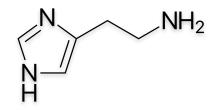
Exercise-induced Elevations in Skeletal Muscle Histamine Contribute to Increased Post-Exercise Capillary Permeability

Chaucie Edwards

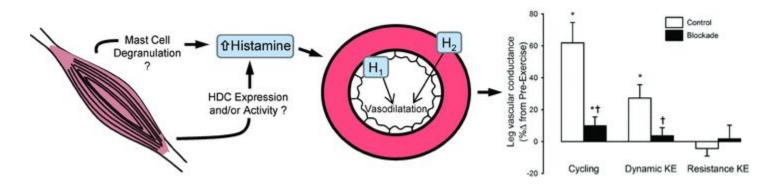
Dr. John Halliwill

Exercise and Environmental Physiology Lab



Post-Exercise Recovery State 🛉

- Vasodilation
- Hyperemia
- Hypotension


What is histamine? 🏹

- Inflammatory and immune response
- Produced and released within skeletal muscle in response to exercise

What is histamine? 🔆

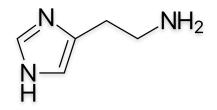


Figure 1: Histamine Release and Effects in Skeletal Muscle Vasculature

Source: Halliwill, J. R., Buck, T. M., Lacewell, A. N., & Romero, S. A. (2013). Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise?. *Experimental physiology*, 98(1), 7-18.

What is histamine? 🏹

- Inflammatory and immune response
- Produced and released within skeletal muscle in response to exercise
- Increases the permeability of blood vessels
 - Formation of fenestrations between endothelial cells, pericytes

Current literature has established two important concepts:

- I. Histamine is released in skeletal muscle tissues during and after exercise.
- 2. Histamine causes an increase in capillary permeability

This study aims to piece these concepts together by asking the question, does histamine contribute to increased capillary permeability following endurance exercise?

- Double-blind placebo-controlled crossover study to assess capillary permeability before and after an endurance exercise bout.
- Compares the influence of a histamine blockade versus placebo in the exercise and rest leg.

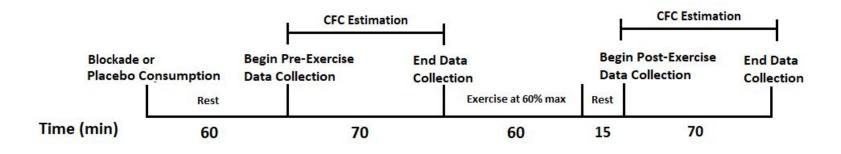


Figure 2: A single visit protocol.

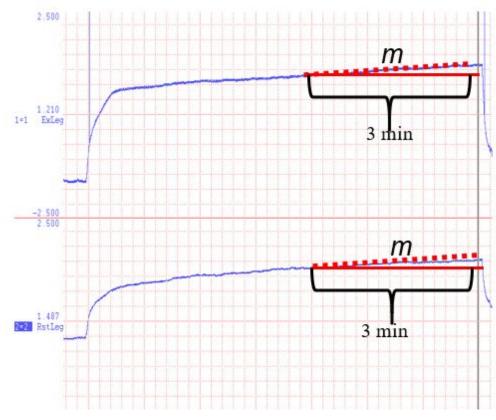


Figure 3: Subject during data collection.

- 3 pressure steps:
 - 20, 30, 40 mmHg
- Each pressure was maintained for 7 minutes, with data collection occurring during the last 3 minutes

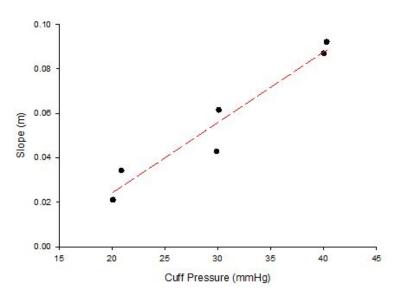


Figure 5: Representative Tracing of the Rate of Change (m) in Limb Circumference vs Time

Capillary filtration coefficient (CFC) relates the change in limb circumference to changes in venous occlusion pressures.

Figure 6: A representative tracing of the rate of change (m) in limb girth and in cuff pressure.

Results **III**

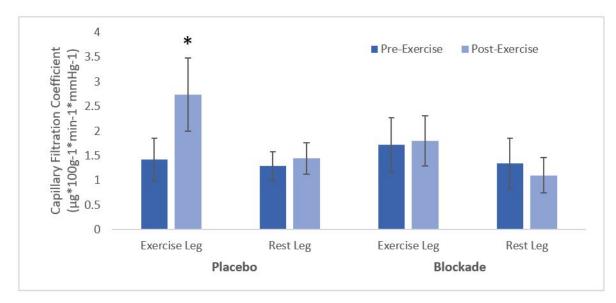
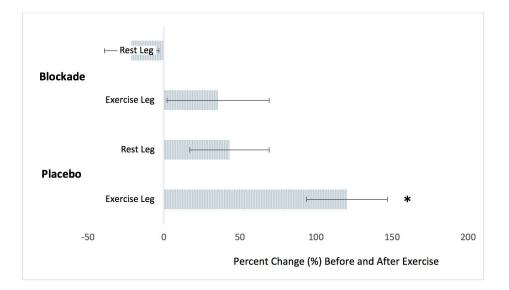



Figure 7: Change in CFC in the Exercise and Rest Leg pre and post-exercise under Placebo and Blockade conditions. * = Significant difference Pre to Post-Exercise

Figure 8: Percent change in CFC pre and post-exercise under Placebo and Blockade conditions.

* = Significant difference Pre to Post-Exercise

- CFC increased after exercise only in the Exercise Leg under Placebo conditions
- H_1 and H_2 receptor antagonists decreased CFC following exercise
- Not a precise measure of capillary permeability on the cellular level

- Histamine is released in skeletal muscle tissues during and after exercise.
- Histamine causes an increase in capillary permeability
- CFC measures compared pre and post-exercise under Placebo and Blockade conditions in an Exercise and Rest Leg
- Exercise associated increases in intramuscular histamine may contribute to changes in capillary permeability after exercise.

Broader significance 🚳

- Athletic performance: post-exercise recovery
- Understanding histamine and cardiovascular adaptations

Exercise and Environmental Physiology Lab

Dr. John Halliwill

Matthew Ely

The Halliwill and Minson lab team

Clark Honors College

Dr. Rebecca Lindner

Funding Sources

CHC Carol Carver Pay-It-Forward Thesis Research Grant

O'Day Fellowship in the Biological Sciences

ASCM Student Research Award

Andriopoulou, P., Navarro, P., Zanetti, A., Lampugnani, M. G., & Dejana, E. (1999).

Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. *Arteriosclerosis, thrombosis, and vascular biology, 19*(10), 2286-2297.

Barrett-O'Keefe, Z., Kaplon, R. E., & Halliwill, J. R. (2013). Sustained postexercise

vasodilation and histamine receptor activation following small muscle-mass exercise in humans. *Experimental physiology*, *98*(1), 268-277.

Díaz-Flores, L., Gutiérrez, R., Varela, H., Rancel, N., & Valladares, F. (1991).

Microvascular pericytes, a review of their morphological and functional characteristics. Histology and histopathology.

Halliwill, J. R., Buck, T. M., Lacewell, A. N., & Romero, S. A. (2013). Postexercise

hypotension and sustained postexercise vasodilatation: what happens after we exercise?. Experimental physiology, 98(1), 7-18.

Halliwill JR, Taylor JA, and Eckberg DL. Impaired sympathetic vascular regulation in

humans after acute dynamic exercise. J Physiol 495: 279 –288, 1996.

Länne, T., Edfeldt, H., Quittenbaum, S., & Lundvall, J. (1992). Large capillary fluid permeability in skeletal muscle and skin of man as a basis for rapid beneficial fluid transfer between tissue and blood. Acta physiologica scandinavica, 146(3), 313-319.

References

Lockwood, J. M., Wilkins, B. W., & Halliwill, J. R. (2005). H₁ receptor-mediated

vasodilatation contributes to postexercise hypotension. The Journal of physiology, 563(2), 633-642.

Luttrell, M. J., & Halliwill, J. R. (2015). Recovery from exercise: vulnerable state,

window of opportunity, or crystal ball?. Frontiers in physiology, 6, 204.

Majno, G., & Palade, G. E. (1961). Studies on inflammation: I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. *The Journal of Cell Biology*, 11(3), 571-605.

Majno, G., Shea, S. M., & Leventhal, M. (1969). Endothelial contraction induced by

histamine-type mediators: an electron microscopic study. The Journal of cell biology, 42(3), 647-672.

McCord, Jennifer L., and John R. Halliwill. "H₁ and H₂ receptors mediate postexercise hyperemia in sedentary and endurance exercise-trained men and women." *Journal of applied physiology* 101.6 (2006): 1693-1701.

Moya-Garcia, Aurelio A., Miguel Angel Medina, and Francisca Sánchez-Jiménez.

"Mammalian histidine decarboxylase: from structure to function." Bioessays 27.1 (2005): 57-63.

Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart

rate by the autonomic nervous system: studies in man on the interrelation between baroreceptor mechanisms and exercise. *Circulation Research*, *19*(2), 400-411.

Romero, S. A., Hocker, A. D., Mangum, J. E., Luttrell, M. J., Turnbull, D. W., Struck,

A. J., ... & Halliwill, J. R. (2016). Evidence of a broad histamine footprint on the human exercise transcriptome. *The Journal of physiology*, *594*(17), 5009-5023.

Romero, S. A., McCord, J. L., Ely, M. R., Sieck, D. C., Buck, T. M., Luttrell, M. J., ...

& Halliwill, J. R. (2016). Mast cell degranulation and de novo histamine formation contribute to sustained postexercise vasodilation in humans. *Journal of Applied Physiology*, *122*(3), 603-610.

Sakai, T., & Hosoyamada, Y. (2013). Are the precapillary sphincters and metarterioles universal components of the microcirculation? An historical review. *The journal of physiological sciences*, 63(5), 319-331.

Stachenfeld, N. S., Keefe, D. L., & Palter, S. F. (2001). Estrogen and progesterone

effects on transcapillary fluid dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(4), R1319-R1329.

Taylor, A. E. (1981). Capillary fluid filtration. Starling forces and lymph flow.

Circulation Research, 49(3), 557-575.