Exercise-induced Elevations in Skeletal Muscle Histamine Contribute to Increased Post-Exercise Capillary Permeability

Chaucie Edwards
Dr. John Halliwill
Exercise and Environmental Physiology Lab
Post-Exercise Recovery State

- Vasodilation
- Hyperemia
- Hypotension
What is histamine?

- Inflammatory and immune response
- Produced and released within skeletal muscle in response to exercise
What is histamine?

Figure 1: Histamine Release and Effects in Skeletal Muscle Vasculature

What is histamine?

- Inflammatory and immune response
- Produced and released within skeletal muscle in response to exercise
- Increases the permeability of blood vessels
 - Formation of fenestrations between endothelial cells, pericytes
Research Question

Current literature has established two important concepts:

1. Histamine is released in skeletal muscle tissues during and after exercise.
2. Histamine causes an increase in capillary permeability.

This study aims to piece these concepts together by asking the question, *does histamine contribute to increased capillary permeability following endurance exercise?*
Methods

- Double-blind placebo-controlled crossover study to assess capillary permeability before and after an endurance exercise bout.

- Compares the influence of a histamine blockade versus placebo in the exercise and rest leg.
Figure 2: A single visit protocol.
3 pressure steps:
 - 20, 30, 40 mmHg

Each pressure was maintained for 7 minutes, with data collection occurring during the last 3 minutes.

Figure 3: Subject during data collection.
Figure 5: Representative Tracing of the Rate of Change (m) in Limb Circumference vs Time
Capillary filtration coefficient (CFC) relates the change in limb circumference to changes in venous occlusion pressures.

Figure 6: A representative tracing of the rate of change (m) in limb girth and in cuff pressure.
Results

Figure 7: Change in CFC in the Exercise and Rest Leg pre and post-exercise under Placebo and Blockade conditions. * = Significant difference Pre to Post-Exercise
Results

Figure 8: Percent change in CFC pre and post-exercise under Placebo and Blockade conditions.
* = Significant difference Pre to Post-Exercise
Conclusions

- CFC increased after exercise only in the Exercise Leg under Placebo conditions
- H_1 and H_2 receptor antagonists decreased CFC following exercise
- Not a precise measure of capillary permeability on the cellular level
Histamine is released in skeletal muscle tissues during and after exercise.

Histamine causes an increase in capillary permeability.

CFC measures compared pre and post-exercise under Placebo and Blockade conditions in an Exercise and Rest Leg.

Exercise associated increases in intramuscular histamine may contribute to changes in capillary permeability after exercise.
Broader significance

- Athletic performance: post-exercise recovery
- Understanding histamine and cardiovascular adaptations
Acknowledgements

Exercise and Environmental Physiology Lab
 Dr. John Halliwill
 Matthew Ely
 The Halliwill and Minson lab team

Clark Honors College
 Dr. Rebecca Lindner

Funding Sources
 CHC Carol Carver Pay-It-Forward Thesis Research Grant
 O’Day Fellowship in the Biological Sciences
 ASCM Student Research Award

References

