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Research demonstrates that archaeological sites along the Oregon Coast are 

subject to the deleterious effects of earthquakes, landslides, tsunamis, aeolian processes, 

and coastal erosion. Preliminary survey and excavations of archaeological material at 

Bullards Beach State Park, Oregon have demonstrated that bank erosion along the 

Coquille River estuary poses a threat to archaeological sites in the area. There is an 

urgent need for resource assessment and damage mitigation to protect sites throughout 

the park before they are completely destroyed. This thesis uses Bullards Beach State 

Park as a case study to explore problems facing Oregon’s coastal archaeological 

resources, and to test aerial imagery data as a tool for estimating estuarine erosion rates. 

Aerial imagery dating between 1939 and 2016 was mapped in ArcGIS. By measuring 

the relative position of the riverbank in each set of images, it was possible to achieve 

estimates of erosion rates at Bullards Beach through the past eight decades. Results 

demonstrate annual erosion rates as high as 3.56 m/year at certain localities of the park, 

with an overall average of 1.44 m/year. These results may inform management efforts 

by tribal, state, and university groups working with archaeological material in the park. 
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Introduction 

Erosional forces are a hindrance to the goals of archaeology as a field of study. 

Two of the primary missions of archaeology are to preserve the archaeological record 

and interpret that record to holistically reconstruct the past. However, erosional 

processes pose an inherent threat to the preservation of archaeological materials, which 

is a finite and limited resource. The more the archaeological record deteriorates, the less 

archaeologists will be able to learn from those remains. 

This should be cause for both concern and action on the part of archaeologists 

and other people with vested interested in preserving the past. Because we are working 

with a finite resource, archaeological research in coastal settings must often proceed 

with erosion in mind, and researchers must take urgent measure to document sites 

before they are destroyed due to the effects of tidal action, heightened wave activity due 

to storms, wind energy, and catastrophic events such as tsunamis and earthquakes. 

Additionally, global sea levels have risen significantly over the past 20,000 years (Clark 

et al. 2009). This has caused catastrophic damage to the archaeological record and will 

likely continue to do so: if sea levels rise another meter in the next century, countless 

archaeological sites throughout all coastal regions of the world will face drowning, 

inundation, and destruction (Erlandson 2012; et al. 1999; Fitzpatrick et al. 2015). 

In some areas, immediate action is necessary to address erosion and sea level 

risks at archaeological sites. The Oregon Coast is one such region. Oregon is 

characterized by a highly dynamic geomorphology, meaning that its structure is prone 

to movement and change by various geological processes. Additionally, the Oregon 

Coast has some of the most extreme wind and wave energy of any region on Earth 
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(Komar 1997, 44). Both of these factors cause heightened erosion rates throughout the 

Oregon Coast. It is likely that much of the archaeological material that was once present 

throughout the region has already been destroyed by erosion or inundated by sea level 

rise (Erlandson et al. 1999). 

In spite of this fact, the Oregon Coast has been relatively understudied in recent 

archaeological research. Much of the work currently taking place on the Pacific Coast 

of North America is focused on the Northwest Coast region (Alaska and British 

Columbia) and the California Channel Islands, which have more favorable conditions 

for the preservation of archaeological material (Moss & Erlandson 1995). While work 

in these regions is important, it has to some extent, overshadowed archaeological 

research on the Oregon Coast and projects focused on the region have diminished over 

the last decade or so. Fortunately, there is a renewed interest in the development of a 

comprehensive archaeological research program in the region. The Department of 

Anthropology at the University of Oregon recently began a research program along the 

southern Oregon Coast, which is intended to train students in archaeological field 

methods and encourage interest by various stakeholders, including researchers, tribes, 

and state agencies. 

The University of Oregon funds and develops the Oregon Coast Project, but our 

department is only one of several stakeholders in this program. The Coquille Indian 

Tribe and the Confederated Tribes of Coos, Lower Umpqua and Siuslaw Indians have 

an equally vested interest in studying their cultural heritage. Federally recognized tribes 

in the United States oversee the management of cultural material and archaeological 

sites. This means that archaeological researchers must develop some level of 
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collaboration with the tribes in their region of study. In many cases, these relationships 

are structured such that researchers pursue their own aims of study while interfacing 

with tribes in order to work together toward common aims. While some tribal 

governments are less receptive to archaeological work, many tribes are very amenable 

to pursuing specific projects and research questions, particularly in cases where 

answering these questions can aid in the development of a region’s cultural history or 

when archaeological evidence might hold bearing on modern policies that affect these 

tribes. 

This thesis was conceived as a part of the Oregon Coast Archaeology Project, 

and is intended to help pursue the interests of the tribes with which the project has 

worked. I participated in the Oregon Coast Project field school in August 2016, and 

returned as a volunteer and student researcher in September 2017. This fieldwork took 

place at Bullards Beach State Park, across the Coquille River estuary from the city of 

Bandon, Oregon. The archaeological sites in the area of the State Park are the focus of 

my thesis. In the interest of assisting management efforts by the Coquille Indian Tribe 

and Oregon State Parks, this thesis uses Bullards Beach State Park as a case study to 

investigate estuarine erosion and its impact on archaeological sites. 

There are numerous archaeological site loci present throughout the park. 

However, because there has been relatively little research on the coast in recent decades, 

and because of the often-limited resources available to management agencies, the extent 

to which these sites have been affected by erosional processes is largely unknown. This 

thesis project is intended to determine historic erosion rates along the Coquille River 
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estuary, and to assess the risk that this erosion poses to the archaeological sites within 

Bullards Beach State Park. 

Without long-term monitoring, it is impossible to determine the exact rate at 

which erosion is taking place at Bullards Beach. However, it may be possible to 

estimate past erosional activity in a relatively short amount of time by using historical 

aerial imagery data. By mapping and comparing this imagery in ArcGIS, we can begin 

to assess what areas of the park have been most impacted by natural and anthropogenic 

erosional processes over recent decades. Combined with the results of 2016 and 2017 

archaeological survey at Bullards Beach, this imagery data will allow for the prediction 

of the threat that erosion poses to archaeological sites in the future. 

 Predicting the future impacts of erosion on archaeological sites will improve the 

efficacy of management and conservation efforts at those sites. Research to account for 

erosional impacts will help inform the work of management agencies by allowing them 

to more effectively prioritize management efforts and allocate resources toward damage 

mitigation. These outcomes are also in the interest of academic archaeological research: 

improving the preservation of archaeological material will provide future researchers a 

larger record with which to work. Site preservation is therefore at the intersection of 

academic archaeology and cultural resource management, presenting an opportunity for 

collaboration and partnership between tribal, state, and academic stakeholders. 

The application of aerial imagery mapping along the Coquille River estuary 

indicates that the Bullards Beach sandspit has undergone a high rate of bank erosion 

over the past century. This erosional activity poses dire consequences to the 

archaeological sites in the area, many of which will be destroyed in a matter of decades 
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if erosion continues unchecked. By addressing the impacts of erosion on these 

archaeological sites, the results of this study may aid in future archaeological research 

and cultural resource management at Bullards Beach State Park. Furthermore, the 

method presented herein has the potential to be applied for rapid erosion estimation and 

archaeological risk assessment in other localities throughout the Oregon Coast. 
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Background 

The Coastal Migration Theory and Archaeology on the Oregon Coast 

The Oregon Coast is under-studied in contemporary archaeological research, 

with significantly less research taking place here than in other regions of the Pacific 

Coast of North America. For example, there are thousands of radiocarbon dates for 

archaeological material from the California Channel Islands, while there are only a few 

hundred for the entire Oregon Coast (Erlandson & Moss 1999; Scott M. Fitzpatrick & 

Nicholas P. Jew, personal communication, 2016). The Channel Islands have only a 

fraction of the land area, but there is a tremendous amount of information now known 

about their prehistory (see Glassow 2010) demonstrating that there is disproportionally 

more archaeological work taking place there than on the Oregon Coast. 

This disparity is due in part to an emphasis on identifying and documenting 

archaeological sites that are the earliest remnants of paleoindian colonization of the 

Americas. Parts of the archaeological community are perhaps overly focused on 

documenting the oldest artifacts, sites, features, etc. While these types of archaeological 

evidence are critical for pursuing certain inquiries, particularly the development of 

clearer chronologies of human history, there is a tendency for this focus to overshadow 

archaeological work in areas where these interests may not be paramount. 

For the Pacific Coast, this is evident in discourse surrounding the Coastal 

Migration Theory (CMT). The CMT proposes that the first humans to migrate into the 

Americas did so ca. 14,000 years before present (BP) following a maritime route, 

traveling by boat from East Asia along the shores of the Pacific Rim (Aikens et al. 
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2011: 219-220). This theory diverges from the traditional hypothesis of the Interior Ice-

Free Corridor migration view of human population dispersal into the Americas by an 

overland route across Beringia land bridge from Asia and through a corridor between 

two large ice sheets into lower North America. 

A number of key arguments have been used to support the CMT. Glaciological 

research has demonstrated that an overland route between the Cordilleran and 

Laurentide ice sheets in North America would not have been passable nor hospitable for 

human migration until ca. 12,600 BP (Pedersen et al. 2016). Research throughout the 

Americas has identified a number of archaeological sites that date to the end of the 

Pleistocene, pre-dating ca. 12,600 BP (Bever 2001; Dillehay et al. 2008; Dixon et al. 

1997; Erlandson 2007; Erlandson et al. 1996; Erlandson et al. 2011; Jenkins et al. 2012; 

Mann & Hamilton 1995; Meltzer et al. 1997; Rick et al. 2013). This means that the 

earliest migrations into the Americas must have occurred before the opening of a 

hospitable ice-free corridor, and thus some alternate route must have been taken to enter 

lower North and South America. Paleoecological evidence suggests that near-shore kelp 

forest ecosystems throughout the Pacific Rim may have facilitated a coastal migration, 

offering continuous access to a rich diversity of marine resources along the coastline 

from Japan to Mexico (Erlandson et al. 2015; Erlandson et al. 2007). Given a 

contiguous ecosystem with a richness of familiar resources throughout the entire 

northern Pacific Rim, migrant human populations could have quite rapidly traveled 

along coastlines from Asia into the Americas, unhindered by glacial ice and requiring 

little technological or lifeway changes to different biomes. 
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In the interest of further substantiating the CMT, contemporary archaeological 

research throughout the Pacific Coast of North America has placed emphasis on 

identifying late Pleistocene coastal sites in the region. Investigations at coastal 

archaeological sites of this age would help support the theory of a coastal migration 

route and provide greater insight into the earliest cultures that inhabited North America. 

However, late Pleistocene sites are exceedingly rare in coastal zones, and none have 

been found thus far on the Oregon Coast. The observed absence of late Pleistocene 

archaeological material throughout the region is due to sea level change, and extreme 

erosional impacts on archaeological preservation. 

In his 1997 book The Pacific Northwest Coast, Paul Komar outlines the 

patterning of sea level change throughout Earth’s history. Komar notes that global sea 

level change occurs in a cycle between low and high stands that corresponds to glacier 

formation (1997: 14). The Quaternary period (2.58 MYA – Present) is characterized by 

the growth and shrinking of continental ice sheets, corresponding with fluctuation in 

global sea surface temperature (Denton et al. 2010). The water that formed these ice 

sheets came from Earth’s oceans. As such, the expansion of glacial ice causes sea levels 

to decrease and the shrinking of glacial ice causes sea levels to increase. During the Last 

Glacial Maximum ca. 20,000 BP, sea level was ~400 feet (~100 m) lower than it is 

today (Komar 1997: 21). The subsequent melting of glacial ice caused a rapid increase 

in sea level, meaning the geographic area that constituted the Pacific coast during the 

end of the Pleistocene epoch is now between 20-30 miles (30-50 km) west of the 

modern shoreline, submerged under ~100 meters of seawater (Komar 1997: 24). 
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Accordingly, most archaeological evidence for late Pleistocene human habitation of the 

Pacific Coast has now been inundated (Erlandson 2008; Moss & Erlandson 1995). 

The reality of coastal archaeological research throughout the world is that many 

early sites are likely drowned and may have been completely destroyed in certain 

localities. In response to this factor, archaeologists have worked to develop more 

efficient survey methods to help locate and document late Pleistocene archaeological 

sites in coastal zones. These efforts include targeted surveys based on local resource 

availability and interpretations of local geomorphology to identify late Pleistocene 

paleosols (Davis 2006; Punke & Davis 2006; Rick et al. 2013). This search has yielded 

three sites on the Channel Islands dating between ~12,200 and ~11,200 cal BP 

(Erlandson et al. 2011), though no chronological corollaries in Oregon or Washington.  

The Problem of Preservation in Oregon Coast Archaeology 

The dearth of late Pleistocene sites on the Oregon coast speaks to differential 

preservation regimes for archaeological material throughout the Pacific West Coast: 

fewer late Pleistocene sites have been preserved on the Oregon coast than in other areas 

of the Pacific Coast. This outcome is a combination of Oregon’s coastal tectonic 

regime, its geomorphology, and substantial wave action in the region. Given the 

paleogeography of the Oregon Coast, archaeological material in the region is under 

particular threat from the effects of wave, fluvial, and tectonic action. These factors can 

all cause erosion, and much of the region’s archaeological record is located in the areas 

that are most vulnerable to their effects. 

 The coastline of Oregon and Washington are situated along the Cascadia 

subduction zone (CSZ), the convergent plate boundary between the North American 
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continental plate and the Juan de Fuca oceanic plate. These two tectonic plates move 

towards each other, colliding at an oblique angle at a rate of ~3-5 centimeters per year 

(Atwater 1970; Engebretson 1985; Schmalzle et al. 2014). As the two plates converge, 

the Juan de Fuca plate is shoved beneath the North America plate. Compressional strain 

builds along the CSZ until the force of the strain exceeds the force of friction between 

the two plates. At this point, potential energy is released from the two plates in the form 

of massive thrust earthquakes (Atwater et al. 1995; Clague 1997). Tectonic activity on 

the Oregon coast has an adverse impact on archaeological preservation in the region. As 

an oceanic plate subducts underneath a continental plate, the continental plate gradually 

undergoes lateral compressional deformation, shortening parallel to the movement of 

the subducting oceanic plate. This compression causes the continental crust to uplift 

vertically. During thrust earthquakes, the plate undergoes abrupt extension—the 

continental plate extends laterally and subsides downward as strain is released from the 

plate (Punke & Davis 2016). 

This tectonic action is often accompanied by massive ocean waves called 

tsunamis. Subsidence events cause massive amount of water to be rapidly displaced as 

the continental and oceanic plates undergo abrupt movement—this displacement 

manifests in the form of tsunami waves, which transfer massive amounts of energy to 

coastlines and deposit sediments on the shores when they break. Tsunamis can cause 

archaeological sites to become destroyed, buried, or inundated (Hall 1999). Along the 

CSZ, thrust earthquakes and major tsunami events occur about once every 400-600 

years (Atwater et al. 1995; Clague 1997). This has likely caused the destruction of 

thousands of archaeological sites throughout the coastlines of Oregon and Washington. 
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Wave action poses an additional threat to Oregon coast archaeological sites. 

Waves can be considered as a vector for the transfer of kinetic energy: irregularities on 

the ocean surface obtain energy from the wind, creating waves that carry that energy 

across the ocean until they break, delivering that energy to the coastline (Komar 1997, 

42). The resulting energy transfer contributes to the erosion of coastal landforms. 

Wave energy on the Oregon coast is higher than anywhere else on the Pacific 

seaboard. Using seismometers and National Oceanic and Atmospheric Administration 

(NOAA) data buoys, researchers have assessed the extent of wave energy on the 

Oregon coast. Breaker wave heights were measured from 1981 until at least 1997, and 

averaged to demonstrate monthly variation in wave heights. Average summer waves 

reach a height of ~2 meters, while average winter waves reach a height of ~3.5 meters 

(Komar 1997: 43-44). However, maximum wave heights deviate significantly from this 

average. Winter storm conditions can cause average wave heights to reach ~10 meters, 

with individual waves reaching as high as 20-30 meters (Komar 1997: 44). These are 

among the most extreme wave conditions anywhere in the world. 

The Oregon Coast is characterized by short stretches of sandy beach punctuated 

by mountainous headlands. Many of these beaches host estuaries where rivers meet the 

Pacific (Komar 1997: 1-3). These estuaries were optimal locations for paleoindian 

settlement on the Oregon Coast. Estuaries serve as the confluence of large riverine 

watersheds, and they are zones where riverine freshwater mixes with marine saltwater. 

This means that estuaries are host to a high diversity and density of nutrients, creating 

habitat for a wide variety of plant and animal species with substantial biotic activity. 

The headlands along the Oregon Coast shelter the lowland beaches and estuaries from 
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the more extreme wave and storm conditions. Furthermore, the rivers themselves offer 

transportation and access to resources in the interior. These factors all make Oregon’s 

estuaries favorable areas for human settlement. This is reflected in linguistic geography 

and settlement patterning among the Oregon coast’s native peoples—permanent 

settlements were established on estuaries and watersheds, and language communities 

were aligned with the rivers throughout the Coast Mountain Range (Aikens et al. 2011: 

212-217; Cressman 1952). 

Unfortunately, this settlement patterning means that the areas with the richest 

archaeological material on the Oregon Coast are also the areas most threatened by 

erosion. Because hydraulic action affects unconsolidated sediments more severely than 

solid rock, beaches and estuaries are more heavily impacted by tidal and wave erosion 

than headlands. Additionally, rivers meander and change shape over time as banks are 

eroded. As such, these and other factors can have deleterious effects on the preservation 

of archaeological sites along beaches and estuaries. The extreme erosional regime on 

the Oregon coast—combined with the patterning of native settlements along resource-

rich estuary environments—has likely contributed to the apparent dearth of late 

Pleistocene archaeological sites, and has negatively impacted the entire archaeological 

record in the region. 

Making a Case for Oregon Coast Archaeology 

 Unfavorable preservation conditions have contributed to a lack of investment in 

archaeological research on the Oregon Coast. While efforts to find late Pleistocene 

archaeological sites in the region have thus far been fruitless, there are many other 

coastal sites throughout Oregon. While these sites are relatively young, and while they 
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may not be of significance to the discourse of the Coastal Migration Theory, they are 

still inherently valuable as cultural resources, and should be treated with the same 

degree of consideration and scrutiny as any other archaeological material. What follows 

is an explanation of the importance of these archaeological materials, and a case for 

developing a more holistic archaeological research program throughout the region. 

In archaeology, the interests of Native American tribal organizations must be 

considered. Archaeological materials throughout the Americas belong to the heritage of 

modern indigenous peoples. Tribal governments have the right to determine how their 

heritage is managed, and thus cultural resource management must be carried out in 

collaboration with these groups. Archaeologists can work with tribal historic 

preservation offices (THPOs) to pursue common goals. Extensive correspondence and 

partnership would allow for these groups to pool resources and develop comprehensive 

research and management programs. This degree of partnership would allow academic 

and tribal organizations to make archaeology a more collaborative, community-oriented 

field. 

The Oregon Coast presents an opportunity for the development of a thriving 

archaeological research and management program. The Coquille Indian Tribe and the 

Confederated Tribes of the Coos, Lower Umpqua, and Siuslaw Indians have a vested 

interest in pursuing archaeological research in the region. Partnering with these tribes, 

the Oregon Coast Archaeology Project intends to begin developing such a program.  

 The extreme erosional regime in the region should serve as cause for more 

investment on the part of archaeological research, not less. Archaeological material is a 

non-renewable resource. Regardless of a site’s ascribed value, it is a constituent to a 
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larger archaeological record. In order to develop a holistic reconstruction of the past, 

archaeologists must account for the entire archaeological record. Therefore, 

archaeological sites threatened with destruction by erosional processes and climate 

change should be considered endangered resources. These sites require urgent attention 

in order to protect the cultural material they contain, and should be treated as the first 

priority for archaeological investigation. 

In regions with unfavorable preservation conditions, threatened sites may not be 

of immediate interest to archaeological research. However, sites of this nature present 

archaeologists with an opportunity to develop more efficient methods for conservation 

and management. Researching the deleterious effects of erosional processes on 

archaeological material will allow management agencies to better prescribe and apply 

conservation efforts at threatened sites. As such, these efforts would improve the ability 

of archaeologists to account for all extant archaeological material. 

For these reasons, it is necessary that archaeological research be pursued 

throughout the Oregon Coast. By developing a research program focused on improving 

methods of archaeological resource management, we can work with tribal and 

governmental agencies to better investigate and preserve the region’s archaeological 

record. A major first step in such a program is to develop an expedient means for 

assessing erosion risks for archaeological sites in and around Oregon’s estuaries.  



 
 

 
 

15 

Methodology 

2016 Pedestrian Survey of Bullards Beach 

Pedestrian survey of archaeological sites was performed at Bullards Beach State 

Park in August 2016. This survey had two goals: to locate and assess Running Fox 

Midden (35-CS-131), an archaeological site identified over two decades earlier in a 

previous survey (Erlandson & Moss 1994), and to identify and assess other 

archaeological sites and/or isolates on the Bullards Beach sandspit. The survey was 

carried out in east-west transects beginning at the south end of the sandspit and moving 

north. Global Positioning System (GPS) data points were recorded for site loci, 

including shell midden material, isolated artifacts found on the surface, and notable 

features of site destruction, such as fluvial erosion and looters pits. 

Drs. Jon Erlandson and Madonna Moss first reported site 35-CS-131 in a 1994 

survey of the Oregon coast. By comparing their site report with data collected in the 

2016 survey, it was observed that site 35-CS-131 has significantly degraded in the two 

decades since the 1994 survey. The density of vegetation in the survey area complicated 

site relocation, and a portion of site 35-CS-131 appeared to have been overgrown by 

shore pine and other low shrubbery. In addition to this overgrowth, the sand dunes that 

constitute the site area have been heavily impacted and deflated by erosion, and there 

was a dearth of cultural material present. Only a small quantity of shell and bone was 

visible on the surface of the site. These observations contradict the 1994 report for the 

site, which refers to rich shell midden material, animal bones, chipped stone debris, and 

a corner-notched projectile point on the site’s surface (Moss & Erlandson 1994). 
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        Additional site loci were identified north of the Running Fox locus, dotting the 

length of the river bank on the east side of the sand spit. These sites consisted of shell 

midden and small scatters of lithic material. Given the limitations of surface survey, 

visibility was hampered by vegetation, and it was impossible to accurately assess the 

extent of the site area for any individual locus. Rough estimates of site boundaries were 

made based on observation of areas with relatively minimal vegetation. 

        Site deposits were observed in a low bluff at the bank of the Coquille River, and 

there were clear signs of tidal and riverine erosion along the eastern edges of these sites. 

At each site locus, we observed shell midden material eroding from the embankment. 

The sites appear to be unaffected by the estuary at low tide. However, high tides and 

storm surges cause the water to reach the embankment, heightening the erosional 

impact of the estuary on archaeological sites. In addition to erosional activity, we 

observed as many as eight separate looters’ pits, likely created by people hunting for 

projectile points or other such stone artifacts. These pits were reported to Kassandra 

Rippee and Mollie Manion, the Historic Preservation Officer for the Coquille tribe and 

the coastal archaeologist for Oregon State Parks, respectively. 

2017 Sub-Surface Testing at Gaper Midden 

Among the sites observed in the 2016 survey, Gaper Midden (35-CS-220) was 

the most extensive. 35-CS-220 is a shell midden site located in the embankment at the 

northwest corner of the Bullards Beach sandspit. This site was recorded in a 2004 

survey carried out by archaeologists from the University of Oregon’s Museum of 

Natural and Cultural History (Tasa et al. 2004). Data presented in the site report aligned 

with observations made in the 2016 survey, and we confirmed with the Oregon State 
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Historic Preservation Office that we had located site 35-CS-220. The authors of the 

report named this site “Gaper Midden” because they observed a high proportion of 

gaper clam remains on the site’s surface (Tasa et al. 2004). Being the largest shell 

midden locality identified in the 2016 survey and with evidence of looting and erosion, 

site 35-CS-220 was chosen as the next step for the Oregon Coast Archaeology Project 

and permits were obtained for excavation at the site during the 2017 field season. 

       Test excavations took place at Gaper Midden in September 2017. Field school 

students under the direction of Drs. Scott Fitzpatrick and Nicholas Jew provided 

assistance in excavation and processing of material from the site. Permits allowed for 

the excavation of up to twenty 50 × 50 cm shovel test pits and five 1 × 1 m test units. 

This allotment was used to establish a sense of scale for the site. Four shovel test pits 

were dug along a north-south baseline. From this point, it was possible to estimate 

where the center of the midden was located based on the quantity of material observed 

in each test pit. An east-west baseline was put in across this portion of the site, and 

additional test pits placed along it to the west and east of the north-south baseline. 

Consistent with the initial survey report for 35-CS-220, the majority of the shell 

midden material present was gaper clam (Tresus capax) remains. Many of these shell 

valves were still articulated with their opposite valves, and some shells were observed 

to have barnacle shells grown onto their interior. These are unusual qualities for cultural 

shell midden material because they are indicative of clams that died while still 

underwater. Furthermore, the homogeneity of the material is not typical of shell midden 

material from other Oregon Coast sites. Compared to shell midden material housed at 

the Coquille THPO, the proportion of gaper clams is unusually high. These observations 
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gave us doubts as to whether or not the site was a pre-contact shell midden, and it was 

proposed by the Coquille THPO that the site might be a deposit of modern dredge 

spoils. However, we found two small stone projectile points and a small amount of 

lithic debitage in one of our test pits near the center of the site.  

Three shell samples from 35-CS-220 were submitted for radiocarbon dating, 

along with two charcoal samples from above and below the strata from which the shell 

samples were collected. The shell samples returned dates 3440-2770 calibrated years 

BP (cal BP); one of the charcoal dates failed, but the other returned 3330-3000 cal BP 

(Table 1). These results indicate that Gaper Midden is likely a pre-contact shell midden. 

Furthermore, it is relatively old compared to other shell midden sites throughout the 

region. In an assessment of radiocarbon results from archaeological sites on the Oregon 

Coast, it has been observed that as few as 15% of known sites in the region predate 

1,500 BP (Erlandson & Moss 1999). Regardless of its age, this site could serve as an 

ideal proxy for investigating the effects of erosion on a shell-bearing site in the area. 

Overall, the data obtained during the 2016 and 2017 field seasons demonstrates 

a need for further archaeological research and conservation programs at Bullards Beach 

State Park. There are multiple site loci succumbing to the effects of erosion in the area 

of the Coquille River estuary, among them at least one site dating to ca. 3000 BP. To 

ensure the maximum efficacy of future archaeological work at Bullards Beach, it is 

necessary for erosional processes to be accounted for in the area. 
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Aerial Photography and Georeferencing 

By collating a series of aerial images from different dates for the same location, a 

chronology of the landscape can be created and observed. This type of data set allows 

for the assessment of geographical information relative to time. If the photos are 

organized in chronological order by date, consecutive images can be compared to one 

another, and inferences about the history of that landscape can be made. Using a 

geographic information system (GIS) allows us to take this concept further. Aerial 

images can be aligned precisely with a reference map, and measurements can be made 

between them to assess quantifiable geospatial data. These ideas are applied to the 

Bullards Beach case as a means of assessing the extent of erosion that has taken place in 

recent decades. 

Aerial and satellite imagery were compiled for Bullards Beach State Park in 

order to create a series of chronological maps. Historical aerial photos of the Bullards 

Beach sandspit were retrieved from the University of Oregon Map & Aerial 

Photography Library. These photos were taken on flights carried out by various 

government agencies, including the Bureau of Land Management, the Army Corps of 

Engineers, the U.S. Geological Survey, and the U.S. Department of Agriculture. 

Historical imagery was obtained from 1939, 1942, 1954, 1967, 1978, 1986, and 1997 

(Appendix, Fig. A1-A7). To achieve coverage between 1997 and the present, satellite 

imagery from 2007 was retrieved using Google Earth (Appendix, Fig. A8). Satellite 

imagery from 2016 was retrieved from ArcGIS World Imagery data, and is the most 

recent among available aerial imagery data for Bullards Beach (Appendix Fig. A9). 
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Historical photos were scanned to high-resolution JPEG files, and prepared in 

Adobe Photoshop CC 19.1.0 for use in ArcGIS. For sets of photos that divided Bullards 

Beach into multiple prints, JPEG images were stitched using the “Auto-Align” and 

“Auto-Blend” tools in Photoshop. This procedure was also applied to the 2007 Google 

Earth imagery in order to achieve the highest possible image resolution. For each year 

listed above, this procedure provided a single high-resolution aerial image covering the 

entire area of the Bullards Beach sandspit. 

In order to accurately map data layers in the ArcMap program, they must be 

overlaid on one another such that the geospatial locations depicted in each data layer 

align to their actual location on the surface of the earth. To achieve this, corresponding 

spatial reference-points must be identified on the data layer and on a coordinate map of 

the earth’s surface, and then these points must be aligned with one another. The process 

of registering and aligning corresponding geographical data is referred to as 

georeferencing (Gillings & Wheatley 2005: 377). 

Georeferencing for data layers that include known geographic coordinates is 

done by aligning the coordinates on those layers to matching coordinates on a base map. 

However, for layers without known geographic coordinates, georeferencing is less 

straightforward. Corresponding geospatial features must be identified in the data layer 

and on the base map to serve as reference points. For aerial and satellite imagery, 

georeferencing can be achieved by identifying and linking landmarks that are visible in 

both the imagery layer and an imagery base map. 

Accurate georeferencing can be accomplished in ArcMap using one reference 

point in each corner of an image layer, and a handful of additional reference points 
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throughout the middle of the layer (Esri 2017). A minimum of three points is required to 

scale and align a layer using a first order polynomial transformation in ArcGIS. 

Additional points introduce residuals, distances by which the reference points are offset 

because they cannot be perfectly aligned with corresponding points on the base map 

without causing distortion to the layer being georeferenced. A statistical measure of the 

error produced by this offset is represented by the root mean square error (RMS error) 

of all residuals present in a set of georeference points. In general, having an RMS error 

closer to zero indicates more accurate georeferencing for a layer. However, because of 

the potential for user error in identifying accurate control points, it is best to identify 

more than three points and to adjust which points are used to achieve the lowest 

possible RMS error. 

Additionally, it may be necessary to apply a second order polynomial 

transformation to a layer to achieve accurate georeferencing when using aerial imagery. 

This type of transformation accounts for curvature on the earth’s surface by creating 

slight curvature in the image layer, instead of simply scaling and rotating the image on a 

two-dimensional plane. This type of transformation allows for more reference points to 

be used with a lower RMS error, thus achieving a more accurate map projection for the 

image layer. 

Aerial imagery data layers for Bullards Beach were georeferenced using visible 

landmarks as reference points. Around 15 landmarks were identified for each imagery 

layer and then linked to corresponding locations on the base map. A second order 

polynomial transformation was applied to each layer and reference points were adjusted 
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until 10-12 points were linked with an RMS error of 5 or lower. RMS error was 

recorded for consideration during data analysis. 

Shoreline Mapping and Offset Measurements in ArcMap 

 To assess the extent of erosion through time at Bullards Beach, it was necessary 

to create measureable features in ArcMap to represent the location of the bank cut in 

each image layer. Line segment features in ArcMap consist of a line of specified length 

and direction, with a vertex point at each end. It is possible to connect these lines at 

their vertices to create contiguous polylines. For each layer, polyline features were 

drawn in 20 m segments, corresponding to the observed location of the Coquille River’s 

west bank cut. These features include the extent between the northernmost point of the 

river bank within the area of Bullards Beach State Park, and the point where the bank 

cut was observed to intersect with the river’s north jetty. 

 The “Near” tool in ArcMap was used to measure distances between line features 

for consecutive imagery layers. For each pair of chronologically adjacent polylines 

(1939-1942, 1942-1954, 1954-1967, etc.), distance was measured between each vertex 

on each line and the closest point on the opposite line. This process created two tables 

of distance measurements for each pair of lines (i.e., one table with distances between 

vertices on Line A and their nearest points on Line B, and one table with distances 

between vertices on Line B and their nearest points on Line A). The values returned 

were averaged to obtain the average offset distance between each line and each 

chronologically adjacent line. Averages serve as a measure of the average distance of 

erosional or depositional offset that occurred between each year represented in the 
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imagery dataset. To assess net offset for the entire chronology, this method was also 

applied to the 1939 and 2016 bank cut polylines. 

Because this method does not provide direction between measured points, 

average offset values cannot differentiate between erosional and depositional change. 

Average offset values provide a useful measure of the amount of landscape change that 

has taken place through time at Bullards Beach, but they alone cannot provide 

actionable information about the erosion in the area. That being said, distances can be 

measured with relative ease to assess erosion or deposition for smaller areas within the 

study area. Distances can be measured between any two points on the bank cut polyline 

features using the “Measure” tool in ArcMap. By measuring distance between nearest 

points on defined stretches of each line feature and then dividing that distance by the 

number of years covered between all lines measured, rates of erosion in m/year can be 

derived for specific sites in the study area. This method was applied to assess erosion 

rates in areas with consistent observable erosional action throughout the chronology of 

aerial imagery data for Bullards Beach. 

Using data collected during the 2016 and 2017 field seasons at Bullards Beach, 

the locations of archaeological sites and surface isolates throughout the study area were 

mapped. Operating under the assumption that erosion rates will continue at the rates 

observed throughout the historical imagery dataset, it is possible to estimate the amount 

of time a given archaeological site has before it is destroyed by erosional processes. 

This is done by measuring the distance between a given site and the nearest point on the 

2016 bank cut polyline, and dividing that distance by the rate of erosion observed for 
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the given river bank locality. This was applied to assess risk to archaeological sites 

throughout Bullards Beach. 

Accounting for Error 

The method for erosion mapping presented herein is limited by the content and 

quality of available imagery data. Photographic prints are only capable of depicting 

detail at the magnification of the original photograph. Scanning these prints into digital 

images allows them to be manipulated, magnified, and inspected in greater detail than is 

possible by simply observing the print. However, magnifying a scanned photo does not 

improve its resolution. At a certain level of magnification, the pixels that compose a 

digital image obscure the details of its content. Because this limits the ability of the user 

to identify geographic features in an aerial image, it increases the likelihood of human 

error when georeferencing the image in question, and when mapping the location of the 

bank cut in each image. To account for this error, measurements were taken in meters 

for the pixel width in each imagery layer. These values were added to the RMS error for 

the corresponding image to achieve a measure of error for the positioning of each aerial 

imagery layer and its associated polyline feature. 
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Analysis 

Erosional/Depositional Offset at Bullards Beach State Park, 1939-2016 

Measurements of the distance between vertices and nearest points on the line 

features for each bank cut yielded between 621 and 732 values for each pair of 

consecutive imagery dates. The mean of each set of measurements represents the 

average distance between the observed position of the bank cut in a given imagery layer 

and the position of the bank cut in the next imagery layer in the chronology. Annual 

erosional/depositional offset rates were derived in m/year by dividing each average 

offset value by the number of years accounted for in each pair of aerial photographs 

(Table 2). 

Imagery Dates Number of 
measurements 

Average Offset 
(m) 

Timespan 
(years) 

Offset Rate 
(m/year) 

1939-1942 630 16.77 3 5.59 

1942-1954 621 39.54 12 3.29 

1954-1967 629 25.66 13 1.97 

1967-1978 688 38.91 11 3.54 

1978-1986 722 19.26 8 2.41 

1986-1997 714 16.77 11 1.52 

1997-2007 724 16.89 10 1.69 

2007-2016 732 6.34 9 0.7 

1939-2016 688 110.93 77 1.44 

Table 2: Erosional/depositional offset between Coquille River estuary bank cut 

positions observed in aerial imagery data, 1939-2016. 

The highest rate of offset occurred between 1939 and 1942 at 5.59 m/year, more 

than three times the average offset rate for the entire dataset. Because this rate only 



 
 

 
 

27 

represents a 3-year timespan, it appears to be subject to bias from a small sample size. 

This bias may be the result of a particularly severe storm season, or some other 

erosional event; further historical research is necessary to assess this possibility. 

However, the 1942 imagery has the lowest resolution among aerial images in the 

dataset, presenting a heightened probability of human error in georeferencing and 

observations of the bank cut. Additionally, the 1939 and 1942 imagery layers have a 

relatively high RMS error in their georeferencing (Table 3). These factors are both 

likely to have some level of impact on the accuracy of the derived rate of offset. 

Imagery Date RMS Error Pixel width (m) Total Error 

1939 4.88 0.79 5.67 

1942 3.95 3.16 7.11 

1954 4.58 2.41 6.99 

1967 4.1 2.46 6.56 

1978 1.35 2.66 4.01 

1986 2.53 1.5 4.03 

1997 2.32 1.47 3.79 

2007 2.56 1.21 3.77 
Table 3: Error measurements for georeferencing and imagery pixel width. 

The lowest rate of offset occurred between 2007 and 2016 at 0.7 m/year. This 

value represents a 10-year timespan, with high-resolution imagery and relatively low 

georeferencing RMS error. This coincides with a general decrease in the offset rate 

through time from 1967 to 2016. This may indicate that there are natural variables that 

have caused the rate of erosional/depositional offset to decrease throughout the study 

area. 
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The net average offset for the entire 1939-2016 chronology is 110.93 m (Figure 

1). This result yields an average annual offset rate of 1.44 m/year, indicating a highly 

dynamic erosion regime throughout the past century. 

Localized Erosion Rates 

The area with the most extreme rate of bank offset is located at the southeast 

corner of the Bullards Beach sandspit, along a 1 km long stretch of the bank (Figure 2). 

Erosion measurements for this area yielded nearest distances reaching as high as 600 m 

between the 1939 and 2016 bank cut features. The average erosional offset for this 

extent is 273.93 m between 1939 and 2016. Based on this figure, erosion has occurred 

in this area at a rate of 3.56 m/year. A measure of the area constrained by the 1939 and 

2016 bank cut features indicates that ~380,000 m2 of land has been lost to erosion at this 

locality. If erosion persists at this rate, archaeological material observed in the area will 

be destroyed within ~20 years. The isolate loci closest to the shoreline in the area could 

be destroyed in as few as 10 years.  

Another area with high erosion rates was observed ~1.8 km north of the jetty 

(Figure 3). The bank in this area is observed to consistently recede between each pair of 

consecutive imagery layers. At this locality, nearest-point measurements yield as much 

as 200 meters of offset between 1939 and 2016, with an average of 111.05 m of offset. 

This yields an erosional offset rate of 1.44 m/year. It is estimated that ~40,500 m2 of 

land area has been lost at this locality. The 2016 survey identified archaeological 

materials along the bank cut in this area, and further inland within ~50 m of the bank. 

At an erosion rate of 1.44 m/year, these site loci face destruction within ~30 years. 
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Figure 1: Erosional offset of river bank, Bullards Beach State, 1939-2016. 
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Figure 2: Erosional offset at the south end of Bullards Beach State Park, 1939-2016.
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Figure 3: Erosional offset 1.8 km north of jetty, Bullards Beach State Park, 1939-2016.
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Figure 4: Erosional offset at Gaper Midden, Bullards Beach State Park, 1939-2016. 
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At site 35-CS-220, the net bank offset is 52.45 m between 1939 and 2016, 

returning an annual erosion rate of 0.68 m/year. In our 2016 survey, we identified a 

midden lens ~25 cm thick eroding from the bank at this locality. The observed site area 

stretches inland ~65 m from the riverbank (Figure 4). If erosion continues at 0.68 

m/year, the site would be destroyed in ~100 years and undergo severe deterioration over 

the next two decades: by 2040, as much as ~45% of the site’s observed area may be 

destroyed. By multiplying this area by thickness of the midden lens eroding from the 

bank, it is estimated that ~300 m3 of shell midden material will be lost. 
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Discussion 

Erosion and Risk to Archaeological Sites at Bullards Beach 

As my research suggests, erosion at Bullards Beach State Park has occurred at 

an alarming rate in recent decades. Since 1939, the west bank of the Coquille River 

estuary has been offset by as much as 110.93 m, returning an average bank erosion rate 

of 1.44 m/year. Localized erosion rates throughout the park are as high as 3.56 m/year. 

These rates are of dire consequence for archaeological preservation at Bullards Beach. 

If erosion rates continue at the modeled pace, site loci at the southern end of the 

park are the most threatened. Archaeological material throughout the area faces 

immediate threats from bank erosion, and certain site loci throughout the area may be 

destroyed within 20 years. However, our surveys have only observed isolated 

archaeological materials in this area. Subsurface surveys would be necessary to achieve 

more precise estimates of how much material might eventually be lost. 

Based on investigations at site 35-CS-220, archaeological material faces 

immediate threat from erosional degradation. Urgent efforts are necessary to investigate 

the site and/or to protect it from further damage due to erosion. It is likely that a 

significant portion of the site’s original area and archaeological constituents have 

already been destroyed. 

However, it is possible that erosion at Bullards Beach could be slowing. 

Erosional offset rates have consistently decreased since 1978. One potential reason for 

this is the spread of vegetation throughout Bullards Beach that acts as a stabilizer of the 

loose, sandy soils. Observation of aerial imagery throughout the dataset demonstrates a 
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significant increase in vegetation throughout the area between 1997 and 2007, and a 

further increase between 2007 and 2016. It is possible that this expansion of vegetation 

has helped dune stabilization and alleviate erosion in the site area due to more 

widespread vegetation. 

Methodological Viability 

Given the constraints of aerial imagery as a dataset, it is impossible to achieve a 

high resolution reconstruction of erosion history using this method. However, it does 

allow for a viable means of quickly estimating historic erosion rates for a given study 

area and projecting trends into the near future. The results obtained provide baseline 

data for archaeological risk assessment and for informing heritage management efforts 

to take mitigation measures. 

A major limitation in applying this method is its dependence upon the resolution 

of available aerial imagery data. Georeferencing and the production of accurate line 

features depend upon human observation of aerial imagery data. As such, the quality of 

aerial imagery data used has bearing on the accuracy of the results: the lower the quality 

of imagery used, the lower the expected accuracy of data collected. 

A further hindrance is posed by potential limitations to the availability of aerial 

imagery data. Assuming that georeferencing and observation of aerial images are 

carried out with accuracy, the resolution of erosion data obtained should increase if 

more years are represented in the aerial imagery dataset. It may be possible to obtain a 

higher-resolution erosion chronology for Bullards Beach if additional spatial imagery 

were obtained that was different than what was available in the University of Oregon’s 

Map & Aerial Photography Library. 
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It is important to note that the resolution, abundance, and quality of aerial 

imagery will vary between regions. The level of modeled accuracy and reconstruction 

of historical erosion rates is highly dependent on the available data and should include 

at least one year from each decade under study.  

 With these variables in mind, this method has a number of advantages that must 

be considered. While it cannot provide a high-resolution erosion history, aerial imagery 

mapping allows for a baseline and expedient risk assessment for archaeological sites. 

Measuring erosion as it occurs requires years of consistent monitoring, whereas this 

approach can produce actionable results in a matter of weeks.  

 Aerial imagery mapping has potential applications for archaeological risk 

assessment in other areas. Aerial imagery archives provide an expansive dataset, and 

some degree of aerial imagery data exists for most public land. The University of 

Oregon Map & Aerial Photography Library houses imagery from throughout Oregon, 

with relatively complete coverage for most cities, national forests, and BLM districts 

throughout the state (University of Oregon Libraries 2018). This method of erosion 

measurement could be thus applied in other estuaries and littoral cells on the Oregon 

Coast, and at localities throughout the entire state. 

 By accounting for historical erosion in a scale of decades, aerial imagery data 

allows for inferences beyond a mere measurement of the erosion that has taken place. 

For example, it was possible to make observations about the change in erosion rates 

through time at Bullards Beach, and to explore vegetation expansion as a possible cause 

for this change. This demonstrates that historical aerial imagery can be applied to 

achieve a more thorough understanding of long-term erosion in estuaries. 
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The greatest advantage of this method is that the erosion data it produces can be 

easily shared. State and tribal historic preservation offices throughout the United States 

typically maintain an ArcGIS database of the archaeological sites within their 

management jurisdiction. As such, erosion data plotted in ArcMap can be readily shared 

with state and tribal stakeholders. If maps were created in a shared database, it would be 

possible for continuous collaboration between stakeholders to create and refine an 

erosion chronology for a given study area. 

Significance 

Because of the deleterious effects of erosional processes on site preservation, it 

is necessary for archaeological research to take erosion into account. This is particularly 

true for coastal regions, where human activity, wave and wind energy contribute to a 

heightened erosional regime and where sea level rise threatens to inundate 

archaeological material. If erosion risks can be easily predicted for archaeological sites, 

then conservation efforts can be carried out with greater efficiency. By using aerial 

imagery data to predict erosional impacts on shoreline-adjacent sites, this approach can 

inform the targeting and implementation of archaeological preservation and damage 

mitigation efforts. 

For academic archaeology, accounting for erosion risks stands to make research 

designs more effective for field studies. The method outlined in this thesis requires 

relatively minimal time expenditure. Therefore, it can be carried out in advance of a 

long-term field project to obtain actionable predictions of erosion impacts at 

archaeological sites. With this information, researchers could make better-informed 

decisions about which archaeological sites to investigate. Specifically, this approach 
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would allow researchers to prioritize excavation efforts at sites that face the most 

immediate threat of destruction from erosional processes. 

 While the sites that are most threatened by erosion will not necessarily be the 

richest or most extensive sites within a given study area, it is imperative that those sites 

are still investigated and reported. In order to achieve an accurate reconstruction of the 

human past, we must work to protect and conserve as much archaeological evidence as 

possible. Therefore, it is necessary to prioritize research at archaeological sites that are 

threatened by the deleterious effects of natural and artificial processes, regardless of the 

ascribed value of material at those sites. Therefore, accounting for the effects of 

processes like erosion will improve the efficacy of archaeological research. The most 

important goal that archaeology can pursue as a field of study is the preservation of 

archaeological material. Doing so will provide future researchers with a more complete 

archaeological record, and thus will expand the body of knowledge that archaeology 

stands to produce. 

Future Research 

Further research is necessary to develop and improve different methods for 

resource management in archaeology. Working to develop methods for accurate and 

expedient risk assessment will improve the efficiency of damage mitigation and 

ultimately increase the amount of archaeological material that is preserved for future 

study. The following section explores these topics, and discusses avenues for future 

archaeological research at Bullards Beach State Park. 

The accuracy of this method stands to be improved with further research and 

experimentation, both at Bullards Beach State Park and in other areas throughout the 



 
 

 
 

39 

Oregon Coast. Creating chronological maps with a greater number of aerial images will 

likely improve the resolution of the erosion data produced. Furthermore, this thesis 

assesses risk to archaeological sites under the assumption that erosion will continue at 

the rate observed throughout the chronology produced. As discussed previously, it is 

possible that erosion rates at Bullards Beach have slowed down over time. By 

incorporating research on river dynamics, future research could improve the accuracy of 

predictions made using aerial imagery data. 

It may be possible to achieve high-resolution erosion mapping by using aerial 

imagery data from a short span of recent years. This could produce results that have 

more direct bearing on future erosion rates, and as such could inform more accurate risk 

assessment for archaeological sites. Finally, as satellite and drone imagery become 

more accessible, the ability to produce high-resolution aerial image chronologies of this 

kind will only improve. With further development, aerial imagery mapping could 

become a reliable tool for erosion measurement and archaeological risk assessment in 

littoral zones throughout the Oregon Coast. 

Efforts to prioritize management and research efforts must also begin to account 

for future sea level rise and its bearings on archaeological preservation. As sea level rise 

continues, archaeological researchers will have to account for shoreline erosion in study 

areas that do not currently face any threat from erosional activity. By working to 

improve methods for shoreline archaeological conservation, archaeologists can begin to 

account for sea level rise before it becomes a threat to archaeological sites at higher 

elevations. 
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In areas like the Coquille River estuary, rising sea level threatens to inundate 

massive areas of land within a relatively short period of time (Thieler & Hammar-Klose 

2000). It may be necessary to pursue widespread archaeological excavations in order to 

collect and successfully preserve the archaeological record in these areas. Excavations 

could prioritize sites in deposits at sea level, and then move on to areas at increasingly 

higher elevations. Any such excavation program would require archaeologists to 

develop thorough, expedient, and accessible means of documentation in order to ensure 

that the material obtained could be put to more effective use by future lab-based 

archaeological research.  

Finally, archaeologists must strive to improve their efforts toward 

communication with a public audience and park stewards,particularly in regard to issues 

of conservation. Preservation practices of archaeological material, particularly in public 

lands, will benefit from greater awareness in the public sphere. At Bullards Beach, this 

is evident in the presence of multiple pits left behind by looting. By educating the public 

on archaeological research practices and the necessity for conservation, archaeologists 

in both the academic and public sectors stand to improve the preservation of the 

archaeological record. Developing an improved awareness on issues like erosion and 

site destruction has the potential to garner necessary funding for the pursuit of more 

effective conservation efforts. 

At Bullards Beach State Park, further archaeological work is necessary to help 

answer a number of important questions regarding prehistoric site use and preservation. 

Presently, it is unclear how much archaeological material is present throughout the area. 

Because of difficulties faced in pedestrian survey, it was impossible to determine the 
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exact quantity and composition of archaeological sites in the park. Subsurface surveys 

throughout Bullards Beach would contribute to a more thorough understanding of the 

archaeological material present in the area. By incorporating data from archaeological 

investigations into the aerial imagery approach, it may be possible to estimate how 

much archaeological material has been lost throughout Bullards Beach, as was 

conducted by Fitzpatrick et al. (2006) in the Caribbean. 

In order to test the accuracy of the predictions made in this thesis, it is necessary 

for erosion to be continually monitored at Bullards Beach. By combining the aerial 

imagery data presented herein with erosion data collected via active monitoring vis-à-

vis detailed site mapping and/or photographic representations, it will be possible to 

make more accurate determinations about erosional impacts on archaeological sites 

throughout the area. 

Finally, the impacts of vegetation expansion on archaeological material at 

Bullards Beach should be explored in further detail. It is possible that vegetation has 

helped to stabilize dune deflation throughout the park, thus aiding in archaeological 

preservation along the Coquille River estuary. However, plant roots or other 

bioturbation such as burrowing animals, or birds collecting materials for nesting, can 

also disturb and churn the sediment. When an archaeological site becomes overgrown, 

plant roots can cause material to shift and be moved out of original context. 

Taphonomic studies of vegetation expansion at Bullards Beach could inform future 

archaeological management efforts throughout the area of the park. 



 
 

 
 

42 

Conclusion 

Indigenous cultures on the Oregon Coast were built around estuaries. Native 

peoples developed their economies around the access to resources and mobility that 

estuaries could provide. The region’s archaeological record is thus tied to its estuaries. 

Because these areas have extreme erosional regimes, it is critical that researchers work 

to understand estuarine erosional processes and their impacts on archaeological sites. 

Left unchecked, erosion in Oregon’s estuaries will degrade and destroy the region’s 

archaeological record. 

To help inform future management efforts at Bullards Beach State Park, the data 

produced in this thesis will be provided to the Oregon State Historic Preservation 

Office, to Oregon State Parks, and to the historic preservation offices of the Coquille 

Indian Tribe and the Confederated Tribes of the Coos, Lower Umpqua, and Siuslaw 

Indians. Drs. Scott Fitzpatrick and Nicholas Jew will also incorporate my findings into 

future archaeological research projects at Bullards State Beach Park.  

For Bullards Beach and for the Oregon Coast as a whole, archaeological 

resource management necessitates expedient erosion measurement and risk assessment. 

Aerial imagery data presents a means of risk assessment that can produce actionable 

results within a short amount of time. The approach outlined herein has potential 

applications throughout the Oregon Coast, and should be explored in further studies. 

The Oregon Coast presents an opportunity for researchers to develop more effective 

methods for archaeological risk assessment, damage mitigation, and conservation.  
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While it bears unfavorable conditions for archaeological preservation, the 

Oregon Coast bears a rich cultural history, and should be made a focus for research 

toward management and preservation of archaeological sites in coastal regions. 
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Appendix: Aerial Imagery 

Provided in the following pages are scans of the aerial imagery dataset mapped 

in this thesis, for reference purposes. Images are credited to the organizations that 

created them, and are presented at 1:24,000 scale. 
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Figure A-1: Bullards Beach State Park imagery, 1939. U.S. Army Corps of Engineers. 
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Figure A-2: Bullards Beach State Park imagery, 1942. U.S. Geological Survey. 
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Figure A-3: Bullards Beach State Park imagery, 1954. U.S. Department of Agriculture. 
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Figure A-4: Bullards Beach State Park imagery, 1967. U.S. Department of Agriculture. 
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Figure A-5: Bullards Beach State Park imagery, 1978. U.S. Army Corps of Engineers.. 



 
 

 
 

50 

 
Figure A-6: Bullards Beach State Park imagery, 1986. Bureau of Land Management. 
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Figure A-7: Bullards Beach State Park imagery, 1997. Bureau of Land Management. 
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Figure A-8: Bullards Beach State Park imagery, 2007. Google LLC. 
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Figure A-9: Bullards Beach State Park imagery, 2016. Esri Inc. 
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