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DISSERTATION ABSTRACT

Jordan Sidney Pierce

Doctor of Philosopy

Department of Physics

September 2018

Title: Holographic Sculpting of Electron Beams with Diffraction Gratings

Electron microscopes offer scientists an invaluable tool in probing matter at a very small

scale. Rapid advancements over the past several decades has allowed electron microscopes

to routinely image samples at the atomic scale. These advancements have been in all aspects

of electron microscope design – such as more stable control voltages and currents, brighter

and more coherent sources, beam aberration correction, and direct electron detectors, to

name a few. One very recent advancement is in shaping the electron beam to provide an

almost arbitrary set of possible beam profiles.

Following the demonstration of electron vortex beams in 2010, there has been a surge of

interest in the potential shaping electron beams. Utilizing holographic electron diffraction

gratings, an almost arbitrary set of electron beams can be generated. These diffraction

gratings are challenging to create due their tiny size and the precision with which they must

be fabricated.

We present a comprehensive study on the fabrication and design of electron diffraction

gratings with the aim of being able to produce optimal gratings that result in bright, well

separated beams which closely match a desired beam profile. We have developed and op-

timized fabrication of these gratings with focused ion beam milling, and have been able to

use the fabricated gratings in a number of important experiments.
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These electron diffraction gratings have allowed us to perform various experiments such

as aberration correction, electron helical dichroism, advanced phase-contrast imaging, and

multi-beam interferometric techniques. Holographic beam shaping will continue to be an

important tool for electron microscopists.

This dissertation includes previously published and unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Beams of light were shown to be able to carry orbital angular momentum (OAM) in

1992 [1]. Since then, many tools and applications have been developed to exploit the OAM

of light. This allowed a number of interesting applications to be developed, such as increased

optical bandwidth [2, 3], exoplanet detection [4], and even particle manipulation [5, 6]. In

2010 and 2011, electron beams carrying OAM were discovered independently by three groups

[7, 8, 9]. Demonstrating electron beams carrying OAM was the start of a line of research into

the design and application of shaped electron beams – those with OAM or other advanced

phase and amplitude structures. In optics, research into the production and application

of structured beams has been receiving much work since the 90’s, while shaped electron

beams have only recently been examined. The constraints on beam manipulation within an

electron column makes electron beam shaping much more difficult both to accomplish and

to study.

There have been several methods proposed for shaping electron beams, including phase

plates [7, 10], magnetic nanowires [11, 12], electric nanorods [13, 14], aberration correctors

[15, 16], and diffraction gratings [9, 17, 18, 19, 20, 21, 22]. Magnetic nanowires and electric

nanorods produce beams with a spectrum of OAM states instead of a single state, and they

don’t offer a high degree of control for producing beams other than vortex beams. Phase

plates are difficult to produce due to the exacting geometry needed, and no material has been

found to be completely electron transparent, resulting in unwanted intensity loss through

the phase plate. Electron diffraction gratings offer the greatest degree of control over the

final shape of the beam, but suffer from producing multiple unwanted beams and having

limited intensity.

There are many current and proposed uses for shaped electron beams, including but
1



not limited to vortex beams [23, 20, 24, 25, 11, 26], aberration correction [22], dichroism

[23, 20, 26], and enhanced imaging [27]. Electron diffraction gratings are well suited for

many of these applications, and while the theory follows closely with its counterpart in

optics, there are many unique challenges and constraints in producing electron diffraction

gratings to warrant much study into their design and fabrication.

Diffraction gratings are generally of two types – transmission gratings or reflection

gratings. Transmission gratings work by modulating the phase and/or amplitude of the

incident beam as it passes through the grating. These modulations are intended to produce

separated beams. This process relies on the beam obeying the wave equation – specifically,

the incident wave should be coherent over the diffraction grating. Clearly light obeys a wave

equation, and due to the wave-particle duality of nature, all particles indeed satisfy a wave

equation, though not necessarily the same wave equation as light.

To model how electrons are diffracted by a grating, we assume that the electrons are

classical waves. This approximation is valid for low intensity beams – beams where the

interaction of multiple electrons within the beam (due to their charge) can be neglected.

Even with the advent of newer brighter sources, this approximation is still quite valid.

Chapter 2 gives an overview of electron diffraction gratings. In this chapter, I performed

the majority of the experiments and gathered the majority of the data, and I also made most

of the figures. Tyler Harvey helped with data analysis and provided Figure 2.5. Much of

the content in this chapter comes from Harvey et al. [19]. Shaping electron beams with

diffraction gratings is a new field of study beginning in 2011 with work on creating electron

vortex beams. Much of the early work focused on creating binary amplitude gratings –

where either the electron beam was blocked fully by the grating, or else allowed to pass

though unhindered. These types of gratings are not ideal for several reasons, such as that

they take a long time to mill, have a large pitch (and therefore small angular separation

between beams), and do not provide a great deal of control over the shape of the diffracted

2



beams. We study the production and use of electron phase gratings. These gratings work

my milling small grooves partially through a thin electron transparent membrane. Because

of this, they can be made to have a much smaller pitch than amplitude gratings. We show a

study on the efficiency of electron phase gratings made with focused ion beam (FIB) milling.

Chapter 3 provides a theoretical treatment of electron diffraction gratings under the thin

hologram approximation. This work aims at being able to better understand the underlying

mechanism of how the diffraction gratings operate in order to be able to produce a more

exact diffracted beam. Being that electron diffraction gratings are effectively a method

to modulate the phase and amplitude of a transmitted beam, what is the most desirable

phase and amplitude modulation so as to make a specific output beam? Especially when

considering the limitations of the fabrication techniques, it becomes much more important

to have a model that can take this into account.

Chapter 4 provides and outline of the fabrication techniques that our group has studied

for making electron diffraction gratings. We have primarily focused on FIB milling, but

we have also looked at other methods such as E-Beam lithography. We present techniques

that help to maximize the production quality of diffraction gratings within a FIB, as well

as preparatory methods for ensuring high quality gratings.

Chapter 5 gives an overview of several applications for electron diffraction gratings.

This includes previously published and unpublished work that I have been part of. For all

of these experiments I provided the technical expertise to design and develop the electron

diffraction gratings, as well as help to form the experiments. I also provided help with the

analysis and write-up of the data. I also performed that experiment with the highly twisted

electron beams. This chapter provides a small glimpse into the possible applications of

diffraction gratings, with much more work still being done.

Chapter 6 is a theoretical exploration on the possible use of lasers to shape atom beams

(I look at atom beams because they interact more strongly with lasers). With intense

3



enough lasers it might be possible to use a similar concept to shape electron beams. This

is preliminary work, but I show that there is a strong possibility that this can indeed make

acceptable beams.

4



CHAPTER II

OVERVIEW OF ELECTRON DIFFRACTION GRATINGS

This chapter follows closely with work that I previously coauthored with Tyler Harvey,

published as Harvey et al., New J. Phys. 16 093039 (2014) [19]. I made all of the

diffraction gratings used for this paper and performed most of the measurements, including

the atomic force microscope (AFM) surface topology scans, the diffraction efficiency tests,

and the measurement of the Gaussian fit parameters. Tyler Harvey performed much of the

analysis and wrote most of the manuscript.

Using diffraction gratings to shape electron beams is possible because of the wave-

particle duality that exists in nature. Electrons are charged massive particles, yet they still

fundamentally obey a wave equation very similar to the wave equation for electromagnetic

fields. Due to the fact that electrons are both charged and massive, there are some critical

differences in how electrons interact with diffraction gratings versus photons, but these

differences can typically be neglected.

For instance, multiple electrons in a beam-line can interact with each other, causing

decoherence and energy spread, and electrons can interact with induced phonons within the

diffracting material. However, even with modern Schottky emitters and high beam currents

(compared to previous generation emitters), the beam current is still small enough that

the electron-electron interaction within the beam can usually be neglected. The surface

charge interactions induced by the proximity of the electrons to the diffracting material can

have a small but significant effect on the diffracted beams, depending on the geometry and

material used. For thin phase gratings milled on silicon nitride (Si3N4), the effect of the

surface charge is very small and we will not discuss it in detail here.

Because we can often ignore the effects of surface charge, the same principals that exist

within scalar diffraction theory for EM fields transfer quite well to electrons. However, there
5



is a much higher degree of constraint within an electron beam column due to the high vacuum

necessary, and because electrons interact strongly with materials. These constraints lead to

many differences in how electron diffraction gratings are designed and produced compared

to diffraction gratings for optical systems.

2.1 Electrons as Waves

This section will give a basic overview of how electron diffraction works, specifically

within a Transmission Electron Microscope (TEM).

The effectiveness of scanning transmission electron microscopy (STEM) has given sci-

entist an invaluable tool for understanding and probing many properties of atomic scale

materials [28, 29]. Much effort has been given to improving the design and control of the

electromagnetic lenses and control systems. These improvements allow modern STEM in-

struments to achieve Ångstrom sized probes from between 60 to 300 keV with nanoamperes

of current [30, 31]. Probes focused in traditional STEM setups have a Gaussian like intensity

profile with an ideally flat phase profile. The aberrations induced by the optical setup are

well characterized and understood.

As increasing the resolution of STEM imaging yields less benefit (since a STEM probe

can already be sub Ångstrom in size), there has been an increase in the development of STEM

probes with non Gaussian profiles. These shaped probes offer new venues of measurement

and detection that is not possible with traditional beams [16, 32, 33]. The first forays into

shaped electron beams looked at the potential of electron vortex beams [7, 8, 34]

Electrons are characterized by their intrinsic properties – their charge and rest mass,

which are identical for every electron. Electrons can also carry various extrinsic properties,

such as Orbital Angular Momentum (OAM) and wavelength (called the de Broglie wave-

length for the wavelength of massive particles). The de Broglie wavelength λ of a massive
6



particle is

λ =
h

p
(2.1)

where p is the momentum of the particle and h is the Planck constant.

Electron energy within electron microscopes can vary widely, from less than 1 keV for

highly surface-sensitive SEMs to more that 103 keV for the most powerful TEMs. Typical

beam energies in a TEM are from 80 keV to 300 keV, corresponding to wavelengths from 4.18

picometers to 1.97 picometers, respectively. It is precisely this tiny wavelength that allows

electrons to be useful for extremely high resolution imaging; however, this small wavelength

also means that any periodically generated diffraction grating will produce beams that have

only a very slight diffraction angle.

2.2 Electron Diffraction

Electron diffraction gratings can accurately generate a wide range of beam profiles

with structured phase and amplitude. Typically, a traditional STEM is retrofitted with the

desired diffraction grating in the beam-limiting aperture, allowing for one of the diffracted

probes to be focused onto a sample, as shown in Figure 2.1. Often a diffraction grating is

employed to create a single beam, which is taken to be the first diffraction order. Unless

otherwise stated, we assume that a diffraction grating is utilized to create a single beam

mode in the first diffraction order, and all other diffracted beams are unwanted.

Electron diffraction gratings are fabricated by milling into Si3N4 membranes. The

resulting milled membrane can be mathematically described as t(~r), the mill depth at point

~r. The general method by which to define t(~r) for diffraction gratings is via interference of a

desired beam Ψ(~r) (assumed to be propagating in the positive z direction) with a reference

beam ΨR(~r), which is used to define the hologram pattern [35]

t(~r) = |ΨR(~r) + Ψ(~r)| . (2.2)
7



Typically, the reference wave is often taken to be something simple, such as a plane-wave

or spherical wave. If the reference wave is a plane wave that is not propagating solely in

the z-direction, the resulting diffraction pattern is termed an “off-axis grating”, and the

diffracted beams all have different beamlines. If the reference wave is a spherical wave with

a source on the z-axis, the resulting diffraction grating is called an “on-axis grating”, which

has diffracted beams all with the same beamline but separated by the point in which they

come to focus.

One often-studied beam type is a vortex beam – these beams have a non-zero azimuthal

winding numberm which defines a phase term eimφ, where φ is the azimuth about the optical

axis. Each ray of constant φ from the beam axis has a constant phase, but this phase is

different for different φ values – because of this, the phase on the optical axis is not defined,

and is described as a singularity in the wave-function. These beams are called vortex beams

because the surface of constant phase forms a corkscrew like spiral. This phase vortex

correlates to a beam carrying orbital angular momentum (OAM) about the beam axis.

To produce a grating which encodes an electron vortex beam with m~ of orbital angular

momentum separated from the zeroth-order beam by momentum k with a reference plane-

wave,

t(~r) = A
∣∣∣eimφ + ei

~k·~r
∣∣∣ = A

(
1 + cos

(
mφ+ ~k · ~r

))
. (2.3)

Note here that the angular separation of the beams, given by k, is determined from the

reference wave. The maximum depth of the grating, given by A, determines the total

intensity in the diffracted orders. Here ~r is the radial vector in they x-y plane, and has no

component in the z direction.

There are other methods that can be utilized to create electron vortex beams, such as

phase plates [7] and magnetic nanowires [36, 12]. However, these methods lack the precise

control of the phase structure of the generated beam and are highly sensitive to mill defects

and voltage fluctuations. Electron diffraction gratings always produce multiple beams –
8



this can be useful for experiments which require more than one electron beam, such as

with dichroism [37] and interferometry [38]. However, often the extra beams produced are

unwanted and must either be ignored or removed at an intermediate stage before interaction

with a sample.

FIGURE 2.1: Basic schematic of off-axis diffraction within a TEM. Typically, the diffrac-
tion grating is placed in the beam-forming aperture, allowing one or more of the diffracted
beams to be focused onto a sample. We use an FEI image-corrected Titan, which has a
beam-forming aperture in the second condenser lens system, called the C2 aperture. Var-
ious methods are available to pre-select and post-select relevant beams. Reprinted with
permission from [19].

In general, there are three main points of consideration when designing an electron

diffraction grating: beam separation, beam intensity, and beam fidelity. The beams must

be sufficiently separated such that unwanted beams can be either blocked or ignored – this

typically means that diffraction grating groove spacing should be on the order of 100 nm.

The beam intensity relative to the incident beam is related to the membrane thickness and

the geometry of the diffracted beam. Lastly, the fidelity of the generated beams must be

sufficient to be useful in the detection strategy desired. For example, several early methods
9



used to produce electron vortex beams consisted of milling wholly through an electron

opaque membrane [8, 39, 40]. These methods do not produce widely separated beams, are

limited to about 10% intensity of the incident beam into the first diffracted order, and do

not produce a pure mode beam.

To generate more useful diffraction gratings, our group has put much work into the

development and understanding of transparent electron phase gratings [41], an example

of which is shown in Figure 2.2. These gratings are termed phase gratings because the

primary action is to modulate the phase of the transmitted beam. In reality, no material is

completely electron transparent, thus there will be some amplitude modulation associated

with the diffraction gratings. Because of this, the gratings are technically complex type

diffraction gratings. However, in the literature the term phase grating is ubiquitous for this

type of grating, thus we will use the term phase grating throughout this manuscript.

2.3 Diffraction Efficiency

The efficiency of a diffraction grating can be defined in various ways, depending on

the most important parameter of the resulting diffracted probes. Diffraction gratings are

characterized by several parameters, notably the depth and groove position. If the overall

depth is low, this imprints only a very slight phase modulation on the transmitted electron

wave, correlating to less intensity in the diffracted beams than desired. If the groove positions

are milled wrong, this correlates to a structurally deficient probe. Both of these correlate to

how efficiently a diffraction grating can produce a desired beam. However, the latter cannot

be quantified with a single parameter. Because of this, we reserve the term diffraction

efficiency to represent a measure of the intensity of the desired beam to the other beams.

Even with this, there are still several methods by for which to measure the diffraction

efficiency. Absolute diffraction efficiency η
(I)
n , transmitted diffraction efficiency η

(T )
n , and

relative diffraction efficiency ηn′n characterize the current in the nth diffracted beam relative
10



FIGURE 2.2: Uniform electron diffraction grating milled into Si3N4. Unstructured gratings
such as that shown in (b) were used to measure the efficiency of electron diffraction gratings
milled into Si3N4. Many gratings of the same shape were milled to differing depths (a)
to generate efficiency curves. The grating shown in (b) is 10 µm in diameter with 120 nm
pitch. (c) Perspective view of a FIB cross-section of a diffraction grating shows the sinusoidal
shape of the milled Si3N4. For this FIB cross-section, approximately 50 nm of Platinum was
deposited on the grating before cross-sectioning to provide a clean cross-section. Reprinted
with permission from [19].

to the incident beam, the current in the nth beam relative to the total transmitted intensity,

and the current in the nth beam relative to the n′th beam, respectively. These are more

precisely defined as

η(I)
n =

In
II

η(T )
n =

In∑
In

ηn
′
n =

In
In′

(2.4)

11



where In is the current in the nth diffracted beam, and II is the intensity of the incident

beam.

For many applications the desired measure of efficiency is either η(I)
+1 or η0

+1. For binary

amplitude gratings, the maximum incident beam current that can be diffracted into the first

diffraction order, η(I)
+1 , is only 10.1%; whereas sinusoidal phase gratings can easily surpass

this with a maximum absolute efficiency of above 30%. Phase gratings also allow for the

potential of creating blazed gratings, which can increase η0
+1 at the expense of η0

−1.

It is worth noting that because no material is completely electron transparent, as stated

above, the transmitted intensity of a diffraction grating is necessarily less than the incident

intensity,
∑
In < II . Because the degree to which the transmitted intensity is reduced

depends on the mill depth of the grating, its groove shape, and the membrane thickness, it

is convenient to use η(T )
n when speaking of the diffraction efficiency of a particular grating.

Thus, unless otherwise stated, diffraction efficiency refers to η(T )
+1 .

These differences in how efficiency is reported can be easily overlooked. For instance,

Grillo et al reported a 25% efficiency for the first order beam [18], but failed to specify the

type of efficiency, which was the transmitted efficiency. Taking into account the thickness of

the Si3N4 upon which their grating was fabricated, we calculate that the absolute diffraction

efficiency is closer to 5%, since 120 nm of Si3N4 blocks roughly 80% of the beam.

2.4 Diffracted Beam Separation

The primary function of an electron diffraction grating is to create a desired beam well

separated from any other beams. This is achieved by providing the diffracted beams with

a lateral momentum that separates the beams from each other. While it is possible for

large diffraction angles to be a problem because they move away from the optical center of

the column, in general the diffraction grating should be produced with as small of pitch as

possible.
12



For electrons with de Broglie wavelength λ passing through a diffraction grating with

pitch d (with λ� d), the angular separation ∆Θ between adjacent diffracted beams is

∆Θ =
λ

d
. (2.5)

For gratings placed above the specimen plane in an electron microscope, this corresponds

to a physical separation ∆x between diffracted probes of

∆x =
z

M
∆Θ =

zλ

Md
= L

λ

d
, (2.6)

whereM is the magnification of the probe-forming optics (specifically,M is not the magnifi-

cation of the image), z is the physical distance from the diffraction grating to the specimen,

and L is the effective camera length of the probe-forming optics.

Our lab has use of the TEAM 1 instrument at the National Center for Electron Mi-

croscopy (NCEM). For this instrument, a grating with a pitch of d = 83 nm in the C2

aperture under 300 keV illumination produces a probe separation of ∆x = 43 nm under

standard STEM parameters. While this is quite a small separation, it is just a sufficient

distance for isolating individual structured STEM probes for microscopic experiments.

Electron phase gratings can much more easily produce highly separated beams when

compared to amplitude holograms for several reasons. Amplitude holograms must be thick

enough to block a significant portion of the incident beam while not being so thick that

they can’t be milled through, and the feature size must be large enough for the unsupported

portions to have the required rigidity to not deform. Because of this, typical amplitude

gratings have a pitch on the order of a micron [8, 39, 40], while phase gratings have been

made with features as small as 20 nm [42].

2.5 Basic Diffraction Model

The goal of measuring the diffraction efficiencies of various gratings is to be able to model

and understand the diffraction process within an electron microscope, with the ultimate goal
13



of being able to design and produce optimal gratings. To do this, it is necessary to have

an accurate model of how diffraction gratings work within a microscope. High-resolution

atomic force microscope (AFM) scans were made of many gratings of the type shown in

Figure 2.2, which are termed flat phase gratings because each groove is ideally perfectly

straight (the phase structure of the resulting beams is flat). The data for each grating was

then processed to determine the average groove shape and groove depth, such as shown in

Figure 2.3.
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FIGURE 2.3: AFM profiles of several diffraction gratings milled into Si3N4 membranes of
75 nm thickness. Each diffraction grating was milled to have 100 nm pitch but differing
depths. For each grating, a best-fit Gaussian curve is provided for reference. For detailed
information on the numbering of the profiles, see [19]. Reprinted with permission from [?].

With a thickness profile T (~r) for each grating, we employed the thin hologram approx-

imation as our model. The thin hologram approximation is valid in the regime where the

effects of diffraction within the thickness of the grating are negligible. This depends on the

wavelength of the beam, the pitch of the grating, and the depth of the grating grooves.

However, because of the very small diffraction angles and the small depth of the milled

gratings (typically 30 nm or less), the approximation is quite valid for our purposes.

With this assumption, the transfer function T (~r), which describes the effect on the
14



amplitude and phase of a beam transferring through the diffraction grating, is given by

T (~r) = eiṼ T (~r), (2.7)

where Ṽ = CV0 + iγ is effectively the complex index of refraction for the material. Here V0

is the mean-inner-potential of the grating material, γ gives the loss of intensity due to both

inelastic and high energy scattering within the material, and C is a parameter depending

only on the accelerating voltage of the beam Va [43] given by

C =
2π

λVa

eVa +mec
2

eVa + 2mec2
. (2.8)

Because the transfer function is independent of the incident wave function ψi(~r), the

transmitted wave-function ψt(~r) becomes

ψt(~r) = ψi(~r)T (~r) = ψi(~r)e
iṼ T (~r). (2.9)

With this, we can simulate the effect of focusing the generated probes onto a sample utilizing

the Fourier transform. For most purposes the incident beam is assumed to be a plane-wave,

and is thus ignored. Analysis of the diffraction gratings then becomes analysis of the transfer

function.

2.6 Diffraction Grating Material

There are a number of materials that can be utilized to make diffraction gratings, but we

have exclusively utilized Si3N4 for a number of reasons. Firstly, from a material perspective,

it is mostly ideal – it is amorphous, thus negating crystalline Bragg diffraction, and it is very

tough and does not get easily damaged. Most importantly however is its ubiquity within

TEM circles – it is a standard material used to prepare various samples for imaging within

a TEM.

We have used silicon nitride membranes as thin as 15 nm and as thick as 500 nm,

with the membrane freely suspended over areas from 50 µm× 50 µm up to 2 mm × 2 mm.
15



Low-stress silicon nitride with ideal chemistry of Si3N4 purchased from SPI Supplies, Inc.

performed the best for our studies, both in stability and how planar the membranes are.

We concluded that, in general, membranes should be a minimum of 30 nm thicker than

the desired maximum depth of the diffraction grating. This is probably due to the Gallium

implantation that penetrates tens of nanometers into the material and weakens it. This

implantation can be seen in Figure 2.2(c).

2.7 Optimization of Diffraction Efficiency

We performed a study measuring the shape and efficiency of various diffraction gratings.

These were milled using a standard grating template 10 µm in diameter with 100 nm pitch.

The depth was controlled by milling the standard template a number of times over the

same area, each time increasing the depth of the mill. This procedure is called a dose-array.

Diffracted beams from one such dose-array is shown in Figure 2.4

Measuring the profile and efficiency of many diffraction gratings allows us to explore

the parameter space of diffraction efficiency vs groove profile and depth. For this study, we

modeled each grating as a series of closely spaced Gaussian trenches – each characterized by

the full width at half max w of the Gaussian fit, as shown in Figure 2.3. A figure summa-

rizing both experimentally measured and theoretically predicted diffraction efficiencies as a

function of grating characteristics is shown in Figure 2.5. The model does not line up terri-

bly well with the data, as shown more clearly in Figure 2.6. The discrepancy of the model

to the data can be attributed to a number of aspects, the most prominent of which are that

the groove shapes are not terribly well approximated by a simple Gaussian, that Gallium

implantation can effect the diffraction pattern while being invisible to AFM, and that the

other side of the membrane (which is usually assumed to be unaffected by the milling) can

have slight changes which effect the diffraction pattern. Nonetheless, the simple model is

sufficiently accurate as to allow us to optimize the several physical grating characteristics
16
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FIGURE 2.4: TEM diffraction images of several gratings from a dose array. Each grating is
ideally identical in groove shape, but differing in the depth of the groove. The groove shape
for gratings B, C, and F are given in Figure 2.3 showing that they have similar but not
identical groove profiles. Gratings A-F are milled successively deeper into the membrane.
Grating G was produced from a separate dose array but is included here because of its
asymmetric diffraction pattern, which was caused by stage drift resulting in a slightly blazed
profile. Reprinted with permission from [19].

necessary to maximize the current diffracted into a desired beam, such as the maximum mill

depth and the grating profile.

2.8 Apodized Diffraction Gratings

There are multiple advantages to using phase gratings as opposed to binary gratings,

such as having a smaller minimum pitch, having higher maximum efficiency, and having the

potential for various groove profiles. In particular, however, phase gratings can be apodized

– that is, they can have spatially dependent diffraction efficiency by changing the mill depth

or the groove profile. This allows for diffraction gratings to more accurately recreate a

desired beam, which is a critically important issue in many applications. Apodization in

particular refers to varying the mill depth according to the envelope function Z(~r) of the

desired beam.
17
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FIGURE 2.5: Parameter space giving the predicted efficiency (background color) and mea-
sured efficiency (squares) of many diffraction gratings. The efficiency shown here is the
efficiency of the first order beam relative to the total transmitted intensity. The material
is Si3N4 with various amounts of Gallium implanted due to the FIB milling process. Each
square data point represents a single diffraction grating. The position of each grating was
determined using AFM scans of the milled surface of the grating, while the efficiency of each
grating was measured via TEM diffraction. The labeled points correspond to the respective
gratings shown in Figure 2.4. The model used to generate the background map assumes
symmetric grooves given by a repeating Gaussian profile. Reprinted with permission from
[19].

Gratings such as those in Figure 2.2 have an abrupt edge to the milled grating. This

introduces unwanted frequencies into the diffracted beam such that at focus, the probe is an

Airy disk [44]. Ideally an unshaped diffracted probe would be Gaussian in profile, as an Airy

disk has only about 84% of the power within the first radial node [45]. Over the past several

years a number of techniques have been developed to control the wavefront of an electron

beam, such as phase masks [46] and diffraction gratings [47, 18, 9]. However, these studies

fail to reliably control both the phase and the amplitude of the diffracted beam. Here we

show a basic method that can be employed to achieve much better reproduction of desired
18



FIGURE 2.6: Diffraction efficiency of various diffraction gratings. This correlates to those
gratings in Figure 2.5 which lie within w = 0.375±0.025. The solid line is a model assuming
Gaussian-shaped groove profiles. Reprinted with permission from [19].

beam profiles.

By spatially varying the depth of the milled diffraction grating in accordance with the

envelope function Z(~r) of the desired beam, one can achieve much better beam reproduction.

Figure 2.7 shows the difference from a flat diffraction grating and an apodized grating, where

the cross-sectional comparison of the focused probes are shown in Figure 2.9. The cross

sectional comparison shows that indeed the apodized grating does have a closer to ideal

amplitude profile than the flat grating.

The images of the diffracted beams were taken with the gratings in the sample plane

using the Low-Angle-Diffraction (LAD) mode of our Titan TEM at 300 keV. This is a

significantly different optical setup than when the grating is in the probe-forming aperture

to use in STEM mode. Because of this, there are generally much higher aberrations in the

images taken under LAD mode than would be present when the gratings are forming STEM
19
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FIGURE 2.7: Comparison of uniform (left) vs. apodized (right) gratings. The upper inset on
each row ((a) and (f)) gives the idealized cross-section through the center of the respective
gratings (shown as the brown line through (b) and (g)). Idealized gratings are given in (b)
and (g), with (c) and (h) the SEM images of the milled gratings. Images (d) and (i) give the
simulated 1st order probes near focus generated by the holograms (c) and (h), respectively.
The actual probes from these holograms are shown in (e) and (j). Note the lack of ringing
in the apodized grating (j). Each image has been individually normalized. The quality of
the probe from the apodized grating (j) is dependent on the maximum milled depth of the
grating (g) – this grating had a maximum depth of approximately 20 nm, or approximately
0.6π radians phase depth. The quality of the probe from the uniform grating is unaffected
by the grating depth, which only affects the intensity of the probe.

probes. These aberrations are proportional to the size of the grating, and the gratings used

in this experiment were small (five to ten microns in diameter), resulting in images of the

diffracted probes that have minimal aberrations.

We also ran this experiment for a forked hologram, generating beams with one unit of

Orbital-Angular-Momentum (OAM) as seen in Figure 2.8. Typically, the more complicated

the amplitude and phase profile of the desired beam, the less accurately the beam can be

approximated either by a flat grating or a standard apodized grating. In this case, with a
20



single fork, the radial profiles comparing the flat vs. apodized gratings (Figure 2.10) shows

that while the apodized grating does have smaller tails, it nonetheless does not conform to

as well to the desired beam as for the case of the Gaussian in Figure 2.9, especially close to

~r = 0.
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FIGURE 2.8: Comparison of uniform (left) vs. apodized (right) 1 OAM gratings. The
upper inset on each row ((a) and (f)) gives the idealized cross-section through the center of
the respective gratings (shown as the brown line through (b) and (g)). Idealized gratings
are given in (b) and (g), with (c) and (h) the SEM images of the milled gratings. Images
(d) and (i) give the simulated 1st order probes near focus generated by the holograms (c)
and (h), respectively. The actual probes from these holograms are shown in (e) and (j).
Note the lack of ringing in the probe from the apodized grating (j). Each image has been
individually normalized. The quality of the probe from the apodized grating (j) is dependent
on the maximum milled depth of the grating (g) – this grating had a maximum depth of
approximately 20 nm, or approximately 0.6π radians phase depth.

To understand how this works as an approximation, we begin with the thin hologram

approximation. Assuming plane wave illumination, the hologram is defined as given in
21
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FIGURE 2.9: Azimuthally averaged radial profile plots of the intensity plots shown in
Figure 2.7. The fit for the data was generated by fitting a Gaussian function to the raw
intensity profile, which becomes a parabola in a log-plot. The data have been stretched such
that the same Gaussian fit is the best fit for both sets.
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FIGURE 2.10: Azimuthally averaged radial profile plots of the 1-OAM beams shown in
Figure 2.8. The fit for the data was generated by fitting a Laguerre Gaussian function to
the raw intensity profile, then plotting the log of the data. The data have been stretched
such that the same fit is the best fit for both sets.

Equation 2.2, the wave function just after interaction with the grating is

ψ(~r) = exp
(
iṼ (d− h||ΨR(~r) + Ψ(~r)||)

)
, (2.10)

where d is the thickness of the membrane, h is the mill depth of the grating, and || · || rep-

resents the normed absolute-value (that is, it is the absolute value divided by the maximum

value). This is simply the thin hologram transfer function with Ṽ the material parameters
22



and d−h||ΨR(~r)+Ψ(~r)|| the thickness profile of the membrane. Note that d and h are both

constant. Assuming h to be small, we can expand the exponential about h = 0, and drop

the high order components. Assuming the reference wave to be a plane wave ΨR(~r) = eikx,

this leaves

ψ(~r) ≈ eiṼ d
(

1− iṼ h(ΨR(~r) + Ψ(~r))(Ψ∗R(~r) + Ψ/(~r))
)

(2.11)

= eiṼ d
(

1− iṼ h(eikx + Ψ(~r))(e−ikx + Ψ∗(~r))
)

(2.12)

= eiṼ d
(

1− iṼ h
(

1 + eikxΨ(~r) + e−ikxΨ∗(~r) + |Ψ(~r)|2
))

. (2.13)

This is a set three beams, a modified copy of the incident beam plus a +1 beam proportional

to eikx and a −1 beam proportional to e−ikx. The first order is simply the desired beam

Ψ(~r) with an added amount of linear momentum.

It is clear that, for small mill depths, apodized gratings can accurately generate beams.

The apodized gratings shown in Figure 2.7 and Figure 2.8 were milled to a depth of about

20 nm, a little under half of the maximum invertible depth (see Section 3.4) of 41.34 nm

(for Ṽ = π/(33 nm)(0.08i− 1) with 300 keV electrons).

2.9 Typical Diffracted Beams

Much of the work in electron beam shaping falls into one of two purposes – to produce an

idealized, aberration-corrected beam for electron microscopy or lithography or to produce

some sort of special beam mode, such as a vortex beam. For generating beam modes,

much of the published literature focuses on either creating various Laguerre Gaussian beams

[18, 48, 19, 9, 49] or creating Bessel Beams [50, 51]. Laguerre Gaussian beams are given by

[52]

LGmp (r, φ, z) =

(
2p!

π(p+ |m|)!

)
1

w(z)

(√
2r

w(z)

)|m|
exp

(
− r2

w(z)2

)
L|m|p

(
2r2

w(z)2

)
×

exp

(
−ik r2

2R(z)

)
e−imφe−ikzeiψ(z).

(2.14)
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Where Lmp is the generalized Laguerre polynomial of degree p, w is the waist parameter of

the beam, R is the radius of curvature of the beam, and ψ(z) is the Gouy phase, given by

ψ(z) = (|m|+ 2p+ 1) tan−1

(
λz

πw2
0

)
. (2.15)

For many applications, it is the novel phase vortex term eimφ that is of interest, which is

why many groups work with non-apodized forked diffraction gratings, the fork being the

result of combining a reference wave ei~k·~r with a phase vortex. An example of what a typical

Laguerre beam, LG1
0(~r), looks like is sown in Figure 2.11, which also shows a non-apodized

hologram.

FIGURE 2.11: An example of a vortex beam given via LG1
0(~r) (left), and a typical fork

hologram used to generate an approximate vortex beam (right). The central feature of the
vortex beam is the phase structure of the beam – that the phase changes by 2π about the
azimuth, which is encoded as the fork in the hologram.

Bessel beams are solutions to the full wave equation and not limited to the paraxial

approximation. Like plane-waves, they are not normalizable and can never be created.

However, Bessel beams are often a good model for various purposes. Bessel beams are

defined as

Bk
m(r, φ, z) = A0J|m|(krr)e

imφeikzz, (2.16)
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where Jm is an mth order Bessel function, kr and kz are the radial and longitudinal wave

vectors with k =
√
k2
r + k2

z , and A0 is the complex amplitude. As with plane-waves, Bessel

beams are non-diffracting and technically have infinite energy.

2.10 Representation of Complex Amplitude

Any wave, whether acoustical, optical, or matter, has a spatially dependent amplitude

and phase distribution. It is typical in literature to represent amplitude and phase distribu-

tions as a color image, where the color represents the phase and the brightness represents

the amplitude. This is almost universally done using the hue-saturation-value (HSV) color

map [53, 54, 55, 56]. However, HSV color maps provides a very poor representation of the

complex amplitude because of the non-constant luminance [57] of the transformation.

Luminance is a measure of the perceived brightness of a light source. This perceived

brightness depends on the intensity and spectral distribution of the light. The red, green,

and blue receptors in our eyes are not ideal, and their response to intensity and frequency

is complex and non-linear. Because of the complicated manner by which we perceive light,

the International Commission on Illumination – abbreviated CIE for its French name “Com-

mission internationale de l’éclairage” – was established in 1913 to develop an international

standard on the representation of color and other related topics. Of importance here is the

publication of the CIELAB color space in 1976. The CIELAB color space has three parame-

ters ‘L’ for lightness and ‘A’ and ‘B’ for the red-green and yellow-blue components. As with

other color spaces such as HSV, this is a three component space. CIELAB was specifically

developed such that values of constant lightness have a perceptually uniform intensity with

respect to normal human color vision. This makes CIELAB a particularly useful color space

in applications involving color acceptability decision making [58]. Utilizing this color space,

representations the complex amplitude of beams can be much more quantitative, as shown

in Figure 2.12. Throughout this document we use a color map with perceptually uniform
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luminance. Code for generating images with this color map is given in Appendix B.

FIGURE 2.12: Comparison of HSV (left) vs. CIELAB (right) color space for representing
complex amplitude. Both images are of the same array of 25 vortex beams. Notice that the
vortex beams look more triangular with an HSV representation, and that there are bright
bands in the yellow, violet, and teal sections. These added features hinder easy interpretation
of the data. The CIELAB representation sacrifices some amount of color saturation in order
to give a perceptually quantitative representation of the magnitude of the field.
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CHAPTER III

ADVANCED ANALYSIS OF DIFFRACTION GRATINGS

In this chapter we will cover how to effectively and accurately analyze diffraction grat-

ings with the thin hologram approximation. We will focus on off-axis diffraction gratings,

but the process can be easily adapted to on-axis or even mixed gratings.

3.1 Grating Parameters

Off-axis diffraction gratings are characterized by four parameters:

1. the wave-function ψ(~r) to encode. This is a complex function that can be given as

ψ(~r) = hZ(~r)Θ(~r), with h > 0 the amplitude, 0 ≤ Z(~r) ≤ 1 the envelope function,

and Θ(~r) a complex unit phasor.

2. a groove profile (which can be constant or positionally dependent). This profile can

be given in terms of its Fourier coefficients. Call these coefficients

cn(~r) = |cn(~r)|αn(~r), (3.1)

with n ∈ Z.

3. the material parameters, which include the membrane thickness d and the complex

index of refraction Ṽ = iγ − V , where γ is the attenuation coefficient due to inelastic

or high-angle scattering, and V is related to the mean-inner-potential of the membrane

material.

4. the grating carrier vector ~k.
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With these parameters, the thickness profile T (~r) of any periodic off-axis diffraction grating

milled into a thin membrane of thickness d can be given as

T (~r) = d− hZ(~r)
∑
n∈Z

cn(~r)
(

Θ(~r)ei
~k·~r
)n
. (3.2)

An important detail given in Equation 3.2 is that the groove position in the diffraction

grating is controlled via Θ(~r). To see how this works, consider the definition of a sine

function

sin(x) = A
(
eix − e−ix

)
. (3.3)

Here, the position of the peaks of the sine function can be controlled by changing the

underlying field, say by making x→ f(x), so that sin(x)→ sin(f(x)). This can be explicitly

given as

sin(x) = A
(
eix − e−ix

)
→ A

(
ei(f(x)−x)eix − e−i(f(x)−x)e−ix

)
= sin(f(x)). (3.4)

Thus the position of the grooves can be controlled by a complex unitary phasor – in this

case, by ei(f(x)−x).

3.2 Transfer Function Expansion

Note that the wavefront immediately after interacting with the grating is a series of

diffraction orders. We are interested in the mathematical form of these diffraction orders.

Thus, if we consider the back plane of the diffraction grating to be at z = 0, we can take

the wave-function ψ(~r) of the beam at z = 0 to be

ψ(~r) =
∑
m∈Z

ψm(~r), (3.5)

where we define ψm(~r) to be the portion of ψ(~r) that has m~k momentum added – that is,

it is the mth diffraction order. It will be convenient to further expand each diffraction order
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into an amplitude Am, an envelope Zm(~r), and a phasor Θm(~r) via

ψm(~r) = AmZm(~r)Θm(~r). (3.6)

Our goal is thus to find a periodic complex transfer function T (~r) such that

ψ(~r) = ψi(~r)T (~r) =
∑
m∈Z

AmZm(~r)Θm(~r), (3.7)

where ψi(~r) is the illuminating beam, typically taken to be a plane-wave and thus ignored.

Taking equation Equation 3.2 in the thin hologram approximation, we can put this into

a more useful form,

T (~r) = exp
(
iṼ d

)
exp

(
−iṼ hZ(~r)

∑
n∈Z

cn(~r)
(

Θ(~r)ei
~k·~r
)n)

. (3.8)

Note that the Fourier coefficients cn of the groove profile f(x) are generated via

cn =

∫ x0+ 2π

|~k|

x0

f(x)ein|
~k|xdx. (3.9)

Because of this, cn = c−n, where the overline denotes complex conjugation. This clearly

gives that c0 is real, and Equation 3.8 can be expanded into

T (~r) = eiṼ de−iṼ c0hZ(~r)
∞∏
n=1

exp

(
−iṼ hZ(~r)|cn|

[
αn

(
Θ(~r)ei

~k·~r
)n

+ αn

(
Θ(~r)ei~k·~r

)n])
.

(3.10)

Here note that there is a relatively well known generating relation for the Bessel func-

tions usually written as

ez(t+t
−1) =

∑
n∈Z

tnIn(2z), (3.11)

where In is the modified Bessel function of the first kind. Note that in Equation 3.10, αn,

Θ(~r), and ei~k·~r are all unit-magnitude. This means that

αn

(
Θ(~r)ei~k·~r

)n
=
[
αn

(
Θ(~r)ei

~k·~r
)n]−1

. (3.12)

Thus, equation Equation 3.10 becomes

T (~r) = eiṼ de−iṼ c0hZ(~r)
∞∏
n=1

∑
m∈Z

αmn

(
Θ(~r)ei

~k·~r
)nm

Im

(
−2iṼ |cn|hZ(~r)

)
. (3.13)
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3.3 Product-of-Sums to Sum-of-Products

Using Equation 3.13 to determine the form of a particular diffraction order is not

straight forward in the least. We wish to know the form of Z(~r) and Θ(~r) needed to give a

particular beam in, say, the first diffraction order, but it is not clear which terms contribute

to the first diffraction order, nor the significance of those terms. We must put Equation 3.13

into a more useful form by rearranging the product of sums to a sum over products. To do

this, lets start with something more tractable. Consider the function

C =

2∏
n=1

1∑
m=−1

A(n,m) (3.14)

As the product and sum are both small and finite, this can simply be expanded to

C = [A(1,−1) +A(1, 0) +A(1, 1)] [A(2,−1) +A(2, 0) +A(2, 1)] (3.15)

= A(1,−1)A(2,−1) +A(1,−1)A(2, 0) +A(1,−1)A(2, 1)

+A(1, 0)A(2,−1) +A(1, 0)A(2, 0) +A(1, 0)A(2,−1)

+A(1, 1)A(2,−1) +A(1, 1)A(2, 0) +A(1, 1)A(2, 1).

(3.16)

Notice the pattern here – each term can be ordered by the first argument, that is, each term

is of the form A(1, x)A(2, y), with x and y each being either −1, 0, or 1.

This can be expressed in a more mathematical form by first making some more points

clear. Note that in Equation 3.14 the product and sum are over separate domains. Call the

domain of the product P, and the domain of the sum S. Now consider the set of all maps E

from P to S, that is

E = {s | s : P→ S}, (3.17)

Clearly there are nine such maps, which can be enumerated as shown in Table 1. Notice that

there is a one to one correspondence with the maps sm(n) and the terms in Equation 3.16.

This is a general result when interchanging a product of sums to a sum over products. With
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this, we can rewrite Equation 3.16 in the more succinct form shown in Equation 3.19. This

is a completely general result and works for any sets P and S.

C =
∏
n∈P

∑
m∈S

A(n,m) (3.18)

=
∑
s∈E

∏
n∈P

A(n, s(n)). (3.19)

TABLE 1: List of maps from P = {1, 2} to S = {−1, 0, 1}. Here each sm(n) is a distinct
map, with sm(n) : P→ S.

n s1(n) s2(n) s3(n) s4(n) s5(n) s6(n) s7(n) s8(n) s9(n)

1 −1 −1 −1 0 0 0 1 1 1
2 −1 0 1 −1 0 1 −1 0 1

Following this example, the sets in Equation 3.13 get replaced as P→ Z+ and S→ Z,

and E becomes the set of all maps from Z+ to Z (this is an uncountably infinite set). This

allows us to put Equation 3.13 into the more usable form

T (~r) = eiṼ de−iṼ c0hZ(~r)
∑
s∈E

∞∏
n=1

αs(n)
n

(
Θ(~r)ei

~k·~r
)ns(n)

Is(n)

(
−2iṼ |cn|hZ(~r)

)
. (3.20)

However, there is still one more important simplification to make – we want the form of

T (r̃ ) to be a sum over diffraction orders. Note that each term carries information about

its lateral momentum via the ei(ns(n))~k·~r term. Each diffraction order is characterized by its

lateral momentum, and thus we can pull out which terms belong to which diffraction order.

The easiest way in which to do this is to define a function g which takes a map s ∈ E as

input and produces an integer as output (g : s ∈ E → Z). We call this function g the order

of s via

g(s) =
∑
n∈P

ns(n). (3.21)

Then we can finally introduce Ep ⊂ E as Ep = {s ∈ E | g(s) = p} – that is, Ep is the subset

of E for which every s ∈ Ep contributes only to the pth diffraction order, and every α ∈ E
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which contributes to the pth diffraction order is also contained in Ep. This allows us to write

the transfer function as a sum over diffraction orders

T (~r) = eiṼ de−iṼ c0hZ(~r)
∞∑

m=−∞

(
Θ(~r)ei

~k·~r
)m ∑

s∈Em

∞∏
n=1

αs(n)
n Is(n)

(
−2iṼ |cn|hZ(~r)

)
. (3.22)

3.4 Sinusoidal Gratings

One particularly easy case to analyze is for sinusoidal gratings. Sinusoidal gratings are

defined with the Fourier coefficients c0 = 1
2 , c1 = c−1 = 1

4 , with all other cn = 0. It is

important to note that when milling a grating with minimal possible pitch in a FIB, the

gratings will usually be quite well approximated as having a sinusoidal groove profile. With

this, Equation 3.22 simplifies very nicely to

T (~r) = eiṼ de−
ih
2
Ṽ Z(~r)

∞∑
m=−∞

(
Θ(~r)ei

~k·~r)
)m

Im

(
− ih

2
Ṽ Z(~r)

)
. (3.23)

Usually the desired beam is the first diffraction order, which is denoted as T1(~r). Taking the

incident wave on the grating to be a normal plane-wave, the wave-function after interaction

with the grating is simply the transfer function, thus from Equation 3.5,

ψ(~r) = T (~r) =
∞∑

m=−∞
ψm(~r). (3.24)

Combining this with Equation 3.6 for the first diffraction order,

A1Z1(~r)Θ1(~r) = eiṼ de−
ih
2
Ṽ Z(~r)Θ(~r)ei

~k·~rI1

(
− ih

2
Ṽ Z(~r)

)
. (3.25)

With this, it is assumed that Z1(~r) and Θ1(~r) are known, and we wish to determine Θ(~r)

and Z(~r) – this will tell us what shape of a grating will give ψ1(~r). Note that we leave A1

unspecified – this is necessary as we assume that h is specified, where h is the maximum

mill depth of the grating.

When making the apodized gratings shown in Section 2.8, we set the envelope function

Z(~r) and the phase Θ(~r) equal to that of the desired beam mode, the output of which
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is shown in Equation 3.25 (assuming a sinusoidal profile) – we call this an uncorrected

apodized grating. To get an output beam that better matches a desired beam, we need

to invert Equation 3.25 and use the resulting envelope and phase to create the diffraction

grating. This results in what we call a corrected apodized grating. Equation 3.25 can only

be inverted up to a maximum mill depth hmax (for the same reason that the sine function

can only be inverted up to π/2) – we call this maximum depth the maximum invertible

depth of the grating. The maximum invertible depth depends on the groove profile, the

material parameters, and the energy of the electron beam, but is typically on the order of

40 nm to 70 nm for Si3N4 with 300 keV electrons.

The first step in solving for Z1 and Θ1 is to determine A1. Since A1 is the peak intensity

in ψ1, it is real and determined with the maximum of the Bessel function. The Bessel function

of complex argument has an almost periodic structure of maxima and minima – which

means that if a phase grating is milled too deep it will start to lose efficiency. Typically the

maximum mill depth h is limited to be at or below the depth of the first intensity maximum

for that particular diffraction order (see Figure 3.1, where the first diffraction order peaks

at about 41.34 nm depth). The depth where the peak intensity occurs is the maximum

depth a diffraction grating can be and still be ‘invertible’ – that is, at or below this depth

the grating shape can be changed in order to produce exactly a desired output beam, but

if it is milled deeper than this there is no guarantee that a desired output beam can still be

created.

For this case, the maximum of the Bessel function occurs when Z(~r) = 1. If h is greater

than the depth of the first maximum, the value of Z(~r) must be chosen such that hZ(~r) is

the peak depth. If we let Zm be the value of Z for which the Bessel function is maximized,

we get

A1 = e−γ(d−
h
2
Zm)

∣∣∣∣I1

(
− ih

2
Ṽ Zm

)∣∣∣∣ . (3.26)

Note that usually the designed maximum depth will be at or less than the first peak of
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the Bessel function, which would then mean that Zm = 1. With this, Equation 3.25 can

be solved using standard numerical techniques. The standard uncorrected vs. corrected

according to Equation 3.26 gratings are shown in Figure 3.2.

3.5 Binary Gratings

Another important class of gratings are binary gratings – gratings with only two height

levels. Fabrication with a FIB is not well suited for creating binary gratings, but they can be

produced much more accurately with E-Beam lithography. Here we analyze binary gratings

using a similar procedure to the last several sections.

Binary gratings allow for a major simplification over other grating profiles in that the

thickness profile T (~r) of the membrane has only two possible values, which we can label as

T1 and T2, with T1 > T2. Again, utilizing the thin hologram approximation, the transfer

function becomes the disjoint sum of the two zones.

Binary gratings are defined a little different than sinusoidal gratings – the envelope

function is set to unity everywhere, and the Fourier coefficients become positionally depen-

dent – causing the duty cycle of the diffraction grating to become positionally dependent.

The Fourier coefficients are given as

cn(b(~r)) =


b(~r) n = 0

1

nπ
sin(b(~r)nπ) n 6= 0

. (3.27)

Note here that b(~r) is the positionally dependent duty cycle, with 0 ≤ b(~r) ≤ 1. The transfer

function is the sum of each zone, giving

T (~r) = eiṼ T1
∑
n∈Z

cn(b(~r))
(

Θ(~r)ei
~k·~r
)n

+ eiṼ T2

(
1−

∑
n∈Z

cn(b(~r))
(

Θ(~r)ei
~k·~r
)n)

. (3.28)

The two terms in this equation cannot be joined in this form, but the second terms transforms
34



as

1−
∑
n∈Z

cn(b(~r))
(

Θ(~r)ei
~k·~r
)n

=
∑
n∈Z

cn(1− b(~r))
(

Θ(~r)ei
~k·~reiπ

)n
(3.29)

Since both sums in Equation 3.28 are absolutely convergent, they can be joined into a single

sum

T (~r) =
∑
n∈Z

ein
~k·~r
(
eiṼ T1cn(b(~r)) + eiṼ T2cn(1− b(~r))

)
Θn(~r). (3.30)

Here each term in the sum is a single diffraction order. This can be further decomposed into

two terms: the zeroth order and all others by

T (~r) =
(
eiṼ T1 − eiṼ T2

)
b(~r) + eiṼ T2

+
∑
n∈Z
n6=0

ein
~k·~r
(
eiṼ T1 − eiṼ T2

)
cn(b(~r))Θn(~r).

(3.31)

This is because, for n 6= 0, cn(1− b(~r)) = −cn(b(~r)). Notice that the effect of the thickness

difference of the two regions (the difference between T1 and T2) is to simply change the total

amplitude and global phase of the resulting beams, but not their shape. For n 6= 0, this has

the simple form

Tn(~r) = ein
~k·~r
(
eiṼ T1 − eiṼ T2

) sin(nπb(~r))

nπ
Θn(~r). (3.32)

Therefore, with binary gratings, we can control the intensity distribution of a diffracted

beam with the varying duty cycle b(~r), and we can control the phase structure with Θ(~r).

And as shown in Equation 3.32, the form of b(~r) does not depend on the sign of n, whereas

the form of Θ(~r) is conjugate between positive and negative orders. This means that if, say,

b(~r) and Θ(~r) are chosen to produce the beam T1(~r) = LG0
1(~r) as the first diffraction order,

the same grating will give T−1(~r) = LG0
−1(~r) as the −1st diffraction order.

This can be particularly useful for dichroism experiments where beams of equal quality

but opposite phase are needed. An example of a corrected binary hologram used to produce
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the beam shown in Figure 2.11 is shown in Figure 3.3. Notice that unlike the corrected

sinusoidal grating shown in Figure 3.2, the corrected binary grating has a plane of symmetry.

This is what leads to the fact that both the positive and negative orders get corrected.

Note that this result follows closely that of Mirhosseini et. al. [59], however there are

some important distinctions. Here we show that the solution given by Equation 3.32 is exact

under the thin hologram approximation, whereas Mirhosseini et. al. have further assumptions

that are not actually necessary. Also, we have shown this in the more general case of complex

type holograms.

3.6 Blazed Gratings

Blazed gratings have an asymmetric groove profile designed to increase the intensity in

the first order η(T )
1 . For the case of Ṽ ∈ R, a wave-function defined as Ψ(~r) = A(~r)eiP (~r)

can be generated in the first diffraction order via [47]

T1(~r) = exp
[
iM(~r)mod

(
F (~r) + ~k · ~r, 2π

)]
, (3.33)

with

M(~r) = 1 +
1

π
sinc−1(A(~r)), (3.34)

F (~r) = P (~r)− πM(~r). (3.35)

This assumes that the maximum depth h of the grating is equal to the maximum invertible

depth – the first peak of the sinc function. However, when Ṽ has a non-zero imaginary

component, this analysis no longer holds, and the more general case shown in Equation 3.22

can be utilized to determine the form necessary to produce desired diffraction orders. For

the standard vortex beam, the uncorrected apodized blazed grating vs. a corrected apodized

blazed grating (with the corrected depth set to the maximum invertible depth) is shown in

Figure 3.4.
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Blazed gratings, like sinusoidal gratings, have the disadvantage of needing a precise

maximum depth and depth profile. In contrast to this, binary gratings need only the correct

shape, and not a specific depth.

3.7 Arbitrary Gratings

In this section we discuss methods to solve Equation 3.22 to produce exact diffraction

orders with any groove profile. One thing to note is that eiṼ d is merely a global complex

constant and can be ignored when not calculating the theoretical efficiency of a grating. The

Fourier coefficients cn of any groove profile will exponentially approach zero for large n, and,

as seen in Figure 3.5, |In(ix)| ∝ x|n|. Because of this, terms in Equation 3.22 which include

larger values of s(n) will in general be less relevant, and those terms which do include larger

values for s(n) will be more relevant for smaller n.

We need some method for determining the most significant components of Equation 3.22

and of listing these terms. Each term that is included can be uniquely identified by the map

s ∈ E : Z+ → Z. Focusing on the first diffraction order with g(s) = 1 (see Equation 3.21),

one possible enumeration for each sn ∈ E1 can be seen in Table 2. The number of terms

needed to achieve a good approximation increases dramatically as h approaches the maxi-

mum invertible depth (see Figure 3.6), with well over 10,000 terms needed when h is at the

maximum invertible depth. Searching the space of all maps s ∈ E is impractical seeing as

E is uncountably infinite.

One way to generate a large number of significant sn maps is to combine a brute force

searching method over a small parameter space with various patterns that contribute to

the desired diffraction order. For a brute force search over the range 1 ≤ n ≤ 8 and

−6 ≤ s(n) ≤ 6, there are a total of 138 terms to search over – more than 800 million.

However, in spite of this, there are terms that can be as significant as the top 30 of all terms

that are not found with this brute-search method.
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TABLE 2: List of the first ten most significant terms from Equation 3.22 for a blazed grating.
For this, the terms were calculated for 1 ≤ n ≤ 100, with Ṽ = π/(33 nm)(0.08i− 1), which
is relevant for Si3N4 with 300 keV electrons. The parameter h is set to the maximum
invertible depth for this, which is about 70 nm. Each map sm(n) has order 1, as seen
from Equation 3.21:

∑
ns(n) = 1, thus each term is confirmed to contribute to the first

diffraction order.

n 1 2 3 4 5 6 7 8 9 10 11 12 Magnitude
s1(n) 1 0 0 0 0 0 0 0 0 0 0 0 1.00000000
s2(n) −1 1 0 0 0 0 0 0 0 0 0 0 0.26458093
s3(n) 0 −1 1 0 0 0 0 0 0 0 0 0 0.08379359
s4(n) −2 0 1 0 0 0 0 0 0 0 0 0 0.07353857
s5(n) 0 0 −1 1 0 0 0 0 0 0 0 0 0.04139040
s6(n) −1 −1 0 1 0 0 0 0 0 0 0 0 0.03457848
s7(n) 3 −1 0 0 0 0 0 0 0 0 0 0 0.03374657
s8(n) 0 0 0 −1 1 0 0 0 0 0 0 0 0.02471804
s9(n) 2 1 −1 0 0 0 0 0 0 0 0 0 0.01945690
s10(n) −1 0 −1 0 1 0 0 0 0 0 0 0 0.01825010

The brute force search only reveals a small subset of the leading contributing terms. In

order to see this, consider the set of terms defined by all terms zero except the nth term −1

and the n+ 1 term +1 (as seen in Table 3). When listing the top 1000 contributing terms,

these pairs are very prominent, with the final +1 term landing near n = 50 and still being

within the first 1000. This means that these terms must be added to those found by the brute

search method, as well as other patterns which can easily be identified. See Appendix A for

detailed information on both the brute force method and the pattern generation method.

For a blazed hologram with Ṽ = π/(33 nm)(0.08i− 1), the maximum invertible depth

is 71.89 nm. With h = 68.5 nm, the above method was used to find more than 375,000

terms, which were sorted into the most significant 50,000, as can be seen in Figure 3.6.

Note that when generating the contributions for each sn, the calculation must include

each zero term in the sequence, as this term will be nearly but not precisely unit magnitude,

the contribution of dozens to hundreds of these nearly unit magnitude terms is significant.

Each calculated term should run over the full range of n values. For the simulations shown
38



here, the range was from 1 ≤ n ≤ 100.

TABLE 3: List of the first ten pairs of the form . . . ,−1, 1, . . .. Each of these terms con-
tributes to the first diffraction order. Note that the term s10(n) below is the 31st term by
list of significance for a blazed grating with max h (see Table 2). A brute force search over
1 ≤ n ≤ 8 and −6 ≤ s(n) ≤ 6 searches more than 800 million terms but would not have
found s9(n) or s10(n) shown below.

n 1 2 3 4 5 6 7 8 9 10 11 12
s1(n) −1 1 0 0 0 0 0 0 0 0 0 0
s2(n) 0 −1 1 0 0 0 0 0 0 0 0 0
s3(n) 0 0 −1 1 0 0 0 0 0 0 0 0
s4(n) 0 0 0 −1 1 0 0 0 0 0 0 0
s5(n) 0 0 0 0 −1 1 0 0 0 0 0 0
s6(n) 0 0 0 0 0 −1 1 0 0 0 0 0
s7(n) 0 0 0 0 0 0 −1 1 0 0 0 0
s8(n) 0 0 0 0 0 0 0 −1 1 0 0 0
s9(n) 0 0 0 0 0 0 0 0 −1 1 0 0
s10(n) 0 0 0 0 0 0 0 0 0 −1 1 0

3.8 Fourier Transform Corrections

As the maximum mill depth h approaches the maximum invertible depth, the number

of terms needed to get a result of high accuracy increases drastically, which is to say that the

distribution of the contributions has very a long tail as h approaches the maximum depth.

A more practical but less rewarding method for determining how to shape a grating can be

given numerically through the use of the Fourier transform.

Consider for convenience a sinusoidal grating that has Z(~r) = Θ(~r) = 1 everywhere.

This grating is infinite in size, but by taking the Fourier transform of it, one will get a series

of delta functions of various amplitudes. That is,

F{T (~r)} = F
{

exp
(
iṼ d

)
exp

(
−1

4
iṼ h

(
2 + ei

~k·~r + e−i
~k·~r
))}

, (3.36)

= exp
(
iṼ d

)
exp

(
−1

2
iṼ h

)
F
{

exp

(
−1

2
iṼ h cos

(
~k · ~r

))}
. (3.37)
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This can be simplified using the Jacobi-Anger expansion, which states

eiz cos θ ≡
∑
n∈Z

In(iz)einθ. (3.38)

With this, and utilizing the linearity of the Fourier transform, Equation 3.37 becomes

F{T (~r)} = exp
(
iṼ d

)
exp

(
−1

2
iṼ h

)∑
n∈Z

In

(
−1

2
iṼ h

)
δ
(
n~k − ~r

)
. (3.39)

Notice the similarity between this equation and Equation 3.25 with Z = Θ = 1. For a

particular value of hZ in Equation 3.25, the same result will show here for the equivalent

value of h.

The reason this happens is because of the constancy of the grating assumed. Fourier

transforms are maximally non-local – the value of the Fourier transform at any point includes

a particular sum over all points of the operand. However, because all points of the operand

are the same (over a period), the global coefficient given by the Fourier transform exactly

correlates to the local coefficient of corresponding diffraction order just after interaction with

the diffraction grating.

This applies for all gratings, not simply sinusoidal gratings. What this means is that

a raster of the basic groove profile can be generated, and this can be used to create the

correction curve for a particular diffraction order by taking the Fourier transform of the

profile for specific mill depths.
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FIGURE 3.1: (Top) Beam intensity vs. depth for several diffraction orders for a sinusoidal
phase grating, together with the total transmitted intensity as a fraction of the incident
intensity. (Bottom) The transmitted efficiency vs. depth for the same diffraction orders
– this is taken by dividing the beam intensity by the total transmitted intensity. For a
sinusoidal grating, the intensity of the positive orders exactly matches the negative orders,
such that the curve for the +1 and −1 orders are identical, as are the +2 and −2 orders, etc.
Shown is the zeroth (blue), first (red), and second (green) diffraction orders. The parameters
used for this simulation were Ṽ = π/(33 nm)(0.08i − 1) with a membrane thickness of
d = 75 nm. Note that the peak invertible depth is taken from the intensity curve (top),
where the peak occurs at 41.36 nm for the first diffraction order, and not the peak of the
transmitted efficiency curve, which occurs at 41.36 nm for the first diffraction order. For
the top plot, the total transmitted intensity is relative to the incident beam, and the units
correlate to the y-axis.
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FIGURE 3.2: Standard uncorrected apodized fork hologram (left) vs. a corrected hologram
(right) set to the maximum invertible depth of 41.36 nm. Equation 3.26 was used to generate
the corrected hologram.

FIGURE 3.3: Corrected binary forked hologram that gives the beam shown in Figure 2.11.
Binary holograms of this form give an exact diffracted beam (up to intensity and phase)
regardless of the depth to which they are milled.
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FIGURE 3.4: Blazed uncorrected apodized fork hologram (left) vs. a corrected hologram
(right) set to the maximum invertible depth of 71.9 nm. The corrected hologram utilized
Equation 3.22 to generate the corrections.
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FIGURE 3.5: Plot of the first several modified Bessel functions of the first kind with purely
imaginary argument. Note that for small argument (below the first maxima of I1), the
Bessel functions rapidly approach zero as the order increases. Also, within the first maxima
of I1, the Bessel functions are all monotonic. The expansion about x = 0 shows that, for
small x, |In(ix)| ∝ x|n| for n 6= 0, and |I0(ix)| ≈ 1.
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FIGURE 3.6: Most significant 50,000 terms for blazed gratings of various depths. Each
term is listed in order of its contribution magnitude relative to the most significant term.
Notice the log scale – the tails are very large for this method.
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CHAPTER IV

FABRICATION OF ELECTRON DIFFRACTION GRATINGS WITH FOCUSED ION

BEAM MILLING

This chapter covers the grating manufacture methods as they have been developed in

our lab. There are a wide range of techniques available, each having certain advantages

and disadvantages. The main considerations for each method are the reliability, complexity,

and scalability. For gratings created for research purposes, the main consideration is usually

what is most easily available. The three methods that have been explored in our group are

Focused Ion Beam (FIB) milling, Electron Beam lithography (E-Beam Lithography), and

Electron Beam induced deposition (EBID). I was the primary contributor to the development

of both FIB milling techniques as well as EBID techniques, while Tyler Harvey was the

primary contributor to the E-Beam lithography that our group has done.

The goal of fabricating a diffraction grating is to impart a desired shape into the diffract-

ing medium (discussed in more detail in Section 3). It is impossible for any fabrication

method to exactly reproduce a specific desired shape, but fabrication methods usually have

higher precision in the position of a feature than the shape of that feature. Because of this,

we split the shape of the diffraction grating into two main components: the groove shape

and the groove position. For instance, Figure 2.11 shows an example grating design where

the groove shape is sinusoidal, and the groove position is such as to create a fork hologram.

The degree to which a diffracted beam depends upon these two parameters varies, but gen-

erally speaking the position of the grooves plays larger a role in determining the how well a

diffracted beam reproduces a desired beam than the groove shape does.

A Focused Ion Beam is a device that is capable of accelerating and focusing one of

several ion species to a high voltage of typically 30 keV, with spot sizes as low as tens of

nanometers. Our lab has use of a Helios NanoLab DualBeam from ThermoFisher Scientific,
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which is capable of accelerating a beam of Gallium ions up to 30 keV with an extremely

high lateral positioning capability.

Our group has primarily utilized FIB milling for our diffraction gratings, so the primary

emphasis of this chapter will be on FIB milling. The initial techniques and grating designs

for the FIB milling were developed by Ben McMorran, and I have expanded upon these

and developed an advanced computer program for the generation of special files which are

needed for the Helios DualBeam to correctly fabricate diffraction gratings.

4.1 FIB Interaction Zone

The interaction of a focused beam of ions with a sample is a complex process involving

the removal of material via sputtering, re-deposition of some of the sputtered material, and

implantation of some of the incoming ions. The interaction zone of a focused ion beam tends

to be several times larger than the spot size of the beam, and it is this interaction zone that

will determine the final shape of a milled structure.

For FIBs utilizing a Gallium source, the extraction and acceleration methods, as well

as the large current, limit the energy resolution of the beam and cause various forms of

beam broadening. The result is that the focused ion beam typically has an intensity curve

somewhere between a Gaussian (close to the optical axis) and a Lorentzian (for the tails).

Because of this, the reported resolution / spot size of a given aperture (which is determined

for imaging, not milling, purposes) tends to be much lower than the useful minimum feature

size millable for said beam.

Within the FIB, there are several current-limiting apertures which have a direct impact

on the focused spot size of the beam. These instruments are not diffraction limited, so

smaller apertures tend to increase the spatial coherence of the beam, thus allowing for

smaller focused probe sizes. With the Helios DualBeam, the relevant apertures are labeled

in terms of beam current, with 1.4 pA, 7.6 pA, and 20 pA being the most commonly used
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for milling diffraction gratings on the order of 100 nanometer pitch. These are the target

current for each aperture – the actual current increases with use as the aperture physically

widens from beam exposure. Larger apertures are available, with apertures larger than 5.5

nA common, but these are not typically useful for generating electron diffraction gratings

with required feature sizes on the order of 100 to 200 nm.

Electron diffraction gratings are fundamentally a periodic structure of slits or grooves

with a desired maximum depth. Because of the long Lorentzian like tails of a FIB, the

maximum depth achievable is highly dependent on the spacing of the grooves. For apertures

of around 10 pA with a desired depth of 30 nm (for Si3N4), the minimum groove spacing

is about 100 nm. One of the characteristics of Si3N4 that makes it quite ideal for milling

diffraction gratings is its exceptional toughness, thus allowing very thin membranes to still

be structurally sound enough to hold a grating pattern. However, because of this toughness,

Si3N4 mills relatively slowly within a FIB, limiting the maximum size a diffraction grating

can be made.

4.2 Pattern File Generation

The Helios DualBeam FIB allows users direct control the beam position DAC within

the ion column via Stream files. These files contain a list of x- and y-coordinates, as well

as dwell time information, necessary to complete the milling process. While these files can

be provided to the machine to perform a milling operation, ThermoFisher provides no tools

for the generation of Stream files, and a significant portion of my work has been in the

development of a rapid and reliable method for creating these files.

The most simple grating to produce is a sinusoidal grating, in which the groove shape

closely approximates a sinusoid. This shape is particularly easy because of the fact that

the convolution of a Dirac comb Xk(x) with a Gaussian of FWHM on the order of k is
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approximately a sinusoidal, as given in

Xk(x) ~ e−
x2

2σ2 ≈ A(σ/k) sin

(
2π

k
x

)
+ h (4.1)

where k is the spacing of the Dirac comb, h is a constant, and A is the amplitude of the

sinusoid. This means that as long as the groove spacing is narrow enough, a sinusoidal groove

pattern can be milled with a FIB simply by having the machine mill only the peaks of the

desired function. This correlates to the image shown in Figure 4.1, where only the peaks

from Figure 2.11 are utilized for milling, and the interaction zone of the FIB will widen this

out to create an approximate sinusoidal shape. The process of converting a desired hologram

such as that in Figure 2.11 to that shown in Figure 4.1 is called single-pixelizing.

FIGURE 4.1: A single-pixelized version of the grating pattern shown in Figure 2.11, which
is used to generate the Stream file necessary for fabrication of the grating. This pattern
must be supplied to the FIB in such a way as to most accurately mill the desired pattern.

The goal of the pattern file generation software is to convert the data in Figure 4.1 into

a list of coordinates and dwell times. There are a number a ways in which this can be done

which can have an effect on the fabricated grating. For instance, one can search vertically

through the data, retrieving all of the non-zero entries in each column and simply chaining

these together. However, the intuitive approach is to have the ion beam follow each groove
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from top to bottom, then move to the next groove.

Seeing as that most off-axis holograms can be decomposed into a collection of grooves,

the method which I have developed involves collecting each of the grooves in a single line

representation, so that each groove can be completely milled before the beam moves to

another groove. The sequence in which the grooves are milled can either be sequential, say

from left to right, or in a more complicated manner. I have tested various methods for

ordering the sequence in which the grooves are milled, including left-to-right, outer-to-inner,

and inner-to-outer. However, no method was significantly superior to a standard left-to-

right sequence, with many of the tested methods giving consistently worse results. Thus, all

gratings developed are milled in a sequential manner from left to right.

4.3 Helios DualBeam Procedure

The Helios DualBeam is a fantastic piece of hardware capable of a huge range of ap-

plications with its electron beam and ion beam. Utilizing a FIB such as the DualBeam for

creating electron diffraction gratings is a rather niche and new use-case, and much work has

gone into the generation and optimization of procedures for creating high quality diffrac-

tion gratings. In particular, the methods for substrate preparation, machine preparation,

focusing procedures, and milling techniques have been primarily developed by myself.

The ion beam used to mill the diffraction gratings is not neutralized before interaction

with the sample, and thus charge implantation can be an issue, especially because Si3N4 is a

good insulator. For this reason, the surface of the Si3N4 must be coated with a conducting

layer. This has the added benefit of also allaying any charging issues the grating may face

within an electron beam.

To ensure good adhesion of the charge alleviation layer the Si3N4 membranes should

first be plasma cleaned. We use an Oxygen-Argon plasma at 25 watts power for 5 minutes

to ensure good surface cleaning. The Si3N4 is quite robust against the plasma and we have
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not observed any plasma-based damage even at high wattage for extended periods of time.

4.4 Carbon Coating

A quick, cheap, and effective method to coat the membranes with a conducting layer is

to coat them with carbon from a thermal source. This can be done quickly using standard

carbon-coating machines, and has nanometer thickness resolution. Reliably achieving a

specific carbon thickness with this method can be a little difficult, but variations of the

carbon thickness play little role in the mill effectiveness. To achieve a good charge alleviation

layer, carbon thickness should be on the order of 10 nm, with both the front and back of

the membrane coated. This will ensure that any implanted charge from the ion beam will

not push the beam around during milling.

Carbon coating has the added benefit of being easily removable, in the case that post

processing is necessary. Carbon can be easily removed via plasma cleaning with an oxygen

rich plasma. Silicon nitride is quite robust against oxidative plasma, with no damage seen

after 20 minutes under a 50 watt oxygen rich plasma.

4.5 Sputter Coating

Sputter coating is an effective method to achieve a reliable charge alleviation layer,

with various metals available to be utilized. Mostly notably, we have had success with a

gold-palladium source. This method can quickly and reliably create very precise thickness

profiles, but the metal coating seems to have low adhesion to the Si3N4membranes used.

Thick layers will often lose adhesion and peel away.

4.6 E-Beam Evaporation

Our lab has access to an Angstrom E-Beam deposition machine, which allows coating

with metals withing a high vacuum environment with a wide range of materials available.
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Due to the high vacuum and small evaporation size of the heated material, this allows for a

very accurate growth of material layers that have very small grains.

We have found that a layer of 3-5 nm of Titanium followed by 3-5 nm of Platinum is

ideal in creating a very robust charge alleviation layer. For best results, both sides of the

membrane should be coated, although having only one side coated can produce acceptable

results.

4.7 Preparing Membranes for Milling

Once the desired charge alleviation layer has been added to the membrane, there re-

mains one critical final step to ensure proper milling. The membranes must be left in the

FIB chamber long enough to ensure thermal equilibrium with the chamber. Milling time

can easily exceed an hour, during which time any stage drift will ruin the mill. The mem-

branes, and especially the membrane holder can be tens of degrees cooler than the chamber.

The temperature of the grating holder can be raised simply by holding in ones hand for a

few moments before placing it in the FIB chamber. Typically, once the vacuum has been

established within the chamber, the system should be allowed to equilibrate for one to two

hours before milling.

4.8 Focusing the Ion Beam

During the waiting period for the chamber to equilibrate, the focusing procedure for the

ion beam can be carried out. This procedure has been developed by myself and is a reliable

way to achieve quite consistent results with the ion beam. There are inherent instabilities

within the ion beam column that can make the same milling procedure produce different

results from one day to the next – namely that the ion beam actively etches the apertures

in the system, causing the current to increase and even causing asymmetric wear on the

apertures. This has the effect of making the spot size of the ion beam increase during the
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life-cycle of the apertures. With a new aperture system, an aperture that is rated to deliver

7.6 pA usually starts very close to the stated current, but toward the end of the life-cycle,

this can easily reach double the current. I have had a 7.6 pA aperture deliver almost 20 pA

and still be somewhat useful. This must be taken into consideration when focusing the ion

beam. The actual current delivered to the specimen is reported in the UI of the instrument,

and keeping track of this is useful in developing the diffraction gratings.

The procedure for focusing the ion beam begins by aligning the sample to eucentric

height so that the electron beam can be used to image the system during the milling process.

For this, select an easily recognizable feature on the edge of the silicon structure, bring the

sample to eucentric height, and perform preliminary focusing of the ion beam and the

electron beam. After this initial alignment and focusing, move to a section of the TEM

holder that is near the membrane and mill a line (or series of lines). As the FIB is milling

the lines, adjust the focus and stigmators on the FIB until the cut is as sharp as possible.

To achieve the highest level of consistent focus, perform the same focusing procedure on a

corner of the membrane with the milling time per pixel just high enough to cut through the

membrane. Under this condition, there should be a range of defocus available that will still

cut through the membrane – for instance, it might be possible to turn the fine focus knob

a full three rotations until the FIB stops cutting through the membrane, in which case the

knob should be set in the center (so one an a half turns in either direction will cause the

beam to stop cutting through the membrane). Do this for the focus and stigmator, then

decrease the dwell time on the lines by a small amount and go through the procedure again.

This is the method that generates the most consistent focus between milling sessions.
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CHAPTER V

APPLICATION OF ELECTRON DIFFRACTION GRATINGS

In this chapter we discuss several uses of diffraction gratings that have been studied by

our group. Electron diffraction gratings have been used to correct the spherical aberration

within a TEM [22, 60], to study chiral plasmons in nanoparticle clusters [20], advanced

phase imaging within a TEM [27], and create Mach-Zehnder type interferometers within a

TEM [38], to name a few. All of these applications require high quality diffraction gratings

made to exacting specifications. The work I have done has allowed me to contribute in both

the analysis and discussion of these topics, as well as design and create advanced diffraction

gratings for each of the references above. For the work with aberration correction, Martin

Linck came up with the idea for aberration correction utilizing diffraction gratings, Benjamin

McMorran and I worked to design the grating, and I made the final design decisions and

fabricated the grating. For the work on vortex beams, Benjamin McMorran developed the

idea and computer code for generating the holograms, as well as initial fabrication, Tyler

Harvey developed several applications and worked some with fabricating the gratings, while

I developed the theory of how to best design and fabricate vortex beams – I also optimized

the fabrication process. For the work on enhanced phase contrast imaging Colin Ophus

developed the idea and Tyler Harvey helped with the theory of image formation, while I

helped with the design and provided the expertise to manufacture the gratings. For the work

on counter-rotating beams, I developed the idea, manufactured the gratings, and performed

the analysis. For the work on highly twisted beams, Andrew Forbes and Jason Webster came

up with the idea of angularly accelerating electron beams, while Benjamin McMorran and

I provided the connection with continuously rotating electron beams; I made the gratings,

took the data, and performed the analysis of the electron energy loss, while Jason Webster

performed the rotation acceleration analysis and provided the theory.
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5.1 Aberration Correction

This section is an overview of the paper by Linck et al., Ultramicroscopy 182:36-43

(2017) [22]. Martin Linck came up with the idea of an aberration correcting diffraction

grating. Benjamin McMorran and myself helped with the design of the grating, while I

made the final design and the fabrication of the grating.

The focusing lenses within an electron microscope are rotationally symmetric dipole

lenses. According to Scherzer’s lemma [61], electromagnetic lenses that are rotationally

symmetric cannot be designed to focus an electron beam without spherical aberration. Non

rotationally symmetric lenses such as quadrupoles, hexapoles, and octopoles can be utilized

to remove spherical aberration within an electron microscope [62], however these multipole

solutions are expensive to implement and have complicated alignment procedures. Also,

other aberrations besides spherical can be corrected or mitigated with complex multipole

lenses, allowing aberration corrected STEM’s to reliably achieve sub Ångstrom resolution.

Aberration correction within a TEM comes in two forms: pre-specimen or post-specimen.

Post-specimen correction can be used to improve image resolution and contrast [63], while

pre-specimen correction produces a more tightly focused probe for STEM [64]. There are

many STEM’s that are not aberration corrected that can be fitted with diffraction grat-

ings. Diffraction gratings allow for a low cost alternative to installing expensive aberration

correction equipment.

The primary source for probe aberrations within a TEM is the objective lens. The

aberrations are modeled using a spherical coordinate system. As ideally the lens will focus

all rays to a point, the rays converge to that point with angle θ relative to the optical axis,

and φ azimuth. The magnitude r of the rays can be ignored. For spherical aberration, the

wavefronts become distorted according to

χOL =
2π

λ

C3

4
θ4, (5.1)
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where χOL is the spherical aberration of the objective lens, λ is the electron wavelength

(1.97 pm for 300 keV electrons) and C3 is the spherical aberration coefficient.

We wish to design a grating that can mitigate this aberration. Because of the action of

the focusing lens, χOL can be correlated to a grating that has a phase term proportional to

|~r|4, where ~r is the distance from the center of the grating (~r is constrained to the plain of the

grating). Thus, for a probe-forming lens of a given focal length f and aperture magnification

M ,

χG = CG|~r|4 =
2π

λ

C3

4

(
M |~r|
f

)4

. (5.2)

Note that if the optical setup is changed to achieve a different probe convergence angle with

the same aperture, the magnificationM will alter, requiring a new diffraction grating. Thus,

a grating can only correct spherical aberration for exactly one optical setup.

As a demonstration of spherical aberration correction utilizing an electron diffraction

grating, we designed a 70 µm diameter grating with CG = 6.23× 10−5 µm−4. This gives a

probe illumination semi-angle of θmax = 17.5 mrad (f/M = 2 mm). The grating was a very

large grating compared to what is normally made with the FIB. The pitch was set close to

the minimum limit of what we could achieve on the FIB at 80 nm, giving 875 bars for the

grating. This grating was milled with a nominal 7.6 nA aperture and a nominal depth of 1̃0

nm. A detailed overview of the diffraction grating is shown in Figure 5.1.

Since spherical aberration is proportional to θ4, the larger the diameter of the probe-

forming aperture the more the effects of spherical aberration will be apparent. In order to

emphasize the effectiveness of the grating at correcting spherical aberrations, we needed the

microscope to be in a regime with more spherical aberration that would be normal, thus we

chose a larger probe-forming aperture of 70 microns, where 50 microns is typical within our

microscope.

The manufacturing difficulty of a grating is proportional to the pitch and the size of

the grating. The pitch of the grating determines the maximum current that can be used
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FIGURE 5.1: High resolution scanning electron microscope (SEM) image (a) of the entire
diffraction grating for spherical aberration correction. The inset (b) shows the curvature
of the grating bars similar to the idealized exaggerated model shown in (c). By taking the
Fourier transform of the SEM image, the geometric phase (mod 2π) of the grating can be
recovered (e). Unwrapping the phase (f) demonstrates the R4 dependence, where R = |~r|.
Reprinted with permission from [22].

to mill, in this case, a current of about 8 pA was used, which is a very small current with

slow mill times. For a given pitch, the larger the grating the longer it will take to mill. To

get optimal diffraction efficiency, a sinusoidal grating should be on the order of 35 nm deep

in Si3N4, which correlates to well over 10 hours of mill time for a 70 micron grating at 8

pA. The FIB we used is not stable over this time period, so a trade-off of less mill time

(lower efficiency) for a more accurate phase reconstruction was necessary. We needed the

beam intensity to be large enough so as to have an acceptable signal to noise ratio, thus we

made many attempts to fabricate this grating until we could determine the optimal milling

conditions. For future work in spherical correction, an alternative fabrication method such

as E-Beam lithography might be more suitable.

The spherical aberration correcting grating was able to produce a beam of higher res-
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olution than the uncorrected probe. To test this, under the appropriate optical setup, the

each of the +1, 0, and −1 diffraction orders were selected using a selected-area aperture and

focused on an amorphous sample to produce a Ronchigram. The Ronchigram can be used

to determine the aberrations in a system using the principle that an infinitely focused probe

on an amorphous sample will produce an outgoing spherical wave. Thus the diffraction

plane image of the focused probe on an amorphous sample will contain information about

how tightly focused the probe was – specifically the area which is ‘flat’ in the diffraction

plane image represents the area (the solid angle) for which the aberrations in the probe are

minimal. For our spherical aberration correction grating, the corrected probe has minimal

aberrations for 17.5 mrad convergence semi-angle, whereas the uncorrected zeroth order has

minimal aberrations only over 8.2 mrad convergence semi-angle, as shown in Figure 5.2.

5.2 Vortex Beams

Another important application for electron diffraction gratings is to create vortex beams

typically of the form LGm0 for nonzero m (see Equation 2.14). These beams have the

property that the electrons have an extrinsic orbital angular momentum (OAM) about the

propagation axis of the beam. This OAM is also referred to as topological charge or a phase

singularity – both of which refer to the eimφ component of the beam.

Vortex beams were first observed and studied by Nye and Berry [65], where they used

ultrasound reflecting off rough surfaces to better understand radar echoes from surfaces.

These vortex beams have been studied in optics since the 1990 [66] and have been employed

in countless applications from enhanced imaging [67] to sample manipulation [5].

There are many potential applications of vortex beams within an electron microscope.

Of particular interest initially was the potential of utilizing the non-zero magnetic moment

of an electron vortex beam to probe nanoscale magnetic fields within a sample. While this

measurement has not yet been realized, there have been other useful applications. One such
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FIGURE 5.2: The Ronchigrams of the spherical aberration corrected +1 order beam (a), the
unaffected zeroth order beam (b), and the −1 order beam (c) which has twice the spherical
aberration of the zeroth order beam. For each beam, a Ronchigram was taken for three
different focal planes: at focus, and symmetrically defocused by ± 125 nm. For the focused
probes, the Ronchigram is quite flat over 17.5 mrad convergence semi-angle (a2), whereas
the Ronchigrams for the uncorrected probe has a considerably smaller flat zone of 8.2 mrad
(b2). Reprinted with permission from [22].

application is the demonstration of electron helical dichroism [20].

Electron helical dichroism looks at the differing signals produced as a right-handed

vortex beam vs. a left-handed vortex beam interacts with a sample. While the causes of

various differences are from a variety of sources, the interaction of an electron beam with

a sample can be broadly placed into two modes: electron interactions and bulk / lattice

interactions.
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Electron interactions occur when an electron in the sample is excited to a different

state by the incident beam. The cross-section for any particular transition depends on the

initial state, the final state, and the state of the incident probe. Dichroism occurs when

the cross-section for a particular transition is highly dependent on the OAM state of the

incident beam.

Bulk interactions are those for which the plasmons or phonons within the sample are

activated by the incident beam. These modes can have a high dependence on the geometry

of the sample – especially for nanoparticles. For example, Tyler Harvey demonstrated a

dichroic signal with a chiral arrangement of nanoparticles [20]. For this experiment, a high

quality diffraction grating capable of generating accurate and bright +1 and −1 diffraction

orders was necessary. The pitch of the grating needed to be minimized in order to have well

separated beams, and the size of the grating needed to be as large as possible to acquire

more brightness into the diffracted probes. An overview of the optical setup and the probes

formed with this grating is shown in Figure 5.3. Using these vortex beams, Tyler Harvey

was able to demonstrate a dichroic signal consistent with surface plasmon resonances.

This method provides microscopists with an additional tool to analyze and characterize

specimens.

5.3 Enhanced Phase Contrast Imaging

This section is an overview of the paper by Ophus et al. Nature Communications 7:10719

(2016) [27]. Colin Ophus developed the idea for the experiment. I helped with the design

of the diffraction grating and I provided the expertise and knowledge to manufacture the

diffraction grating used for this experiment. I also assisted in the development of the theory

for the experiment.

The ability to effectively engineer specific beam profiles opens the door on many ad-

vanced imaging techniques – specifically, enhanced phase contrast imaging. As opposed to
59



FIGURE 5.3: Optical setup for electron helical dichroism. (a) The vortex grating (vG) is
placed in the second condenser aperture plane, producing separated probes in the sample
plane where the nanoparticles are located. (b) Transmission electron micrograph of the first
diffraction orders for the vortex beam used. Image source: [20]; reprinted with permission
from the authors.

STEM, TEM is highly preferred by the biological community due to enhanced weak-phase

imaging at low dose. However, the resolution of TEM is limited to the signal-to-noise ratio,

which is a function of dose. Thus, biological samples have to be imaged with low dose TEM

to achieve acceptable resolution while having good phase contrast [68, 69]. To image dose-
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sensitive samples, the typical method is single-particle reconstruction utilizing cryo-electron

microscopy. This requires many identically prepared particles that are well isolated, and

is highly sensitive to the focal settings and requires complex reconstruction methods to

produce usable results.

Within an STEM, image reconstruction is comparatively simpler, with the detectors

typically integrating over a particular subregion of solid angle in reciprocal space. Most

commonly, this includes annular dark field (ADF) imaging that gives incoherent contrast

proportional to the projected thickness (and atomic mass) of the sample and bright field (BF)

imaging, which is more sensitive to coherent image contrast and compares more to standard

TEM [70]. Because the cross-section of scattering from a nucleus is small and proportional to

the atomic number of the nucleus, ADF-STEM is relatively inefficient at producing atomic

resolution images via high angle scattering. This is even more exacerbated with the light

atoms common for biological samples, thus STEM is much more prevalent with inorganic

hard materials and uncommon for imaging biological specimens.

There have been several proposed methods which circumvent this limitation with STEM.

These all involve either segmented or pixelated detectors – instead of measuring the total

intensity over some solid angle in reciprocal space, either a coarse image with up to dozens

of segments or even a full-blown high pixel image is taken of the reciprocal space image.

For instance, Dekkers and de Lang proposed utilizing a segmented detector and a probe

corrector to enhance coherent phase-contrast imaging in STEM [71].

For this experiment, we utilize a pixelated detector to create a virtual detector – that

is, we post-integrate over specific regions of the reciprocal plane to generate linear phase

contrast. For the probe-forming aperture, we create a binary on-axis diffraction grating

with no phase structure – that is, the grating will produce multiple copies of the incident

beam separated in z, or focal value. This produces the illumination of the sample, and

we match the pattern of illumination as the virtual detector. Thus we call this method
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matched illumination and detector interferometry STEM, or MIDI-STEM. The overview of

the experimental setup is shown in Figure 5.4.

This method works as follows: the grating is focused onto a sample, where much of the

beam passes through without interacting, but some of the beam will interact with the phase

structure of the sample. The primary measurable effect of this interaction is due to the linear

phase of the sample local to the probe. This linear phase imparts a momentum on the beam

proportional to the magnitude of the phase gradient. With this, in the reciprocal plane,

there will ideally be two beams – a reduced intensity center beam with the phase structure

given by the grating geometry, and a shifted copy of this beam. These two beams will

interact, producing a series of interference patterns that allow for the precise determination

of the local linear phase at the focal point of the beam. The grating is designed to be an

on-axis diffraction grating with phase proportional to |~r|2, creating multiple copies of the

incident beam separated by their respective focal points. The shifted beam that interacts

with the unshifted image of the grating will be a shifted copy of the zeroth order only.

By designing the grating such that the phase difference between the unmilled area and the

milled area (this is a binary grating) is precisely π/4 radians, the overlapping interference

of the resulting beams will have maximum contrast. This phase depth correlates to about

10-12 nm in Si3N4for 300 keV electrons.

Fabricating these gratings are challenging in that the effective pitch varies widely across

the beam. Because these gratings are not off-axis gratings, there is no carrier vector ~k

describing a reference wave. The pitch comes from binarizing the |~r|2 phase term. This

produces a pattern of concentric rings of various thicknesses such that the area of each ring

is constant. Thus, as ~r increases, the thickness of the rings decreases. This means that the

milling will require a wide range of feature sizes, and the grating should be as binary as

possible. An SEM image of the grating produced for this experiment is shown in Figure 5.5,

along with the theoretical charge transfer function.
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FIGURE 5.4: Comparison of conventional STEM and MIDI-STEM. Conventional STEM
(a) consists of single pixel (single valued) ADF and BF detectors, whereas MIDI-STEM (b)
utilizes a pixelated BF detector. Image source: [27], reprinted under Creative Commons
Attribution 4.0 International License.

This experiment was successful at producing strong phase-contrast images at reduced

dose. To see the full results, see Ophus et al. [27]. This use of STEM to generate phase

contrast at low dose is highly dependent on the production quality of the diffraction grating.

Much work was put into developing the technique to generate optimal gratings. In the end,

the most effective method is to utilize the built-in shape tools of the FIB – using a series of

circles with outer edges matching the edges of the grating rings, and alternate each circle

between a regular mill and an exclusion zone. The advantage of this method is that the
63



FIGURE 5.5: MIDI-STEM phase plates can be made with a varying number of rings, with
more rings producing a more ideal contrast transfer function. A MIDI-STEM phase plate
with only four rings (a) can produce a decent CTF (c), whereas in our experiment, we
generated a MIDI-STEM plate with 20 rings (b), producing a highly ideal CTF (d). The
black lines in (c-d) represent the CTF for an ideal phase-contrast STEM experiment. The
scale bar is 5 µm. Image source: [27], reprinted under Creative Commons Attribution 4.0
International License.

milling pattern for the built-in circular tool function is azimuthally mill starting from the

extreme radius and moving toward the center. By having the mill time per pixel be on the

order of 100 µs and having many thousands of passes at 7.6 pA, the resulting fabrication

should have smooth side walls and be milled mostly flat.
64



5.4 Counter-Rotating Beam

One often used method to measure the phase profile of a beam is to coherently interfere

the beam with a reference wave, typically a plane or spherical wave. This produces an

interference pattern that can be utilized to recover phase information. This is the basis for

holography, and the reference wave can either be off-axis or coaxial. When the reference

wave is coaxial to a vortex beam of topological charge m, the resulting interference pattern

will contain m lobes. The position and shape of these lobes will change during propagation,

but they will in general rotate by 180 degrees from one extreme of focus to the other – this

is a result of the Gouy phase of the beam. The total phase shift due to the Gouy phase

from z = −∞ to z =∞ is given by (see Equation 2.15)

ΦG = π(|m|+ 2p+ 1). (5.3)

Note that a plane wave is well approximated as a spread out Laguerre Gaussian beam with

m = 0 and p = 0. Thus, the difference in Gouy phase accumulated between a vortex beam of

charge m and a coaxial plane wave is ∆ΦG = |m|π. The total phase accumulated about the

azimuth of a vortex beam of charge m is 2πm. Clearly the Gouy phase difference amounts

to half of the rotational phase of the vortex beam. The result is that as the vortex beam and

the coaxial reference wave go through focus, the resulting interference pattern will rotate by

180 degrees, regardless of the value of m.

Because of this, some interesting beam profiles can be developed. One such profile I

developed is a specific combination of fourteen LG modes, specifically,

ΨA = 11(LG6
0 + LG9

0 + LG12
0 + LG15

0 + LG18
0 + LG21

0 )

+ 10(LG−60
0 + LG−63

0 + LG−66
0 + LG−69

0 + LG−72
0 + LG−75

0 + LG−78
0 + LG−81

0 ).

(5.4)

This produces a beam that consists of two mostly non-interacting sub-beams. Specifically,

the positive m value modes are small enough to not overlap much with the negative m

value modes. The result is that the inner positive m modes rotate clockwise through focus,
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whereas the negativemmodes rotate counter clockwise. A plot of the complex wave-function

for this beam is shown in Figure 5.6, along with an image of the grating fabricated with this

pattern shown in Figure 5.8. A focal series of the simulated propagation vs. actual data is

sown in Figure 5.7, demonstrating the primary quality of this beam – that the inner and

outer sections rotate in opposite directions.

FIGURE 5.6: Representation of the complex amplitude for the beam given in Equation 5.4.
This beam has an inner and an outer portion that rotate in opposite directions as the beam
propagates through focus.

At this point it is unclear what applications might arise from this type of a beam, but

it is important to be able to demonstrate and understand the capabilities of electron beams

and the gratings utilized in shaping them.
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FIGURE 5.7: Simulated (top row) vs. actual data (bottom row) for the beam given in
Equation 5.4. Note that there were significant aberrations in the microscope during image
acquisition, resulting in a distorted beam, which is more pronounced near focus. Ignoring
the distortions due to aberrations (making the beam non-circular), note the qualitative
differences in the beam image on either extreme of focus – this is caused because the grating
was not corrected according to the earlier sections on making ideal beams. The grating
used to take this data is shown in Figure 5.8. The actual defocus values between images
is somewhat arbitrary, but the simulation is symmetric about focus, with focus the central
image.

5.5 Highly Twisted Electron Beams

This section contains unpublished work performed in collaboration with Andrew Forbes

from the University of the Witwatersrand, South Africa. I designed the diffraction gratings

and collected the data, as well as performed some of the analysis. Jason Webster analyzed

much of the data and developed the theory for the work.

Another class of beams which utilize the Gouy phase in specific ways are those for which

the intensity pattern rotates multiple times through focus. This can be broadly achieved in

two ways – using Laguerre Gaussian beams or using Bessel beams.

Using Laguerre beams, we utilize the p modes in Equation 2.15 to create added Gouy

phase. Because the intensity pattern is changing during propagation (apart from scale),

rotating intensity patterns must be a superposition of at least two modes. We want to

the intensity pattern to only have an added rotation with no other complicated sources of

z dependence. Because of this, we will work with a superposition of only two Laguerre
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FIGURE 5.8: SEM scan of a 40 micron grating designed to produce Equation 5.4. This
scan was taken in the FIB just after milling the grating. The electron source is imaging the
sample 52 degrees from normal due to the membrane being aligned for FIB milling.

Gaussian modes. Note that Equation 2.15 is of the form ψ(z) = Gψ tan−1(f(z)), with

Gψ = |m|+ 2p+ 1 the Gouy prefactor. The difference of the Gouy prefactor of two modes is

proportional to the number of times the intensity pattern will rotate for that superposition.

For instance, a superposition defined as

ΨS = LG−1
0 + LG2

20 (5.5)

will have a total accumulated difference in Gouy phase between each mode of 42π radians

through focus. This correlates to the intensity pattern rotating multiple times as the focal

value sweeps from −∞ to +∞. The complex amplitude for this beam is shown in Figure 5.9.

In a TEM, we are highly limited in how much the probes from a grating can be defocused

due to the limited beam separation. Because of this, we were unable to measure how many

times the intensity pattern rotated, but we did observe multiple rotations over the course
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FIGURE 5.9: Complex amplitude of the beam given in Equation 5.5 (left), with the FIB
milled hologram (right). This beam rotates multiple times through focus.

of a focal series. As seen in Figure 5.10, the rotation is mostly linear over a large range of

defocus values. As with a mode which rotates by only 180 degrees through focus, the rate

of rotation should be proportional to tan−1(z), but in this case the given focal series is over

a small enough range as to be well approximated as linear.

Another method that can produce an intensity pattern that rotates linearly during

propagation is by utilizing superimposed Bessel beams. This is because the Bessel function

is a limiting case of Laguerre polynomials. Specifically,

Jm(x) = lim
n→∞

( x
2n

)m
Lmn

(
n
( x

2n

)2
)
, (5.6)

with Jm(x) the Bessel function of order m, and Lmn (x) the associated Laguerre polynomial.

Note that the wave equation can be solved utilizing Bessel functions in polar coordinates

similar to how plane waves are utilized in Cartesian coordinates. Like plane-wave solutions,

Bessel function solutions are non-normalizable – they are however solutions to the full wave

equation and not the paraxial approximation. Because of this, they are not fully realizable in

any real world experiment. However, as with plane-waves, they can be well approximated.

Plane waves are generated by an ideal point source infinitely distant – thus the Fourier
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FIGURE 5.10: Rotation angle of the intensity pattern for the beam defined in Equation 5.5.
Thirty images were taken of the beam through focus, each with a constant defocus of about
100 nm. The top row shows the central portion of the beam for the first six frames. The
bottom graphs shows the measured rotation angle (solid blue) vs. the frame, as well as a
linear fit (dashed red). The defocus value between each frame is constant, thus this shows
a linear rotation through focus.

transform of a plane-wave is a delta function. To generate a Bessel wave, the source is a

delta-ring at infinite distance.

In collaboration with Andrew Forbes and Jason Webster, we ran an experiment to

generate a beam that not only rotated multiple times through focus, but had the rate of

rotation change in regular intervals. This “angularly accelerating” beam follows closely with

the work done by Schulze et al. [72], where superpositions of Bessel modes were generated

in light fields.

Bessel beams as a solution to the wave equation are given as

ψ(r, φ, z) = J krl (~r) = Jl(krr)e
ilφeikzz, (5.7)

where l is the order of the beam (equivalent to m for vortex beams), and k2 = k2
r + k2

z with

k the wave-number of the beam. For the Bessel beams that we work with, kr � kz, and kz

can be assumed to be constant. By creating a superposition of two modes with differing kr

parameters, such as J kr11 + J kr2−1 , the resulting intensity pattern will rotate multiple times
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during propagation. This can be seen in Figure 5.12a. To produce a beam which accelerates

azimuthally during propagation, we use the following superposition

ψ(~r) =
[
J kr11 (~r) +DJ kr1−1 (~r)

]
+
[
J kr21 (~r) +DJ kr2−1 (~r)

]
, (5.8)

where the anisotropic parameter D determines the amount of acceleration, with 0 ≤ D ≤ 1.

Zero acceleration corresponds to D = 0, and ‘infinite’ acceleration corresponds to D = 1.

For nonzero D, the phase about the azimuth is a non-linear function. This non-linearity is

what gives rise to the apparent acceleration of portions of the beam during propagation, as

seen in Figure 5.12. To generate the beams, the Fourier transform of the desired beams were

encoded into an electron diffraction grating. Note that it is not possible to mill a “delta ring”

onto a grating, thus a compromise was made to widen the rings and produce approximate

Bessel beams, as seen in Figure 5.11.

3µm 500nm

FIGURE 5.11: Electron diffraction grating used to produce Bessel beam superpositions.
Each ring encodes a single Bessel function. The width of the ring is a trade-off between
intensity in the diffracted beam and purity of the Bessel mode created.

Four separate holograms were fabricated with varying levels of angular acceleration en-
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coded, ranging from no acceleration D = 0, to D = 0.1584, D = 0.325, and D = 0.510. For

each hologram, a focal series of more than 80 images was taken over a propagation distance

of more than 10 microns. This allowed us to observe two acceleration cycles during the prop-

agation. The control of the acceleration profile requires precise control of the mill depth of

the grating. This level of control is not easily achievable within the FIB used to fabricate the

gratings, and thus the measured D parameter from the focal series differs significantly from

the value used to generate the holograms. However, the rotation and angular acceleration of

the beams is clearly demonstrated. The angular velocity and acceleration for each grating

is shown in Figure 5.13.

Because these beams are accelerating in some sense about the azimuth during propa-

gation combined with the mass and charge of the electrons, we wanted to verify that there

were no radiation events happening during propagation caused by this acceleration. To do

this, we performed an electron energy loss spectrum (EELS) on the beam, looking for sig-

nals near 1 eV. Also, to maximize the potential for radiation events to occur, we generated a

hologram with D = 1 to have ‘infinite’ acceleration. The EELS data is shown in Figure 5.14.

The imaging conditions during the EELS acquisition were identical to the conditions used

to collect the rest of the data. The EELS instrument was spread with a sensitivity of 0.05

eV per pixel, with at 2048 pixel width. The EELS signal for each hologram was analyzed

for any signal, with all being consistent for no energy loss.
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FIGURE 5.12: Rotation and angular acceleration associated with Bessel beam superpo-
sitions. Four different holograms were generated, with Dexp the value of the anisotropic
parameter used to generate the hologram, while Dfit was calculated from the data. The
theoretical (solid teal), fitted (dashed orange) and measured rotation (blue dots) are plotted
together for comparison for each of the four gratings of (a) Dexp = 0, (b) Dexp = 0.158, (c)
Dexp = 0.325, (d) Dexp = 0.510. The insets show the electron beam intensity pattern for
various focal distances.
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FIGURE 5.13: For the beams shown in Figure 5.12, the measured velocity (left) and accel-
eration (top) during propagation. The anisotropic parameter for each is (a) Dexp = 0, (b)
Dexp = 0.158, (c) Dexp = 0.325, and (d) Dexp = 0.510. The solid curve is the theoretical
result based on the value of D encoded onto the diffraction grating (Dexp), while the dashed
orange curve is from the fit to the focal series (Dfit).
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FIGURE 5.14: The EELS data for a beam generated with D = 1 for ‘infinite acceleration’.
Any energy loss due to radiation should show as a peak at the corresponding energy loss
value. The inset shows the data with the zero-loss peak subtracted, with the orange band
giving the 95% noise bounds. This data is consistent with zero radiative energy loss during
propagation.
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CHAPTER VI

SLM ENCODED LASER HOLOGRAMS

6.1 Electromagnetic Diffraction Gratings

The deflection of atoms from a set of standing resonant electromagnetic waves is con-

sidered. This is of interest for the purpose of potentially creating atom interferometers or

other optical-atom devices. Another application is for atom isotope separation.

Let’s begin with an overview of the system that will be analyzed. A beam of atoms,

described by the complex function Ψa(~r) flows from the negative z-axis toward the origin. It

will be assumed initially that the beam has a Gaussian profile. At the origin, a confluence of

laser beams interacts to create a standing wave of a particular shape. All of these lasers are

in the x-y plane. The atom beam interacts with the EM field in the vicinity of the origin,

with interaction time ti. The arrangement of lasers and the creation of the beam of atoms

are beyond the scope of this assessment, and it will be assumed that the lasers and atom

beam can be arranged to suit the needs of this model.

For a conceptual overview of the model, the parameters of importance are: ti – the

interaction time of each atom with the EM field, Ω – the rate of absorption and stimu-

lated emission, γ – the rate of spontaneous emission, and ω – the frequency of the EM

field. Throughout this model, it will be assumed that the atoms are two-level atoms with

a transition frequency ωmn. Also, because the intensity of the laser is sufficiently large,

Ω� γ.

Now consider the case of a single laser that is uniform in intensity over the relevant

x and y ranges of the atom field, and is constant magnitude for |z| < L and zero outside

of this range. This is essentially a sheet of photons. With only one propagating laser,

absorption followed by stimulated emission back into the laser field results in no net transfer

of momentum. Only absorption followed by spontaneous emission transfers momentum, and
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on average spontaneous emission transfers no momentum – thus only the absorption transfers

momentum, and each absorption-spontaneous-decay event transfers ~k of momentum into

the atom.

With two or more applied laser fields however, absorption can be followed by stimulated

emission into another laser mode, resulting in net transfer of momentum. If the stimulated

emission rate is large compared to the spontaneous emission rate, then the spontaneous

emission can be ignored, which will be done throughout this project.

Throughout this analysis the translation and internal states of the atoms are modeled

quantum mechanically, while the EM field is treated classically. The internal states of the

atom are considered as a two-level system.

The Hamiltonian for an atom interacting with a classical EM field is

H =
P 2

2M
+H0 − ~µ · ~E(~r, t) (6.1)

where P is the momentum of the atom, ~r is the x-y position of the atom, H0 is the Hamilto-

nian for internal states of the bare atom, and ~µ is the dipole moment operator. Initially, the

atoms are traveling in the positive z direction, enter the region of the EM field at coordinate

z = −L, and leaves the EM field at z = L.

6.2 Atom Beam

Instead of treating the atom beam as an infinite set of plane-waves, I will assume that

the atom beam satisfies the conceptual requirement of a ‘beam’ – that is, that it has a

well defined optical axis and satisfies the paraxial wave equation. With this, the beam has

a propagation direction and two quantum numbers representing the modes in the plane

perpendicular to the propagation vector. For instance, if we wish to use the Bessel beam

modes as the mode expansion for the atom beam, the two quantum numbers are |kr〉 and

|l〉, where kr is a continuous parameter specifying the radial period, and l is an integer

parameter specifying the orbital angular momentum value of the beam.
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These beams have raising and lowering operators for each quantum number, and it is

these operators that we desire to recreate in the diffraction grating, so that a particular

diffracted order of the grating will have the desired beam mode. For Bessel beams, the

raising and lowering operators for the OAM quantum number are e±iθ, where θ is the polar

angle.

Note that for a mode expansion using something other than plane waves results in extra

terms in the defining Hamiltonian that are dependent on the quantum numbers of the beam

mode. The energy associated with the beam modes is typically very small and to a good

approximation the modes are degenerate, but they are still needed in the definition of the

Hamiltonian, which would now have the form

H =
p2

2M
+HB +H0 − ~µ · ~E(~r, t), (6.2)

where HB is the Hamiltonian for the beam modes.

6.3 Diffraction Grating

To create the proper diffraction grating, the interference between laser modes must be

suitably established as an interaction region for the atom beam. For instance, if we wish

to create a Bessel beam of a particular mode from a Gaussian input beam, we can create

the interference of a Gaussian laser beam with the appropriate Bessel laser beam, both of

frequency ω, and arranged such that the interaction region is well defined and satisfies the

simplifications stated earlier in that the interaction region is from −L < z < L, and the

intensity in the x-y plane is more or less constant.

The interference of the two laser modes can be expressed as

E(~r, t) = ~E0 cos
(
~k · ~r + φ(~r) + φ′(~r)

)
cos(ωt), (6.3)

where φ(~r) is the phase structure of one of the beams, and φ′(~r) is the phase structure of

the other. Assuming that one of the reference beams will always be well approximated as a
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plane-wave, which has φ(~r) = 0, we can use

E(~r, t) = ~E0 cos
(
~k · ~r + φ(~r)

)
cos(ωt) (6.4)

=
~E0

2

(
eiφ(~r)ei

~k·~x + e−iφ(~r)e−i
~k·~x
)

cos(ωt) (6.5)

For the Hamiltonian defined earlier, proper application of Schrödinger’s equation will

allow the determination of the probability densityW (p~k) for momentum p in the ~k direction.

Momentum density is related to displacement in the ~k direction, for large z, via P (|~r|) =

pz
z W (pz

|~k|
z ).

6.4 Schrödinger’s Equation

As I am modeling the atom as a two level system, the states can be conveniently labeled

as {|+〉 , |−〉}. Also, the Hamiltonian from Equation 6.1 can be split into an interaction

Hamiltonian HI and an unperturbed Hamiltonian H ′, with HI = −~µ · ~E(~r, t), and H ′ =

P 2

2M +H0 +HB. The eigenvectors for H ′ are |n〉 |~p〉 |c〉 |l〉, where |n〉 are the eigenvectors for

H0, |~p〉 are the eigenvectors for the momentum operator (the momentum along the optical

axis for each beam), and |c, l〉 are the eigenvectors for the beam mode. The eigenvalues for

H ′ are εn(~p) = |~p|2
2M + En, where En is the internal energy of state n and I have neglected

the energy associated with the beam modes, which is negligible except for extreme cases.

Before interaction with the EM field, the atoms in the beam (all the atoms are assumed

to be in the same state) are of the form

|ψ〉 =
∑
n,c,l

∫
d~pφn,c,l(~p) |n, ~p, c, l〉 , (6.6)

where φn,c,l(~p) is the complex amplitude of each mode, and if one or both of the beam

quantum numbers c and l are continuous, the sum represents an integral. Applying the
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Schrödinger equation,

i~∂t |ψ〉 = H |ψ〉 (6.7)

〈n, ~p, c, l| i~∂t |ψ〉 = 〈n, ~p, c, l| i~∂t
∑
m,u,v

∫
d~p′φm,u,v(~p′)

∣∣m, ~p′, u, v
〉

(6.8)

i~∂tφn,c,l(~p) =
∑
m,u,v

∫
d~p′ 〈n, ~p, c, l|H

∣∣m, ~p′, u, v
〉
φm,u,v(~p

′). (6.9)

6.5 Grating Specifics

To evaluate 〈n, ~p, c, l|H |m, ~p′, u, v〉 it becomes necessary to specify the shape of the

grating and the beam modal expansion that we will be using. By setting

~E(~r, t) =
~E0

2

(
Θ†ei

~k·~r + Θe−i
~k·~r
)
, (6.10)

where Θ is the azimuthal mode raising operator for Bessel beam modes, and sticking with

Bessel modes (note that Θ = eiθ), the right hand side of Equation 6.9 becomes∑
m,u,v

∫
d~p 〈n, ~p, c, l|H

∣∣m, ~p′, u, v
〉
φm,u,v(~p

′) =

∑
m,u,v

∫
d~p 〈n, ~p, c, l|H ′

∣∣m, ~p′, u, v
〉
φm,u,v(~p

′) + 〈n, ~p, c, l|HI

∣∣m, ~p′, u, v
〉
φm,u,v(~p

′)

(6.11)

= εn(~p)φn,c,l(~p) +
∑
m

cos(ωt) 〈n| ~µ ·
~E0

2
|m〉

(
φn,c,l−1(~p− ~~k) + φn,c,l+1(~p+ ~~k)

)
.

(6.12)

By setting gnm = 〈n| ~µ · ~E0 |m〉 /2, Equation 6.9 becomes

i~∂tφn,c,l(~p) = εn(~p)φn,c,l(~p)− cos(ωt)
∑
m

gnm

(
φn,c,l−1(~p− ~~k) + φn,c,l+1(~p+ ~~k)

)
.

(6.13)

This equation shows that a change of the internal state of the atom is associated with

the transfer of ±~k linear momentum and ±1 unit of orbital angular momentum. Note that

gnn = 0.
79



6.6 Interaction Picture Approximations

Going to the interaction picture, set

φn,c,l(~p) = Cn,c,l(~p)e
−iεn(~p) t~ , (6.14)

where εn(~p) are the eigenvalues of H ′. Utilizing Equation 6.13 gives the differential equation

on the Cn,c,l(~p)’s as

i~∂tCn,c,l(~p) = − cos(ωt)
∑
m

gnm

(
Cm,c,l−1(~p− ~~k)e

−i
(
− ~~p·~k

M
+ ~ω2

2Mc2
+ωmn

)
t
+

Cm,c,l+1(~p+ ~~k)e
−i
(

~~p·~k
M

+ ~ω2
2Mc2

+ωmn
)
t
)
,

(6.15)

where ωmn = (En − Em)/~

At this point several approximations must be made – but first, let us take a look at the

physical concepts involved in these equations. For the two level atom with resonant frequency

ωmn, absorption of a photon will increase the internal energy of the atom by ~ωmn while

the momentum transferred is ~ω/c. Thus the kinetic energy increase is (~ω/c)2/(2M) = ~δ,

and energy conservation requires that ~ω = ~ωmn + ~δ. Thus ~ω2/(2Mc2) is the frequency

shift from resonance due to the change in kinetic energy of the atom. The therm ~~p · ~k/M

is the velocity dependent frequency shift (Doppler shift). Under the assumption of short

interaction time, the broadening of the resonant frequency ωmn is large compared to any

shift due to kinetic energy or Doppler shifts, and these terms can be ignored. Further, letting

ω = ωmn, Equation 6.15 becomes

i~∂tCn,c,l(~p) ≈ −
1

2

(
eiωt + e−iωt

)
gnm

(
Cm,c.l−1(~p− ~~k)e−iωt + Cm,c,l+1(~p+ ~~k)e−iωt

)
(6.16)

Finally, by utilizing the rotating wave approximation and neglecting the e−2iωt terms, we
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are left with

Ċ+,c,l(~p) =
iΩ

2

(
C−,c,l−1(~p− ~~k) + C−,c,l+1(~p+ ~~k)

)
(6.17)

Ċ−,c,l(~p) =
iΩ

2

(
C+,c,l−1(~p− ~~k) + C+,c,l+1(~p+ ~~k)

)
(6.18)

where Ω = 〈−| ~µ · ~E0 |+〉 /~. By adding and subtracting the above equations, two new

equations are formed:

Ċ+,c,l(~p) + Ċ−,c,l(~p) =
iΩ

2

(
C+,c,l−1(~p− ~~k)

+ C−,c,l−1(~p− ~~k) + C+,c,l+1(~p+ ~~k) + C−,c,l+1(~p+ ~~k)
) (6.19)

Ċ+,c,l(~p)− Ċ−,c,l(~p) =
iΩ

2

(
C+,c,l−1(~p− ~~k)

− C−,c,l−1(~p− ~~k) + C+,c,l+1(~p+ ~~k)− C−,c,l+1(~p+ ~~k)
) (6.20)

By setting

D+,c,l(~p) =
1√
2

(C+,c,l(~p) + C−,c,l(~p)) (6.21)

D−,c,l(~p) =
1√
2

(C+,c,l(~p)− C−,c,l(~p)) , (6.22)

the equations uncouple to

Ḋ+,c,l(~p) =
iΩ

2

(
D+,c,l−1(~p− ~~k) +D+,c,l+1(~p+ ~~k)

)
(6.23)

Ḋ−,c,l(~p) = − iΩ
2

(
D−,c,l−1(~p− ~~k) +D−,c,l+1(~p+ ~~k)

)
(6.24)

Remember that the C± are the state coefficients in the interaction picture. At this point, I

will start ignoring the c quantum number. I may consider its effects at some later point.

6.7 State Coefficients

Solving these equations using the trial solution

D±,l(~p) =
1√
2π
ei~r·~p±iαt±ilθp (6.25)
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gives

iae
i
~~r·~p±iαt±ilθp =

iΩ

2

(
e
i
~~r·~p±iαt±ilθpe−i~r·

~k∓iθp + e
i
~~r·~p±iαt±ilθpei~r·

~k±iθp
)

(6.26)

α(~r) = Ω cos
(
~r · ~k + θp

)
(6.27)

This is a dispersion relation in momentum space. Since any value of ~r gives a solution, the

general form is

D±,l(~p) =
1√
2π

∫ ∞
−∞

d~ra±(~r)ei~r·~p±iα(~r)t±ilθp . (6.28)

Note that l is the azimuthal quantum number of the atom beam before interacting with the

electric field, which I will assume is l = 0 from here on. At t = 0, with l = 0, Equation

6.28 gives a simple Fourier transform between a±(~r) and D0
±,0(~p) = D±,l=0(~p, t = 0). This

Fourier transform can be inverted as

a±(~r) =
1√
2π

∫ ∞
−∞

d~pD0
±,0(~p)e−i~r·~p (6.29)

Putting this back into Equation 6.28,

D±,l(~p, t) =
1

2π

∫ ∞
−∞

d~r
∫ ∞
−∞

d~p′eir(~p−~p
′)±iα(~r)t±ilθpD0

±,0(~p) (6.30)

Defining the propagators

G±(~p− ~p′, t) =
1

2π

∫ ∞
−∞

d~rei~r·(~p−~p
′)±ia(~r)t (6.31)

=
1

2π

∫ ∞
−∞

d~rei~r·(~p−~p
′)±iΩ cos(~r·~k+θp)t (6.32)

Utilizing the Jacobi-Anger expansion yet again, this becomes

G±(~p− ~p′, t) =
1

2π

∫ ∞
−∞

d~rei~r·(~p−~p
′)

∞∑
m=−∞

eim~r·
~keimθpIm(±iΩt), (6.33)

where Im is the mth modified Bessel function of the first kind.

At this point, remember that the G±(~p′, t) are the propagators that propagate the state

coefficients D0
±,0(~p) to another momentum ~p′ and quantum number l = ±1 at time t. For a

82



diffraction grating, this should be a series of delta functions corresponding to the diffraction

orders. The above equation becomes

G±(~p− ~p′, t) =
1

2π

∞∑
m=−∞

δ(~p′ − (~p−m~k))e−imθpIm(±iΩt). (6.34)

Plugging this into Equation 6.30, the final form of the state coefficients D±(p, t) is

D±,l(~p, t) =
∞∑

m=−∞
(±i)mJm(Ωt)D0

±,0(~p−m~~k)ei(l−m)θp (6.35)

=

∞∑
m=−∞

(±i)mJm(Ωt)D0
±,l−m(~p−m~~k). (6.36)

6.8 Diffracted Beams

Taking a step back from the math, consider that this equation gives a relation for the

(mixed) state coefficients after interaction time t D±,l(~p, t) to the state coefficients before

the interaction D±,l(~p, t ≤ 0). If the atom beam initially has atoms in the ground state with

~p = pz (such that the optical axis is the z-axis), and ~k is some direction in the x-y plane

defined by the counterpropagating laser modes, and if the atom is initially in an l = 0 state,

the state coefficients are

C+,l(~p) = 0 (6.37)

C−,l(~p) = (δ(~p)δl,0)
1
2 (6.38)

gives that D0
±,l(~p) = ±

(
1
2δ(~p)δl,0

) 1
2 . Note that the delta functions are under a square-root so

that the probability (which is related to the square of the coefficient) is properly normalized.

The momentum probability densityW (~p) is now formed by summing over all other quantum
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numbers as

W (~p) =
∑
l

(
|C+,l(~p)|2 + |C−,l(~p)|2

)
(6.39)

=
∑
l

(
|D+,l(~p)|2 + |D−,l(~p)|2

)
(6.40)

=
∑
l

∑
m

J2
m(Ωt)δ(~p−m~~k)δl,m (6.41)

=
∑
m

J2
m(Ωt)δ(~p−m~~k) (6.42)

Note that from Equation 6.36 to Equation 6.41 should involve a double sum over sep-

arate indices, but I have neglected this because the delta functions work it out. Note that

Equation 6.42 gives that the probability Pm(t) that the beam has had the optical axis shifted

by m~~k is

Pm(t) = J2
m(Ωt). (6.43)

Note that any beam mode will require a certain frequency range to represent it (the width

in frequencies in the plane-wave basis), and this spread is related to the dispersion of the

beam as it propagates. As long as the diffraction angle is large compared with the dispersion

of the beam mode, the diffraction orders will be well separated. The diffraction angle for

the first diffraction order is, under the small angle approximation, ϕ1 ≈ ~k/pz, where pz is

the initial z-momentum of the atom beam, and ~k is the momentum transfer to the first

diffracted order, with ~k in the x-y plane.

6.9 Numerics

The approximations introduced in Section 6.6 are (~p⊥ · ~k/M + ~ω2/(2Mc2))t � 1,

which is that the Doppler shift and the recoil shift are small. The recoil shift is half the

Doppler shift when p⊥ = ~~k, corresponding to the first diffraction order. Thus the constraint
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becomes

t <
2Mc2

3~ω2
(6.44)

This constraint puts a limit on the interaction region from −L ≤ z ≤ L, and the interaction

time is related to the intensity of the diffraction orders. Consider a generic atom with

mass M = 1.6 ×10−22g and ω = 3 ×1015s−1, giving ~k = 4.17 ×10−23kgms , and for a

beam with initial z velocity vz = 10m
s , pz = 1.6 ×10−21kgms , giving a diffraction angle of

ϕ1 = 2.6 milliradians for the first diffraction order. Due to the tiny wavelength of the atoms

(2.t ×10−13m in this case), the atom beam is essentially non-divergent when it is on the

order of millimeters. Thus, if the beam is 2mm in diameter initially, and remains 2mm in

diameter after propagating beyond the grating by 1 meter, the diffraction orders will be

2.6mm separated. This seems completely reasonable.

Lastly, I wish to determine the conditions for which the laser maximized the diffraction

efficiency. To this end, the intensity in the first diffracted order is

Pm(t) = J2
m(Ωt), (6.45)

where Ω = 〈−| ~µ· ~E0 |+〉 /~ = (8πI/(cε0~2))
1
2 〈−| ~µ·ε |+〉, where I is the intensity of the laser

beam. The Bessel function is maximized for Ωt ≈ 1.84, with J2
1 (1.84) ≈ 0.34. Choosing

the interaction region to be 20 microns thick, so that L = 2 ×10−3cm, Ω ≈ 917.5kHz

for an intensity of 22 µWcm2 , which, combined with the time of flight of 2 microseconds, gives

Ωt ≈ 1.84 and maximizes the first diffraction order. The time constraint above is that the

interaction time should be less than 160 microseconds, which is met.

6.10 Discussions

At this point it becomes clear that the intensity required in the laser beam is quite

small, and it would behoove me to check that the rate Ω still has the condition Ω� γ, such

that the spontaneous decay rate can be ignored. To get around this issue, the interaction
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region can be made smaller and a different peak of the J2
1 (Ωt) function can be sought, which

can increase the rate Ω.

Concerning the simplifications of this model – Bessel beams do not exist, just as plane

waves to not exist, and recreating a lowering or raising operator as an interference region

of two lasers is not fully possible. At best, the raising and lowering operators will raise or

lower the desired quantum number while also leaving the system in an infinite superposition

of the other quantum number. The basic result would be the same though and following

through with the analysis would be only useful in the engineering aspect of how to set up

the laser beams optimally.

To summarize the chapter – resonant standing wave EM gratings can be utilized to

imprint complex beam profiles onto a propagating atom beam under the appropriate as-

sumptions, the most limiting of which are that the atom beam is well approximated by a

two level system where the spontaneous decay from the excited state can be ignored during

interaction with the laser beams.
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CHAPTER VII

CONCLUSION

We demonstrate the viability of electron diffraction gratings to produce high quality

shaped electron beams. Electron diffraction gratings have the possibility to create almost

arbitrary beams that can be quite bright relative to the incident beam. These beams have

a wide range of possible uses, and we provide some preliminary work on exploring some of

these use cases.
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APPENDIX A

CODE FOR ARBITRARY GRATING CORRECTION

This appendix lists the Python code for generating maps s ∈ Ep for diffraction order p,

see Equation 3.21.

Brute Force Search

The first step is to generate a brute force search over a small domain of 1 ≤ n ≤ 7, and

−5 ≤ s(n) ≤ 5. First I define a class called memory that allows the most recent return value

of a function to be recalled without running the function again.

1 class memory(list):
2 def __init__(self, func):
3 super(memory, self).__init__()
4 self.func = func
5 self.append(None)
6
7 def __call__(self, *args, **kwargs):
8 self[0] = self.func(*args, **kwargs)
9 return self[0]

Next I need a function that will give the magnitude of the component. This depends on

h, Z, Ṽ , and c – the maximum depth, the location on the envelope function, the material

parameters, and the Fourier coefficients. I also need a function that gives the diffraction

order the component adds to
10 @memory
11 def val(sequence, Z, V, c):
12 return numpy.abs(
13 numpy.prod([numpy.sum(component(h * Z, pair[0], pair[1], c, V))
14 for pair in sequence]))
15
16 @memory
17 def order(sequence):
18 return sum([pair[0] * pair[1] for pair in sequence])

Here component gives the contribution of an individual component within the infinite prod-

uct that defines each term. Also, sequence is a list of lists defining the map, of the form
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sequence = [[1, -1], [2, 1], [3, 0], [4, 0], [5, 0]]

With this, the code to generate all sequences of a certain range, say for 1 ≤ n ≤ 7 and

−5 ≤ s(n) ≤ 5 is

19 import itertools
20 max_length_of_sequence = 100
21 nMax = 7
22 mMax = 5
23 tail = [[i, 0] for i in range(nMax + 1, max_length_of_sequence + 1)]
24 brute_search = (list(l) + tail for l in itertools.product(
25 *[[[n, m] for m in range(-mMax, mMax + 1)] for n in range(1, nMax + 1)]))

Next to create a dict that contains only the terms from brute_search that contribute

to the first diffraction order,

26 matches = {i: {'list': list(sequence),
27 'order': order[0],
28 'val': val[0]}
29 for i, sequence in enumerate(brute_search)
30 if order(sequence) == 1 and
31 val(list(sequence), h, Z, V, Fourier_coefficients) > 0}

And finally, to sort the results into the largest 5000 (or however many are necessary).

This will produce a dict containing the 5000 most significant terms listed in order of sig-

nificance that were in the parameter spaced searched via brute_search.

32 import heapq
33 matches_sorted = {i: res[1] for i, res in enumerate(heapq.nlargest(
34 5000, matches.items(), key=lambda item: item[1]['val']))}

Pattern Search

The brute force search can only search for relatively small n values. Here I describe a

method to extend the search to a much larger range. First I define a function that allows

me to stitch together certain sequences.

35 def extend(a, b, level):
36 if level > 1:
37 try:
38 a.extend(b[0])
39 except:
40 a.append(b)
41 else:
42 a.append(b)
43 return a
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Next, I define the Search function that will be used to generate patterns

44 def Search(N, val, level, start_level, minimum, r):
45 n = N
46 forward = False
47 sig = N
48 s = 1
49 if level == 1:
50 if not abs(r) == 0:
51 s = abs(r)
52 while n > 0:
53 for i in range(-s, s + 1):
54 if i == 0:
55 continue
56 if val + i * n == 1:
57 forward = True
58 yield [[n, i], ['end']]
59 n -= 1
60 else:
61 while n > 0:
62 if level == start_level:
63 if n < minimum:
64 break
65 sig = 0.5 * (1 + (level)) * (2 * (n - 1) - (level)) + 2
66 if sig < abs(val - 2 * n) <= 2 * sig:
67 forward = True
68 yield extend([[n, -2]],
69 Search(n - 1, val - 2 * n, level - 1, start_level, minimum, r), level - 1)
70 if abs(val - n) <= sig:
71 forward = True
72 yield extend([[n, -1]],
73 Search(n - 1, val - n, level - 1, start_level, minimum, r), level - 1)
74 if abs(val + n) <= sig:
75 forward = True
76 yield extend([[n, 1]],
77 Search(n - 1, val + n, level - 1, start_level, minimum, r), level - 1)
78 if sig < abs(val + 2 * n) <= 2 * sig:
79 forward = True
80 yield extend([[n, 2]],
81 Search(n - 1, val + 2 * n, level - 1, start_level, minimum, r), level - 1)
82 n -= 1
83
84 if forward is False:
85 yield [[n, sign(val), level, val + sign(val) * n, n, sig, 'ended', r]]

Finally, two more function to make this useful

86 def retreive(t, cur, tree):
87 try:
88 for item in list(tree):
89 val = copy.copy(cur)
90 if len(item) > 1 and str(item[1].__class__) == "<class 'generator'>":
91 val.append(item[0])
92 retreive(t, val, list(item[1]))
93 else:
94 val.append(item[0])
95 t.append(val)
96 except:
97 pass
98
99 def search(N, level, extend, begin, r=0):
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100 """
101 This is used to find contributors with 'level' entries non zero.
102 The search ensures the maximum has n value of at least 'begin',
103 and will search to a maximum n value of 'N'.
104 The returned sequences are extended to 'extend'
105 """
106 if extend < N:
107 raise AttributeError("'extend' must be greater than 'N'")
108 b = list(Search(N, 0, level, level, begin, r))
109 t = []
110 retreive(t, [], b)
111
112 tmp = [item for item in t if len(item) == level and
113 order(item) == 1 and len(item[-1]) == 2]
114 ret = []
115 for item in tmp:
116 ar = numpy.array(item)
117 temp = [[i, item[list(ar[::,0]).index(i)][1] if i in ar[::,0] else 0]
118 for i in range(1, extend + 1)]
119 ret.append(temp)
120 return ret

With this, I can generate maps that contribute to the first diffraction order that contain

specified number of terms. For maps with two terms which will not be found via the brute-

force method, I have

121 b = search(100, 2, 100, 7, 9)
122 b = b[::-1]
123 num = 15
124 form = "{0}|" + "".join(("{"+str(n)+ "}" for n in range(1,15+1)))
125 print(form.format("n".rjust(3), *[str(i + 1).rjust(3) for i in range(num)], ""))
126 print(" |" + "-" * 3 * num)
127 for i in range(30):
128 print(form.format(str(i + 1).rjust(3), *[str(m).rjust(3) for n, m in b[i][0:num]]))

Producing the following output

n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|---------------------------------------------

1| -6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2| 0 -3 0 0 0 0 1 0 0 0 0 0 0 0 0
3| 0 0 -2 0 0 0 1 0 0 0 0 0 0 0 0
4| 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0
5| 8 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
6| 0 4 0 0 0 0 -1 0 0 0 0 0 0 0 0
7| 0 0 0 2 0 0 -1 0 0 0 0 0 0 0 0
8| -7 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9| 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0

10| 9 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
11| 0 0 3 0 0 0 0 -1 0 0 0 0 0 0 0
12| -8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13| 0 -4 0 0 0 0 0 0 1 0 0 0 0 0 0
14| 0 0 0 -2 0 0 0 0 1 0 0 0 0 0 0
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15| 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0
16| 0 5 0 0 0 0 0 0 -1 0 0 0 0 0 0
17| 0 0 0 0 2 0 0 0 -1 0 0 0 0 0 0
18| -9 0 0 0 0 0 0 0 0 1 0 0 0 0 0
19| 0 0 -3 0 0 0 0 0 0 1 0 0 0 0 0
20| 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0
21| 0 -5 0 0 0 0 0 0 0 0 1 0 0 0 0
22| 0 0 0 0 -2 0 0 0 0 0 1 0 0 0 0
23| 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0
24| 0 6 0 0 0 0 0 0 0 0 -1 0 0 0 0
25| 0 0 4 0 0 0 0 0 0 0 -1 0 0 0 0
26| 0 0 0 3 0 0 0 0 0 0 -1 0 0 0 0
27| 0 0 0 0 0 2 0 0 0 0 -1 0 0 0 0
28| 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
29| 0 -6 0 0 0 0 0 0 0 0 0 0 1 0 0
30| 0 0 -4 0 0 0 0 0 0 0 0 0 1 0 0
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APPENDIX B

CODE FOR PERCEPTUALLY UNIFORM COLOR MAP

This code will generate red, green, and blue (rgb) values that correspond to perceptually
uniform color map from a complex valued array to a color image. That is, for complex
numbers of equal magnitude, the corresponding rgb values will have a perceptually uniform
intensity despite having different colors. In the code below, data is a 2-dimensional complex
valued numpy which we wish to represent as an image. We assume that data is normalized.

1 def cielab_image(data):
2 import numpy
3 split_view = numpy.dtype((numpy.uint32, {'b': (numpy.uint8, 0),
4 'g': (numpy.uint8, 1),
5 'r': (numpy.uint8, 2),
6 'a': (numpy.uint8, 3)}))
7 rgb_image = numpy.zeros_like(data, dtype=numpy.uint32)
8 rgb_image_components = rgb_image.view(split_view)
9

10 rgb_image_components['a'] = numpy.full(data.shape, fill_value=255, dtype=numpy.uint8)
11
12 value = numpy.absolute(data) * 255
13 hue = (numpy.angle(data) + numpy.pi) / 2
14 pi6 = numpy.pi / 6
15
16 def sin2(array, offset):
17 return numpy.sin(array - offset) ** 2
18
19 g = 0.6 * sin2(hue, 2 * pi6)
20 r = sin2(hue, 0.15 * pi6)
21 r += 0.35 * sin2(hue, 3.15 * pi6)
22 g += 0.065 * sin2(hue, 5.05 * pi6)
23 b = sin2(hue, 4.25 * pi6)
24
25 g += 0.445 * b
26 g += 0.33 * r
27
28 rgb_image_components['r'] = (r * vlaue).astype(numpy.uint8)
29 rgb_image_components['g'] = (g * vlaue).astype(numpy.uint8)
30 rgb_image_components['b'] = (b * vlaue).astype(numpy.uint8)
31
32 return rgb_image
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