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 Value-based decision making plays a significant role in the lives and functioning 

of many organisms and is impacted by drug use often resulting in negative outcomes. 

Marijuana’s active chemicals mimic the existing neurochemicals in the 

endocannabinoid system to elicit altered decisions. One of the most well-known 

alterations in decision making caused by cannabinoids is an increased appetite for 

nutrient dense foods, which is referred to as hedonic feeding. Understanding 

cannabinoid signaling pathways can aid in illuminating how drugs alter food 

preferences and decision making. This study investigates whether genetic screens for 

hedonic amplification in C. elegans is possible by establishing broad sense heritability 

of the trait.
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INTRODUCTION 

 Value-based decision making exists throughout nature, exhibited not only by 

humans, but many other organisms. It is described as making a choice from different 

options dependent upon the subjective value of each option. Foraging, stock trading, or 

whether to buy chips or soda at a convenience store are examples of value-based 

decision making.  

 Decision making is thoroughly ingrained within our everyday lives. 

Understanding this crucial phenomena is necessary for understanding what it is to be 

cognizant, to understand individuality. However, decision making is a large and 

cumbersome concept to comprehend. The field which studies and seeks to understand 

human decision making is Neuroeconomics, a cross disciplinary field of neuroscience 

and model economics.  

BACKGROUND 

Neuroeconomics 

 Neuroeconomics’ goal is to provide the biological explanations underpinning 

human behavior that is applicable within the natural and social science fields. 

Neuroscience has developed a wealth of knowledge of the workings of the brain and 

provided tools and studies to examine the neural mechanisms that compose decision 

making. While psychology has detailed accounts of animal behavior regarding learning 

and decision making under varying conditions, economics and computer science has 

provided the computations necessary to link the fields and provide models for decision 
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making. Neuroeconomics as a field attempts to bring together these levels of 

understanding to fully comprehend choice.  

 To study choice and value-based decision making, economists often look 

towards Paul Samuelson, an American economist who proposed the Revealed 

preference theory1. This theory states that the preferences of an individual, or consumer, 

can be understood through their purchasing habits which have the goal of maximizing 

the consumer’s utility. The theory assumes that the consumer has a budget constraint, 

and that if goods are affordable preferring a combination of goods over another 

combinations reveals preference. It further assumes that preferences are stable across an 

observable time period. If a consumer chooses one bundle of items over another, the 

first is revealed preffered to the second, and that the first bundle will always be 

preferred over the second, unless its price becomes unaffordable2.  

 Revealed preference theory is useful to determine whether an organism is 

capable of value-based decision making and culminates in three revealed preference 

axioms which test the utility of modeled preferences. Weak Axiom of Revealed 

Preference (WARP) is where a choice has the utility that is equal to or higher than any 

other possible and available choice2. A violation of WARP reveals an organism is 

irrational, indifferent or that the decision has contextual effects. Strong Axiom of 

Revealed Preference (SARP) is where chains of choices are compared to one another 

and that any choice made within that chain must have greater or equal to utility than 

those after it. An example of which is if A is greater than B, and B is greater than C, A 

must also be greater than C2. However, WARP and SARP and not suitable for empirical 

research as they are designed for single-valued utility maximization. For empirical 
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work, we must take a look to the third revealed preference axiom. Pioneered by Afriat’s 

analysis of finite sets of values and choices, this axiom culminates in an explicit 

algorithm to construct a utility function: the generalized axiom of revealed preference 

(GARP)2.  

GARP is a revealed preference axiom which is sufficient and necessary for well-

behaved preferences, when linear budget constraints are applied3. A linear budget 

constraint is a representation of all of the services and/or goods combinations that a 

consumer may purchase given their income or other budget. A budget constraint is 

linear if all goods may be purchased at the same set price to the maximal total of the 

budget. GARP is structured upon cyclical consistency and covers choice cases in which 

for a certain value, there is more than one decision which maximizes utility. 

Indifference curves produced by GARP can be ‘flat’4, where at any point on the curve, a 

person is willing to give up a small amount of one good for another. An indifference 

curve is the graphical representation of goods combinations at which the consumer has 

no preference for one combination over another. ‘Flat’ indifference curves allow for 

empirical analysis across individuals.  

Heritability 

When considering any phenotypic trait, one ponders whether observed variation of that 

trait is due to genetics. This is due to the understanding that development is rooted 

heavily in genes, however the variation between individuals may not necessarily be so. 

For example the variation in human height is rooted in genetics, but the variation in 
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which language people speak is not. For a trait to be heritable, similarity must arise 

from shared genotypes5.  

Broad sense heritability (H2) is the ratio of genetic variance in relation to phenotypic 

variance6,7. This was formalized by Wright and Fisher by stating that the whole of 

phenotypic variance must be the sum of genetic and environmental variance8. Where a 

trait with H2 of zero has no genetic variance accounting for the phenotypic variance, 

and the phenotypic variance of a trait with H2 = 1 is fully due to genetic variance.  

Establishing heritability is incredibly important for any trait for which future genetic 

studies are considered. Without a significant amount of genetic variation accounting for 

the phenotype, determining genes, or the biological mechanisms underpinning the trait, 

is difficult. By establishing heritability, genome wide association studies and mappings 

become a possibility.  

Biological basis of decision making 

Dopamine is a monoaminergic neurotransmitter which likely plays a multi-faceted role 

in decision making. Dopamine plays an important role in positive reinforcement in 

value-based decision making and learning. Dopamine encodes expected and received 

rewards to form neural predictions of the outcome of choices9. Subsecond dopamine 

release concentrations modulate cost-benefit analyses undergone by an animal via 

encoding information regarding the reward value of a choice10. These secondary bursts 

increase in concentration in relation to the reward expected and are thought to 

strengthen choices which result in larger reward11.  
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The endocannabinoid system can modulate dopaminergic systems in a manner which is 

significant to value-based decision making. Receptor agonists modulate the subsecond 

dopamine bursts by uninhibiting dopamine neurons and increasing the subsecond burst9.  

The endocannabinoid system is characterized by endocannabinoids which bind to 

cannabinoid receptors, as well as their receptor proteins which are expressed through 

the nervous system. This system is involved in many physiological functions and 

cognitive behaviors. One of the most widely expressed of its receptors is Cannabinoid 

receptor type 1 (CB1) which inhibits the release of GABA-mediated 

neurotransmission12. It is this receptor’s agonists that modulate the subsecond dopamine 

concentrations through their decrease in GABA release9.  

Caenorhabditis elegans 

 Caenorhabditis elegans is a small bacteria eating roundworm and model 

organism. C. elegans is a hermaphroditic species that is self-fertile and produces 

approximately 300 progeny per generation after 3 to four days. C. elegans has a 97-

megabase genomic sequence with over 19,000 genes all of which have been sequenced. 

The whole cellular lineage of the hermaphrodite, 959 somatic cells, have been mapped 

and the nervous system wiring has been diagramed. C. eleganshas also been shown to 

exhibit value-based decision making via GARP13.   

 The C. elegans life cycle is comprised of four larva stages (L1-L4) and an 

adulthood stage. Only adult C. elegansare capable of egg laying. 
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 C. elegans also has a large pool of natural isolates or strains. Each strain is a 

natural population of genetic variation within the species, and can be examined to 

understand the genetics underlying phenotypic variation across strains14.  

The quick generation of individuals and their observance of GARP allow for 

robust testing of broad sense heritability.  C. elegans also has an orthologue to the 

human CB1 receptor: npr-19. npr-19-null animals can have function rescued by CB115. 

The npr-19 receptor modulates monoaminergic signaling which effect nociception, 

locomotion, and feeding behaviors15. An agonist of the npr-19 receptor is Anandamide 

(AEA) also known as N-arachidonoylethanolamine, which is also an agonist for the 

CB1 receptor16.  

C. elegans feeding behavior 

C. elegans feeds via filtration utilizing the pharynx, a neuromuscular organ that joins 

the mouth and intestine. This organ ‘pumps’ food via electrically stimulated 

contractions17. It is formed of a long thin lumen surrounded by three triangular bands of 

muscle and marginal cells. The anterior of the pharynx is the corpus, connected to the 

posterior terminal bulb via the isthmus. Food is brought into the lumen via near-

simultaneous contraction of the three parts, and liquid is expelled via near-simultaneous 

relaxation. The small differences in contraction/relaxation timing accounts for the 

grinding and posterior peristalsis of the bacteria18. This unique feeding mechanism 

limits the food preference of C. elegans not only by nutritional value, but particulate 

size. It has thus been observed that C. elegans prefer Comamonasspecies DA1877 
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which promotes swift developmental growth19. Whereas C. elegans when offered a 

Bacillus strain 1885, they experienced less growth19. 

Feeding behavior is characterized by periods of roaming and dwelling. During roaming 

C. elegans undergoes bursts of movement to seek food. Dwelling is composed of slower 

movement, as well as frequent stops and reversals of locomotion direction. During 

dwelling c. elegans is able to remain in a patch of food until completely consumed or 

until satiation.23 

Genome Wide Association Studies 

 Genome wide association studies (GWAs), also known as whole genome 

association studies (WGAs) are powerful tools for the investigation of genetics in 

humans. GWAs map genome-wide variants among individuals to potentially identify 

variants which are responsible for a trait. They focus on single-nucleotide 

polymorphisms (SNPs) which are single base-pair differences in DNA sequences that 

occur at a high frequency21. SNPs are often used as genetic markers in the genome, and 

although they largely have minimal impact on biological function, some may have 

important consequences to an individual’s traits such as disease risk or appearance.  

 Prior to the invention of GWAs, traits were often examined through genetic 

linkage among first degree relatives. This limited the scope of identifying potential 

causes to single gene disorders22. GWAs, by examining allele frequency of the genetic 

variant, may be able to provide information on detecting weaker genetic effects24.  

In humans GWAs are commonly used in clinical populations. Variations of the 

case-controlapproach of GWAs are usually quantitative analysis of phenotypic data 
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such as height. However, evidence has shown that interactions between many SNPs, or 

genes, can contribute and influence these factors including complex diseases. The 

multifaceted causes usually require further experimentation and analysis such as 

protein-protein interactions. Experimenters must also consider possible variables that 

can confound the results of association between genes and phenotype. These variables 

include sex and age which are common confounding variables. Geographic and 

historical populations that can give rise to mutations responsible for phenotypes must 

also be considered (e.g. common ancestry of populations). Thus human studies must 

understand the ethnic and geographic background of their participants to control for 

population stratification which can add difficulty to these studies24.  

 Human GWAs are also difficult, as all individuals involved in the study must 

have the majority of their commonly known SNPs genotyped, which are typically 

numbered in the millions. From there the allele frequency of each of these SNPs among 

all participants is examined for significant differences between the case and control 

groups. Utilizing human subjects means that there is a very large number of genomes 

that must be sequenced. Although genome sequencing has become more affordable in 

recent years, the expenditure and number of humans required is high. To narrow costs, a 

smaller library of SNPs are genotyped depending on the technology and methodology.  

 Few studies have utilized GWA mappings across different C. elegans natural 

isolates, as the approach is new14. However, with the introduction of theCaenorhabditis 

elegansNatural Diversity Resource (CeNDR), GWA studies across multiple populations 

is accessible.  CeNDR has collected and provides the whole-genome sequence and 

variant data of the natural isolates within its database. This eliminates the need to 
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genotype and sequence each of the strains of C. elegans used14. C. elegans are also 

asexual; their offspring are exact genomic copies of their parents. Therefore the number 

of groups can be expanded allowing for further ease of narrowing candidate genes that 

underpin value-based decision making.  

 Considering the difficulty of discovering candidate genes in humans for value-

based decision making, using the model organism C. elegans may facilitate the 

narrowing of possible human genes.  

MATERIALS AND METHODS 

Behavioral assay 

 The behavioral stage involvedquantifying a shared phenotype across naturally 

isolated strains of Caenorhabditis elegans. 12 strains of C. elegans were chosen from 

theCeNDR, comprising of the divergent set, a genotypically different set of strains that 

allow for heritability testing. This set includes the following strains: CB4856, CX11314, 

DL238, ED3017, EG4725, JT11398, JU258, JU775, LKC34, MY16, MY23, and N2. 

The behavioral stage was composed of 7 different steps: worm synchronization, food 

concentration, plate preparation, worm washing, drug incubation, experiment loading 

and running, and worm counting.  
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Bacterial Name Bacterial Species Growth Temperature 

OP50-1 E. coli 37 

DA1877 Comamonas sp. 37 

DA1885 B. simplex 37 

Table 1. Bacterial strains used.  

 

 Worms weresynchronized by transferring 30-40 adult worms from a mixed stage 

population plate onto a second NGM plate that is seeded with OP50 bacteria. This 

bacteria provided a rich environment for the worms to generate on. This wasrepeated 

for 8 plates per strain alongside 8 plates of N2 strain as an experimental control. The 

plates were incubated for 4 hours at 22 degrees Celsius at which point the adult worms 

were removed from the plate. These plates had approximately 100 eggs on them and 

were incubated for 3 days until adulthood was reached. This ensured that all worms 

used in experimentation were of approximately the same age and stage. 

 After the 3 day incubation the next 5 stages of behavioral testing commenced. 

Food was concentrated using a centrifuge. Two 50 mL corning tubes were filled with 40 

mL of bacterial solution. One tube was filled with ‘G’ bacteria: Comamonas DA 1877, 

and the other was filled with ‘M’ bacteria: Comamonas DA1885 bacteria as shown in 

table 1. G bacteria referred to preffered or ‘good’ food and M bacteria referred to 

mediocre or less preferred food. Each tube was spun in a centrifuge for 7 minutes at 

5,000 rpm to form a bacteria pellet. After which the supernatant was dumped into a 

waste receptacle without jostling the pellet. This process was to purify desired bacteria 

from the rest of the LB broth. 10 mL of 0mMol NaClbuffer solution was added to each 
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tube using and vortexed until the pellet was well incorporated into the buffer creating a 

solution. Both tubes were vortexed again with the supernatant dumped afterwards. 10 

mL of buffer was added to each tube and weighed for later calculations. Both tubes 

were returned to the centrifuge after which the bacteria wasresuspended to an optical 

density (O.D.) of 8 for the M food and O.D. of 0.5 for the good food. 

The resuspension volume for each bacteria was calculated using the dilution 

calculation.300 uL of buffer solution and 100 uL of bacteria solution was added to two 

2 mL Eppendorf tube and vortexed. Using a spectrophotometer a sample of each tube 

was measured. Between each reading the sample was vortexed to prevent 

sedimentation. Bacterial concentration optical density was calculated using the 

information from Table 2.  

Variable Calculation Description 

OD2 
𝑉𝑉1  × 𝑂𝑂𝑂𝑂1

𝑉𝑉2
 

Where V1 is the volume of the bacterial sample. 
OD1 is the measured O.D. from the 

spectrophotometer. V2 is the volume of the 
measured solution. 

Vf 
𝑂𝑂𝑂𝑂2  × 𝑉𝑉𝑖𝑖
𝑂𝑂𝑂𝑂𝑓𝑓

 Where Vi is the initial volume of bacterial solution 
measured after the second centrifuging. ODf is the 
desired O.D of the bacterial solution. G: 8; M: 0.5 

Table 2. Calculations for bacterial concentrations. V1 is always 100 uL and V2 is 
always 400 uL for the purposes of this experiment. 

 

 After the food is prepared, both tubes were added to a rack for storage alongside 

four 50 mL corning tubes, one filled with buffer, one filled with deionized water, one 

with 5 mL bleach for waste, and 1 filled with 70%EtOH.  
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 28 NGM plates were added into a dehydrator set for 45 minutes at 113 degrees 

Fahrenheit. After 45 minutes the plates were removed and placed covered to cool for 30 

minutes. Once cooled, each plate had a 2 mm foam laser cut T-maze, shown in Figure 

1was added to its surface and pressed flat with the plunger end of a syringe without 

damaging the agar. This process was completed to discourage worms from escaping 

from the assay zone of the T-maze. 4.5 uL of each food mixture will be placed into each 

end of the T-maze without breaking the surface tension of the food droplet. G food was 

placed on the left and M on the right.  

 

 

Figure 1. Foam T maze diagram depicting landing site of worms as 
well as locations of food. The four points surrounding the T maze 
indicate interior marker where worms will stop being counted as in 
food patch.  

 

 Worms were washed to prevent lingering in the landing zone of the maze, as a 

high accumulation of bacteria on the worms would cause them to remain and eat. Each 

plate of worms that had been incubated for 3 days was cleaned with 1000 uL or 1 mL or 

buffer solution and poured into a 2 mL Eppendorf tube. Each tube was spun in a small 

centrifuge for 30 seconds at 4,000 rpm. After which the supernatant from each tube was 

Landing Zone 

Orientation 
Notch 

G food patch 

M food patch 
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removed down to the 0.1 mL mark. This process was repeated four more times to 

ensure all bacteria and eggs from the worms were removed. 

 2 glass concentration tubes were used per strain and cleaned with bleach and 

then deionized water. Each tube was labeled with the strain name and whether it 

contained AEA or not. Worms were allowed to incubate in the drug for 20 minutes.  

 After the 20 minutes 2.5 ul of worms were placed into the landing zone of the T-

maze on each plate, for about 50 worms or less per plate. 12 plates were loaded with 

each condition of worms. A scan upon loading of worms was done to ensure fidelity of 

scanner. Every 15 minutes each tray was scanned for a total of four data scans. The 

temperature of the room wasrecorded. At high temperatures the behavior of the worms 

was erratic and all data taken above 23 degrees Celsius was neglected. 

 The counting of the worms included the number of worms in the good food, 

mediocre food, and not in either of the food patches. The index of worms, their food 

preference, was calculated by dividing the difference between the number of worms in 

G and M by the sum of worms in G and M.  

G vs M assay 

 The cause of differences between AEA and control condition food preferences 

was assayed by measuring the proportion of worms in the G food versus the M food. 

Increase in the index value is impacted by two factors: increase in worms in G or 

decrease of worms in M. This was calculated by dividing the number of worms in each 

spot by the total number of worms. Contrasting the G and M proportions in the AEA 
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and control conditions showed whether the AEA effect increases preference for G, 

decreases preference for M or both. 

Broad sense heritability 

 Broad sense heritability (H2) was calculated to determine the proportion of 

phenotypic behavior that is due to genotypic variance. The calculations to determine H2 

are shown in Table 3. 

Variable Calculation Description 

�̅�𝐴𝑖𝑖 �𝐴𝐴𝑖𝑖𝑖𝑖

𝑁𝑁

𝐽𝐽=1

 Mean of replicates (j) of one strain (i) 

Vi 
∑ (𝐴𝐴𝑖𝑖𝑖𝑖 − �̅�𝐴𝑖𝑖)2
𝐽𝐽=𝑁𝑁
𝐽𝐽=1

𝑁𝑁 − 1
 Variance of �̅�𝐴𝑖𝑖 

Ve 
∑ 𝑉𝑉𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 Mean of all multi-replicate strain 

variances 

�̿�𝐴 
∑ �̅�𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 Grand mean of hedonic amplification 

across strains. 

Vp 
∑ (�̅�𝐴𝑖𝑖 − �̿�𝐴)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 1
 Variance of �̿�𝐴 

H2 
𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑒𝑒
𝑉𝑉𝑝𝑝

 Broad sense heritability of hedonic 
amplification 

Table 3. Calculations for broad sense heritability.  
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RESULTS 

Food Preference Data 

 In order to determine the preferences of each C. elegans strain, groups of worms 

were offered a bilateral choice between good and mediocre food. By dividing the 

difference between the number of worms in G and the number of worms in M over the 

total number of worms that made the food choice, the index of food preference may be 

concluded. The N2 strain was used as the control strain and run in tandem with all other 

natural isolates. Figure 2.Illustrates N2 preference index over a one hour period, 

measured every 15 minutes.Preference index remains constant across time points. 

However, at the 60 minute measurement, depression of the preference index in certain 

data replicates could be observed due to starvation of worms in the good food. Analysis 

of the 45 minute time mark measurements was conducted to ensure fidelity of 

preference index and high number of worms in food.   

 

Figure 2. N2 strain control and AEA data at 15, 30, 45, and 60 minute time 
intervals. Temperature of agar did not exceed 23 degrees. 
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The index preference of each strain in AEA treated and control conditions are 

shown in Figure 3. Both AEA and control treated conditions were administered the 

same optical densities of food to choose between, 0.5 for G and 8 for M. Preference 

indexes were largely positive, preferring good food, except for JU775 in control 

conditions. CX11314, CB4856, LKC34and DL238 had insignificant differences 

between preference indexes in AEA treated and control conditions. This could imply 

possible absence or lowered activity of the genes underpinning value-based decision 

making or alterations to the npr-19 receptor.   

 

Figure 3. Food preference index values for AEA and control treated strains as 45 
minutes into assay. Temperature of agar did not exceed 23 degrees. * significance 
values are for an alpha of 0.05. # significance values refer to the Bonferoni correction 
alpha value of 0.004. 
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Hedonic amplification 

 The difference between the AEA treated and control condition preference 

indexes was calculated to determine hedonic amplification. This measurement shows 

the variable effect of AEA treatment and is shown in figure 4. 

 

Figure 4. Hedonic amplification for each natural isolate. Data was collected 
at 45 minutes.  

 

G vs M assay 

G and M worm proportion data was calculated and displayed in Figure5. MY16 

experienced an increase in G preference Fig. 5A. MY23, ED3017and JU775 

experienced a decreased preference for M Fig 5A. N2 and EG4725 experienced both an 

increase in G preference and decrease in M preference. These differences suggest C. 

elegans genes which affect both increased good preference and decreased M preference.  
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A 

 

B 

 
Figure 5. Ratio of worms in food patch to total worms introduced to 
plate.  A. Proportion of worms in DA1877 at 45 minute time point. 
B. Proportion of worms in DA1885 at 45 minute time point.  
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Broad sense heritability 

Variance Value 

VE 3.44 x 10-4 

Vp 1.18 x 10-3 

H2 0.708 

Table 4. Values of VE VP and H2 

 

Broad sense heritability was calculated for hedonic amplification inheritance at 

0.708 therefore approximately 70.8% of phenotypic variation of hedonic amplification 

is due to genotype. The values of environmental and phenotype variation are displayed 

in Table 4. 

 

DISCUSSION 

AEA effect 

The treatment of AEA either had no effect or significantly increased the 

preference index of natural isolate strains of C. elegans with the exclusion of JU258. 

This data supports existing literature of NPR-19 receptor modulation of C. 

elegansfeeding behavior as well as the increase in human reward reinforcement due to 

endocannabinoid agonists.  

The negative AEA effect displayed by JU258 may have large implications for 

the cannabinoid signaling pathway in C. elegans. Investigation into the genome of 
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JU258 and comparing to N2 may be revealing of potential mutations. Further 

investigation of JU258 npr-19 modulated behavior may be revealing of possible 

mutations.  

The absence of significant food preferences differences due to AEA treatment 

may be rooted in mutations or absence of npr-19 modulated monoaminergic signaling. 

CX11314, C4856, LKC34, and DL238 lack characteristic changes in food preference 

upon AEA treatment. Evaluation of possible mutations in NPR-19 or pumping behavior 

may explain the difference in preferences and may be a source of natural knockout or 

partial knockout mutants.  

AEA effect can reinforce rewarding behaviors and decrease un-preffered reward 

behaviors 

The increase in preference index across significantly changed preferences is 

explained by increasing the preference towards G food or decreasing preference for M 

food. This gives insight into the cannabinoid signaling pathway in C. elegans. In the N2 

strain, the preference for G is significantly increased, and the preference for M is 

significantly decreased. This effect is also mirrored in EG4725 strain. Potential 

inhibitory and excitatory effects for dopaminergic signaling is a likely cause of the 

increase in G preference. However, the decrease in M preference is not necessarily 

explained through the dopaminergic and endocannabinoid signaling pathways.  

This interesting divide is further exemplified by the remaining strain which had 

G preference increased with AEA treatment: MY16. This strain does not have 

simultaneous decrease of M preference. There is potential that this strain exemplifies 



21 
 

the currently understood reward reinforcement due to increase in dopamine signaling. 

However, it may lack whatever pathway that the canonical N2 strain possesses. 

Whereas MY23, ED3017, JU775, and DL238 experienced decreased M preference due 

to AEA treatment, without a significant increase in G preference. Examination of the 

npr-19 signaling pathway may reveal intricacies in reward seeking behavior. Where 

decisions are not only enforced through increased preference of rewards, but decreased 

preference of reward lacking or detrimental choices.Strains exhibiting isolated behavior 

modulation pathways may be useful tools to look at signaling pathways individually. 

JU258 does not have significant difference between either G or M food 

preference under AEA treatment. However, the error of each value is largeenough that 

an increase of N may reveal whether M preference is increased as is implied in Figure 

5B.  

These different phenotypes of the divergent set of C. elegans may have lasting 

impact on future studies surrounding the effects of the npr-19 receptor. Modulations of 

the receptor, which may be responsible for different reward seeking behaviors, may 

influence nociception and locomotion behaviors as well. This could deepen our 

understanding of multiple behaviors and their mechanisms all by utilizing C. elegans.  

Future Directions 

This paper has established that the broad sense heritability of hedonic 

amplification is 70.8 percent in C. elegans. Therefore 70.8 percent of variation in this 

trait is statistically associated with genetic variation within the different C. 

elegansnatural isolates. This provides a basis for future genome wide association studies 



22 
 

to examine the possible genes that underpin hedonic amplification in C. elegans and 

eventually humans. This data can be utilized for future studies in that it lays the 

framework of 12 phenotyped strains shaving the potential scale of future studies.  
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APPENDIX  

The human nervous system 

The nervous system is the necessary combination of organs responsible for 

perception, thought, behavior, and feelings. Composed of two parts: the central nervous 

system (CNS) and the peripheral nervous system (PNS), the focus of this paper is the 

CNS. The CNS is anatomically separate from the PNS, although both are deeply 

interrelated, and is composed of the brain and spinal cord.  

Function of the central nervous system is characterized in five stages1. The first 

of which is internal (visceral) and external (peripheral) receptors sensing changes in 

their environment. Secondly these signals are sent to the spinal cord or brain. Thirdly 

the information is integrated and processed in various sections of the brain depending 

on the type of information encoded. The number and interconnectedness of the regions 

of the brain which process this information is dependent on the complexity and type of 

information. Fourthly the brain sends commands to the peripheral systems such as 

motor commands often through the autonomic nervous system (ANS). Lastly the 

system’s effectors are signaled to alter activity or state of the target organs to lead to 

potential behavioral changes.  

The cell of the nervous system is the neuron. Unlike most other cells of the 

body, neurons do not undergo mitosis. The neuron is an electrically excitable cell which 

receives, processes, and sends information to other neurons or tissues. A neuron is 

typically composed of a cell body or soma, has one long projection called the axon, and 

many branching projections called dendrites. The activity of a neuron is electrical, 
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however communication between neurons and cells is chemical: through 

neurotransmitters. Processing at a neuron occurs at the cell body, where the nucleus 

resides. Information uptake occurs at the dendrites, while information transmission 

occurs at the axon. These systems of neurons are often referred to as neural networks. 

The human brain is estimated to have approximately 100 billion neurons, where each 

neuron is connected to around 10,000 other neurons1.  

Axons often come into close contact with the ends of dendrites forming a 

synapse. The end of axons are terminal buttons, the ends of which are calledpresynaptic 

clefts, which receive the electrical signal of the axon and release neurotransmitters. 

Neurotransmitters are the messengers of the nervous system and are taken up by the 

dendrite via receptors that correspond to the released chemical at the postsynaptic cleft. 

Examples of neurotransmitters are acetylcholine, dopamine, gamma-Aminobutyric acid 

(GABA) and serotonin. Neurotransmitters can be inhibitory or excitatory at the dendrite 

depending on the action of their receptor. Excitatory signals activate the neuron, and 

inhibitory signals deactivate the neuron or hyperpolarize it. Both of these signals cause 

a change in the electrical potential of the neuron.  

Neurons can be active or resting. When a neuron is resting there is a larger ratio 

of negative ions to positive ions inside the neuron than outside the neuron which causes 

it to have a resting membrane potential. When a signal activates a neuron, the ratio of 

ions changes causing an electrical signal to be sent down the axon, this signal is called 

an action potential. However, action potentials are called all-or-none, the signal cannot 

be a partial signal. A certain level of membrane potential must be reached for an action 

potential to be fired.  
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Most neurons are part of three basic types: sensory, motor, and interneurons. 

Sensory neurons are responsible for detecting information from the external 

environment and synapsing with the spinal cord and are often called afferent neurons. 

Motor neurons are directed to the muscle from the spinal cord to elicit contraction or 

relaxation to generate movement; they are often called efferent neurons. Interneurons 

form local circuits among other neurons, and do not travel as long of distances as 

sensory or motor neurons.  

Neurons can release different neurotransmitters for varied effects2. For example 

acetylcholine has many important functions including motor control, learning, and 

memory. These effects are modulated by what receptors are found at the postsynaptic 

cleft3. However, these receptors can be activated or blocked by different substances 

which are called agonists and antagonists. Agonists are chemicals which enhance or 

activate the receptor mimicking or promoting the neurotransmitter effect. Antagonists 

blocks the receptor and decreases or ceases the effect of the neurotransmitter. The 

method of agonist and antagonist effects are varied1. Agonists can increase 

neurotransmitter release, block neurotransmitter reuptake, or mimic the 

neurotransmitter. Antagonists can block the release of neurotransmitters, destroy 

neurotransmitters, or mimic the neurotransmitter without activating the receptor.  
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