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DISSERTATION ABSTRACT 

 

HyeonJin Yoon 

 

Doctor of Philosophy 

 

Department of Educational Methodology, Policy, and Leadership 

 

September 2018 

 

Title: Multiple-cutoff Regression Discontinuity Designs in Program Evaluation: A 

Comparison of Two Estimation Methods 

 

 

In basic regression discontinuity (RD) designs, causal inference is limited to the 

local area near a single cutoff. To strengthen the generality of the RD treatment estimate, 

a design with multiple cutoffs along the assignment variable continuum can be applied. 

The availability of multiple cutoffs allows estimation of a pooled average treatment effect 

across cutoffs and/or individual estimates at each cutoff location, allowing for the 

possibility of heterogeneous treatment effects. The purpose of this study is to (a) 

demonstrate the application of two treatment effect estimation methods (i.e., a 

conventional pooling method and a multilevel pooling method) for the multiple-cutoff 

RD (MCRD) designs using Tier 2 kindergarten math intervention data (ROOTS), (b) 

examine the extent to which the two methods yield unbiased and precise estimates 

comparable to those from the randomized controlled trial (RCT) design, and (c) 

investigate the moderating role of a classroom characteristic (i.e., classroom cut-point) on 

the size of the ROOTS intervention effect.  

Math intervention data were collected from 2012 to 2015 to evaluate the impact 

of a small-group (Tier 2) kindergarten mathematics intervention. The analytic sample 

included 1,900 kindergarten students from the four school districts in Oregon and from 
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the two districts in Boston, Massachusetts. The intervention effect was estimated using a 

conventional pooling method and a multilevel pooling method. The bias and power of the 

resulting MCRD estimates were compared with an RCT benchmark. In addition, 

treatment effect variability was predicted by the cut-point used to screen treated students 

in each classroom. 

Results showed that treatment students scored higher on the posttest outcome than 

control students at the centered cutoff. All of the MCRD methods produced unbiased 

treatment effect estimates comparable to a benchmark RCT estimate; however, the power 

in the MCRD design was lower than in the RCT, regardless of the estimation method. 

The cut-point used to screen students into the treatment condition moderated the 

treatment effect, with a greater treatment effect observed in the classrooms with a larger 

cutoff value. Implications for program evaluation design theory and practice are 

discussed.  
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CHAPTER Ⅰ 

INTRODUCTION 

The regression discontinuity (RD) design has been widely recommended as an 

alternative means to facilitate causal inference (Bloom, 2012).  Recently, the Institute of 

Education Sciences (IES) affirmed the use of RD as a method to evaluate educational 

intervention programs, claiming that if statistical modeling assumptions are met and the 

design is properly implemented and analyzed, RD yields an unbiased treatment effect 

estimate (Jacob, Zhu, Sommers, & Bloom, 2012).  In RD designs, individuals or units are 

assigned to either the treatment or control condition based on a cutoff score on a 

preprogram measure. The assignment variable can be any measure taken prior to 

treatment, including the pretest scores of the outcome variable. The assignment variable 

does not have to be highly correlated with the outcome variable, but the design has more 

statistical power if it does. In many applications, the assignment variable assesses the 

participants’ need for the treatment or intervention. For example, for a college math 

remedial program, students’ prior math test scores, such as the SAT mathematics scores, 

are utilized. 

Figures 1 and 2 present the scatter plots of assignment variable scores against 

posttest scores used in the RD designs. Both scatter plots indicate a cutoff set at 50; 

subjects who score above the cutoff are assigned to the treatment condition, and those 

who score below the cutoff are assigned to the control condition. Figure 1 depicts a 

situation where a treatment has no effect.  When the treatment is not effective, no 

discontinuity in the regression relationship between the assignment variable and posttest 

scores at the cutoff is observed. In contrast, when the treatment is effective, as shown in 
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Figure 2, a discontinuity in the regression relationship between the assignment variable 

and posttest scores occurs at the cutoff as the effect estimate is added to the posttest 

scores for all treatment participants. The difference in the intercept between the treatment 

and control regression segments at the cutoff indicates the magnitude of the treatment 

effect. 

 

Figure 1. RD with no treatment effects. 

 

Figure 2. RD with treatment effects. 
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RD offers three major advantages in a program evaluation context. First, it 

enables program administrators to target those who are most in need of treatment. As 

noted earlier a cut-score on the assignment variable is identified and those above or 

below the cutoff receive the treatment. 

Second, RD enables the estimation of an unbiased causal estimate because the 

selection mechanism is completely known. Specifically, in RD, the use of a cutoff score 

to assign participants to the treatment and control conditions results in two nonequivalent 

groups: those with assignment scores below the cutoff and those with assignment scores 

above the cutoff.  However, the source of the nonequivalence (i.e., the assignment score) 

is statistically modeled. Modeling the assignment scores adjusts for the group differences, 

thereby producing an unbiased causal estimate at the cut-score (Jacob et al., 2012).  In 

addition, a small area near the cutoff, treatment assignment either to the treatment or 

control condition can be considered random due to a measurement error in the 

assignment variable. The local randomization also provides additional conceptual support 

for unbiased treatment effect estimation at the cutoff. 

For these reasons, several authors have recommended RD as a strong alternative 

to RCT, especially when the random assignment of individuals most in need of treatment 

is considered neither ethical nor feasible (Bloom, 2012; Schochet et al., 2010; Smith, 

2014). Accordingly, RD has been applied to evaluate educational intervention programs, 

including Reading First (Gamse, Jacob, Horst, Boulay, & Unlu, 2008) and Head Start 

(Ludwig & Miller, 2007; Wong, Cook, Barnett, & Jung, 2008), as well as post-secondary 

remedial education programs (Calcagno & Long, 2008; Jacob & Lefgren, 2004; Moss, 

Yeaton, & LIoyd, 2014). 
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Despite the advantages offered by RD, the basic RD design has several 

methodological limitations, including the following: (a) lower statistical power than a 

comparable RCT, (b) strong reliance on correct modeling of the assignment variable-

outcome relationship, and (c) the limited generality of causal inference (Tang, Cook, 

Kisbu-Sakarya, Hock, & Chiang, 2017; Wing & Cook, 2013). To date, some efforts have 

been made to mitigate these challenges through supplemental analytic methods or by 

employing RD design variations. For example, to correctly specify the functional form in 

RD, researchers have recommended using nonparametric methods in addition to 

parametric methods (Bloom, 2012; Hahn, Todd, & Van der Klaauw, 2002; Imbens & 

Lemieux, 2008; Lee & Lemieux, 2010; Sack & Ylvisaker, 1978).  Nonparametric 

methods do not require the pre-specification of the functional form of the estimated 

relationship between the assignment variable and the outcome and enable the functional 

form to be determined by the data. Similarly, adding an untreated pretest function or 

another untreated comparison group has been suggested to improve the precision of RD 

because these approaches increase the sample size of the study and partial the correlation 

between the treatment status and the assignment variable (Tang et al., 2017; Wing & 

Cook, 2013). 

An important aspect of these efforts has been the increased attention paid to 

improving the generality of RD estimates beyond the cutoff.  One approach is to extend 

the area of causal inference in RD designs by using multiple cutoffs across the 

assignment variable continuum (Black, Galdo, & Smith, 2007; Cattaneo, Titiunik, 

Vazquez-Bare, & Keele, 2016; Gamse et al., 2008), which is the focus of this study.  

Multiple-cutoff RD (MCRD) designs arise from variations in the cutoff used to assign 



 

5 

individuals or units to conditions (e.g., the school, district, and state). For example, 

colleges may have different GPA cutoffs to select merit-based scholarship recipients. 

Similarly, school districts may use different state assessment score cutoffs as the 

eligibility criteria for summer literacy programs. The availability of multiple cutoffs 

spread over an assignment variable continuum extends the area of causal inference in RD 

designs beyond the vicinity of a single cutoff.  Thus, in MCRD designs, researchers can 

estimate an average RD treatment effect by pooling treatment effect estimates across 

cutoffs, or they can estimate the local RD treatment effects at each cutoff separately. 

 Although MCRD is a promising approach for generalizing the RD treatment 

effect estimate, the current literature lacks a thorough examination of the estimation 

methods used in the application of this design. A common approach to identify treatment 

effects in the MCRD designs is to estimate a pooled RD treatment effect across cutoffs 

(Cattaneo et al., 2016). However, the statistical conclusion validity of this approach and 

the resulting implications for causal inference have not been well established. Similarly, 

there is also a relative dearth of research on the alternative MCRD method (i.e., 

multilevel pooling RD) that that allows for the estimation of and modeling of 

heterogeneity in treatment effects across cutoffs. As a result of the unanswered questions 

surrounding the MCRD design and estimation, the primary goals of this study are as 

follows: 

1. Demonstrate two treatment effect estimation methods for MCRD designs 

2. Evaluate the two estimation methods with respect to the validity, efficiency, 

and generalization of the causal inference 

3. Estimate and model treatment effect heterogeneity in MCRD designs 
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The findings of this study are expected to contribute to the growing body of 

literature on RD design variations intended to improve the generality of causal effect 

estimates. The results of this study may also help program providers and policy makers 

identify a valid, efficient, and informative program evaluation model when treatment 

assignment cutoffs vary by sites or units in practice.  

In the following, I provide an overview of the theoretical framework and previous 

studies on RD. I specifically discuss the research literature pertaining to early 

mathematics intervention programs, which constitutes the applied context for the current 

study. In addition, I review the previous research on MCRD designs and treatment effect 

heterogeneity. Then, I discuss the limitations in the current literature on MCRD and early 

mathematics intervention programs before presenting the research questions for this 

study. 
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CHAPTER Ⅱ 

LITERATURE REVIEW 

Regression Discontinuity (RD) Designs   

In the RD design, subjects on one side of a cutoff score are assigned to the 

treatment group and those on the other side are assigned to the control group (Bloom, 

2012; Shadish, Cook, & Campbell, 2002). For example, applying the RD framework to 

individuals selected for a Medicaid benefit (i.e., a health coverage program jointly funded 

by the federal and state governments), the program assigns those who score below an 

income cutoff in a base period to the treatment group and those who score above the 

cutoff to the control group. The RD design approach involves a comparison between the 

two groups with respect to the assignment-outcome variable relationship (e.g., income-

medical expenditure). A discontinuity at the cut in the assignment-outcome regression 

line yields a local causal inference of the treatment effect on the outcome measure (i.e., 

the effect of Medicaid funds on medical expenditure). 

In addition to causal inference, another compelling feature of RD design is 

associated with the ethical advantage it may offer in real-world, practical settings. 

Although the RCT provides the most straightforward means of identifying a treatment 

effect (Odom et al., 2005; What Works Clearinghouse, 2017), it places a burden on 

program administrators with respect to the randomization of subjects who are most in 

need of treatment. For example, when implementing a college remedial math program, 

program administrators may find it unethical to randomize students who score the lowest 

into either the treatment or control condition. In such scenarios, the use of RD enables 

program administrators to offer the program to those most in need. In the following 
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paragraphs, I provide a detailed description of the theoretical mechanism facilitating 

causal inference from RD designs. 

Theoretical Framework of RD Designs 

Thistlethwaite and Campbell (1960) first proposed and demonstrated RD as an 

approach for drawing causal inferences in an educational research context where 

participants were not randomly assigned to experimental and control groups. In this 

study, students received scholarships based on their score on a scholarship qualifying test, 

and the authors estimated the effect of student scholarships on career aspirations at the 

cutoff score for the award. Until 1970s, a major focus of the research was on the 

theorization of causal inference in RD designs along with the limitations (Campbell, 

1969; Goldberger, 1972; Riecken et al., 1974). The identification of the limitations in RD 

designs led to significant methodological advances, particularly in econometrics (e.g., 

Angrist, Imbens, & Rubin, 1999; Imbens & Angrist, 1994). Although there were a couple 

of decades in which RD designs received less attention, since its initial introduction in the 

1960s, RD designs have been well-established in both theory and methodology by the 

concerted efforts of researchers across different disciplines, including education, 

psychology, econometrics, and mathematics (Cook, 2008). 

The primary rationale for RD as a methodology of estimating causal inference is 

that a completely known assignment rule is used to address the selection bias that is 

otherwise inherent in the design (Campbell & Stanley, 1963). Goldberger (1972) proved 

that incorporating the assignment variable in the estimation of the treatment effect could 

remove the confounding due to selection bias. In other words, he corroborated the notion 

that the treatment status indicator loses any “explanatory power with respect to an 
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outcome (y)” (Goldberger, 1972, p. 16) when including the assignment variable (x) in the 

regression because the assignment variable (x) completely determines treatment status 

(z). This means that when incorporating the assignment variable (x) in the regression 

model, the partial correlation between the treatment status (z) and the outcome becomes 

zero. Hence, when the RD model includes the assignment variable, the selection 

procedure does not result in a spurious effect, thereby yielding an unbiased treatment 

effect estimate. 

Similarly, Campbell and Stanley (1963) suggested that in RD designs, the chance 

of individuals around the cutoff being assigned either into treatment or control condition 

is random due to measurement error. Given the assumption of “local randomization,” 

individuals immediately above and below the cutoff are assumed to be identical, except 

in terms of the treatment assignment status. Therefore, any difference in mean outcomes 

between these two groups near the cutoff should only be attributed to the treatment 

(Jacob et al., 2012), which supports unbiased causal inference in RD designs (Lee & 

Lemieux, 2010).  

Methodological Limitations in RD Designs  

Once the theoretical framework of RD had been established, researchers started 

identifying the methodological limitations, including (a) a strong reliance on correct 

specification of the regression function, (b) low statistical power, and (c) a lack of 

generality of causal inference (Bloom, 2012; Wing & Cook, 2013; Tang et al., 2017). In 

response, the researchers made efforts to mitigate these challenges by using supplemental 

analytic methods (Angrist & Pischke, 2009; Hang et al., 2001; Imbens & Lemieux, 2008; 

Sack & Ylvisaker, 1978; Schochet, 2009) or by experimenting with alternative RD 
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designs, such as the comparative RD (CRD) design (Wing & Cook, 2013, Tang et al., 

2017) and the hybrid RD design (Shadish et al., 2002; Trochim, 1984). 

Strong reliance on the correct specification of the regression function. In RD, 

the validity of the causal estimate relies heavily on correct specification of the regression 

function linking the assignment and the outcome variable. For example, if researchers 

modeled a linear function when the true function for the hypothesized relationship is not 

linear (e.g., curvilinear), an artifactual discontinuity at the cutoff could be observed (Lee 

& Lemieux, 2010).  

In light of this strong reliance on identifying the correct functional form, 

researchers have suggested using supplemental analytic methods in addition to parametric 

methods. Sack and Ylvisaker (1978) introduced local nonparametric methods in 

analyzing RD data. In this approach, a separate linear slope is estimated for ranges of 

local values of the assignment variable, and greater weights are assigned to observations 

near the cutoff. Since their introduction into RD analysis, nonparametric methods have 

widely been used (Angrist & Pischke, 2009; Bloom, 2012; Hahn et al., 2001; Imbens & 

Lemieux, 2008; Lee & Lemieux, 2010). In nonparametric methods, a particular 

functional relationship between the predictor and the outcome variable is not 

predetermined as in parametric methods but is rather constructed according to 

information from the data. Therefore, nonparametric methods allow for flexibility in 

modeling functional form across the assignment variable continuum (Bloom, 2012; 

Whitley & Ball, 2002). In many RD analyses, nonparametric methods have been used to 

supplement the treatment effect estimates from parametric methods, thereby allowing 

researchers to assess the potential misspecification of parametric functional forms (Moss 
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et al., 2014; Shadish, Galindo, Wong, Steiner, & Cook, 2011; Wing & Cook, 2013; Wong 

et al., 2008). The expectation is that consistent results found across parametric and 

nonparametric methods strengthen the validity of the treatment effect estimate (Lee & 

Lemieux, 2010).  

Low statistical power. Low statistical power due to the correlation between the 

treatment status indicator and the assignment variable is another area that researchers 

have attempted to address in RD designs (Goldberger, 1972; Schochet, 2009; Tang & 

Cook, 2014). Goldberger (1972) demonstrated that RD has a lower statistical power than 

an RCT, as it requires a sample size between 2.75 and 4 times greater than that of a 

comparable RCT to detect the same treatment effect. Lower statistical power would be a 

secondary concern in RD studies with large-scale datasets. However, it would be a major 

issue in small-scale RD studies, in which individual researchers or small school districts 

collect their own data (Wing & Cook, 2013). Therefore, to improve power, researchers 

have suggested adding covariates, pretest scores, or untreated comparison group 

observations to the model (Calonico, Cattaneo, Farrell, & Titiunik, 2016; Schochet, 2009; 

Tang & Cook, 2014; Wing & Cook, 2013). 

Specifically, covariates are often included in the basic RD design to increase 

precision, as is common in the analysis of randomized experiments (Calonico et al., 

2016). The expectation is that the covariates in the RD regression will reduce 

unexplained outcome variance. Recent work by Calconico and colleagues (2016) proved 

that including covariates in RD estimation can lead to an improvement in precision, 

without substantially altering the RD estimate.  

The addition of pretest scores or untreated comparison group observations in the 
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basic RD design also improves efficiency by increasing the sample size for the analysis 

and reducing the correlation between the treatment status variable and the assignment 

(Schochet, 2009; Wing & Cook, 2013). Wing and Cook (2013) revealed that the 

inclusion of pretest scores produced RD estimates that were more precise than those from 

the basic RD design, and it yielded standard errors close to those of a comparable RCT. 

Lack of generality of causal inference. As noted earlier, one key limitation of 

basic RD is the limited generality of the treatment effect (Tang et al., 2017; Wing & 

Cook, 2013; Zvoch, Yoon, & Cook, 2016). In the basic RD design, knowing the shape of 

the treatment regression function in the untreated part or of the control group function in 

the treated part of the assignment variable continuum is not possible. As a result, causal 

inference in basic RD is limited to the small area surrounding the cutoff where local 

randomization occurs.  

To strengthen the generality of the RD treatment effect, researchers have recently 

experimented with several RD design variants, including the use of comparative design 

elements (Tang et al., 2017; Wing & Cook, 2013; Wing & Bello-Gomez, 2018), the 

incorporation of a randomization interval in the basic RD design (Black et al., 2007; 

Cappelleri & Trochim, 1994, 1995; Moss et al., 2014; Trochim & Cappelleri, 1992; 

Zvoch et al., 2016), and the use of multiple cutoffs (Black et al., 2007; Cattaneo et al., 

2016; Gamse et al., 2008). 

Comparative RD Designs 

CRD is a design in which observations on pretest outcomes (CRD-pre) or 

comparison groups (CRD-CG) are added to the basic RD design (Tang et al., 2017; Wing 

& Cook, 2013). As can be seen in Figure 3, CRD comprises the following three 
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regression segments: (a) an RD treated segment (light-pink line), (b) an RD control 

segment (blue line), and (c) a comparative segment (green line). The comparison 

observations are from pretest scores or the untreated comparison group (e.g., posttest 

scores from the previous cohort, which was not exposed to treatment). The key 

assumption in the CRD is that the comparative regression function is parallel with the RD 

control function, and the gap between the two functions is invariant across (above the 

cutoff in this example) (Tang et al., 2017; Wing & Bello-Gomez, 2018). If the parallel 

assumption is met, the RD control regression function is extrapolated toward the treated 

part of the assignment variable continuum (dotted green line in Figure 3), under the 

assumption that the fixed difference between the RD control function and the 

comparative function in the control part of the assignment variable continuum (above the 

cutoff in Figure 3) continues to exist in the treated part (Wing & Bello-Gomez, 2018). 

The hypothetical counterfactual function created in the treated part of the assignment 

variable continuum allows the estimation of the average treatment effect on the treated 

(ATT), thereby supporting the extrapolation of the causal inference of treatment effects 

beyond the cutoff.  
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Figure 3. Average treatment effect at cutoff and average treatment effect on the treated 

using comparative untreated observations. 

In a CRD application, Tang et al. (2017) found that adding pretest scores and 

comparative group observations to the basic RD produced unbiased causal estimates 

above the cutoff as efficient as RCT and more efficient than the basic RD design did. 

Specifically, in Tang et al.’s study (2017), as the regression functional form of the 

comparative untreated observations was parallel with that from actual untreated 

observations in the basic RD, the treatment effect estimates yielded at the cutoff could be 

correctly extrapolated above the cutoff. The inclusion of additional comparative cases 

also improved the precision of the resulting treatment effect estimates. The addition of 

pretest scores increased the sample size and also reduced the correlation between the 

treatment status variable and the assignment variable, which increased precision by 

reducing the standard error of the treatment estimate (Schochet, 2009; Wing & Cook, 

2013). Given the advantages that CRD offers with respect to increasing the generality of 

causal inference and improving precision, researchers have strongly recommended that 
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program evaluators and policy makers use CRD instead of the basic RD whenever 

possible (Tang & Cook, 2014; Tang et al., 2017). 

Hybrid RD Designs 

Hybrid RD (HRD; Shadish et al., 2002; Trochim, 1984), another variant of basic 

RD that was developed to increase the generality of RD estimates, combines the basic 

RD design with an RCT. To implement an HRD, a randomized interval along the 

assignment variable continuum is first identified. Second, participants falling into that 

interval are randomly assigned either to the treatment or control group. Third, participants 

below or above the cutoffs are assigned to either the RD treatment or the RD control 

condition (see Figure 4). 

Figure 4. Treatment effect at the upper cutoff in an HRD. 

In the HRD design modeled in Figure 4, for example, all participants scoring 

below the lower cutoff are assigned to the RD treatment condition, while those scoring 

above the upper cutoff are assigned to the RD control condition (Shadish et al., 2002). 

Participants whose assignment score falls between cutoffs (randomization interval) are 

randomly assigned to either the RCT treatment or the RCT control group. In an HRD 
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framework, RD estimates at the lower and upper cutoffs, as well as the average treatment 

effect within the randomization interval, can be estimated if the regression functions 

relating the assignment variables to the outcomes for the treatment and control groups are 

parallel across the randomized interval. If the regression functions are not parallel (i.e., an 

interaction between an assignment variable and outcome variable is observed), 

differential treatment effects can be estimated depending on the value of the assignment 

variable (Zvoch et al., 2016). 

HRD improves causal generalization by embedding a randomization interval into 

the basic RD design. The availability of treatment and control cases in the randomization 

interval has the advantage of allowing the estimation of actual assignment–outcome 

regression functions for both treatment and control cases over a common part of the 

assignment variable continuum. The estimation of the average treatment effects (ATE) 

within the randomization interval then supports the causal generalization within the 

randomization interval. In addition, inclusion of the randomization interval also increases 

precision by reducing the correlation between treatment status and the assignment 

variable.  

Both CRD and HRD improve the fundamental limitations of the basic RD: (a) 

limited causal generalization and (b) lower statistical power. However, a key difference 

between HRD and CRD is that the causal generalization in HRD is still limited within the 

randomization interval, whereas in CRD the causal generalization can be made along the 

entire assignment variable continuum. The advantage that HRD provides over CRD is 

that it relaxes a stringent statistical assumption that is required in the latter approach. In a 

CRD design, the regression functional form for the comparative controls has to be 
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parallel to the regression function for the observed control cases. In an HRD design, 

again, the availability of actual treatment and control cases within the randomization 

interval enables the estimation of the treatment effect within the interval. Therefore, HRD 

does not necessitate that the RD control function be extrapolated within the 

randomization interval, as it is directly observed. 

Multiple-cutoff RD (MCRD) Designs 

Another method to increase the generality of RD estimates uses multiple cutoffs 

along the assignment variable (Angrist & Lavy, 1999; Berk & de Leeuw, 1999; Black et 

al., 2007; Canton & Blom, 2004; Chay, McEwan, & Urquiola, 2005; der Klaauw, 2002, 

2008; Dobkin & Ferreira, 2010; Eggers et al., 2015; Goodman, 2008; Hjalmarsson, 2009; 

Klasnja & Titiunik, 2017). In such designs, cutoffs generally vary by sites (e.g., school) 

or times (e.g., year). For instance, a college scholarship can be awarded to students based 

on their state test scores, but the cutoff score can vary by school district or state (see 

Figure 5). Multiple-cutoff RD (MCRD) designs support causal generalization by 

allowing the estimation of a weighted, average RD treatment effect across multiple 

cutoffs in the assignment variable continuum. In addition, the MCRD approach can also 

be used to estimate a local RD treatment effect at each cutoff, possibly revealing 

heterogeneity of treatment effects across the assignment variable continuum.  
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Figure 5. Multiple cutoffs across sites 

To date, most studies have used the centering-and-pooling approach to estimate 

average RD treatment effects across cutoffs in an MCRD design (Cattaneo et al., 2016). 

Only a few studies have separately estimated a local RD treatment effect at each cutoff in 

addition to the pooled RD estimate (Canton & Blom, 2004; Cattaneo et al., 2016; der 

Klaauw, 2002, 2008). The centering-and-pooling approach is implemented by first 

centering the assignment variable at each cutoff (i.e., normalizing the cutoff) so that all 

units have a zero cutoff value. Second, observations from all cutoff groups are pooled 

into a single dataset, and a standard RD is implemented using the pooled dataset 

consisting of a single cutoff centered at zero (see Figures 5–6). The idea is that the pooled 

estimates for RD treatment effect can serve as the overall average of the local treatment 

effects at each cutoff (see Figure 6). Therefore, the pooled RD treatment effect can be 

considered the average treatment effect across the range of assignment variable 

continuum where distinct cutpoints are located (Cattaneo et al., 2016).  
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Figure 6. RD estimates in a pooled dataset. 

The MCRD approach has been applied in a variety of contexts, including 

education and public policy, but the most common applications occur in political science 

(Albouy, 2013; Cattaneo et al., 2016; Eggers et al., 2009; Folke & Snyder, 2012; Hall & 

Snyder, 2015; Klasnja & Titiunik, 2017; Pettersson-Lidbom, 2008; Uppal, 2009). This is 

particularly the case in studies where the assignment variable was the impact of winning 

one election (i.e., becoming an incumbent party) on winning the subsequent election, 

examined using vote share (i.e., the percentage of total votes a party has secured in an 

election), and the cutoff was the vote share of the winning party (Butler, 2009; Eggers et 

al., 2015; Klašnja & Titiunik, 2017; Lee, 2008; Lee, Moretti, & Butler, 2004; Uppal, 

2009). The MCRD approach was well-suited for such studies because the vote share of 

the winning party often varied by electoral constituency (Cattaneo et al., 2016). In light 

of such variations in cutoffs, almost all political scientists (e.g., Klasnja & Titiunik, 2017) 

have employed the centering-and-pooling approach by using a margin of victory for the 

party of interest (i.e., vote share obtained by the party of interest minus the vote share 
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obtained by its strongest opponent) as the assignment variable (e.g., Klasnja & Titiunik, 

2017). When using the margin of victory to normalize cutoffs across the electoral 

constituency, the vote share of the party of interest is converted to relative standing 

against its strongest opponent. The normalized assignment-variable distribution has a 

cutoff at zero, at which the party of interest has the same vote share as its strongest 

opponent. Therefore, by using the margin-of-victory scores (i.e., assignment variable), 

researchers can then pool all their observations, implement a standard RD analysis with a 

single cutoff, and estimate a single average treatment effect across cutoffs.  

In public-policy research, Black et al. (2007) examined the impact of 

reemployment services on earnings using cutoffs that varied by time (e.g., weeks) and 

geography (e.g., local offices). Based on a profiling variable (i.e., expected duration of 

benefit receipt computed as a function of the individual’s characteristics and the state of 

the local economy), participants were assigned to either the treatment or control 

condition: Those with higher profiling scores were assigned to treatment, those with 

lower profiling scores were assigned to the control condition, and those with moderate 

profiling scores were randomly assigned to either the treatment or control condition. To 

analyze RD estimates across time and geography (i.e., sites), Black et al. (2007) adopted 

a two-dimensional RD approach—estimating treatment effects in each dimension 

separately—as well as the normalizing-and-pooling approach. For example, for the 

geography dimension, the authors first centered the assignment score (i.e., profiling 

score) at each site cutoff, then pooled the cases from the cutoff groups into a single 

dataset and estimated the average treatment effect across the entire assignment variable 

continuum. Their findings show an unbiased treatment effect estimated in both 
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dimensions, supporting the validity of the MCRD design.  

To date, a handful of studies in education research have applied MCRD designs 

(Angrist & Lavy, 1999; Canton & Blom, 2004; Chay & McEwan, & Urquiola, 2005; 

Dobkin & Ferreira, 2010; Goodman, 2008; Hoxby, 2000; Kane, 2003; Urquiola, 2006; 

Urquiola & Verhoogen, 2009; Van der Klaauw, 2002, 2008). For example, Chay, 

McEwan, and Urquiola (2005) examined the effects of school aid funds (i.e., Chile’s 900 

School Program) on 4th grade students’ gain scores in language and math. The school aid 

funds were assigned to schools based on their combined mean scores for math and 

language on a national achievement test. Because the school aid cutoffs varied across 

Chile’s 13 regions, the authors also estimated the pooled RD treatment effect: an average 

treatment effect across cutoffs. Specifically, they centered the assignment variable—the 

average mean score for math and language—at each cutoff by creating an average score 

relative to the cutoff at each region (i.e., subtracting the cutoff score from each school’s 

1998 average score). Then, they pooled all observations from different regions (i.e., 

cutoff groups) in a single dataset to run an RD analysis with a single cutoff and estimated 

an average effect of school aid on student achievement across the 13 regions. Similarly, 

Dobkin and Ferreira (2010) used an MCRD design to study the effects of school entry 

law on adult education attainment and job market outcomes (e.g., wages, probability of 

employment). The treatment in this study was the enforcement of a school entry law, and 

the assignment variable was age. The cutoff was the date when the school entry law was 

in effect when the participants were five years old, which varied by research site (i.e., 

California and Texas) because each state had a different age cutoff for school entry. The 

authors centered the assignment variable using the number of days from the individual’s 
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birthday to the age cutoff date of each state and ran a standard RD analysis with a 

centered single cutoff to estimate an average single RD treatment effect across the two 

states.    

A small number of studies across disciplines, however, have estimated local RD 

treatment effects at each cutoff in addition to average RD treatment effects. These studies 

have used the normalizing and pooling approach to examine heterogeneity in treatment 

effects depending on cutoff locations on the assignment variable continuum (Canton & 

Blom, 2004; Cattaneo et al., 2016; Van der Claauw, 2002, 2008). For example, Cattaneo 

et al. (2016) demonstrated the estimation of both pooled and local RD treatment effects 

using three empirical examples from political science and education. For the education 

example, the authors used data from the previously mentioned study evaluating the 

effects of a Chilean school improvement intervention (P-900) on schools’ mean language 

and mathematics achievement score gains (Chay et al., 2005). In this example, the 

authors estimated both a single average RD treatment effect and RD effects at six cutoffs 

determined by region. The results revealed moderate heterogeneity in the effects of P-900 

on school mean language gains across cutoffs. Despite the positive average effect of P-

900 on language outcomes, the authors also found negative effects at two local cutoffs. 

These findings suggest that the estimation of the average RD treatment effect using the 

normalizing and pooling method may “miss the opportunity to uncover key observable 

heterogeneity in RD design” (Cattaneo et al., 2016, p. 1230). In a study on the effects on 

college enrollment of merit-based financial aid offered to high school students based on 

their high school GPAs, Van der Klaauw (2002) also identified differences between local 
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RD estimates at three different GPA cutoffs and the pooled RD estimate at a centered 

cutoff.  

 Taken together, in previous MCRD designs, researchers have mostly estimated a 

single pooled RD treatment effect. This approach is useful in that it summarizes the 

weighted average treatment effect across cutoffs, thereby increasing the generality of RD 

treatment effect estimates beyond a single cutoff point. However, the use of the pooling 

method alone may ignore potential heterogeneity in treatment effects, given the location 

of the cutoff on the assignment variable continuum (Cattaneo et al., 2016). The 

identification of heterogeneous treatment effects could reveal rich information about the 

treatment effects that may be obscured when averaged across units. For example, 

information on heterogeneous treatment effects could help identify subgroups of students 

along the assignment variable continuum for whom an intervention is particularly 

effective. It should be cautioned, however, that the estimation of local RD treatment 

effects at each cutoff may not be always feasible or plausible given a particular dataset or 

research context. A small number of cases around each cutoff, for example, will make it 

challenging for researchers to detect local RD treatment effects due to low statistical 

power. In such cases, estimating an average RD treatment effect may be the better option. 

In this regard, it is notable that there has been little investigation of estimation 

approaches for MCRD. Many past studies have applied MCRD designs using the 

normalizing and pooling approach without explaining the rationale for choosing this 

analytic method. Given this gap in the current MCRD literature, the validity of the causal 

inferences in past MCRD designs and the contexts in which these methods could make 

credible causal inferences remain unknown. Furthermore, there has been a lack of effort 
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to investigate other analytic approaches for MCRD designs or to explore different 

strategies in terms of either the internal and external validity of causal estimates or the 

resulting policy implications.  

Kindergarten Math Intervention  

Kindergarten mathematics has received increased attention given its critical 

impact on the development of mathematics understanding in subsequent grades (Clarke et 

al., 2016; Gersten, Jordan, Flojo, 2005; Jordan & Dyson, 2016; Kohli, Sullivan, Sadeh, 

Zopluoglu, 2015; Locuniak & Jordan, 2008; Morgan, Farkas, Hillemeier, & Maczuga, 

2016; Morgan, Farkas, & Wu, 2009). Data from the Early Childhood Longitudinal 

Study—Kindergarten Cohort (ECLS-K) revealed that students with mathematics 

difficulties in kindergarten displayed consistently lower growth rates than their not-at-risk 

peers in grades 1 through 5 (Morgan, Farkas, & Wu, 2011). The consistently low math 

gains observed over time for students with math learning disabilities (MLD) in 

kindergarten widened the fifth grade math achievement gap between these students and 

students who did not display MLD in kindergarten (Morgan et al., 2011). This study also 

showed that students who experienced MLD at the end of kindergarten were far more 

likely than their not-at-risk peers to persistently display MLD throughout elementary and 

middle school and that kindergarten mathematics achievement is a stronger predictor of 

MLD than such variables as cognitive delays. In response to the findings of the ECLS-K, 

there have been focused efforts to screen students with MLD early on and prevent MLD 

by strengthening the core kindergarten math curriculum and providing additional small-

group interventions through multi-tier systems of support (MTSS), such as response to 

intervention (RTI).  
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Although there are variations across early math interventions, many focus on the 

development of number sense (Berch, 2005; Clarke, Baker, & Fien, 2008; Dyson, Jordan, 

& Glutting, 2013; Gersten & Chard, 1999; National Mathematics Advisory Panel, 2008) 

using evidence-based instructional practices that have been shown to be effective for at-

risk learners (Archer & Hughes, 2011; Baker, Gersten, & Lee, 2002; Coyne, Kame’enui, 

& Carnine, 2011; Gersten et al., 2009; Kroesbergen & Van Luit, 2003).  

Number sense is the ability to connect mathematical concepts to numerical 

relationships (Gersten & Chad, 1999), which allows students to count, discriminate and 

coordinate quantities, estimate quantities, discern number patterns, and perform simple 

number transformations through addition and subtraction (Jordan et al., 2006). Research 

has showed that most children develop number sense before beginning elementary 

education (Ginsburg & Golbeck, 2004; Ginsburg & Russell, 1981; Huttenlocher, Jordan, 

& Levine, 1994; Jordan, Huttenlocher, & Levine, 1994) and that a failure to develop this 

foundational number concept prior to formal education is associated with difficulties in 

accessing more advanced mathematics taught in later grades (Jordan et al., 2013; Wu, 

1999).  

Emerging evidence supports the efficacy of kindergarten math interventions 

focusing on number sense development. For example, Dyson and Jordan (2011) and 

Jordan and colleagues (2012) provided 30-minute-long number sense interventions three 

times a week for eight weeks in a small-group setting that focused on developing the 

whole number concept in relation to counting, comparing, and manipulating sets to low-

income kindergarteners at risk for mathematics difficulties. An evaluation of both 

interventions revealed that the treatment group made greater gains in both immediate and 
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delayed post-test number sense relative to the business-as-usual (BAU) group (Jordan, 

Glutting, Dyson, Hassinger-Das, & Irwin, 2012). These results suggest that the continued 

effects of number sense intervention in kindergarten could help narrow the math 

achievement gap between students with MLD and students without MLD as they 

progress in school.  

Response to Intervention (RTI)  

Many of the research-based kindergarten math interventions are provided through 

a multi-tier system of support (MTSS) or response to intervention (RTI) (Fuchs & 

Vaughn, 2012) frameworks. RTI is a multi-tiered approach for the early identification of 

students at risk for learning difficulties or disabilities, and provides increasingly intensive 

and focused academic intervention based on student need. In the RTI framework, 

students’ response to intervention and their rate of learning are assessed and monitored 

through universal screening and progress-monitoring tools several times a year. Although 

multiple RTI models (Fuchs & Fuchs, 2006) exist, a three-tier model is most commonly 

used (Fuchs & Vaughn, 2012); in this model, students who do not show an adequate level 

of learning progress receive a more intensive intervention. Within Tier 1, all students 

receive scientifically validated instruction in a general classroom setting to ensure that 

their difficulties are not due to insufficient classroom instruction (Fuchs & Fuchs, 2017). 

Then, those students who do not adequately respond to the core instruction are provided 

with supplemental small-group instruction (Tier 2). Within Tier 2, small groups of 

students (fewer than 6) with similar learning needs receive explicit and systematic 

instruction three to five times a week for at least 20 minutes per day. If the students in 

Tier 2 do not meet grade-level expectations, as measured by a progress-monitoring 
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assessment, they are provided individualized instruction that targets their skill deficits 

(Tier 3). Those students who continue to demonstrate inadequate response to the Tier 3 

intervention are then considered for eligibility for special education services (IDEA, 

2004). As a prevention system, RTI serves to identify early stage learning difficulties and 

reduce special education referrals based on the assumption that struggling students are 

identified early enough so that supplemental intensive instruction can improve student 

learning outcomes. In what follows, I introduce one of the Tier-2 kindergarten math 

interventions—ROOTS—to provide the context of this study.  

ROOTS  

ROOTS is one of the evidence-based Tier-2 kindergarten interventions focused on 

the development of number sense and whole number concepts, including (a) counting and 

cardinality, (b) number operations, and (c) base 10/place value (Clarke, Doabler, Fien, 

Baker & Smolkowski, 2012). ROOTS provides 50 lessons to small groups of 5 students 

struggling with developing proficiency with whole number concepts and skills for 20 

minutes a day, 5 days per week for approximately 10 weeks. In addition to the focused 

whole number content, ROOTS features the use of the following four validated explicit 

and systematic mathematics instructional practices: (a) teacher modeling, (b) deliberate 

practice, (c) visual representations of mathematics, and (d) academic feedback. The 

ROOTS intervention also facilitates structured opportunities for students to deeply 

engage in important whole number concepts and skills by having students verbalize their 

mathematical thinking and discuss their problem-solving methods (Clarke et al., 2016). 

The efficacy of ROOTS was evaluated using a randomized controlled trial (RCT) design 

(Clarke et al., 2016; Doabler et al., 2017). Specifically, the 10 lowest children on a 
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screening measure in each of 120 classrooms were randomly assigned to either the 

treatment or the control condition, meaning that each participating classroom had a 

different cutoff for screening students into the treatment condition.  

The use of ROOTS data in this study is appropriate for the following reasons. 

First, the multiple cutoffs used to determine ROOTS-eligible students across classrooms 

enables the application of the MCRD design, in which an average treatment effect across 

cutoffs is estimated and potential heterogeneity in treatment effect across classrooms can 

be explored. Second, the use of the RCT design in the original ROOTS study allows the 

evaluation of the performance of the MCRD design compared to the RCT design. 

Specifically, the bias and precision of the MCRD design relative to the RCT can be 

assessed by comparing the treatment effect and power estimates from MCRD with those 

from RCT.  

Predictors of Math Intervention Impact Variability 

While research on the development and validation of early mathematics 

intervention programs is rapidly expanding, there is a growing recognition that not all 

students respond to these interventions equally (Fuchs et al., 2006; Fuchs & Vaughn, 

2012; Starkey & Klein, 2008). The identification of persistently low-achieving students 

who are not responsive to interventions has motivated research on the factors that predict 

this non-responsiveness (Miller, Vaughn, & Freund, 2014). Although empirical evidence 

is emerging and the findings are mixed, these studies have focused on initial math skill 

(Clarke et al., 2017, in press; Fien et al., 2016; Fuchs, Sterba, Fuchs, & Malone, 2016; 

Toll & Van Luit, 2013).  
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Initial math skill. A growing number of studies have investigated initial math 

skill as a key predictor of the variability of math intervention impact (Clarke et al., 2017, 

in press; Fien et al., 2016; Fuchs, Sterba, Fuchs, & Malone, 2016; Toll & Van Luit, 

2013). Fien et al. (2016) tested the efficacy of an evidence-based math game intervention 

that focuses on the development of whole number concepts with 250 first-grade students 

by using an RCT design. The researchers found a statistically significant main effect of 

treatment on some of their outcome measures, but they did not identify a moderation 

effect of student initial math skill level on treatment impact. Toll and Van Luit (2013) 

provided a math intervention focused on basic numerical concepts and math-related 

language to kindergarteners with low numeracy skills and evaluated if the effect of the 

intervention was different for students with moderately low skills and those with low 

initial numeracy skills. The results showed that the intervention was only effective for 

students with moderately low initial numeracy skills. Fuchs, Sterba, Fuchs, and Malone 

(2016) found that pre-intervention calculation skill was not predictive of differential 

responsiveness to a fraction intervention delivered to fourth-grade students displaying 

low math achievement. However, Fuchs et al. (2016) found that fraction word-problem 

intervention was more effective for students with greater initial reasoning ability. In 

addition, Clarke et al. (in press), in their preliminary evaluation study of a small-group 

kindergarten math intervention program focused on developing whole number concepts 

and skills, found greater intervention effects for students with lower initial math skills. 

Taken together, the current literature on the moderating effect of initial math skills on 

treatment effect has been mixed in terms of the presence of the effect and the direction of 
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impact—whether the intervention is more effective for students with greater or lower 

initial math skills.  

The Current Study  

The review of previous research on the MCRD design shows the gaps in the 

existing MCRD analytic approaches used to estimate RD treatment effects. The current 

literature also suggests that researchers could effectively investigate the heterogeneity of 

treatment effect by utilizing the multilevel modeling approach for the MCRD design, not 

solely relying on a pooling approach. In addition, the emerging literature on 

heterogeneity in the impact of math interventions warrants additional studies, which 

could help clarify the source of mixed findings in the literature.  

The current study builds on the existing MCRD design in an attempt to increase 

causal inference beyond the cutoff. In particular, this study is closely aligned with a study 

by Cattaneo et al. (2016) in that both studies intend to demonstrate and evaluate the 

optional estimation methods for the MCRD design. This study also extends extant 

literature on the predictors of heterogeneity in the impact of early math intervention by 

investigating the moderating role of initial math skill.  

The purpose of this study, therefore, is to (a) demonstrate the application of two 

treatment effect estimation methods (i.e., a conventional pooling method and a multilevel 

pooling method) for the MCRD designs using Tier 2 kindergarten math intervention data, 

(b) examine the extent to which the two methods yield unbiased and precise estimates 

comparable to those from the RCT design, and (c) investigate the moderating role of a 

classroom characteristic (i.e., classroom cut-point) on the size of the ROOTS intervention 

effect.  
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If correctly modeled and properly implemented, the current demonstration will 

add to recent literature on improving the generality of RD estimates beyond the cutoff by 

demonstrating and evaluating the applications of different MCRD analytic approaches. 

Theoretically, both pooled average RD treatment effect and multilevel pooled RD 

treatment effect estimated at the centered cutoff will help extend the area of causal 

inference in RD designs beyond a single cutoff. In addition, the findings of this study will 

add to the growing literature on heterogeneity in math intervention impact, which will 

help disentangle the mixed findings in the current literature.  

Practically, the current study will help program evaluators and policy makers 

identify a valid and informative program evaluation model when treatment assignment 

cutoffs vary by sites or times. In particular, the potential identification of heterogeneous 

treatment effects across cutoffs will provide more specific information about program 

effectiveness (e.g., how a math intervention may work differently depending on the 

students’ initial math skill). This understanding will further help researchers, program 

evaluators, and policy makers design, revise, and evaluate interventions that work for 

students with differential need. Given this backdrop, the research questions are as 

follows:  

1. On average, do the students assigned to the ROOTS intervention outperform those 

assigned to the control condition across cutoffs? 

2. To what extent do treatment effects vary across cutoffs?  

3. To what extent does the pooled average RD estimates and the multilevel pooled 

RD estimates obtained across cutoffs yield unbiased and precise causal estimates 

relative to the ROOTS RCT benchmark?  
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4. To what extent is treatment effect variability predicted by classroom 

characteristics, such as the cut-point used to screen treated students in each 

classroom? 
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CHAPTER Ⅲ 

METHODS 

In this section, I describe the methodological procedures used in the present study. 

A variety of graphical, parametric, and nonparametric analyses were implemented for the 

MCRD using the ROOTS intervention dataset.  

Data Source  

The ROOTS math intervention data were collected from 2012 to 2015 in 

conjunction with a university–school district collaboration designed to evaluate the 

impact of a small-group (Tier 2) kindergarten mathematics intervention. In Years 1 and 2, 

the participants comprised four school districts in Oregon: one school district located in 

the Portland metropolitan area and three located in suburban and rural areas of western 

Oregon. In Years 2 through 3, two school districts from the metropolitan area of Boston, 

Massachusetts, participated. Table 1 presents the student demographics in percentage by 

district.  
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Note. aStatistics are reported for students in grades K-3; bStatistics are reported for 

student K-12. 

From 2012 to 2013, across the four districts in Oregon, student enrollment ranged 

from 2,736 to 38,557 students. The student bodies were approximately 46 to 92% White, 

0 to –74% Hispanic, 0–9% African American, 0–16% Asian American, 0–12% American 

Indian or Native Alaskan, and 0–15% more than one race, respectively. From 2012–2013, 

approximately 17–86% of district students received a free or reduced-price lunch, 8–23% 

Table 1 

Student Enrollment and Demographics in Percentages by Year and School District  

 2012-2013 2013-2014 

 Oregona Massachusettsb 

Student characteristics 1 2 3 4 5 6 

Student enrollment (N)  5,725 2,736 10,808 38,557 6,118 6,843 

Race (%)       

   White 69 83 69 48 7.8 80.5 

   Hispanic 18 11 20 26 82.1 6.7 

   African American 2 1 2 3 7.1 5.4 

   Asian 2 2 1 14 1.9 4 

   Native American <1 <1 2 1 0 0.1 

   Native Hawaiian/Pacific 

Islander 1 - <1 1 0.3 0.3 

   More than one race 2 1 7 8 0.8 3 

Economically disadvantaged (%) 58 64 69 43 83.4 29.8 

English language learners (%) 9 5 10 26 18.9 3.1 

Students with disabilities (%) 15 14 15 11 12.7 17.2 
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of students received special education services, and 5–68% of district students were 

English language learners.  

From 2013–2014, the two districts in Boston had total enrollments of 6,118 and 

6,843 students, respectively. In these districts, the student characteristics were 7.8% and 

80.5% White, 82.1% and 6.7% Hispanic, 7.1% and 5.4% African American, 1.9% and 

4% Asian American, 0.3% and 0.1% American Indian or Native Alaskan, and 0.8 % and 

3.0% more than one race, respectively. Approximately 83.4% and 29.8% of each district 

received a free or reduced-price lunch, 12.7% and 17.2% of students received special 

education services, and 18.9% and 17.2% of students were identified as English language 

learners, respectively.  

Analytic Sample 

Schools. Table 2 presents the count of districts, schools, classrooms, 

interventionists, and students in the analytic sample. The analytic sample included 14 

schools from four school districts in Oregon and 9 schools from two school districts in 

the metropolitan area of Boston, Massachusetts. In Oregon, six schools were located in 

one school district in the Portland metropolitan area, and the remaining schools were 

located in three suburban or rural school districts. In one of the school districts in Boston, 

all the participants attended the same school. In the other Boston district, the participants 

attended eight different schools. 

Classrooms. The analytic sample consisted of 51 classrooms from Oregon and 55 

classrooms from Boston. On average, the classrooms comprised 21.4 students each (SD = 

5.14) and provided general kindergarten mathematics instruction five days per week. 

When classrooms had insufficient numbers of students to form intervention and control 
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groups on their own, “intervention classrooms” were formed by combining two or three 

classrooms. Across four years of project, a total of 11 combined ROOTS classrooms 

were created using 24 classrooms.  

Interventionists. The analytic sample included 71 interventionists. The 

interventionists included district-employed instructional assistants, interventionists hired 

for the ROOTS math intervention study, and certified kindergarten teachers. In the 

original sample, the majority of the interventionists self-identified as female (94%) and 

White (76%), with 12% identifying as Hispanic and 12% identifying as another 

race/ethnicity or declining to respond. Almost all the interventionists (92%) had previous 

experience providing small-group instruction, and 61% had a bachelor’s degree or higher. 

About half of the interventionists (57%) had taken an algebra course at the college or 

graduate level. On average, the interventionists had 10.4 years of teaching experience 

(SD = 8.6), and 22% had a current teaching license or certification. The interventionists 

underwent two additional five-hour professional development workshops. Furthermore, 

during the implementation period, all interventionists received instructional support from 

two to five former educators each year through one to four in-class coaching visits 

varying by the interventionists’ implementation needs (Clarke et al., 2016; Doabler et al., 

2016).  

Students. The analytic sample used in this study was drawn from the original 

ROOTS study, which was conducted using a randomized controlled trial design (Clarke 

et al., 2012). Specifically, in the original ROOTS study, the 10 lowest performing 

students on a composite score in each classroom were randomized to (a) a ROOTS–small 



 

37 

(2:1) group, (b) a ROOTS–large (5:1) group, or (c) the no-treatment business-as-usual 

(BAU) control condition. 

The initial sample for this study comprised 3,454 kindergarten children, including 

(a) those who were eligible for random assignment to either the treatment or the control 

condition (n = 1,253) and (b) those who were ineligible for the random assignment but 

were assessed on the screening and post-test assessments (n = 2,201). The following 

observations were excluded from the analytic sample: (a) those whose screenings, post-

test assessments, and assigned conditions were unavailable (n = 691) were omitted 

because an RD analysis could not be implemented without such information; (b) those 

who were ineligible for the intervention as a result of their performance on the screening 

measure (above the cut-off rank order), but who received the intervention (n = 108), and 

those who met the eligibility criteria, but were categorized as the non-eligible sample (n = 

115), were deleted because these non-compliant observations were expected to bias the 

RD treatment effect estimate; (c) those from the combined classroom for the ROOTS 

intervention (n = 282) were excluded so as to model and estimate the classroom-level 

variance using multilevel RD design; (d) those whose demographic information (i.e., age 

and gender) was not available (n = 22) were excluded because the covariate balance 

could not be tested with these observations; and (e) those in the BAU control condition (n 

= 336) were excluded from the RCT sample so as to create an RD treatment sample. As a 

result, the analytic sample for this study comprised 1,900 kindergarten students for the 

2012–2013 (n = 486), 2013–2014 (n = 976), and 2014–2015 (n = 438) academic years 

(see Figures 7 and 8). The sample included 963 (50.7%) females, 224 (11.8%) ethnic 
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minority students, 252 (13.3%) English language learners, and 85 (4.5%) students 

receiving special education services. The average age of the sample was 5.36 years.  

Table 2       

Count of Districts, Schools, Classrooms, Interventionists, and Students in the Analytic 

Sample  

 District School Classroom Interventionists Student 

Oregon (N)  4 14 51 29 965 

Boston (N) 2 9 55 42 935 

Total (N) 6 23 106 71 1,900 

 

 

Figure 7. Analytic sample breakdown by condition   
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Figure 8. Analytic sample by year and condition.  

ROOTS Intervention  

ROOTS is a 50-lesson Tier 2 kindergarten intervention program developed to 

employ evidence-based mathematics instruction to support the development of number 

sense and whole-number concepts (Clarke et al., 2012). From 2012 to 2015, the 

intervention was delivered to students randomly selected from the 10 students with the 

lowest performance on a composite standard score in each participating classroom 

through a pre-intervention screening. 

The composite standard score was formed by combining students’ performance 

on two mathematics proficiency measures: Assessing Student Proficiency in Early 

Number Sense (ASPENS; Clarke, Rolfhus, Dimino, & Gersten, 2012) and the Number 

Sense Brief (NSB; Jordan, Glutting, & Ramineni, 2008)1. Direct math instruction was 

delivered to participating students in small groups with either a 2:1 student-

                                                 
1 The creation and use of the composite standard score for treatment assignment will be detailed in the next 

section.  
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interventionist ratio (i.e., the high-intensity ROOTS group) or a 5:1 student–

interventionist ratio (i.e., the low-intensity ROOTS group) in each classroom for 20 

minutes five days per week over the 10 weeks of the intervention period. Control students 

randomly selected from the lowest 10 performing students received no intervention in 

addition to core instruction. The intervention was delivered to avoid conflicting with 

students’ general kindergarten instruction. The reason for this decision was to prevent 

disrupting their core instruction. The intervention began in late November to early 

December and continued through March for each year of the study. 

Assignment Criteria  

Students were assigned to an intervention condition through the following three 

steps: First, all students with parental consent were screened on two standardized 

assessments of early mathematics: ASPENS (Clarke, Rolfhus, Dimino, & Gersten, 2012) 

and the NSB (Jordan, Glutting, & Ramineni, 2008). Second, students were considered 

eligible for the intervention if they scored 20 or less on the NSB and had a composite 

ASPENS score that placed them in the strategic or intensive range (Clarke et al., 

2012). The ASPENS and NSB scores of ROOTS-eligible students were separately 

converted into standard scores, and these two standard scores were then summed to 

compute an overall composite standard score. Third, the composite standard scores of 

ROOTS-eligible students were rank-ordered for each classroom, and the lowest 10 

students were randomly assigned to one of three conditions: (a) a ROOTS small (2:1) 

group, (b) a ROOTS large (5:1) group, or (c) a no-treatment BAU control condition (Tier 

1 core instruction). After all ROOTS control groups were excluded, the final analytic 

sample for MCRD design consisted of 106 ROOTS small groups and 106 ROOTS large 
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groups.   

Research Design 

MCRD. In the present study, I constructed a synthetic RD design from the 

original RCT dataset. Specifically, I created the RD treatment (RD-T) group by excluding 

from the RCT data all control group observations below the cutoff in each classroom. 

Then, I combined the treated observations from two ROOTS treatment groups with 

different group sizes into one treatment group, given recent findings that there were no 

significant differences in treatment effects between ROOTS small-group conditions (2:1 

and 5:1 student–teacher ratio, respectively) (Clarke et al., 2017). The RD control (RD-C) 

group comprised the ineligible students who did not meet the screening criteria and did 

not receive the intervention. Table 3 presents counts and demographic information for the 

two RD groups identified in this study (n = 1,900). The RD-T group (n = 640) and the 

RD-C group (n = 1,260) consisted of similar proportions of female and ethnic minority 

students. The RD-T group included more English language learners and more students 

receiving special education services than the RD-C group. As expected given the use of a 

cutoff-based treatment assignment rule, both treatment assignment and post-test scores 

were lower in the RD-T group than in the RD-C group. The average ages of the children 

in the RD-T group and the RD-C group were 5.27 (SD = .44) and 5.41 (SD = .49), 

respectively. 
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Table 3   

Student Characteristics and Mean and Standard Deviations of Assignment Scores by 

Treatment Assignment Condition in the MCRD design 

Variables 
RD-T 

(n = 640) 

RD-C 

(n = 1,260) 

Female n (%) 334 (52.2) 629 (49.9) 

Ethnic Minority n (%) 70 (11.0) 154 (12.2) 

English Language Learner n (%) 124 (19.4) 128 (10.2) 

Student with Disabilities n (%)   47 (7.3) 38 (3.0) 

Age in Years M (SD) 5.27 (0.44) 5.41 (0.49) 

ASPENSa Composite Scores M (SD) 21.87 (17.50) 74.61 (37.46) 

NSBb Total Raw Scores M (SD)  12.22 (3.75) 19.86 (4.80) 

Composite Standard Scoresc M (SD) -1.52 (0.73) 1.27 (1.40) 

Spring SESAT 2d Mathematics Scores M (SD) 460.22 (35.43) 494.29 (37.89) 

Note. Total MCRD sample across on conditions, n = 1.900. aASPENS =Assessing 

Student Proficiency in Early Number Sense; bNSB = Number Sense Brief; cComposite 

Standard Scores = Composite Standard Scores created from combining standard 

ASPENSE and NSB scores; dSESAT 2 = Stanford Early School Achievement Test 2. 

The use of rank order of the composite standard scores in each classroom to 

determine ROOTS-eligible students (the 10 lowest-performing students) resulted in the 

current study’s MCRD, such that all ROOTS classrooms used uniquely different cut-off 

scores. The MCRD design had 106 unique cutoff scores (one for each classroom), 

ranging from -2.17 to .24 (M = -.75, SD = .42). As presented in Figure 9, the distribution 

of the cutoff scores is relatively normal, with many cutoff scores located around the mean 

cutoff score (between -0.8 and -0.6).  

Most of the cutoff values were below 0, indicating that most of the ROOTS-eligible 

students performed below the mean value of the screening measure. One classroom was 
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found to have fairly lower cutoff scores (-2.17) than others and was considered a mild 

outlier, given that it was beyond the lower inner fence (1.5  lower quartile) but within 

the lower outer fence (3  lower quartile) (Hoaglin, Iglewicz, & Tukey, 1986). In this 

study, the outlier was not dropped because it did not significantly alter the results from 

the main analysis, and the estimation of the treatment effect for the classroom with very 

low-achieving students was of interest to this study.  

 

 

Figure 9. Cut-point distribution in the analytic sample. 

Within-study comparison. Within-study comparison (WSC) studies (Cook, 

Shadish, & Wong, 2008) serve to (a) assess the extent to which quasi-experimental 

designs are likely to replicate a causal benchmark estimate and (b) identify the contexts 

and conditions under which quasi-experimental designs produce causal estimates 

comparable to those from RCTs (Steiner & Wong, 2018). In the WSC design framework, 
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an RCT estimate serves as a causal benchmark, and the treatment effect estimates from 

non-experimental designs, including RD, difference-in-difference (DID), and interrupted 

time series (ITS) designs, are compared with those produced by the benchmark design 

(Cook et al., 2008). 

In this study, a WSC study was conducted to evaluate the performance of causal 

estimates from the MCRD relative to those from RCT design (Cook et al., 2008, 

LaLonde, 1986). Specifically, I compared the two causal estimates yielded by the MCRD 

design—(a) a pooled RD estimate and (b) a multilevel pooled RD estimates—and their 

precision with those from the RCT.   

To implement the WSC, both the synthetic RD dataset and the original ROOTS 

RCT dataset were used. The original RCT dataset provided the benchmark on which the 

performance of the pooled RD treatment effect estimates yielded from this study’s 

MCRD design were evaluated.  

Table 4 presents sample size and descriptive statistics of the full ROOTS RCT. As 

seen in the table, students assigned to the RCT-T and RCT-C groups were relatively 

equivalent in terms of age, socioeconomic background, and English language status. 

There were no statistically significant differences in treatment assignment scores between 

the RCT treatment and control groups. However, there was a statistical difference in the 

mean values of one the screening measures (the ASPENS composite) between the RCT 

treatment and control groups (F (1, 885) = 10.86, p = .001, Hedges g = .23), indicating 

that the two groups were not entirely comparable on this measure. Therefore, it should be 

noted that the imbalance in the pretest ASPENS scores can undermine the internal 

validity of the RCT causal estimate.  
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The RCT-T group had greater mean value for the post-test measure (Stanford 

Early School Achievement Test 2 [SESAT 2]) than the RCT-T group, indicating that 

treated students outperformed control students on an early math achievement measure 

after the intervention (F (1,894) = 25.48, p < .001, Hedges g = .37).  

Table 4   

Student Characteristics and Mean and Standard Deviations of Assignment Scores by 

Treatment Assignment Condition in the RCT Design 

Variables 
RCT-T 

(n = 639) 

RCT-C 

(n =257) 

Female n (%) 334 (52.3) 138 (53.7) 

Ethnic Minority n (%) 70 (11) 29 (11.3) 

English Language Learner n (%) 124 (19.4) 52 (20.2) 

Student with Disabilities n (%)   47 (7.4) 21 (8.2) 

Age in Years M (SD) 5.27 (.44) 5.26 (.44) 

ASPENSa Composite Scores M (SD) 21.86 (17.51) 17.70 (15.75) 

NSBb Total Raw Scores M (SD)  12.23 (3.76) 11.45 (3.20) 

Composite Standard Scoresc M (SD) -1.52 (.73) -1.78 (.72) 

Spring SESAT 2d Mathematics Scores M (SD) 460.23 (35.46) 447.19 (33.77) 

Note. Total RCT sample across on conditions, n = 896. aASPENS =Assessing Student 

Proficiency in Early Number Sense; bNSB = Number Sense Brief; cComposite 

Standard Scores = Composite Standard Scores created from combining standard 

ASPENSE and NSB scores; dSESAT 2 = Stanford Early School Achievement Test 2.  

Measures 

Two standardized assessments of early mathematics were used to screen students 

into the ROOTS intervention conditions: ASPENS (Clarke, Rolfhus, Dimino, & Gersten, 

2012) and the NSB (Jordan, Glutting, & Ramineni, 2008). Students’ ASPENS and NSB 

scores were separately converted into standard scores, and the two standard scores were 
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then summed to compute an overall composite standard score.  

Assessing Student Proficiency in Early Number Sense (ASPENS; Clarke et 

al., 2012). ASPENS is one of the two screening measures that comprise the assignment 

variable (i.e., overall composite score) for this study. ASPENS is designed to screen and 

monitor the progress of students who are at risk for mathematics difficulty in Grades K 

through 1. ASPENS comprises three curriculum-based measures that assess students’ 

early numeracy proficiency, including number identification, magnitude comparison, and 

missing numbers. ASPENS is individually administered, taking one minute to administer 

each subtest. Total raw scores are the number of correct items across the three subtests. 

ASPENS composite scores are obtained by combining the weighted scores from the three 

subtests. ASPENS performance categories are also available to show whether students’ 

scores fall below or above a benchmark goal (i.e., “intensive,” “strategic,” or 

“benchmark”). On the ASPENS measures, test–retest reliabilities ranged from .74 to .85. 

The reported predictive validity assessed by the correlation between the fall scores on the 

kindergarten ASPENS and spring scores on the TerraNova 3 ranged from .45 to .52 

(Clarke et al., 2012).  

Number Sense Brief (NSB; Jordan et al., 2008). The other screening measure 

included in the assignment variable is the NSB, which is designed to screen students at 

risk for later mathematics difficulties. The NSB assesses students’ numerical 

competencies, including counting knowledge and principles, number recognition, number 

comparisons, non-verbal calculation, story problems, and number combinations. The 

NSB comprises 33 individually administered items. The total score is the number of 

correct items. The reported alpha reliability coefficient was .84 for Grade 1 (Doabler et 
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al., 2016). The reported predictive validity assessed by the correlation between the NSB 

scores in Grades K through 1 and the spring scores on the Woodcock–Johnson 

Achievement Test in math in Grade 3 was r = .62 to .64, and the discriminant validity 

with spring scores on the Test of Word Reading Efficiency (Torgesen, Wagner, & 

Rashotte, 1999) in Grade 3 ranged from r = .29 to .40 (Jordan et al., 2008).  

Stanford Early School Achievement Test 2 Mathematics (SESAT 2; 

Harcourt Brace Educational Measurement 2003). SESAT 2 Mathematics is the 

kindergarten version of the Stanford Achievement Test 10th edition series (SAT-10), and 

it serves as a post-test measure for the current study. SESAT 2 Mathematics is a group-

administered, standardized, norm-referenced achievement test with a single subtest. 

SESAT 2 Mathematics comprises 40 items and takes approximately 40 minutes to 

administer. The total score is the number of correct items. Student performance level is 

also made available to identify whether students’ scores are below, at, or above average. 

In one study, the internal consistency of SESAT 2 Mathematics was  = .88 (Doabler et 

al., 2016); in another, the reported convergent validity assessed by the correlation with 

Stanford 9 was r = .70 to .80 (Carney, 2005). All participating students, including 

students who did not meet the criteria on the screening measures, were administered the 

SESAT 2 during the posttest.  

Analytic Procedure 

Two different versions of MCRD treatment effects were estimated and their 

performance relative to the RCT estimate evaluated: (a) a pooled RD treatment effect and 

(b) a multilevel pooled RD treatment effect. Although the analytic procedures 

implemented for the two estimates present redundancies, I have split the analytic 
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procedure section based on the two MCRD estimates for clarity. For the within-study 

comparison, the RCT treatment effect was also estimated.  

Pooled RD treatment effect. A pooled RD treatment effect can be considered a 

weighted average treatment effect observed for all treated groups across the assignment 

variable continuum (Cattaeno et al., 2016). In the following, I demonstrate the analytic 

procedure used to estimate the pooled RD treatment effect of the ROOTS intervention. 

Model assumptions. To validate the pooled RD estimate, model assumptions 

were tested using graphical, parametric, and non-parametric analyses (Bloom, 2012; Lee 

& Lemieux, 2010). Examination of RD assumptions is important. First, RD designs may 

involve cases in which the researchers lack control over the treatment assignment, such 

that “manipulating” scores around the cutoff might occur (Lee & Lemieux, 2010; 

Skovron & Titiunik, 2015). For example, if college students have knowledge of the 

treatment assignment process for merit-based scholarships and are able to change or 

choose their assignment score so that they can be selected into a desired treatment status 

on the basis of effort, their scores could be different from those immediately below the 

cutoff (Lee & Lemieux, 2010). When there is sorting around the cutoff, there is a 

discontinuity in the density at the cutoff. Therefore, to establish the validity of an RD 

design, it is critical to provide empirical evidence of the continuity in the assignment and 

outcome variable relationship at the cutoff (Lee & Lemieux, 2010; Skovron & Titiunik, 

2015). Additionally, it is important to rule out other plausible alternative explanations for 

an observed discontinuity in the assignment and outcome variable relationship at the 

cutoff.  
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Therefore, I examined whether there was continuity in the covariate distribution 

(gender, age in years, English-language learner, and special education status) by 

treatment and control groups at the centered cutoff. This was accomplished by calculating 

the standardized mean difference in the covariate distribution by treatment and control 

groups and the variance ratio for covariates at the centered cutoff.  

Specifically, before calculating the standardized mean difference in the covariate 

distribution, equal-width bins on the assignment variable were created. The optimal bin 

size was calculated using the McCrary density test (McCrary, 2008), as shown below:  

b̂ = 2ŝn
-

1

2   (3) 

where b̂ is the estimated bin size, ŝ is the sample standard deviation of the assignment 

variable, and n is the number of observations. Then, the weighted mean difference in the 

demographic variable distribution (e.g., English-language learner) was computed within 

the two equal-width bins around the centered cutoff. The variance ratio was calculated as 

the mean ratio of the variance of a demographic variable in the treatment group to the 

variance of the variable in the control group.  

Graphical analysis using the non-parametric RD model was also implemented to 

supplement the covariate balance statistics. The graphical analysis was accomplished by 

running non-parametric local linear regression (LLR) models where the treatment 

assignment status predicted demographic covariates (Loader, 1999). In the LLR models, I 

fit a series of regressions within narrow bandwidths—the width of a window—to allow 

for non-linearities in the overall function and plotted discontinuities in the regression line 

representing the relationship between treatment assignment status and demographic 

covariates. 
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Model assumptions regarding the manipulation of the assignment variable were 

not tested because the RD design created from the original ROOTS dataset fits “sharp 

RD,” such that treatment assignment and receipt were completely determined by the 

value of the assignment variable. Specifically, I built the synthetic RD design from the 

original RCT dataset by deleting control cases from the treated side of the cutoff (i.e., 

below the cutoff) and treated cases from the control side of the cutoff (i.e., above the 

cutoff). The creation of RD data after establishing a cutoff ensured that those who scored 

above the cutoff had no chance of receiving the treatment; thus, there was no chance to 

manipulate the assignment variable.  

 Average treatment effect at the centered cutoff. An overall average of the 

ROOTS treatment effect (ATE) across cutoffs was estimated. To facilitate this 

estimation, I first centered the assignment variable at each cutoff so that all units (i.e., 

classrooms) had a zero cutoff. Then, I pooled observations from all units into a single 

dataset. Finally, I estimated the ATE at the centered cutoff with the pooled dataset. The 

pooled RD estimate was computed by weighting number observations in each classroom. 

All analyses were implemented in R (R Development Core Team, 2012). Following 

recent recommendations for RD analyses, the effect of assignment at the centered cutoff 

was examined using graphical analysis and a series of parametric and non-parametric 

regression analyses (Bloom, 2012; Lee & Lemieux, 2010; Schochet, 2008).  

Parametric analysis was implemented using a backward elimination regression 

method (Cappelleri & Trochim, 1994). Specifically, the outcome (i.e., SESAT 2 

Mathematics scores) was regressed on linear, quadratic, and cubic terms of the centered 

assignment variable and the interaction terms between the dichotomous treatment 
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assignment variable and centered assignment variable. Then, the predictors not 

statistically associated with the outcome were removed iteratively starting with higher-

order terms until the most parsimonious and best-fitting model was identified. The 

general form of the parametric pooled RD model is specified in Equation 1: 

Yi = β0 + β1 (xi  ) + β2 (Zi) + β3 (xiZi) + β4 [(xi  )2) + β5 ([(xi  )2Zi) +  

β6 [(xi  )2] + β7 [(xi  )3Zi) + ri (1) 

where Yi is the SESAT 2 Mathematics score, xi is the composite standard score for 

intervention assignment,  is the cutoff for classroom j, Zi is the dichotomous ROOTS 

intervention indicator, xiZi is the interaction between composite standard score for 

intervention assignment and ROOTS intervention indicator, and ri is the residual term.  

A nonparametric analysis was also conducted to complement the parametric 

estimation (Lee & Lemieux, 2010). Unlike parametric methods, non-parametric methods 

do not specify a particular functional form in advance; rather, they approximate unknown 

regression functions from the data. Thus, nonparametric methods allow flexibility in 

modeling the functional form between assignment and outcome variable along the 

distribution of the assignment variable. In addition, nonparametric methods are robust to 

outliers and useful in analyzing categorical data (Bloom, 2012; Whitley & Ball, 2002). In 

this study, the nonparametric analysis was conducted by implementing local linear 

regression (LLR) with triangular kernel weights2 (Loader, 1999). The non-parametric 

pooled RD model was defined as follows: 

Y =  +   + (xi – ) + (  – )  +  

–   xi   +      (2) 

                                                 
2 The triangular kernel assigns the largest weights to the observations in the middle of bin. 
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where  is the intercept from the model on the left-hand side of the cutoff (dichotomous 

ROOTS intervention indicator),  is the slope relating the treatment indicator to the 

outcome,  xi is the composite standard score for intervention assignment,  is the centered 

cutoff,   is the slope relating the assignment variable to the outcome from the regression 

model on the left-hand side of the cutoff,  is the slope relating the assignment variable 

to the outcome from the regression model on the right-hand side of the cutoff,  is the 

residual term, and  is the bandwidth around the cutoff. 

 Nonparametric analyses were conducted by first identifying an optimal 

bandwidth, a width of a window in which a series of regressions was fitted using the 

Imbens and Kalyanaraman (IK) algorithm (Imbens & Kalyanaraman, 2011). In 

identifying the optimal bandwidth, it is important to balance the bias and precision 

associated with wider and smaller bandwidths. Wide bandwidths may produce biased 

impact estimates of conditional predicted means, but have greater precision because they 

use a greater number of observations for estimation. Narrow bandwidths may produce 

less biased impact estimates, but have less precision because they use fewer observations. 

After the optimal bandwidth was identified, the assignment variable continuum was 

segmented into smaller equal-width bins. The optimal bin size was calculated using the 

McCrary density test (McCrary, 2008), as shown below:  

b̂ = 2ŝn
-

1

2     (3)                                                                                                                      

where b̂ is the estimated bin size, ŝ is the sample standard deviation of the assignment 

variable, and n is the number of observations. Then, a series of regressions across bins 

within the optimal bandwidth was fit around the cutoff. To assess the sensitivity of 

nonparametric estimates to the bandwidth choice, the nonparametric analysis was 



 

53 

repeated using bandwidths half and twice the optimal size as comparators. Standard 

errors for the nonparametric estimates were obtained using bootstrapping techniques 

(with 1,000 repetitions). 

Multilevel RD treatment effect. A two-level hierarchical linear model (HLM; 

Raudenbush & Bryk, 2002) was then used to estimate the weighted multilevel treatment 

effect and examine potential heterogeneity in the effects of the ROOTS intervention 

across classrooms. The multilevel model partitioned variance and covariance into discrete 

levels of data structure (i.e., the student and classroom levels), which allowed a test of 

whether student-level treatment effects varied by classroom. Full-information maximum 

likelihood estimation was used to estimate the models. All analyses in this portion of 

study were implemented in R (R Development Core Team, 2012).  

As with the traditional pooled ATE at the centered cutoff, the assignment variable 

(i.e., composite standard scores) was centered at each cutoff so that all units had a zero 

cutoff and the RD treatment effect at the centered cutoff could be estimated. Then, an 

unconditional two-level model was specified to estimate the mean post-test SESAT 

mathematics score and the amount of student and classroom variation in students’ post-

test SESAT mathematics score components (see Equations 4 and ). 

Level 1 (students):    Yij = β0j + rij                     (4)  

Level 2 (classrooms):  β0j  =  00 + 0j                      (5)                    

In Equations 4 and 5, Yij is the posttest SESAT mathematics scores in classroom j for 

student i, β0j is the mean posttest SESAT Mathematics score for classroom j, 00  is the 

mean posttest SESAT mathematics score across classrooms, rij  is the student level 
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residual term, and 0j is the classroom level residual term relating to mean posttest 

SESAT mathematics score.  

 Then, a conditional RD model was specified by adding level-1 predictors. 

Specifically, the conditional RD model was defined as follows:  

 Level 1 (students):    Yij = β0j + β1j(xij - Cj) + β2j(Zij) + β3(xij - Cj)
2 + rij  (6)           

Level 2 (classrooms):   

β0j =  00 + 0j                                                                                                                         

β1j =  10 +  1j

β2j

β3j =  30                                                              (7) 

where Yij is the post-test SESAT Mathematics score for student i in classroom j, xij is the 

composite standard score (assignment variable) for student i in classroom j, Cj  is the 

cutoff for classroom j,  Zij  is the dichotomous ROOTS intervention indicator for student i 

in classroom j, β0j is the mean SESAT mathematics score for classroom j, β1j is the slope 

relating the assignment score to the post-test SESAT mathematics score in classroom j, 

β2j is the slope relating treatment receipt to the post-test SESAT mathematics score in 

classroom j, β3j is the slope relating the assignment score squared term to the post-test 

SESAT mathematics score in classroom j, rij  is the student-level residual term, and the 

’s are the classroom-level residual terms. The assignment score variable was allowed to 

vary at level 2 as the random effect term for this variable significantly improved the 

model fit. The slope relating treatment receipt to post-test SESAT mathematics scores in 

classroom j was not allowed to vary at level 2, as the random effect term for this variable 

did not significantly improve the model fit.    
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RCT treatment effect. A two-level HLM was built to estimate the average 

treatment effect with the RCT dataset (Raudenbush & Bryk, 2002). As with the RD 

analysis, the two-level HLM was used to account for common variance among students 

(level 1) nested within the same classrooms (level 2). Full-information maximum 

likelihood estimation was used to estimate the model. An unconditional model was first 

specified to estimate the mean post-test SESAT mathematics score across classrooms and 

the amount of student and classroom variation in students’ SESAT mathematics score 

components. The unconditional model was defined as follows:  

Level 1 (students):    Yij = β0j + rij                                  (8)  

Level 2 (classrooms):  β0j  =  00 + 0j                 (9)                    

where Yij is the post-test SESAT mathematics score for student i in classroom j, β0j is the 

mean post-test SESAT mathematics score for classroom j, 00  is the mean post-test 

SESAT mathematics scores across classrooms, rij   is the student-level residual term, and 

0j is the classroom-level residual term relating to the mean post-test SESAT 

mathematics score.  

Then, a conditional model was built to estimate the RCT treatment effect, in 

which students’ post-test SESAT mathematics scores were regressed on a dummy-coded 

treatment indicator (i.e., assigned to the treatment condition or not). To improve the 

precision of the RCT estimate, the assignment variable (i.e., composite standard score) 

was included in the model. The final conditional model of SESAT outcomes was 

specified as follows:  

Level 1 (students):    Yij = β0j + β1j(xij ) + β2j(Zij) + rij                 (10)  

Level 2 (classrooms):  
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 β0j  =  00 + 0j       

β1j  =  10                  

β2j  =  20  (11)                                                                                                                                                  

where Yij is the post-test SESAT mathematics score for student i  in classroom j, xij is the 

composite standard score (assignment variable) for student i in classroom j, Zij  is the 

dichotomous ROOTS intervention indicator for student i in classroom j, β0j is the mean 

post-test SESAT mathematics score for classroom j, β1j is the slope relating the 

assignment score to the post-test SESAT mathematics score in classroom j, β2j is the 

slope relating treatment assignment to the post-test SESAT mathematics score in 

classroom j, rij  is the student-level residual term, and 0j is the classroom-level residual 

term relating to the mean post-test SESAT mathematics score. The assignment score 

variable, the slope relating treatment receipt to the post-test SESAT mathematics score in 

classroom j were not allowed to vary at level 2, as the random effect terms for these 

variables did not significantly improve the model fit.  

Within-study comparison. The MCRD design yielded two causal estimates: (a) 

a pooled RD estimate and (b) a multilevel RD estimate. These estimates were then 

compared with those from the RCT in terms of bias and precision.  

Bias. Bias in the pooled RD estimate and the multilevel pooled RD estimate 

drawn from the MCRD was evaluated by computing the difference between the RCT 

causal estimates of the treatment effect and the MCRD estimates at the centered cutoff. 

Specifically, the standardized bias in each MCRD estimate compared to the RCT 

benchmark was calculated as the difference between the MCRD estimate and the 
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treatment effect estimate from the RCT design. The standardized bias of the pooled RD 

estimate was estimated as below: 

 = (   )                   (12) 

where  is the standardized bias of the pooled RD estimate,  is the 

pooled RD estimate of the treatment effect,  is the treatment effect estimate 

produced by the RCT, and  is the standard deviation of outcome (i.e., SESAT 

mathematics score) observed in the RCT. Standardized bias assessed using this equation 

indicates the magnitude of the bias of the MCRD estimate in standard deviation units. 

Following the criterion used by Tang et al. (2017), a RCT/MCRD difference less than .10 

standard deviation units as used to determine the robustness of the estimates of the two 

MCRD estimates (pooled RD and multilevel RD estimates) compared to the RCT causal 

estimate. 

Power. The precision of the two MCRD treatment effect estimates (i.e., pooled 

RD and multilevel RD estimates) was examined by comparing the standard errors (SE) of 

each MCRD estimate at the centered cutoff with those of the RCT causal estimate. The 

SEs were calculated taking into account the different sample sizes across the two designs 

(i.e., MCRD and RCT). Following the method used in previous studies, the SEs were 

equated by the difference in the sample size between the RCT and MCRD designs 

(Schochet, 2009; Tang et al., 2017). More specifically, if the sample size for the MCRD 

design is and that for the RCT design is 
 
n

RCT
, then the SE for the MCRD estimate 

is proportional to  and that for the RCT is proportional to  (Schochet, 

2009). Then, a fair comparison of SEs in the RCT and MCRD can be made by comparing 
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the SE of the MCRD design to  multiplied by the SE of the RCT (Tang et 

al., 2017). Therefore, the adjusted SE for RCT was estimated as follows:  

SEadjusted_RCT = ( ) * SERCT         (13) 

Exploring the Predictors of Treatment Impact Heterogeneity  

Following the estimation of the multilevel RD model, I explored a predictor of 

treatment impact heterogeneity across classrooms using classroom characteristics: the 

cut-point used to screen treated students. In addition to partitioning variance and 

covariance into discrete levels of data structure, multilevel modeling allows the modeling 

of cross-level interaction terms, thereby enabling an examination of how varying cutoff 

values chosen for each classroom might be associated with unit treatment effects—the 

degree to which the treatment assignment cutoff amplifies or attenuates post-test 

outcomes. Specifically, a two-level RD model was specified by adding level 1 and level 2 

predictors. The conditional RD model was defined as follows:  

Level 1 (students):    Yij = β0j + β1j(xij - Cj) + β2j(Zij) + β3{(xij - Cj)
2 + rij      (14)                                                                                                                                                      

Level 2 (classrooms):   

β0j  =  00 + 0j                                                                                                                         

β1j  =  10 + 1j

β2j  =  20 + 21*Cj

β3j  =  30                          (15) 

where Yij is the post-test SESAT Mathematics score for student i in classroom j, xij is the 

composite standard score (assignment variable) for student i in classroom j, Cj  is the 

cutoff for classroom j,  Zij  is the dichotomous ROOTS intervention indicator for student i 

in classroom j, cutoffj is the cutoff value for classroom j, β0j is the mean SESAT 
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mathematics score for classroom j, β1j is the slope relating the assignment score to the 

post-test SESAT mathematics score in classroom j, β2j is the slope relating treatment 

receipt to the post-test SESAT mathematics scores in classroom j, β3j is the slope relating 

the assignment score squared term to the post-test SESAT mathematics score in 

classroom j, rij  is the student-level residual term, and the ’s are the classroom-level 

residual terms.  

Note that in Equation 15, the cutoff value for classroom j, Cj was added as a 

classroom-level predictor. Specifically, the treatment effect estimate in classroom j was 

modeled as a function of variation in the cutoff value chosen for each classroom. 

Therefore, at level 2, the term 21 represents the relationship between the location of the 

cutoff value and the treatment–outcome relationship in classroom j. The assignment score 

variable was freed to randomly vary across classrooms. The slope relating treatment 

receipt to the post-test SESAT mathematics score in classroom j, and the slope relating 

the assignment score squared to the post-test SESAT mathematics score in classroom j 

were not allowed to vary at level 2, as the random effect terms for these variables did not 

significantly improve the model fit. 
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 CHAPTER Ⅳ 

RESULTS 

In this chapter, I describe the results of the graphical, parametric, and 

nonparametric RD analyses implemented using the ROOTS intervention dataset. The 

results of the RD model assumption tests are presented first. Then, the results of two 

versions of RD analyses (i.e., pooling RD analysis and multilevel pooling RD analysis), 

RCT estimation, and within-study comparison follow.  

Model Assumptions    

Discontinuity at the cutoff of assignment variable continuum. Figure 10 

demonstrates the relationship between the probability of being assigned to the treatment 

condition and the composite standard score. As expected for a synthetic RD, the 

probability of being assigned to the treatment condition is 1.0 below the zero cutoff on 

the composite standard assignment variable continuum, while the probability of being 

assigned to the treatment condition is 0 above the cutoff.  

 
Figure 10. Treatment assignment as a function of the assignment variable score. 

 

Covariate balance at the centered cutoff. Table 5 presents the weighted mean 

difference in a demographic variable distribution along with the mean ratio of the 
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variance of a demographic variable in the treatment group to the variance of that variable 

in the control group. Results showed that there was no statistically significant 

discontinuity in covariates, including gender, ethnicity, limited English proficiency, and 

special education, at the cutoff. These results, along with those from graphical analyses 

(see Appendix), indicate that there was a balanced distribution of covariates across RD 

treatment and RD control group members at the centered cutoff.  

Table 5  

Covariate Balance Statistics   

Covariates  Difference SE p Variance ratio 

   Female -0.04 0.04 0.31 1.01 

   Student age  -0.05 0.03 0.14 0.92 

   Limited English proficiency 0.03 0.03 0.39 1.10 

   Special education  0.01 0.02 0.67 1.14 

Note.  difference = weighted mean difference in the covariate distribution at the 

centered cutoff; variance ratio = mean ratio of the variance of a demographic variable in 

the treatment group to the variance of the variable in the control group. 

 

Pooled MCRD Models  

Parametric model. Table 6 provides the pooled RD estimates of the ROOTS 

intervention from both the parametric and nonparametric MCRD models. The 

implementation of the backward elimination regression method revealed that a model 

with a linear assignment variable, a quadratic assignment variable, and a treatment 

indicator served as the best fitting model.  

Results showed that the assignment variable (i.e., composite standard scores) was 

associated with student posttest SESAT mathematics scores (β1 = 14.35, p < 0.001), 

indicating that students with higher assignment scores had higher posttest scores than 
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those with initially lower assignment scores (see Figure 11). The estimate of the pooled 

RD treatment effect was statistically significant (β2, = 5.19, , p < 0.001). The quadratic 

assignment variable was not statistically related to the posttest SESAT outcome (β3 = -

0.21, p > 0.05).  

Table 6    

Parametric Pooled RD Estimates of SESAT Mathematics Outcome  

 Estimate SE t 

Intercept  467.00 0.83 564.04*** 

Composite standard scores   14.35 0.69 20.93***  

Composite standard scores squared  -0.21 0.23  -0.95 

Treatment 5.19  1.32 3.94***   

*p < 0.05, **p < 0.01, ***p < 0.001 

 

 

Figure 11. Parametric plot of the assignment–outcome variable relationship by treatment 

assignment status. 
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Nonparametric model. Figure 12 depicts the nonparametric local linear 

regression plot for the assignment—outcome variable relationship using the traditional 

pooling MCRD method. As a supplementary specification for the parametric model, a 

nonparametric method using a local linear regression was implemented within the 

optimal bandwidth (2 points) around the cutoff chosen from the IK procedure, meaning a 

series of regressions were fit 2 points below and above the cutoff. The bins were equally 

sized at 0.08 points. By restricting the analysis to observations within this bandwidth, the 

local linear analysis used 39.4% of the student observations. As seen in Table 7, the 

nonparametric pooled RD estimate was 6.63, which was statistically significant (p < 

0.05). This result indicates that, on average, treated students scored 6.63 points higher in 

posttest SESAT mathematics than control students at the centered cutoff. The results of 

the sensitivity analysis showed that the pooled RD estimate with half-sized and double-

sized bandwidths was 8.81 (p < 0.05) and 4.17 points (p > 0.05), respectively, indicating 

that the nonparametric impact estimate was sensitive to the size of the bandwidth. That is, 

this result suggests that the narrow bandwidth tends to produce an estimate that is closer 

to (i.e., less biased than) the one from the optimal bandwidth (6.63) because observations 

far away are excluded from the estimation. However, the resulting estimate is less precise 

due to the smaller number of observations contained in the narrower bandwidth (SE = 

5.03). This result also suggests that the wide bandwidth, in contrast, yielded a more 

biased estimate (4.17) because the observations far away were included in the estimation. 

However, the resulting estimate tends to having more precision (SE = 2.96) because more 

observations within the wider bandwidth were used for the estimation. Taken together, 

the magnitude of the pooled parametric RD estimate was smaller than that of the pooled 
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nonparametric RD estimate with the optimal bandwidth (6.04 point). The nonparametric 

impact estimate with optimal bandwidth resulted in higher standard errors than the 

parametric impact estimate.  
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Table 7       

Nonparametric Pooled RD Estimates of SESAT Mathematics Outcome 

 Half bandwidth Optimal bandwidth Double bandwidth 

 Estimate t Estimate t Estimate t 

Intercept  
465.21 

(2.75) 
169.08*** 

466.22 

(1.96) 
237.67*** 

467.55 

(1.67) 
280.40*** 

Composite standard scores   
20.43 

(5.26) 
3.89***  

15.72 

(2.03) 
7.74***  

13.63 

(1.05) 
13.01*** 

Treatment 
8.81   

(3.83) 
2.30*  

6.63    

(2.96) 
2.24*  

4.17    

(2.55) 
1.63  

Note. Nonparametric pooled RD estimates are shown with standard errors in parenthesis. Nonparametric estimates have 

bootstrapped standard errors (repetition = 1,000).  
*p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 12. Nonparametric plot of the assignment–outcome variable relationship by 

treatment assignment status. 

 

Multilevel Pooling MCRD Model 

Table 8 presents the estimates for the unconditional SESAT outcome model. The 

mean posttest SESAT mathematics score across classrooms was 483.50 (SD = 40.35). 

The intraclass correlation coefficient (ICC) showed that a total of 23.29% of the variation 

in student posttest SESAT mathematics scores was explained by classroom-to-classroom 

differences. Variance component estimates indicated that mean student posttest SESAT 

mathematics scores varied significantly between classrooms (r0j = 381.00, p < 0.001).
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*p < 0.05, **p < 0.01, ***p < 0.001. 

Table 9 presents the estimates for the final two-level conditional model. Results 

of the final model revealed that, at the student-level (level 1), the group-centered 

assignment variable (i.e., composite standard scores) was associated with student posttest 

SESAT mathematics scores (γ10 = 15.47, p < 0.001). Students with higher assignment 

scores had higher posttest outcomes than those with initially lower assignment scores. 

The quadratic assignment variable was associated with student posttest SESAT 

mathematics score (γ30 = -0.57, p < 0.01), indicating that the slope relating assignment 

variable and student posttest SESAT mathematics score significantly decelerated as the 

assignment variable value increased. The estimate of the multilevel pooled RD treatment 

effect was statistically significant (p < 0.05), indicating that, on average, treated students 

scored 5.62 points higher on the SESAT mathematics posttest than control students at the 

centered cutoff.  

.  

 

Table 8 

Two-Level Unconditional SESAT Mathematics Outcome Model  

Fixed effect      Estimate SE t 

Average SESAT mean, γ00 480.35 2.07 233.4*** 

Random effect      Variance component 
 

 

Student (level-1), rij 1,255.00*** 35.43 

 

Mean SESAT score (level-2),u0j 381.00*** 19.52 

 

ICC ROOTS classroom  .23 
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Note. SE = Standard error.  
*p < 0.05, **p < 0.01, ***p < 0.001. 

RCT Estimation  

Table 10 reports the RCT treatment effect estimates from the final two-level 

conditional model of the SESAT outcome. The mean posttest SESAT mathematics score 

across classrooms was 450.82 (SD = 35.28). The ICC for the unconditional model 

showed that a total of 39.97% of the variation in student posttest SESAT mathematics 

scores was explained by classroom differences. Variance component estimates indicated 

Table 9    

Two-Level Conditional SESAT Mathematics Outcome Model 

 Estimate  SE t  

Fixed effect     

Intercept, γ00  488.09        2.49  187.93***  

Inter-student predictors         

   Composite standard scores, γ10  15.47 0.95 16.30*** 

   Treatment, γ20  5.62 2.31 2.43* 

   Composite standard scores squared, γ30  -0.57 0.18 -3.18** 

Random effect 
Variance 

component 
SD 

 

   Student (level 1), rij  671.78*** 25.92  

   Mean SESAT score, u0j 465.20*** 21.57  

   Composite standard scores, u1j 7.75*** 2.78  

ICC ROOTS classroom  .41    
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that mean student posttest SESAT scores varied significantly between classrooms (r0j = 

423.90, p < 0.001). 

Results of the final conditional model revealed that at the student level (level 1), 

the group-mean centered assignment variable was associated with the student posttest 

SESAT mathematics scores (19.18, p < 0.001). This result indicates that students with 

higher assignment scores had stronger posttest SESAT mathematics performance than 

those with initially lower assignment scores. The RCT treatment effect estimate was 8.11 

points and was statistically significant (p < 0.05), indicating that treated students, on 

average, scored 8.11 points higher than control students on the posttest.  

Table 10    

RCT Treatment Effect Estimates  

 Estimate SE t 

Fixed effects   
 

   Intercept, γ00  450.82 2.56 173.83*** 

   Composite standard scores, γ10   19.18 1.25 15.29***  

   Treatment, γ20 8.11 1.93 4.25**  

Random effect  
Variance 

component 
SD 

 

   Student (level 1), rij 636.70*** 25.23 
 

   Mean SESAT score (level 2), u0j 423.91*** 20.59 
 

ICC ROOTS classroom 0.40    
 

*p < 0.05, **p < 0.01, ***p < 0.001. 

Within-study Comparison  

Table 11 compares the performance of the MCRD design with the RCT with 

respect to bias and precision. Based on the criteria for evaluating the performance of 
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causal estimates from the MCRD relative to those from the RCT, both MCRD estimation 

methods—the pooling approach and the multilevel approach—produced a standardized 

bias of less than 0.10 SD. This result means the differences between the two MCRD 

estimates and the RCT benchmark were within the guidelines for interpreting the 

magnitude of the standardized mean difference as small (Tang et al., 2017). Therefore, 

these results indicate that the MCRD design produced unbiased treatment effect estimates 

compared to the RCT causal estimates, regardless of the estimation method. As for 

precision, the MCRD design, regardless of the estimation method, produced larger 

standard errors than those from the RCT design, confirming that the RCT design provides 

more precise estimates.  

Table 11      

Results of Within-Study Comparison  

 Estimate  SE t Bias 

RCT benchmark 8.11  1.31a 4.25***  

Pooled MCRD     

   Quadratic regression 5.19  1.32 3.94*** -0.08 

   Local linear regression with half BW 8.81 5.03 2.30* -0.02 

   Local linear regression with optimal BW 6.63  2.96 2.24* -0.04 

   Local linear regression with double BW 4.17  2.55 1.63 -0.11 

Multilevel pooled MCRD  5.62  2.31 2.43* -0.07  

Note. a = Standard errors of the RCT estimate were adjusted given the different sample 

sizes across the two designs (i.e., NRD = 1200, NRCT = 896).  
*p < 0.05, **p < 0.01, ***p < 0.001.  
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Predictors of Treatment Impact Heterogeneity  

Lastly, I added a classroom-level predictor to model the heterogeneity in 

treatment effects across classroom units. Results of the final conditional model revealed 

that there was a statistically significant average treatment effect at the student level 

(γ01 = 11.63, p < 0.01). The cut-point used to screen students into treatment conditions 

across classrooms statistically interacted with the treatment effect parameter (γ21 = 7.43, p 

< 0.05) (see Table 12). Figure 13 provides a graphical presentation of the treatment effect 

variability between the classrooms for the post-test SESAT mathematics score. The 

treatment effect estimates varied widely across classrooms, depending on the cutoff value 

used to screen students into the treatment conditions in each classroom, with an 

approximate range between -5 and +12 points. Specifically, a higher cutoff value chosen 

to screen students into treatment conditions was associated with greater treatment effect. 

It was particularly notable that the classrooms with the lowest cutoff values showed 

negative treatment effect, indicating that in these classrooms (lower end of cut-point 

distribution), the students assigned to the ROOTS intervention largely underperformed 

compared to those assigned to the control condition on the post-test SESAT mathematics.  
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*p < 0.05, **p < 0.01, ***p < 0.001. 

 

 

 

 

 

Table 12    

Multilevel Model Results Predicting SESAT Mathematics Outcome from Classroom Cut-

point 

 Estimate  SE t  

Fixed effect     

Intercept, γ00  478.84        4.19  114.30***  

Inter-student predictors         

   Composite standard scores, γ10  15.90 0.96 16.65*** 

   Treatment, γ20  11.63 3.65  3.19** 

   Composite standard scores squared, γ30  -0.62 0.18 -3.47*** 

Inter-classroom predictors    

    Cut-point, γ01 16.36 5.01 3.27** 

    Cut-point, γ21 7.43 3.61 2.06* 

Random effect 
Variance 

component 
SD 

 

   Student (level 1), rij 672.23*** 25.93  

   Mean SESAT score, u0j 388.03*** 19.70  

   Composite standard scores, u1j 7.08*** 2.66  

ICC ROOTS classroom  0.37   
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Figure 13. Treatment effect estimates as a function of classroom cut-point. Estimates for 

each cutoff are displayed with a 95% confidence interval.  
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CHAPTER Ⅴ 

DISCUSSION 

The primary objective of this study was to demonstrate two estimation methods 

for multiple-cutoff RD (MCRD) designs and to evaluate the two methods with respect to 

the validity and efficiency of the causal inference using kindergarten math intervention 

data. Specifically, the intervention effect was estimated using a conventional pooling 

method and a multilevel pooling method. The bias and power of the resulting MCRD 

estimates were compared with an RCT benchmark. The secondary objective of this study 

was to examine if treatment effect heterogeneity was associated with classroom-level 

characteristics—cut-scores used to screen students into the treatment condition in each 

classroom.  

 The findings of this study are as follows. First, at the centered cutoff, treatment 

students scored higher on the SESAT posttest outcome than control students. Second, all 

of the MCRD methods produced unbiased treatment effect estimates comparable to a 

benchmark RCT estimate; however, the power in the MCRD design was lower than in 

the RCT, regardless of the estimation method. Third, the cut-point used to screen students 

into the treatment condition moderated the treatment effect, with a greater treatment 

effect observed in the classrooms with a larger cutoff value. In the following, I discuss 

the findings as well as implications for program evaluation design theory and practice.  

Estimation Methods   

Results from the two estimation methods revealed a positive impact of the 

ROOTS intervention on student math achievement across the treatment cutoffs. Across 

cutoffs, treatment students had higher scores on the SESAT posttest outcome. The current 
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result is not consistent with the preliminary findings regarding the impact of the ROOTS 

intervention (Clarke et al., 2016), which showed no treatment effect on gains from fall to 

spring for the SESAT outcome. The difference in the findings might be due to the 

difference in the sample. The ROOTS impact studies only used the sample from the first 

cohort of students of a four-year project, whereas this study used the full sample from all 

four cohorts. The difference in the finding also might have resulted from the different 

outcomes used in each study. The prior ROOTS impact studies used the math gains from 

fall to spring, but this study only used the posttest outcome.  

The current results also revealed variations in the treatment effect estimate and 

statistical power depending on the estimation method. The magnitude of the RD 

estimates was largest when using the nonparametric pooling method (6.63), followed by 

the multilevel model (5.62) and the parametric pooled model (5.19). Not surprisingly, the 

nonparametric pooling method produced the highest standard errors and the parametric 

pooling method produced the lowest standard errors. More discussion about the 

robustness and precision of these impact estimates will follow in the next section of this 

chapter.  

The pooling method demonstrated in this study has been widely used in prior 

MCRD studies to estimate an average treatment effect across cutoffs (Cattaneo et al., 

2016; Dobkin & Ferreira, 2010; Gooman, 2008). A relatively small number of studies 

also have estimated the local treatment effect at each cutoff separately for the MCRD 

design. The current study is closely in line with these prior studies utilizing the pooling 

method given that it used the same methods for the MCRD analysis; however, it was also 

distinguished from these studies in that it employed a multilevel model to account for and 
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model group-level variance and explored if different estimation methods provide similar 

or different results in addition to the pooling method. As noted earlier, estimation of the 

local RD treatment effects at each cutoff may not always be feasible and/or plausible. For 

example, a small number of cases around each cutoff could make it impossible to 

estimate the local treatment effect at each cutoff. However, when using multilevel 

modeling, researchers could investigate whether the treatment effect at the individual 

level varies across treatment groups by testing the random effect term for the treatment 

effect parameter. Multilevel modeling also enables the exploration of source of the 

treatment effect variability at both the individual and group levels (e.g., student and 

classroom characteristics).  

Within-study Comparison  

The results from the WSC revealed that both MCRD estimation methods 

produced unbiased treatment effect estimates relative to the RCT benchmark. The RCT 

benchmark–MCRD estimate difference was less than 0.10 SD units. However, this study 

found that MCRD estimates were still underpowered compared to those of an RCT 

design.  

Specifically, the nonparametric pooled RD estimate with optimal bandwidth was 

found to have the smallest standardized bias (0.02 SD units) but was the most imprecise. 

This finding suggests that the nonparametric pooling method correctly modeled the 

functional form of the data but lacked statistical power. The multilevel RD estimate was 

also found to have very small bias (0.07 SD units) and have standard error that is larger 

than that from the parametric pooled RD model and smaller than that from the multilevel 

model. The small bias and relatively moderate statistical power of the multilevel RD 
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estimate may be due to the fact that the associations among observations within same 

groups were accounted for in the multilevel design. The parametric pooled RD estimate 

was found to have the largest bias (.08 SD); however, it was statistically the most precise 

among all MCRD estimates, and even as precise as the RCT benchmark. However, 

interpretation of the high statistical power that was obtained from the parametric pooled 

model requires caution; the standard error of the regression coefficient could have been 

underestimated because the clustered structure of the data (i.e., correlations among 

observations within clusters) was not taken into account in the single-level linear 

regression model.  

Taken together, the nonparametric pooling method appears to provide the most 

unbiased RD estimate, but given its low statistical power, it is best utilized with a large 

sample. If a large sample is not available, then the multilevel design could be the next 

best option for the MCRD analysis, given that it has a very small bias and a relatively 

high statistical power in comparison to nonparametric methods. If a particular design 

results in a small sample combined with a limited number of intervention units/sites, the 

parametric pooled RD method could be the best option. As noted earlier, however, 

caution should be taken to interpret the results from the parametric pooled RD model due 

to potential limitations regarding ignoring the clustered structure of the data. Finally, I 

recommend that analysts and program evaluators employ all three MCRD estimations 

along with graphical analysis to examine the sensitivity of treatment impact estimates and 

resulting power estimates, depending on the estimation method, to further probe the 

source of the different results. Given that each MCRD estimation method demonstrated 

in this study has its own strength and weakness (i.e., bias-statistical power tradeoff), the 
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optimal estimation method should be determined by considering the research/evaluation 

context.  

A few past studies have also used multiple estimation methods for MCRD designs 

(Cattaneo et al., 2016; Eggers et al. 2015; Kane, 2003; Van der Klaauw, 2002). These 

studies estimated the weighted average treatment effect at the centered cutoff and the 

local treatment effect at different cutoffs separately. For example, Cattaneo et al. (2016) 

demonstrated the estimation of the average treatment effect at the centered cutoff using 

the normalizing-and-pooling approach and the estimation of the local treatment effects at 

each cutoff to the differences in the resulting pooled average RD estimate and the local 

RD estimates. The current study is closely related to that research in that it also 

demonstrates the different estimation methods—the pooling method and multilevel 

modeling—and examined the differences in the resulting estimates. However, the current 

study is also different from previous studies in that it evaluated the performance of the 

different MCRD estimates using WSC. In other words, this study tested the internal 

validity and statistical power of the MCRD estimates compared to those from the RCT in 

addition to estimating treatment effect.   

The findings regarding the performance of MCRD estimates compared to those of 

the RCT add to the literature on alternative RD designs that were proposed to improve 

the generality of RD estimates (Tang et al., 2017; Wing & Cook, 2013). Most of the prior 

studies on  alternative RD designs also conducted WSC to evaluate the performance of 

the RD alternative, allowing evaluation of  the internal validity of the design. To date, 

most of these WSC studies within alternative RD frameworks were conducted with 

comparative RD designs (Wing & Cook, 2013; Tang et al., 2017). For example, Wing 
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and Cook (2013) demonstrated that, when the comparative regression function (pretest 

scores) is parallel with the RD control function in the untreated part of the assignment 

variable continuum, it is possible to extrapolate the RD treatment effect estimate at the 

cutoff beyond the cutoff (in the treated part of the assignment variable continuum). In 

addition, the authors also found that CRD estimates were unbiased and precise, and 

comparable to those from the benchmark RCT used in the WSC.  

When findings about performance of CRD and MCRD estimates evaluated by 

WSC are taken together, it appears that both CRD and MCRD estimates could be used to 

improve the generality of the treatment effect or extend the area of causal inference 

beyond the small area around a single cutoff. In addition, both designs seem to produce 

very small bias, which supports the internal validity of the resulting RD estimates. 

However, as noted earlier, the MCRD estimates seem to have a lower statistical power 

than CRD estimates, given that the CRD estimates were found to have a statistical power 

close to that of an RCT (Tang et al., 2017; Wing & Cook, 2013). In addition, the 

implementation of MCRD designs that use multilevel modeling typically requires a 

multitude of research sites/units, which might be burdensome or even implausible for the 

evaluation of intervention programs that are implemented across a small number of sites 

or intervention units. It should be noted, however, that the MCRD does not require the 

onerous parallel regression function assumption and the additional data (pretest scores) 

that the CRD requires, potentially giving the MCRD more practical utility. 

Predictors of Treatment Impact Heterogeneity  

The location of the cutoff value chosen for screening the students in each 

classroom strongly moderated the treatment effect. A greater treatment effect was 
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observed for students from classrooms with higher cutoff values than those from 

classrooms with lower cutoff values. Remarkably, the treated students from the 

classrooms with the lowest cutoff values among ROOTS classrooms had lower post-test 

score than those in the control condition by approximately 5 points. 

To further probe what the cutoff value could possibly denote, I examined the 

correlation between the cutoff values and the intervention group’s mean pretest scores, 

which produced a moderate correlation (r = .57, p < .01). This result confirmed that the 

cutoff value could be interpreted as a proxy of the intervention group’s mean initial math 

skill. Therefore, the cutoff value moderation effect suggests that intervention groups with 

better initial math skill benefitted more from the ROOTS intervention than those with 

lower initial math skill. Furthermore, the negative treatment effects for the lowest 

performing students among all ROOTS participants also suggest that the students with 

the lowest initial math skill were not responsive to the ROOTS intervention; they 

continued to struggle with math at the end of the intervention. 

The current finding regarding the moderation effect of initial math skill on the 

size of the treatment effect is inconsistent with a recent study that demonstrated that a 

game-based math intervention designed to develop students learn whole number concepts 

was equally effective across the pretest distribution (Fien et al., 2016). One plausible 

explanation for the inconsistency between these studies might be the difference in the 

mode of intervention (i.e., game-based vs. group-based intervention). In the game-based 

intervention, the individualized game play might work equally well for students with 

different initial math skill by allowing them to master the concepts at their own pace 

(Nelson, Fien, Doabler, & Clarke, 2016). In the school-based intervention, where 
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multiple students with different levels of need are grouped to receive intervention, 

however, the extra needs of at-risk students might not be optimally met when they 

receive the intervention with moderately at-risk peers in the same group.  

Notably, the current result opposes the findings of Clarke and colleagues (in 

press), who reported a greater positive impact of the ROOTS intervention for students 

with lower initial skill. The discrepancy between these findings is more striking when 

comparing the direction of the treatment effect that was observed at the lowest end of the 

distribution of the initial math skill in the two studies. In contrast to Clarke and 

colleagues’ (in press) findings, this study found a negative treatment effect that favored 

those in the control condition, meaning that the treated students with the lowest initial 

math skill underperformed their peers in the control condition at the end of intervention.  

This contradictory result may be due to differences in the measures of “initial 

math skill” used in each study. In the present study, initial math skill was measured using 

a composite standard score formed by combining students’ performance on two 

mathematics proficiency measures (i.e., NSB and APSENS). The NSB and ASPENS are 

proximal to the intervention, while the Test of Early Mathematics Ability-3 (TEMA-3), 

used to define initial math skill in Clarke et al. (in press), is distal to the intervention. 

Therefore, these findings suggest that the nature of a measure used to assess initial math 

skill, for example, how it is operationalized, and whether the measure is proximal or 

distal to the intervention, may play a critical role in evaluating the differential impacts of 

math interventions based on students’ initial math skill.  
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Advantages of MCRD Design 

Collectively, findings from this study suggest the following advantages of the 

MCRD design. First, MCRD designs could be used to overcome one of the key 

limitations of the basic RD design—the limited causal inference at a single cutoff on the 

assignment variable continuum. In MCRD designs, the use of multiple cutoffs extends 

the area of causal inference beyond the vicinity of the single cutoff, thereby enabling the 

estimation of a pooled “average” RD treatment effect across cutoffs. The pooled RD 

treatment effect estimate then serves to provide a summary of the weighted average 

treatment effect across all cutoffs when there is no interaction between the assignment 

variable and the outcome or heterogeneity in the treatment effect. In other words, the 

estimation and interpretation of an average treatment effect by pooling observations 

might be meaningful when a constant treatment effect is identified. 

Second, the use of the multilevel pooling MCRD method allows the investigation 

of heterogeneity in treatment effects by intervention sites (e.g., districts, schools). The 

application of multilevel modeling to MCRD design enables researchers to test whether 

the student-level treatment effect varies by intervention group by partitioning variance 

and covariance into discrete levels of data structure (i.e., student- and group-level) and 

modeling treatment effect variance. Similarly, the ability to model cross-level interactions 

allows the examination of how site characteristics (e.g., cutoff value, mean SES) 

moderate treatment effects. Taken together, the use of the multilevel pooling MCRD 

method appears to offer a great advantage for program evaluation, in that it can identify 

specific information about treatment effectiveness—how academic interventions work 

differently for students with different initial skill levels or for students from different 
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contexts. Lastly, MCRD designs maintain ethical research and administrative practices, 

with respect to providing treatment to those most in need.  

Limitations and Future Directions 

The current study has several limitations to note in regard to the findings. First, 

the use of synthetic RD limits the external validity of the study findings. That is, it 

remains unknown whether the MCRD estimation examined in this study would produce 

equally unbiased causal estimates when noncompliance exists in practice. Therefore, 

future studies are needed to evaluate the validity of MCRD methods with fuzzy RD 

designs.  

Second, this study focused on parametric analysis and only uses nonparametric 

analysis for the traditional pooling MCRD method. Given the advantages of 

nonparametric analysis (i.e., correct functional form specification), future research should 

apply nonparametric analysis across all MCRD methods, especially for multilevel 

MCRD. In this study, nonparametric methods were not applied for the multilevel MCRD 

because of the small within unit sample size. The use of nonparametric methods for 

multilevel MCRD method would aid in preventing the identification of false 

discontinuities, which could result from a mis-specified parametric model. Further, the 

identification of consistent findings across parametric and nonparametric methods would 

provide additional support for the validity of multilevel RD estimates.   

Third, this study examined a limited number of predictors of treatment effect 

heterogeneity. Given recent research findings concerning the relationships between 

individual-, group- and classroom-level factors and math development (e.g., Cragg & 

Gilmore, 2014; Crosnoe et al., 2010; Hill; Hindman, Skibbe, Miller, & Zimmerman, 
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2010), future study is warranted to investigate how various classroom- and teacher-

factors account for unit-to-unit variability in treatment effects. Findings from such studies 

could reveal whether classrooms with higher instructional quality or highly qualified 

teachers are associated with larger treatment effects. 

Fourth, the study findings revealed that the MCRD methods had lower statistical 

power than RCT design regardless of estimation method. Therefore, future research on 

ways to increase the statistical power of causal estimates in MCRD designs would be 

useful for improving MCRD designs and increasing their utility in practice.  

Finally, the findings of this study—specifically, the performance of the MCRD 

estimate—lacks external validity. That is, it is unknown whether same results would be 

found with different populations and in different settings. To establish the external 

validity of performance of the MCRD design, it is essential to replicate this study with 

different samples and variables of interest at different time points.    

Implications and Conclusions  

The findings of this study have several potential theoretical and practical 

implications. First, the findings of this study fill an important gap in the current literature 

on alternative RD designs to improve the generality of RD estimate or extend the area of 

causal inference beyond the small area near a single cutoff. Specifically, the ability to 

estimate the average treatment effect across multiple cutoffs suggests that MCRD design 

could improve the causal generalization of RD designs beyond a single cutoff. In 

addition, this study showed that the use of multilevel modeling for MCRD designs could 

estimate potential heterogenous treatment effects.. In either scenario, the MCRD design 
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allows for the extension of the area of causal inference along the entire assignment 

variable continuum.  

Second, the identification of the comparability of the causal estimates of MCRD 

and RCT provides empirical evidence of the internal validity of different MCRD 

estimation methods, which, in turn, supports the MCRD as a strong alternative to the 

RCT when individuals are assigned to either to the treatment or control condition using 

cutoffs that vary by site or time. However, considering the relatively lower statistical 

power of the MCRD estimates compared to the RCT estimates, MCRD might be most 

useful for multi-site program evaluations with relatively large within site samples.  

Third, the findings of this study concerning the impact of the ROOTS intervention 

offer a valuable contribution to the growing literature on early mathematics interventions 

by identifying heterogeneity in the impact of the ROOTS intervention by initial math 

skill (Clarke et al., in press; Fuchs et al., 2016; Toll & Van Luit, 2013). The current 

literature on the relationship between initial math skill and intervention response is 

mixed. The results of this study, which contradict prior findings in the literature, suggest 

that careful examination of the measure of initial math skills and their relation to the 

intervention could untangle the intricacy of this body of literature. That is, when different 

measures were used to measure initial math skills, they could have defined different 

facets of the “mathematics skill” construct. These measures also differed in their relation 

to the intervention; some were proximal to the intervention, while others were more 

distal.  

 Fourth, the findings suggest that the MCRD could serve as a useful, valid, and 

informative program evaluation design when varying treatment assignment cutoffs are 
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used by intervention site or group. The ability to identify specific information concerning 

the RD treatment effect, including possible heterogeneity, may further help program 

evaluators and policymakers evaluate, modify, and develop interventions that could work 

for all students with different levels of needs. Importantly, the identification of 

differential treatment effects will provide intervention developers with valuable 

information that they can use to enhance their treatment programs. For example, if a math 

intervention program is seen to have a significantly positive impact for students at 

moderate risk, but not for those most at-risk, educators and policymakers could revisit 

their goals and reconsider the intervention’s target population or modify the program 

accordingly. If the aim in providing a math intervention is to help the most struggling 

students, the program providers can adjust the curricula and instruction or provide more 

intensive math instruction to the most at-risk students separately.  

RD designs have gained popularity for evaluating cutoff-based interventions in 

education science, given their ability to make robust causal inferences and facilitate 

ethical delivery of interventions (Jacob et al., 2012). However, one critical limitation of 

RD designs is that the causal inference is restricted to the vicinity around the cutoff, and 

the treatment effect beyond the cutoff remains unknown. To address this issue, many 

efforts have been made to extend the area of causal inference beyond the cutoff in RD 

designs. Furthermore, under the Individuals with Disabilities Education Act (IDEA, 

2004), many research-based interventions have been developed to support students who 

may be or are at risk of learning disabilities. Evaluations of these academic interventions 

have revealed that some groups of students persistently do not respond to intervention, 
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which has further motivated researchers to seek a more nuanced picture of when, for 

whom, and under what circumstances interventions work (Reardon & Stuart, 2017).  

The motivation of this study was to examine a method for generalizing the RD 

estimate and to model treatment effect variability within the RD framework. Although 

more investigations are needed, the findings of this study suggest that MCRD designs 

have potential to extend the area of causal inference beyond the vicinity of the single 

cutoff and identify the processes and mechanisms through which academic interventions 

are differentially effective across individuals and contexts. The findings of this study may 

help program evaluators and educators plan rigorous research designs and better target 

future interventions. 
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Appendix  

Covariate balance at the centered cutoff  
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