
ON SYMMETRIES OF KNOTS AND THEIR SURGERIES

by

KEEGAN BOYLE

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2019



DISSERTATION APPROVAL PAGE

Student: Keegan Boyle

Title: On Symmetries of Knots and Their Surgeries

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Robert Lipshitz Chair
Daniel Dugger Core Member
Boris Botvinnik Core Member
Dev Sinha Core Member
Reza Rejaie Institutional Representative

and

Janet Woodruff-Borden Vice Provost and Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2019

ii



c© 2019 Keegan Boyle

iii



DISSERTATION ABSTRACT

Keegan Boyle

Doctor of Philosophy

University of Oregon Department of Mathematics

June 2019

Title: On Symmetries of Knots and Their Surgeries

We investigate relationships between some knot invariants and symmetries of

knots. In the first chapter, we recall the definitions of knots, the symmetries we will

investigate, and some classical knot invariants including the signature, the genus,

and the Alexander polynomial.

In the second chapter we investigate the relation between the knot Floer

homology of a periodic knot and the knot Floer homology of its quotient knot.

Specifically, we prove a rank inequality between them using a spectral sequence

of Hendricks, Lipshitz, and Sarkar. We further conjecture a filtration on this

inequality for which we provide evidence and consequences including a signature

inequality for alternating periodic knots.

In the third chapter we define Dehn surgery, and discuss covering maps

between Dehn surgeries on the same knot. We classify such covers for torus knots,

and conjecture some strong restrictions on when such a covering can occur for

hyperbolic knots. We check this conjecture for knots with 8 or fewer crossings.

In the final chapter we prove that the quotient of a definite knot is definite.
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CHAPTER I

INTRODUCTION

1.1. Background

What is a knot?

A knot is a closed loop in 3-dimensional space, and two knots are equivalent

if one can be deformed into the other without cutting and rejoining the loop (or

passing the loop through itself). More precisely, a knot is a smooth embedding of

S1 into S3, and two knots are equivalent if there is a smooth isotopy between them.

Any knot which can be deformed into the leftmost knot shown in Figure 1 is called

an unknot. When drawing a knot, we indicate that a strand crosses behind another

strand by leaving a gap. See Figure 1 for some knot diagrams with such crossings.

Our main interest throughout this document is symmetries of knots, mostly

rotational symmetries. We call a knot with an n-fold rotational symmetry n-

periodic. For example, the trefoil in Figure 1 is 3-periodic as can be easily seen

from the center diagram. More precisely, a knot K is n-periodic if there exists a

FIGURE 1. An unknot (left), the left-handed half-hitch, or left-handed trefoil
(center), and another diagram of the left-handed trefoil (right).
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FIGURE 2. A 2-periodic diagram for the left-handed trefoil.

Z/nZ action on S3 which preserves K set-wise and has fixed set an unknot disjoint

from K. We will refer to this fixed set as the axis of rotation.

Sometimes periodic actions on knots are obvious, but it may be the case

that a given diagram for a knot does not display all or even any of the rotational

symmetries of the knot. However, there does always exist some diagram which

displays any given symmetry. The trefoil in Figure 1, for example, is also 2-

periodic, as can be seen by the diagram in Figure 2.

Given a periodic knot, we are also interested in considering the quotient knot.

This is the knot you get by cutting an n-periodic diagram into n equivalent pieces,

discarding all but one of them, and then connecting the loose ends without crossing

them. The quotient of the 3-periodic action on the trefoil is shown in Figure 3.

More precisely, the quotient knot is the image of K in the quotient of S3 under the

Z/nZ rotation. Note that the quotient of S3 by a finite order rotation is again S3.

The broad questions we are interested in studying include:

1. How can you tell if a knot is periodic?

2. If you know a knot is periodic, what can you say about its quotient knot?

2
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FIGURE 3. The quotient of the trefoil under its 3-periodic action is the unknot.

3. How do various properties and invariants of periodic knots interact with the

periodic action?

To approach these questions, we will use several knot invariants. An invariant

of a knot is any other mathematical object which we can assign to a knot and

does not change under deformation (isotopy) of the knot. These are useful for

many reasons, for example as a method of proving that two knots which look

different actually are not isotopic. The main knot invariants we will use are the

signature and the genus (which are integers), the Alexander polynomial, knot Floer

homology, and Dehn surgery, the first three of which will be defined briefly in the

following section.

Knot Invariants

We first consider the notion of a Seifert surface for a knot K. A Seifert

surface is a 2-dimensional surface S which has a single edge (boundary) equal to K,

and which is orientable. That is, it has two distinct sides, as opposed to a surface

like a Möbius strip which has only one side. See Figure 4 for a Seifert surface for

the trefoil.

3



α1

α2

FIGURE 4. An orientable surface with boundary the trefoil. One side is shaded
light gray, and the other side is shaded dark gray. At each of the three points where
the boundary crosses over itself, there is a half-twisted band connecting the left
and right regions of the surface. The curves α1 and α2 form a basis for H1 of this
surface.

From a Seifert surface we can define the genus, signature, and Alexander

polynomial of a knot. The genus of a knot K is the minimal possible genus of

a Seifert surface for K. The genus of a surface S is half of the rank of H1(S;Z),

which can be thought of as half the number of holes in the surface.

To define the signature and Alexander polynomial, we need additionally the

Seifert matrix. Let n be twice the genus of the Seifert surface S, and let {αi} be

any basis for H1(S;Z). For example, we could choose the αi to each wrap once

around one of the n holes in the surface S. Then a Seifert matrix for S is an n by

n matrix where the (i, j)th entry counts the linking number of αi pushed slightly

to one side of S with αj pushed slightly to the other side of S. Here the linking

number just counts (with sign) the number of times one curve wraps around the

other. Note that this depends on the choice of αi as well as the choice of S and so

the Seifert matrix itself is not a knot invariant.

Looking back at Figure 4, n is 2, and we can choose α1 and α2 as shown.

Then the Seifert matrix is M =

1 0

1 1

. Indeed, α1 and α2 each link with

4



themselves after being pushed off the surface, and pushing α1 and α2 off in one

way links them, and in the other way does not.

The signature of a knot is defined to be the signature of the symmetric

bilinear form given by M + MT , where MT is the transpose of M . That is, the

number of positive eigenvalues minus the number of negative eigenvalues. It turns

out that the signature does not depend on which Seifert surface we had, so it is a

knot invariant, which we denote σ(K). In our example, M + MT =

2 1

1 2

, which

has two positive eigenvalues 3 and 1, so the signature of the left-handed trefoil is 2.

The signature of the unknot turns out to be 0, which can be used to verify that the

trefoil and unknot are not isotopic.

The Alexander polynomial of K is the polynomial ∆K(t) defined to be the

determinant of M − tMT . In our example, M − tMT =

1− t −t

1 1− t

, which

has determinant t2 − t + 1. After a normalization, this again turns out to be a knot

invariant. For more details about these definitions, see [Lic97].

We will defer the definition of Dehn surgery until chapter III, and omit

entirely any definition of knot Floer homology since it is somewhat more

complicated to define. However, we note that knot Floer homology has the

structure of a bigraded abelian group, and that it can easily recover both the

Alexander polynomial and the genus.

1.2. Summary of Results

In Chapter II we discuss the relationship between the knot Floer homology

of a periodic knot and the knot Floer homology of its quotient. In particular we

prove an inequality relating the coefficients of these polynomials, and conjecture a
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stronger version. As a consequence, we get a relationship between the Alexander

polynomials and the signatures of these knots.

In Chapter III we consider Dehn surgeries. In particular, we consider two

Dehn surgeries on the same knot and ask whether there is a covering map between

them. This can be considered as a hidden type of symmetry of the knot.

In Chapter IV we consider knots for which the absolute value of the signature

is twice the genus. Such a knot is called definite, and we prove that the quotient

knot of a periodic definite knot is again definite.

6



CHAPTER II

RANK INEQUALITIES ON KNOT FLOER HOMOLOGY OF PERIODIC

KNOTS

2.1. Introduction

Periodic knots have been studied extensively, and although hyperbolic

geometry and other tools can often determine a knot’s periods and quotients

in specific cases, many relations between periodic knots and knot invariants are

unknown. Useful tools for these questions come from Murasugi, who proved in

[Mur71] that the Alexander polynomial of the quotient knot divides the Alexander

polynomial of the periodic knot, and Edmonds, who proved in [Edm84] an

inequality involving the genus of the periodic knot and the genus of the quotient.

A potential newer tool to study these questions is the knot invariant called

knot Floer homology, developed by Ozsváth and Szabó [OS04] and independently

Rasmussen [Ras03]. Knot Floer homology is a bigraded abelian group ĤFK i(K, a),

which is defined using techniques from symplectic geometry. This invariant

categorifies the Alexander polynomial in the sense that the Alexander polynomial is

the Euler characteristic of ĤFK [OS08]. Since the Alexander polynomial is useful

for studying periodic knots, it is natural to expect that ĤFK is as well.

Some work has already been done in the direction of understanding the

relationship between periodic knots and knot Floer homology. Hendricks [Hen15],

with refinement by Hendricks, Lipshitz, and Sarkar [HLS16], developed a spectral

sequence from ĤFK (K̃) to ĤFK (K) for 2-periodic knots K̃, using a localization

theorem of Seidel and Smith [SS10].
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This chapter concerns Theorem 2.1.1, a corollary of the spectral sequence

[HLS16, Theorem 1.16], and Conjecture 2.1.2, a refinement of this rank inequality

filtered by homological grading. Theorem 2.1.1 and Conjecture 2.1.2 each give new

information about the Alexander polynomials of periodic knots.

Theorem 2.1.1. Let K̃ be a 2-periodic knot in S3 with quotient knot K. Let λ be

the linking number of the axis with K. Then there is a rank inequality

∑
i

rank

(
ĤFK i(K̃, 2a+

λ− 1

2
)⊕ ĤFK i(K̃, 2a+

λ+ 1

2
)

)
≥
∑
i

rank ĤFK i(K, a)

for all a ∈ Z.

The following conjecture proposes a Maslov grading filtered version of the

rank inequality in Theorem 2.1.1.

Conjecture 2.1.2. Let K̃ be a 2-periodic knot in S3 with quotient knot K and axis

A, and let λ be lk(K,A). Then for all a, q ∈ Z,

∑
i≥q

rank

(
ĤFK i(K̃, ã)⊕ ĤFK i(K̃, ã+ 1)

)
≥
∑

2i≥q+1

rank ĤFK i(K, a)

and

∑
i≤q

rank

(
ĤFK i(K̃,−ã)⊕ ĤFK i(K̃,−ã− 1)

)
≥
∑

2i≤q−1

rank ĤFK i(K,−a),

where ã = 2a+
λ− 1

2
.

Note that the second inequality in this conjecture would follow from the first

by taking the mirrors of K and K̃.
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Organization

In Section 2.2 we lay out the motivation for Theorem 2.1.1 and Conjecture

2.1.2, and prove the corresponding statements in Morse homology. In Section

2.3 we prove Theorem 2.1.1, and state some additional theorems on knot Floer

homology which will be useful in Section 2.4. In Section 2.4 we prove applications

of Theorem 2.1.1 and Conjecture 2.1.2 to the Alexander polynomial. Finally, in

Section 2.5 we provide computational and theoretical evidence for Conjecture 2.1.2,

and explain where the proof in Section 2.2 breaks down when applied to knot Floer

homology.

2.2. Motivation from Morse Homology

Floer homology theories are modeled on Morse homology, and Theorem 2.1.1

and Conjecture 2.1.2 are Floer-theoretic analogs of rank inequalities in Morse

homology. Specifically, Theorem 2.1.1 is an analog of the following classical result

of Smith theory.

Theorem 2.2.1. Let X be finite-dimensional G-CW complex for a finite order

p-group G, with fixed set F . Then

∑
i∈Z

rankHi(X;Fp) ≥
∑
i∈Z

rankHi(F ;Fp).

A first attempt at refining this statement might be to restrict the inequality

to each homological grading. However, this is immediately false. Consider the case

that X = S2, and G = F2 acts by reflection so that F = S1. Then H1(S2;F2) = 0,

but H1(S1;F2) 6= 0.

9



However, with more care two refinements to this inequality have been shown.

One is our model for Conjecture 2.1.2 and comes from the following result of Floyd.

Another was proved more recently in [May87]. We have also included a modern

proof of Floyd’s theorem here in the hope that it may be adapted to the knot Floer

homology case. See Section 2.5.3 for further discussion.

Theorem 2.2.2. [Flo52, Theorem 4.4] Let X be a locally compact finite

dimensional Hausdorff space. Let τ be a periodic map on X of prime period p, and

let F be the fixed set of τ . Then for all n ∈ Z

∑
i≥n

rankHi(X;Fp) ≥
∑
i≥n

rankHi(F ;Fp).

Floyd’s original proof of this fact uses certain long exact sequences in

homology. However, in the case where X is a finite dimensional Z/p-CW complex,

we can reprove this statement using a spectral sequence similar to (2.3.1). We will

restrict to the case p = 2 for simplicity. The key step in the proof which does not

immediately generalize to the knot Floer homology case is the following lemma.

Lemma 2.2.3. Let C∗(X) be the complex of cellular chains on X. Then the

subspace of C∗(X) generated by fixed cells is a subcomplex, Cfix
∗ (X).

Proof. By definition of G-CW complex, if a cell has a fixed point then the entire

cell is fixed, and by continuity of the group action if a cell is fixed then so is its

boundary.

We will apply this lemma in the context of the following bicomplex of cellular

chains on X.

. . . C∗(X) C∗(X) . . .
1+τ 1+τ 1+τ

10



Consider the spectral sequence hEr
p,q coming from taking the horizontal (1 + τ)

differentials first. Note that this specrtral sequence converges since it is bounded

both above and below in the q grading.

Lemma 2.2.4. This spectral sequence converges to

Hq(F )⊗ F2[u, u−1] ∼=
⊕
p+q=i

hE∞p,q,

where u is in p-grading 1 and q-grading 0, and the isomorphism respects only the

(p+ q)-grading.

Proof. The E1 page is Ci(F )⊗ F2[u, u−1], since any basis for the image of 1 + τ can

be extended to the kernel of 1 + τ by adding exactly the cells which generate Ci(F ).

Then the differential on the E2 page is precisely the differential in Ci(F ), and all

further differentials are 0. Indeed, a non-zero differential on a subsequent page

would include a non-zero map from a fixed cell to a non-fixed cell, contradicting

Lemma 2.2.3.

On the other hand we also have a spectral sequence vEr
p,q from taking the

vertical differentials first. This spectral sequence has

Hq(X)⊗ F2[u, u−1] ∼=
⊕
p+q=i

vE1
p,q,

where again u is in q-grading 0 and p-grading 1. However, this spectral sequence

must converge to the same homology as hEr
p,q since X is finite-dimensional and

hence has a bounded cellular chain complex. Hence we get a spectral sequence from

11



Hi(X)⊗ F2[u, u−1] to Hi(F )⊗ F2[u, u−1]. This implies the classical Smith inequality

|H∗(X;F2)| ≥ |H∗(F ;F2)|

where |H∗(X;F2)| is the total dimension of H∗(X;F2).

We would like to refine this result to be filtered by the vertical grading in the

spectral sequence. To do so, we will need the following definitions and proposition,

which apply more generally to any bicomplex of F2-vector spaces. In this setting we

will refer to the horizontal differential as ∂h and the vertical differential as ∂v.

Definition 2.2.5. A square is any bicomplex of F2-vector spaces consisting of four

non-zero generators a, b, c, and d with ∂h(b) = a, ∂h(d) = c, ∂v(a) = c, and ∂v(b) = d.

That is, any bicomplex of the form as shown in the left part of Figure 5.

Similarly, a staircase is any bicomplex of F2-vector spaces as shown in the

right part of Figure 5. That is, a collection of generators {ai, bi|0 ≤ i ≤ n} with

∂h(bi) = ai and ∂v(bi) = ai+1, where a0 or bn may be 0, but all other ai and bi are

non-zero.

The length of a staircase is the number of isomorphisms ∂h(bi) = ai and

∂v(bi) = ai+1 in the diagram, so that a staircase of length 0 is a single generator,

and a staircase of length 1 is a single isomorphism between generators.

This terminology allows us to break apart bicomplexes into understandable

pieces. The following Proposition is also proved in [Ste18].

Proposition 2.2.6. [Kho07] Vertically bounded bicomplexes of F2-vector spaces

which are finite dimensional in each bigrading decompose as direct sums of

staircases and squares.

To prove this proposition, we first give the following lemmas and definition.

12



a b

c d

. . . bi

ai+1 bi+1

. . .

FIGURE 5. Square (left) and staircase (right) bicomplexes.

Lemma 2.2.7. Every square subcomplex of a bicomplex of F2-vector spaces is a

direct summand.

Proof. Any bicomplex C of F2-vector spaces is a module over F2[x, y]/(x2, y2),

which is a Frobenius algebra. Any square is a rank 1 free module, and hence

projective. However, projective modules over a Frobenius algebra are injective as

well, and hence summands.

Definition 2.2.8. Let S = {ai, bi|0 ≤ i ≤ n} and S ′ = {a′i, b′i|0 ≤ i ≤ m} be a pair

of disjoint staircase summands of a bicomplex C such that the bigrading of a0 is

the same as the bigrading of a′0, the length of S is less than or equal to the length

of S ′, and either a0, a
′
0 6= 0 or a0 = a′0 = 0. That is, S and S ′ occupy the same

diagonal, S is not longer than S ′, and they begin in the same bigrading. Then let

the sum of S and S ′, S + S ′, be the staircase {ai + a′i, bi + b′i|0 ≤ i ≤ n} ∪ {a′i, b′i|n <

i ≤ m} if bn 6= 0, or {ai + a′i, bi + b′i|0 ≤ i ≤ n} if bn = 0.

Lemma 2.2.9. In the notation above, S + S ′ is a summand of C. Furthermore, if

bn = 0 then S ⊕ S ′ = (S + S ′) ⊕ S ′, and if bn 6= 0, then S ⊕ S ′ = (S + S ′) ⊕ S. In

particular, we can replace one of S or S ′ with S + S ′ in a staircase decomposition of

C. See Figure 6 for an example.

13



a0 b0

a1 b1

a2

⊕

a′0 b′0

=

(a0 + a′0) (b0 + b′0)

a1 b′1

a2

⊕

a′0 b′0

FIGURE 6. Replacing a staircase with the sum of two staircases in a direct sum.

Proof. It is clear that if bn = 0, then S ∪ S ′ = S ′ ∪ (S + S ′) and if bn 6= 0, then

S ∪ S ′ = S ∪ (S + S ′), and so to check that S + S ′ is a summand of C it is enough

to check that it is a summand of S ∪ S ′. The only place where this might fail is at

an or bn where S ends.

First, if bn = 0, then S ends in a vertical differential, and indeed the final

element an−1 + a′n−1 of S + S ′ is not in the image of ∂h since an−1 is not but a′n−1 is.

Second, if bn 6= 0 then S ends in a horizontal differential, and applying the

vertical differential to the element bn + b′n of S + S ′ is exactly b′n+1 so that S + S ′ is

a staircase, as desired.

Proof of Proposition 2.2.6. Let C be a vertically bounded bicomplex of F2 vector

spaces which is finite dimension in each bigrading and with horizontal differential

∂h and vertical differential ∂v. By Lemma 2.2.7, any square subcomplex of C is

a summand, so we can quotient these out to get a new bicomplex without any

14



square subcomplexes. We therefore assume there are no square subcomplexes, and

in particular, no compositions of horizontal and vertical isomorphisms

y x

z

∂v

∂h
or

x

z y

∂v

∂h

,

since either of these would necessarily complete to a square by commutativity of

the bicomplex. That is, ∂h ◦ ∂v = ∂v ◦ ∂h = 0.

We now claim that there is a choice of basis which splits C into a direct sum

of staircases. We will prove this claim by induction on the number of non-trivial

vertical degrees.

For the base case, we have a single horizontal chain complex. We first choose

a basis for the image of ∂h, then extend it to a basis for the kernel of ∂h. Now we

choose preimages of the kernel basis elements, and use these elements to extend

the basis to the entire complex. By construction this decomposes our complex

into trivial staircases (basis elements which are in the kernel but not the image

of ∂h), and length 1 staircases (isomorphisms between the 1-dimensional subspaces

spanned by basis elements given by ∂h). Furthermore, each of these is a summand.

Now consider a bicomplex C ′ with bounded vertical degrees, which by the

inductive assumption has a basis which decomposes it into staircase summands.

We will add a horizontal chain complex Ctop in a new top vertical degree to get a

complex C = Ctop → C ′, and we will construct a staircase summand in C which

begins in an arbitrary grading of Ctop.

We consider two cases. To begin, suppose (Ctop, ∂h) is not exact, and choose

a basis for Ctop splitting it into staircase summands as in the base case, and choose

a basis element a ∈ Ctop which is in the kernel but not the image of ∂h. We will
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construct a staircase summand containing a. Any staircase containing a must start

at a since ∂h(a) = 0, so it remains to consider ∂v(a).

In this direction, write ∂v(a) = b1 + b2 + · · · + bn for some basis elements bi

in C ′. Each bi is contained in a unique staircase summand in C ′ by the inductive

assumption, and since ∂h ◦ ∂v = 0, ∂h(bi) = 0 so that these staircases all start in the

same bigrading. Now by Lemma 2.2.9 and induction we can find a change of basis

for C ′ decomposing it into new staircase summands (of C ′) so that b1+b2+· · ·+bn =

b′1 is a basis element and hence contained in one of the staircases.

We then have a staircase in C, but it may be the case that for some other

basis elements c in Ctop and {b′i} in C ′, ∂v(c) = b′1 + b′2 + · · · + b′m. That is, it is not

obvious in this basis that our staircase is a summand. To fix this, we will change

the basis of Ctop by replacing c with c + a, and repeat as necessary until for any

basis element c in Ctop the image under ∂v is a disjoint sum of basis elements from

∂v(a). Since ∂v ◦ ∂h = 0, none of these basis elements are in the image of ∂h, and so

we then have a staircase summand in C.

Alternatively, suppose that (Ctop, ∂h) is exact. Then choose a basis element

a in Ctop which is not in the image of ∂h, and apply basis changes as above. It

then remains to consider ∂h(a). By construction this is a basis element, and so our

staircase will be a summand unless ∂h(c) = ∂h(a) for some other basis element c in

Ctop. In this case replace c with c + a in the basis, and since Ctop is exact, c + a is

in the image of ∂h and hence in the kernel of ∂v since ∂v ◦ ∂h = 0. In particular, this

change will preserve the condition that ∂v(c) is a disjoint set of basis elements from

∂v(a).
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Now for any complex Ctop we have constructed a staircase summand for C,

and hence by induction we can decompose C into staircase summands since C is

finite dimensional in each bigrading.

We now return to the bicomplex of cellular chains on X, and give a final

lemma before completing the proof of Theorem 2.2.2.

Lemma 2.2.10. There exists a decomposition of the bicomplex

. . . C∗(X) C∗(X) . . .
1+τ 1+τ 1+τ

as in Proposition 2.2.6 such that each staircase with a0 = 0 is length 1.

Proof. Start with the decomposition into summands given from Proposition 2.2.6.

Consider a summand S consisting of a single staircase of length greater than 1, and

for which a0 = 0. That is, S begins with a vertical isomorphism d(b0) = b1 + τb1.

Then observe that b0 + τb0 = 0, and hence b0 is fixed by τ . Now we can write

b0 = α + β + τβ where α ∈ Cfix
∗ (X) and β is in the subspace spanned by generators

which are not fixed by τ .

Since Cfix
∗ (X) is a subcomplex by Lemma 2.2.3, d(α) = 0. This implies that

d(β + τβ) = d(b0) = b1 + τb1, and hence that β + τβ
d→ b1 + τb1 was not part of a

square summand. In particular then, we have

β + τβ β

b1 + τb1

d

1+τ

is contained in S, which is a contradiction with Proposition 2.2.6.
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Proof of theorem 2.2.2 in the case p = 2 and X is an Z/p-CW complex. Combining

Proposition 2.2.6 and Lemma 2.2.10, we see that all generators of vE∞p,q are

represented by staircases in the bicomplex with a0 = 0 and bn = 0. That is,

staircases which end with a horizontal arrow on the top, and a vertical arrow on

the bottom.

Now for any generator of H∗(F ), consider the staircase that represents it in

the bicomplex. The corresponding generator on vE1
p,q will be in a higher (or equal

if the staircase has length 0) vertical grading than the generator in hE1
p,q. This

gives the desired inequality since the vertical grading on vE1
p,q gives the grading

on H∗(X), and the vertical grading on hE1
p,q gives the grading on H∗(F ).

2.3. Knot Floer Homology Background

In this section we will prove Theorem 2.1.1, and recall some other useful

theorems on knot Floer homology. Throughout the rest of the chapter, let K̃ be

a 2-periodic knot with axis Ã, and let K be the quotient knot with axis A. Let λ

be the linking number of K with A. We now deduce Theorem 2.1.1 using [HLS16,

Theorem 1.16].

Theorem 2.1.1. There is a rank inequality

∑
i

rank

(
ĤFK i(K̃, 2a+

λ− 1

2
)⊕ ĤFK i(K̃, 2a+

λ+ 1

2
)

)
≥
∑
i

rank ĤFK i(K, a)

for all a ∈ Z.

Proof. Let V and W be 2-dimensional vector spaces with gradings as shown in

figure 7.
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V :
gr(V ) 0 1

−1 F2 0
0 0 F2

W :
gr(W ) −1 0

0 F2 F2

FIGURE 7. The 2-dimensional vector spaces V and W . Each columns is a Maslov
grading, and each row is an Alexander grading.

Then [HLS16, Theorem 1.16] provides a spectral sequence

ĤFK ∗(K̃)⊗ V ⊗W ⊗ F2[θ, θ−1]⇒ ĤFK ∗(K)⊗W ⊗ F2[θ, θ−1] (2.3.1)

which splits along Alexander gradings, taking the grading 2a +
λ− 1

2
on the E1

page to the grading a on the E∞ page, and collapsing elements in gradings of the

other parity on the E1 page to 0 on the E∞ page.

In particular, looking at the grading ã = 2a+
λ− 1

2
on the E1 page, there are

exactly two gradings (ã and ã + 1) in ĤFK (K̃) which contribute to that ã grading

in the tensor product. Furthermore, these two gradings do not contribute to any

other gradings in the tensor product. Hence the spectral sequence (2.3.1) gives the

result.

The following theorems of Ozsváth and Szabó characterize knot Floer

homology for alternating knots and L-space knots respectively in such a way that

they can be recovered from the Alexander polynomial. These will be useful in

obtaining applications of Conjecture 2.1.2.

Theorem 2.3.2. [OS03, Theorem 1.3] Let K ⊂ S3 be an alternating knot, and

write its (symmetrized) Alexander polynomial as

∆K(t) = a0 +
∑
s>0

as(t
s + t−s).
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Then ĤFK (S3, K, s) is supported entirely in Maslov grading s+ σ(K)/2, and

ĤFK (S3, K, s) ∼= Z|as|.

Theorem 2.3.3. [OS05, Theorem 1.2] Let K ⊂ S3 be an L-space knot. Then there

is an increasing sequence of integers

n−k < · · · < nk

with ni = −n−i, and for −k ≤ i ≤ k, ĤFK (K, a) = 0 unless a = ni for some i. In

this case ĤFK (K, a) ∼= Z and is supported entirely in dimension δi, where

δi =



0 if i = k

δi+1 − 2(ni+1 − ni) + 1 if k − i is odd

δi+1 − 1 if k − i > 0 is even.

2.4. Consequences of a Filtered Rank Inequality

The goal of this section is to prove some interesting consequences of Theorem

2.1.1 and Conjecture 2.1.2. Specifically, we will prove some restrictions on

the Alexander polynomials of certain periodic knots. To begin, we restate the

conjecture.

Conjecture 2.1.2. Let K̃ ⊂ S3 be 2-periodic with quotient knot K. Then for all

a, q ∈ Z,

∑
i≥q

rank

(
ĤFK i(K̃, ã)⊕ ĤFK i(K̃, ã+ 1)

)
≥
∑

2i≥q+1

rank ĤFK i(K, a)
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and

∑
i≤q

rank

(
ĤFK i(K̃,−ã)⊕ ĤFK i(K̃,−ã− 1)

)
≥
∑

2i≤q−1

rank ĤFK i(K,−a),

where ã = 2a+
λ− 1

2
.

Theorem 2.1.1 and this conjecture both have some nice consequences for the

Alexander polynomials of 2-periodic alternating and L-space knots.

Theorem 2.4.1. Let K̃ be a 2-periodic alternating knot in S3 with alternating

quotient K and having linking number λ with the axis. Notate the Alexander

polynomials of K̃ and K as

∆K̃(t) = ã0 +
∑
s̃>0

ãs̃(t
s̃ + t−s̃), and ∆K(t) = a0 +

∑
s>0

as(t
s + t−s),

as in Theorem 2.3.2. Then for each s,

|ã2s+λ−1
2
− ã2s+λ+1

2
| ≥ as,

and in particular the number of terms in ∆K̃ is at least the number of terms in ∆K.

Additionally, if Conjecture 2.1.2 holds then

|2σ(K)− σ(K̃)| ≤ λ+ 1.

Proof. The statement follows directly from applying the two inequalities in

Conjecture 2.1.2 to Theorem 2.3.2. In particular since the inequality is split into
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Alexander gradings, we can consider ∆K one term at a time. Then the inequality

|ã2a+λ−1
2
− ã2a+λ+1

2
| ≥ as comes from the total rank inequality in Theorem

2.1.1, noting that signs on the coefficients of K̃ alternate. The grading refinement

immediately gives

s̃+
σ(K̃)

2
≥ 2s+ σ(K)− 1,

for each grading s̃ getting sent to s. However, we know that the gradings 2s + λ−1
2

and 2s+ λ+1
2

get sent to s, so this simplifies to

2σ(K) + λ+ 1 ≥ σ(K̃).

Finally, by considering the mirror of K we also get that

σ(K̃) ≥ 2σ(K)− λ− 1,

as desired.

Example 2.4.2. Consider the knot 10122 which is 2-periodic over 41 with λ = 1.

10122 has signature 0 and Alexander polynomial

−2t−3 + 11t2 − 24t+ 31− 24t−1 + 11t−2 − 2t−3,

whereas 41 also has signature 0, but Alexander polynomial

−t+ 3− t−1.

Looking back at Theorem 2.3.2, we have Alexander gradings given by the

exponents in ∆K so that s ∈ {−1, 0, 1} with as ∈ {1, 3, 1} respectively. Since λ = 1
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these will lift to give s̃ = 2s + 0, and indeed the first inequality is then 2 + 11 ≥ 1,

24 + 31 ≥ 3, and 24 + 11 ≥ 1. The signature inequality is also satisfied since both

signatures are 0.

Remark 2.4.3. The fact that the number of terms in ∆K̃ is at least the number

of terms in ∆K also follows from a theorem of Murasugi that all terms in the

Alexander polynomial of an alternating knot are nonzero [Mur58, Theorem 1.1]

and that ∆K divides ∆K̃ .

Theorem 2.4.4. Let K̃ be a 2-periodic L-space knot in S3 with L-space quotient

K. Then there are at least as many terms in ∆K̃ as in ∆K. Furthermore let n be

the width of ∆K, again normalize the Alexander polynomial as in Theorem 2.3.2,

and suppose that Conjecture 2.1.2 holds. Then there is at most 1 term in ∆K̃ with

exponent larger than

2n+
λ+ 1

2
,

and in particular there are at most 4n+ λ+ 4 terms in ∆K̃ total.

Proof. As we will see, all statements follow from Theorem 2.3.3, the

characterization of ĤFK (K) in terms of ∆K .

The inequality between the number of terms in ∆K̃ and ∆K is clear from

Theorem 2.1.1.

For the other claims, observe that the largest δi in Theorem 2.3.3 is zero (so

that on the maximal Maslov grading Conjecture 2.1.2 will be trivially satisfied).

The other conclusions will follow by considering the minimal Maslov grading.

Observe that the smallest δi is negative the width of the Alexander polynomial,

n−k−nk, as follows. Since the Alexander polynomial is symmetric each gap ni+1−ni

has a mirrored gap n−i−n−i−1, and exactly one of these contributes 2(ni+1−ni)+1,
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while the other contributes −1. Summing these gives that indeed the minimal δi is

n−k − nk.

This gives the stated bound on the number of terms in ∆K̃ of degree larger

than 2n+ (λ+ 1)/2 since otherwise the δi for K̃ corresponding to the minimal δi for

K would be less than n−k − nk contradicting that the degree of ∆K̃ is larger than

the degree of ∆K .

Finally, the bound on the number of terms in ∆K̃ follows from symmetry.

Specifically there is also at most one term in ∆K̃ with exponent less than −2n −

(λ+ 1)/2, and hence there are at most 4n+ λ+ 4 terms total.

This theorem can be somewhat improved by further assuming the L-space

conjecture of Boyer, Gordon and Watson.

Conjecture 2.4.5. [BGW13, Conjecture 1] Let M be a closed, connected,

irreducible, orientable 3-manifold. Then M is not an L-space if and only if π1(M)

is left-orderable.

In particular, assuming this conjecture allows us to drop the assumption that

K is an L-space knot in Theorem 2.4.4.

Proposition 2.4.6. Let K̃ be a p-periodic knot with quotient K. If Conjecture

2.4.5 holds and K̃ is an L-space knot, then K is an L-space knot.

Proof. Since K̃ is an L-space knot, all sufficiently large surgeries on K̃ are L-spaces.

In particular, by taking any large surgery with surgery coefficient a multiple of p,

we get an L-space surgery Ỹ = S3
pn(K̃) with a surgery curve that is equivariant

with respect to the periodic action. This then induces a surgery on the quotient

knot Y = S3
n(K). Furthermore, Ỹ is a p-fold branched cover of Y with branch set

the union of the core of the surgery and the axis of the original periodic action. We
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can also assume that Ỹ and Y are irreducible, since there are only finitely many

reducible surgeries on a given knot.

Now we claim that if π1(Y ) is left-orderable, then so is π1(Ỹ ). This follows

directly from [BRW05, Theorem 1.1(1)] if the induced map π1(Ỹ ) → π1(Y ) is non-

trivial. Suppose that the map is trivial. Then we can lift the map Ỹ → Y to the

universal cover Y of Y . If Y is not S3, then H3(Y ) = 0, and so the map Ỹ → Y has

degree 0, contradicting it being a p-fold branched cover. On the other hand, if Y is

S3, then π1(Y ) is finite and hence not left-orderable.

Now Conjecture 2.4.5 implies that if Ỹ is an L-space then so is Y .

2.5. Evidence for the Main Conjecture

There is strong evidence for Conjecture 2.1.2, both theoretically and

computationally.

Computational Evidence

To check Conjecture 2.1.2, we generated pseudorandom knots and verified the

conjecture for each one as follows.

First we construct a tangle K on 5 strands by choosing 18 random operations

from the set {ci, oi, ui}. Here ci refers to a cup cap pair connecting the ith strand

to the i+ 1th strand, oi refers to the ith strand crossing over the i+ 1th strand, and

ui refers to crossing the ith strand under the i+ 1th strand.

Next, we check that each K we construct has closure a knot, and that the

tangle for K̃ constructed by repeating the operations for K also has closure a knot.

If either condition fails, then we choose 18 new random operations.
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Once we have a 2-periodic knot described by a tangle, we use Ozsváth and

Szabó’s knot Floer homology calculator [OS] based on [OS18] to compute ĤFK (K)

and ĤFK (K̃), and verify the conjecture for this pseudorandom 2-periodic knot.

While verifying the conjecture for each knot, we also tabulated the Alexander

polynomial and the total rank of the knot Floer homology for each periodic knot.

The total rank of ĤFK (K̃) ranged from 1 to 907253 with an average of about

7761.52. These data confirm that we have verified the conjecture for over 500

distinct knots.

The Case of Torus Knots

It does not seem easy to check many special cases of Theorem 2.1.1 or

Conjecture 2.1.2. For torus knots, specific examples may be computed by Theorem

2.3.3, which we have done for many torus knots.

Proposition 2.5.1. Conjecture 2.1.2 is true for K̃ = T (2p, q) and K = T (p, q) for

all p, q < 60.

Proof. Since torus knots have an explicit formula for their Alexander polynomials,

and are L-space knots, we used a computer to directly compute ĤFK using

Theorem 2.3.3.

On the other hand, computations for any infinite family involve

understanding all terms in some cyclotomic polynomials. Nonetheless, we can

check the main conjecture in this case if we restrict to only the maximal Alexander

gradings, and we can verify the results of Theorem 2.4.4 for torus knots even

without assuming the conclusion of Conjecture 2.1.2.
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Proposition 2.5.2. The first inequality in Conjecture 2.1.2 is true for the maximal

Alexander gradings on the 2-periodic torus knots T (2p, q)→ T (p, q).

Proof. Since torus knots have L-space surgeries, we can use Theorem 2.3.3 to

compute ĤFK . Recall that

∆T (p,q)(t) =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)

has degree (p− 1)(q − 1), and that in this case the linking number between the axis

and knot is λ = q. By Theorem 2.3.3, the maximum Alexander grading for T (p, q)

is (p− 1)(q − 1)/2, half the width of ∆T (p,q), which lifts to the Alexander grading

(p− 1)(q − 1) +
q − 1

2
=

2pq − 2p− q + 1

2
=

(2p− 1)(q − 1)

2
.

Conveniently, this is the maximum Alexander grading for ∆T (2p,q). And indeed,

these Alexander polynomials are monic, and both the δis from Theorem 2.3.3 are 0,

giving the desired result.

Remark 2.5.3. The above proposition is also true, with essentially the same proof,

for the mirror knots, or equivalently for the minimum Alexander grading in the

second inequality in Conjecture 2.1.2.

Proposition 2.5.4. The conclusions of Theorem 2.4.4 hold for torus knots, without

assuming Conjecture 2.1.2.

Proof. This follows immediately by checking the degrees of the Alexander

polynomials for torus knots. As in the previous proposition, we see that there are

no terms in ∆T (2p,q) larger than 2·width(∆T (p,q)) + (q + 1)/2.
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Adapting the Morse Homology Proof

Finally, we would like to point out where we got stuck in adapting the proof

of Theorem 2.2.2 to prove Conjecture 2.1.2. In fact, most of the proof works

similarly.

Proposition 2.5.5. If the spectral sequence (2.3.1) does not contain any staircases

beginning with a vertical differential on the top left and ending with a horizontal

differential on the bottom right, then Conjecture 2.1.2 holds.

Proof. This condition is a slightly weaker replacement of Lemma 2.2.3. From

there, the proof follows identically to that of Theorem 2.2.2. The factor of 2 in

the grading shift comes from the identification of the E∞ page with ĤFK ∗(K) ⊗

W ⊗ F2[θ, θ−1] as in [HLS16]. The shift by 1 in the grading comes from the extra V

vector space in the spectral sequence.
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CHAPTER III

COVERING MAPS BETWEEN SURGERIES ON THE SAME KNOT

3.1. Introduction

Dehn Surgery

Consider a knot K ⊂ S3 (although this construction will work just as well

in any 3-manifold). Then Dehn surgery is a method for constructing a new 3-

manifold by cutting out a small tube around K, and gluing it back in with a twist.

Specifically, a tubular neighborhood N of K is a solid torus, and cutting N out

of S3 leaves us with two pieces: S3 − N , and N ∼= S1 × D2, each of which has

a torus boundary. By choosing any homeomorphism from the torus S1 × S1 to

itself, we can construct a new 3-manifold by gluing these two pieces together with

that identification on the boundary. Thus Dehn surgery takes a knot K and a

homeomorphism f : S1 × S1 → S1 × S1, and produces a 3-manifold S3
f (K).

Furthermore, the homeomorphism type of this manifold is invariant under isotopy

of the knot K and the homeomorphism f .

To describe this gluing process more concretely, we need to define the

meridian and longitude of K, both of which are curves on the boundary of N .

The meridian is a curve which has linking number 1 with K, and bounds a disk

in N . The longitude is a curve which is isotopic to K in S3, and which has linking

number 0 with K. Now we will use p/q to refer to the curve on the boundary of N

which wraps p times around the meridian and q times around the longitude. That

is, p/q refers to the curve which is p times the meridian plus q times the longitude

in H1(∂N ;Z). It turns out that the manifold S3
f (K) depends only on the image of
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the meridian under f . So to specify S3
f (K), it is enough to specify the p/q curve on

the boundary of N which is the image of the meridian on S3 − N , and we use the

notation S3
p/q(K) for S3

f (K). Note that p and q must be relatively prime for this to

give a homeomorphism of S1 × S1, so p/q is well defined as a rational number.

In addition to being a knot invariant, Dehn surgery is an important method

for constructing 3-manifolds. In fact, every compact orientable 3-manifold can be

constructed by iterating this construction, see [Wal60] or [Lic63]. Extensive work

has been done to understand this construction, but many elementary questions

remain unresolved. For example, let M be a closed oriented 3-manifold, K a knot

in M , and γ, γ′ surgery slopes along K (or just rational numbers in the case

M = S3). Denote by Mγ(K) Dehn surgery on K in M along γ. One may ask

when Mγ(K) is homeomorphic to Mγ′(K). In particular, the following conjecture

regarding the uniqueness of Dehn surgery along knots has been around since at

least 1991 [Gor91, Conjecture 6.1].

Conjecture 3.1.1 (Cosmetic Surgery Conjecture). If M − K is not a solid torus

and there exists an orientation preserving homeomorphism between Mγ(K) and

Mγ′(K) then there exists a self-homeomorphism of M −K taking γ to γ′.

Many partial results have been shown. For example, in 1990, Mathieu showed

[Mat90] that the orientation preserving requirement is necessary by constructing

an orientation reversing counterexample. See also [BHW99]. In 2015 Ni and

Wu [NW15] proved that if surgery on γ and γ′ provide a counterexample to the

conjecture for a knot in S3, then γ = −γ′. More recently Jeon proved [Jeo16] in

2016 that the conjecture is true for all but finitely many surgeries on each knot in a

fairly general class of hyperbolic knots.

30



As a generalization of the cosmetic surgery question Lidman and Manolescu

[LM16, Question 1.15] asked when Mγ(K) is a covering space of Mγ′(K).

Restricting to knots in S3, we use the homological framing to write γ as p/q ∈ Q

with gcd(p, q) = 1. With this notation, a naive generalization of Conjecture 3.1.1

for knots in S3 might be

Conjecture 3.1.2 (Virtual Cosmetic Surgery Conjecture). If K ⊂ S3 is not the

unknot, p′/q′ 6= p/q, p/q 6= ∞, and there exists a covering map of degree d from

S3
γ(K) to S3

γ′(K), then there exists a degree d self-covering map of S3 − K taking

the p/q curve to the p′/q′ curve.

Remark 3.1.3. The p/q 6= ∞ condition is necessary since there exist lens space

surgeries on hyperbolic knots. We are going to consider the case d > 1, and we

consider the more general case of unoriented manifolds.

Main Results

We prove that Conjecture 3.1.2 is false for torus knots T (r, s) in S3, see

Examples 3.6.5 and 3.6.6, and we will classify counterexamples. In order to do

so, we prove a structure theorem for covers between Seifert fiber spaces (see

Proposition 3.4.4), which reduces the question to classifying all covers between

orbifolds with base space S2 and 3 or fewer cone points. These are called small

Seifert fiber spaces, see section 3.6.

Theorem 3.1.4. Let S2(a, b, c)→ S2(a′, b′, c′) be a degree n > 1 cover of 2-orbifolds

over S2 with cone points of orders a, b, c, and a′, b′, c′ respectively. Then
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1. If 1
a

+ 1
b

+ 1
c
< 1, then (a, b, c), (a′, b′, c′), n are one of the following up to

reordering of (a, b, c) and (a′, b′, c′), for some x, y ∈ Z.

(a, b, c) (a′, b′, c′) n (a, b, c) (a′, b′, c′) n

(x, x, y) (2, x, 2y) 2 (x, 4x, 4x) (2, 3, 4x) 6

(2, x, 2x) (2, 3, 2x) 3 (3, 3, 7) (2, 3, 7) 8

(x, x, x) (3, 3, x) 3 (2, 7, 7) (2, 3, 7) 9

(3, x, 3x) (2, 3, 3x) 4 (3, 8, 8) (2, 3, 8) 10

(x, 2x, 2x) (2, 4, 2x) 4 (4, 8, 8) (2, 3, 8) 12

(x, x, x) (2, 3, 2x) 6 (9, 9, 9) (2, 3, 9) 12

(4, 4, 5) (2, 4, 5) 6

2. If 1
a

+ 1
b

+ 1
c

= 1, then (a, b, c), (a′, b′, c′), n are one of the following up to

reordering of (a, b, c) and (a′, b′, c′), where n = x2 + xy + y2 and m = x2 + y2

for some x, y ∈ Z.

(a, b, c) (a′, b′, c′) n

(2, 3, 6) (2, 3, 6) n

(2, 4, 4) (2, 4, 4) m

(3, 3, 3) (3, 3, 3) n

(3, 3, 3) (2, 3, 6) 2n
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3. 1
a
+ 1
b
+ 1
c
> 1, then (a, b, c), (a′, b′, c′), n are one of the following up to reordering

of (a, b, c) and (a′, b′, c′), for some x, y ∈ Z.

(a, b, c) (a′, b′, c′) n conditions (a, b, c) (a′, b′, c′) n

(1, x, y) (1, nx, ny) n (2, 3, 3) (2, 3, 4) 2

(1, d, d) (2, 2, x) 2x/d d|x (2, 2, 3) (2, 3, 4) 4

(2, 2, d) (2, 2, x) x/d d|x (2, 3, 3) (2, 3, 5) 5

(1, d, d) (2, 3, 3) 12/d d ∈ {1, 2, 3} (2, 2, 5) (2, 3, 5) 6

(1, d, d) (2, 3, 4) 24/d d ∈ {1, 2, 3, 4} (2, 2, 3) (2, 3, 5) 10

(1, d, d) (2, 3, 5) 60/d d ∈ {1, 2, 3, 5}

Furthermore, we construct all of the above covers.

Remark 3.1.5. It is interesting to note that many Seifert fibered surgeries on

other knots are also known to be small, for example alternating hyperbolic knots

[IM16], and hence the covers between Seifert fibered surgeries on such knots are

also understood through Theorem 3.1.4.

The covers in Theorem 3.1.4 give counter examples to Conjecture 3.1.2 for

torus knots, but we provide a nice structure theorem in the cases where these

exceptional covers do not occur.

Theorem 3.1.6. Let r, s > 2, (r, s) 6= (3, 4), (3, 5), (4, 5), (3, 7), or (3, 8). Then

S3
p/q(T (r, s)) covers S3

p′/q′(T (r, s)) if and only if all of the following hold.

1. |rsq − p| = |rsq′ − p′|

2. p|p′

3. gcd(p/p′, rsq − p) = gcd(p/p′, rs) = 1
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4. p/p′ ≡ 1 mod rs

If these are satisfied, then the degree of the cover is p′/p.

One might hope that in this case Conjecture 3.1.2 is satisfied, but in fact even

covers over a fixed base orbifold can give counterexamples. See Example 3.6.6.

In the case of hyperbolic knots, Mostow rigidity implies that there are no

non-trivial self covers of the knot complements. In this case Conjecture 3.1.2 would

reduce to the cosmetic surgery conjecture on hyperbolic knots for trivial covers, and

the following conjecture.

Conjecture 3.1.7 (Hyperbolic Virtual Cosmetic Surgery Conjecture). If p/q 6=

p′/q′ ∈ Q, then S3
p/q(K) does not non-trivially cover S3

p′/q′(K) for any hyperbolic

knot K.

An argument pointed out by a referee of [Boy18] shows that the following

proposition, which is precisely stated later as Corollary 3.7.3, is a consequence of

[FKP08, Theorem 1.1].

Proposition 3.1.8. Conjecture 3.1.7 is true for all but at most 32 p′/q′ slopes on

each hyperbolic knot K ⊂ S3.

Focusing on low crossing number knots, some computations in SnapPy

[CDGW] along with known information about exceptional surgeries on twist knots

and pretzel knots give the following.

Proposition 3.1.9. Conjecture 3.1.7 is true for all hyperbolic knots with 8 or fewer

crossings.
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Outline of the Chapter

The organization of the chapter is as follows. In section 3.2 we provide some

background. In sections 3.3 through 3.6 we discuss the case of torus knots, proving

Theorem 3.1.4 in section 3.5 and Theorem 3.1.6 in section 3.6. In section 3.7 we

discuss the case of hyperbolic knots, culminating in the proofs of Propositions 3.1.8

and 3.1.9.

3.2. Background

All 3-manifolds are assumed compact, connected and orientable, although

not oriented. For convience throughout, we will only work with non-trivial positive

torus knots T (r, s) with r, s > 0.

We will use the notation S2(α1, . . . , αn) to mean the orbifold with underlying

surface S2, and n cone points points with Z/αiZ isotropy subgroups. In the 1970s,

Moser classified Dehn surgeries on torus knots:

Theorem 3.2.1. [Mos71, Theorem 1] Let K be the (r, s) torus knot, and M be

S3
p/q(K). Then

(1) If |rsq− p| > 1 then M is a Seifert fiber space with base orbifold S2(r, s, |rsq−

p|), and the orientation preserving homeomorphism type is determined by p.

(2) If |rsq − p| = 1 then M is the lens space L(p, qs2).

(3) If rsq − p = 0 then M is L(r, s)#L(s, r).

Note that L(−m,n) is understood to mean L(m,−n) when m > 0, and that

since p/q = −p/(−q) give the same surgery, it can always be arranged that rsq −

p ≥ 0. Note that we are only considering manifolds up to orientation reversing

homeomorphism.
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Let M be an oriented Seifert fiber space with base orbifold S2(α1, . . . , αn) and

Seifert invariants b, {(αi, βi)}. For convenience we will not require the normalization

0 < βi < αi. We will use the standard notation

{b; (o1, 0); (α1, β1), . . . , (αn, βn)}.

Throughout, we will omit the (o1, 0) term, which indicates that the base orbifold

is S2 and that M is orientable, since this will be true for all of our Seifert fiber

spaces. For more information see [JN83]. It will be useful to recall some facts about

orbifold covers and Seifert fiber spaces. We use Thurston’s definition of a covering

map of orbifolds, see [Thu, Chapter 13].

Definition 3.2.2. The orbifold Euler characteristic of a compact 2-dimensional

orbifold Σ with underlying manifold S, r corner reflectors of orders {ni} and s cone

points of orders {mj} is

χ(Σ) := χ(S)− 1

2

r∑
i=1

(
1− 1

ni

)
−

s∑
j=1

(
1− 1

mj

)
.

Note that by the Riemann-Hurwitz formula, χ(Σ) is multiplicative under

finite covers. In the case at hand, suppose S2(a, b, c) → S2(a′, b′, c′) is a covering

space of degree d. Then

χ(S2)−
(

1− 1

a

)
−
(

1− 1

b

)
−
(

1− 1

c

)
= d

(
χ(S2)−

(
1− 1

a′

)
−
(

1− 1

b′

)
−
(

1− 1

c′

))
.

More succinctly,

1

a
+

1

b
+

1

c
− 1 = d

(
1

a′
+

1

b′
+

1

c′
− 1

)
. (3.2.3)
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Additionally, looking at the preimages of the orbifold points a′, b′, and c′, there is

an obvious condition on d which we will now describe.

For any partition λa = {a1, . . . an} of d where ai|a, let λa refer to the set

{a/a1, . . . a/an}. Now observe that given a cover S2(a, b, c) → S2(a′, b′, c′) of degree

d, there exist partitions λa′ , λb′ and λc′ of d by divisors of a′, b′, and c′ respectively

so that the union λa
′ ∪ λb′ ∪ λc′ consists entirely of 1s except for a single a, b, and c.

We will refer to this as the partition condition for orbifold covers.

Definition 3.2.4. A Seifert neighborhood of a fiber γ in a Seifert fiber space is a

fiber preserving and orientation preserving homeomorphism from a neighborhood

of γ to I × D2/ ∼ where (0, z) ∼ (1, e2πiq/pz) for some pair of relatively prime

integers p and q, and the fibers are cycles of vertical fibers I × ∗. Once such a

homeomorphism is fixed we will refer to such a neighborhood as N q
p
(γ).

By definition a Seifert neighborhood exists for every fiber, and p is the index

of the fiber. A fiber is regular if p = 1 and singular otherwise.

Definition 3.2.5. A Seifert cover is a covering map of Seifert fiber spaces which

takes fibers to fibers.

Definition 3.2.6. Given a Seifert covering f : M̃ → M , a pre-regular fiber γ ⊂ M̃

is a Seifert fiber of M̃ such that f(γ) is a regular fiber of M . A pre-singular fiber γ

is one such that f(γ) is a singular fiber of M .

The following is a restatement of an observation in [Mos71], which will be

needed to discuss realizations of Seifert fiber spaces as surgeries on specific torus

knots. We assume throughout that r, s > 0.

Lemma 3.2.7. Fix a torus knot T (r, s). If p/q surgery on T (r, s) is a small Seifert

fiber space, then the b and (αi, βi) Seifert invariants are determined by r, s, p, and q.
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Proof. See [Mos71] or [GL14, Section2.5].

3.3. Lens Spaces and Connect Sums of Lens Spaces

In this section we will resolve Conjecture 3.1.2 in the case when the base

space is a lens space or a connect sum of lens spaces. That is, we consider case

(2) in Theorem 3.2.1.

Lemma 3.3.1. Let M and M ′ be obtained from Dehn surgery on a torus knot

K which is not the unknot. Then if either M or M ′ is of type (2) in Moser’s

classification, then there is no covering map f : M →M ′.

Proof. On a non-trivial torus knot T (p, q) there is a unique reducible surgery

S3
pq/1(T (p, q)) by Theorem 3.2.1. Indeed, all other surgeries are Seifert fiber spaces

over S2 (and are not S2 × S1, since T (p, q) is non-trivial), and hence are irreducible.

However, by the sphere theorem any cover of a reducible 3-manifold is reducible,

since π2 is preserved by covers.

Lemma 3.3.2. If L(p, q) and L(p′, q′) are lens spaces obtained from surgeries on

the same torus knot, then L(p, q) covers L(p′, q′) if and only if p divides p′.

Proof. The lens space L(p′, x) has a unique cover for each divisor d of p′, and that

cover is L(p′/d, x), so the only if direction is clear. On the other hand, looking at

which lens spaces are possible as surgeries on the same torus knot, we get from (2)

in Theorem 3.2.1 that gcd(r, p′) = 1 and that q′rs ≡ 1 mod p′, after choosing p′, q′

so that rsq′ + p′ ≥ 0. Hence we can write q′s2 as sr−1 mod p′.

Now suppose that L(p′, x) and L(p′/d, y) occur as (p′, q′) and (p, q) surgery

respectively on the same torus knot, so that x = q′s2 and y = qs2. Then qrs ≡ ±1

mod p so that x ≡ ±sr−1 mod p (and the same for y), giving x ≡ ±y mod p.
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Then by the classification of (unoriented) lens spaces L(p′/d, y) ∼= L(p′/d, x), and so

L(p′/d, y) covers L(p′, x).

Since the only covers of lens spaces are lens spaces, this finishes the case

where the base 3-manifold is a lens space.

3.4. Covers of Seifert Fiber Spaces

Throughout this section let M be an orientable Seifert fiber space with the

underlying surface of the base orbifold S2, i.e. M ∼= {b; (α1, β1), . . . , (αn, βn)}. Let

f : M̃ → M be a covering map. Then there is an induced Seifert fiber structure

on M̃ where the fibers are the preimages of the fibers in M ; see for example [JN83,

lemma 8.1]. In particular, there is a choice of Seifert fiber structure on M̃ so that

f is a Seifert cover. Note however, that M̃ may have other Seifert fiber structures

for which f is not even homotopic to a Seifert cover. Similar results to those in this

section are observed in [Hua02, Section 2].

Definition 3.4.1. A fiberwise cover is a Seifert cover f : M̃ → M for which the

preimage of each fiber of M is a single fiber of M̃ .

We will observe below that fiberwise covers induce an isomorphism between

the base orbifolds.

Definition 3.4.2. A pullback cover is a Seifert cover f : M̃ → M which induces a

covering map f∗ : Σ̃→ Σ of base orbifolds with deg(f) = deg(f∗).

Remark 3.4.3. The term pullback is justified by the following proposition, which

implies the universal property, and hence uniqueness, of such covers.
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Proposition 3.4.4. Given a cover of Seifert fiber spaces f : M̃ → M , f factors as

a composition of a fiberwise cover f2 : M̃ → M and a pullback cover f1 : M → M .

In particular, f induces a covering map of base orbifolds Σ̃→ Σ. This is notated as

S1 S1 S1

M̃ M M

Σ̃ Σ̃ Σ,

deg(f2) id

f2 f1

ρ

id deg(f1)

where M is the pullback of the bottom right square, the columns are Seifert

fibrations and the bottom row are the base orbifolds. The top left S1 is a pre-regular

fiber of M̃ .

To prove this proposition, we use the following lemma describing the local

behavior.

Lemma 3.4.5. Given a Seifert cover f : Ñ → N of Seifert neighborhoods, the

covering map is equivalent (as covering spaces) to one whose deck transformation

groups acts as rotation on both coordinates of ∂Ñ . Furthermore, f is determined

(up to covering space isomorphism) by this action on the boundary.

Proof. The map f is a covering map with cyclic deck transformation group G since

N is homotopy equivalent to a circle. Pick a generator g of G. The generator g acts

on Ñ taking fibers to fibers and has finite order, so it decomposes into an action

g1 on the central fiber, S1, and an action g2 on D2, a disk transverse to each fiber.

By classification of 1-manifolds g1 is conjugate to a rotation, and by [vK19], g2 is

conjugate to a rotation, so up to isomorphism of covering spaces, g rotates Ñ on

both coordinates.

40



We are now ready to prove Proposition 3.4.4.

Proof of Proposition 3.4.4. First, given a Seifert cover, we describe the induced

cover on base orbifolds. Consider a Seifert neighborhood Np′/q′ of a fiber γ in M .

Each connected component of f−1(γ) is a Seifert neighborhood by construction

of the Seifert structure on M̃ . It is also clear that if γ is a regular fiber, then so

is each connected preimage of γ since in a regular Seifert neighborhood every

fiber generates π1. Now quotienting by the S1 action induces homeomorphisms

D2 → D2 so that f induces a cover between base orbifolds near smooth points.

If γ is instead a singular fiber with nearby fibers homotopic to k times γ, then a

connected component γ̃ of f−1(γ) will have nearby fibers homotopic to k/d times γ̃,

where d is the degree of the cover γ̃ → γ, by Lemma 3.4.5. Indeed, the fibers near

γ generate kZ ⊂ Z = π1(γ), so the fibers near γ̃ must generate k/dZ ⊂ Z = π1(γ̃).

Thus we have an induced map of base orbifolds D2(k/d) → D2(k) by the obvious

quotient, so that f induces a cover on base orbifolds near singular fibers as well.

Now, let f : Σ̃ → Σ be the induced cover of base orbifolds, let ρ : M → Σ be

the projection, and define

M := {(m, s̃)|m ∈M, s̃ ∈ Σ̃, ρ(m) = f(s̃)}.

Now it is easy to check that the projection f1 : M → M given by f1(m, s̃) = m

is a cover of the same degree as (f), and that lifting the Seifert fiber structure on

M to M makes M a pullback cover of M . Similarly, the map f2 : M̃ → M given

by f2(m̃) = (f(m̃), ρ(m̃)) is a fiberwise cover since by construction it induces the

identity map on base orbifolds.
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δ

σ

FIGURE 8. The degree 4 fiberwise quotient of N1/3(γ) is N4/3(f(γ)). δ is a fiber in
N1/3, σ and the dashed lines are sections of ∂N1/3 with the same image in N4/3, the
solid diagonal line is a meridian of N1/3, and the dotted line is its image in N4/3.

It will also be useful to describe explicitly the effect of fiberwise and pullback

covers on the standard Seifert fiber form, which is stated in the following two

corollaries.

Corollary 3.4.6. Let f : M̃ → M be a fiberwise cover with M̃ =

{b; (α1, β1), . . . , (αk, βk)}. Then M = {dfb; (α1, dfβ1), . . . , (αk, dfβk)}, where df

is the degree of f .

Proof. Begin by rewriting M̃ as {0; (α1, β1), . . . , (αk, βk), (αk+1, b)} with αk+1 = 1.

Then applying Proposition 3.4.4 to a neighborhood of each listed fiber gives the

result. See Figure 8.

Corollary 3.4.7. Let f : M̃ →M be a pullback of base orbifolds with

M = {b; (α1, β1), . . . , (αk, βk)}.
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δ

σ

FIGURE 9. The pullback of N2/3(γ) along f∗ : D2 → D2(3) is N2/1(f−1(γ)). δ
and the dashed lines are fibers of N2/1 with image the same fiber in N2/3, and σ is a
section of ∂N2/1. The diagonal lines are meridians of ∂N2/1 with the same image in
N2/3.

Then

M̃ = {db;
(

α1

λ1(α1)
, β1

)
, . . . ,

(
α1

λr1(α1)
, β1

)
, . . . ,

(
αk

λk(αk)
, βk

)
, . . . ,

(
αk

λrk(αk)
, βk

)
}

where d is the degree of f , λ(αi) is the partition of d by divisors of αi coming from

the cover of base orbifolds, λj(αi) is the jth part of the partition λ(αi) (in any

order), and ri is the length of λ(αi).

Proof. The α Seifert invariants are determined by the cone points from the orbifold

cover, which are determined from the partitions as stated. See for example [EKS84,

section 1]. The β Seifert invariants are left unchanged by Proposition 3.4.4. Writing

the b from M as a (1, b) fiber, this then lifts to d-many (1, b) fibers in M̃ by

Proposition 3.4.4, which can then be reconsolidated into db. See figure 9.
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3.5. Orbifold Covers

In this section we will classify all orbifold covers of the form S2(a, b, c) →

S2(a′, b′, c′). Taking a′ = r and b′ = s, Moser’s classification along with Proposition

3.4.4 will allow us to classify coverings between surgeries on T (r, s).

Since the orbifold Euler characteristic (or just orbifold characteristic, χorb) is

multiplicative under covers, we can further decompose the problem into the cases

χorb < 0, χorb = 0, and χorb > 0. These correspond to the three cases in Theorem

3.1.4.

Covers of Negative Orbifold Characteristic

Proposition 3.5.1. The only non-trivial covers of orbifolds S2(a, b, c) →

S2(a′, b′, c′) with negative orbifold characteristic are

(a, b, c) (a′, b′, c′) degree (a, b, c) (a′, b′, c′) degree

(x, x, y) (2, x, 2y) 2 (4, 4, 5) (2, 4, 5) 6

(2, x, 2x) (2, 3, 2x) 3 (3, 3, 7) (2, 3, 7) 8

(x, x, x) (3, 3, x) 3 (2, 7, 7) (2, 3, 7) 9

(3, x, 3x) (2, 3, 3x) 4 (3, 8, 8) (2, 3, 8) 10

(x, 2x, 2x) (2, 4, 2x) 4 (4, 8, 8) (2, 3, 8) 12

(x, x, x) (2, 3, 2x) 6 (9, 9, 9) (2, 3, 9) 12

(x, 4x, 4x) (2, 3, 4x) 6

where x, y ∈ Z are large enough that χorb < 0.
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x y x
2-fold covers−−−−−−−−−→ x 2y

2

FIGURE 10. S2(x, x, y) 2-fold covers S2(2, x, 2y)

Observe that since Seifert fiber spaces over these orbifolds have a unique base

orbifold [JN83, Theorem 5.2], the only possible torus knots these covers can occur

on are T (2, x), T (4, 5), T (3, 7) and T (3, 8).

Proof. To begin with, multiplicativity of the orbifold characteristic gives

1

a
+

1

b
+

1

c
− 1 = n

(
1

a′
+

1

b′
+

1

c′
− 1

)

where n is the degree of the cover. By assumption, χorb < 0, so both 1
a
+ 1
b
+ 1
c
−1 and

1
a′

+ 1
b′

+ 1
c′
− 1 are between 0 and −1. We first consider the case n ≥ 7. In this case

6
7
< 1

a′
+ 1

b′
+ 1

c′
< 1, and so there are finitely many potential triples (a′, b′, c′). For

each of these triples, the partition condition on covers gives a finite list of triples

(a, b, c) and degrees n for which we might have a cover S2(a, b, c)→ S2(a′, b′, c′).

Now we associate to each degree n orbifold cover S2(a, b, c) → S2(a′, b′, c′)

a cover of S1 ∨ S1 also of degree n in the following way. Split the base S2 into

three regions with a wedge of two circles such that each region contains one orbifold

point. Then the original cover gives a gluing of some covers of the resulting disk

orbifolds onto a cover of S1 ∨ S1. This is shown for S2(x, x, y) → S2(2, x, 2y) in

figure 10. Now since the problem is reduced to covers of degree less than 7, plus

some finite number of potential exceptions, we can use a brute force search to

obtain the stated list of covers.
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(a, b, c) (a′, b′, c′) degree
(2, 3, 6) (2, 3, 6) n
(2, 4, 4) (2, 4, 4) m
(3, 3, 3) (3, 3, 3) n
(3, 3, 3) (2, 3, 6) 2n

TABLE 1. Covers of zero orbifold charactersitic. n = x2 + xy + y2 and m = x2 + y2

for x, y not both 0.

Covers of Zero Orbifold Characteristic

Proposition 3.5.2. The only covers S2(a, b, c) → S2(a′, b′, c′) with χorb = 0 are

given in Table 1.

Note that these covers only occur on T (2, 3) since the base orbifold of Seifert

fiber spaces with these base orbifolds is unique [JN83, Theorem 5.2].

Proof. First, recall that the only triples (a, b, c) with 1
a

+ 1
b

+ 1
c

= 1 are

(2, 4, 4), (3, 3, 3), and (2, 3, 6). Unlike the other cases, the multiplicativity of the

orbifold characteristic tells us nothing about the degree of any potential covers.

In particular, each of these orbifolds has many self-covers. The key observation to

classify these covers is the connection to lattices. S2(2, 3, 6) and S2(3, 3, 3) are the

fundamental domains of the hexagonal lattice for the p6 and p3 wallpaper groups

respectively, and S2(2, 4, 4) is the fundamental domain of the square lattice for the

p4 wallpaper group. We can then identify covers of these orbifolds with sublattices,

keeping track of the symmetries of the sublattice.

Consider the hexagonal lattice for the S2(3, 3, 3) orbifold. That is, a

hexagonal lattice with a Z/3 symmetry at each vertex. Any self cover would

give a hexagonal sublattice with the same symmetries, and we can identify these

sublattices (along with a chosen shortest length vector) with vectors in the original

lattice in the following way. Overlay the lattice on C with 1 corresponding to a
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shortest length vector. To get a hexagonal sublattice from a vector, multiply each

vector in the lattice by the chosen complex number to generate a new lattice, which

will induce identical symmetries. See also [CS99, section 2.2].

Additionally, neither S2(2, 3, 6) or S2(2, 4, 4) can cover S2(3, 3, 3) since they

both have either corner reflectors or a cone point of order 2, neither of which can

cover a cone point of order 3. Now the index of the sublattice (and hence the

degree of the cover) will be given by the square of the norm of the chosen vector

and hence degrees of these self covers are given by outputs of the quadratic form

x2 + xy + y2. See also [CM80, Table 4].

Next consider the hexagonal lattice for S2(2, 3, 6). Precisely the same

argument will classify self covers. However in this case, for any hexagonal sublattice

(where the vertices have a Z/6 rotation action), there is an additional cover

corresponding to the same sublattice given by the two fold cover S2(3, 3, 3) →

S2(2, 3, 6) with partitions 2 = 3
3

+ 3
3

= 2
1

= 6
3
. That is, corresponding to each

hexagonal sublattice, we can forget a 2-fold symmetry and recover S2(3, 3, 3).

Again, see also [CM80, Figure 4]. Hence we have S2(3, 3, 3) covers S2(2, 3, 6) with

degree 2(x2 + xy + y2).

Finally, for S2(2, 4, 4) we have a square lattice, and as above, we consider

square sublattices with the same symmetries. These have indices x2 + y2. We

also note that these sublattices correspond additionally to covers of S2(2, 4, 4) by

S2(2, 2, 2, 2) or by T 2 by forgetting additional symmetries.

Remark 3.5.3. It is helpful to observe that a priori the degrees of the covers

S2(3, 3, 3) → S2(2, 3, 6) are of the form 2nn′ for n = x2 + xy + z2 and

n′ = z2 + wz + w2. However, nn′ is again of this form, since compositions of self

covers of S2(3, 3, 3) must again be self covers of S2(3, 3, 3).
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Remark 3.5.4. In all of these cases, covers of a specified degree are not necessarily

unique. For example 49 = 72 + 7 · 0 + 02 = 52 + 5 · 3 + 32, and hence there are two

inequivalent self covers of S2(2, 3, 6) of degree 49.

Covers of Positive Orbifold Characteristic

Proposition 3.5.5. The only non-trivial covers of orbifolds S2(a, b, c) →

S2(a′, b′, c′) with positive orbifold characteristic are the following.

(a, b, c) (a′, b′, c′) degree conditions (a, b, c) (a′, b′, c′) degree

(1, x, y) (1, nx, ny) n (2, 3, 3) (2, 3, 4) 2

(1, d, d) (2, 2, x) 2x/d d|x (2, 2, 4) (2, 3, 4) 3

(1, d, d) (2, 3, 3) 12/d d ∈ {1, 2, 3} (2, 2, 3) (2, 3, 4) 4

(2, 2, 2) (2, 3, 3) 3 (2, 2, 2) (2, 3, 4) 6

(1, d, d) (2, 3, 4) 24/d d ∈ {1, 2, 3, 4} (2, 3, 3) (2, 3, 5) 5

(1, d, d) (2, 3, 5) 60/d d ∈ {1, 2, 3, 5} (2, 2, 5) (2, 3, 5) 6

(2, 2, d) (2, 2, x) x/d d|x (2, 2, 3) (2, 3, 5) 10

(2, 2, 2) (2, 3, 5) 15

Here n, x, y are any positive integers. Note that since Seifert fiber spaces over these

orbifolds (i.e. lens spaces) do not necessarily have unique base orbifolds, these

covers may (and in fact do) occur on T (3, 4), T (2, x) and T (3, 5) in addition to

T (2, 3).

Proof. Using only multiplicativity of orbifold characteristic and the classification of

elliptic 2-orbifolds (see for example [Thu, section 13.3]), the potential covers are

1. S2(x, y)→ S2(nx, ny)
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2. S2(d, d)→ S2(2, 2, x) with d|x,

3. S2(d, d)→ S2(2, 3, 3) where d|12,

4. S2(d, d)→ S2(2, 3, 4) where d|24,

5. S2(d, d)→ S2(2, 3, 5) where d|60,

6. S2(2, 2, d)→ S2(2, 2, x) with d|x,

7. S2(2, 2, 2)→ S2(2, 3, 3),

8. S2(2, 2, 3)→ S2(2, 3, 3),

9. S2(2, 2, 2)→ S2(2, 3, 4),

10. S2(2, 2, 3)→ S2(2, 3, 4),

11. S2(2, 2, 4)→ S2(2, 3, 4),

12. S2(2, 2, 3)→ S2(2, 3, 5),

13. S2(2, 3, 3)→ S2(2, 3, 4),

14. S2(2, 2, 2)→ S2(2, 3, 5),

15. S2(2, 3, 3)→ S2(2, 3, 5),

16. S2(2, 2, 5)→ S2(2, 3, 5).

Not all of these satisfy the partition condition, so applying that restriction as well

gives

1. S2(x, y)→ S2(nx, ny)

2. S2(d, d)→ S2(2, 2, x) with d|x,
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3. S2(d, d)→ S2(2, 3, 3), d ∈ {1, 2, 3},

4. S2(d, d)→ S2(2, 3, 4), d ∈ {1, 2, 3, 4},

5. S2(d, d)→ S2(2, 3, 5), d ∈ {1, 2, 3, 5},

6. S2(2, 2, d)→ S2(2, 2, x), d|x,

7. S2(2, 2, d)→ S2(2, 3, 4), d ∈ {2, 3, 4}

8. S2(2, 3, 3)→ S2(2, 3, 4),

9. S2(2, 2, 2)→ S2(2, 3, 3)

10. S2(2, 2, 2)→ S2(2, 3, 5),

11. S2(2, 2, 3)→ S2(2, 3, 5),

12. S2(2, 2, 5)→ S2(2, 3, 5),

13. S2(2, 3, 3)→ S2(2, 3, 5).

In fact these are all orbifold covers, which can be shown in the same way as

for the negative orbifold case. This is shown for some cases in figures 11 and 12.

The cases S2(d, d) → S2(2, 3, 5) for d ∈ {1, 2, 3, 5} and S2(d, d) → S2(2, 3, 4) for

d ∈ {1, 2, 3} are specifically omitted since they are compositions of other covers

on the list. S2(x, y) → S2(nx, ny) corresponds to an n-fold cover of a single circle.

S2(2, 2, d) → S2(2, 2, x) is similar to S2(x, x, y) → S2(2, x, 2y) from figure 10.

As a final remark we note that there is not necessarily a unique covering space,

or even a unique partition for each entry. For example with respect to the cover

S2(2, 2)→ S2(2, 2, 4), we have

4 =
2

1
+

2

1
=

2

1
+

2

1
=

4

2
+

4

2
,
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but also

4 =
2

1
+

2

2
+

2

2
=

2

1
+

2

1
=

4

1
.

Proof of Theorem 3.1.4. This is now a direct consequence of Propositions 3.5.1,

3.5.2, and 3.5.5.

3.6. Realization of Orbifold Covers

Now that we have a complete list of possible base orbifold covers, we aim

to understand when these covers are realized by Seifert covers of surgeries on a

torus knot. By Proposition 3.4.4 we can split this problem into two parts. First,

given a Seifert fiber space M = S3
p/q(K) with base orbifold Σ and Σ̃ → Σ a non-

trivial cover of orbifolds, when is the pullback of M along this cover also realized by

surgery on K? We discuss this in Section 3.6.1. Second, given a fixed base orbifold

Σ, which coverings of Seifert fiber spaces occur over Σ as surgery on the same torus

knot? We discuss this in Section 3.6.2. Finally, composing a fiberwise cover and a

pullback cover may be realized even if the intermediate cover is not. An example is

given in Section 3.6.3.

Realization of Pullbacks of Orbifold Covers

Lemma 3.6.1. Pullbacks along the following coverings of base 2-orbifolds do not

occur for surgeries on any torus knot.

1. S2(d, d)→ S2(2, s, 2) where d|s and s is odd,

2. S2(d, d)→ S2(2, 3, 3) where d ∈ {1, 2, 3},
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3 2 3

(a)

3

2

3

(b)

3

22

(c)

3
22

(d)

5

22

(e)

FIGURE 11. Some orbifold covers from Proposition 3.5.5.

(a): S2(2, 3, 3)→ S2(2, 3, 4)

(b): S2(2, 3, 3)→ S2(2, 3, 5)

(c): S2(2, 2, 3)→ S2(2, 3, 4)

(d): S2(2, 2, 3)→ S2(2, 3, 5)

(e): S2(2, 2, 5)→ S2(2, 3, 5)
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d d

(a) (b)

2

2

(c)

3

3

(d)

4

4

(e)

FIGURE 12. More orbifold covers from Proposition 3.5.5. Figure (A) is drawn for
x/d = 4. In general, d would be labeling an x/d-gon.

(a): S2(1, d, d)→ S2(2, 2, x), x = 4d

(b): S2(1, d, d)→ S2(2, 3, 3), d = 1

(c): S2(1, 2, 2)→ S2(2, 3, 3)

(d): S2(1, 3, 3)→ S2(2, 3, 3)

(e): S2(1, 4, 4)→ S2(2, 3, 4)
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3. S2(d, d)→ S2(2, 3, 4) where d ∈ {1, 2, 3, 4},

4. S2(d, d)→ S2(2, 3, 5) where d ∈ {1, 2, 3, 5}.

Proof. We first consider (1). By Moser’s classification S2(2, s, 2) can only occur as

a base orbifold from surgery on the torus knot T (2, s). We will check that S2(d, d)

never occurs from surgery on this knot. Since Seifert fiber spaces over S2(d, d) are

lens spaces, Moser’s classification implies |2sq − p| = 1 in the cover. In particular

p ≡ ±1 mod 2s. Computing p (the order of H1) from the Seifert invariants however,

gives

p = ±|H1({b; (d, β1), (d, β2)})| = d2b+ dβ1 + dβ2 ≡ 0 mod d.

Hence p 6≡ ±1 mod 2s unless (potentially) d = 1. In this case we would have the

space

{b; (2, β1), (s, β2), (2, β3)}

lifting to

{2sb; (1, sβ1), (1, 2β2), (1, sβ3)} = L(s(2b+ β1 + β3) + 2β2, 1).

In particular then, we would have p = s(2b + β1 + β3) + 2β2 6≡ ±1 mod 2s

since it is even. Cases (2)-(4) are similar with the same kind of modular arithmetic

obstructions.

Remark 3.6.2. While pullbacks along these covers do not occur from surgeries on

a torus knot, more general covers which induce these covers of base orbifolds may.

In contrast to the case of Lemma 3.6.1, in other cases pullbacks along covers

of base orbifolds are often realized as surgeries.
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Example 3.6.3. Given a surgery with one of the base orbifolds listed below, the

pullback along the listed cover is often also a surgery on that torus knot.

1. S2(2, s, s)→ S2(2, s, 4) on T(2,s),

2. S2(2, 2, 3)→ S2(2, 3, 4) on T(2,3),

3. S2(2, 3, 3)→ S2(2, 3, 5) on T(2,3),

4. S2(2, 2, 3)→ S2(2, 3, 5) on T(2,3),

5. S2(2, 2, 5)→ S2(2, 3, 5) on T(2,5).

First consider (1). Then we have as a base space

{b; (2, 1), (s, β2), (4, β3)},

where β3 ∈ {1, 3}. This lifts along the degree 2 cover (1) with corresponding

partitions 2 =
4

2
=

2

1
=
s

s
+
s

s
to give

{2b; (1, 1), (s, β2), (s, β2), (2, β3)} = {2b+ 1; (s, β2), (s, β2), (2, β3)}.

In particular,

p = ±|H1({2b+ 1; (s, β2), (s, β2), (2, β3)})| = 2s2(2b+ 1) + s2β3 + 4sβ2 ≡ s mod 2s.

By Moser’s classification this base orbifold is realized whenever |2sq−p| = s. In fact

for any choice of p ≡ s mod 2s, there is a choice of q so that |2sq − p| = s. Since p

determines b, β2, and β3 by Lemma 3.2.7, this space

{2b+ 1; (s, β2), (s, β2), (2, β3)}
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is realized as surgery on T(2,s) as long as p and q are relatively prime. It is easy to

check that this often happens. The other cases (2)-(5) are similar.

Realization of Covers over a Fixed Orbifold

In this case the only possible covers are fiberwise covers, which are

determined by Corollary 3.4.6. Since the b and β invariants are determined by p

(see Lemma 3.2.7), it is enough to compute p (the order of H1) in the cover, and

see if surgery with that p can produce the base orbifold in question. We provide an

example:

Consider the Seifert fiber space obtained by −2/3 surgery on T(2,5). This has

base orbifold S2(2, 5, 32) with H1 of order 2. The standard Seifert form is therefore

{−2; (2, 1), (5, 3), (32, 29)}.

Taking this as a degree d fiberwise cover gives

{−2d; (2, d), (5, 3d), (32, 29d)}

which has H1 of order 2d, which will be p/q surgery on T(2,5) precisely when |10q−

p| = 32 and 2d = |p|. Additionally, the value of q is then determined by |10q − p| =

32, and must be relatively prime to p. For example p = −12, q = 2 is a solution, but

not a valid surgery, whereas p = −22, q = 1 is.

Remark 3.6.4. This example agrees with [LM16, Theorem 1.12], since although

2/3 < 1, d3/2e > b1/22c so this (regular) cover is consistent with their theorem.
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Realization of Compositions of Covers

We describe the general method for checking if one Seifert fiber space M̃

covers another Seifert fiber space M , according to Proposition 3.4.4.

1. First check if there exists a cover between the base orbifolds. Note that M

comes with a specified base orbifold, but if M̃ is a lens space, then we must

check all S2(d, d) which cover the base orbifold of M . For small Seifert fiber

spaces this is classified in section 3.5.

2. Next compute the pullback of the proposed base manifold M along the cover

of base orbifolds from (1), as described in section 3.6.1

3. Finally check if the proposed cover M̃ covers this pullback as described in

section 3.6.2.

Proof of Theorem 3.1.6. By Lemma 3.3.2, we can reduce to the case that at least

one of the two surgeries is not a lens space. Theorem 3.1.4 classifies covers of base

orbifolds in this case. All such non-trivial covers could only occur on the listed

exceptional torus knots, so the remaining covers are fiberwise covers. It remains to

check that if M̃ → M is a degree d fiberwise cover, then d · |H1(M̃)| = |H1(M)|.

Suppose

M̃ = {b; (α1, β1), (α2, β2), (α3, β3)}.

Then according to [Mos71], |H1(M̃)| = |α1α2α3b + α1α2β3 + α1β2α3 + β1α2α3|, and

by Corollary 3.4.6

M = {db; (α1, dβ1), (α2, dβ2), (α3, dβ3)}.
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This gives that |H1(M)| = |α1α2α3db+ α1α2dβ3 + α1dβ2α3 + dβ1α2α3| = d · |H1(M̃)|

as desired. Conversely, since |H1(M)| and the base orbifold determine M , as long

as |rsq − p| = |rsq′ − p′|, we can try to take an appropriate degree fiberwise cover of

S3
p′/q′(T (r, s)) to get S3

p/q(T (r, s)). This cover will exist if and only if p′|p and p/p′ is

relatively prime to the indices of the singular fibers, r, s, and |rsq′ − p′|.

We conclude with a pair of examples.

Example 3.6.5. Let M̃ be (5, 1) surgery on T (2, 3) and let M be (45, 7) surgery

on T (2, 3). Then by Moser’s classification M is given by

{1; (2, 1), (3, 1), (3, 2)}

with base orbifold S2(2, 3, 3). Since M̃ is a lens space, we should check pullbacks

along S2 → S2(2, 3, 3), S2(2, 2) → S2(2, 3, 3), and S2(3, 3) → S2(2, 3, 3). We will

first pull back along S2(3, 3) → S2(2, 3, 3), which will turn out to be sufficient. The

partitions for this degree 4 cover are 4 =
2

1
+

2

1
=

3

1
+

3

3
=

3

1
+

3

3
as computed from

figure 12. This gives the Seifert fiber space

{4; (1, 1), (1, 1), (1, 1), (3, 1), (1, 2), (3, 2)} = {9; (3, 1), (3, 2)} = L(90,−29).

This is 19-fold covered by L(5,−29) = L(5, 1), which by Moser’s classification is M̃ .

In fact no cover M̃ → M could come from a cover of the complement of T (2, 3),

since such a cover would necessarily be fiber preserving on the knot complement.

Alternatively, since the complement of T (2, 3) is also Seifert fibered (with Seifert
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invariants (2, 1), (3,±1), depending on orientation), it is also possible to compute

all self covers directly.

Example 3.6.6. Let M̃ be 105/4 surgery on T (4, 7) and let M be 21/1 surgery

on T (4, 7). Then by Theorem 3.1.6 M̃ is a 5-fold cover of M , both of which have

base orbifold S2(4, 7, 7). However, this cover does not restrict to a self cover of the

T (4, 7) complement, as can be seen from the Seifert invariants.

M̃ = {−1; (4, 1), (7, 5), (7, 4)}, M = {−1; (4, 1), (7, 5), (7, 1)}.

The degree 5 cover between them sends the (7, 5) fiber to the (7, 1) fiber, whereas

in a self cover of the knot complement, the (7, 5) fiber must be preserved.

3.7. Hyperbolic Knots

In this section we will first use a theorem of Futer, Kalfagianni, and Purcell

to prove Proposition 3.1.8, and then we will use computations of the hyperbolic

volume and identification of exceptional surgeries to prove Proposition 3.1.9.

First we will give a necessary definition. For more background information see

[Rat06]. We will use the homological framing for knots in S3, so that the longitude

refers to the framing curve having linking number 0 with the knot. Using the

standard identification of the boundary of a horoball neighborhood of the cusp

with a torus quotient of C, we can define complex lengths for the longitude and

meridian. These are only determined up to scaling the horoball, so we use the

following.

Definition 3.7.1. The cusp shape s ∈ C of a hyperbolic knot is s = l/m, where l is

the complex length of the longitude, and m is the complex length of the meridian.
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This is independent of the choice of horoball since the longitude and meridian

scale together.

Our first goal is to prove Proposition 3.1.8, here restated as Corollary 3.7.3,

which is a corollary of the following theorem of Futer, Kalfagianni, and Purcell.

Theorem 3.7.2. [FKP08, Theorem 1.1] Let K be a hyperbolic knot in S3, and let

l be the length of a surgery slope p/q on the knot complement which is greater than

2π. Then

Vol(Kp/q) ≥
(

1−
(

2π

lp/q

)2)3/2

· Vol(S3 −K).

Corollary 3.7.3. Let K ⊂ S3 be a hyperbolic knot, and p/q ∈ Q. Then there are at

most 32 p′/q′ ∈ Q such that Kp′/q′ is non-trivially covered by Kp/q.

Remark 3.7.4. A somewhat similar theorem of Hodgson and Kerckhoff [HK05,

Theorem 5.9, Corollary 6.7] gives a similar result, but with a bound of 60 surgeries.

Proof of Corollary 3.7.3. We will use Theorem 3.7.2 to bound from above the

surgery length of hyperbolic surgeries which could contradict the conjecture. Let

Vol(Kp/q) be the hyperbolic volume of Kp/q, and let Kp/q → Kp′/q′ be a degree

n cover. Since hyperbolic volume is multiplicative under covers (see for example

[Rat06, Theorem 11.6.3]),

Vol(Kp/q) = nVol(Kp′/q′).

Furthermore a theorem of Thurston [Thu, Theorem 6.5.6] gives the inequality

Vol(S3 −K) > Vol(Kp/q),Vol(Kp′/q′). Hence by non-triviality of the cover,

Vol(Kp′/q′) < Vol(S3 −K)/2. (3.7.5)
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Now we can solve for lp′/q′ in Theorem 3.7.2 to get

lp′/q′ <
2π√

1− (1/2)2/3
= 10.328942 . . .

We claim there are at most 32 p′/q′ for which this is satisfied. Let p′/q′ and r/s be

slopes such that the above equation is satisfied, and let area(T ) be the area of the

cusp torus T for K. Then as in the proof of [Ago00, Theorem 8.1],

|p′s− rq′| < (10.33)2

area(T )
.

Furthermore, area(T ) ≥ 2
√

3 (see for example [CM01], note that equality holds if

and only if K is the knot 41). Combining these results then gives

|p′s− rq′| < 30.84.

But by [Ago00, Lemma 8.2], there are at most P (k) + 1 slopes with intersection

number at most k where P (k) is the smallest prime larger than k, so there are at

most 32 p′/q′ such that Kp′/q′ is non-trivially covered by Kp/q.

The rest of this section is devoted to checking that none of the 32 potential

exceptions for low crossing number knots give rise to counterexamples. We proceed

by using the computer program SnapPy [CDGW] to check the hyperbolic surgeries.

First, SnapPy will compute the cusp shape s ∈ C of a hyperbolic knot. From this

it is easiest to compute the normalized surgery length, so we normalize the cusp

to have area 1, and to have positive real meridian. Computing this normalized
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meridian m and longitude l in terms of the cusp shape s given by SnapPy gives

m =
1√
|Im(s)|

, l = sm.

The following lemma will then let us bound which p/q may give rise to the 32

potentially exceptional surgeries.

Lemma 3.7.6. Let k ∈ R>0, a =
|k · Re(l)|
|m · Im(l)|

+
k

m
and b =

k

|Im(l)|
, and suppose

either |p| > a or |q| > b. Then (p, q) surgery on K has surgery curve of normalized

length greater than k.

Proof. The normalized surgery length is |pm + ql|, and since m is real, |q · Im(l)| ≤

|pm + ql|. In particular, as long as |q| > k

|Im(l)|
then |pm + ql| > k. Now suppose

|q| ≤ k

|Im(l)|
, but that |p| > |k · Re(l)|

|m · Im(l)|
+ k. Then

|pm+ ql| ≥ |Re(pm+ ql)| = |Re(pm) + Re(ql)| = |pm+ Re(ql)|.

But |Re(ql)| is at most
k · |Re(l)|
|Im(l)|

, so as long as |pm| is at least
|k · Re(l)|
|Im(l)|

+ k then

|pm + ql| > k, or equivalently as long as |p| ≥ |k · Re(l)|
|m · Im(l)|

+
k

m
, then |pm + ql| > k,

as desired.

Now we can use Lemma 3.7.6 and SnapPy to finish the case of hyperbolic

surgeries on knots with 8 or fewer crossings.

Proposition 3.7.7. Let K be a hyperbolic knot with 8 or fewer crossings. Then

there is no pair of hyperbolic surgeries S3
p/q(K) and S3

p′/q′(K) with a non-trivial

covering between them.

Proof. Using Corollary 3.7.3, it would be enough to check that among the shortest

32 surgery lengths all have hyperbolic volume greater than Vol(S3 − K)/2. The
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volumes are checked with SnapPy using Lemma 3.7.6 to ensure that we check at

least the 32 shortest curves.

For all of them except S3
±5/1(41) and S3

1/1(61), the volume of the surgered

manifold is more than half the volume of the knot complement. Hence by Equation

3.7.5 they cannot be covered by other surgeries on the same knot. For the

remaining two hyperbolic surgeries, we have

Vol(S3
5/1(41)) = 0.9813688 . . . and Vol(S3

1/1(61)) = 1.3985088 . . .

whereas

Vol(41) = 2.0298832 . . . and Vol(61) = 3.1639632 . . .

For these two surgeries the volume is more than a third the volume of the knot

complement. Hence it is enough to check that these two manifolds have no two fold

covers. But

|H1(S3
±5/1(41))| = 5, and |H1(S3

1/1(61))| = 1

are both odd, so there are no maps from H1 → Z/2Z = S2, so there are no two fold

covers.

This leaves the case of exceptional (non-hyperbolic) surgeries on knots with

8 or fewer crossings to which we devote the rest of this section. We first consider

alternating knots for which exceptional surgeries are classified in [IM16, Corollary

1.2]. In particular, among alternating hyperbolic knots, only twist knots have more

than one exceptional surgery. The Regina software [BBP+16] was used to identify

the Seifert fibered and toroidal exceptional surgeries, and the zero-surgeries. The

case of the toroidal ±4-surgery is also worked out in [Ter13, Section 2], and is
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Knot +1-surgery +2-surgery +3-surgery

41 {; (2, 1), (3, 1), (7, 1)} {; (2, 1), (4, 1), (5, 1)} {; (3, 1), (3, 1), (4, 1)}

52 {; (2, 1), (3, 1), (11, 2)} {; (2, 1), (4, 1), (7, 2)} {; (3, 1), (3, 1), (5, 2)}

m61 {; (2, 1), (3, 1), (13, 2)} {; (2, 1), (4, 1), (9, 2)} {; (3, 1), (3, 1), (7, 2)}

m72 {; (2, 1), (3, 1), (17, 3)} {; (2, 1), (4, 1), (11, 3)} {; (3, 1), (3, 1), (8, 3)}

m81 {; (2, 1), (3, 1), (19, 3)} {; (2, 1), (4, 1), (13, 3)} {; (3, 1), (3, 1), (10, 3)}

TABLE 2. The exceptional Seifert fiber surgeries on hyperbolic twist knots with
8 or fewer crossings. The m refers to the mirror of the knot, and for 41 there are
the additional −1,−2,−3-surgeries since it is amphichiral. For each of the listed
surgeries, the b Seifert invariant is −1 and so is omitted.

the union of a twisted interval bundle over the Klein bottle and a torus knot

complement. Table 2 gives the Seifert fibered surgeries, and Table 3 gives the

toroidal surgeries. For convenience we use the mirrors of 61, 72, and 81, and since

41 is amphichiral we only list its non-negative surgeries.

Covers of Seifert fiber spaces are Seifert fiber spaces, and the multiplicativity

of orbifold Euler characteristic gives an obstruction to covers between the surgeries

in Table 2. We now consider the toroidal surgeries in Table 3.

Lemma 3.7.8. Let M and N be 3-manifolds. If dim H1(M ;R) > dim H1(N ;R)

then N cannot cover M .

Proof. Suppose f : N → M is a covering map. Then the transfer homomorphism

composed with the induced map f∗ on homology induces multiplication by

deg(f) on H1(M ;R), which is an isomorphism. This implies that the transfer

homomorphism is injective and hence that dim H1(M ;R) ≤ dim H1(N ;R).
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Twist knot 0-surgery +4-surgery

41 [A : (1, 1)]/

(
0 1
1 −2

)
(S3 − T (2, 3)) ∪KI

52 [A : (2, 1)]/

(
0 1
1 −1

)
(S3 − T (2, 3)) ∪KI

m61 [A : (2, 1)]/

(
0 1
1 −2

)
(S3 − T (2, 5)) ∪KI

m72 [A : (3, 2)]/

(
0 1
1 −1

)
(S3 − T (2, 5)) ∪KI

m81 [A : (3, 1)]/

(
0 1
1 −2

)
(S3 − T (2, 7)) ∪KI

TABLE 3. The exceptional toroidal surgeries on hyperbolic twist knots with 8 or
fewer crossings. KI refers to the nontrivial interval bundle over the Klein bottle
coming from the mapping cylinder of the orientation cover. [A : (x, y)] refers to
the Seifert fiber space with base surface the annulus and a single exceptional fiber
(x, y). Quotienting by a matrix refers to gluing the two torus boundary components
together via that element of the mapping class group. The framing is given by
choosing the fiber and a section. As in Table 2 the m refers to the mirror of the
knot, and we omit the −4-surgery on 41.
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By Lemma 3.7.8, 0-surgery on a knot can never be covered by any non-zero

surgery on a knot. It remains to check that 4-surgery is not covered by 0-surgery

for twist knots. To do so, we consider the geometric decomposition surface of

[AFW15, Section 1.9]. This is similar to the geometric torus decomposition, except

that it additionally allows Klein bottles coming from KI components, as we have in

Table 3. Observe that for 4-surgery on a twist knot we have a single Klein bottle

as the geometric decomposition surface, since torus knot complements admit an

S̃L2(R) geometry (see for example [Tsa13]). Now by [AFW15, Theorem 1.9.3] this

geometric decomposition surface lifts to the geometric decomposition surface of any

finite cover. In particular, if 0-surgery on a twist knot covered 4-surgery on a twist

knot, then it would have a (non-empty) geometric decomposition surface cutting it

into pieces which each cover the respective torus knot complement.

However, the geometric decomposition surface for the twist knot 0-surgeries

has at most one torus, since the obvious torus cuts it into a single Seifert fiber

space [A : (x, y)]. However, by multiplicativity of the orbifold characteristic,

[A : (1, 1)] does not cover D2(2, 3) = S3 − T (2, 3) (and similarly for the other

twist knots we consider). Hence 0-surgery cannot cover 4-surgery on these twist

knots. In particular,

Proposition 3.7.9. Conjecture 3.1.7 is true for alternating knots with 8 or fewer

crossings.

The final case is that of the non-alternating hyperbolic knots of 8 or fewer

crossings, the knots 820 and 821.

SnapPy [CDGW] verifies that all surgeries on the knot 821, and all surgeries

except the 0, 1, and 2 surgery on the knot 820 are hyperbolic. In fact, the volumes
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of surgeries on the knot 821 and of hyperbolic surgeries on the knot 820 are all large

enough to obstruct any non-trivial covers, as in Corollary 3.7.3.

The knot 820 is also the pretzel knot P (−3, 3, 2), and [Mei14, Theorem 1.1],

or Wu [Wu11, Theorem 1.1] can be checked to see that the only toroidal surgery on

820 is the 0-surgery. Hence the Seifert fiber space surgeries on P (−3, 3, 2) are the

+1 and +2 surgeries, which are identified by Regina as

{−1; (3, 1), (4, 1), (5, 2)} and {−1; (2, 1), (4, 1), (9, 2)}

respectively. These base orbifolds have orbifold characteristic −13/60 and −5/36

respectively, so there is no cover between these spaces. This concludes the case of

hyperbolic knots with 8 or fewer crossings.

Proposition 3.7.10. Let K be a hyperbolic knot with 8 or fewer crossings. Then

S3
p/q(K) does not non-trivially cover S3

p′/q′(K). In particular, Conjecture 3.1.7 is

true for these knots.

This also completes the proof of Proposition 3.1.9.
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CHAPTER IV

QUOTIENTS OF DEFINITE KNOTS ARE DEFINITE

4.1. Introduction

Let K be a knot in S3 with signature σ(K) and genus g(K). Then K is

definite if |σ(K)| = 2g(K). This is a relatively small class of knots, but this

condition has a nice geometric interpretation. Specifically, a knot is definite if and

only if it has a Seifert surface with definite linking form.

A knot K ⊂ S3 is periodic if it is fixed by a finite cyclic group acting on S3

with fixed set an unknot disjoint from K. In this case we refer to the image of K in

S3/(Z/p) as the quotient knot.

The goal of this chapter is to investigate periodic definite knots, and in

particular apply a result of Edmonds [Edm84, Theorem 4] to prove the following

theorem.

Theorem 4.1.1. The quotient of a periodic definite knot is definite.

4.2. Background

Definition 4.2.1. A quadratic form 〈−,−〉 is positive (resp. negative) definite if

〈x, x〉 > 0 (resp. < 0) for all x 6= 0.

We will also use the equivalent charaterization that a matrix is positive (resp.

negative) definite if and only if all of its eigenvalues are positive (resp. negative).

Definition 4.2.2. A Seifert surface S for K is positive (resp. negative) definite if

the (symmetrized) linking form lk(−,−) on H1(S) as defined in [GL78, Section 2] is
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positive (resp. negative) definite. That is, the symmetrized Seifert matrix for S is

definite.

Definition 4.2.3. A knot is definite if it has a definite Seifert surface.

Lemma 4.2.4. Let K ⊂ S3 be a knot. Then the following are equivalent.

1. K is definite.

2. Every minimal genus Seifert surface for K is definite.

3. |σ(K)| = 2g(K), where g(K) is the genus of K.

Proof. (2) implies (1) is obvious, and we will show that (1) implies (3) and (3)

implies (2).

To see that (1) implies (3), suppose K is definite with definite Seifert surface

S and corresponding symmetrized Seifert matrix M ∈ Mn(Z). Since M is definite,

σ(M) = ±n = σ(K). In particular, M is a minimal dimensional symmetrized

Seifert matrix and so S is a minimal genus Seifert surface. Hence |σ(K)| = 2g(K).

On the other hand, suppose |σ(K)| = 2g(K). Then taking any minimal

genus Seifert surface S with symmetrized Seifert matrix M ∈ Mn(Z), we see that

|σ(K)| = |σ(M)| ≤ dim(M) = 2g(K), and hence |σ(M)| = n so M is definite.

The following proposition gives a strong restriction on the Alexander

polynomial of definite knots.

Proposition 4.2.5. Let K ⊂ S3 be a definite knot. Then |∆K(t)| = |σ(K)| =

2g(K), where |∆K(t)| is the width of the Alexander polynomial.

Proof. Let S be a definite Seifert surface for K with Seifert matrix M ∈ Mn(Z),

and recall that ∆K(t) = det(MT − tM). Since M is definite det(M−1) 6= 0, so
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multiplying both sides by det(M−1) makes it clear that the first and last terms of

∆K(t) will be det(M)tn and det(M) respectively. Hence the width of the Alexander

polynomial is n = |σ(M)| = |σ(K)|. The second equality is proved in Lemma

4.2.4.

4.3. Periodic Definite Knots

Theorem 4.1.1. The quotient knot of a periodic definite knot is definite.

The proof of this theorem relies on the following theorem of Edmonds.

Theorem 4.3.1. [Edm84, Theorem 4] Let K̃ be a periodic knot. Then there exists

a minimal genus Seifert surface S̃ for K̃ which is preserved by the periodic action.

Furthermore, the image of S̃ in the quotient is a Seifert surface for the quotient

knot K.

We will also need the following lemma.

Lemma 4.3.2. If the preimage of a Seifert surface S under a Z/p rotation action

in S3 is a positive (resp. negative) definite Seifert surface S̃, then S is positive

(resp. negative) definite.

Proof. Consider a curve C ⊂ S which is homologically non-trivial. Let C̃ be the

(possibly disconnected) preimage of C in S̃. Note that since C is homologically

non-trivial, so is C̃. Now suppose S̃ is positive definite so that lk(C̃, C̃) > 0. We

claim that lk(C,C) > 0, so that S is also positive definite. The linking number

lk(C,C) is the sum of (signed) intersection points between C and the Seifert surface

Σ for a positive push-off of C. Let Σ̃ be the preimage of Σ which is an equivariant

Seifert surface for a positive push-off of C̃. Then each intersection point between C
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and Σ lifts to p intersection points (with the same sign) between C̃ and Σ̃. Hence

lk(C̃, C̃) = p·lk(C,C), and so lk(C,C) > 0.

Proof of Theorem 4.1.1. By Theorem 4.3.1 any periodic knot K̃ has an equivariant

minimal genus Seifert surface S̃ with quotient S. By Lemma 4.2.4, S̃ is definite,

and so by Lemma 4.3.2 S is as well.
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