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The purpose of this research is to determine the validity of the fission model of 

short orbital period binary star formation. The fission model describes the process in 

which a protostar with a rapid rotation splits into two bodies which then orbit around a 

common center of mass. The fission model is one of the three major models currently 

under investigation by the wider astrophysical community as possible sources for the 

formation of short orbital period binary star systems. While fission has not received 

much attention in the last two decades due to results found in large scale numerical 

simulations, the advances in computational power now available allow much more 

complex simulations that show promise in solving this problem. Rather than looking at 

single stars, we are simulating the evolution of a rotating protostar with a large 

circumstellar disk that is approaching a reverse Roche limit, where the mass of the disk 

starts to pull the protostar apart. By including this large disk in our calculations, we find 

that the prospects for fission are greatly enhanced. We use the computer code Chymera 

in ACISS and Talapas, the University of Oregon high-performance computing clusters 

in our study to simulate the fluid dynamics of this system. Unsurprisingly, our nonlinear 

simulations of solitary stars show no fission occurring, but out linear simulations with 

large circumstellar disks show greatly decreased growth rates, allowing for the 

possibility for fission as these instabilities build. Our nonlinear simulations of these 

systems are inconclusive, but promising. 
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Definitions 

 Throughout this paper, I will use many terms that are not common in normal 

conversation. For this reason, I included several definitions that might prove useful.  

Star: 
For the purposes of this paper, a star is a stellar body capable of initiating nuclear fusion 
in its core.  
 
Interstellar Clouds: 
Interstellar clouds refer to regions of accumulated gas and dust, which are the initial 
stage of star formation.1  
 
Protostar: 
 A protostar is the pre-nuclear burning object, which often results in a star.2 

Binary Star: 
A binary star is a system of two stars in orbit about a common center of mass.3  

Celestial Body: 
Any stellar object, from a grain of dust to a galaxy, outside of the Earth’s atmosphere is 
referred to as a Celestial Body. This is often shortened to “body”. 
 
Circumstellar Disk: 
A circumstellar disk is a large disk of gas and dusk that forms around a protostar during 
its initial collapse stage. This material is what eventually forms planets and other stellar 
objects in orbit around the star. A lot of this material is also blown away by stellar 
radiation. 
 
Period: 
When discussing binary stars, the period of the system refers to the time it takes for the 
star to make one complete rotation about their center of mass.  
 
Short Period Binary Star: 
A binary star system with a separation of less than a few Solar Radii, or alternatively 
with an orbit that takes less the a few days to traverse. 
 
 
 
                                                 
1 Carroll, Bradley W., and Dale A. Ostlie. An introduction to modern astrophysics. Harlow: Pearson, 
2014, P.406. 
2 Carroll, Bradley W., and Dale A. Ostlie. An introduction to modern astrophysics. Harlow: Pearson, 
2014, P.412. 
3 Carroll, Bradley W., and Dale A. Ostlie. An introduction to modern astrophysics. Harlow: Pearson, 
2014, P.108. 
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The Solar Unit: 
A solar unit is often used when talking about the properties of stars, and other stellar 
objects. They are simply a comparison of the properties of an object to those of the sun. 
Thus, an object of three solar masses (3𝑀𝑀⊙) is simply three times the mass of the sun. 
Similarly, an object with one half solar luminosities (1

2
𝐿𝐿⊙) has one half the luminosity 

of the sun. 
 
The Light Unit: 
A light unit is a unit of distance measured by the distance traveled by light in a vacuum 
in a given period of time. Thus, a lightyear is the distance light travels in a year, while a 
light second is the distance traveled in one second. One light year is 9.4607 × 1012 km. 
 
The Astronomical Unit (AU): 
The astronomical unit is often used to indicate distances in systems of interacting stellar 
bodies. It is simply referring to the average distance separating the sun and the earth. 
Thus, an object orbiting 30 AUs from a common center of mass is 30 times the distance 
of separation between the sun to the earth. For reference, Pluto’s average distance from 
the sun is 39.5 AU, or 0.0006226 light years. 
 
Conservation of Angular Momentum: 
The conservation of Angular Momentum is a fundamental law of physics, and states 
that unless acted on by a torque, the angular momentum of a system must remain 
constant.  
 
Isothermal: 
An isothermal process is a changing system, in which the temperature remains constant. 
(i.e. if an interstellar cloud shrinks, but stays at the same temperature, it is an isothermal 
collapse or contraction.) 
 
Adiabatic: 
An adiabatic process is one that occurs at a constant entropy (i.e. if an interstellar cloud 
shrinks, but retains all of the work from compression, it is adiabatic.) 
 
Kelvin: 
The Kelvin temperature scale is closely related to the Celsius scale but is defined so that 
zero degrees Kelvin is the absolute coldest any object can be. 
 
Equilibrium: 
In thermodynamics and chemistry, equilibrium refers to the state at which all opposing 
forces and influences inside of a system are balanced. For example, if two objects of 
different temperature were brought into contact, the equilibrium temperature would be 
reached when there was no longer any flow of heat between them and were thus at the 
same temperature somewhere between the two original temperatures. 
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Tidal Forces: 
Tidal forces are differential forces. For example, differing strength of the gravitational 
attraction between two closely interacting celestial bodies leads to tidal forces. This can 
be seen in the tides in Earth’s oceans, which are caused by the tidal interactions between 
the Earth and the Moon. 
 
Bifurcation: 
Bifurcation is the splitting of a main body into two parts.  
 
The H-R Diagram: 
A type of graph often used in astrophysics to display the properties of stars, and other 
stellar objects. The H-R diagram is usually displayed with the absolute magnitude 
(brightness) on the vertical axis (with brightness increasing upward), and the spectral 
type (types O, B, A, F, G, K and M) on the bottom (with temperature increasing to the 
left). Spectral type in this instance refers to the Harvard classification scheme, which 
determines the temperature of a star based on its hydrogen spectral lines. Often, the 
luminosity is used instead of absolute magnitude, but they refer to the same thing, and 
spectral type is almost always shown alongside the surface temperature of the star in 
Kelvin. This is because, while spectral type is relatively easy to determine, it is not very 
useful in most calculations.  
 
Model: 
A representation of an idea, an object, a process or a system that is used to describe and 
explain phenomena that cannot be experienced directly. 
 
Reverse Roche Limit (RRL): 
The Roche limit is where the tidal forces acting on an orbiting body become so great 
that it is ripped apart. This is most commonly seen in studying the formation of Saturn’s 
rings. The reverse Roche limit is where a ring orbiting a body is so massive that the 
central body is torn apart. 



 
 

 
 

Chapter 1: An Overview of Binary Star Formation Models and their 

History 

Part 1: The Importance of Understanding Binary Star Formation 

To any astrophysicist, it is enough to look at the problems in our current model 

of binary star formation and say that they need to be solved. However, this does not 

explain why it should be important to other disciplines. A historian, or political science 

major might look at this problem and see nothing more than an academic exercise. 

However, this strikes at the core of why people study science at all. During Einstein’s 

time, it was generally thought that all of science had been discovered, with only minor 

inconsistencies to be ironed out. One such inconsistency was a slight deviation between 

the model of Mercury’s orbit based on Newton’s laws, and the observed data. This 

inconstancy is what drove Einstein to postulate his own theory of special and general 

relativity, which not only opened up an entire new field of study in Physics but is also 

critical in many modern technologies including the Global Positioning System (GPS). 

Without taking the effects of special and general relativity into account, the finest 

resolution we could achieve with these satellites would be in the order of kilometers, 

rather than meters.4 In part because of this discovery, as well as the breakthroughs in 

quantum mechanics, the scientific community’s conception of our understanding of the 

universe has fundamentally shifted. The scientists of the late 1800s viewed the tapestry 

of science as an almost complete work of art, with only small corrections to look 

forward to. Now, we view our understanding as a collection of small bubbles slowly 

                                                 
4 Ashby, Neil. "Relativity in the Global Positioning System." Living Reviews in Relativity 6, no. 1 (2003). 
doi:10.12942/lrr-2003-1. 
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expanding outward with each new correction to our model, and sometimes connecting 

in unexpected ways. While it is much more likely that the case I will be looking at will 

not have such a profound impact on the field, it is crucial to look at all such 

inconstancies we find, because we never can tell which requires a simple correction, 

and which will fundamentally change the way we view the universe.  

Part 2: Basic Star Formation and Stellar Structure 

While the specifics of short period binary star formation are currently unknown, 

the models used to predict the formation of non-rotating stars is very well understood 

and is very important to understand if one hopes to understand the mechanics of more 

complex systems. The most widely accepted theory on the subject is known as the 

nebular hypothesis, proposed in 1755 by Immanuel Kant.5 This theory postulates that 

all stars form from interstellar clouds which have exceeded what is called the Jeans 

Mass and Jeans Radius, or have been subject to an external pressure such that the 

critical mass needed to induce gravitational collapse is reduced to what is called the 

Bonnor-Ebert mass. The equations for the Jeans Mass, Bonnor-Ebert Mass and Jeans 

Radius can be seen in equation 1 and 2. Once the process of gravitational collapse has 

begun, the cloud will simply follow the free-fall timescale. The equation for free-fall of 

an interstellar cloud can be seen in equation 2. Since this timescale does not depend on 

the radius of the cloud, so long as the initial density of the cloud is uniform, the density 

will increase at the same rate throughout the body. The moment the mass in a cloud 

exceeds the Jeans Mass that a cloud qualifies as a protostar, but the effect does not 

                                                 
5 Carroll, Bradley W., and Dale A. Ostlie. An introduction to modern astrophysics. Harlow: Pearson, 
2014, P. 405. 
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become visible until collisions between individual particles increases the internal 

pressure and temperature of the body enough to start to slow the collapse. This heating 

and compression at the core of the protostar is what eventually leads to high enough 

temperatures to initiate hydrogen fusion, thus fitting our definition of a star. The 

evolutionary track of an evolving protostar on the H-R Diagram can be seen in figure 1.  

             𝑀𝑀𝐽𝐽 ≅  � 5𝑘𝑘𝑘𝑘
𝐺𝐺𝐺𝐺𝑚𝑚ℎ

�
3/2

� 3
4𝜋𝜋𝜌𝜌0

�
1/2

                                                                                 (1) 

              𝑅𝑅𝐽𝐽  ≅  � 15𝑘𝑘𝑘𝑘
4𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝐻𝐻𝜌𝜌0

�
1/2

                                                                                         (2) 

 

              𝑀𝑀𝐵𝐵𝐵𝐵 =  𝑐𝑐𝐵𝐵𝐵𝐵𝑣𝑣𝑇𝑇
4

𝑃𝑃𝑜𝑜
1/2𝐺𝐺3/2

                                                                                                   (3) 

 

               𝑣𝑣𝑘𝑘 =  �𝑘𝑘𝑘𝑘/𝜇𝜇𝑚𝑚ℎ                                                                                                (4) 
 

where 𝑀𝑀𝐽𝐽 is the Jeans Mass, 𝑅𝑅𝐽𝐽 is the Jeans Radius, 𝑀𝑀𝐵𝐵𝐵𝐵 is the Bonnor-Ebert 

Mass, and 𝑣𝑣𝑘𝑘 is the isothermal sound speed. The constants seen in these equations are; 

𝑘𝑘, the Boltzmann constant, T, the temperature in kelvin, G, the gravitational constant, 𝜇𝜇, 

the mean molecular weight, 𝑚𝑚𝐻𝐻, molecular weight of Hydrogen, 𝜌𝜌0, the internal mass 

density of the cloud, 𝑃𝑃0, the eternal compression force, and 𝑐𝑐𝐵𝐵𝐵𝐵, a dimensionless 

constant approximately equal to 1.18. 

                   𝑡𝑡𝑓𝑓𝑓𝑓 =  �3𝜋𝜋
32

1
𝐺𝐺𝜌𝜌0

�
1/2

                                                                                           (5) 
 

where 𝑡𝑡𝑓𝑓𝑓𝑓 is the Free-Fall Timescale, and G and 𝜌𝜌0 are the same variables as 

previously mentioned. 
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Figure 1: Pre-Main Sequence Stellar Evolution 

In this H-R diagram we see that as the interstellar cloud contracts, its surface 

temperature and luminosity also increase. However, as radiation from nuclear fusion in 

the core begins to dominate the energy output, the luminosity will decrease. This will 

continue until the energy rate being generated in the core is equal to the energy loss at 

the surface. 

While the models used to predict the birth of stars is very well understood and 

accepted by the vast majority of the astrophysical community, we still have very little 

observational data of stars in this stage of their development. By using the free-fall 

formula, we are able to find a rough timescale of pre-stellar evolution of about 10,000 

to 100,000 years. This may seem like a lot of time, but when looking at stellar objects 

that can last billions of years or even trillions of years, it is unsurprising that we have 

very little observational data showing the very early stages of their evolution. This is 

not even taking into consideration how dim these objects are in comparison to other 

stellar bodies. However, we are able to tell a lot about how these systems should evolve 
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by the end results. It has been widely accepted for a long time that the majority of stars 

in the Milky Way are part of binary star systems. In fact, in our stellar neighborhood, 

about 60 percent of all stars are part of multi-star systems.6 Since there is no reason to 

believe that the Milky Way is unique in this phenomenon, we must therefore conclude 

that a statistically significant number of stars in the universe are part of binary systems. 

What is perhaps more significant in this paper is that the ages of these binary systems 

are consistent with models assuming that the stars formed together, rather than forming 

separately, and becoming locked together later in life. This tells us that it is imperative 

to our model of stellar formation to include some capability to form these multi-star 

systems.  

The earliest such model was envisioned by Pierre-Simon Laplace in 1796.7 The 

model was initially very crude but was later refined by Kelvin and Tait in 1883. This 

model postulates that as a large, slowly spinning, gas cloud began to collapse it would 

start to spin faster due to the effects of the conservation of angular momentum. Given 

that these clouds could be anywhere from one to ten lightyears across when first 

beginning to form and end up as stars only a few light seconds across, even very slowly 

spinning clouds can end up as very quickly spinning objects. This model depended on 

the fact that many of these would result in stars spinning far too rapidly to be stable. As 

the protostar continued to collapse, the forces exerted on the collapsing sphere would 

cause the object to undergo what is called bifurcation, which can be seen in figure 4. As 

the object reached different points of instability it would continue to bifurcate, until it 
                                                 
6 Schulz, Norbert S. From dust to stars: studies of the formation and early evolution of stars. Berlin: 
Springer, 2007, P. 141. 
7 Kondo, Yoji, Ronald Sylvester. Polidan, and Roberto SisterÓ. Evolutionary processes in interacting 
binary stars: proceedings of the 151st Symposium of the International Astronomical Union, held in 
Cordoba, Argentina, August 5-9, 1991. Dordrecht: Kluwer academic publ., 1992. 
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reached a point where it would fission into two objects orbiting each other at a short 

period. This model was also used to explain the formation of an excretion disk, and 

planets.8 This was a very widely accepted theory for a very long time, but unfortunately 

could not be proven because of a lack of adequate computing capability. However, in 

the 1990’s, a team was able to accurately model the theory, and found that instead of 

further bifurcation, the protostar developed two bulbs, which flung off low mass, high 

velocity particles. This loss of mass was enough to deplete the angular momentum of 

the system to such a point that the protostar could re-stabilize. It is now unclear exactly 

how these systems are able to form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
8 Carroll, Bradley W., and Dale A. Ostlie. An introduction to modern astrophysics. Harlow: Pearson, 
2014, P. 425. 
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Figure 2: Simple Bifurcation of a Rotating Sphere 

This figure shows the process of bifurcation. According to Laplace, Kelvin and Tait, 

this should eventually lead to fission of the object. 

Part 3: The Three Models 

When considering the formation of binary star systems, we see three major 

competing theories. These are fission, fragmentation and capture. The fission process is 

the model proposed by Laplace described above. Fragmentation has many of the same 

properties of fission but is described as splitting much earlier in the protostar’s 

development. Thus, rather than collapsing into one quickly rotating sphere, the cloud 

will form two separate nodes, orbiting about each other with a very long period. The 

last model is that of capture. This idea suggests that stars which formed close together 
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can become locked, if effected by a third body (i.e. another stellar object). Alternatively, 

tidal forces between the stars, or the stars accretion disc could also be used to lose 

enough energy to become locked. These processes can be seen in figure 5. These 

theories all have at least some data supporting their claims. However, the true model is 

most likely is a combination of all of these effects. However, for the purposes of this 

project I will be postulating that all short period binaries are formed through fission, 

rather than the other two methods. However, it is important to understand the strengths 

and weaknesses of all three of these models, so I will be going over research done on all 

three.  

Part 4: The Capture Model 

Capture was first proposed as a serious contender in binary star models by 

Stoney in 1867, and has a large variety in its specifics, which has allowed it to retain a 

lot of support. The process of capture is described as,  

 “Two independently formed stars [captured] into orbit if (1) a third body is 
 present to take away the excess energy, if (2) the encounter is close enough 
 so that tidal dissipation preforms the same function, or if (3) a dissipative 
 medium, such as residual gas in a young cluster, is present.”9 
 
While the capture model has historically received a lot of attention, it is unlikely that 

these processes account for a large percentage of the total binary systems. This is 

because the bodies involved in these models must be very close to one another. The 

equations modeling which captures are possible can be seen here.  

 𝑅𝑅𝑑𝑑~ 𝐺𝐺𝐺𝐺
𝑣𝑣2

                                                                                                                (6) 

                                                 
9 Kondo, Yoji, Ronald Sylvester. Polidan, and Roberto SisterÓ. Evolutionary processes in interacting 
binary stars: proceedings of the 151st Symposium of the International Astronomical Union, held in 
Cordoba, Argentina, August 5-9, 1991. Dordrecht: Kluwer academic publ., 1992, P.11. 
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 𝑅𝑅𝑑𝑑~(2 𝑜𝑜𝑜𝑜 3)𝑅𝑅𝑠𝑠                                                                                                   (7) 

 Where 𝑅𝑅𝑑𝑑  the radius of dynamic capture, G is the gravitational constant, v is the 

velocity dispersion, 𝑅𝑅𝑡𝑡  is the radius of the sphere being tidally captured, and  𝑅𝑅𝑠𝑠  is the 

radius of the stellar body. Specifically, the gravitational constant is,  

𝐺𝐺 = 6.67 × 10−11 𝑁𝑁 ∙ 𝑚𝑚2  ∙ 𝑘𝑘𝑘𝑘−2 Note that the radius of dynamic capture is usually 

around 1,000 A.U. and the radius of tidal capture is usually less then 1 A.U. These close 

encounters are relatively uncommon even in clusters of new stars but is almost 

impossible for solitary stars. For instance, the sun’s closest neighbor is the Alpha 

Centauri system (a three-star system), which is 4.37 lightyears from us. This is 

276,363.5 A.U. 

  Because of these restraints, it is very unlikely that a solitary star would ever be 

close enough to another star for any form of capture to occur. Advocates of the model 

instead propose that binaries primarily form in stellar clusters, where the large number 

of stars would lend itself to many of these interactions occurring. This would also 

explain why the stars were the same approximate age, since stars in stellar clusters all 

form at about the same time. However, with the recent discovery of planetary systems 

orbiting multi-star systems, it is becoming increasingly unlikely that capture makes up 

any significant percentage of binary star formation. 
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Figure 3: Three Body ‘dynamic capture’ 
Notice that the arrow showing the velocity of the third interacting body becomes longer 

after the interaction. This is to indicate that it has gained energy from the exchange, 

thus allowing the other two bodies to remain in the zone of gravitational interaction. 

 

 

 
Figure 4: Two Body ‘tidal capture’ 

Notice that, in this system, rather than losing energy to a third body, the orbital velocity 

is lost to tidal forces. 
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Figure 5: Two Body ‘star-disk capture’ 

In star-disk capture, the tidal forces of the stellar disk of a star will covert enough 

energy in this system to allow for capture to occur.  

Part 5: The Fragmentation Model 

 The fragmentation model is currently the most widely accepted theory of binary 

star formation, with work done by the likes of Boss, Miyama, Tohline and Burket, just 

name a few.10 While conceptually similar to the fission model, the idea of fragmentation 

can be much more responsive to changes in initial conditions. Because of this there are 

several models for how fragmentation can occur. The simplest of these models is the 

prompted initial fragmentation model, which has been extensively researched by 

Pringle in 1989.11 In this model, the initial cloud is made up of several Jeans Masses in 

an unstable state. Simulations of this model have been very successful in showing long 

period binaries but have been criticized for their unreasonable starting conditions. The 

second model is that of fragmentation during collapse, which has been advocated by 

Boss in a number of papers.12 This model starts with a mild Jeans instability, such has a 

                                                 
10 Clarke, Cathie. "Theories for binary star formation." Astrophysics and Space Science 223, no. 1-2 
(1995): 76. doi:10.1007/bf00989156. 
11 Pringle, J. E. "On the Formation of Binary Stars ." Monthly Notices of the Royal Astronomical 
Society 239 (July 18, 1989): 361-70. doi:10.1093/mnras/239.2.361. 
12 Collapse and Fragmentation of Rotating, Adiabatic Clouds 
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slight difference in pressure across the initial cloud. As the cloud collapses, it will slow 

due to centrifugal forces because of its increased angular velocity. It is postulated that at 

this point the cloud is able to collapse into two separate protostars, which orbit each 

other at this point. This model does have its problems, as it relies on isothermal heat 

exchange, which only hold true until the density of the protostar reaches about ∼10-14 g 

cm-3. 13  After this point the gas cannot cool quickly enough, and thus becomes 

adiabatic, which enhances the effects of pressure gradients. This will generally occur at 

a distance of several A.U. and is why many believe that short period binary star 

formation is impossible to simulate with this model. The last model commonly 

associated with fragmentation is fragmentation after collapse. This model has mostly 

been supported by Adams and Shu in papers published in the 1990’s.14 In the model, 

they looked at the possibility of fragmentation in a system which had already become 

adiabatic but had then heated enough for the hydrogen atoms in the cloud to dissociate 

(or have broken all chemical bonds in the cloud and separated all the atoms). This 

would temporarily cause the cloud to revert to an isothermal system, which could 

theoretically fragment. Unfortunately, there has been very little evidence to support this 

happening.15 

Part 6: The Fission Model  

 The idea of the fission model has been around since the late 1700’s and has 

survived relatively unchanged since that time. This is because of its relatively simple 
                                                 
13 Clarke, Cathie. "Theories for binary star formation." Astrophysics and Space 
Science 223, no. 1-2 (1995): 78. doi:10.1007/bf00989156. 
14 Sahade, J., G. E. McCluskey, and Y. Kondo, eds. The Realm of Interacting Binary Stars. 
Vol. 177. Springer Netherlands, 1993, P.377. 
15 Clarke, Cathie. "Theories for binary star formation." Astrophysics and Space 
Science 223, no. 1-2 (1995): 80. doi:10.1007/bf00989156. 
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premise. The entire idea is centered around the behavior of incompressible fluid, which 

is well known to exhibit this behavior on smaller scales. The theory states that once the 

protostar has shifted from a collapsing cloud to a structure supported by internal 

pressure, the rotational instability caused by its fast rotation would cause the object to 

quickly bifurcate, and eventually fission. This idea is particularly important in the 

creation of short period binaries, with periods of less than a few days.  

 

Figure 6: Log Scale Period Distribution of Binary Systems 

In this plot we see the distribution of binary periods in the 2017 version of the General 

Catalog of Variable Stars (GCVS). Anything under a 101 = 10 day period is 

considered a short period binary. 

The other models described above have a lot of trouble simulating the formation 

of these systems, and as we can see in the figure above, these make up a large portion of 
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the total binary population. For many, the fission model offers the only reasonable 

answer to how these systems form.  

  However, despite this relatively simple premise there is little evidence in 

simulations that this can actually occur. In the 1990’s a comprehensive simulation was 

designed to test the model but failed to produce the desired effect. Instead of cleanly 

separating into two objects orbiting a common center of mass, the star warped into a 

‘peanut shape’ and flung small particles of matter from the lobes at high velocities. An 

illustration of this effect can be seen in figure 7 (P.27). Even though the particles had a 

low overall mass, the high velocity was able to give the particles a large radius, thus 

effectively lowering the angular velocity of the star until it was able to stabilize. Despite 

these failures, the model still has support. As stated by Cathie Clarke in Theories for 

Binary Star Formation, 

  “Fission nevertheless continues to have its champions, less on theoretical 
 grounds, then on the grounds that it would, in principle, allow for the 
 formation of binaries at separations of a few stellar radii, which has long been 
 considered difficult by other mechanisms” (P.80-81)16 
 
It is my hope that my own simulation will be able to bridge the gap between simulation, 

and reality. 

                                                 
16 Clarke, Cathie. "Theories for binary star formation." Astrophysics and Space Science 223, no. 1-2 
(1995): 80-81. doi:10.1007/bf00989156. 
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Figure 7: The Fission Model 

This illustration is a somewhat exaggerated view of this result. In most simulations, the 

arms of the protostar are not so extensive, and the ring (if it forms at all) is not so close 

or as substantial. 
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Chapter 2: A New Approach to the Fission Model 

Part 1: The Addition of a Protoplanetary Disk 

As previously stated, the fission model has long been considered by most to be 

the least reliable of the three major models of binary star formation. While in principle, 

the model could account for binary systems which are difficult to explain in any other 

way, the existing simulations of these systems have shown very little evidence of 

adhering to this behavior. The reason for this is rather simple. The early versions of the 

fission model relied on a rotating star to act like a similarly rotating incompressible 

fluid. Many early astrophysicists working on this problem based their conclusions on 

spinning water drops, which do behave in the manner described in the fission model. 

However, stars do not. This makes sense, as liquid water and hydrogen plasma have 

very different properties. When rotated, water is not as free to warp, as it is essentially 

incompressible, whereas plasma is highly compressible. Thus, when rotated, the various 

instabilities in the stellar structure cause the star to fling small amounts of material away 

from the main body, thus decreasing its overall angular momentum and slowing the star 

enough for it to stabilize. When looked at in this light, it is obvious that this model will 

never work unless there is some other mechanism in place to decrease the effect of 

these linear instabilities and allow for the slower acting nonlinear instabilities to act on 

the system. While this may seem like a difficult thing to accomplish, there happens to 

be a mechanism around most new stars that fits our needs perfectly.  

During the formation of a star, not all of the gas and dust will go into making the 

star. A portion of the collapsing material will be ejected from the system, sending 

shockwaves that can trigger other stars to form. More collapsing material will form 
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what is called an accretion disk or protoplanetary disk. It is the material in this disk that 

eventually forms the planets, comets and asteroids that make up a stellar system. It is 

also these disks that will hopefully hold the key to simulating a functioning fission 

simulation. In astrophysics, there is a term called the Roche limit, which is the closest 

distance a satellite can approach a planet before being ripped apart by tidal forces. It is 

this phenomenon that is responsible for some of the rings surrounding many of the gas 

giants in our own solar system. For rigid satellites, the approximate form of the equation 

to find this radius is,17 

𝑑𝑑 = 2.44 𝑅𝑅𝐺𝐺 �
𝜌𝜌𝑀𝑀
𝜌𝜌𝑚𝑚
�
1/3

= 2.44 𝑅𝑅𝑚𝑚 �
𝐺𝐺𝑀𝑀
𝐺𝐺𝑚𝑚
�
1/3

                                                         (8) 

In this equation, ‘d’ is the Roche limit, RM is the radius of the main body, 𝜌𝜌𝐺𝐺 𝑎𝑎𝑎𝑎𝑑𝑑 𝜌𝜌𝑚𝑚 

are the density of the main body and the satellite respectively, and M is the mass of each 

body. This is a useful relation to know when observing orbiting bodies but is not useful 

for this particular problem. What is interesting to look at however is the reverse Roche 

limit. This is where an orbiting disk becomes massive enough to overpower the self-

gravitation of the main body and rip it apart. This particular result would also be less 

than ideal for our simulation, but with that being said, a system that is approaching that 

limit could work. This countering force to the self-gravitation of the main body could 

prove the key to allowing the subtler nonlinear instabilities to act on the rotating fluid. 

This will hopefully allow for the clean bifurcation we need for binary star formation. 

                                                 
17 Biegert, Mark. "Roche Limit Examples." Math Encounters Blog. March 1, 2016. 
http://mathscinotes.com/2016/03/roche-limit-examples/. 
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Part 2: Equilibrium Models 

In these simulations, we will be looking at rotating polytropic stars surrounded 

by inviscid polytropic disks. That is to say, both the star and the disk will not have heat 

transfer throughout their evolution, and the disk will have negligible viscosity. We will 

also be looking at stars with both uniform and differential rotation. Differential rotation 

is when parts of a sphere spin with different angular velocities and can be modeled as 

having the angular momentum distribution of a uniformly rotating incompressible 

sphere. For our simulation, the specific angular momentum distribution is given by, 

ℎ𝐺𝐺(𝑚𝑚𝜛𝜛) = 2.5 − 2.5(1 −𝑚𝑚𝜛𝜛)2/3                                                                    (9) 

where, 

𝑚𝑚𝜛𝜛 =
4𝜋𝜋 ∫ 𝜛𝜛𝑑𝑑𝜛𝜛∫ 𝜌𝜌(𝑟𝑟)𝑑𝑑𝑑𝑑𝑍𝑍(𝜛𝜛)

0
𝜛𝜛
0

𝐺𝐺∗
                                                                              (10) 

Here, 𝑚𝑚𝜛𝜛 is the cylindrical mass fraction, 𝜌𝜌(𝑜𝑜) is the mass density and 𝑍𝑍(𝜛𝜛) is 

the height of a star at cylindrical radius 𝜛𝜛. As stated before, the disk is not expected to 

rotate with a large velocity but can be assumed to be the power law angular velocity 

distributions. 

Ω(𝜛𝜛) = Ω0 �
𝜛𝜛
𝑟𝑟0
�
−𝑞𝑞

                                                                                            (11) 

In this equation, Ω0 is some constant and 𝑜𝑜0 is the location of maximum density 

in the disk plane. Using these assumptions, that being the inviscid, axisymmetric, 

steady-state mass and momentum conservation equations are, 

∇ ∙ (𝜌𝜌 �⃑�𝑣) = 0                                                                                                     (12) 

and, 

𝜌𝜌 �⃑�𝑣 ∙ ∇ �⃑�𝑣 +∇𝑃𝑃 + 𝜌𝜌∇Φ𝑔𝑔 = 0                                                                              (13) 
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where, �⃑�𝑣 is the fluid velocity, ∇��⃗ 𝑃𝑃 is the pressure gradient and ∇��⃗ Φ𝑔𝑔 is the 

gravitational potential gradient. We do not use the energy conservation equation in this 

case because we are describing the star as a polytropic fluid, where the Equation-of-

state (EOS) relate the pressure and density by, 

𝑃𝑃 = 𝐾𝐾𝜌𝜌1+
1
𝑛𝑛                                                                                                        (14) 

In this equation, 𝐾𝐾 is the polytropic constant and n is the polytropic index. To 

find the gravitational potential, we find solutions to the Poisson equation, 

∇2Φ𝑔𝑔 = 4𝜋𝜋𝐺𝐺𝜌𝜌                                                                                                   (15) 

The equilibrium equations are solved as follows. The conservation equations are 

first integrated once to find the star/disk equilibrium equation, 

𝐶𝐶 = (𝑎𝑎 − 1)𝐾𝐾𝜌𝜌1/𝑛𝑛 + Φ𝑔𝑔 + Φ𝑐𝑐                                                                        (16) 

where,  

Φ𝑐𝑐 = −∫ Ω2(𝜛𝜛)𝜛𝜛𝑑𝑑𝜛𝜛𝜛𝜛                                                                                    (17) 

In these equations, 𝐶𝐶 is the integration constant, and Φ𝑐𝑐 is the centrifugal 

potential. We define central star families by their polytropic index and their rotational 

structure, while family members are defined by the ratio of the stars equatorial radius, 

𝑜𝑜𝑒𝑒 , to their polar radius, 𝑜𝑜𝑝𝑝. Disk families are defined by their polytropic index and their 

exponents, q. If we look back at equation 11, we see q is used in determining the 

angular velocity distribution of a disk. Disk family members are grouped by the ratio of 

the inner, 𝑜𝑜−, and outer radius, 𝑜𝑜+, of the disk. Star disk families are grouped by the ratio 

of the ratio of the maximum disk density, 𝜌𝜌0, and the density of the stars core, 𝜌𝜌𝑐𝑐 . This 

value is defined as, 𝜂𝜂 = 𝜌𝜌0/𝜌𝜌𝑐𝑐. Star disk families are also defined by the ratio of the 
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equatorial radius of the star to the inner radius of the disk, 𝑜𝑜𝑒𝑒/𝑜𝑜−. We use the value 𝜂𝜂 to 

control the ratio of the stellar mass to the disk mass, 𝑀𝑀 = 𝑀𝑀∗/𝑀𝑀𝑑𝑑, for a given ratio 

𝑜𝑜−/𝑜𝑜+. By specifying a value for 𝜂𝜂, we allow the star and disk to lie on different 

adiabats, which are the curves on a graph of pressure and temperature which show the 

adiabatic heating of cooling of gases. These solutions are then normalized so, the 

gravitational constant is equal to one, 𝐺𝐺 = 1, the total mass in the system is equal to 

one, 𝑀𝑀∗ + 𝑀𝑀𝑑𝑑 = 1 and the polytropic index of the star is equal to one, 𝐾𝐾∗ = 1. The 

polytropic index of the disk will not be equal to one, 𝐾𝐾𝑑𝑑 ≠ 1. We use the self-consistent 

field algorithm to solve equation [16] (Hachisu 1986). 

For our equilibrium code, we first guess the density distributions for the star and 

the disk, 𝜌𝜌∗ and 𝜌𝜌𝑑𝑑. We use these guesses to calculate the integration constants, 𝐶𝐶∗ and 

𝐶𝐶𝑑𝑑 for the star and disk respectively, as well as the angular momentum normalizations 

for the star and disk, h0,∗ and h0,𝑑𝑑. In the case of the star, we evaluate equation 10 at the 

polar radius, (𝜛𝜛, 𝑧𝑧) = (0, 𝑜𝑜𝑝𝑝), and at the equatorial radius, (𝜛𝜛, 𝑧𝑧) = (𝑜𝑜𝑒𝑒 , 0). Since this is 

the surface of the star, the density of the star will be, 𝜌𝜌∗ = 0. Evaluating for the angular 

momentum and integration constant show, 

ℎ∗2 = Φ𝑔𝑔�0,𝑟𝑟𝑝𝑝�−Φ𝑔𝑔(𝑟𝑟𝑒𝑒,0)
Ψ(0)−Ψ(𝑟𝑟𝑒𝑒)                                                                                         (18) 

𝐶𝐶∗ = �
Φ𝑔𝑔�0, 𝑜𝑜𝑝𝑝� + Φ𝑐𝑐(0)
Φ𝑔𝑔(𝑜𝑜𝑒𝑒 , 0) + Φ𝑐𝑐(𝑜𝑜𝑒𝑒)

                                                                                (19) 

Φ𝑐𝑐(𝜛𝜛) = −∫ Ω2(𝜛𝜛)𝜛𝜛𝑑𝑑𝜛𝜛𝜛𝜛 = �ℎ0
2

𝑟𝑟02
�Ψ(𝜉𝜉)                                                       (20) 

𝜉𝜉 = �𝜛𝜛
𝑟𝑟0
�                                                                                                            (21) 
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We know that ℎ0 is the specific angular momentum normalization, and Ψ(𝜉𝜉) is 

the dimensionless centrifugal potential. In the case of the disk, 𝐶𝐶𝑑𝑑 and h𝑑𝑑 are found in a 

similar manner, except that equation 10 is evaluated at (𝜛𝜛, 𝑧𝑧) = (𝑜𝑜−, 0), and at (𝜛𝜛, 𝑧𝑧) =

(𝑜𝑜+, 0). Thus, we see, 

ℎ𝑑𝑑2 = Φ𝑔𝑔(𝑟𝑟−,0)−Φ𝑔𝑔(𝑟𝑟+,0)
Ψ(𝑟𝑟−)−Ψ(𝑟𝑟+)                                                                                        (22) 

𝐶𝐶𝑑𝑑 = �
Φ𝑔𝑔(𝑜𝑜−, 0) + Φ𝑐𝑐(𝑜𝑜−)
Φ𝑔𝑔(𝑜𝑜+, 0) + Φ𝑐𝑐(𝑜𝑜+)                                                                               (23) 

We invert equation 10 with (𝐶𝐶∗,ℎ∗2) and (𝐶𝐶𝑑𝑑,ℎ𝑑𝑑2), as defined in equations 22 and 

23 to find, 𝜌𝜌∗, 𝜌𝜌𝑑𝑑 ,  𝐾𝐾∗ and 𝐾𝐾𝑑𝑑. If our guesses made at the start of this simulation are 

consistent with these calculations, the calculations are stopped, and the model is 

declared converged. If not, we make a new guess for 𝜌𝜌∗ and 𝜌𝜌𝑑𝑑, and repeat the previous 

calculations. We have defined consistent as the parameters, 𝐶𝐶∗, 𝐶𝐶𝑑𝑑,ℎ∗2 and ℎ𝑑𝑑2  varying 

by less than 1 part in 1010 in consecutive iterations. 

This set of calculations are not very computationally intensive to perform, so I 

have looped this process to run through many different variations of the system 

parameters. 
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Figure 8: Nested Loops 

In this figure we see the nested loops used in the equilibrium modeling portion of this 

project. As we can see, this code is written and compiled in Fortran90, and is a set of 

four nested do loops. The inner most loop iterates over the polar radius of the star, 

going from the listed minimum in our input file, to the equatorial radius of the star, 

making a perfect sphere. The second loop increases the equatorial radius of the star up 

to one less than the inner radius of the disk. Next the inner radius of the disk is 

increased to one less than the outer radius. Finally, the log of the density of the disk is 

increased from -2.30, which was our set starting point, to -1.00 to change the mass ratio 

of the star and the disk.  

 Throughout the course of this model, the polar radius, equatorial radius, inner 

radius of the disk, and the density of the disk are all slowly changed. This is all to help 

determine the reverse Roche limit that was described previously. By plotting the ratio of 

the star mass to the disk mass compared to the time over the angular frequency, and 

isolating specific sets of polar radii, we can see how changes in these features effect the 

overall cohesion of the star. By isolating these features, we can look at a particular 

family of stars to perform more substantial analysis on. It is these stars that we will look 

at with the inclusion of nonlinear instabilities.  
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Part 3: Linear Simulations 

After we have completed the equilibrium models, we will look at both linear and 

nonlinear simulations of stars that we found interesting in the equilibrium data. For 

example, one of the things we expect to find is that stars will begin to become unstable 

in various nonaxisymmetric modes. In order to asses if a given star is stable or unstable, 

we will look at it in a linear simulation. Since these are so much faster than nonlinear 

simulations, we can perform many more of them, and chose only the most promising 

samples to look at in our nonlinear analysis. In a linear analysis, the equilibrium 

structure is slightly disturbed by a small perturbation. The small perturbation is then 

fallowed to see if it grows or if it damps and the system returns to equilibrium. The 

linearized evolution equations are found from the substitution of Eulerian perturbations 

of the form,  

𝐴𝐴 = 𝐴𝐴0 + 𝛿𝛿𝐴𝐴(𝜛𝜛, 𝑧𝑧, 𝑡𝑡)𝑅𝑅𝑖𝑖𝑚𝑚𝑖𝑖                                                                               (24) 

into the hydrodynamics equations. Here, 𝐴𝐴0 is the equilibrium solution, and 𝛿𝛿𝐴𝐴 

is the small perturbation in the meridional plane.18 By keeping trans linear in 𝛿𝛿𝐴𝐴, we 

observe that, 

𝜕𝜕𝑡𝑡𝛿𝛿𝜌𝜌 = −𝑖𝑖𝑚𝑚Ω𝛿𝛿𝜌𝜌 − 𝜌𝜌0
𝛿𝛿𝑣𝑣𝜛𝜛
𝜛𝜛
− 𝛿𝛿𝑣𝑣𝜛𝜛𝜕𝜕𝜛𝜛𝜌𝜌0 − 𝛿𝛿𝑣𝑣𝑑𝑑𝜕𝜕𝑑𝑑𝜌𝜌0 − 𝜌𝜌0(𝜕𝜕𝜛𝜛𝛿𝛿𝑣𝑣𝜛𝜛 + 𝑖𝑖𝑚𝑚

𝜛𝜛
𝛿𝛿𝑣𝑣𝜛𝜛 + 𝜕𝜕𝑑𝑑𝛿𝛿𝑣𝑣𝑑𝑑)    (25)                                            

 𝜕𝜕𝑡𝑡𝛿𝛿𝑣𝑣𝜛𝜛 = −𝑖𝑖𝑚𝑚Ω𝛿𝛿𝑣𝑣𝜛𝜛 +  2Ω𝛿𝛿𝑣𝑣𝜛𝜛 − 𝛾𝛾𝑃𝑃0
𝜌𝜌02
𝜕𝜕𝜛𝜛𝜌𝜌 − (𝛾𝛾 − 2) 𝛿𝛿𝜌𝜌

𝜌𝜌02
𝜕𝜕𝜛𝜛𝑃𝑃0 − 𝜕𝜕𝜛𝜛𝛿𝛿Φ         (26) 

 𝜕𝜕𝑡𝑡𝛿𝛿𝑣𝑣𝑖𝑖 = −𝑖𝑖𝑚𝑚Ω𝛿𝛿𝑣𝑣𝑖𝑖 +  1
𝜛𝜛
𝜕𝜕𝜛𝜛(Ω𝜛𝜛2)𝛿𝛿𝑣𝑣𝜛𝜛 − 𝑖𝑖𝑚𝑚

𝜛𝜛
𝛾𝛾𝑃𝑃0
𝜌𝜌02
𝛿𝛿𝜌𝜌 − 𝑖𝑖𝑚𝑚

𝜛𝜛
𝛿𝛿Φ                        (27) 

 𝜕𝜕𝑡𝑡𝛿𝛿𝑣𝑣𝑑𝑑 = −𝑖𝑖𝑚𝑚Ω𝛿𝛿𝑣𝑣𝑑𝑑 +  𝛾𝛾𝑃𝑃0
𝜌𝜌02
𝜕𝜕𝑑𝑑𝛿𝛿𝜌𝜌 − (𝛾𝛾 − 2) 𝛿𝛿𝜌𝜌

𝜌𝜌02
𝜕𝜕𝑑𝑑𝑃𝑃0 − 𝜕𝜕𝑑𝑑𝛿𝛿Φ                         (28)19 

                                                 
18 Catelan, P., F. Lucchin, S. Matarrese, and L. Moscardini. "Eulerian Perturbation Theory in Non-flat 
Universes: Second-order Approximation." Monthly Notices of the Royal Astronomical Society1, no. 1 
(1995). doi:10.1093/mnras/276.1.39. 
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As we can see, the above equations are calculated in cylindrical coordinates. In 

these equations 𝛿𝛿Φ is the perturbed gravitational potential, and can be found in the 

linearized Poisson equation,  

∇2�𝛿𝛿Φ𝑅𝑅𝑖𝑖𝑚𝑚𝑖𝑖� = 4𝜋𝜋𝐺𝐺𝛿𝛿𝜌𝜌𝑅𝑅𝑖𝑖𝑚𝑚𝑖𝑖                                                                            (29) 

The perturbed quantities are complex, so the physical solutions corresponds to 

the real components of each eigenfunction.  

In these problems, the boundary conditions consist of: 1) mirror symmetry about 

the equatorial plane; 2) perturbed velocities in the radial and polar directions (𝜛𝜛 and 𝑧𝑧), 

as well as changes in density (𝛿𝛿𝜌𝜌) that go to zero at the surface of the disk; and 3) 

perturbed gravitational potentials on the outer grid boundaries. These are computed in 

spherical harmonics including l-values up to 16. Using these boundaries, we find the 

fastest growing mode for a given value m. To compute analytically, we write the spatial 

derivatives as a finite difference and leave the time derivatives continuous. The 

equations are advanced using a fourth order Range-Kutta scheme. We perform tests 

with resolutions of grid size 𝑎𝑎𝜛𝜛 × 𝑎𝑎𝑑𝑑 = 256 × 256 and 512 × 512.  

Part 4: Nonlinear Analysis 

For our nonlinear simulations we used the hydrodynamics code Chymera.20 

Chymera solves the hydrodynamic equations in their conservative forms,21 

𝜕𝜕𝑡𝑡𝜌𝜌 = −∇(𝜌𝜌𝒗𝒗)                                                                                                  (30) 

𝜕𝜕𝑡𝑡(𝜌𝜌𝒗𝒗) = −∇(𝜌𝜌𝒗𝒗𝒗𝒗) − ∇�P + 𝑃𝑃𝑄𝑄� − 𝜌𝜌∇Φ𝒈𝒈                                                     (31) 

                                                                                                                                               
19 (Hadley et al. 2014) 
20 (Boley 2007, Boley et al. 2007) 
21 Brusov, Peter N., and Paul P. Brusov. "Nonlinear Hydrodynamic Equations for Superfluid Helium in 
Aerogel." Physics Letters A314, no. 3 (2003): 239-43. doi:10.1016/s0375-9601(03)00877-6. 
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𝜕𝜕𝑡𝑡 �𝜖𝜖
1
𝛾𝛾� = −∇�𝜖𝜖

1
𝛾𝛾𝒗𝒗� + 𝜖𝜖

1
𝛾𝛾−1

𝛾𝛾
Γ𝑄𝑄                                                                         (32) 

The above equations are the mass conservation equation, momentum 

conservation equation and the internal energy equation. The equations are solved on a 

Eulerian, cylindrical grid, where 𝜖𝜖 is the internal energy density, 𝑃𝑃𝑄𝑄 is the Von 

Neumann artificial viscosity term, and Γ𝑄𝑄 is the Richtmeyer artificial viscosity term. 

These are included to handle shock formation, and take the form, 

𝑃𝑃𝑄𝑄 = 𝜌𝜌(𝑄𝑄𝜛𝜛𝜛𝜛2 + 𝑄𝑄𝑖𝑖𝑖𝑖2 + 𝑄𝑄𝑑𝑑𝑑𝑑2 )                                                                             (33) 

Γ𝑄𝑄 = −𝜌𝜌(𝑄𝑄𝜛𝜛𝜛𝜛𝜕𝜕𝜛𝜛𝑣𝑣𝜛𝜛 + 𝑄𝑄𝑖𝑖𝑖𝑖
1
𝜛𝜛
𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 + 𝑄𝑄𝑑𝑑𝑑𝑑𝜕𝜕𝑑𝑑𝑣𝑣𝑑𝑑                                              (34) 

Where, 

𝑄𝑄𝑗𝑗𝑗𝑗 = �
𝐶𝐶𝑄𝑄(∇𝑣𝑣𝑗𝑗)2,𝑓𝑓𝑜𝑜𝑜𝑜 ∇𝑣𝑣𝑗𝑗 ≤ 0

0 ,𝑓𝑓𝑜𝑜𝑜𝑜 ∇𝑣𝑣𝑗𝑗 > 0                                                                          (35) 

and 𝐶𝐶𝑄𝑄 is a constant of order unity.22 In our simulations we set 𝐶𝐶𝑄𝑄 = 3. Chymera 

solves the hydrodynamic equations using momentum densities, 𝑘𝑘 = 𝜌𝜌𝑣𝑣𝜛𝜛 and 𝑊𝑊 = 𝜌𝜌𝑣𝑣𝑑𝑑, 

and angular momentum density, 𝐴𝐴 = 𝜌𝜌𝑣𝑣𝑖𝑖𝜛𝜛. This is all in second order in space and 

time. 

 

 

                                                 
22 (Hawley et al. 1984) 
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Chapter 3: Numerical Results 

Part 1: Isolated Rotating Stars 

One of the key features of this study is demonstrating the effect of placing a 

massive disk around a central star will have on the fission process. For this reason, we 

felt it prudent to run at least a few baseline models showing the formation process of an 

isolated star. Using Chymera we looked at several variations of this system, as well as 

studying the existing literature on this topic. One idea we had was to reevaluate the 

fission model by running a set of simulations of a rotating solitary star. This is exactly 

what has been done in the past, but with the more accurate nonlinear fluid dynamics 

calculated by Chymera, and greater computation time we were interested to see if there 

were any substantial changes. We wanted to specifically look at three stars with similar 

external characteristics, but different internal structures. This is done by changing the 

value of n’, which corresponds to the angular momentum index of the system. For our 

model, we decided to look at stars rotating at about 𝑘𝑘|𝑊𝑊| = 0.3. Here 𝑘𝑘 is the rotatinal 

kinetic energy of the star and 𝑊𝑊 is the gravitational energy of the star. We chose these 

values because it is generally understood that stars with a 𝑘𝑘|𝑊𝑊| value that is greater then 

0.28 will be unstable in the 𝑚𝑚 = 2 mode. Thus, by starting with stars at just above this 

value, we will see stars that will hopefully start to evolve immediately. To get this 

result, we set 

𝑎𝑎′ Equatorial Radius Polar Radius 

0.0 120 26 
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1.0 120 12 

4.0 120 30 

 

Table 1: Starting Conditions of Solitary Stars 

In this table we see the starting conditions of our solitary stars. Each star was given an 

initial angular momentum index, and we found the corresponding stellar structure.  

With our additional initial conditions set so 𝑎𝑎 = 1.5, log (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚) = 0.0,  𝑑𝑑𝑅𝑅𝑑𝑑 =

0.7,𝑀𝑀∗ = 0.0, and the total dimensions of our plot is 256 by 256, we calculate the initial 

configuration of our model. We then let the system evolve over a long period of time. 

Our results closely match those found in previous studies of similar systems. To 

see the results of these simulations we can look at a two-dimensional cross section of 

the density of our grid in the equatorial plane. At the start of each simulation the star 

appears undisturbed, spinning rapidly, and apparently without major changes. This 

however soon changes as small eddies start to form. From here it was originally thought 

the star should start to deform into a bar mode which becomes more extreme until the 

star fissions. However, we, as do earlier workers, do not see this clean bifurcation. In 

fact, only one of our simulations formed a proper bar mode. Instead, we see large 

amounts of matter being flung from the system in large arms, until enough angular 

momentum has been shed to allow the star to collapse back down into a single stable 

body.                          
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0.00001 0.0003 

2.0025 4.010 

4.3100 
9565000

4.5025 
9565000
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Figure 9: Rotating Star Evolution 

In this sequence, we see the evolution of the n’= 0.0 system. As the star rotates, we see 

the formation of the bar mode that we hoped for, but instead of further bifurcation, the 

stars structure was ripped apart, forming large spirals. This event causes the star to lose 

angular momentum, allowing the star to fall back into a much more slowly rotating 

sphere. This overall behavior is similar to figure seven, where we saw the ejected 

material form a ring around the star. In the actual simulation this ring is much more 

diffuse, but it will likely take time for a real system to become coherent after this event. 

In order to tell what is happening in these images it is helpful to look at the Fourier 

amplitude coefficients of each plot. We find the Fourier coefficients by fitting a Fourier 

series to the azimuthal structure of the density. 

𝜌𝜌(𝜛𝜛,𝜙𝜙, 𝑧𝑧) = 𝑎𝑎0
(𝜛𝜛,𝑑𝑑) + ∑ 𝑎𝑎𝑛𝑛,𝑚𝑚

(𝜛𝜛,𝑑𝑑) cos �𝑎𝑎 2𝜋𝜋
𝑚𝑚
�𝑁𝑁

𝑛𝑛=1 + ∑ 𝑏𝑏𝑛𝑛,𝑚𝑚
(𝜛𝜛,𝑑𝑑) sin �𝑎𝑎 2𝜋𝜋

𝑚𝑚
�𝑁𝑁

𝑛𝑛=1                       (36) 

where N is the number of grid cells in the azimuthal direction for each (𝜛𝜛, 𝑧𝑧) grid cell, 

and m is the mode number. The 𝐴𝐴𝑚𝑚 are, 

6.550 
9565000

11.800 
9565000

10.010 
9565000

7.530 
9565000
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𝐴𝐴𝑚𝑚2 = �∑ 𝑎𝑎𝑛𝑛,𝑚𝑚
(𝜛𝜛,𝑑𝑑)𝑁𝑁

𝑛𝑛=1 �
2

+ �∑ 𝑏𝑏𝑛𝑛,𝑚𝑚
(𝜛𝜛,𝑑𝑑)𝑁𝑁

𝑛𝑛=1 �
2
                                                          (37) 

 This tells us which mode (m value) is dominant at any given time.          
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Figure 10: Integrated Fourier Amplitudes 

In this plot we see the integrated Fourier amplitudes for each of our stellar models. The 

Fourier amplitude 𝐴𝐴𝑚𝑚 is the mth amplitude element of a discrete Fourier spectrum. As 

we can see, all three of these stars are dominated by the second order instabilities 

during the majority of the simulation. This is what is driving the bifurcation of the star. 

It is interesting to note that the n’=1.0 model starts to be dominated by the first order 

instabilities after the star has collapsed back down. The time scale in these plots is the 

time it takes for the radius of maximum density to make one orbit of the center of mass. 

When we look at the Fourier plots of each solitary star, we see that all three are 

dominated by the 𝑚𝑚 = 2 mode as the star starts to deform. For all models however, 𝐴𝐴2 

decreases as time increases showing that the nonaxisymmetric structure weakens as the 

star becomes more oblate. This makes sense as this is what we would expect in a bar 

mode in solitary stars. However, it is interesting to see that the 𝑚𝑚 = 4 mode also 

increases more than we would expect. This could be the reason the star breaks down so 

quickly and is something that should be watched for in the more complicated star-disk 

model.  

Part 2: Equilibrium Model Results 

Now that we have looked at how a single rotating star behaves as it tries to reach 

a point of equilibrium, let us add a massive disk around the system. It is this disk, when 

approaching the reverse Roche limit, clean fission of a star will occur in our hypothesis. 

However, given the large number of parameters that this system may depend on, it 

becomes prudent to sample over this parameter space to find where this limit is, as well 

as finding appropriate samples to evaluate more completely to show if this limit even 

matters. In our model, we sampled over four parameters to gain an understanding of 
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how a disk would affect the system. The most obvious is the overall aspect ratio, 𝑜𝑜−/𝑜𝑜+, 

of the disk. We accomplished this by changing the inner radius of the disk, 𝑜𝑜−, while 

leaving the outer radius, 𝑜𝑜+, constant. Second, we changed the size of the star. This was 

done by changing the equatorial radius, 𝑜𝑜𝑒𝑒𝑞𝑞, of the star. Third, we changed the density of 

the disk. This changed the mass ratio of the star and the disk, without changing the 

fundamental geography of the system. Lastly, we would change the polar radius, 𝑜𝑜𝑝𝑝, of 

the star to change the stars overall flattening. By changing this value, we dictated how 

fast the star must be rotating.  

In the first series of models we will sample the disk inner radius from a 

normalized value of 5 to 253 with a step size of 8, sample the equatorial radius from 4 

to one less than the disk inner radius with a step size of 8, sample the polar radius from 

4 to the equatorial radius with a step size of 8, and sample the log of the disk density 

from -2.23 to -1.00 with a step size of 0.1. After completing this series and plotting 𝑘𝑘|𝑊𝑊| 

for the star versus the star to disk mass ratio, we can see a clear relationship that could 

easily aid in our understanding of the fission process and the reverse Roche limit. Let us 

look specifically at the data corresponding to stars with an equatorial radius of 84.  
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Figure 11: Isolated Equatorial Radius of 84 Plot 

In this plot we see the angular velocity vs. the mass ratio of stars with an equatorial 

radius of 84. The distinct families of data are stars with the same polar radius. Thus, we 

see that the changes in each group’s characteristics come from changes in the inner disk 

radius and density. It is this relationship that we hope will result in clean bifurcation in 

our proto star. The horizontal lines represent the T/|W|, or momentum density value 

limits for stability in spherical stars for different modes. Any values above the line will 

be unstable, thus, large disks driving the T/|W| value down could result in stable stars 

with more extreme initial conditions.  

 
One of the key features shown in this plot is the maximum 𝑘𝑘/|𝑊𝑊| values of 

stable for spherical stars. We know that 𝑘𝑘 = 𝜌𝜌𝑣𝑣𝜛𝜛 and W= 𝜌𝜌𝑣𝑣𝑑𝑑 We see that the 

instability threshold for the m=2 mode is much lower than for larger values for m, 

Unstable 

Stable 
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which is why the evolution of these systems is so often dominated by the m=2 mode. 

What is of interest to us however is the effect of increasing the size and density of the 

disk has on each family group. Specifically, let us look at the family group of polar 

radii, 𝑅𝑅𝑝𝑝 = 20. For small disks, we see that this group lies above the cutoff for stability. 

However, as the disk size is increased, the group is driven down across this threshold. 

These should therefore be stable if this same limit holds true. We will need to perform 

linear stability calculations to see for sure. 

In this figure we see several distinct family groups made up of stars with the 

same polar radius to equatorial radius ratio. This will give these stars the same 

flattening. We see that each family group approaches a value on the y-axis as the stellar 

mass to disk mass ratio increases, and rapidly drops as this ratio decreases. Where this 

line terminates at the small end of the 𝐺𝐺∗
𝐺𝐺𝑑𝑑

 axis where we approach the reverse Roche 

limit. This depends greatly on which family group are being considered. For nearly 

round, it is likely that the mass ratio simply cannot be lowered any more. These stars are 

massive enough that the disk has little to no effect on them, no matter how dense the 

disk. Also, the angular velocity needed to deform the star so slightly is so small 

compared to the amount shifted by the ring that it does not have a notable effect. For the 

flatter configurations however, the termination points on the left-hand side of each 

family group is more often the last point with a usable answer. This is the reverse Roche 

limit; where the effect of the disk is so great that the star is pulled apart, and thus has no 

angular velocity, and it is these points that we are interested in.  

We can somewhat easily perform physical calculations to find this point for 

spherical stars surrounded by a disk, while not as rigorous as the calculations made in 
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the equilibrium code, it is a good way of showing that the code is not erroneous, since 

the values should at least be close. To that end, let us calculate this termination point for 

a star-disk system. 

The gravitational potential of a sphere is easy to calculate. In the case of gravity, 

the potential is defined by the equation, 

Φ(𝑜𝑜) = 𝑊𝑊
𝑚𝑚

= 1
𝑚𝑚 ∫ �⃗�𝐹 ∙ 𝑑𝑑𝑜𝑜𝑟𝑟

∞ = − 1
𝑚𝑚∫

𝐺𝐺𝑚𝑚𝐺𝐺
𝑟𝑟2

𝑑𝑑𝑜𝑜𝑟𝑟
∞                                                       (38) 

If we define the density of the star to be uniform and set Φ(∞) = 0, we can 

further refine this equation to, 

 𝜌𝜌(𝑜𝑜) =  �𝛾𝛾     𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 ≤ 𝑅𝑅∗
0    𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 >  𝑅𝑅∗

                                                                                (39) 

 Φ0(𝑜𝑜) = −4𝜋𝜋𝐺𝐺𝛾𝛾
𝑟𝑟 ∫ 𝑜𝑜′2𝑑𝑑𝑜𝑜′ − 4𝜋𝜋𝐺𝐺𝛾𝛾 ∫ 𝑜𝑜′𝑑𝑑𝑜𝑜′𝑅𝑅∗

𝑟𝑟
𝑟𝑟
0                                                   (40) 

for 𝑜𝑜 ≤ 𝑅𝑅∗, and  

 Φ0(𝑜𝑜) = −4𝜋𝜋𝐺𝐺𝛾𝛾
𝑟𝑟 ∫ 𝑜𝑜′2𝑑𝑑𝑜𝑜′𝑅𝑅∗

0                                                                               (41) 

for 𝑜𝑜 >  𝑅𝑅∗. In this case, Φ(𝑜𝑜) is the gravitational potential, 𝑊𝑊 is work, 𝐺𝐺 is the 

gravitational constant, 𝑚𝑚 and 𝑀𝑀 are the masses of two interacting objects, 𝜌𝜌(𝑜𝑜) is the 

density distribution, 𝛾𝛾 is some constant, 𝑅𝑅∗ is the radius of the star and 𝑜𝑜′ is the 

reference vector for the star. We integrate these to find, 

 Φ(𝑜𝑜) = �
− 2𝜋𝜋𝐺𝐺𝛾𝛾

3
�3𝑅𝑅∗2 − 𝑜𝑜2�      𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 ≤ 𝑅𝑅∗

− 4𝜋𝜋𝐺𝐺𝛾𝛾
3

 𝑅𝑅∗3

𝑟𝑟
                      𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 > 𝑅𝑅∗

                                                  (42) 

We can also define the mass of the system as, 𝑀𝑀 = 4𝜋𝜋
3
𝑅𝑅∗3𝛾𝛾, so the potential can 

be redefined as, 
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Φ(𝑜𝑜) = �
−𝐺𝐺𝑀𝑀 �3𝑅𝑅∗2−𝑟𝑟2�

2𝑅𝑅∗3
     𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 ≤ 𝑅𝑅∗

− 𝐺𝐺𝐺𝐺
𝑟𝑟

                      𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 > 𝑅𝑅∗
                                                           (43) 

This tells us the gravitational potential of a sphere, but the disk is much harder to 

calculate. We can simplify this problem greatly by taking the disk to be an infinitely 

thin ring and calculating the potential inside the ring at an arbitrary point.23 

Figure 12: Calculating the potential of an infinitely thin ring on inside the plane 

In this figure we see the method used to find the potential at an arbitrary point 𝐴𝐴 inside 

a ring. First, we find the partial mass of the rind 𝑑𝑑𝑀𝑀, and using the vectors �⃗�𝑎 and 𝑜𝑜, 

which point from the center of the ring to the point 𝑑𝑑𝑀𝑀 and 𝐴𝐴 respectively, we find the 

partial potential from that point. 

To find the potential at this arbitrary point, we find that the partial mass at 𝑑𝑑𝑀𝑀 is, 

                                                 
23 Tatum, Jeremy. "Potential in the Plane of a Charged Ring." LibreTexts. February 22, 2017. Accessed 
April 10, 2018. 
https://phys.libretexts.org/TextMaps/Map:_Electricity_and_Magnetism_(Tatum)/2:_Electrostatic_Potenti
al/2.2:_Potential_Near_Various_Charged_Bodies/2.2.6:_Potential_in_the_Plane_of_a_Charged_Ring. 
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𝑑𝑑𝑀𝑀 =  𝐺𝐺𝑑𝑑𝑀𝑀
2𝜋𝜋

                                                                                                        (44) 

To find the partial gravitational potential at this point, we see  

𝑑𝑑Φ = −4𝜋𝜋𝐺𝐺
4𝜋𝜋

𝐺𝐺𝑑𝑑𝑀𝑀
2𝜋𝜋

1
�𝑚𝑚2+𝑟𝑟2−2𝑚𝑚𝑟𝑟𝑐𝑐𝑎𝑎𝑠𝑠(𝑀𝑀)

                                                                      (45) 

We can simplify this to, 

𝑑𝑑Φ = − 𝐺𝐺𝐺𝐺
2𝜋𝜋𝑚𝑚

𝑑𝑑𝑀𝑀

�12+�𝑎𝑎𝑟𝑟�
2
−2𝑎𝑎𝑟𝑟𝑐𝑐𝑎𝑎𝑠𝑠(𝑀𝑀)

                                                                           (46) 

Using the Legendre Polynomial expansion, we find the potential of this system is, 

Φ(r) = ∑ �𝐴𝐴𝑙𝑙𝑜𝑜𝑙𝑙 + 𝐵𝐵𝑙𝑙
𝑟𝑟𝑙𝑙+1

�∞
𝑙𝑙=0 𝑃𝑃𝑙𝑙(cos(𝜃𝜃))                                                             (47) 

For r < a, we see that 𝐵𝐵𝑙𝑙
𝑟𝑟𝑙𝑙+1

= 0, so, 

Φ(r) = ∑ (𝐴𝐴𝑙𝑙𝑜𝑜𝑙𝑙)∞
𝑙𝑙=0 𝑃𝑃𝑙𝑙(cos(𝜃𝜃))                                                                        (48) 

Now that we have found the potential of both the star and the disk, we can 

calculate the acceleration on a test partial caused by both. It is this value that will tell us 

if the disk has reached the reverse Roche limit, since, if the acceleration due to the disk 

is greater than the acceleration due to the star at the edge of the star, these partials will 

start to leave the stars surface. The acceleration is related to the gravitational potential 

with the equation, 

�⃗�𝑎 = −∇Φ                                                                                                          (49) 

Thus, the tidal acceleration, which in this case is the same as the overall acceleration, of 

the sphere can be easily calculated. In spherical coordinates we see  

�⃗�𝑎 = −∇Φ = −��∂Φ
∂r
�̂�𝑜� + 𝑜𝑜 ∂Φ

∂θ
θ� + 1

𝑟𝑟𝑠𝑠𝑖𝑖𝑛𝑛(θ)
∂Φ
∂ϕ
ϕ��                                             (50) 

so the acceleration inside the sphere is, 
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 �⃗�𝑎 = −� ∂
∂r
�−𝐺𝐺𝑀𝑀 �3𝑅𝑅∗2−𝑟𝑟2�

2𝑅𝑅∗3
� �̂�𝑜� 

      = −𝐺𝐺𝐺𝐺𝑟𝑟
𝑅𝑅∗3

�̂�𝑜                                                                                                      (51) 

Outside the sphere, the acceleration is, 

 �⃗�𝑎 = −� ∂
∂r
�− 𝐺𝐺𝐺𝐺

𝑟𝑟
� �̂�𝑜� 

    = −𝐺𝐺𝐺𝐺
𝑟𝑟2

�̂�𝑜                                                                                                          (52) 

Putting these together, we find that the acceleration due to the star in all space is, 

�⃗�𝑎 = �
−𝐺𝐺𝐺𝐺𝑟𝑟
𝑅𝑅∗3

�̂�𝑜             𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 ≤ 𝑅𝑅∗
−𝐺𝐺𝐺𝐺
𝑟𝑟2

�̂�𝑜               𝑓𝑓𝑜𝑜𝑜𝑜 𝑜𝑜 > 𝑅𝑅∗
                                                                        (53) 

Finding the acceleration of the disk is once again a little different then finding 

the acceleration of the star. Using equation 50, we know how to find the acceleration, 

but since it is a series, this can only be an approximation. However, despite the 

approximate nature of this calculation it is easy to calculate. In cylindrical coordinates 

the gradient is, 

�⃗�𝑎 = −∇Φ = −��∂Φ
∂ρ
ρ�� + 1

ρ
∂Φ
∂θ
ϕ� + ∂Φ

∂z
z��                                                        (54) 

Since the potential of the disk within the plane is only dependent on the radial ρ� 

direction, we see that the acceleration is simply, 

�⃗�𝑎 = ∂
∂r
�− 𝐺𝐺𝐺𝐺

2𝑚𝑚
�1 + 1

4
�𝑟𝑟
𝑚𝑚
�
2

+ 9
64
�𝑟𝑟
𝑚𝑚
�
4

+ 25
256

�𝑟𝑟
𝑚𝑚
�
6

+ 1225
16384

�𝑟𝑟
𝑚𝑚
�
8

+ ⋯��             (55) 

This evaluates to, 

�⃗�𝑎 = −𝐺𝐺𝐺𝐺
2𝑚𝑚
� 1
4𝑚𝑚2

𝑜𝑜 + 9
16𝑚𝑚4

𝑜𝑜3 + 75
128𝑚𝑚6

𝑜𝑜5 + 1225
2048𝑚𝑚8

𝑜𝑜7 + ⋯�                                 (56) 
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In order to find if a star disk system has exceeded the reverse Roche limit, we 

simply have to add the two acceleration equations together and see where this new 

equation evaluates to zero. If this radial value is below the value of the stars radius then 

the outer edges of the star will accelerate outward, resulting in the star ripping itself 

apart. This calculation is not trivial to do analytically, but it is trivial to computationally 

solve where this point will be by plotting the potential. The point of maximum potential 

will also be the point of zero acceleration, since �⃑�𝑎 = −∇Φ = −𝑑𝑑Φ
𝑑𝑑𝜛𝜛

. Thus, where 𝑑𝑑Φ
𝑑𝑑𝜛𝜛

 

changes sign will be where �⃑�𝑎 changes direction. First, let us look at distribution of 

potential in a simple system. 
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Radius 
Stellar 
Radius 

Zero 
Acceleration 
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Figure 13: Total Potential of a Star Disk System 

In this plot we see the total potential of a system with a mass ratio of 30, and a disk 

radius of 70, where these are some arbitrary unit. For this system, we see that the point 

of zero acceleration is much further out then the stars radius, so this is well outside the 

RRL. 

 In this simple test system, we see that for a star and ring of equal mass and a 

relatively large disk radius to star radius, the zero-acceleration point is far away from 

the surface of the star. This means that the stars structure will be minimally affected by 

the ring. By performing a series of these simple calculations, we are able to find the 

approximate value of the reverse Roche limit for any star-disk system.  
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Figure 14: Reverse Roche Limit 

In this plot we see the location of the reverse Roche limit as a function of the mass ratio 

and radius ratio of the star-disk system based on our simplified system. The blue stars 

are the reverse Roche limits in some of the equilibrium data sets. As we can see, these 

values closely match, but are not quite equal to the simple model.   

At the end of this exercise we can now see that the method used to find the 

equilibrium conditions of our star-disk systems is consistent with a simplified version of 

this same problem. Stars that are shown to be at the brink of the reverse Roche limit in 

the modeling tool we use are also close to the same value calculated for a simple 

spherical star, with a simple ring. This shows that while much more complex, our model 

is showing the proper behavior for this system. 

Part 3: Linear Analysis 

The next step in our simulation is to take our results from our equilibrium 

models and start to evolve these initial systems in time. While we will eventually want 

to look at these with the Chymera code, modeling nonlinear systems is incredibly 

computationally expensive. Thus, it makes sence to find promising stars in a linear 

simulation. Specifically, we are trying to determine if the disk has any real effect on the 

fission process. Using our data collected in our equilibrium models, we will look at 

three stars from a given family group. The first star is one with a relatively large stellar 

mass to disk mass ratio. From looking at the families in figure 7, we see that this is 

where our data flattens out, approaching the angular velocity of a star without a ring. 

The second star is one close to the cutoff point. These are either stars that have reached 

their upper size limit for the size of ring given, or in most cases, stars that have almost 

reached the reverse Roche limit, and are close to being pulled apart by the gravitational 
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force of the disk. The third star is somewhere between these two extremes. We can see 

this selection process in figure 10. 

 

Figure 15: Selection of Linear Model Stars (𝑅𝑅𝑝𝑝 = 20,𝑅𝑅𝑒𝑒𝑞𝑞 = 28) 

In this plot we see the selected stars for one of our linear models. In this case, we are 

looking at the equilibrium data corresponding to stars with an equatorial radius of 28 

and a polar radius of 20. We see that we have chosen three stars, with one 

corresponding to almost no ring, one with a ring approaching the reverse Roche limit, 

and one between these two extremes.  

For our models, we have chosen to look at a wide variety of different stellar 

families. Besides the family seen in the figure above, we also looked at three stars from 

the other family groups in the 28-equatorial radius group; That being those with polar 
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radii of 12 and 4. We also looked at the 20-12, 84-20, 164-84 and 172-164 family 

groups. This gives us a wide range of stars with wildly varying initial conditions, with 

fast spinning stars with large differences in polar and equatorial radius, slow spinning 

nearly circular stars, and of course large variations in the size of each star. Each of these 

models takes several days to run, so we cannot simulate every star simulated in the 

equilibrium model, but these are a good representation of the population. 

After we have completed our models, we must evaluate our data. Unfortunately, 

the linear model cannot tell us if the stars split into binary pairs. It is the inclusion of the 

nonlinear instabilities that we hope will allow this behavior. Even so, it is possible to 

tell if a star is likely to be stable or unstable. Let us look at the linear model for our star 

of equatorial radius, 𝑅𝑅𝑒𝑒𝑞𝑞 = 28, and polar radius, 𝑅𝑅𝑝𝑝 = 20.  
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Figure 16: Amplitude and Phase data for Star (Approaching RRL) 

In this plot we see amplitude and phase over time at three different radii. For clarity, the 

rate of growth for the second amplitude is 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0036, and 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0036 for the third 

amplitude. The phase osculation is changing by 𝜙𝜙 = −0.439 ∗ 𝑡𝑡 for the second phase 

and by 𝜙𝜙 = −0.439 ∗ 𝑡𝑡 for the third phase. For global modes, the growth rates and 

phases should be identical at each radius. To the extent that they differ, we estimate the 

uncertainties of our simulation. 
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Figure 17: Amplitude and Phase data for Disk (Approaching RRL) 

This plot is similar to the plot of the star amplitudes and phases. If we look at the 

amplitude data, we see after some time the value of the amplitude starts to grow 

exponentially. This is the rate of growth of the star or disk. Similarly, the phase data 

will go from almost random to sawtooth oscillations from 360 to 0. This tells us the rate 

at which the system is oscillating. For clarity, the rate of growth for the first amplitude 

is 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0036, the second is changing by 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0037 and the third is changing by 

𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0036. The phase osculation is changing by 𝜙𝜙 = −0.430 ∗ 𝑡𝑡 for the first, by 

𝜙𝜙 = −0.443 ∗ 𝑡𝑡 for the second and by 𝜙𝜙 = −0.446 ∗ 𝑡𝑡 for the third phase. 

When looking at this sample data, which is from the sample on the curve 

approaching the reverse Roche limit, we can tell that the system is unstable because of 

the exponential growth of the amplitude values. Let us compare this data to the sample 

taken with a minimal disk. 
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Figure 18: Amplitude and Phase data for Star (Far from RRL) 

In this plot, we see the growth rate for a star far from the reverse Roche limit. Looking 

at the slopes for the second and third amplitude, we see that the star with the larger disk 

is evolving more slowly than the one with the smaller disk. Also, looking at the phase 

osculation, we see that the small disk is oscillating much more frequently. The rate of 

growth for the second amplitude is 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0072, and 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0072 for the third 

amplitude. The phase osculation is changing by 𝜙𝜙 = −24.7 ∗ 𝑡𝑡 for the second phase 

and by 𝜙𝜙 = −24.7 ∗ 𝑡𝑡 for the third phase. 
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Figure 19: Amplitude and Phase data for Disk (Far from RRL) 

In this plot we see that both the amplitude and phase plots are much different than those 

of the system approaching the RRL. The rate of growth is much smaller, and the 

oscillations are much quicker. The rate of growth for the first amplitude is 𝐴𝐴 =

𝑅𝑅𝑡𝑡∗0.0073, the second is changing by 𝐴𝐴 = 𝑅𝑅𝑡𝑡∗0.0073 and the third is changing by 𝐴𝐴 =

𝑅𝑅𝑡𝑡∗0.0073. The phase osculation is changing by 𝜙𝜙 = −24.7 ∗ 𝑡𝑡 for the first, by 𝜙𝜙 =

−24.7 ∗ 𝑡𝑡 for the second and by 𝜙𝜙 = −24.7 ∗ 𝑡𝑡 for the third phase. 

In these two plots we see how the ring has affected this system. The most 

obvious is that the sample with the large ring is evolving more slowly than the sample 

with the small ring. In binary formation, this will allow more time for nonlinear 

instabilities in the stellar structure to overcome linear instabilities trying to rip the star 

apart.  
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The other set of data we found in our equilibrium models noted here, was 

corresponding to the stars of polar radii, 𝑅𝑅𝑝𝑝 = 20, and equatorial radii, 𝑅𝑅𝑒𝑒𝑞𝑞 = 84. This 

data was particularly interesting because the stars without a disk were immediately 

unstable, while the stars with a disk were driven below this threshold. This can be seen 

in the figure below. 

Unstable 

Stable 



 
 

   
 
50 

 
Figure 20: Selection of Linear Model Stars (𝑅𝑅𝑝𝑝 = 20,𝑅𝑅𝑒𝑒𝑞𝑞 = 84) 

In this plot we see the equilibrium model for a star of 𝑅𝑅𝑝𝑝 = 20 and 𝑅𝑅𝑒𝑒𝑞𝑞 = 84. The red 

points indicate samples taken for use in the linear simulations. This set of samples is to 

test how a disk will affect stars that should be fundamentally unstable. 

 
In this set of samples, we should see an increasing stability in our models as we 

approach the RRL, given that they have been driven over this instability threshold. 

After running our set of linear simulations, this is exactly what we see. Both of the 

samples above the threshold show that their disks were destroyed almost immediately 

and have growth rates between 𝐴𝐴 =  𝑅𝑅𝑡𝑡∗0.007 and 𝐴𝐴 =  𝑅𝑅𝑡𝑡∗0.011, which are quite high for 

this system. Alternatively, the samples below this threshold, while still becoming 

unstable quite quickly, do not show signs that their disks have collapsed, and have much 

slower growth rates of 𝐴𝐴 =  𝑅𝑅𝑡𝑡∗0.0036. 

Star Radius Ratio 
(Equatorial Radius/Polar 
Radius) Mode  

Ratio 
(Star Mass/Disk 
Mass) 

Rate of Growth 2 
(exponential): Phase Change 2: 

Rate of Growth 3 
(exponential): Phase Change 3: 

20/12 2 21.5 0.001890925 -0.83462501 0.001892102 -0.84172351 

20/12 2 5.49 0.000683932 -0.07690806 0.000683932 -0.076908 

20/12 2 0.432 0.00332125 -23.3090047 0.00332125 -23.3091302 

28/4 2 5.02 0.000104857 -0.01043641 0.000104515 -0.01044127 

28/4 2 1.33 0.000503679 -0.04661274 0.000501706 -0.04661274 

28/4 2 0.0594 0.011434728 -1.04312316 0.011425751 -1.0461683 

28/4 3 5.02 7.10E-05 -0.01603345 7.10E-05 -0.01603287 

28/4 3 1.326 0.000400488 -0.07056402 0.000400488 -0.07056497 

28/4 3 0.05938 0.009163789 -1.59163849 0.009163789 -1.59168084 

28/12 2 4.47 0.949631653 -1.17125962 0.951084908 -1.17456066 

28/12 2 0.347 0.003907702 -15.628735 0.003907702 -15.6286018 

28/12 2 0.296 0.004571181 -18.291066 0.004571181 -18.2910331 

28/12 3 4.472 0.946317594 -1.75790823 0.945889933 -2.11599427 

28/12 3 0.3466 0.002484297 -0.51889267 0.002486415 -0.51902141 

28/12 3 0.2961 0.002657286 -27.2381747 0.002657286 -27.2365613 

28/20 2 7.07 0.007317199 -2.71852195 0.007317103 -2.7184786 

28/20 2 1.07 0.003628022 -0.43567634 0.003627991 -0.435672 

28/20 2 0.520 0.007266047 -24.7267007 0.007266047 -24.7278018 

28/20 3 7.071 0.006600109 -5.3888695 0.00660903 -3.50873098 

28/20 3 1.066 0.009228132 -6.13089579 0.00922777 -6.13145005 

28/20 3 0.5196 0.004382731 -36.8986853 0.004382727 -36.7873235 

84/20 2 0.322 0.008338246 -1.76900453 0.008338243 -1.77023701 

𝑚𝑚 = 2 
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84/20 2 0.234 0.011243214 -2.17647988 0.011243208 -2.17668861 

84/20 2 0.212 582.133347 n/a 582.133074 n/a 

84/20 2 0.159 n/a -8.34423222 n/a -8.45912176 

84/20 2 0.103 776.1759849 -2.58395522 776.1756209 -2.5831402 

84/20 3 0.234 0.008142635 -4.11340749 0.008147231 -3.97118285 

84/20 3 0.159 12.20432792 -12.141599 12.09966135 -12.838118 

84/20 3 0.153 12.84236197 -12.460153 12.78520104 -13.1647687 

164/84 2 0.3.9 39.50681391 -20.1628902 39.42037036 -19.6433206 

164/84 2 0.387 33.6344815 -24.4083281 33.5199569 -24.4083281 

164/84 2 0.385 33.656898 -20.7192008 33.66758091 -20.9302326 

172/164 2 0.677 0.105543122 -31.3262812 0.105547099 -31.2635766 

172/164 2 0.674 0.0728821 -20.5231546 0.072888385 -20.5240691 

172/164 2 0.6733 0.04742101 -16.7937321 0.047421024 -16.7938168 

 

Table 2: Linear Simulation Stellar Instability Data 

This data tells us the conditions of the star after it becomes unstable, as seen in figure 

16. The first column tells us the ratio of equatorial and polar radius of our spinning star. 

The second tells us the mode we are specifically looking at. The third column is the 

mass ratio between the star and the disk, and loosely determines how close the star is to 

the RRL. In all but one of our groups we used one at the RRL, one halfway up the 

curve, and one with a negligible disk.  The forth, sixth and eighth rows are the 

exponential growth rate of the instability inside the star, while the third, fifth and 

seventh are the phase change. These are separated into their Fourier components. 

Star Radius 
Ratio 
(Equatorial 
Radius/Polar 
Radius) Mode  

Star to Disk 
Mass Ratio 
(Star 
Mass/Disk 
Mass) 

Rate of Growth 
1  
(exponential): 

Phase 
Change 1: 

Rate of Growth 
2 
(exponential): 

Phase Change 
2: 

Rate of Growth 
3 
(exponential): 

Phase Change 
3: 

20/12 2 21.5 0.001893113 -0.83825552 0.001888646 -0.75809551 0.001878093 -0.72028914 
20/12 2 5.49 0.000683932 -0.07690799 0.000683932 -0.07690805 0.000683932 -0.07690801 
20/12 2 0.432 0.00332125 -23.3082803 0.00332125 -23.3082803 0.00332125 -23.3082803 
28/4 2 5.02 0.000104874 -0.01043636 0.000104874 -0.01043641 0.000104874 -0.01043629 
28/4 2 1.33 0.000503937 -0.04634075 0.000503937 -0.04634081 0.000503937 -0.04634193 
28/4 2 0.0594 0.011436441 -1.04616948 0.011436442 -1.04616202 0.011436441 -1.04615352 
28/4 3 5.02 7.10E-05 -0.01603257 7.10E-05 -0.01603334 7.10E-05 -0.01594373 
28/4 3 1.326 0.000400488 -0.07056431 0.000400488 -0.07056625 0.000400488 -0.07056543 
28/4 3 0.05938 0.009163789 -1.59168722 0.009163789 -1.59167394 0.009163789 -1.59167598 
28/12 2 4.47 0.952591795 -1.17079264 0.926050454 -1.17828129 0.950428854 -1.17699151 
28/12 2 0.347 0.003907701 -15.642635 0.003907701 -15.7207578 0.003907701 -15.6213527 
28/12 2 0.296 0.004571181 -18.2920012 0.004571181 -18.2920012 0.004571181 -18.2918031 
28/12 3 4.472 0.955348282 -1.75649857 0.955356761 -2.2012869 0.955368503 -2.18152334 
28/12 3 0.3466 0.002485982 -0.52006362 0.002486545 -0.51919003 0.002485977 -0.52284726 
28/12 3 0.2961 0.002657286 -27.238116 0.002657286 -27.238116 0.002657286 -27.2377754 
28/20 2 7.07 0.007312016 -2.71680106 0.007311378 -2.71860462 0.007310305 -2.71913641 
28/20 2 1.07 0.003627894 -0.43281107 0.003627995 -0.44326878 0.003627888 -0.43995662 
28/20 2 0.520 0.007266047 -24.7273835 0.007266047 -24.7273835 0.007266047 -24.7268177 
28/20 3 7.071 0.006603533 -4.45074629 0.006589934 -4.35220809 0.006595975 -3.94958509 
28/20 3 1.066 0.009229643 -6.21751783 0.009228786 -6.61943221 0.009228397 -5.7807445 
28/20 3 0.5196 0.004382726 -36.8204632 0.004382726 -36.8204632 0.004382727 -36.820791 
84/20 2 0.322 0.008338244 -1.76810975 0.008338244 -1.76812081 0.008338244 -1.76810855 
84/20 2 0.234 0.011243212 -2.17630552 0.011243212 -2.17631206 0.011243212 -2.17629074 
84/20 2 0.212 582.0507616 n/a 582.0207214 n/a 581.9766049 n/a 
84/20 2 0.159 n/a -8.36342706 n/a -8.36683326 n/a -8.45764735 
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84/20 2 0.153 12.7890771 -8.05288047 12.7890771 -8.05288047 12.78907661 -8.05288047 
84/20 3 0.234 0.008150392 -4.23649385 0.008141414 -4.19756714 0.008134949 -4.01558419 
84/20 3 0.159 12.33446552 -12.6581564 12.3346638 -12.6578728 12.33425021 -12.6888128 
84/20 3 0.153 12.78592572 --12.741993 12.78592572 -12.741993 12.78591938 -12.741993 
164/84 2 0.389 39.60287925 -19.742881 39.60285861 -19.742881 39.6027541 -19.742881 
164/84 2 0.387 33.73725278 -20.0892401 33.73694327 -20.0892401 33.73168159 -20.0892401 
164/84 2 0.385 33.84470174 -20.1607263 33.84470174 -20.1607263 33.8446978 -20.1607263 
172/164 2 0.677 0.106598881 -31.2795626 0.10552692 -31.3138979 0.10546811 -31.3324917 
172/164 2 0.674 0.072931222 -20.9787662 0.073029305 -20.6012342 0.072938116 -20.5901858 
172/164 2 0.6733 0.047387844 -16.7818959 0.047387844 -16.7818959 0.047391961 -16.7756293 

 

Table 3: Linear Simulation Disk Instability Data 

This data set is in the same format as the stellar instability data, be is for the 

corresponding disk.  Notice that unlike the stellar object, the disk has first order Fourier 

components.  

 In these data sets, we see a general trend where the rate of growth increases as 

we approach the RRL. We first see that models predicted to be stable based on single 

star studies turn out to be unstable. This is likely because the stars are destabilized by 

the presence of the massive disks. This is particularly evident in the 84/20 system where 

the growth explodes as we cross the m=2 limit. This shows, at least in linear 

simulations, that approaching the RRL has a positive impact on the prospect for fission, 

since a slower growth of linear instabilities will allow the fission to process more time 

to occur. Despite these promising results however, we must run these same initial 

conditions through the nonlinear chymera simulation to tell if these effects will truly 

result in fission. 

Part 4: Nonlinear Analysis 

One aspect of this project that has unfortunately not yet been completed is the 

nonlinear analysis of our full system. The original plan was to go through the linear 

simulations and find promising candidates to do a full simulation on. In the meantime, 

we started a similar set of simulations as the nonlinear samples where we found a 
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family group of stars and chose three samples approaching the reverse Roche limit. Due 

to time constraints on this project we were never able to start the second set of 

simulations with our sifted data, and the first set were not able to advance as far as we 

would have liked. However, we did manage to glean some information. Let us look at 

the simulation that was able to advance the furthest out of our three. This sample is of a 

star nearly at the reverse Roche limit according to our equilibrium model. 
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Figure 21: Star Disk Evolution 

In this figure, we see the interaction between a star and disk in a nonlinear simulation. 

This particular case corresponds to a system midway through one of the family groups 

seen in the equilibrium models. In this case, the interaction between the disk and star 

increased over time, with pieces of both accelerating into one another. This lead to the 

merging to the outer edge of the star with the inner edge of the sphere, ultimately 

disrupting any bifurcation that might have been developing. 

We see in this model that the disk and the star start pulling each other apart. The 

outer edge of the star starts to expand, leaving a much less dense material. At this point 

the two bodies start to accelerate toward one another, before merging. This interaction 

destabilizes any attempt by the star to fission. The remainder of the simulation shows 

the slow consumption of the disk by the central star. This destabilization is evident in 

the Fourier component plot of this simulation. 
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Figure 22: Fourier Component Plot for full Nonlinear Simulation 

In this plot we see the Fourier components of the full nonlinear simulation. In this plot, 

we see that the fourth and fifth modes are the first to destabilize but are soon dominated 

by 𝑚𝑚 = 1. This is characteristic of how the disk collapsed into the star, destabilizing the 

whole system. 

While this was the only full nonlinear model we were able to complete, it does 

show some interesting differences to the linear simulation. In particular, we see that this 

system becomes unstable first in the 𝑚𝑚 = 4 and 𝑚𝑚 = 5 modes, before becoming 

dominated by the 𝑚𝑚 = 1 mode. This is different from the linear simulations which were 

dominated by the 𝑚𝑚 = 2 mode, and the solitary stars that were also dominated by the 

𝑚𝑚 = 2 mode. This makes intuitive sense for stars starting the fission process, as they 

stretch into a bar mode. However, the extreme nature of this system seems to have had 
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the effect of complicating the initial structure in such a way that the new modal 

structure could not remain stable. This is the most likely reason for the collapse of the 

disk and the breakup of the star. It would have been interesting to see if this behavior is 

typical of these systems, or just a special case, but that will have to wait until the 

completion of this project.  
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Chapter 4: Discussion 

Part 1: Our Results 

Throughout this project, it has been our goal to show the feasibility of the fission 

model. While I believe that our research could demonstrate this feasibility, we were not 

able to show this process in our simulations. It is unsurprising that the isolated rotating 

stars did not show this behavior, as these systems have been thoroughly simulated in the 

past, and have never given us our desired results, but in these simulations, we did see 

that the stars remained cohesive for much of their lifespan. It was only as the star started 

the fission process that material started to be flung off the main body. This does show 

that this model is not completely infeasible. However, the most striking evidence that 

we have found over the course of this project is the equilibrium data results. We see 

clearly from these simulations that the presence of a ring, particularly that of the stars 

with equatorial radius of 84 and polar radius of 20, drove what would have been 

unstable initial conditions into at least temporary stability. This gives stars with more 

extreme starting parameters a chance to fission. Also, based on the linear simulation, 

stars with medium to large rings have a slower growth rate when the ring and star do 

not merge early on. If these models were to be put through nonlinear evolution, I am 

confident that we would see, if not full binary formation, at least very different behavior 

to isolated stars with the same structure. I am excited to see how this research 

progresses after the conclusion of this project. 
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Part 2: Parallel Research 

It is important to note at this time that this project was only part of a much larger 

continuing effort on the part of Doctor Imamura and his research team. I was merely a 

temporary addition to that team. While my research has focused primarily on exploring 

the limits of large disk systems, trying to find the effect of approaching the reverse 

Roche limit, the majority of our team’s efforts have been looking into smaller disks 

with a wider range of stellar conditions. In particular, the work currently being done by 

Kathryn Hadley, William Dumas, Erik Keever, Rebecka Tumblin and of course my 

primary advisor Dr. James Imamura have already published a paper on this topic titled 

“Nonaxisymmetric Instabilities and Star-Disk Coupling I. Moderate Mass Disks”. In 

this paper, the team looks at the interaction between a wide variety of stars in systems 

with a stellar mass to disk mass ratio of between 𝐺𝐺𝑑𝑑
𝐺𝐺∗

= 0.2 and 0.25. While still not 

observing clean binary separation, this research has shown that “coupling drives 

instabilities in slowly rotating stars” which would “otherwise be stable to dynamic 

nonaxisymmetric instabilities.” Also, in some of our teams more recent simulations, we 

have seen what could be a clean binary separation in a star disk system. It is still too 

early to tell for sure, but it looks very promising.  

We also plan on further investigating large disk systems like the ones primarily 

focused on in this paper in work by Hadley in 2018. Dr. Imamura’s team has also been 

looking into the prospects of fragmentation of large circumstellar disks being the source 

of many short period binaries. While not complete, we have seen in some of our 

simulations the clean fragmentation of a narrow disk into separate bodies orbiting a 

central star.  
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The prospect that these objects could form stars is obviously only possible for 

the collapse of very massive disks, since small disks would not have the mass necessary 

to induce fusion in the cores of these objects. However, these early results seem 

promising.  
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Chapter 5: Conclusion 

Binary star formation is one of the most interesting aspects of stars when 

looking into their structural dynamics. Despite our almost perfect understanding of 

nonrotating star formation, the solution to multi-star system formation remains a 

mystery. While the fragmentation model has had some success with long period binary 

formation, the two theories explaining short period binaries, tidal capture and fission, 

have been widely discounted. It was the purpose of this study to revisit the fission 

model with an up to date understanding of fluid dynamics and an increase in 

computation power to try to show the models feasibility. We also wanted to see what 

the effects of adding a large disk around the system would have as the effect of the disk 

approaching the reverse Roche limit started to pull the star apart. It is my opinion that 

we have been successful in this goal overall. While we were not able to see the clean 

bifurcation in our single star systems that we had hoped, we have at least given this new 

approach consideration. It seems that the nonlinear instabilities utilized in the Chymera 

code that were not known of during the last set of major simulations do not have any 

appreciable effect on this system.  

What is more interesting to me is our results after we added a disk to the system. 

While these nonlinear simulations were largely unfinished by the end of this project, 

some of the early simulations show some promise. In particular, the stabilizing effects 

seen in large, rapidly rotating stars when inserted into massive disk systems show great 

promise. It is these systems that we hope to investigate further as this project continues. 

The linear simulations of the set of systems simulating stars of equatorial radius 84 and 

polar radius 20 in particular show great promise. Without a ring, these stars are always 
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going to be unstable. Their 𝑘𝑘/|𝑊𝑊| value will always fall above the threshold for 

stability. However, in our linear simulations we saw that this value was pushed down 

sufficiently to be initially stable. When evolved, we saw that the models with larger 

disks had significantly slower rates of growth, or the speed at which the instabilities 

grew in the system. This would theoretically give the stars in these systems more time 

to evolve, and fission. It was these models that we evolved in the nonlinear simulation, 

but unfortunately only the star with the most massive disk was thoroughly investigated. 

In this simulation we saw that the star, though initially stable, was slowly pulled apart 

by the disk. A more thorough investigation of the rest of our linear models will need to 

be made to determine if this is typical behavior or just the product of this extreme 

system. However, despite not quite finishing our simulations, we have seen behavior in 

some of our systems that could produce fission, and that in and of itself is enough to 

state that this model has not yet been disproven.  
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