk bloating the size of the compiled code,

perhaps exponentially when case expressions are deeply nested (Lindley, 2005).

It is easy to avoid this duplication by first introducing an auxiliary let binding:

let { j1 () = BIG1; j2 x = BIG2 } in

case (case v of { p1 -> e1; p2 -> e2 }) of

{ Nothing -> j1 (); Just x -> j2 x }
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Now we can move the outer case expression into the arms of the inner case,

without duplicating BIG1 or BIG2, thus:

let { j1 () = BIG1; j2 x = BIG2 } in

case v of

p1 -> case e1 of Nothing -> j1 ()

Just x -> j2 x

p2 -> case e2 of Nothing -> j1 ()

Just x -> j2 x

Notice that j2 takes as its parameter the variable bound by the pattern Just x,

whereas j1 has no parameters1.

Compiling Join Points Efficiently
We call j1 and j2 join points because you can think of them as places

where control joins up again, but so far they are perfectly ordinary let-bound

functions, and as such they will be allocated as closures in the heap. But that’s

ridiculous: all that is happening here is control flow splitting and joining up

again. A C compiler would generate a jump to a label, not a call to a heap-

allocated function closure!

So, right before code generation, GHC performs a simple analysis to

identify bindings that can be compiled as join points. This identifies let-bound

functions that will never be captured in a closure or thunk, and will only be tail-

called with exactly the right number of arguments. (We leave the exact criteria

for Sec. 3.3.) These join-point bindings do not allocate anything; instead a tail

call to a join point simply adjusts the stack and jumps to the code for the join

point.

1The dummy unit parameter is not necessary in a lazy language, but it is in a call-by-value
language.
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The case-of-case transformation, including the idea of using let bindings

to avoid duplication, is very old; for example, both are features of Steele’s

Rabbit compiler for Scheme (Steele, 1978). In Rabbit the transformation is

limited to booleans, but the discussion above shows that it generalizes very

naturally to arbitrary data types. In this more general form, it has been

part of GHC for decades (Peyton Jones & Santos, 1998). Likewise, the idea

of generating different (and much more efficient) code for non-escaping let

bindings is well established in many other compilers (Tolmach & Oliva, 1998;

Reppy, 2002; Keep, Hearn, & Dybvig, 2021) as well as GHC.

Preserving and Exploiting Join Points
So far so good, but there is a serious problem with recognizing join points

only in the back end of the compiler. Consider this expression:

case (let j x = BIG in

case v of { A -> j 1; B -> j 2; C -> True } of

{ True -> False; False -> True }

Here j is a join point. Now suppose we do case-of-case on this expression.

Treating the binding for j as an ordinary let binding (as GHC does today),

we move the outer case past the let, and duplicate it into the branches of the

inner case, yielding

let j x = BIG in

case v of

A -> case (j 1) of { True -> False; False -> True }

B -> case (j 2) of { True -> False; False -> True }

C -> case True of { True -> False; False -> True }

The third branch simplifies nicely, but the first two do not. There are two

distinct problems:
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1. The binding for j is no longer a join point (it is not tail-called), so the

super-efficient code generation strategy does not apply, and the compiler

will allocate a closure for j at runtime. This happens in practice: we have

cases in which GHC’s optimizer actually increases allocation because it

inadvertently destroys a join point.

2. Even worse, the two copies of the outer case now scrutinize an

uninformative call like (j 1). So the extra code bloat from duplicating

the outer case is entirely wasted. And it’s a huge lost opportunity, as we

shall see.

So it is not enough to generate efficient code for join points; we must identify,

preserve, and exploit them. In our example, if the optimizer knew that the

binding for j is a join point, it could exploit that knowledge to transform our

original expression like this:

let j x = case BIG of True -> False

False -> True

in case v of

A -> j 1

B -> j 2

C -> case True of { True -> False; False -> True }

This is much, much better than our previous attempt:

– The outer case has moved into the right-hand side of the join point,

so it now scrutinizes BIG. That’s good, because BIG might be a data

constructor or a case expression (which would expose another case-of-

case opportunity). So the outer case now scrutinizes the actual result of

the expression, rather than an uninformative join-point call. That solves

problem (2).
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– The A and B branches do not mention the outer case, because it has

moved into the join point itself. So j is still tail-called and remains an

efficiently-compiled join point. That solves problem (1).

– The outer case still scrutinizes the branches that do not finish with a join

point call, e.g. the C branch.

The Key Idea

Thus motivated, in the rest of this paper we explore the following very

simple idea:

– Distinguish certain let bindings as join-point bindings, and their (tail-

)call sites as jumps.

– Adjust the case-of-case transformation to take account of join-point

bindings and jumps.

– In all the other transformations carried out by the compiler, ensure that

join points remain join points.

Our key innovation is that, by recognising join points as a language construct,

we both preserve join poins through subsequent transformations, and exploit

join points to make other tansformations more effective. Next, we formalize this

approach; subsequent sections develop the consequences.

3.2 System FJ : Join Points and Jumps
We now formalize the intuitions developed so far by describing System

FJ , a small intermediate language with join points. FJ is an extension of

GHC’s Core intermediate language (Peyton Jones & Santos, 1998). We omit

existentials, GADTs, and coercions (Sulzmann et al., 2007), since they are

largely orthogonal to join points.
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Terms
x ∈ Term variables
j ∈ Label variables
e, u, v ::= x | l | λx:σ. e | e u

| Λa. e | eϕ Type polymorphism
| K #»ϕ #»e Data construction

| case eof
#  »

alt Case analysis
| let vb in v Let binding
| join jb inu Join-point binding
| jump j #»ϕ #»e τ Jump

alt ::= K #   »x:σ → u Case alternative
Value bindings and join-point bindings
vb ::= x:τ = e Non-recursive value

| rec #              »x:τ = e Recursive values
jb ::= j #»a #   »x:σ = e Non-recursive join point

| rec
#                          »

j #»a #   »x:σ = e Recursive join points
Answers
A ::= λx:σ. e | Λa. e | K #»ϕ #»v
Types
a, b ∈ Type variables
τ, σ, ϕ ::= a | σ → τ | τ ϕ | ∀a. τ

| T Datatype
Frames, evaluation contexts, and stacks
F ::= � v | � τ Application

| case�of #          »p→ u Case scrutinee
| join jb in� Join point

E ::= � | F [E] Evaluation contexts
s ::= ε | F : s Stacks
Tail contexts
L ::= � Empty unary context

| case eof
#           »

p→ L Case branches
| let vb inL Body of let
| join j #»a #   »x:σ = L inL′ Join point, body

| join rec
#                           »

j #»a #   »x:σ = L inL′ Rec join points, body
Miscellaneous
C ∈ General single-hole term contexts
Σ ::= · | Σ, x:σ = v Heap
c ::= 〈e; s; Σ〉 Configuration

FIGURE 17. Syntax of System FJ .
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Syntax

System FJ is a simple λ-calculus language in the style of System F, with

let expressions, data type constructors, and case expressions; its syntax is given

in Fig. 17. System FJ is an explicitly-typed language, so all binders are typed,

but in our presentation we will often drop the type annotations.

The join-point extension is highlighted in the figure and consists of two

new syntactic constructs:

– A join binding that declares a join point. Each join point has a name, a

list of type parameters, a list of value parameters, and a body.

– A jump expression that invokes a join point, passing all indicated

arguments as well as an additional type argument (as discussed below).

Although we use curried syntax for jumps, join points are polyadic;

partial application is not allowed.

Static semantics
The type system for System FJ is given in Fig. 18, where typeof gives the

type of a constructor and ctors gives the set of constructors for a datatype.

The typing judgement carries two environments, Γ and ∆, with ∆ binding

join points. The environment ∆ is extended by a join (rules JBind and

RJBind) and consulted at a jump. Note that we rely on scoping conventions

in some places: if Γ; ∆ ` e : τ , then every variable (type or term) free in e or τ

appears in Γ, and the symbols in Γ are unique. Similarly, every label free in e

appears in ∆.

To enforce that jumps are not used as side effects, ∆ is reset in every

premise for a subterm whose runtime context is not statically known. For

example, consider join j x = RHS in f (jump j True Int). Here the context

in which the jump is invoked is not statically known—in a lazy language it
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Γ; ∆ ` e : τ

(x:τ) ∈ Γ

Γ; ∆ ` x : τ
Var

typeof(K) = ∀ #»a . #»σ → T #»a
#                                        »

Γ; ε ` u : σ{a/ϕ}
Γ; ∆ ` K #»ϕ #»u : T #»ϕ

Con

Γ, (x:σ); ε ` e : τ

Γ; ∆ ` λ(x:σ). e : σ → τ
Abs

Γ, a; ε ` e : τ

Γ; ∆ ` Λa. e : ∀a. τ TAbs

Γ; ∆ ` e : σ → τ Γ; ε ` u : σ

Γ; ∆ ` e u : τ
App

Γ; ∆ ` e : ∀a. τ
Γ; ∆ ` e ϕ : τ{a/ϕ} TApp

(j:∀ #»a . #»σ → ∀r. r) ∈ ∆
#                                        »

Γ; ε ` u : σ
#           »

{a/ϕ}
Γ; ∆ ` jump j #»ϕ #»u τ : τ

Jump

Γ; ε ` u : σ Γ, x:σ; ∆ ` e : τ

Γ; ∆ ` letx:σ = u in e : τ
VBind

#                                   »

Γ, #   »x:σ; ε ` u : σ Γ, #   »x:σ; ∆ ` e : τ

Γ; ∆ ` let rec #               »x:σ = u in e : τ
RVBind

Γ, #»a , #   »x:σ; ∆ ` u : τ Γ; ∆, (j:∀ #»a . #»σ → ∀r. r) ` e : τ

Γ; ∆ ` join j #»a #   »x:σ = u in e : τ
JBind

#                                                                                          »

Γ, #»a , #   »x:σ; ∆,
#                                    »

j:∀ #»a . #»σ → ∀r. r ` u : τ Γ; ∆,
#                                    »

j:∀ #»a . #»σ → ∀r. r ` e : τ

Γ; ∆ ` join rec
#                          »

j #»a #   »x:σ = u in e : τ
RJBind

Γ; ∆ ` e : T #»ϕ
#                                                                 »

typeof(K) = ∀ #»a . #»σ → T #»a
#                             »
#»ν = #»σ

#           »

{a/ϕ}
#                                     »

Γ, #   »x:ν ; ∆ ` u : τ ctors(T ) = { #»

K}

Γ; ∆ ` case eof
#                       »

K #   »x:ν → u : τ
Case

FIGURE 18. Type system for System FJ .
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depends on how f uses its argument—so it cannot be compiled to “adjust the

stack and jump.” So j is not a valid join point. We exclude such terms by

resetting ∆ to ε when typechecking the argument in rule App.

Nevertheless, the typing of join points is a little bit more flexible than you

might suspect. Consider this expression:



join j x = RHS

in case v of A → jump j True C2C

B → jump j False C2C

C → λc. c


’x’

where C2C = Char → Char . This is certainly well typed. A valid

transformation is to move the application to ’x’ into both the body and the

right hand side of the join, thus:

join j x = RHS ’x’

in


case v of A → jump j True C2C

B → jump j False C2C

C → λc. c

 ’x’

Now we can move the application into the branches:

join j x = RHS ’x’

in case v of A → (jump j True C2C) ’x’

B → (jump j False C2C) ’x’

C → (λc. c) ’x’

Should this be well typed? The jumps to j are not exactly tail calls, but they

can (and indeed must) discard their context—here the application to ’x’—and

74



resume execution at j. We will see shortly how this program can be further

transformed to remove the redundant applications to ’x’, but the point here is

that this intermediate program is still well typed, as reflected by the fact that ∆

is not reset in the function part of an application (rule App).

The types given to join points themselves deserve some attention. A join

point that binds type variables #»a and value arguments of types #»σ is given the

type ∀ #»a . #»σ → ∀r. r (rule JBind). The return type indicated, namely ∀r. r, is

often written ⊥, and it indicates a non-returning function: a function which

does not actually return can be safely given any return value. This is similar to

how Haskell’s error function has type ∀a. String → a. We have merely moved

the universal quantification to the end for consistency with the join syntax,

which does not (and must not2) bind this “return-type parameter.”

So a join point’s type does not reflect the value of its body, and a jump

can have any type whatsoever. What then keeps a join point from returning

arbitrary values? It is the JBind rule (or its recursive variant) that checks the

right hand side of the join point, making sure it is the same as that of the entire

join expression. Thus we cannot have

join j = "Gotcha!" in if b then jump j Int else 4

because j returns a String but the body of the join returns an Int . In short,

the burden of typechecking has moved: whereas a function can be declared to

return any type but can only be invoked in certain contexts, a join point can be

invoked in any context but can only return a certain type.

2When we introduce the abort axiom (Sec. ), it will need to change this type argument
arbitrarily, which it can only safely do if the type is never actually used in the other
parameters.
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〈e; s; Σ〉 7→〈e′; s′; Σ′〉

〈F [e]; s; Σ〉 7→ 〈e; F : s; Σ〉 (push)
〈λx. e; � v : s; Σ〉 7→ 〈e; s; Σ, x = v〉 (β)
〈Λa. e; �ϕ : s; Σ〉 7→ 〈e{a/ϕ}; s; Σ〉 (βτ )
〈let vb in e; s; Σ〉 7→ 〈e; s; Σ, vb〉 (bind)
〈x; s; Σ[x = v]〉 7→ 〈v; s; Σ[x = v]〉 (look)〈 K #»ϕ #»v ;

case�of
#  »

alt : s;
Σ

〉
7→ 〈u; s; Σ, #         »x = v〉

if (K #»x → u) ∈ #  »

alt

(case)

〈 jump j #»ϕ #»v τ ;
s′++(join jb in� : s);

Σ

〉
7→

〈
u

#           »

{a/ϕ};
join jb in� : s;

Σ, #         »x = v

〉
(jump)

if (j #»a #»x = u) ∈ jb〈 A;
join jb in� : s;

Σ

〉
7→ 〈A; s; Σ〉 (ans)

FIGURE 19. Call-by-name operational semantics for System FJ .

Finally, the reader may wonder why join points are polymorphic

(apart from the result type). In FJ as presented here, we could manage with

monomorphic join points, but they become absolutely necessary when we add

data constructors that bind existential type variables. We omitted existentials

from this paper for simplicity, but they are very important in practice and GHC

certainly supports them.

Operational Semantics

We give System FJ an operational semantics (Fig. 19) in the style of an

abstract machine. A configuration of the machine is a triple 〈e; s; Σ〉 consisting

of an expression e which is the current focus of execution; a stack s representing

the current evaluation context (including join-point bindings); and a heap Σ of

value bindings. The stack is a list of frames, each of which is an argument to

apply, a case analysis to perform, or a bound join point (or recursive group).
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Each frame is moved to the stack via the push rule. Most of the rules are quite

conventional. We describe only call-by-name evaluation here, as rule look shows;

switching to call-by-need by pushing an update frame is absolutely standard.

Note that only value bindings are put in the heap. Join points are stack-

allocated in a frame: they represent mere code blocks, not first-class function

closures. As expected, a jump throws away its context (the jump rule); it does

so by popping all the frames from the stack to the binding (as usual, ++ stands

for the concatenation of two stacks):

〈
join j x = x

in case (jump j 2 (Int → Bool)) 3of . . .; ε; ε

〉

7→?
〈 jump j 2 (Int → Bool);

� 3 : case�of . . . : join j x = x in� : ε;

ε

〉

7→〈x; join j x = x in� : ε; x = 2〉

Here three frames are pushed onto the stack: the join-point binding, the

case analysis, and finally the application of 3 to the jump. Then the jump is

evaluated, popping the latter two frames, replacing the term with the one from

the join point, and binding the argument.

The ans rule removes a join-point binding from the context once an

answer A (see Fig. 17) is computed; note that a well-typed answer cannot

contain a jump, so at that point the binding must be dead code. Continuing

our example:

〈x; join j x = x in� : ε; x = 2〉 7→? 〈2; ε; x = 2〉

Optimizing Transformations
The operational semantics operates on closed configurations. An

optimizing compiler, by contrast, must transform open terms. To describe
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e = e′

(λx:σ. e) v = letx:σ = v in e (β)

(Λa. e)ϕ = e{a/ϕ} (βτ )

let vb inC[x] = let vb inC[v] (inline)

if (x:σ = v) ∈ vb

let vb in e = e (drop)

join jb inL[ #»e , jump j #»ϕ #»v τ,
#»

e′ ] = join jb inL[ #»e , let #              »x:σ = v inu
#           »

{a/ϕ},
#»

e′ ] (jinline)

if (j #»a #   »x:σ = u) ∈ jb

join jb in e = e (jdrop)

caseK #»ϕ #»v of
#  »

alt = let #              »x:σ = v in e (case)

if (K #   »x:σ → e) ∈ #  »

alt

E[case eof
#                   »

K #»x → u] = case eof
#                           »

K #»x → E[u] (casefloat)

E[let vb in e] = let vb inE[e] (float)

E[join jb in e] = joinE[jb] inE[e] (jfloat)

E[jump j #»ϕ #»e τ ] : τ ′ = jump j #»ϕ #»e τ ′ (abort)

FIGURE 20. Common optimizations for System FJ .

possible optimizations, then, we separately develop a sound equational theory

(Fig. 20), which lays down the “rules of the game” by which the optimizer is

allowed to work. It is up to the optimizer to determine how to apply the rules

to rewrite code. All the axioms carry implicit scoping restrictions to avoid free-

variable capture. (For example, drop requires that nothing bound by vb occurs

free in e.)

The β, βτ , and case axioms are analogues of the similarly-named rules

in the operational semantics. Since there is no heap, β and case create let

expressions instead. Compile-time substitution, or inlining, is performed

for values by inline and for join points by jinline. If a binding is inlined

exhaustively, it becomes dead code and can be eliminated by the drop or jdrop

axiom. Values may be substituted anywhere3, which we indicate using a general
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single-hole context C in inline. Inlining of join points is a bit more delicate. A

jump indicates both that we should execute the join point and that we should

throw out the evaluation context up to the join point’s declaration. Simply

copying the body accomplishes the former but not the latter. For example:

join j (x : Int) = x+ 1 in (jump j 2 (Int → Int)) 3

If we näıvely inline j here, we end up with the ill-typed term:

join j (x : Int) = x+ 1 in (2 + 1) 3

Inlining is safe, however, if the jump is a tail call, since then there is no extra

evaluation context to throw away. To specify the allowable places to inline a

join point, then, we use a syntactic notion called a tail context. A tail context

L (see Fig. 17) is a multi-hole context describing the places where a term may

return to its evaluation context. Since � 3 is not a tail context, the jinline

axiom fails for the above term.

The casefloat , float , and jfloat axioms perform commuting conversions.

Of the three, jfloat is novel. It does the transformation we wanted to perform

in Sec. to avoid destroying a join point. It relies on a simple meta-syntactic

function E[·] to push E into a join-point binding:

E[j #»a #»x = u] , (j #»a #»x = E[u])

E[rec
#                       »

j #»a #»x = u] , (rec
#                               »

j #»a #»x = E[u])

3For brevity, we have omitted rules allowing inlining a recursive definition into the
definition itself (or another definition in the same recursive group).
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Consider again the example at the beginning of Sec. . With our new

syntax, we can write it as:

case



join j x = BIG

in case v of A → jump j 1 Bool

B → jump j 2 Bool

C → True


of

{True → False; False → True}

We can use jfloat to move the outer case into both the right hand side of

the join binding and into its body; use casefloat to move the outer case into

the branches of the inner case; use abort to discard the outer case where it

scrutinizes a jump; and use case to simplify the C alternative. The result is

just what we want:

join j x = caseBIGof {True → False; False → True}

in case v of A → jump j 1 Bool

B → jump j 2 Bool

C → False

The commute Axiom

The left-hand sides of axioms float , jfloat , and casefloat enumerate the

forms of a tail context. That suggests that the three axioms are all instances of

a single more general (yet equivalent) form:

E[L[ #»e ]] = L[
#     »

E[e]] (commute)

To apply commute (forward) is to move the evaluation context into each hole of

the tail context. Since the tail context describes the places where something is
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e = e′

let f = Λ #»a . λ #»x . u inL[ #»e ] : τ = join j #»a #»x = u inL[
#             »

tailρ(e)] (contify)
if ρ(f #»a #»x ) = jump j #»a #»x τ
and f /∈ fv(L), u : τ

let rec
#                                          »

f = Λ #»a . λ #»x . L[ #»u ] inL′[ #»e ] : τ = join rec
#                                              »

j #»a #»x = L[
#             »

tailρ(u)] inL′[
#             »

tailρ(e)] (contifyrec)

if
#                                                                   »

ρ(f #»a #»x ) = jump j #»a #»x τ

and
#                                                 »

f /∈ fv(
#»

L ), f /∈ fv(L′),
#               »

L[ #»u ] : τ

tailρ(f
#»σ #»u ) , e

#          »

{a/σ}
#          »

{x/u} if ρ(f #»a #»x ) = e and dom(ρ) ∩ fv( #»u ) = ∅
tailρ(e) , e if dom(ρ) ∩ fv(e) = ∅
tailρ(e) , undefined otherwise

FIGURE 21. Contification as a source-to-source transformation.

returned to the evaluation context, commute “substitutes” the context into the

places where it is invoked.4

We can also derive new axioms succinctly using tail contexts. For example,

our commuting conversions as written do quite a bit of code duplication by

copying E arbitrarily many times (into each branch of a case and each join

point). Of course, in a real implementation, we would prefer not to do this, so

instead we might use a different axiom:

E[L[ #»e ] : τ ] = join j x = E[x] inL[
#                        »

jump j e τ ]

This can be derived from commute by first applying jdrop and jinline

backward.

3.3 Contification: Inferring Join Points
Not all join points originate from commuting conversions. Though the

source language doesn’t have join points or jumps, many let-bound functions

can be converted to join points without changing the meaning of the program.

In particular, if every call to a given function is a tail call, and we turn the calls

4In fact, from a CPS standpoint, commute is precisely a substitution operation.
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into jumps, then whenever one of the jumps is executed, there will be nothing

to drop from the evaluation context (the s′ in the jump rule will be empty).

The process is a form of contification (Kennedy, 2007) (or continuation

demotion), which we describe in Fig. 21, where fv(e) means the set of free

variables of e (and similarly fv(L) for tail contexts), and dom(ρ) means the

domain of the environment ρ (to be described shortly).

The non-recursive version, contify , attempts to decompose the body of

the let (i.e.the scope of f) into a tail context L and its arguments, where the

arguments contain all the occurrences of f , then attempts to run the special

partial function tail on each argument to the tail context. This function will

only succeed if there are no non-tail calls to f .

The tail function takes an environment ρ mapping applications of

contifiable variables f to jumps to corresponding join points j. For each

expression that matches the form of a saturated call to such an f , then, tail

turns the call into a jump to its j, provided that none of the arguments to the

function contains a free occurrence of a variable being contified—an occurrence

in argument position is disallowed by the typing rules. For any other expression,

tail changes nothing but does check that no variable being contified appears;

otherwise, tail fails, causing the contify axiom not to match.

There is one last proviso in the contify and contifyrec axioms, which is that

the body of each function to be contified must have the same type as the body

of the let. This can fail to occur if some function f is polymorphic in its return

type (Downen, Maurer, Ariola, & Peyton Jones, 2016).

Finding bindings to which contify or contifyrec will apply is not difficult.

Our implementation is essentially a free-variable analysis that also tracks

whether each free variable has appeared only in the holes of tail contexts. This

is much simpler than previous contification algorithms because we only look
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for tail calls. We invite the reader to compare to (Fluet & Weeks, 2001) or to

Sec. 5 of (Kennedy, 2007), which both allow for more general calls to be dealt

with. Yet we claim that, in concert with the simplifier and the Float In pass,

our algorithm covers most of the same ground. To demonstrate, a convenient

point of comparison is the local CPS transformation in Moby (Reppy, 2002),

which produces mutually tail-recursive functions to improve code generation in

much the same way GHC does. Note that Moby uses a direct-style intermediate

representation, though its contification pass is expressed in terms of a CPS

transform.

In essence, the final effect of Moby’s local CPS transform is to turn

let f x = ...

in E[... f y ... f z ...]

(where the calls to f are tail calls within E) into

let { j x = E[x]; f x = j <rhs> }

in ...f y...f z...

where the tail calls to f are now compiled as efficient jumps. Note that f now

matches the contify axiom, but it did not before because of the E in the way.

Nonetheless, our extended GHC achieves the same effect as Moby, only in

stages. Starting with:

let f x = rhs inE[. . . f y . . . f z . . .]

First, applying float from right to left floats f inward:

E[let f x = rhs in . . . f y . . . f z . . .]
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Next, contify applies, since the calls to f are now tail calls:

E[join f x = rhs in . . . jump f y τ . . . jump f z τ . . .]

And now jfloat pushes E into the join point f and the body:

join f x = E[rhs] in . . . E[jump f y τ ] . . . E[jump f z τ ] . . .]

From here, abort removes E from the jumps, and we can abstract E by running

jdrop and jinline backward:

join {j x = E[x]; f x = jump j rhs τ} in . . . f y . . . f z . . .

Thus we achieve the same result without any extra effort5.

Naturally, contification is more routine and convenient in CPS-based

compilers (Fluet & Weeks, 2001; Kennedy, 2007). The ability to handle

an intervening context comes nearly “for free” since contexts already have

names. Notably, it is still possible to name contexts in direct style (the Moby

paper (Reppy, 2002) does so using labelled expressions), so it is only a matter

of convenience, not feasibility.

3.4 Recursive Join Points and Fusion
We have mentioned, without stressing the point, that join points can be

recursive. We have also shown that it is rather easy to identify let-bindings that

can be re-expressed (more efficiently) as join points. To our complete surprise,

we discovered that the combination of these two features allowed us to solve a

long-standing problem with stream fusion.

5The parts of this sequence not specifically to do with join points were already
implemented before in GHC: The Float In pass applies float in reverse, and the Simplifier
regularly creates join points to share evaluation contexts (except that previously they were
ordinary let bindings).
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Recursive Join Points
Consider this program, which finds the first element of a list that satisfies

a predicate p:

find = Λa. λ(p : a→Bool)(xs : [a]).

let go xs = case xs of

x : xs ′ → if p x then Just x

else go xs ′

[] → Nothing

in go xs0

Programmers quite often write loops like this, with a local definition for go,

perhaps to allow find to be inlined at a call site. Our first observation is this:

go is a (recursive) join point! The contification transformation of will identify go

as a join point, and will transform the let to a join, and each call to go into a

jump. Moreover, the transformed function is much more efficient because there

is no longer a heap-allocated closure for go.

But it gets better! Because go is a join point, it can participate in a

commuting conversion. Suppose, for example, that find is called from any like

this:

any = Λa. λ(p : a→Bool)(xs : [a]).

casefind p xs of Just → True

Nothing → False
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The call to find can be inlined:

any = Λa. λ(p : a→Bool)(xs : [a]).

case



join go xs = case xs of

x : xs ′ → if p x then Just x

else jump go xs ′ (Maybe a)

[] → Nothing

in jump go xs (Maybe a)


of

{Just → True; Nothing → False}

Now, we have a case scrutinizing a join so we can apply axiom jfloat from

Figure 20. After some easy further transformations, we get

any = Λa. λ(p : a→Bool)(xs : [a]).

join go xs = case xs of

x : xs ′ → if p x thenTrue

else jump go xs ′ Bool

[] → False

in jump go xs Bool

Look carefully at what has happened here: the consumer (any) of a recursive

loop (go) has moved all the way to the return point of the loop, so that we were

able to cancel the case in the consumer with the data constructor returned at

the conclusion of the loop.
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Stream Fusion

It turns out that this new ability to move a consumer all the way to

the return points of a tail-recursive loop has direct implications for a very

widely used transformation: stream fusion. The key idea of stream fusion is to

represent a list (or array, or other sequence) by a pair of a state and a stepper

function, thus:6

data Stream a where

MkStream :: s -> (s -> Step s a) -> Stream a

There are two competing approaches to the Step type. In unfold/destroy fusion,

first described by Svenningsson (Svenningsson, 2002), we have:

data Step s a = Done | Yield s a

Hence a stepper function takes an incoming state and either yields an element

and a new state or signals the end.

Now a pipeline of list processors can be rewritten as a pipeline of stepper

functions, each of which produces and consumes elements one by one. A typical

stepper function for a stream transformer looks like:

next s = case <incoming step> of

Yield s’ a -> <process element>

Done -> <process end of stream>

When composed together and inlined, the stepper functions become a nest of

cases, each scrutinizing the output of the previous stepper. It is crucial for

performance that each Yield or Done expression be matched to a case, much as

we did with Just and Nothing in the example that began Sec. 3.1. Fortunately,

6Note that Stream is an existential type, so as to abstract the internal state type s as an
implementation detail of the stream.
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case-of-case and the other commuting conversions that GHC performs are

usually up to the task.

Alas, this approach requires a recursive stepper function when

implementing filter, which must loop over incoming elements until it finds

a match. This breaks up the chain of cases by putting a loop in the way, much

as our any above becomes a case on a loop. Hence until now, recursive stepper

functions have been un-fusible. Coutts et al. (Coutts et al., 2007) suggested

adding a Skip construtor to Step, thus:

data Step s a = Done | Yield s a | Skip s

Now the stepper function can say to update the state and call again, obviating

the need for a loop of its own. This makes filter fusible, but it complicates

everything else! Everything gets three cases instead of two, leading to more

code and more runtime tests; and functions like zip that consume two lists

become more complicated and less efficient.

But with join points, just as with any , Svenningsson’s original Skip-less

approach fuses just fine! Result: simpler code, less of it, and faster to execute.

It’s a straight win.

3.5 Metatheory of FJ
Type Safety

The way to “run” a program on our abstract machine is to initialize the

machine with an empty stack and an empty store. Type safety, then, says

that once we start the machine, the program either runs forever or successfully

returns an answer.

Theorem 2 (Type safety). If ε; ε ` e : τ , then either:

1. The initial configuration 〈e; ε; ε〉 diverges, or
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2. 〈e; ε; ε〉 7→? 〈A; ε; Σ〉, for some store Σ and answer A.

We did not give a type system for configurations, so the off-the-shelf proof

of progress and preservation is not quite applicable. However, we can adapt

easily enough by annotating each configuration with a well-typed term that

corresponds to it. Write 〈e/s; Σ; e〉 (or 〈e/c〉) for an annotated configuration.

We will need to track the connection between e and c, for which we need a few

tools. Let B be a binding context, that is, series of let bindings surrounding a

hole. Then write JBK for the store containing those same bindings (but with

recursive groups flattened). Also, let JEK translate the evaluation context E to

a stack (which is of course just another syntax for the same structure). Then let

∼ relate terms to configurations such that

B[E[e]] ∼ 〈e; JEK; JBK〉.

Finally, write

〈e/c〉 : τ

when e ∼ c and ε; ε ` e : τ , and write

〈e/c〉 7→〈e′/c′〉

if c 7→c′.

We need a few utilities before we tackle the proof.

Proposition 3. Substitution

1. If Γ, x : σ; ∆ ` e : τ and Γ; ∆ ` v : σ, then Γ,∆ ` e{x/v} : τ .

2. If Γ, a; ∆ ` e : τ , then Γ; ∆ ` e{a/σ} : τ{a/σ}.

89



Lemma 4. If Γ; ∆ ` E[B[e]] : τ and variables bound by B aren’t free in E,

then Γ; ∆ ` B[E[τ ]].

Proof. By induction on E and then B. �

Now we are ready:

Lemma 5 (Progress and preservation). If 〈e/c〉 : τ , then either

1. c ≡ 〈A; s; Σ〉, where A is an answer, or

2. 〈e/c〉 7→〈e′/c′〉 for some e′ and c′ with 〈e′/c′〉 : τ .

Proof. Let c ≡ 〈e0; s; Σ〉; proceed by case analysis on e0.

– For e0 ≡ anyF [e1], the push rule applies, and we can take e′ ≡ e, so e′ : τ

holds by assumption.

– For e0 ≡ let vb in e1, the bind rule applies, and we finish with Lemma 4.

– For e0 ≡ jump j #»ϕ #»v τ , note that there must be a matching join in s

(provable by induction on s). Then that matching join must have given

the matching body u the same type that all of e has (by induction on s

and then Σ). Thus Jump applies and we finish by Prop. 3.

– For e0 ≡ A, examine s:

∗ If s ≡ ε, we are done (case 1).

∗ If s ≡ join jb in s′, then ans rule applies. The reduct typechecks by a

standard strengthening lemma, since no label can appear free in an

answer.

∗ Otherwise, the outermost frame must be of the correct form

according to the type of e0, so one of β, βτ , or case applies. In each

case we finish with either Lemma 4 or Prop. 3.
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– For e0 ≡ x, we must have that B : Γ, so bind applies; by induction on B,

we can find the proof that u : τ . �

Proof (of Theorem 2). Generalize from the initial configuration to any 〈e/c〉 : τ ,

since clearly e ∼ 〈e; ε; ε〉 and hence 〈e/ε; ε; e〉 : τ . Proceed by coinduction. By

Lemma 5, either c is an answer configuration (proving case 2) or 〈e/c〉 7→〈e′/c′〉

where 〈e′/c′〉 : τ . This may proceed forever, proving case 1, or else eventually

there must be an answer. �

Correctness of the Optimization Rules

To establish the correctness of our rewriting axioms, we first define a

notion of observational equivalence.

Definition 6. Two terms e and e′ are observationally equivalent, written e ∼=

e′, if, given any stack s and store Σ, either

– both 〈e; s; Σ〉 and 〈e′; s; Σ〉 diverge, or

– for some Σ′1, A1, Σ′2, and A2, 〈e; s; Σ〉 7→? 〈A1; ε; Σ′1〉 and 〈e′; s; Σ〉 7→?

〈A2; ε; Σ′2〉.

The equational theory is sound with respect to observational equivalence:

Proposition 7. If e = e′, then e ∼= e′.

Equivalence to System F
The best way to be sure that FJ can be implemented without any

headaches is to show that it is equivalent to GHC’s existing System F-based

language. This would suggest that the introduction of join points does not

allow us to write any new programs, only to implement existing programs more

efficiently. To prove the equivalence, we establish an erasure procedure that

removes all join points from an FJ term, leaving an equivalent System F term.
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To erase the join points, we want to apply the contify axiom (or its

recursive variant) from right to left. However, we cannot necessarily do so

immediately for each join point, since contify only applies when all invocations

are in tail position. For example, we cannot de-contify j here:

join j x = x+ 1 in (jump j 1 (Int → Int)) 2

Simply rewriting the join point as a function and the jump as a function call

would change the meaning of the program—in fact, it would not even be well-

typed:

let f = λx. x+ 1 in f 1 2

However, if we apply abort first:

join j x = x+ 1 in jump j 1 Int

Now the jump is a tail call, so contify applies.

The abort axiom is not enough on its own, since the jump may be buried

inside a tail context:

join j x = x+ 1 in


case bof

True → jump j 1 (Int → Int)

False → jump j 3 (Int → Int)

 2

However, this can be handled by a commuting conversion:

join j x = x+ 1 in case bof

True → (jump j 1 (Int → Int)) 2

False → (jump j 3 (Int → Int)) 2

And now abort applies twice and j can be de-contified.
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Lemma 8. For any well-typed term e, there is an e′ such that e′ = e and every

jump in e′ is in tail position.

By “tail position,” we mean one of the holes in a tail context that starts with

the binding for the join point being called. In other words, given a term

join j #»a #»x = u inL[ #»e ],

the terms #»e are in tail position for j.

The proof of Lemma 8 relies on the observation that the places in a term

that may contain free occurrences of labels are precisely those appearing in the

hole of either an evaluation or a tail context. For example, the Case typing rule

propagates ∆ into both the scrutinee and the branches; note that case�of
#  »

alt

is an evaluation context and case eof
#           »
p→ � is a tail context. But e � is (in

call-by-name) neither an evaluation context nor a tail context, and App does

not propagate ∆ into the argument.

Thus any expression can be written as:

L[

#                                                                         »

E[L′[
#                                                        »

E′[. . . [L(n)[
#            »

E(n)[e]]] . . .]]]], (3.1)

which is to say a tree of tail contexts alternating with evaluation contexts,

where all free occurrences of join points are at the leaves. By iterating commute

and abort , we can flatten the tree, rewriting (3.1) to say that any expression

can be written L[ #»e ], where each ei is a leaf from the tree in (3.1). Hence no ei

can be expressed as E[L[. . .]] for nontrivial, non-binding7 E and nontrivial L,

and every jump to a free occurrence of a label is some ei. Let us say a term in

the above form is in commuting-normal form8. By commute and abort , every

7A join can be treated as either an evaluation context or a tail context; using commute to
push a join inward is not necessarily helpful, however.
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term has a commuting-normal form, and by construction, every jump in a

commuting-normal form is a tail call. Thus every label can be decontified, and

we have:

Theorem 9 (Erasure). For any closed, well-typed FJ term e, there is a

System F term e′ such that e′ = e.

3.6 Join Points in Practice
Is is one thing to define a calculus, but quite another to use it in a full-

scale optimising compiler. In this section we report on our experience of doing

so in GHC.

Implementing Join Points in GHC

We have implemented System FJ as an extension to the Core language

in GHC. Rather than adding two new data constructors for join and jump

to the Core data type, we instead re-use ordinary let-bindings and function

applications, distinguishing join points only by a flag on the identifier itself.

Thus, with no code changes, GHC treats join-point identifiers identically

to other identifiers, and join-point bindings identically to ordinary let bindings.

This is extremely convenient in practice. For example, all the code that deals

with dropping dead bindings, inlining a binding that occurs just once, inlining

a binding whose right-hand side is small, and so on, all works automatically for

join points too.

With the modified Core language in hand, we had three tasks. First, GHC

has an internal typechecker, called Core Lint, that (optionally) checks the type-

correctness of the intermediate program after each pass. We augmented Core

Lint for FJ according to the rules of Fig. 18.

8ANF is simply commuting-normal form with named intermediate values.
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Second, we added a simple new contification analysis to identify let-

bindings that can be converted into join points (see Sec. 3.3). Since the analysis

is simple, we run it frequently, whenever the so-called occurrence analyzer runs.

Finally, the new Core Lint forensically identified several existing Core-to-

Core passes that were “destroying” join points (see Sec. ). Destroying a join

point de-optimizes the program, so it is wonderful now to have a way to nail

such problems at their source. Moreover, once Lint flagged a problem, it was

never difficult to alter the Core-to-Core transformation to make it preserve join

points. Here are some of the specifics about particular passes:

The Simplifier is a sort of partial evaluator responsible for many local

transformations, including commuting conversions and inlining

(Peyton Jones & Santos, 1998). The Simplifier is implemented as a tail-

recursive traversal that builds up a representation of the evaluation

context as it goes; as such, implementing the jfloat and abort axioms

(Sec. ) requires only two new behaviors:

– (jfloat) When traversing a join-point binding, copy the evaluation

context into the right-hand side.

– (abort) When traversing a jump, throw away the evaluation context.

The Float Out pass moves let bindings outwards (Peyton Jones, Partain, &

Santos, 1996). Moving a join binding outwards, however, risks destroying

the join point, so we modified Float Out to leave join bindings alone in

most cases.

The Float In pass moves let bindings inwards. It too can destroy join points

by un-saturating them. For example, given let j x y = ... in j 1 2,

the Float In pass wants to narrow j’s scope as much as possible:

(let j x y = ... in j) 1 2. We modified Float In so that it never

un-saturates a join point.
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Strictness analysis is as useful for join points as it is for ordinary let bindings,

so it is convenient that join bindings are, by default, treated identically

to ordinary let bindings. In GHC, the results of strictness analysis are

exploited by the so-called worker/wrapper transform (Peyton Jones &

Santos, 1998; Gill & Hutton, 2009). We needed to modify this transform

so that the generated worker and wrapper are both join points. We found

that GHC’s constructed product result (CPR) analysis (Baker-Finch,

Glynn, & Peyton Jones, 2004) caused the wrapper to invoke the worker

inside a case expression, thus preventing the worker from being a join

point. We simply disable CPR analysis for join points; it turns out that

the commuting conversions for join points do a better job anyway.

Benchmarks
The reason for adding join points is to improve performance;

expressiveness is unchanged (Sec. 3.5). So does performance improve? Table 1

presents benchmark data on allocations, collected from the standard spectral,

real and shootout NoFib benchmark suites9. We ran the tests on our

modified GHC branch, and compared them to the GHC baseline to which

our modifications were applied. Remember, the baseline compiler already

recognises join points in the back end and compiles them efficiently (Sec. );

the performance changes here come from preserving and exploiting join points

during optimization.

We report only heap allocations because they are a repeatable proxy for

runtime; the latter is much harder to measure reliably. All tests omitted from

the tables had an improvement in allocations, but less than 0.3%.

9The imaginary suite had no interesting cases. We believe this is because join points tend
to show up only in fairly large functions, and the imaginary tests are all micro-benchmarks.
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spectral

Program Allocs

fibheaps -1.1%
ida -1.4%

nucleic2 +0.2%
para -4.3%

primetest -3.6%
simple -0.9%

solid -8.4%
sphere -3.3%

transform +1.1%
(45 others)

Min -8.4%
Max +1.1%

Geo. Mean -0.4%

real

Program Allocs

anna +0.5%
cacheprof -0.5%

fem +3.6%
gamteb -1.4%

hpg -2.1%
parser +1.2%

rsa -4.7%
(18 others)

Min -4.7%
Max +3.6%

Geo. Mean -0.2%

shootout

Program Allocs

k-nucleotide -85.9%
n-body -100.0%

spectral-norm -0.8%
(5 others)

Min -100.0%
Max +0.0%

Geo. Mean n/a

TABLE 1. Benchmarks from the spectral, real, and shootout NoFib suites.
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There are some startling figures: using join points eliminated all

allocations in n-body and 85.9% in k-nucleotide. We caution that these are

highly atypical programs, already hand-crafted to run fast. Still, it seems that

our work may make it easier for performance-hungry authors to squeeze more

performance out of their inner loops.

The complex interaction between inlining and other transformations

makes it impossible to give guaranteed improvements. For example, improving a

function f might make it small enough to inline into g, but this may cause g to

become too large to inline elsewhere, and that in turn may lose the optimization

opportunities previously exposed by inlining g. GHC’s approach is heuristic,

aiming to make losses unlikely, but they do occur, including a 1.1% increase in

allocations in spectral/transform and a 3.6% increase in real/fem.

Beyond Benchmarks

These benchmarks show modest but fairly consistent improvements for

existing, unmodified programs. But we believe that the systematic addition of

join points may have a more significant effect on programming patterns. Our

discussion of fusion in Sec. 3.4 is a case in point: with join points we can use

skip-less unfoldr/destroy streams without sacrificing fusion. That knowledge

in turn affects the way in which libraries are written: they can be smaller and

faster.

Moreover, the transformation pipeline becomes more robust. In GHC

today, if a “join point” is inlined we get good fusion behavior, but if its size

grows to exceed the (arbitrary) inlining threshold, suddenly behavior becomes

much worse. An innocuous change in the source program can lead to a big

change in execution time. That step-change problem disappears when we

formally add join points.
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CHAPTER IV

Lazy Functions as Processes

Much of the text in this chapter comes from (Downen, Maurer, Ariola, &

Varacca, 2014), which was a collaboration with Paul Downen (UO), Zena M.

Ariola (UO), and Daniele Varacca (UPD). I was the primary designer of the

new language.

In Chapter III, we saw that we could improve the results of GHC’s

optimizer by giving it more opportunities for code motion. However, code

motion is inherently limited by the level of abstraction presented by the

language. By design, Core leaves implicit the operations that make lazy

evaluation efficient, namely the update to each memo-thunk once its value has

been computed. Conceivably, being able to move these updates around might

prove beneficial. For instance, suppose we have x = fst y and y is demanded

before x. As soon as y is updated, x becomes such a quick operation that we

might as well update it right away, thus avoiding an indirect jump the first time

x is accessed. But in order to group together updates in this way, we would first

need to extend Core to make the memo-thunk updates explicit.

While actually implementing this in GHC remains future work, this

chapter demonstrates one possible approach by showing how to take a fragment

of a language where the update is easily expressed and translate it into a more

practical form for implementation in an optimizing compiler.

Continuations and continuation-passing style (CPS) provide powerful and

versatile tools for understanding programming languages (Reynolds, 1993).

By representing the “future of the program” as a first-class entity, a CPS

transform gives a denotational semantics for a programming language in terms

of a simple, well-understood low-level language. In a particularly influential use
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of continuations, Plotkin (Plotkin, 1975) demonstrated how a CPS transform

can weave an implementation strategy for a program into the syntax of the

program itself. This methodology gave rise to the call-by-value λ-calculus

and was instrumental in closing the gap between the theory and practice of

functional languages.

Since that time, CPS transforms have continued to further our

understanding of programming languages. The call-by-value CPS transform

was more descriptive than Plotkin’s original call-by-value λ-calculus, motivating

a more thorough study of strict functional languages; in turn, this lead to more

advanced techniques for reasoning about programs in continuation-passing style

and to a more complete development of the call-by-value λ-calculus (Sabry &

Felleisen, 1993; Sabry & Wadler, 1997). CPS transforms and related techniques

have also provided a formal method for reasoning about effects, such as mutable

references and non-local jumps, that lie outside of the pure model of the λ-

calculus. Of particular note is delimited control, especially the shift and reset

operators (Danvy & Filinski, 1989), which were originally developed by defining

them in continuation-passing style.

Flexible as CPS transforms are, they inherit some of the limitations of the

λ-calculus. A λ-term describes a sequential and (due to confluence) determinate

computation. Features such as parallelism, distributed computation, and

nondeterminacy have no natural expression in the base λ-calculus. We can

extend the λ-calculus with such features, but we argue that it would be better

to find a different target language altogether, one with these features “out-of-

the-box.”

A good candidate for such a target language is the π-calculus (Milner,

Parrow, & Walker, 1992; Sangiorgi & Walker, 2003), a process calculus

describing interacting systems running in parallel. Early in the study of the π-
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calculus, Milner proved (Milner, 1992) that the π-calculus was powerful enough

to embed the λ-calculus by a simple interpretation function. His π-encoding was

formulated from scratch, but later Sangiorgi (Sangiorgi, 1999) discovered that

we could also derive a π-encoding from a CPS transform, if we can account for

the first-order nature of the π-calculus—processes don’t transmit processes to

each other the way higher-order functions pass functions as arguments. As an

alternative, Amadio (Amadio, 2011) showed that we could instead translate a

CPS term into a language of first-order functions and bound names, which then

corresponds directly to the π-calculus.

This analysis has been applied to CPS transforms for both call-by-

name and call-by-value evaluation. In this paper, we extend it to two calculi

modelling real-world implementations: first, a variation on call-by-value that

reflects the way a typical interpreter performs variable lookup; and second, the

call-by-need λ-calculus (Ariola et al., 1995; Ariola & Felleisen, 1997), which

models implementations of call-by-name languages that cache each value

computed.

We start, in Section 4.1, with an introduction of the call-by-name and call-

by-value lambda-calculi. We present their operational semantics and a uniform

CPS transform, from which we derive CBN and CBV π-encodings, along with

abstract machines. In Section 4.5, we consider call-by-need evaluation; we

present a novel call-by-need CPS transform, which leads to an interesting

concept in its own right: the notion of constructive update. From the new CPS

transform, we derive the call-by-need π-encoding and an abstract machine in

much the same way as we did for CBN and CBV.
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4.1 Call-by-Name and Call-by-Value
The λ-calculus, defined by Church (Church, 1932) in the 1930s, is a simple

yet powerful model of computation. It consists of only three parts: functions

from inputs to outputs, variables that stand for the inputs, and applications

that invoke the functions:

Terms: M,N ::= λx.M
∣∣ x ∣∣MN

As the λ-calculus can be a foundation of both strict and lazy languages, a λ-

term M can be evaluated according to different evaluation strategies, which

dictate the operation to be performed first. The two most studied evaluation

strategies are call-by-name (CBN) and call-by-value (CBV). In CBN evaluation,

the argument to a function is kept unevaluated as long as possible, then

evaluated each time its value is required for computation to continue. In CBV

evaluation, the argument is always evaluated before the function receives it.

It is usually better to precompute arguments, as CBV does, since then an

argument will not be evaluated more than once; however, if the function does

not actually use the value, computing it is wasteful. In the extreme case, if the

argument diverges (that is, loops forever) but is never used by the function,

CBV diverges when CBN does not.

The distinct CBN and CBV reduction strategies are captured by the two

reduction rules, βn and βv (see Figs. 22 and 23). A βn-reduction starts from

a term (λx.M)N , then proceeds by substituting the unevaluated argument

N into the body wherever x appears. Thus the function call precedes the

evaluation of the argument. In contrast, a βv-reduction evaluates the argument

first: Only a value may be substituted into the body. A value is either a

variable or a function literal (also called a λ-abstraction).
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Evaluation Contexts: E ::= �
∣∣ EM

(λx.M)N →M{N/x} βn

FIGURE 22. The call-by-name λ-calculus, λn.

Values: V ::= x
∣∣ λx.M

Evaluation Contexts: E ::= �
∣∣ EM ∣∣ V E

(λx.M)V →M{V/x} βv

FIGURE 23. The call-by-value λ-calculus, λv.

A term that pattern-matches the left-hand side of a reduction

rule is called a redex, short for reducible expression. For instance,

(λx. xx)((λy. y)(λz. z)) is a call-by-name redex. However, it is not a call-by-

value redex, because the argument (λy. y)(λz. z) is not a value. If a redex

somewhere in M is reduced, and the resulting term is N , we write M → N

and say that M reduces to N ; we also write →? for zero or more reductions and

→+ for one or more reductions.

To complete the semantics, one has to specify where a reduction should

take place. Felleisen and Friedman (Felleisen & Friedman, 1986) introduced

a concise way to do so, using evaluation contexts. A context is a “term with

a hole”: It is the outer portion of some term, surrounding a single occurrence

of the symbol �. A language’s evaluation contexts delineate the places in a

term where evaluation may take place. For instance, consider the grammar

for evaluation contexts in Fig. 22: An evaluation context can be either just

a hole (the trivial or top-level context, �) or EM , a subcontext applied to

an argument. Thus CBN evaluation can take place either at the top level or
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within the operator in a function application, but not within the argument

(since arguments are left unevaluated). The CBV calculus also has contexts

V E, so once the function in an application has become a value, CBV evaluation

proceeds within the argument.

Given an evaluation context E, we write E[M ] for E with the term

M in place of the hole, and we say M is plugged into E. (This notation

applies to general contexts as well.) The inverse of the “plugging in”

operation is decomposition, and it plays a critical role in evaluation by

finding where to perform the next reduction. For example, we can decompose

(λx. xx)((λy. y)(λz. z)) in CBN as E[M ] where E is the top-level context � and

M is the entire term. In CBV, we can decompose it with E being (λx. xx)�

and M being (λy. y)(λz. z), since the next step of CBV evaluation is to reduce

the argument.

If M ≡ E[M ′] and M ′ is a redex reducing to N ′, then we write M 7→

N where N , E[N ′]. In other words, 7→denotes reduction only within an

evaluation context, which we call standard reduction or evaluation. Often we

will say that M steps or takes a step in this case. As before, we write 7→? for the

reflexive and transitive closure and 7→+ for the transitive closure.

Finally, we introduce notations for the possible observations one can make

about a term. These are the potential outcomes of computation, without regard

to the particular steps taken. If M is a λ-abstraction, which we also call an

answer, we write AM . If M evaluates to an answer (perhaps because it is one),

we write M ⇓. A term M with no possible evaluation step, but which is not

an answer, is called stuck, written sM ; a term M that evaluates to a stuck

term gets stuck, written M 6⇓. If M never finishes evaluating—that is, it takes

infinitely many evaluation steps—it is said to diverge, written M ⇑.
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Example 10. Consider the term (λx. xx)((λy. y)(λz. z)). CBN and CBV

evaluate the term differently (the redex at each step is shaded):

(λx. xx)((λy. y)(λz. z)) (λx. xx)((λy. y)(λz. z))

7→((λy. y)(λz. z))((λy. y)(λz. z)) 7→(λx. xx)(λz. z)

7→(λz. z)((λy. y)(λz. z)) 7→(λz. z)(λz. z)

7→(λy. y)(λz. z) 7→(λz. z)

7→(λz. z)

CBN reduces the outer β-redex immediately, substituting the argument as

is. This duplicates work, since the βn-redex (λy. y)(λz. z) now appears for each

x in the body of λx. xx. Instead, CBV evaluates the argument first, reducing it

to a value before substituting, thus saving one reduction.

4.2 A Uniform CPS Transform

As an alternative to specifying the semantics of a language in terms

of rewrite rules for programs, one can specify a function that “compiles,”

or transforms, programs into some lower-level form. The advantage is that

analyzing a lower-level form is easier, since the syntax itself prescribes how

a program should be executed, just as assembly code specifies not only

calculations but which registers, including the program counter, to use to

perform them. A transform into continuation-passing style, called a CPS

transform, is an example of such a compilation function. It produces λ-terms

whose evaluation order is predetermined: The same calculations will be

performed, in the same order, by call-by-name or call-by-value evaluation. The
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CJxK , λk. xk

CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK ,

{
λk. CJMK(λv. v(λk′. CJNKk′, k)) CBN

λk. CJMK(λv. CJNK(λw. v(λk′. k′w, k))) CBV

FIGURE 24. A uniform CPS transform for call-by-name and call-by-value.

trick is to pass only precomputed values as arguments to functions, making the

question of when to evaluate arguments moot. Then, rather than returning its

result in the usual way, a CPS function passes the result to one of its arguments,

the so-called continuation. A continuation represents the evaluation context in

which a function was invoked; hence it plays a similar role to the call stack used

in most computer architectures. Since their evaluation contexts differ, we can

elucidate the difference between CBN and CBV evaluation by translating each

to continuation-passing style.

We focus on a uniform CPS transform C, given in Fig. 24, so called

because the translations for variables and abstractions are the same between

CBN and CBV. This uniformity highlights the differences in evaluation order by

varying only the translation of applications. Specifically, once M has evaluated

to a function v, the continuation in the CBN transform invokes v immediately,

passing it the unevaluated CPS term λk′. CJNKk′ as x. Evaluating a variable is

done by invoking it with a continuation, so each invocation of x within the body

of v will evaluate the argument. The CBV transform evaluates M the same

way, but its continuation does not use v immediately; instead, it evaluates N to

a function w, and only its continuation invokes v. This time, the x argument

is a function that immediately passes w to the continuation; therefore each

invocation of x within the body of v immediately returns the precomputed

argument value w.
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Example 11. Consider the term (λx. xx)((λy. y)(λz. z)) from above, calling it

M for now. In CBN (the redex is always the whole CPS term, so we omit the

shading):

CJMKk , CJλx. xxK(λv. v(λk′. CJ(λy. y)(λz. z)Kk′, k))

, (λk. k(λ(x, k′). CJxxKk′))(λv. v(λk′. CJ(λy. y)(λz. z)Kk′, k))

7→(λv. v(λk′. CJ(λy. y)(λz. z)Kk′, k)(λ(x, k′). CJxxKk′)

This last reduction step duplicates work, as the evaluation of CJ(λy. y)(λz. z)K

must now occur twice.

Now for CBV:

CJMKk , CJλx. xxK(λv. CJ(λy. y)(λz. z)K(λw. v(λk. kw, k)))

, (λk. k(λ(x, k′). CJxxKk′))(λv. CJ(λy. y)(λz. z)K(λw. v(λk. kw, k)))

7→(λv. CJ(λy. y)(λz. z)K(λw. v(λk. kw, k)))(λ(x, k′). CJxxKk′)

The function has evaluated to v, but this time we evaluate the argument next:

7→CJ(λy. y)(λz. z)K(λw. (λ(x, k′). CJxxKk′)(λk. kw, k))

Once the argument is computed as w, then the function will be invoked,

but this time with x being a function that immediately passes along the

precomputed value w.

The uniform CPS transform reflects the behavior of common language

implementations: Evaluation always stops at a λ, and a variable always causes

a lookup (hence a free variable halts execution). However, these behaviors don’t
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faithfully represent the full theory of the λ-calculus. For instance, the calculus is

often considered with the η rule in addition to β. An η-reduction takes λx.Mx

to just M whenever x does not appear in M . For a free variable y, then, the

term λx. yx would reduce to y and then become stuck, whereas the uniform

CPS transform gives a term that immediately returns the value λx. yx rather

than becoming stuck.

The η rule is often considered unimportant for language implementations:

Nearly all compilers and interpreters for functional languages stop evaluating

when they find a λ. In fact, Plotkin’s CBN CPS transform (Plotkin, 1975),

which is very similar to the CBN fragment of our uniform transform, does not

validate η either. The CBV fragment, however, differs more fundamentally:

It doesn’t follow the conventional βv rule, either. In the CBV λ-calculus,

a variable is considered a value, yet few compilers or interpreters operate

this way: The term (λx. λy. y)z should reduce to λy. y, but a typical

implementation would attempt to evaluate z and raise an “unbound variable”

error. Accordingly, the CBV portion of the uniform CPS transform produces a

term that becomes stuck on z rather than reducing to a value.

Therefore the CBV language truly implemented by the uniform CPS

transform is not the one given in Fig. 23. Rather, it implements a calculus that

further restricts the βv rule to apply only to a λ-abstraction as an argument.

Equivalently, this revised calculus consideres only a λ-abstraction to be a value.

From now on, then, when we speak of the call-by-value calculus, we will refer

to the version in Fig. 25. In particular, 7→will refer to the restricted notion of

evaluation context.

In most cases, our departure from orthodoxy will make no difference.

In standard reductions of closed terms, it never happens that a free variable
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Values: V ::= λx.M

Evaluation Contexts: E ::= �
∣∣ EM ∣∣ V E

(λx.M)V →M{V/x} βv

FIGURE 25. A revised call-by-value λ-calculus.

Terms: M,N ::= V (W+)

Values: V,W ::= x
∣∣ ret

∣∣ λ(x+).M

Evaluation Contexts: E ::= �

(λ(x+).M)(V +)→M{V +/x+} β

FIGURE 26. The syntax and semantics of the CPS λ-calculus, λcps .

appears as an argument, and thus it does not matter whether we consider it a

value or not.

The CPS Language λcps

The terms produced by the uniform CPS transform comprise a restricted

λ-calculus. The grammar is given in Fig. 26. In an application, the function

must be a value, and it can take one or two arguments, which must also

be values; we denote this V (W+) (we will omit parentheses when there is

one argument). A value is a variable, a λ-abstraction, or the constant ret.

Note that the body of an abstraction must again be a CPS term—that is, an

application. In CPS, a function never returns to its caller; it only performs more

function calls. Accordingly, the only evaluation context is the trivial context �,

as the redex is always at the top level.

There are three kinds of value that appear in a CPS term:
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Thunks A thunk is a suspended computation. In CPS terms, this is a function

λk.M that takes a continuation, calculates a result, then passes the

result to the continuation. Each term of the form CJMK is a thunk. In

the uniform CPS transform, variables are represented by thunks.

Continuations A continuation is a handler for a result; it has the form λv.M .

It takes a computed source value and performs the next step of evaluation.

We can see it as a reification of a term’s evaluation context from the

source language.

Source Values Each value from the source calculus has a CPS encoding. As we

are translating from calculi having only functions as values, we need only

consider how to encode a function. Namely, a source function becomes

a binary function λ(x, k).M that takes a thunk x for computing the

argument and a continuation k to invoke with the result.

Before we consider observations, we should consider what it means for

a CPS program to be evaluated. A term CJMK is an inert λ-abstraction; it

must be given a continuation as its argument for evaluation to occur. This

argument represents the context in which to evaluate M . If we consider M to

be the whole program, we need an initial continuation to represent the top-level

context. Thus we introduce the constant ret; to evaluate M as a CPS program,

then, one writes CJMK ret. If one thinks of a term CJMK as meaning “evaluate

M and then,” CJMK ret then reads “evaluate M and then return.” Thus ret

is analogous to the C function exit, which terminates execution and yields its

argument as the result of the program.

Since an answer is the result of successful computation, then, a CPS

answer is a term of the form retV , for a λ-abstraction V .1 Thus AM means

that M has the form ret(λ(x+). N), and M ⇓ means that M evaluates to such a
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term. As before, sM means that M is stuck (hence not an answer); M 6⇓ means

that M gets stuck; and M ⇑ means that M diverges.

Environment-Based CPS Transform
So far, we have expressed argument passing by substitution: Each β-

reduction substitutes the arguments for the free occurences of the corresponding

variables. Effectively, the term is rewritten, with a copy of the argument in

place of each occurrence. Interpreters typically operate differently: Each

argument is put into an environment, indexed by the variable it is bound to.

Then, when a variable appears as a function being invoked, its value is retrieved

from the environment.

We can simulate this mechanism by giving a name to each abstraction in

argument position, substituting only names during β-reduction, and copying

the value only as necessary. This is analogous to graph rewriting and can

be captured by extending the syntax with a let construct (Ariola & Klop,

1996): A bound name identifies a node in a graph. However, we prefer an

alternative syntax which expresses the dynamic allocation of names. We write

νx. x := λ(x+).M in N to indicate that a new name x is generated and a λ-

abstraction is bound to it. Note that we will always bind an abstraction to

a name immediately after allocation and only then. The value-named CPS

λ-calculus, λcps,vn , is given in Fig. 27. Each term is now an application inside

some number of bindings, which effectively serve as the environment. Each

argument to an application must be a variable.

Note that we now have nontrivial evaluation contexts, unlike with λcps ,

whose only evaluation context was �. However, the contexts in λcps,vn do not

1In principle, we could avoid adding a constant by simply using some free variable k for
the initial continuation. We would then have to have a predicate ⇓k for each name k, and
correctness theorems would be quantified over k. Thus ret is merely a convenience.
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Terms: M,N ::= V (x+)∣∣ νx. x := λ(x+).M inN

Values: V ::= x
∣∣ ret

∣∣ λ(x+).M

Binding Contexts: B ::= []
∣∣ νx. x := λ(x+).M inB

Eval. Contexts: E ::= B

(λ(x+).M)(y+)→M{y+/x+} β

νf. f := λ(x+).M

in E[f(y+)]
→
νf. f := λ(x+).M

in E[(λ(x+).M)(y+)]
deref

FIGURE 27. The value-named CPS λ-calculus, λcps,vn .

specify work to be done but simply bindings for variables. To emphasize this,

we call a context providing only bindings a binding context, and say that a CPS

calculus has only binding contexts as evaluation contexts.

To convert an unnamed term to a named term, we introduce a naming

transform, N . The naming transform goes through all arguments appearing in a

term, moving each λ-abstraction into a new variable.

N JV (λ(x+).M)K , νy. y := λ(x+).N JMK inN JV (y)K

N JV (λ(x+).M,W )K , νy. y := λ(x+).N JMK inN JV (y,W )K

N JV (y, λ(x+).M)K , νz. z := λ(x+).N JMK inN JV (y, z)K

N J(λ(x+).M)(y+)K , (λ(x+).N JMK)(y+)

N Jf(y+)K , f(y+)

For clarity, here we assume that each function has at most two arguments, as is

true for our CPS terms; N generalizes straightforwardly by iteration.

The uniform CPS transform under the naming transform is given in

Fig. 28.
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CvnJxK , λk. xk

CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK ,



λk. νk′. k′ :=
(
λv.

νx. x := λk′′. CvnJNKk′′

in v(x, k)
)

in CvnJMKk′
CBN

λk. νk′. k′ :=
(
λv. νk′′. k′′ := (λw.

νx. x := λk′. k′w in v(x, k))
in CvnJNKk′′

)
in CvnJMKk′

CBV

FIGURE 28. Uniform CPS transform in named form.

Proposition 12. CvnJMK ≡ N JCJMKK.

Proof. Straightforward induction on M . �

4.3 Preservation of Observations

We show correctness of the value-named uniform CPS transform in two

steps. We start with the correctness of the unnamed transform, then prove the

correctness of the naming step.

Proof Methodology

For a CPS transform to be considered correct, we would want it to

preserve termination (Meyer & Cosmadakis, 1988):

Criterion 13. M ⇓ iff CJMK ret ⇓.

In order to prove Criterion 13, we want to proceed by induction on the

evaluation steps. However, in order for the induction to go through, we need to

establish an invariant : Something that is true at the beginning of evaluation

and remains true after each step. For C, the simplest invariant one can imagine

113



would be this:
M N

CJMKK CJNKK

(4.1)

In words, for any continuation K, whenever M reduces to N , CJMKK

reduces to CJNKK.2 However, this invariant does not hold. One reason is that

the CPS transform introduces many administrative redexes into the term. These

are intermediate computations that do not correspond to actual β-reductions in

the source language. (Non-administrative redexes are called proper.) Hence one

step for M may correspond to many in CJMKK. Thus consider:

M N

CJMKK CJNKK

(4.2)

Unfortunately, there is a more serious issue with (4.2). As noted by

Plotkin (Plotkin, 1975), administrative reductions do not line up with the CPS

transform in this way. Because CJNKK introduces administrative redexes of its

own, the true situation is this:

M N

CJMKK P CJNKK

(4.3)

Plotkin’s solution was to derive a new transform that eliminated these

initial administrative redexes, thus regaining (4.2). The problem with this and

similar solutions (Danvy & Filinski, 1992; Danvy & Nielsen, 2003) is that the

resulting transforms are more complex and difficult to reason about than the

2Ultimately, of course, we observe what happens when K is ret. But there is nothing
special about ret; we expect our diagrams to hold for any K.
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original CPS transform. For instance, usually such administration-free CPS

transforms are non-compositional (Danvy & Nielsen, 2003).

Instead of changing the transform, we can further loosen the invariant

using the bisimulation technique. Bisimulation is an alternative approach to

soundness and completeness that requires only that we find some suitable

relation to act as the invariant. Given a relation ∼, we can use it to prove

Criterion 13 so long as the following hold:3

M

CJMK ret

∼

M N

P Q

∼ ∼

M N

P Q

∼ ∼

M ↓

P AQ

∼

M AN

Q ↓

∼

(4.4)

So, M is related to its image under the transform; when either related term

takes a step, the other can take some number of steps to remain in the relation;

and if either is an answer, the other evaluates to an answer.

Once we have that evaluation to an answer is preserved, what can we

say about a stuck term? It could happen that M is stuck but CJMK ret loops

forever, or vice versa. Thus we consider an additional criterion:

Criterion 14. M 6⇓ iff CJMK ret 6⇓.

3Technically, it is the second and third diagrams that characterize a bisimulation. The
others are additional properties that we need in order to finish the proof. The fourth and fifth
are very similar to the requirements on a barbed bisimulation (Milner & Sangiorgi, 1992).

115



To prove Criterion 14, we require two more properties of the simulation ∼,

in addition to those in (4.4):

M 6 ↓ M sN

P sQ P 6 ↓

∼ ∼ (4.5)

In words, if either M or P is stuck, then the other must get stuck.

The final observation that we want to preserve is divergence:

Criterion 15. M ⇑ iff CJMK ret ⇑.

However, because evaluation is deterministic in our calculi, we can get

Criterion 15 “for free” from Criteria 13 and 14: If one term diverges, it can

neither reduce to an answer nor get stuck, and hence the other term can only

diverge.

We can further simplify the proof methodology thanks to Leroy’s

observation (Leroy, 2009) that if the source language is deterministic, the

forward simulation is sufficient, so long as each source evaluation step maps

to at least one CPS step.4 In short, it will suffice to show:

M

CJMK ret

∼

M N

P Q

∼ ∼

+

M ↓

P AQ

∼

M 6 ↓

P sQ

∼

(4.6)

From these properties and determinacy, we can prove both directions of

Criteria 13 to 15. The forward direction follows directly by induction. For the

4Otherwise, a diverging source term could translate to an answer.
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backward direction of Criterion 13, we can argue by contraposition: If M does

not reduce to an answer, then it must either diverge or get stuck. If it diverges,

then by the second diagram in (4.6), it must hold that CJMK ret diverges, and

hence by determinacy it cannot reduce to an answer. Similarly, if M gets stuck,

CJMK ret must get stuck, and hence cannot reduce to an answer. The reasoning

for the backward directions of Criteria 14 and 15 is similar.

Correctness of the CPS Transform

We define the simulation ∼ by comparing terms in a way that ignores all

administrative reductions. We consider a λ-abstraction administrative when

it always forms an administrative redex. We mark these administrative λ-

abstractions by placing a line over the λ, as in λ̄k.M . The explicitly marked

uniform CPS transform is then:

CJxK , λ̄k. xk

CJλx.MK , λ̄k. k(λ(x, k′). CJMKk′)

CJMNK ,


λ̄k. CJMK(λ̄v. v(λ̄k′. CJNKk′, k)) CBN

λ̄k. CJMK(λ̄v. CJNK(λ̄w. v(λ̄k′. k′w, k))) CBV

Notice that the only proper λ-abstractions are the ones that correspond to a

λ-abstraction from the original term, since these are the abstractions whose

reductions correspond to the actual β-reductions in the source language. To

distinguish administrative computation, we introduce the reduction relation

→ad , defined by the administrative β-rule:

(λ̄(x+).M)(V +)→ad M{V +/x+} βad
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Keeping to our notational conventions, the reflexive and transitive

closure of →ad is →?
ad and its transitive closure is →+

ad . Also, its reflexive,

symmetric, and transitive closure is =ad ; in other words, =ad extends →?
ad by

allowing rules to be applied in reverse (as expansions rather than reductions).

Furthermore, 7→ad stands for a standard administrative reduction, which is to

say an administrative reduction in the empty context (at top level), and 7→?
ad

are 7→+
ad are the usual closures. We will also use the subscript pr in place of ad

to denote a proper reduction. Finally, 7→+
pr1 is short for 7→?

ad 7→pr 7→?
ad , which is

to say, some number of standard reductions, exactly one of which is proper.

If a term cannot take an administrative standard reduction, then for the

moment, the administrative work in that term is finished. Hence, if we consider

the administrative subcalculus of λcps , such a term is the result, or answer,

of administrative computation. Therefore let a term with no administrative

standard reduction be called an administrative answer. In the following, we

rely on some known properties of the λ-calculus, which also apply to the

administrative subset of the CPS λ-calculus.

Proposition 16. Administrative reduction in λcps :

1. is confluent, so that if M =ad M
′, then there is some N such that M →?

ad

N and M ′ →?
ad N ; and

2. has the standardization property, so that if M →?
ad N and N is an

administrative answer, then there is an administrative answer M ′ such

that M 7→?ad M ′ →?
ad N .

Next we need to know how non-standard, or internal, administrative

reductions interact with proper standard reductions. In short, they don’t—

administrative reductions commute with proper standard reductions (see

Fig. 29).
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M N ′

M ′ N

pr

ad ad

pr

(a) Proposition 17.1

M N ′

M ′ N

pr

ad

pr

ad

(b) Proposition 17.2

M N

M ′ N ′

pr

ad ad

pr +

(c) Lemma 18

FIGURE 29. Diagrams of Proposition 17 and Lemma 18.

Proposition 17.

1. If M →?
ad M

′ 7→pr N and M is an administrative answer, then there is N ′

with M 7→pr N
′ →?

ad N .

2. If M ←?
ad M

′ 7→pr N , then there is N ′ with M 7→pr N
′ ←?

ad N .

Proof.

1. If M is an administrative answer, then it is a proper β-redex; let M ,

(λ(x+). P )(V +). Any administrative reductions in M must take place

either in P or in V +; in general, they could take P to some P ′ and V + to

some V ′+. Hence M ′ ≡ (λ(x+). P ′)(V ′+). Since M ′ 7→pr N , this means

N ≡ P ′{V ′+/x+}, and we take N ′ , P{V +/x+}.

2. Similar. �

As a consequence, we have that =ad , which can involve arbitrary

administrative reductions in either direction, commutes with proper standard

reduction.

Lemma 18. If M =ad M
′ 7→pr N , then there is N ′ such that M 7→+

pr1 N
′ =ad

N .

This is a crucial lemma; we will prove it later.
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Now that we know what administrative reductions don’t do, we should

see what they can do: They serve to bring the standard redex in the source

term to the top of the CPS term. This entails reifying the evaluation context

as a continuation, so that we begin with CJE[M ]K ret and build toward CJMKK,

where K is a continuation that “represents” E somehow. We can formalize this

intuition:

Proposition 19. For each evaluation context E in λn or λv and each

continuation K, there is a continuation K ′ such that for every term M we

have CJE[M ]KK 7→?ad CJMKK ′.

Proof. By induction on the structure of E in each calculus. For call-by-name,

we have two cases:

– If E ≡ �, take K ′ , K.

– For E ≡ E ′N , we have:

CJE ′[M ]NKK 7→ad CJE ′[M ]K(λ̄v. v(CJNK, K))

7→?ad CJMKK ′ (by I.H.)

For call-by-value, we have three cases:

– If E ≡ �, take K ′ , K.

– For E ≡ E ′N , we have:

CJE ′[M ]NKK 7→ad CJE ′[M ]K(λ̄v. CJNK(λ̄w. v((λ̄k′. k′w), K)))

7→?ad CJMKK ′ (by I.H.)
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– Finally, suppose E ≡ V E ′. In our modified CBV calculus, V must be a

λ-abstraction and not a variable, so we have:

CJ(λx.N)(E ′[M ])KK

7→ad (λ̄k. k(λ(x, k′). CJNKk′))(λ̄v. CJE ′[M ]K(λ̄w. v((λ̄k′′. k′′w), K)))

7→?ad CJE ′[M ]K(λ̄w. (λ̄k. k(λ(x, k′). CJNKk′))((λ̄k′′. k′′w), K))

Note that if V could be a variable, then the CPS transformation would get

stuck after the first step, and we would not be able to bring E ′[M ] to the

top of the transformed term. �

We now want to show that observations in the λn and λv calculi line up

with observations of the CPS-transformed terms. In other words, we prove that

C meets Criteria 13 to 15.

We define our forward simulation ∼ as follows:

Definition 20. For a λ-term M (either CBN or CBV) and CPS term P , let

M ∼ P when CJMK ret =ad P .

Our task is to prove that ∼ satisfies the diagrams in (4.6), making it a

forward simulation. To begin, we first prove that “answerness” and “stuckness”

are preserved by administrative operations:

Proposition 21. If P =ad P
′ and AP , then P ′ ⇓.

Proof. By confluence, there must be a term Q such that P →?
ad Q and P ′ →?

ad

Q. Since P is an answer it must have the form retV , therefore the reductions

in →?
ad must have been within V , so Q must have the form retV ′. Finally, by

standardization, since P ′ →?
ad retV ′, there must be R with P ′ 7→?

ad R →?
ad

retV ′; since non-standard reductions cannot disturb the top redex, we must

have R ≡ retV ′′, so P ′ ⇓. �
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Proposition 22. If P =ad P
′ and sP , then P ′ 6⇓.

Proof. Similar to Proposition 21, again invoking confluence and

standardization. �

We are now ready to prove the third and forth commuting diagrams of

Eq. (4.6), showing that ∼ relates answers to answers and stuck terms to stuck

terms (up to some remaining steps in the CPS term):

Now we can prove the third and fourth commuting diagrams of (4.6):

Lemma 23. If M ∼ P and AM , then P ⇓.

Proof. Let M , λx.N for some N . Since (λx.N) ∼ P , we know that

P =ad CJλx.NK ret =ad ret(λ(x, k′). CJKNk′), so the result is immediate by

Proposition 21. �

Lemma 24. If M ∼ P and sM , then P 6⇓.

Proof. A stuck λ-term, in either CBN or CBV, is one of the form E[x] for some

free x. By Proposition 19, CJE[x]K ret 7→?
ad CJxKK 7→ad sxK. So CJE[x]K ret 6⇓,

and hence by Proposition 22, P 6⇓. �

We also have the first commuting diagram, showing that ∼ relates a

source term to its translation:

Lemma 25. M ∼ CJMK ret.

Proof. Unfolding definitions, we need that CJMK ret =ad CJKM ret, which is

immediate since =ad is reflexive. �

To show correctness of C it remains to satisfy the second commuting

diagram, showing that our invariant ∼ is preserved under reduction. We prove

this in three steps:
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1. Show that, if M 7→N by a β-reduction in the empty context, then we have

CJMKK 7→?=ad CJNKK (Proposition 27).

2. Allow the reduction M 7→N to occur in any evaluation context, not only

at the top of the term (Proposition 28).

3. Let the CPS term be any P =ad CJMK ret (Lemma 29).

We can get the first step using a simple proposition concerning

substitution:

Proposition 26.

1. CJMK{CJNK/x} →?
ad CJM{N/x}K

2. CJMK{(λ̄k. CJNKk)/x} →?
ad CJM{N/x}K

Proof.

1. By induction on the structure of M . The most interesting case is when

M ≡ x, and thus we actually substitute N for x:

CJxK{CJNK/x} , λ̄k. CJNKk

By inspection of C, CJNK must be some administrative λ-abstraction of

the form (λ̄k′. P ):

, λ̄k. (λ̄k′. P )k

→ad λ̄k. (P{k/k′})

≡ λ̄k′. P

≡ CJNK
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2. Similar, only with one extra reduction at the beginning:

CJxK{λ̄k. CJNKk/x} , (λ̄k. xk){(λ̄k. CJNKk)/x}

, (λ̄k. (λ̄k. CJNKk)k)

→ad λ̄k. CJNKk

→ad CJNK (as before) �

And now:

Proposition 27. If M 7→ N by a reduction in the empty context, then

CJMKK 7→+
pr1 =ad CJNKK.

Proof. Since the reduction takes place at the top level, we must have that M is

a redex. From here, we must consider CBN and CBV separately:

– In CBN, M must have the form (λx.M ′)N ′ with N ≡M ′{N ′/x}, and:

CJMKK ≡ CJ(λx.M ′)N ′KK

7→?ad (λ(x, k′). CJMKk′)(λk. CJNKk,K)

7→pr (CJMKk){λk. CJNKk/x}

→?
ad CJM ′{N ′/x}KK (by Proposition 26)

≡ CJNKK

124



– In CBV, M must have the more specific form (λx.M ′)V with N ≡

M ′{V/x}. Let V , λy.N ′.

CJMKK ≡ CJ(λx.M ′)(λy.N ′)KK

7→?ad (λ(x, k′). CJM ′Kk′)((λ̄h. h(λ(y, h′). CJN ′Kh′)), K)

, (λ(x, k′). CJM ′Kk′)(CJλy.N ′K, K)

, (λ(x, k′). CJM ′Kk′)(CJV K, K)

7→pr CJM ′K{CJV K/x}K

→?
ad CJM ′{V/x}KK (by Proposition 26)

≡ CJNKK �

The second step is to show that a reduction in an evaluation context is

performed faithfully by the CPS-transformed term.

Proposition 28. If M 7→N , then CJMKK 7→+
pr1 =ad CJNKK.

Proof. By definition of 7→, we have that M ≡ E[M ′] and N ≡ E[N ′], where

M ′ 7→N ′ at top level.

CJMK ret ≡ CJE[M ′]KK

7→?
ad CJM ′KK ′ (by Proposition 19)

7→+
pr1 =ad CJN ′KK ′ (by Proposition 27)

←[?ad CJE[N ′]K ret (property of K ′ from Proposition 19)

≡ CJNKK �

The third step of the proof is the most difficult: We must generalize

the hypothesis of Proposition 28 so that it may be chained through multiple

reduction steps. This hinges on the commutation lemma, which we now prove:
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M M ′ Nad pr

(a) Hypothesis

M ′ N

M M ′′

pr

ad
ad

ad

(b) Confluence

M ′ N

M M ′′

M ′′′

pr

ad
ad

ad

ad
ad

(c) Standardization

M ′ N

M M ′′ ·

M ′′′ N ′

pr

ad ad
ad

ad

ad

pr

ad

pr

ad

(d) Commutation

FIGURE 30. A summary of the proof of Lemma 18.

Proof (of Lemma 18). By Proposition 16.1, we know there must be some

M ′′ such that M →?
ad M ′′ ←?

ad M ′. By Proposition 17, M ′′ can take

a proper standard reduction, so Proposition 16.2 applies, giving M ′′′ with

M 7→?ad M ′′′ →?
ad M

′′. From there, we use Proposition 17 to “fill in the arrows”

(see Fig. 30). �

From there, we have that reduction preserves the invariant ∼:

Lemma 29. If M 7→N and M ∼ P , then there is Q such that P 7→+ Q and

N ∼ Q.

Proof. Since M ∼ P , we have P =ad CJKM ret. By Proposition 28, then,

CJMK ret 7→+=ad CJKN ret, so P =ad 7→+
pr1 =ad CJKN ret. Since 7→+

pr1 is short for

7→?
ad 7→pr 7→?

ad , we have P =ad 7→pr=ad CJKN ret. By Lemma 18, we have Q such

that P 7→+Q =ad CJKN ret, so P 7→+Q and N ∼ Q. �

With all the pieces of (4.6) in hand, we can show that the uniform CPS

transform preserves observations forward:

Theorem 30. For any λ-term M and variable k:
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1. If M ⇓ then CJMK ret ⇓.

2. If M ⇑ then CJMK ret ⇑.

3. If M 6⇓ then CJMK ret 6⇓.

Proof. By Lemma 25, we can generalize CJMK ret to any P with M ∼ P . From

there, 1 and 3 follow by induction on the reduction sequence and Lemmas 23,

24, and 29. 2 is immediate from Lemma 29, since P must take at least as many

steps as M . �

Corollary 31. For any λ-term M and variable k:

1. M ⇓ iff CJMK ret ⇓.

2. M ⇑ iff CJMK ret ⇑.

3. M 6⇓ iff CJMK ret 6⇓.

Proof. The forward directions are Theorem 30. For the backward direction of 1,

assume M does not reduce to an answer. Then it must either diverge or become

stuck. By Theorem 30, in either case, CJMK ret must do the same, and thus

(by determinism) it cannot reduce to an answer; by contraposition, CJMK ret ⇓

implies M ⇓. The other clauses are similar. �

Correctness of the Naming Transform

Passing names instead of values has a subtle effect on the execution of a

program: The CPS terms now express sharing. Since values aren’t copied but

are shared among subterms, relating reductions of unnamed terms to those of

named terms requires care. For instance, consider this CPS term:

M , (λx. f(x, x))(λx.N)
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It β-reduces and duplicates (λx.N):

M 7→f(λx.N, λx.N)

Now consider M under the naming transform:

N JMK , νy. y := λx.N JNK in (λx. f(x, x))y

It only duplicates the name y:

N JMK 7→νy. y := λx.N JNK in f(y, y)

Notice, however, that if we reduce M and then translate, we get

something different:

N Jf(λz.N, λz.N)K , νx. x := λz.N JNK in νy. y := λz.N JNK in f(x, y)

Now there is no sharing of the value λz.N .

In short, reduction does not commute with naming: Reducing the named

term can produce shared references that do not appear when naming the

reduced term. However, differences in sharing do not affect the outcome of

the computation. Therefore we seek a way to reason up to sharing—that is, we

want to consider a term with the same computational content, but more sharing,

as “close enough.” A straightforward way to remove sharing from the picture

is to consider terms under a readback function that “flattens” a term’s bound
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variables, returning it to the unnamed form:

N−1〈〈f(x+)〉〉 , f(x+)

N−1〈〈νx. x := λ(x+). N inM〉〉 , N−1〈〈M〉〉{λ(x+).N−1〈〈N〉〉/x}

We can now define our invariant as follows:

Definition 32. For an unnamed CPS term M and a named CPS term P , let

M ∼ P when M ≡ N−1〈〈P 〉〉.

To show correctness of the naming step we will show that ∼ is a backward

simulation: If M ∼ P and P 7→P ′ then there is M ′ with M 7→?M ′ and M ′ ∼ P ′.

Note that, because deref reductions disappear under N−1, the correspondence

between reductions is not one-to-at-least-one, as it was in (4.6). We relied on

this property in proving Theorem 30.2, so we will have to adjust our reasoning

this time.

First, we prove that reductions are preserved:

Proposition 33. Given a λcps,vn term P :

1. If P 7→β P
′, then N−1〈〈P 〉〉 7→N−1〈〈P ′〉〉.

2. If P 7→deref P
′, then N−1〈〈P 〉〉 ≡ N−1〈〈P ′〉〉.

Proof. Given any context E in the named CPS language, let σE be the

substitution built up by the unnaming function as it traverses E. (In other

words, σE is the substitution such that N−1〈〈E[P ]〉〉 ≡ N−1〈〈P 〉〉σE.)
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1. If P 7→P ′ by the β rule, we have that:

P ≡ E[(λ(x+). Q)(y+)]

P ′ ≡ E[Q{y+/x+}]

N−1〈〈P 〉〉 , (λ(x+).N−1〈〈Q〉〉)(y+)σE

7→N−1〈〈Q〉〉{y+/x+}σE

≡ N−1〈〈E[Q{y+/x+}]〉〉

≡ N−1〈〈P ′〉〉

2. If P 7→P ′ by the deref rule, we have that:

P ≡ E[νf. f := λ(x+). Q in E ′[f(y+)]

P ′ ≡ E[νf. f := λ(x+). Q in E ′[(λ(x+). Q(y+)]]

N−1〈〈P 〉〉 , f(y+)σE′{λ(x+). Q/f}σE

≡ (λ(x+). Q)(y+)σE′{λ(x+). Q/f}σE

≡ N−1〈〈P ′〉〉 �

Now we can show that N−1 preserves observable behavior:

Theorem 34.

1. If N JMK ⇓ then M ⇓.

2. If N JMK ⇑ then M ⇑.

3. If N JMK 6⇓ then M 6⇓.

Proof. The initial condition M ∼ N JMK follows from the fact that N and N−1

form a retraction pair: for any unnamed CPS term M , N−1〈〈N JMK〉〉 ≡M . The
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invariant holds by Proposition 33. Since answers and stuck terms are virtually

the same between unnamed and named terms, the final conditions are trivial.

It only remains to show that divergence is preserved. This is easy, however, as

each deref -reduction always produces a β-redex, so M and N JMK must take the

same number of β-reductions. �

As we did for the uniform CPS transform (only in reverse), we get the

forward directions from the backward ones, completing the correctness proof.

Corollary 35.

1. M ⇓ iff N JMK ⇓.

2. M ⇑ iff N JMK ⇑.

3. M 6⇓ iff N JMK 6⇓.

Proof. The backward directions are Theorem 34. The forward directions use

case analysis and determinism in the same way as Corollary 31. �

4.4 CPS and Processes
The π-calculus describes computation as the exchange of simple messages

by independent agents, called processes. Each term in the π-calculus describes

a process, and processes are built by composing them together in parallel,

prefixing them with I/O actions, and replicating them. Communication takes

place over channels, each of which has a name; processes interact when one

is writing to a channel and, in parallel, another is reading from it. The values

sent over the channels are themselves channel names, so processes can discover

each other dynamically. Names act much like variables in the λ-calculus, with

α-equivalent terms identified in the same way. They can be allocated by the ν

construct, which guarantees that the name it binds will be distinct from any

other allocated or free name.
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Processes: P,Q ::= x〈y+〉
∣∣ x(y+). P

∣∣ (P |Q)
∣∣ !P

∣∣ νz P
x〈y+〉 | x(z+). P →P{y+/z+}
P ≡ P ′ P ′ →Q′ Q′ ≡ Q

P →Q

P →P ′

P |Q→P ′ |Q
P →P ′

νz P →νz P ′

P |Q ≡ Q | P !P ≡ !P | P
(P |Q) |R ≡ P | (Q |R) (νz P ) |Q ≡ νz (P |Q)

νx νy P ≡ νy νx P if z not free in Q

FIGURE 31. A fragment of the π-calculus.

The syntax and semantics for the fragment of the π-calculus we are

considering are given in Fig. 31. This fragment is called the asynchronous π-

calculus because there are no processes of the form x〈y〉. P . In other words, no

process is ever blocked waiting for a write operation to complete. This property

reflects the behavior of CPS terms: They never wait for a subterm to compute,

instead providing a continuation that performs the remaining work.

Processes in the π-calculus are meant to be considered up to a relation

called structural congruence, which we write as ≡.5 The rules (other than

those making ≡ an equivalence relation and a congruence) are given in

Fig. 31. Reductions are closed up to structural congruence (as well as parallel

composition and name allocation). Besides eliminating unimportant differences

such as the order of parallel composition, structural congruence accounts for the

spawning of replicated processes and the scoping of allocated names.

5In the π-calculus literature, structural congruence is usually written as ≡.
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π from CPS

Despite the radically different approaches to expressing computation,

CPS transforms and π-encodings are interrelated. In particular, given a CPS

transform, one can systematically derive a π-encoding from it (Sangiorgi, 1999;

Sangiorgi & Walker, 2003). The major difficulty in deriving a π-encoding from a

CPS transform arises from an important difference: Functions in the λ-calculus

can take functions as arguments, but processes in the π-calculus do not send

processes over channels, only names. In other words, λ is higher-order, but π is

first-order.

But we have already addressed this mismatch: The value-named CPS

language λcps,vn is “first-order” in much the same way. In fact, nearly every

construct in the named CPS calculus λcps,vn corresponds directly to a construct

in the π-calculus:

– An application x(y+) becomes a process x〈y+〉, which performs a write on

channel x, then halts. The tuple (y+) is transmitted over x.

– Each binding νx. x := λ(y+). N inM becomes a process of the form νx (P |

!x(y+). Q). This process allocates a fresh channel name x, then runs a

process P in parallel with the process !x(y+). Q. The latter acts as a

“server”: It listens on the channel x for a request, then runs the process

Q with the request’s values as arguments. The ! makes the server process

replicated, so that it handles any number of requests over time.

The only terms without couterparts are applications with λ-abstractions in head

position—that is, β-redexes. But we can handle these by reducing them during

translation.
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Thus we can faithfully translate λcps,vn to the π-calculus:

PJV (y+)K , PJV Ky+

PJνx. x := λ(y+). N inMK , νx (PJMK | !x(y+).PJNK)

PJfKy+ , f〈y+〉

PJretKy+ , ret〈y+〉

PJλ(x+).MKy+ , PJMK{y+/x+}

The subscripted form of P translates a term, given the arguments it is being

applied to, performing β-reduction as needed. To translate ret, we simply

assume some fresh π-calculus channel name ret.

Finally, we obtain the π-calculus encoding (Fig. 32) by running the

uniform CPS transform C through the naming transform N and then through

the π-calculus translation P. The final product coincides with the established

uniform π-encoding (Sangiorgi & Walker, 2003).6

Correctness

For a π-calculus term P , if P is capable of performing a write on the free

channel name k (possibly after some reductions), we write P ⇓k. A named

CPS term signals termination by invoking initial continuation ret, which is

translated to a write on ret. Hence we expect the π-encoded term to write on

ret if and only if the named CPS term would invoke ret:

Lemma 36. For any λcps,vn term M , M ⇓ iff PJMK ⇓ret.

6In fact, the final transform in Fig. 32 differs slightly from the uniform π-encoding in
the literature, in that all input processes are replicated, even those used at most once
(e.g.continuation processes). However, this is harmless, as garbage collection is sound in
the π-calculus (up to bisimulation). The call-by-need π-encoding will keep some processes
unreplicated, as this is necessary for correctness.
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CJxK , λk. xk

CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK ,

{
λk. CJMK(λv. v(λk′. CJNKk′, k)) CBN

λk. CJMK(λv. CJNK(λw. v(λk′. k′w, k))) CBV

CvnJxK , λk. xk

CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK ,



λk. νk′. k′ := (λv. νx. x := λk′. CvnJNKk′ in
v(x, k)) in CvnJMKk′ CBN

λk. νk′. k′ :=

λv. νk′′. k′′ := (λw.
νx. x := λk′. k′w in
v(x, k)) in CvnJNKk′′

 in

CvnJMKk′
CBV

EJxKk , x〈k〉
EJλx.MKk , νf (k〈f〉 | !f(x, k). EJMKk)

EJMNKk ,


νk′ (EJMKk′ |

!k′(v).νx (v〈x, k〉 | !x(k′′). EJNKk′′))
CBN

νk′ (EJMKk′ | k′(v).νk′′ (EJNKk′′ |
!k′′(w).νx (v〈x, k〉 | !x(k′). k′〈w〉))) CBV

FIGURE 32. The CPS transform, named CPS transform, and π-encoding for
CBN and CBV.
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Proof. We need only that our syntactic embedding of λcps,vn into π is also

a semantic embedding—in other words, that reductions in the CPS term

correspond to reductions in the π-term and vice versa. The only catch is

that β-redexes from the CPS term disappear under P; however, P is still a

bisimulation.

Note that any CPS term E[M ] will translate to processes representing the

bindings in E in parallel with the process representing M . Thus we can consider

translating E and M separately. Then:

νf. f := λ(x+).M in E[f(y+)]

7→? νf. f := λ(x+).M in E[M{y+/x+}]

corresponds to

νf (f〈y+〉 | PJEK | !f(x+).PJMK)

7→νf (M{y+/x+} | PJEK | !f(x+).PJMK).

It is straightforward to construct a grammar of possible π-terms produced by P

to show that the correspondence works in both directions. �

Finally, we have the complete proof of the correctness of the uniform

π-encoding, simply by composing:

Theorem 37. For any λn or λv term M , M ⇓ if and only if EJMKret ⇓ret.

Proof. Note that EJMKret ≡ PJN JCJMK retKK; the result follows by

Corollaries 31 and 35 and Lemma 36. �
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Uniform Abstract Machine
In addition to the π-encoding, we can derive other artifacts from the

uniform CPS transform. In particular, through the functional correspondence

(Ager, Danvy, & Midtgaard, 2004), we obtain a uniform abstract machine for

CBN and CBV. See Fig. 33.

The CBN fragment of the machine is essentially the same as the well-

known Krivine machine for CBN evaluation (Krivine, 2007). On closed

terms, the CBV fragment strongly resembles the CEK machine (Felleisen &

Friedman, 1986) (without control operators). Unlike most environment-based

abstract machines, ours does not exclude open terms, and thus its behavior can

meaningfully be more finely specified: Variable lookup happens when a variable

is evaluated, and only λ-abstractions are treated as values. We could instead

delay the variable lookup until a λ-abstraction is required; this machine would

implement the full CBV β-rule. Much as with the uniform CPS transform,

we can observe the difference using a term such as (λx. λy. y)z, which is stuck

according to the uniform abstract machine.

4.5 Call-by-Need and Constructive Update
As we have seen, CBV usually takes fewer evaluation steps to reach an

answer than CBN. However, CBV evaluation wastes work whenever a function

does not use its argument. The call-by-need λ-calculus (Ariola et al., 1995;

Ariola & Felleisen, 1997) is efficient in both cases: Unneeded arguments are

never computed, yet each argument is evaluated at most once. Hence call-by-

need models efficient implementations of lazy evaluation, which memoize, or

cache, each computed value.

The syntax and semantics are given in Fig. 34. Rather than perform

a substitution, the βneed rule suspends the argument in a let binding. The

grammar for evaluation contexts expresses lazy evaluation order: Given a term
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Terms: M,N ::= x
∣∣ λx.M ∣∣MN

Continuations: k ::= KRet
∣∣ KAppNM, k, ρ∣∣ KAppV 1M,k, ρ∣∣ KAppV 2λx.M, k, ρ

Environments: ρ ::= ε
∣∣ ρ[x = KClosM, ρ]

States: S ::= 〈M,k, ρ〉M
∣∣ 〈k, λx.M, ρ〉K∣∣ 〈λx.M, ρ〉H

M 7→〈M,KRet, ε〉M

〈x, k, ρ〉M 7→〈M,k, ρ′〉M
where ρ(x) ≡ KClosM, ρ′

〈λx.M, k, ρ〉M 7→〈k, λx.M, ρ〉K
〈MN, k, ρ〉M 7→〈M,k′, ρ〉M

where k′ ,

{
KAppNN, k, ρ CBN

KAppV 1N, k, ρ CBV

〈KRet, λx.M, ρ〉K 7→〈λx.M, ρ〉H
〈KAppNN, k, ρ′, λx.M, ρ〉K 7→〈M,k, ρ′′〉M

where ρ′′ , ρ[x = KClosN, ρ′]

〈KAppV 1N, k, ρ′, λx.M, ρ〉K 7→〈N, k
′, ρ′〉M

where k′ , KAppV 2λx.M, k, ρ

〈KAppV 2λy.N, k, ρ′, λx.M, ρ〉K 7→〈N, k, ρ
′′〉M

where ρ′′ , ρ′[y = KClosλx.M, ρ]

FIGURE 33. Uniform abstract machine for CBN and CBV.
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Expressions: M,N ::= x
∣∣ λx.M ∣∣MN

∣∣ letx = M inN

Values: V ::= λx.M

Answers: A ::= V
∣∣ letx = M inA

Evaluation Contexts: E,F ::= []
∣∣ EM ∣∣ letx = E inF [x]∣∣ letx = M inE

(λx.M)N →letx = N inM βneed

(let y = L inA)N →let y = L inAN lift

letx = V inE[x]→letx = V inE[V ] deref

letx = (let y = L inA) inE[x]→let y = L in letx = A inE[x] assoc

FIGURE 34. The call-by-need λ-calculus, λneed , of Ariola et al. (Ariola,
Felleisen, Maraist, Odersky, & Wadler, 1995).

letx = M inN , we evaluate N until it becomes either a value or a term of the

form F [x] for some evaluation context F . Such a term needs the value of x to

continue, so now we evaluate the term M that x is bound to. But since this

computation is done in place, it only needs to be done once: After M becomes

a value, this value will simply be substituted directly (by the deref rule) if x is

needed again. If N instead becomes a value, then we say the whole term is an

answer—a value surrounded by a number of let bindings.

An answer in call-by-need is “almost a value.” Evaluation stops when a

term becomes an answer, but it’s not a value for the purposes of the β or deref

rule. When a subterm evaluates to an answer, either the lift or the assoc rule

moves each binding into the outer environment.
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To illustrate, we turn to our previous example, (λx. xx)((λy. y)(λz. z)). It

reduces as follows:

(λx. xx)((λy. y)(λz. z))

7→βneed
letx = (λy. y)(λz. z) inxx

7→βneed
letx = (let!y = λz. z in y) inxx

7→deref letx = (let y = λz. z inλz. z) inxx

7→assoc let y = λz. z in let!x = λz. z inxx

7→deref let y = λz. z in letx = λz. z in (λz. z)x

7→βneed
let y = λz. z in let!x = λz. z in let z = x in z

7→deref let y = λz. z in letx = λz. z in let!z = λz. z in z

7→deref let y = λz. z in letx = λz. z in let z = λz. z inλz. z

Evaluation begins in a call-by-name manner, in the sense that the outer

β-redex is reduced immediately. The argument is suspended in a let binding.

Next, since x is in head position in the body, we need to evaluate it, and so we

reduce the inner β-redex. However, since the reduction is done in place, this

step will only be done once. In all, three β-reductions are performed, as few as

is done by call-by-value.

Unlike call-by-value, when a function ignores its argument, call-by-need

does not waste work. In extreme cases, call-by-value never finishes when call-by-

name or call-by-need would. For example, consider the term

(λx. λy. y)Ω,
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where Ω is a term (λx. xx)(λx. xx) that diverges. Call-by-name substitutes

the Ω immediately (the substitution is trivial since x does not occur in the

body). Call-by-need similarly suspends the Ω without attempting to evaluate it.

Call-by-value insists on computing the argument first, and thus is caught in an

infinite loop.

Continuation-Passing Style

There does exist a call-by-need CPS transform due to Okasaki et al.

(Okasaki et al., 1994) It requires mutable storage, which our CPS languages

do not support. However, suppose we borrow the assignment syntax from the

named CPS language λcps,vn . Then we can build on the uniform CPS transform

(Fig. 24) and use a call-by-need application rule:

CJMNK , λk. CJMK(λv. νx. x:=(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))

This is roughly the same as in the Okasaki CPS transform. Unfortunately,

this is not valid λcps,vn syntax, as the assignment operator := is only allowed

immediately inside a ν binding for the variable assigned to. As a result, λcps,vn

only allows an assignment to a variable that presently has no value. The inner

continuation, λw. x := λk′′. k′′w in k′w, violates this restriction by attempting to

“overwrite” x. We will call this a double assignment.

Of course, this is precisely what we wish to happen: The term bound to x

should change, in order to cache the computed value. But we don’t need the full

power of mutable storage; a much weaker effect will suffice.

To see this, suppose for a moment we allow := anywhere, with the

semantics of destructive update (that is, each assignment overwrites any
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previous one). Inspecting the rule, we see that each variable is now assigned

to (at most) twice: Once when it is initialized with a thunk, and again when the

thunk’s result is memoized. However, after the second assignment, the stored

value never changes again. Furthermore, note that the initial thunk cannot

refer to x, even indirectly, as x is not in the scope of the computation (our let

is not recursive). Therefore the initial thunk is only used once; since that very

thunk performs the second assignment, the first lookup must precede the second

assignment, with no other accesses in between.

In the language of data-flow analysis, after the first lookup, x cannot be

live. Hence its value does not matter. In other words, it may as well have no

value. If we clear x after the first lookup, then the second assignment is just like

the first: It is giving a value to a variable that currently has none. There is no

double assignment.

This analysis suggests a special assignment operation that always clears

the variable the next time it is used. The assigned value will therefore only

be used once, and thus the assignment is ephemeral, as opposed to permanent.

After a permanent assignment, the variable will never be cleared, so permanent

assignments are final.

The Transform

Writing x := M inN for a permanent assignment and x :=1 M inN for an

ephemeral assignment, we can modify the call-by-need CPS transform so that it

does not require destructive update:

CJMNK , λk. CJMK(λv. νx. x :=1(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))
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CJxK , λk. xk

CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK , λk. CJMK(λv. νx. x :=1(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))

CJletx = L inMK , λk. νx. x :=1(
λk′. CJLK(λw. x := λk′′. k′′w in k′w)

)
in CJMKk

FIGURE 35. A call-by-need CPS transform using constructive update.

Since the initial thunk is now assigned ephemerally, there is never a double

assignment. In fact, we can prove so: By the above data-flow analysis, x is

unassigned before the second assignment. Each assignment is performed by

a term that is used at most once, and thus no further assignments will be

attempted.

Note what has happened here: x takes on different values over time, due

to multiple assignments. Therefore it is fair to say it was updated. However, no

previous value was destroyed by any update, and in fact a previous value cannot

be destroyed. In this language, updates only construct, never destroy; hence we

call the phenomenon constructive update.

This CPS transform, summarized in Fig. 35, is the one we will relate

to the π-calculus. The syntax and semantics for permanent and ephemeral

assignment are given in Fig. 36. The deref 1 rule is similar to deref , only it

removes the ephemeral assignment.

We have shown that terms produced by the call-by-need CPS transform

never attempt a double assignment—that is, they never reduce to a term such

as x := V in x := W inM . Let us call such terms safe:
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Terms: M,N ::= V (V +)
∣∣ νx.M∣∣ x := λ(x+).M inN∣∣ x :=1 λ(x+).M inN

Values: V ::= x
∣∣ ret

∣∣ λ(x+).M

Binding Contexts: B ::= �
∣∣ νx.B∣∣ x := λ(x+).M inB∣∣ x :=1 λ(x+).M inB

Evaluation Contexts: E ::= B

(λ(x+).M)(V +)→M{V +/x+} β

f := λ(x+).M in

E[f(V +)]
→
f := λ(x+).M in

E[(λ(x+).M)(V +)]
deref

f :=1 λ(x+).M in

E[f(V +)]
→E[(λ(x+).M)(V +)] deref 1

FIGURE 36. The CPS λ-calculus with constructive update, λ:=1
cps .

Definition 38. A λ:=1
cps term M is safe when it does not reduce to a term with a

subterm of the form

x :=∗ V in E[x :=∗W inN ],

where :=∗ stands for either := or :=1 in each appearance.

Proposition 39. For any M and K, if K is a variable, ret, or λv. P where P

is safe, then CJMKK is safe.

Proof. See the above data-flow analysis. �

Naming and π-Encoding

Now that we have the call-by-need CPS transform, we need only adapt the

development in Sections and 4.4 to derive the π-calculus encoding.
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In Section 4.1, we were somewhat sloppy in deriving a π-encoding from

the CPS—all input processes in the encoding were replicated, even those that

are provably used at most once. Now that we have ephemeral assignment, we

can be more precise. Some λ-abstractions are affine, i.e. never duplicated; these

are the ones representing continuations or suspended computations. We can

mark the λs in the CPS transform to indicate which values are affine:

CJxK , λk. xk

CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK , λk. CJMK(λ1v. νx. x :=1(
λk′. CJNK(λ1w. x := λk′′. k′′w in k′w)

)
in v(x, k))

CJletx = L inMK , λk. νx. x :=1(
λk′. CJLK(λ1w. x := λk′′. k′′w in k′w)

)
in CJMKk

Now we augment the naming transform to treat affine values specially:

N JV (λ1(x
+).M)K , νy. y :=1 λ(x+).N JMK inN JV (y)K

Finally, the π-calculus translation P should use an unreplicated process to

simulate ephemeral assignment:

PJx :=1 λ(y+).M inNK , PJNK | x(y+).PJMK
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CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK , λk. CJMK(λv. νx.
x :=1

(
λk′. CJNK(λw. x := λk′′. k′′w in k′v)

)
in v(x, k))

CJletx = L inMK = λk. νx. x :=1 (λk′. CJLK(λw. x := λk′′. k′′w in kw)) in CJMKk

CvnJxK , λk. xk
CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK , λk. νh. h :=1 λv. νx. x :=1

λk′. νh′. h′ :=1

λv. x := λk′′. k′′v in k′v

in CvnJNKh′

 in v(x, k)

in CvnJMKh

CvnJletx = L inMK , λk. νx. x :=1

λk. νh′. h′ :=1

λv. x := λk. kv in kv

in CvnJLKh′

 in CvnJMKk

EJxKk , x〈k〉
EJλx.MKk , νf (k〈f〉 | !f(x, k). EJMKk)

EJMNKk , νh (EJMKh | h(v).νx (v〈x, k〉 |
x(k′).νh′ (EJNKh′ | h′(w). (k′〈w〉 | !x(k′′). k′′〈w〉))))

EJletx = L inMKk , νx (EJMKk | x(k′).νh′ (EJLKh′ | h′(w). (k′〈w〉 | !x(k′′). k′′〈w〉)))

FIGURE 37. The CPS transform, named CPS transform, and π-encoding for
call-by-need.

Putting these transforms together (Fig. 37), we arrive at the same call-by-

need π-encoding found in the literature (Brock & Ostheimer, 1995; Sangiorgi &

Walker, 2003).

Correctness
Now we establish the correctness of the call-by-need CPS transform C. We

do so by further decomposing it into three steps: A switch to a call-by-need

calculus with rules that act at a distance; an annotation step; and simulation

proofs for the CPS transform on annotated terms.
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Binding Contexts: B ::= []
∣∣ letx = M inB

B[λx.M ]N →B[letx = N inM ] βd

letx = B[V ] inE[x]→B[letx = V inE[V ]] derefd

FIGURE 38. Reductions for the distance call-by-need λ-calculus, λdneed .

Distance Rules

As presented, λneed (Fig. 34) has certain reductions—the lift and assoc

rules—that hardly seem to perform any computation. They only shuffle

bindings around in preparation for a βneed - or deref -reduction, respectively.

In fact, if CJMK is always an administrative λ-abstraction7, then lift- and assoc-

reductions are simulated as administrative reductions alone. In a sense, the

lift and assoc rules are administrative: They only serve to bring the parts of a

redex together.

We can avoid administrative work in the source calculus by using a

suggestion of Accattoli (Accattoli, 2013) for the π-calculus: We express

λneed using rules that apply at a distance, that is, where parts of a redex are

separated by an evaluation context.8 The new calculus, λdneed , supplants the fine-

grained lift and assoc rules with coarser β and deref rules. The syntax is the

same as for λneed (Fig. 34), except that we specify that some evaluation contexts

are binding contexts ; the reductions are given in Fig. 38.

7We could always not mark these as administrative, but then we would lose the flexibility
that administrative congruence provides.

8Of course, the deref rule already works this way in part.
An alternative is suggested by Chang and Felleisen (Chang & Felleisen, 2012), who use

distance rules and manage to do away with the deref rule as well, but at the cost of a more
complex β-rule.
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Proposition 40. An λneed term reduces to an answer, diverges, or gets stuck by

the distance rules if and only if it does so by the original rules.

Proof. Since 7→βd
is the same as 7→?

lift 7→βneed
, 7→derefd

is the same as 7→?
assoc 7→deref ,

and the language is deterministic, it suffices to define a backward simulation

that compares terms up to lift and assoc. �

Annotations

The single let construct does not tell the full story of a standard reduction

sequence in λneed : There is an implicit statefulness that is made manifest by

the CPS transform. Specifically, there are three stages in the life cycle of a let

binding:

Suspended Initially, the binding letx = M inN represents a suspended

computation. Computation takes place within N .

Active For x to be demanded, N must reduce to the form E[x]. Then the

binding becomes active, with the form letx = M inE[x], and computation

takes place within M .

Memoized Eventually, M becomes an answer B[V ], and the body E[x] receives

V while the bindings in B are added to the environment. Subsequently,

the binding is letx = V inN , and computation takes place within N .

The CPS translation exposes this state, which makes it difficult to relate

a term to its CPS form: In what state is letx = V inE[x]? In fact, it could be

in any of the three states, and thus the running CPS program could have any of

three forms.

Therefore we annotate each let, giving it a subscript s, a, or v (for

suspended, active, or value, respectively). We will need new reduction rules,
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Expressions: M,N ::= x
∣∣ V ∣∣MN∣∣ lets x = M inN∣∣ leta x = M inE[x]∣∣ letv x = V inN

Evaluation Contexts: E,F ::= �
∣∣ EM∣∣ lets x = M inE∣∣ leta x = E inF [x]∣∣ letv x = V inE

Binding Contexts: B ::= �
∣∣ lets x = M inB∣∣ letv x = V inB

B[λx.M ]N →B[lets x = N inM ] βa

lets x = M inE[x]→leta x = M inE[x] act

leta x = B[V ] inE[x]→B[letv x = V inE[V ]] deact

letv x = V inE[x]→letv x = V inE[V ] deref a

FIGURE 39. The annotated call-by-need λ-calculus, λaneed .

which we call act and deact , to represent binding state transitions; from the

perspective of λdneed , these will be administrative. See Fig. 39 for the resulting

calculus λaneed . We write AJMK for the annotation of a λdneed term M , which

consists simply of tagging each let with s.

Our λaneed is much like previous languages with similar goals. In particular,

both Brock and Ostheimer (Brock & Ostheimer, 1995) and Danvy and

Zerny (Danvy & Zerny, 2013) include versions of what we call leta, the “active

let.”

Proposition 41.

1. M ⇓ if and only if AJMK ⇓.

2. M ⇑ if and only if AJMK ⇑.

3. M 6⇓ if and only if AJMK 6⇓.
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Annotated CPS Transform

Now we must show that the call-by-need CPS transform, as a function

from λaneed to λ:=1
cps , is correct. First, we need to extend the CPS transform to the

annotated terms. See Fig. 40, where we have also marked which λ-abstractions

are administrative.

Most of the first part of Ca is unsurprising: A lets translates as a

suspended computation, as appears in CaJMNK. A letv translates as a

memo-thunk. However, leta is a challenge. To see why, consider a suspended

computation:

CaJlets x = M inNKK =ad νx. x :=1 λ̄k. · · · in CaJNKK

The computation of x is suspended, pending its need. Then, x will be needed

when N reduces to a term of the form E[x]. At that point in the computation,

we expect CaJE[x]K to have evaluated to some term E ′[xK ′], where E ′ is a CPS

evaluation context and K ′ is a continuation.

CaJlets x = M inE[x]KK =ad νx. x :=1 λ̄k. · · · in E ′[xK ′]

What happens next is that the deref 1 rule fires:

νx. x :=1 λ̄k. · · · in E ′[xK ′] 7→νx.E ′[(λ̄k. · · · )K ′]

Since this deref 1-reduction is what activates the computation of x, we expect

that νx.E ′[(λ̄k. · · · )K ′] should be the shape of the CPS term corresponding to

an active let. But this means we must be able to translate evaluation contexts

as well as terms. For the uniform CPS transform, we were content to have a
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CaJxK , λ̄k. xk

CaJλx.MK , λ̄k. k(λ̄(x, k′). CaJMKk′)

CaJMNK , λ̄k. CaJMK(λv. νx.
x :=1 λ̄k

′. CaJNK(λv. x := λk′′. k′′v in k′v)

in v(x, k))

CaJlets x = M inNK

, λ̄k. νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)

in CaJNKk
CaJleta x = M inE[x]K

, λ̄k. νx. CaLEM[λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)]k

CaJletv x = V inNK

, λ̄k. νx. x := CaJV K in CaJNKk

CaL�M , �

CaLENM , λ̄k. CaLEM(λv. νx.
x :=1 λ̄k

′. CaJNK(λv. x := λ̄k′′. k′′v in k′v)

in v(x, k))

CaLlets x = M inEM

, λ̄k. νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)

in CaLEMk
CaLleta x = E inF [x]M

, λ̄k. νx. CaLF M[λ̄k′. CaLEM(λv. x := λ̄k′′. k′′v in k′v)]k

CaLletv x = V inEM

, λ̄k. νx. x := CaJV K in CaLEMk

FIGURE 40. The call-by-need CPS transform on annotated terms and contexts,
Ca.
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lemma (Proposition 19) that merely asserted that there was some K that served

to translate a source evaluation context. Now that contexts are a crucial part of

the CPS transform, we need to make the translation explicit. Hence the context

part of the CPS transform, which we write using round brackets, like CaLEM. Its

definition is easily derived from that of Ca, so that we have:

Proposition 42. CaJE[M ]K ≡ CaLEM[CaJMK]

Proof. An easy induction on E. �

Again we define an administrative congruence relation. We will want to be

able to rearrange bindings when it is safe to do so; accordingly, we adopt a lift

rule, a generalization of the lift rule from call-by-need:

E[E ′[C]]→ad E
′[E[C]] lift

(λ̄(x+).M)(V +)→ad M{V +/x+} βad

As usual, the transitive closure of →ad is →+
ad , and its reflexive and transitive

closure is →?
ad . Its reflexive, symmetric, and transitive closure, restricted9 to

safe terms, is =ad .

We will also use 7→ad to refer to an invocation of βad at the top level,

which we call an administrative standard reduction. (A lift-reduction is never

proper, as it is never necessary.) As before, an administrative answer is a term

that cannot take an administrative standard reduction.

The confluence, standardization, and commutativity results we need are

similar to before:

Proposition 43. The relation =ad

9The restriction is necessary because safety is not closed backward, i.e.there are unsafe
terms that reduce to safe ones.
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1. is confluent, so that if M =ad M
′, then there is some N such that M →?

ad

N and M ′ →?
ad N ; and

2. has the standardization property, so that if M →?
ad N and N is an

administrative answer, then there is an administrative answer M ′ such

that M 7→?
ad M

′ →?
ad N .

Proof.

1. Because lift and βad do not overlap and they are both left-linear, we

can use modularity (Appel, van Oostrom, & Simonsen, 2010) to prove

confluence from the confluence of each rule separately. The lift rule is

symmetric and thus trivially confluent. The βad rule is simply the β rule

restricted to a subcalculus, so it is also confluent.

2. Since lift and βad trivially commute (they do not even interact), we can

perform the lift steps last, giving M →?
βad

N ′ →?
lift N . Since →?

lift cannot

create a proper standard reduction, N ′ must also be an administrative

answer; hence standardization of β-reduction applies, completing the proof.

�

Proposition 44.

1. If M →?
ad M

′ 7→pr N and M is an administrative answer, then there is N ′

with M 7→pr N
′ →?

ad N .

2. If M ←?
ad M

′ 7→pr N , then there is N ′ with M 7→pr N
′ ← [?ad N .

Proof. The lift rule can neither create nor destroy any redexes, and internal

reductions still cannot destroy a standard redex, so the proof is essentially the

same as that of Proposition 17. �
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Lemma 45. If M =ad 7→pr N , then M 7→+
pr1 =ad N .

Proof. The same as the proof of Lemma 18, this time using Propositions 43

and 44. �

For the uniform CPS transform, we characterized the action of translation

on contexts as Proposition 19: CaJE[M ]KK will reduce to CJMKK ′, where K ′ is

some continuation that represents E. This case will be more complex, however:

In λneed , an evaluation context contains both bindings and work to be done.10

A continuation alone only captures the latter. Therefore, for call-by-need, we

will need to translate the bindings as well. Our approach is to split context

translation into a function B providing a CPS binding context and a function K

providing a continuation (in which the bindings from B are in scope). Putting

them together, we will be able to relate the original context transform CaL−M to

the split transform.

BL�M , []

BLEMM , BLEM

BLlets x = M inEM , νx. x :=1

λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)

in BLEM

BLleta x = E inF [x]M , νx.BLF M[BLEM]

BLletv x = V inEM , νx. x := CaJV K in BLEM

10Danvy and Zerny (Danvy & Zerny, 2013) make a similar observation about call-by-need
evaluation contexts; they then derive a call-by-need language that separates the two parts.
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KL�M : K , K

KLEMM : K , KLEM : λv. νx. x :=1

λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)

in v(x,K)

KLlets x = M inEM : K , KLEM : K

KLleta x = E inF [x]M : K , KLEM : λv. x := λ̄k′′. k′′v in (KLF M : K)v

KLletv x = V inEM : K , KLEM : K

The following proposition shows the relationship between Ca, B, and K.

Note that, like Proposition 19, it demonstrates the action of administrative

reductions: In this case, they serve to bring the continuation inward while

preserving the bindings in the context. We use T here to denote a value that is,

in particular, a thunk of the form λk.M .

Proposition 46. CaLEM[T ]K ≡ BLEM[T (KLEM : K)]

Proof. By induction on E. First, some shorthand will clarify:

let` x = V inP , νx. x :=1 λ̄k. V (λv. x := λ̄k. kv in kv) in P

Now:
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– For E ≡ �:

CaLEM[T ]K ≡ �[T ]K

, TK

, �[TK]

, BL�M[T (KL�M : K)]

≡ BLEM[T (KLEM : K)]

– For E ≡ E ′M :

CaLEM[T ]K ≡ CaLE ′MM[T ]K

, (λ̄k. CaLE ′M(λv. let` x = CaJMK in v(x, k)))[T ]K

≡ (λ̄k. CaLE ′[T ]M(λv. let` x = CaJMK in v(x, k)))K

7→ad CaLE ′[T ]M(λv. let` x = CaJMK in v(x,K))

7→?
ad BLE ′M[T (KLE ′M : λv. let` x = CaJMK in v(x,K))] (by I.H.)

, BLE ′MM[T (KLE ′MM : K)]

≡ BLEM[T (KLEM : K)]
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– For E ≡ lets x = M inE ′:

CaLEM[T ]K ≡ CaLlets x = M inE ′M[T ]K

, (λ̄k. let` x = CaJMK in CaLE ′Mk)[T ]K

≡ (λ̄k. let` x = CaJMK in CaLE ′[T ]Mk)K

7→ad let` x = CaJMK in CaLE ′[T ]MK

7→?
ad let` x = CaJMK inBLE ′M[T (KLE ′M : K)k] (by I.H.)

, BLlets x = M inE ′M[T (KLlets x = M inE ′M : K)]

≡ BLEM[T (KLEM : K)]

– For E ≡ leta x = E ′ inF [x]:

CaLEM[T ]K ≡ CaLleta x = E ′ inF [x]M[T ]K

≡ (λ̄k. νx. CaLF M[λ̄k′. CaLE ′M(λv. x := λ̄k′′. k′′v in k′v)]k)[T ]K

≡ (λ̄k. νx. CaLF M[λ̄k′. CaLE ′M[T ](λv. x := λ̄k′′. k′′v in k′v)]k)K

7→ad νx. CaLF M[λ̄k′. CaLE ′M[T ](λv. x := λ̄k′′. k′′v in k′v)]K

7→?
ad νx.BLF M[(λ̄k′. CaLE ′M[T ](λv. x := λ̄k′′. k′′v in (KLF M : k′)v))K] (by I.H.)

7→ad νx.BLF M[CaLE ′M[T ](λv. x := λ̄k′′. k′′v in (KLF M : K)v)]

7→?
ad νx.BLF M[BLE ′M[T (KLE ′M : λv. x := λ̄k′′. k′′v in (KLF M : K)v))]] (by I.H.)

, νx.BLleta x = E ′ inF [x]M[T (KLleta x = E ′ inF [x]M : K)]

≡ BLEM[T (KLEM : K)]
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– For E ≡ letv x = V inE ′:

CaLEM[T ]K ≡ CaLletv x = V inE ′M[T ]K

, (λ̄k. νx. x := CaJV K in CaLE ′Mk)[T ]K

≡ (λ̄k. νx. x := CaJV K in CaLE ′[T ]Mk)K

7→ad νx. x := CaJV K in CaLE ′[T ]MK

7→?
ad νx. x := CaJV K in BLE ′M[T (KLE ′M : K)] (by I.H.)

, BLletv x = V inE ′M[T (KLletv x = V inE ′M : K)]

≡ BLEM[T (KLEM : K)] �

Now we can show how a term in a context is transformed:

Corollary 47. CaJE[M ]KK 7→?
ad BLEM[CaJMK(KLEM : K)].

Proof. From Propositions 42 and 46. �

Not all λneed contexts affect the continuation. In particular, binding

contexts never alter the continuation at all. This is not surprising, since binding

contexts are precisely those that do not affect the flow of control.

Proposition 48. For any λaneed binding context B and λ:=1
cps continuation K,

KLBM : K ≡ K.

Proof. Trivial induction on B. Note that the clauses of K that do nothing but

recurse are precisely those for the parts of a binding context. �

Corollary 49. For any λaneed binding context B, λaneed term M , and λ:=1
cps

continuation K, CaJB[M ]KK 7→?
ad BLBM[CaJMKK].

Proof. Immediate from Corollary 47 and Proposition 48. �
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Now we turn to correctness. Our forward simulation follows the same

construction as that of the uniform CPS transform:

Definition 50. For a λaneed term M and λ:=1
cps term P , let M ∼ P when

CaJMK ret =ad P .

To prove that ∼ is a forward simulation, we go through the diagrams in

Eq. (4.6) once again. The first, third, and fourth are exactly as before:

Lemma 51. M ∼ CaJMK ret. �

Lemma 52. If M ∼ P and AM , then P ⇓. �

Lemma 53. If M ∼ P and sM , then P 6⇓. �

The second diagram can be proved using much the same strategy as

for Lemma 29, but the more complex source and target languages make the

calculations heavier. To review, the steps we take to prove the simulation are:

1. Show that, if M 7→N by a reduction in the empty context, then we have

CaJMKK 7→?=ad CaJNKK.

2. Allow the reduction to occur in any evaluation context, not only at the

top of the term.

3. Let the CPS term be any P =ad CaJKM .

Now we begin with step one immediately:

Lemma 54. If M 7→ N by a reduction in the empty context, then

CaJMKK 7→+
pr1 =ad CaJNKK.

Proof. This time we have four reduction rules, so there are four cases.
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– For a β-reduction:

CaJB[λx.M ]NKK

, (λ̄k. (CaJB[λx.M ]K(λv. let` x = CaJNK in v(x, k)))K

7→ad CaJB[λx.M ]K(λv. let` x = CaJNK in v(x,K))

7→?
ad BLBM[CaJλx.MK(λv. let` x = CaJNK in v(x,K))] (by Corollary 49)

, BLBM[(λ̄k. k(λ̄(x, k′). CaJMKk′))(λv. let` x = CaJNK in v(x,K))]

7→ad BLBM[(λv. let` x = CaJNK in v(x,K))(λ̄(x, k′). CaJMKk′)]

7→pr BLBM[let` x = CaJNK in(λ̄(x, k′). CaJMKk′)(x,K)]

7→ad BLBM[let` x = CaJNK in CaJMKK]

←[ad BLBM[(λ̄k. let` x = CaJNK in CaJMKk)K]

←[?ad CaLBM[let` x = CaJNK in CaJMK]K (by Corollary 49)

←[ad (λ̄k. CaLBM[let` x = CaJNK in CaJMK]k)K

, CaJB[lets x = N inM ]KK
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– For an act-reduction:

CaJlets x = M inE[x]KK

, (λ̄k. let` x = CaJMK in CaJE[x]K)K

7→ad let` x = CaJMK in CaJE[x]KK

7→?
ad let` x = CaJMK inBLEM[CaJxK(KLEM : K)] (by Corollary 47)

, let` x = CaJMK inBLEM[(λ̄k. xk)(KLEM : K)]

7→ad let` x = CaJMK inBLEM[x(KLEM : K)]

, νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v) in BLEM[x(KLEM : K)]

7→pr νx.BLEM[(λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v))(KLEM : K)]

← [?ad (λ̄k. νx. CaLEM[λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)])K (by Corollary 47)

, CaJleta x = M inE[x]KK

– For a deact-reduction:

CaJleta x = B[V ] inE[x]KK

, (λ̄k. νx. CaLEM[λ̄k′. CaJB[V ]K(λv. x := λ̄k′′. k′′v in k′v)])K

7→ad νx. CaLEM[λ̄k′. CaJB[V ]K(λv. x := λ̄k′′. k′′v in k′v)]K

7→?
ad νx.BLEM[(λ̄k′. CaJB[V ]K(λv. x := λ̄k′′. k′′v in k′v))(KLEM : K)] (by Proposition 46)

7→ad νx.BLEM[CaJB[V ]K(λv. x := λ̄k′′. k′′v in (KLEM : K)v)]

7→?
ad νx.BLEM[BLBM[CaJV K(λv. x := λ̄k′′. k′′v in (KLEM : K)v)]] (by Corollary 49)
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Letting λ̄k. kW , CaJV K:

, νx.BLEM[BLBM[(λ̄k. kW )(λv. x := λ̄k′′. k′′v in (KLEM : K)v)]]

7→ad νx.BLEM[BLBM[(λv. x := λ̄k′′. k′′v in (KLEM : K)v)W ]]

7→pr νx.BLEM[BLBM[x := λ̄k′′. k′′W in (KLEM : K)W ]]

→ad BLBM[νx.BLEM[x := λ̄k′′. k′′W in (KLEM : K)W ]]

→ad BLBM[νx. x := λ̄k′′. k′′W in BLEM[(KLEM : K)W ]]

←[ad BLBM[νx. x := λ̄k′′. k′′W in BLEM[(λ̄k. kW )(KLEM : K)]]

, BLBM[νx. x := CaJV K in BLEM[CaJV K(KLEM : K)]]

←[?ad BLBM[νx. x := CaJV K in CaJE[V ]KK] (by Corollary 47)

←[?ad CaJB[letv x = V inE[V ]]KK (by Corollary 49)

– For a deref -reduction:

CaJletv x = V inE[x]KK

, λ̄k. (νx. x := CaJV K in CaJE[x]Kk)K

7→ad νx. x := CaJV K in CaJE[x]KK

7→?
ad νx. x := CaJV K in BLEM[x(KLEM : K)] (by Corollary 47)

7→pr νx. x := CaJV K in BLEM[CaJV K(KLEM : K)]

←[?ad νx. x := CaJV K in CaJE[V ]KK (by Corollary 47)

←[ad (λ̄k. νx. x := CaJV K in CaJE[V ]Kk)K

, CaJletv x = V inE[V ]KK �

Now we proceed to the second step, which allows the reduction to take

place in a larger context:
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Proposition 55. If M 7→N , then CaJMKK 7→+
pr1 =ad CaJNKK.

Proof. As before, by definition of 7→, we have M ≡ E[M ′] and N ≡ E[N ′],

where M ′ 7→N ′ at top level.

CaJMKK ≡ CaJE[M ′]KK

7→?
ad BLEM[CaJM ′K(KLEM : K)] (by Corollary 47)

7→+
pr1 =ad CaLEM[CaJN ′K(KLEM : K)] (by Lemma 54)

←[?ad CaJE[N ′]KK (by Corollary 47)

≡ CaJNKK �

Finally, we use Lemma 45 to generalize, completing the third step:

Lemma 56. If M 7→N and M ∼ P , then there is Q such that P 7→+ Q and

N ∼ Q.

Proof. We have M ∼ P , so P =ad CaJKM ret. M 7→N , so CaJMK ret 7→+
pr1 =ad

CaJKN ret by Proposition 55. So P =ad 7→+
pr1 =ad CaJKN ret. Since 7→+

pr1 is short

for 7→?
ad 7→pr 7→?

ad , we have P =ad 7→pr=ad CaJKN ret. Then, by Lemma 45, we

have P 7→+Q =ad CaJKN ret for some Q. �

And now we have the correctness result for the CPS transform on

annotated terms:

Lemma 57. For any λaneed -term M :

1. M ⇓ iff CaJMK ret ⇓.

2. M ⇑ iff CaJMK ret ⇑.

3. M 6⇓ iff CaJMK ret 6⇓.

Proof. By Lemmas 51 to 53 and 56, using determinacy. �
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From λneed to λ:=1
cps

From these pieces, we assemble the correctness of the call-by-need CPS

transform:

Theorem 58. For any λneed -term M :

1. M ⇓ iff CJMK ret ⇓.

2. M ⇑ iff CJMK ret ⇑.

3. M 6⇓ iff CJMK ret 6⇓.

Proof. Immediate from Propositions 40 and 41 and Lemma 57. �

Naming and π-encoding

Since we have introduced some of the naming mechanism into the

“unnamed” CPS language λ:=1
cps , the simulation proof for the naming transform

needs to be more subtle. The readback function N−1 we defined before undoes

all assignments; now that the source CPS calculus is only mostly unnamed, this

is too blunt an instrument. Instead, we will use a relation that can selectively

eliminate sharing.

First, we need to restrict our terms so that we can reason about what

variables may be assigned to.

Definition 59. A λ:=1
cps term or value is localized if no variable appearing on

the left of an assignment subterm is bound by a λ.11

For example, the value λ(x, y). x := λk. ky in kx is not allowed, since

x is bound by the λ. Since free and ν-bound variables are not subject to

11We borrow the term localized from the π-calculus literature. The localized π-calculus is
a subcalculus that forbids processes from listening on channels they have received from other
processes. As in the π-calculus, this restriction can be made finer using a type system.
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substitution by β-reduction, localized terms are closed under reduction. In

particular, we can say with certainty which variables in a localized term may

ever be assigned to, no matter the context—only those assigned to by subterms

of the term.

Proposition 60. If K is localized, then CaJMKK is localized. In particular,

CaJMK ret is localized.

Proof. Easy induction on M . �

Now, keeping in mind that λ:=1
cps,vn is a subset of λ:=1

cps :

Definition 61. The relation ≺ is the restriction to λ:=1
cps × λ:=1

cps,vn of the reflexive,

transitive, and congruent closure of the following rules on localized terms:

M{λy+. N/x} ≺ νx. x := λy+. N inM

(if x not assigned in M)

M{λ1y+. N/x} ≺ νx. x :=1 λy
+. N inM

(if x is affine and not assigned in M or N)

M ≺ νx.M

(if x not free in M)

This suffices to prove the correctness of the naming transform:

Lemma 62. For any λ:=1
cps-term M and variable k:

1. M ⇓ iff N JMK ⇓.

2. M ⇑ iff N JMK ⇑.

3. M 6⇓ iff N JMK 6⇓.
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Proof. As before, we show that M ≺ N JMK and that ≺ is a backward

bisimulation that preserves outcomes in the backward direction. The result

follows as always from these observations and determinism.

Initial Condition That M ≺ N JMK can be found by an easy induction, as ≺

simply undoes the manipulations performed by N .

Simulation We need that M ≺ P and P 7→ Q imply that there is N with

M 7→?N and N ≺ Q.

If P 7→Q, then we have a reduction by β, deref , or deref 1. β-reductions

are unchanged by ≺. For deref , we have P ≡ E[f := λ(x+). P ′ in E ′[f(y+)]

and Q ≡ E[f := λ(x+)P ′ in E ′[(λ(x+). P ′)(y+)]]. Now consider how

M might relate to P : Applications of ≺ inside E, M , or E ′ would not

interfere with the deref -reduction (we can apply the rules in Q instead).

If f was substituted into the body of P , then we can simply take M = N .

Otherwise, we can contract M to find N ; either way, N ≺ Q.

The case for deref 1 (i.e.for an ephemeral assignment rather than a

permanent one) is similar, only to get N ≺ Q at the end, we need to

apply the third rule of ≺ to collect the ν as garbage.

Outcomes As with Corollary 35, A and s are invariant under ≺, and every

deref (or deref 1) creates a standard β-redex, so answers, stuck states, and

divergence are preserved. �

The augmentation of P for ephemeral assignment is easy to prove correct:

Lemma 63. For any λ:=1
cps,vn-term M , M ⇓ iff PJMK ⇓ret

Proof. To the proof of Lemma 36, we need only add consideration of ephemeral

assignment, which corresponds just as strongly as permanent assignment. �
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Finally we have our proof12of the correctness of the call-by-need π-

encoding:

Theorem 64. For any λneed -term M , M reduces to an answer iff EJMKret ⇓ret.

Proof. Immediate from Theorem 58 and Lemmas 62 and 63, since EJMKk ,

PJN JCJMKkKK. �

Abstract Machine
Just as we did with the uniform CPS transform, we can derive an abstract

machine from the call-by-need transform. First, we represent ephemeral

assignment in store-passing style: A thunk assigned ephemerally should be

erased from store when it is accessed. We use the symbol ⊥ to denote such a

“missing” value; the store will bind ⊥ to a variable that has been allocated (by a

ν) but currently has no value.

Using this representation, the functional correspondence gives us the

abstract machine in Fig. 41. There are different machine states for examining

a term, a thunk, a continuation, or a closure, and a halt state returning the

final value and store. The store is a map from locations to thunks, and the

environment maps local variables to locations in the store.

Notably, up to a few transition compressions, this abstract machine is

the same as one derived by Ager, Danvy, and Midtgaard (Ager et al., 2004)13,

except that when a suspended computation is retrieved from the environment, it

is removed. In this way, it resembles the original call-by-need abstract machine

by Sestoft (Sestoft, 1997). Without a letrec form in the source, however,

12This is not the first such proof (Brock & Ostheimer, 1995), though previous proofs did
not exploit the connection to CPS.

13Specifically, it resembles the first variant mentioned in section 3 of (Ager et al., 2004).
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Locations: `, . . .

Terms: M,N ::= x
∣∣ λx.M ∣∣MN

Thunks: t ::= KSuspM, `, ρ
∣∣ KMemof

∣∣ ⊥
Continuations: k ::= KRet

∣∣ KApplyM, ρ, k
∣∣ KUpdate`, k

Closures: f ::= KClosx,M, ρ

Stores: σ ::= ε
∣∣ σ[` = t]

Environments: ρ ::= ε
∣∣ ρ[x = `]

States: S ::= 〈M,σ, ρ, k〉M
∣∣ 〈t, σ, k〉T∣∣ 〈k, f, σ〉K ∣∣ 〈f, `, σ, k〉F∣∣ 〈f, σ〉H

M 7→〈M, ε, ε,KRet〉M

〈x, σ, ρ, k〉M 7→〈t, σ, k〉T
where ρ(x) ≡ ` and σ(`) ≡ t

〈λx.M, σ, ρ, k〉M 7→〈k,KClosx,M, ρ, σ〉K
〈MN,σ, ρ, k〉M 7→〈M,σ, ρ,KApplyN, ρ, k〉M

〈KSuspM, `, ρ, σ, k〉T 7→〈M,σ[` = ⊥], ρ,KUpdate`, k〉M
〈KMemof, σ, k〉T 7→〈k, f, σ〉K

〈KRet, f, σ〉K 7→〈f, σ〉H
〈KApplyM, ρ, k, f, σ〉K 7→〈f, `, σ[` = KSuspM, `, ρ], k〉F

where ` /∈ σ
〈KUpdate`, k, f, σ〉K 7→〈k, f, σ[` = KMemof ]〉K

〈KClosx,M, ρ, `, σ, k〉F 7→〈M,σ, ρ[x = `], k〉M

FIGURE 41. The abstract machine derived from C.
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this difference in behavior cannot be observed, since the symbol binding a

computation cannot appear free in the term being computed.

It is also quite similar to one derived recently by Danvy and

Zerny (Danvy & Zerny, 2013), which they call the lazy Krivine machine.

The mechanisms are superficially different in a few ways. For them, a thunk is

simply an unevaluated term, whereas we remember whether the thunk has been

evaluated before (and a few bookkeeping details). However, this is merely a

different choice for the division of responsibility: We hand control to the thunk,

and then the thunk determines whether to set up an update or simply return a

value. The lazy Krivine machine instead inspects the thunk when it is retrieved:

If it is a value, it is returned immediately, and otherwise it is evaluated. Hence

our thunks are tagged and theirs are not. The tags are largely an artifact of

the connection to the π-calculus translation—whether an argument has been

evaluated is evident from the structure of the process representing it. Another

difference is that the lazy Krivine machine lacks an environment, relying entirely

on the store, but again this is superficial.
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CHAPTER V

Conclusion

As we have seen, there are many tradeoffs in designing an intermediate

language. Some are clear-cut, such as how much low-level detail to expose—too

little, and the optimizer cannot make important decisions about safety and

efficiency; too much, and the IL becomes unworkable to implement or to reason

about. Other design points are subtle, such as the use of continuations in a

functional IL. Convenient approximations, such as functions as join points, may

be hazardous. We hope to have found the “sweet spot” by translating from

Sequent Core back to the established Core language.

The right extension to an intermediate language can enable singnificant

new optimizations, and translation offers a powerful method of deriving

the properties of the new extension with minimal effort while making the

correctness as clear as possible. Reasoning in one language while implementing

another lets us exploit the power of theory without overly conceding on matters

of engineering.

In particular, we were able to make improvements to a mature compiler.

Compared to the baseline of System F, FJ is a rather small change; other

transformations are barely affected; the new commuting conversions are valuable

in practice; and they make the transformation pipeline more robust.

Although we have presented FJ as a lazy language, everything in this

paper applies equally to a call-by-value language. All one needs to do is to

change the evaluation context, the notion of what is substitutable, and a few

typing rules.
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For example, this expression does not match the casefloat axiom:

f

case g x y ofA→ e1

B → e2


Nor do we want it to be: the function f is presumed lazy, so the case

expression—and hence the call to g, which may be expensive—may never

happen. If, however, we decide that f � is a valid evaluation context, then

we can reduce by casefloat to:

case g x y ofA→ f e1

B → f e2

The work on the π-calculus in Chapter IV suggests another extension

to GHC’s Core language. Since Core doesn’t have primitives expressing the

updates that cache call-by-need computation, the simplifier and other main

optimization passes don’t have any opportunity to move, combine, or eliminate

them. It is my hope that these operations would find synergies with other

passes in much the same way the new case-of-case transformation enables list

fusion to perform better.

More generally, the connection between CPS transforms, the π-calculus,

and graph reduction had been considered only in the call-by-value and call-

by-name worlds. We have seen that only a modest extension to the target

CPS calculus is required in order to put call-by-need on an equal footing.

Hopefully, we can find further uses for the constructive update calculus; for

instance, given the closeness to π-calculus channel operations, it is possible

that other π-calculus encodings can be reinterpreted as CPS transforms as well.

In another direction, since many type systems for the π-calculus have been
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proposed (Sangiorgi & Walker, 2003), it seems worth exploring whether we can

use the techniques outlined here to consider a typed CPS transform and a typed

encoding into the π-calculus.
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