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DISSERTATION ABSTRACT 
 
Kyle K. Morgan 
 
Doctor of Philosophy 
 
Department of Psychology 
 
June 2019 
 
Title: Spatiotemporal Dynamics of Multiple Memory Systems During Naturalistic 

Categorization  
 

How we learn and remember has been the focus of centuries worth of 

psychological research. Category learning has been a convenient domain to study these 

concepts, where modern imaging evidence has shown that the brain uses multiple 

memory systems that specialize in learning specific category structures. However, a 

question still remains about whether these systems alternate or operate alongside one 

another to maximize performance in everyday tasks. The primary goals of this 

dissertation were to characterize the mechanisms associated with category learning, and 

understand the extent to which different memory systems are recruited within a single 

task. Three studies providing spatial and temporal distinctions between learning-related 

changes in the brain and category-dependent memory systems are presented. The results 

from these experiments support the notion that exemplar memorization, rule-based, and 

perceptual similarity-based categorization are flexibly recruited to optimize performance 

during a single task. We conclude that these three methods, along with their underlying 

memory systems, aid in the development of expertise, but their engagement may depend 

on the level of familiarity with a category. Characterizing the conditions under which 

these systems are recruited will play an important role in future studies that will facilitate 

their engagement to enhance learning. This dissertation includes previously published 
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CHAPTER I 

INTRODUCTION 

From Morgan, K. K., Tucker, D. M., & Luu, P. (2018). Understanding the neural 

mechanisms of memory in rapid recognition of football formations. In R.A. 

Carlstedt & M. Balconi (Eds.), Handbook of sport neuroscience and 

psychophysiology (Ch. 8). Abingdon, UK: Routledge.  

Introduction 

My long-term goal is to develop targeted interventions to improve the learning 

process by facilitating engagement of an optimal memory system for a given task. 

However, in order to affect learning, we would first need to understand learning and have 

a map that describes the associated brain areas. But what is learning and what neural 

mechanisms support it? The answer is not as clear as it may seem.  

Category learning has been a productive means to study learning and memory, 

and refers to the development of the ability to recognize common features among 

different categories of objects (Bruner, Goodnow, & Austin, 1967). Research using 

category learning has definitively outlined the mechanisms associated with different 

learning stages (Shiffrin & Schneider, 1977). On the other hand, we know that different 

tasks engage completely separate memory systems that are optimized for the learning 

involved – even for seemingly similar tasks such as in categorization (Zeithamova & 

Maddox, 2006; Knowlton & Squire, 1993; Gabrieli, 1998; Smith, Patalano, & Jonides, 

1998). This makes it difficult to uniquely attribute changes in brain activity to either 

distinct learning systems or representations of the distinct mechanisms associated with 

different task sets. 
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The main goal of this dissertation is to understand the degree to which distinct 

learning and memory systems may be recruited within the same task. If valid, these 

characterizations could prove useful for both basic memory research and learning 

enhancement research. In the memory research domain, it would provide evidence that 

the brain can flexibly recruit more than one memory system to optimize performance on a 

single task. Up until this point, this has only been a theory and has yet to be tested. These 

results would also open an avenue for understanding how expertise within these systems 

develops alongside one another, and whether that development fits general models of 

learning progression. In respect to learning enhancement, understanding which systems 

are engaged and when they are engaged could be a critical component for generating 

interventions (such as in brain stimulation) that are tailored to specific memory systems – 

both in their spatial distribution as well as ensuring these interventions are correctly 

coupled to the timing of each system’s engagement in a task.  

Distinct Mechanisms Across Stages of Learning 

 As a person transitions from being a novice to expertly performing a task, the 

neural processes initially used to acquire and perform the task disengage; allowing more 

cognitive resources to be available for other functions (Shiffrin & Schneider, 1977). Fitts 

& Posner’s (1967) classic model of skill acquisition describes three distinct learning 

stages: the cognitive, associative, and autonomous stages. The cognitive stage is a period 

in which the task goals are being established, and the participant explicitly relies on this 

goal to develop a sequence of actions to accomplish the desired outcome. Learning within 

this stage often relies on declarative knowledge. When a sequence of actions has been 

established, the participant transitions into the associative stage that is a period where the 
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actions are refined. Attention is allocated to specific details of the action sequence, and 

the participant may explore other solutions (sometimes even throwing out an entire action 

within the sequence altogether) in order to optimize performance. The final stage is the 

autonomous stage where learning improvements are slower, but the participant practices 

their actions in order to make the process more routinized and automatic.  

 Learning curves across a variety of tasks reflect the general model proposed by 

Fitts and Posner. Learning in the first two stages occurs rapidly, but towards the end of 

the associative phase and into the autonomous stage performance improvements slow 

dramatically.  An inversion of the learning curve can be used to describe the amount of 

working memory and controlled attention required to complete the task over time. Under 

the Fitts and Posner model, the first two learning stages rely more heavily on explicit 

control, but as the task sequence becomes more automatic this type of control gives way 

to a more routinized form of control. Other similar models suggest that learning is a 

combination of calculated/explicit processes and memory retrieval, and as memories 

build up there is less reliance on explicit processes and a greater reliance upon 

streamlined memory retrieval during automatization (Logan, 1988). 

 A more succinct model of learning has been created to describe the contrasting 

reliance upon executive functions and has only two stages: early and late. Under the dual-

stage model, the early stages of learning from Fitts, Posner, and Logan are combined into 

a single stage marked as a heavy reliance on controlled processes, which require a person 

to be actively attentive, and are limited by working memory capacity. In contrast, the late 

stage (the analogue for the autonomous stage of Fitts and Posner) is defined by its lack of 

reliance on controlled processes, reflected as automated performance, and is not limited 
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by working memory capacity and can be carried out subconsciously under the right 

context (Shiffrin & Schneider, 1977).   

 Modern imaging evidence have delineated distinct brain networks that are  

involved in the two learning stages (Chein & Schneider, 2005). The frontal lobe is 

responsible for the executive monitoring of unfamiliar stimuli; a process that is integral to 

the early stages of learning. By contrast, cortical regions in the posterior corticolimbic 

system, which are responsible for habit learning, are engaged when subjects demonstrate 

proficient performance in the late stages of learning (Chein & Schneider, 2005; Gabriel, 

Burhans, Talk, & Scalf, 2002). These posterior corticolimbic structures consolidate 

information and, with sufficient practice, enable performance to be more automated and 

habitual, removing the need for executive control.  

 Finer details about how the brain learns to recognize categories are best framed 

within Schneider’s dual processing theory. Information about objects and events, and the 

context or location under which they occurred are processed in two streams in the 

cerebral cortex (Schneider, 1969). Within this model, the sensory pathways (e.g. primary 

visual cortex) take information in from the outside world and help us form an initial 

identification of an event or object, and then send this information up to the parietal lobe 

(Ungerleider & Mishkin, 1982; Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003). We refer 

to this stream as the dorsal, or “where” pathway. This pathway specializes in the spatial 

analysis of stimuli and organizes holistic attention that eventually leads to impulsive 

actions. There is also a second pathway that is responsible for the identification of “what” 

event or object is being presented, and this information is processed by the ventral limbic 

system -- parahippocampal gyrus, piriform, and entorhinal cortex (with the addition of 
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the amygdala, in humans) – and is referred to as the ventral processing stream 

(Ungerleider & Mishkin, 1982; Keel, Ivry, Mayr, Hazeltine, & Heuer, 2003). Information 

from both streams converge at the hippocampus, which is a structure situated in the 

medial temporal lobe (MTL) that plays a key role in organizing input to link memories by 

their contextual representation (Luu et al., 2011). Once processing commences within the 

hippocampus, the output returns to the cortical areas from which the inputs originated 

(dorsal or ventral). In the dorsal pathway an additional structure, the medial prefrontal 

cortex (mPFC), selects the memory from the hippocampal feedback, whereas the striatum 

aids in memory selection for the ventral pathway. This feedback structure allows the 

hippocampus to organize memory retrieval based off “what” occurred or “where” 

something occurred, and makes it an essential mechanism for memory retrieval.  

 The early/deliberate stage of learning is responsible for forming the context under 

which a someone acquires the relevant information dictating category membership, and 

requires controlled processing from frontal regions, whereas the automatic phase marks a 

reduction in frontal engagement (reflected as a reduction in the need for controlled 

attention) and an increase in activity from more posterior regions where the context is 

simply monitored. Put more clearly: the early stage is a time where the brain requires 

more attentional resources to build-up the contextual blueprint that binds inputs and 

outputs – where we know posterior corticolimbic structures play a large role in 

associating the two. The lack of context in the early stage leaves little work for this 

system to do, but as that context forms with practice, the role of posterior/automaticity 

system becomes increasingly important to the point where controlled processes are no 

longer needed (Donchin & Coles, 1988; Polich, 2007; Luu et al., 2011). This allows the 
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person to perform the learned action without a substantial cognitive load so that they can 

focus their attention elsewhere. This classic anterior/posterior shift seen under most 

concept learning conditions can be useful for structuring interventions that may speed up 

the learning process. When using brain stimulation as an example, it might be beneficial 

to target an intervention over frontal control areas during the initial training phase, and 

then slowly fade the stimulation towards the posterior as the subject acquires the task.  

A relevant downside to the classic anterior/posterior framework is that it is not an 

all-encompassing model that describes how expertise develops in different memory 

systems. Although it has been a historically accurate way of describing learning within 

several systems, there are other memory systems that may have a differential reliance on 

the brain mechanisms discussed in this section. Likewise, it is possible that multiple 

memory systems could be engaged simultaneously during a task, either in competition or 

working in conjunction to optimize learning. In order to maximize any benefit subjects 

would have from a targeted intervention, it would be optimal to take a multiple systems 

approach and develop a framework that best describes how the brain behaves under a 

more varied range of task conditions.   

Distinct Mechanisms Across Different Category Structures 

Humans possess multiple learning and memory systems, varying in speed of 

acquisition, flexibility, and the degree of cognitive resources they require, optimizing 

learning in a wide range of situations (Knowlton & Squire, 1993; Gabrieli, 1998; Smith, 

et al., 1998). To provide compelling evidence for the existence of multiple systems, prior 

research has focused on creating tasks which exaggerate the preferential recruitment of 

one system over another. In addition, evidence from these studies has shown that 
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performance is hindered when participants fail to engage the memory system optimal for 

a given category structure. However, detecting which memory system is actually engaged 

typically requires analyzing behavioral or neuroimaging data averaged across many trials. 

Identifying signatures of distinct memory systems that would be detectable on short time-

scales would allow us to better understand how each system contributes to performance, 

and also allow us to understand how these systems fit within the expertise development 

framework. 

 Categorization is a convenient domain in which to explore how task parameters 

dictate the recruitment of different memory systems. Placing things into categories is an 

essential and frequent part of our daily lives, and is fundamental to many tasks used in 

the laboratory setting. The human categorization systems serve the purpose of optimizing 

the speed and accuracy of categorization under a variety of different conditions. 

Historically, there has been a multitude of tasks employed to explore the specific memory 

system tied to each in isolation (Ashby & Maddox, 2005). However, these tasks can be 

reduced into three types that are relevant to the context of this dissertation: exemplar 

memorization, rule-based, and perceptual similarity-based tasks. We will review the 

general structure of these tasks along with the memory systems engaged during each 

type.   

Exemplar Memorization 

 Some of the most classic studies of human memory have been centered on the 

declarative memorization of individual objects. Within the context of category learning, 

exemplar memorization refers to the memorization of individual examples of a category 

(i.e. exemplars) along with their category membership (Medin & Schaffer, 1978; 
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Hintzman 1984; Nosofsky, Clark, & Shin, 1989; Nosofsky & Palmeri, 1997).  Theories 

for exemplar memorization assume that stored memories of specific exemplars viewed 

during training form the representation of the category. These stored exemplars become a 

reference for which new probing stimuli are compared against. Under these assumptions, 

subjects are able to master a combination of well-structured and poorly-structured 

categories, and learn items that constitute exceptions to the rules governing category 

membership (Medin & Schaffer, 1978).  

 The most well-known task that drove the development of exemplar-based 

models utilized a category structure known as the 5-4 (Medin & Schaffer, 1978; Medin, 

Altom, & Murphy, 1984; Medin & Smith 1981; Nosofsky 1992; Palmeri & Nososfsky, 

1995). In this task, there are 5 exemplars that represent Category A and 4 exemplars that 

represent Category B. In Category A, four exemplars share three features with the 

Category A prototype (a representative example of the category), and one exemplar that 

shares two features. This results in one ambiguous exemplar and four exemplars that are 

very similar to the prototype. Two of the exemplars in Category B share only 2 features 

with the Category B prototype, resulting in half of the exemplars in this category being 

relatively ambiguous. Subjects are trained to recognize members of these categories, and 

then tested using seven additional items that measure their ability to generalize the 

category structures. Computational models that strictly model exemplar memorization are 

able to predict performance on this task better than models describing other methods of 

categorization (Nosofsky, 1992; Nosofsky, Kruschke, & McKinley, 1992; Palmeri & 

Nosofsky, 1995). In other tasks that utilize purely arbitrary category labels, it has also 

been shown that exemplar memorization is the preferred method of categorization (Lei & 
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Shansheng, 2003). However, in tasks that utilize a random category structure, it is 

arguable whether exemplar memorization truly qualifies as a formal categorization task at 

all (Ashby & Waldron, 2000).  

 Early learning within the exemplar categorization system relies heavily on 

working memory and frontal control regions. With extended training, the presentation of 

a probe stimulus prompts the retrieval of the category label associated with the exemplar 

in the absence of attention (Shiffrin and Schneider, 1977). These retrieval processes are 

centered on the hippocampus (Nosofsky & Zaki, 1998). Exemplar memorization can be 

particularly useful when there are only a few exemplars to remember, or when categories 

are poorly structured (Minda & Smith, 2001; Erickson & Kruschke, 1998). However, in 

the case that there are discoverable and reliable features determining category 

membership, it may be more efficient to use a memory system that develops quicker than 

exemplar memorization.  

Perceptual Similarity Categorization 

  Perceptual similarity categorization involves placing stimuli into categories 

based off relevant information from other stimuli that are similar to the probe (Ashby & 

Ell, 2001; Smith & Minda, 2001). One example of perceptual similarity tasks are 

prototype learning tasks, which require the participant to learn the prototype of a single 

category, such as a face, and classify other like-stimuli into this category. The stimuli that 

belong to this category share several common features with the prototype (such as a nose, 

chin, cheeks, and eyes in our face example) with only a few minor distortions of other 

features that do not represent the category as a whole (such as hair length). Participants 
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must extract these common features from the stimuli in the category in order to learn the 

category prototype (Rosch, 1975; Rosch, 1978).  

 The process of extracting features from examples within a category typically 

relies on the perceptual memory system which is mediated by visual cortex (Aizenstein et 

al., 2000; Ashby & Casale, 2003).  However, Zeithamova and colleagues (2008) have 

revealed that the way in which perceptual similarity tasks are structured plays a major 

role in the recruitment of the perceptual memory system during categorization. For 

example, if participants are tasked with learning the prototype of a single category 

(category A) against examples that do not belong to a category (non-A), then the 

perceptual memory system is engaged. But, if the participant is tasked with learning two 

different prototypes and must directly compare examples of each category to one another 

(category A vs. category B) then this form of prototype categorization relies more heavily 

on explicit memory, mediated by parietal and frontal control regions. Results from this 

study suggest that the brain areas which optimize learning even within the same 

categorization domain are sensitive to small variations in task parameters.   

 Learning and subsequent processing that occurs within the perceptual similarity 

system is relatively quick and does not heavily rely on working memory (Waldron & 

Ashby, 2001; Maddox, Ashby, Ing, & Pickering, 2004; Maddox, Filoteo, Hejl, & Ing, 

2004; Zeithamova & Maddox, 2006; Smith & Kemler Nelson, 1984). The perceptual 

similarity system is crucial for making rapid judgements about category membership, but 

falls short in its ability to classify objects when within-category similarity is low or 

between category similarity is high (Nosofsky, 1986). It makes sense that the 

shortcomings of this memory system are supported by the strengths of another system. 
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Rule-Based Categorization 

 Perhaps the most well-known method of categorization is that of a rule-based 

strategy. In rule-based categorization, the participant is tasked with discovering an 

explicit rule that dictates category membership. In order for the task to qualify as a classic 

“rule-based” task, the rule must be easy to verbalize, which differs from other types of 

categorization that rely on implicit forms of memory subserving strategies that can be 

difficult to articulate. Common rule-based tasks involve an array of features each with 

their own variations (dimensions), such as different colors or shapes within an image, that 

can be used to define members of each category. Rule discovery is commonly achieved 

through explicit reasoning or hypothesis testing, whereby the participant tests different 

rules based off the different dimensions of the features within the stimuli until they learn 

the correct one (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).  

 Hypothesis testing relies heavily on working memory and controlled attention, 

which are supported by the working memory system in prefrontal cortex and caudate 

nucleus (Ashby & Ell, 2001). The working memory system, within the context of rule-

based categorization, allows participants to focus on individual diagnostic dimensions 

while ignoring irrelevant features within the task. This allows for accurate categorization 

when within-category variance is high and between-category variance is low. However, 

when compared to the perceptual similarity system, rule-based categorization is 

cognitively expensive and sensitive to distractions (Waldron & Ashby, 2001; Zeithamova 

& Maddox, 2006).  

Multiple Memory Systems Within a Single Task 
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 To show dissociable signatures of the memory systems discussed earlier, 

traditional memory system research has been conducted using tasks that aim to engage 

each system in isolation and then demonstrating that aggregate behavior and neural data 

are more consistent with properties of one system over another. However, the 

composition of natural categories contains elements of exemplar memorization, rule-, and 

perceptual-based systems, suggesting people may be switching between systems within a 

single task. For example, relying on perceptual similarity to categorize mammals may be 

quick and effortless for many examples of the category, but would likely sacrifice 

accuracy when categorizing bats or dolphins – mammals that may be mistakenly 

classified as birds or fish when using perceptual similarity. An overarching goal of my 

research is to devise ways to improve the learning process by understanding and 

exploiting the underlying neural processes that dictate success in each task. This goal 

begins with an empirical investigation of how the brain learns under realistic conditions, 

while respecting the potential for the brain to utilize different memory systems that 

detract from a-priori models of typical learning.  

Neuroimaging 

 To achieve a comprehensive picture of the memory systems involved in a 

realistic learning task, we must describe which systems are engaged (“where” in the brain 

these systems are located) and the temporal dynamics under which these systems are 

employed (“when” these systems are engaged). Brain activity is commonly measured 

using two noninvasive neuroimaging methods: Electroencephalography (EEG) and 

functional Magnetic Resonance Imaging (fMRI). EEG measures the electrical activity of 

brain cells by placing a network of electrodes on the scalp. With enough (256) channels, 
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we call this dense array or “high density” EEG (dEEG) (Tucker, 1993). When EEG is 

recorded during a task, small changes in voltage can correlate with specific operations 

within the task, called an Event Related Potential (ERP). Small experimental 

manipulations or changes in behavior can have a measurable impact on ERPs and, as we 

will discuss in the next chapter, can allow us to track learning. The pros of recording 

EEG is that it picks up brain activity with high temporal resolution, down to one 

millisecond. However, EEG can be non-specific and records the activity of tens of 

thousands of brain cells at once. Moreover, due to differences in cell structure in different 

brain parts, EEG can only record activity from the cerebral cortex, yet we know that the 

majority of memory systems involve subcortical areas in some way.  

 Some of the spatial shortcomings of EEG are made-up for using fMRI. The 

brain is constantly being fed oxygen through its matrix of vasculature, and when neurons 

fire oxygen is stripped from hemoglobin (a protein in red blood cells that carries oxygen) 

until subsequent cardiac events occur to resupply the brain with oxygenated hemoglobin. 

fMRI can detect the subtle difference between oxygenated and de-oxygenated 

hemoglobin while a subject preforms a task, and when we superimpose the map of where 

oxygen exchange is occurring over a structural image of the brain, we get a map of brain 

activity. This map is only limited by the presence of blood vessels, which is luckily very 

dense, and can image activity in deeper brain regions than EEG. However, blood flow in 

the brain is substantially slower than the electrical events happening between neurons, 

and fMRI is stuck measuring activity 5-10 seconds after a neural event has occurred. This 

makes it difficult for fMRI to tease-apart brain activity that occurs below the ~7 second 

timescale in complex tasks that involve several steps to complete the task. Given the 
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spatial shortcomings of EEG and the temporal limitations of fMRI, this dissertation will 

employ both methods to understand the spatial and temporal dynamics of multiple 

memory systems under realistic learning conditions.  

Overview of Dissertation 

In Chapter II of this dissertation we will focus on using Electroencephalography 

(EEG) to examine the mechanisms associated with the different stages of learning within 

a categorization task. We will then discuss the compatibility of our results with the 

general models of how the brain behaves during the different stages of learning. Chapter 

III will build off of the findings in Chapter II by using functional Magnetic Resonance 

Imaging (fMRI) to determine the extent to which multiple distinct memory systems are 

engaged during the task. We will follow up in Chapter IV by using the results in Chapter 

III to guide an effort to dissociate between different memory systems in EEG. We will 

use several different techniques, including standard Event Related Potential (ERP) 

analysis and data-driven machine learning, to understand the time course by which 

different memory systems are engaged. We will conclude the dissertation in Chapter V 

with a discussion of how single tasks may be supported by different cognitive and neural 

systems, along with a look forward into using the brain as a guide for making targeted 

interventions to improve the learning process.  
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CHAPTER II 

TRACKING THE ONSET OF AUTOMATICITY IN A FOOTBALL 

CATEGORY LEARNING TASK 

From Morgan, K.K., Luu, P., Tucker, D.M., (2016.) Changes in p3b latency and 

amplitude reflect expertise acquisition in a football visuomotor learning task. 

PLoS One, 11, e0154021. https://doi.org/10.1371/journal.pone.0154021 

Introduction  

Earlier we discussed a general neurophysiological framework for the dual-stage 

model of learning, whereby the early stage of learning is marked by a reliance on frontal 

control regions, and the late stage of learning relies on more posterior consolidation 

areas. The Medial Frontal Negativity (MFN) and P300 Event Related Potentials (ERPs) 

obtained through EEG are of particular interest for marking the transition from early to 

late learning. The MFN is a stimulus-locked medial frontal component with its primary 

sources in the Anterior Cingulate Cortex (ACC) (Luu et al., 2011). The ACC plays a 

major role in error monitoring and attention during reward-based learning (Bush et al., 

2002). In theory, this would make the MFN an ideal component for indexing effortful 

control seen in the early stage of category learning.  

The P300 can vary in its topographic distribution as well as the conditions under 

which it is evoked, and it is now recognized that there is a family of P300 components 

(Squires, Squires, & Hillyard, 1975). The P3a, which has a mediofrontal scalp 

distribution, is commonly evoked during a 3-stimulus oddball task when participants are 

exposed to infrequent, novel (non-target) stimuli (Ebmeier et al., 1995; Friedman, 
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Simpson, & Hamberger, 1993; Katayama & Polich, 1998). Of more relevance to the 

current study is the P3b, which is traditionally found over more parietal scalp sites, and 

occurs within the same oddball task but in response to stimuli that require an action (such 

as a response or silent count) (Katayama & Polich, 1998).  

Conventionally, the P3a is thought to reflect the attentional shift caused by the 

mismatch between a novel stimulus in a series of expected stimuli, whereas the P3b 

reflects the match between a stimulus and the voluntarily sustained attentional trace 

(Naatanen, 1990).  However, this popular theory for the P3b and voluntary attention 

cannot fully explain the results of several previous studies which showed a linear increase 

in P3b amplitude correlating with the acquisition of a response mapping to the point of 

expert performance (Donchin & Coles, 1988; Knight, 1996; Polich, 2004; Pineda, 

Westerfield, Kronenberg, & Kubrin, 1997; Luft, Takase, & Bhattacharya, 2014). It is 

generally accepted that attention decreases with expertise, and thus if the P3b were a 

reflection of controlled attention a decrease in amplitude when participants approach 

expert performance is expected (Anderson, 1982; Anderson, 1983; Anderson, 1993; Fitts 

& Posner, 1967). Results from previous studies in our lab, wherein P3b amplitude 

continued to increase as participants transitioned from novice to more automated 

performance, is more consistent with the context updating theory of the P3b (Polich, 

2007; Luu et al., 2011).  

Under context-updating theory, the P3b indexes the updating and/or confirmation 

of the context under which an action is learned and performed on a trial-by-trial basis 

(Katayama & Polich, 1998; Donchin & Coles, 1988; Polich, 2007). The context can be 

information pertaining to the rules of a task, or even the environment under which 
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knowledge was acquired. Relevant to the dual-stage model of learning, the early stage 

aids in the formation of this context (not indexed by the P3b) and the posterior 

corticolimbic system maintains it. Once the context is formed, the constant maintenance 

and recall of this information helps to guide a person toward selecting the correct action 

in response to a stimulus quickly and efficiently. The P3b reflects the time-course by 

which the context is updated and the processing resources that were available when the 

context was referenced (Luu et al., 2011). It is important to note, however, that the P3b 

does not directly reflect memory retrieval (evidenced by its time-course), but is instead an 

indirect correlate. The sources of the P3b remains to be definitively resolved. However, 

results from scalp EEG source localization studies as well as data from human 

intracranial EEG (iEEG) and animal studies revealed common P3b sources: the parietal 

lobe, PCC, medial temporal lobe, and superior temporal sulcus (Halgren et al., 1994; 

Halgren et al., 1995a; Halgren et al., 1995b; Baudena, Halgren, Heit, & Clarke, 1995; 

Smith et al., 1990; Brankack, Seidenbecher, & Muller-Gartner, 1996; Shin, 2011; 

Kahana, Seelig, & Madsen, 2001). 

Previously we performed three dense-array EEG (dEEG) studies focused on the 

dual-stage theory of learning using an arbitrary categorization association task (Luu, 

Tucker, & Stripling, 2007; Luu, Shane, Pratt, & Tucker, 2009; Luu et al., 2011). In these 

studies, we used a Go/No-Go task that required participants to learn arbitrary category 

structures to form an appropriate action (Wise & Murray, 2000). The participants were 

tasked with associating a simple visual stimulus (numbers) with a specific button press on 

a key pad. Our results demonstrated that increases in both P3b and MFN amplitude 

reflected performance improvements as participants achieved task proficiency and 
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reached behavioral automaticity in the late learning stage. This result was contrary to the 

anterior-posterior shift that commonly describes a transition between novice to expert 

performance.   

The goals of the present study were to extend the previous findings by examining 

the MFN and P3b's relations to behavioral performance measures across the stages of 

learning in a more realistic learning task and determine how well our results fit into the 

general anterior-posterior framework describing transitions in learning stages. To pursue 

these questions, we tracked the MFN and P3b ERP components as our participants were 

subjected to a multi-day, modified Go/No-Go task that is similar to the cognitive training 

program used by the varsity football team at the University of Oregon to help new 

players acquire the playbook. In this task, participants were presented with defensive 

football formations as viewed from the quarterback's perspective. Participants were 

responsible for acquiring the proper stimulus-response mappings that help them 

determine which defensive formations require input from the quarterback (target 

formations, or "Go trials"), and which formations do not require any intervention (non-

target formations, or "No-Go trials").  

We hypothesized that our participants would be proficient in the task by the end 

of the first day of training, and that the an increase in P3b amplitude and a decrease in 

MFN amplitude would mark the onset of expertise in the task. We also hypothesized that 

the onset of full automated performance and cognition would occur during the first day of 

training, and that changes in the P3b would parallel the performance improvements that 

occur during this stage (e.g. reductions in errors and reaction times). With further training 

in the subsequent days, we hypothesized that the P3b would continue to track small 
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performance improvements after the task became well learned, with the MFN continuing 

to decrease in amplitude as effortful control continues to decrease under automaticity. 

Method 

Participants 

Fifteen right-handed participants were recruited from the University of Oregon 

Human Subjects Pool (eight males, seven females), with ages between 18 and 41 years (M 

= 23, SD = 6). All participants had normal or correct-to-normal vision, had no history of 

head trauma or seizures, and were not consuming medication that could affect their EEG. 

Participants were pre-screened online for their experience with football in order to reduce 

the chance of contextual familiarity confounding differences in skill acquisition rate. Only 

the participants who were comfortable recognizing variations in defensive and offensive 

football formations (e.g. participants who had a history of playing football, or were an avid 

fan of the game) were qualified to participate. Before each session, participants provided 

informed written consent and filled out several mood questionnaires. The mood 

questionnaires were not used for analysis, but were collected as part of a standard lab 

procedure in the case that they might be useful if a participant displayed adverse behavior 

during the study. Data from all participants who completed all 3 days of the study were 

included in our analyses. The research protocol was approved by the University of Oregon 

and Electrical Geodesics, Inc. (EGI) institutional review boards, and the study took place 

in the Brain Electrophysiology Laboratory at EGI. 

Task 

The task used in this study was adapted to resemble the cognitive training 

program used at the University of Oregon to aid new football recruits in learning the 
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playbook and familiarizing themselves with an opponent's playing style (Axon Sports, 

LLC, Phoenix, AZ). Likewise, the paradigm was a modified version of a traditional 

go/no-go discrimination task (Newman, Patterson, Howland, & Nichols, 1990). On each 

trial, 1 of 8 defensive formations were presented centrally on a 43 cm (diagonal) 

computer monitor for 1500 ms. Half of the formations were randomly selected as "go" 

stimuli, and the other half were designated as "no-go" stimuli. The formations were 

presented at random, with the restriction that a formation could not be presented twice in 

a row. Participants had to either press, or refrain from pressing, a key on a keypad when a 

formation was presented. For the go 

stimuli, participants had to learn to 

respond with the appropriate digit on 

the correct hand for each stimulus. 

The participants were given four 

digits to respond with (digits I and II 

of both hands), and each of the four 

go stimuli were mapped onto a 

specific digit. Each formation was 

presented on the screen for 1500 ms 

or until a key-press occurred. 

Immediately after each trial, specific feedback about performance on that trial was 

provided (Fig. 1).  

 The feedback given to the participant were designed to provide them all of the 

information needed to learn the response mapping. In sum, there were six types of 

Fig. 1. Diagram of events in a single trial for experiment 1. 

Formations were shown for 1500 ms or until a key-stroke was 
made. Immediately following a response (or non-response), 
contingent feedback was shown for 10 s or until the participant 
made another keystroke. Upon feedback termination, a fixation 
mark was shown for the duration of the inter-trial interval of 1500 - 

2500 ms before the next formation was presented 
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feedback: ErrorGo (error of omission), ErrorNG (error of commission), Correct (correct 

response to a go stimulus but made with the wrong hand), CorH (correct response to a go 

stimulus with the correct hand but wrong digit), CorNG (correct withholding of a 

response to a no go stimulus), CorF (correct response to a go stimulus with the correct 

hand and digit). Feedback were presented for 10 s, or until the participant terminated the 

feedback with a button press. Upon termination of the feedback, the next trial began 

between 1500 and 2500 ms later (Fig. 1).  

To motivate participants to continuously improve on the task, they were made 

aware that they would be compensated based off of their study performance. To track 

performance, point values were assigned to each contingent feedback: correct responses 

(CorNG and CorF) would earn them eight points, whereas errors (ErrorNG and ErrorGo) 

would lose them eight points. Partly-correct responses (Correct and CorH) would lose a 

participant four and two points. Participants were informed that they would be able to 

track their score across each block, and that their final score will determine how much 

they are compensated on each day. Participants started with a score of zero, and were 

explicitly told how their point total will be converted into their compensation rate ($15 - 

45). 

Procedure 

 Following the informed consent process, participants were fitted with a 256-

channel HydroCel Geodesic Sensor Net (HCGSN) and placed 55 cm in front of the 

computer monitor. A chin-rest was used to minimize head movements and keep the 

distance to the monitor fixed. Participants were explicitly told that there were 8 defensive 

formations in this study, and that they must learn which formations require a specific key 
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stroke and which formations require them to make no response at all. To add relevant 

context to the learning environment, the act of pressing a button corresponded to the 

quarterback's decision to "hike" the football in response to a target formation. Similarly, 

an inaction corresponded to the quarterback's decision to not hike the ball, and instead 

could be assimilated to halting gameplay (e.g. calling a timeout, or pausing to change a 

play at the last second). The response feedback that would help teach the participant to 

make the correct decision were explained clearly on a piece of paper, and participants 

were allowed to look over the feedback for several minutes.  

Once the participant could demonstrate an understanding of the feedback to the 

research assistant, a short practice block consisting of 30 trials followed. Formations used 

in the practice block were not used in the actual experimental blocks. For the experiment, 

8 blocks of 100 stimuli (800 trials per session) were used. Each participant underwent 3 

training sessions, and each session was scheduled exactly 48 hours apart within the same 

week (Monday, Wednesday, and Friday). The practice block was only given during the 

first session, and on average each session lasted around 2.5 H. All participants displayed 

proficiency in the task within the first session, and were compensated an average of $40 

for each session. 

Learning Criterion 

 To simplify the analysis process, we used the fixed-number of consecutive 

responses method (FCCR) in order to determine when a participant had sufficiently 

acquired the response mapping as we have done in the past (Luu et al., 2007). With this 

method, a subject fulfilled the learning criterion when they could make four correct 

responses (or non-responses) in a row for each stimulus. Because the time before this 
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learning criterion was met is a period where participants could not differentiate between 

whether they needed to withhold or make a correct hand-finger response for a given 

stimulus, all trials preceding the fulfillment of this criterion were included in a "pre-

learning" condition (this includes all trials where errors were committed, for both Go and 

No-go stimuli). However, because we are only concerned with how a subject acquires 

and demonstrates a response mapping and not response inhibition, only the go-trials 

where the participant provided a fully correct response (CorF) were included in a "post-

learning" condition after the learning criterion was fulfilled. 

EEG Recording and Post-Processing 

 The dEEG was recorded using a 256-channel HydroCel Geodesic Sensor Net 

and the data were amplified using a Net Amps 400 Amplifier (Electrical Geodesics, Inc., 

Eugene, OR). Recordings were referenced to Cz and impedances were maintained below 

50 kΩ. dEEG was bandpass filtered (0.1 - 100 Hz) upon being sampled at 250 s/s with a 

16-bit analog-to-digital converter. 

After recording, signals were filtered between .1 - 30 Hz bandpass and segmented 

into 1200 ms long segments time-locked to the onset of each stimulus (segments 

extended 200 ms before and 1000 ms after the stimulus onset). Segments containing 

eyeblinks, muscle tension, major eye movements, or large head movements with 10 or 

more channels exceeding an absolute voltage threshold of 140 µV were excluded from a 

participant's average. Segments containing minor eye movements (saccades) were not 

fully rejected given the lack of overlap between the latency and distribution of the 

saccades with the latency and location of the MFN and P3b. All data were re-referenced 

to the average reference for analysis. 
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EEG Source Analysis 

 Source analysis was performed using GeoSource (version 2.0) software 

(Electrical Geodesics, Inc., Eugene, OR). The software relies on the MRI and CT scan of 

a single subject (Colin 27) to construct an atlas model of the brain and head that is used to 

estimate the sources of scalp EEG. The brain (gray and white matter) and cerebrospinal 

fluid (CSF) are segmented as they appear in the MRI, whereas the skull and skin surfaces 

are characterized from the CT. These two volumes are then co-registered together. Once 

registered, the gray matter tissue is parceled into 7 mm voxels which serve as individual 

source locations with three orthogonal orientations, resulting in 2,394 triples sources. 

Following the construction of the head model, averaged 256 sensor-locations are then 

registered to the scalp surface.  

A Finite Difference Method (FDM) is used to compute an estimate of how current 

propagates from the sources in the cortical gray matter to the scalp where EEG is 

measured. Conductivity values used in the FDM were: 0.25 S/m for the brain, 1.8 S/m for 

CSF, 0.018 S/m for skull, and 0.44 S/m for scalp (Ferree, Eriksen, & Tucker, 2000). The 

local autoregressive average (LAURA) constraint was used to compute inverse source 

estimates (Grave de Paralta Menendez et al., 2004).  

Results 

Behavioral 

Learning Effects  

 We refer to "learning effects" as effects occurring within the learning process 

during the first session. A paired samples t-test was run on the number of trials it took 

each participant to learn the response-mappings, separated by stimulus type ("Go" vs "No 



 

 

 

- 25 -

Go"). A significant effect was found, t(14) = 5.3, p < .001, such that Go stimuli took 

longer to acquire than No Go stimuli. A summary of this effect can be found in Fig. 2. 

 

 For the error rate calculation, an error was quantified as an error of commission 

for No Go trials, and any response or non-response that was not fully correct for Go trials 

(i.e. errors of omission, correct responses to a Go stimulus with the incorrect hand, and 

correct responses to a Go stimulus with the correct hand but incorrect digit). For each 

participant, errors were counted for the period before and after the learning criterion was 

met during the first session only, as all participants acquired the task during the first 

session. 

In a repeated measures ANOVA which used trial type and learning condition 

(pre-learning and post-learning) as within-subject factors, significant main effects of trial 

type F(1,14) = 30.72, p < .001), and learning condition (F(1, 14) = 66.11, p < .001) were 

found. The nature of these effects show that error rates (collapsing across trial type) were 

significantly lower after the learning criterion was fulfilled, and that more errors were 

committed for Go stimuli than No Go stimuli before participants acquired the response-

Fig. 2. Graphs of trials to learn by trial type and error rate by trial type and learning condition. (Left) One average, 
Go stimuli took significantly longer to learn than No Go stimuli. (Right) Error rates for both types of stimuli significantly 
decreased after the learning criterion was met. However, participants made more errors with Go stimuli than No Go stimuli 
during the learning period. Once the learning criterion was met, there were no differences in the number of errors committed 

between the stimulus types.  
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mapping (Fig 2.). Additionally, a significant interaction between these two factors was 

found, demonstrating that there was no difference between Go and No Go errors after the 

learning criterion was satisfied, F(1, 14) = 35.3, p < .001. 

Training Effects 

 All participants sufficiently acquired the task during the first half of the first 

session and did not commit enough errors during sessions 2 and 3 to define a secondary 

or tertiary learning period. Due to this, we labeled days 2 and 3 as full training sessions 

throughout all of our analyses, where we assume most correct responses performed 

during these days were a result of a participant's knowledge and expertise in the task, and 

not due to chance as they may have been during the pre-learning period during day 1. We 

refer to "training effects" as effects occurring after participants satisfied the learning 

criterion during sessions 1 - 3, accordingly. When computing training effects, only the 

post-learning data from day 1 were used for comparison. 

Trial type and training session (Days 1 - 3) served as within-subject factors in a 

repeated measures ANOVA which evaluated error rates across days. Significant main 

effects for trial type (F(1, 14) = 18.74, p < .001) and training session (F(1.23, 17.18) = 

31.49, p < .001, Greenhouse-Geisser corrected) were found. The effects show that error 

rates decreased with practice, and more errors were committed for Go stimuli than No Go 

stimuli. A significant interaction between trial type and practice session was also found, 

F(1.31, 18.31) = 7.44, p = .009 (Greenhouse-Geisser corrected), which showed more 

errors committed for Go trials compared to No Go trials on days 1 and 3, but no 

difference on day 2, (Fig. 3). When collapsing across trial type, significant linear (F(1, 

14) = 53.955, p < .001) and quadratic (F(1, 14) = 9.02, p = .006) trends were found (Day 
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1 M = 14%, Day 2 M = 5.6%, and Day 3 M = 4.2%). A comparison of the means shows 

significant differences in the errors committed on the first day compared to the second 

and third days (t(28) = 6.27, p < .001 & t(28) = 7.35, p < .001, respectively), but no 

significant difference in errors between the second and third days (t(28) = 1.07, p = .54). 

 For the reaction time (RT) analysis, RTs for trials where participants made a 

correct response (CorF) were labeled as "Correct", and RTs for trials where participants 

made an incorrect response (errors of commission, correct responses to a Go stimulus 

committed with the incorrect hand, and correct responses to a Go stimulus committed 

with the correct hand but incorrect digit) were labeled as "Errors" in an accuracy 

category.  

Accuracy and training session were included as within-subject factors. Significant 

main effects of accuracy (F(1, 14) = 65.77, p < .001) and training session (F(1, 28) = 

164.85, p < .001), along with an interaction between the two (F(2, 28) = 22.70, p = .009) 

were found. A mean inspection shows that RTs were significantly shorter for correct 

responses compared to errors (Correct M = 647.93, Errors M = 735.67). However, RT 

Fig. 3. Graphs of error rates and reaction times across training days. (Left) Error rates decreased with practice, and the 
number of errors were greater for Go stimuli than No Go stimuli for all sessions except for day 2. (Right) Reaction times 
(RT) decreased with training. In addition, RTs for correct responses were quicker than those for incorrect responses. 
However, there was only a difference in RT for correct and incorrect responses during the first training session, suggesting 
that errors made during this day may differ in nature than those committed during subsequent training days. This interaction 
corresponds to the session where learning was achieved for all participants.  
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differences for trial accuracy were only significantly different during the first training 

session (Fig. 3). This interaction suggests that the nature of errors committed during the 

first training session (where learning occurred) may differ than those which occurred in 

the remaining training days. Collapsing across accuracy, RTs decrease in a significant 

linear trend, F(1, 14) = 295.72, p < .001, Day 1 M = 881.88, Day 2 M = 629.59, Day 3 M 

= 563.95. Significant differences in all pair-wise comparisons of these RTs were found, 

Day 1 v. Day 2: t(28) = 13.65, p < .001, Day 1 v. Day 3: t(28) = 17.20, p < .001, and Day 

2 v. Day 3: t(28) = 3.60, p = .004. 

Event Related Potentials 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Channel montages used to quantify the MFN and P3b. Electrodes used to quantify the MFN are highlighted in cyan. 3 distinct 
groups of channels were used to separate the P3b component by laterality (left = red, midline = green, blue = right.  
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MFN 

 For the MFN analysis, a cluster of electrodes that best represent the medial frontal 

distribution of the component were chosen (Fig 4.). To quantify the MFN, an adaptive 

mean amplitude corresponding to 20 ms before and 20 ms after the maximum negative 

peak amplitude in a window extending from approximately 180 – 300 ms after stimulus 

onset was computed for the MFN electrode cluster (blue windows in Fig. 5 and Fig. 6). 

The MFN was referenced to the nearest positive peak (P200) around 150 – 200 ms after 

stimulus onset. This method was 

applied to each individual participant 

and condition.  

MFN Learning Effects. A paired 

samples t-test was run to evaluate 

differences in MFN amplitude before 

and after learning occurred during the 

first training session. The test revealed 

a significant effect, such that the 

amplitude of the MFN decreased after 

participants acquired the task (pre-

learning M = -5.85 µV, post-learning 

M = -4.59 µV), t(14) = 3.76, p = .002. 

This effect is illustrated in Fig. 5. 

MFN Training Effects. To evaluate MFN training effects, only post-learning MFN 

amplitudes were used from day 1 and compared across the subsequent 2 days of training. 

Fig. 5. Voltage maps and waveforms of the MFN from 

representative channels for pre- and post- learning 

conditions. (Top) Voltage distributions of the MFN across the 
scalp for both learning conditions. White circles represent the 
location of the representative channel shown in the bottom of 
the figure. (Bottom) MFN waveform (blue window) displayed 

for both learning conditions. 
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A repeated measures ANOVA which used training day as a within-subjects factor 

revealed no significant effect of training day on MFN amplitude, F(2, 28) = 1.3, p = .29. 

However, looking at the means shows a slight increase in MFN amplitude across days, as 

opposed to the hypothesized decrease (Day 1 M = -4.59 µV, Day 2 M = -5.16 µV, Day 3 

M = -5.26 µV), Fig. 6. 

 

P3b 

For the P3b analysis, three sets of channels corresponding to laterality (left, 

midline, and right) were used to evaluate differences in P3b scalp topography based off 

of similar electrode sites chosen in our previous studies (Fig 4.) (Luu et al., 2007; Luu et 

al., 2011). To quantify the P3b, an adaptive mean amplitude corresponding to 22 ms 

before and after the maximum peak amplitude in a window extending from 

approximately 450 - 950 ms after stimulus onset was computed for each separate channel 

Fig. 6. Voltage maps and waveforms of the MFN from representative channel for all training days. (Top) Voltage 
distributions of the MFN across the scalp for all training days. Clear differences in negative energy can be seen around the medial 
frontal region. White circle represents the location of the representative channel shown on the bottom of the figure. (Bottom) 
MFN waveform (blue window) displayed by representative channel from each training day. Clear amplitude differences can be 

seen across training sessions.  
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grouping (red windows in Fig. 7 and Fig. 8). This method was applied to each individual 

participant and condition, so that small variations in the latency of the P3b were 

considered. 

P3b Learning Effects. A repeated measures ANOVA was performed with laterality (left, 

middle, and right) and learning condition (pre-learning and post-learning) as within-

subjects factors. A significant main effect of learning condition was found, (F(1, 14) = 

94.43, p < .001. No other main effects or interactions were found. The analysis shows 

that P3b amplitude was much larger after learning had occurred, and did not differentiate 

by hemisphere (Fig. 7). 

 

 

Fig. 7. Voltage maps and waveforms of the P3b from representative channels for pre- and post- learning conditions. 

(Top) Voltage distributions of the P3b across the scalp for both learning conditions. Clear differences in positive energy 
can be seen around the occipital region. White circles represent the location of the representative channels shown in the 
bottom of the figure. (Bottom) P3b waveform (red window) displayed by representative channels from each laterality 

condition. Clear amplitude differences can be seen between learning conditions.  
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P3b Training Effects. To evaluate P3b training effects, only post-learning P3b amplitude 

measurements were used from day 1. Training session (1, 2, and 3) and laterality (left, 

middle, and right) were included as within-subjects factors. A significant main effect of 

training session (F(2, 28) = 7.35, p = .002) was identified, no other main effects or 

interactions reached statistical significance. A trend analysis reveals a significant linear 

trend in P3b amplitude with practice when controlling for laterality, F(1, 14) = 14.42, p < 

.001. An inspection of our means shows that this trend is positive (Day 1 M = 5.63 µV, 

Day 2 M = 6.67 µV, Day 3 M = 7.30 µV), (Fig. 8). 

 Differences in peak P3b latency were computed through identifying the largest 

positive peak between 450 - 950 ms after stimulus onset and recording the segment time 

of the maximum amplitude (red windows in Fig. 8). Peak latency was not computed for 

the pre-learning P3b waveform during the first session because the shape of the P3b did 

not present a reliable "peak" to accurately perform the analysis. Instead, peak latency was 

found for the post-learning condition on session 1 and the subsequent training days. 
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Laterality and training session served as within-subject factors. A significant main 

effect of training session was found, F(1.08, 15.15) = 9.93, p = .006 (Greenhouse-Geisser 

corrected). No other main effects or interactions reached significance, suggesting that 

P3b latency did not differ as a function of topography. Our training session effect shows a 

decrease in P3b peak latency with training (Day 1 M = 703.22, Day 2 M = 620.53, Day 3 

M = 585.91), (Fig. 8). A trend analysis reveals that our latency decreased in a significant 

linear fashion, F(1,14) = 18.87, p < .001. 

P3b Correlations to Behavior. Reaction times in our study appeared to provide the most 

convincing evidence of when a participant achieved expertise in the task among all other 

behavioral measures. Large decreases in RT were observed when a participant fulfilled 

the learning criterion, and they continued to decrease slowly with practice. Additionally, 

RTs provided a convincing parallel to the decreases in errors across training days, which 

Fig. 8. Voltage maps and waveforms of the P3b from representative channels for all training days. (Top) 
Voltage distributions of the P3b across the scalp for all training days. Clear differences in positive energy can be seen 
around the occipital region. White circles represent the location of the representative channels shown in the bottom of 
the figure. (Bottom) P3b waveform (red window) displayed by representative channels from each laterality condition. 
Clear amplitude differences can be seen across training sessions.  
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is the most commonly used measure of task performance. Given the reliability of RT, we 

focus on correlating our electrophysiological data with RT only. 

 The ratio of RT to the peak latency of the P3b (RT/P3b latency ratio) has been 

used as a measure of automated cognition (Laberge, 1981; Donchin & Coles, 1988; 

Kramer & Strayer, 1988). Traditionally, the latency of the peak of the P3b is used to 

measure the amount of time a participant took to evaluate a stimulus, whereas their 

reaction time is a combined measure of how long it takes for the participant to evaluate, 

select, and execute a response to that stimulus. Fundamentally, the latency of the P3b 

cannot support this theory. Our own interpretation of this measure is consistent with 

context-updating, where the P3b reflects the updating or confirmation of contextually 

relevant information surrounding a stimulus. When evaluating changes in the RT/P3b 

latency ratio over time, significant reductions in this ratio indicate that response selection 

(RT) is moving closer to the updating or restoration of contexts; a process that closely 

follows response evaluation. This reduction indicates that responses come to fruition 

quicker as a result of automated cognition associated with the very late stages of learning 

(Kramer & Strayer, 1988). We would expect any significant reductions in the RT/P3b 

ratio to occur close to the fulfillment of the learning criterion during the initial training 

session, followed by a stabilization of the ratio across training days if the participants 

sufficiently acquired the task and reached automated cognition within the predicted time 

frame. 

Due to the unreliable nature of interpreting single-trial ERPs, post-learning trials 

from the first training session were grouped into 4 equal bins for each participant. 

Separate ERPs were computed for each bin, resulting in 4 average, reliable ERPs per 
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participant. The peak of the P3b was computed by locating the largest positive peak 

between 450-950 ms after stimulus onset and recording the time of the maximum 

amplitude. The RT for each bin was then divided by the peak of the P3b for that bin (Fig. 

7). A significant effect for bin number was found in a repeated-measures ANOVA, F(3, 

42) = 3.79, p = .02. Polynomial contrasts revealed a significant linear trend, F(1, 14) = 

7.71, p = .008, and a pairwise comparison using Tukey's method shows that there was 

only a difference in RT/P3b between the first bin and the third and fourth bins (t(42) = 

2.87, p = .04, and t(42) = 2.84, p = .03, respectively). Results from this analysis suggest 

that the RT/P3b ratio decreased over time, and then stabilized toward the end of the first 

training session. 

To help us evaluate whether automated cognition improved with extended 

training, the RT/P3b ratio for all post-learning correct responses during the first session 

were compared to the RT/P3b ratios of the subsequent training sessions. In a repeated-

measures ANOVA which included training session as a within-subjects factor, a 

significant main effect for training session was found, F(1.22, 16.03) = 8.62, p = .007 

(Greenhouse-Geisser corrected). Within this effect, a significant linear trend was 

discovered, such that the RT/P3b ratio further decreased with extended training, F(1, 14) 

= 15.11, p < .001. However, a post-hoc pairwise comparison of means (Tukey's HSD) 

showed that the biggest drops in RT/P3b ratio can be seen when comparing the first 

training session to the second and third (t(28) = 3.21, p = .009, and t(28) = 3.89, p = .002, 

respectively). No significant difference between the RT/P3b latency ratio between 

session 2 and 3 were found, which suggests the development of automated cognition on 

the task peaked following the initial training session (Fig. 9). 
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Source Analysis 

MFN 

Due to ocular artifact contamination during the time course of the MFN, source analysis 

for the MFN is not reliable.  

P3b 

Pre-Learning. Source localization was performed using the LAURA constraint and a 

regularization constant of 10-3 on grand-averaged data of all 15 participants. Sources 

were obtained for the timepoint displaying the largest P3b amplitude for both pre- and 

post-learning conditions for day 1 (585 ms) (Fig. 7). Our analysis suggests sources of the 

P3b in Cuneus and Precuneus (BA7), Lingual Gyrus (BA18), and Fusiform Gyrus 

(BA37) for the pre-learning condition, and similar sources in the post-learning condition 

with the addition of Cingulate Gyrus (BA31) and Posterior Cingulate Cortex (BA23). 

The general absence of cingulate cortex activity in the pre-learning condition is 

important, as it reflects the lack of P3b presence during the early learning stage (yellow 

circles, Fig. 10). 

Fig. 9. RT/P3b latency ratio plots. (Left) RT/P3b latency ratio displayed for four consecutive bins during the first training 
session. The ratio decreases as participants progress through the first training session, and then levels-off as they reach the 
end. (Right) RT/P3b latency ratio for all three training sessions. The RT/P3b latency ratio drops significantly following the 

end of the first training session, but stabilizes with extended training.  
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Post-Learning. The post-learning P3b derived from the first training session was used in 

comparison to the P3b's obtained throughout the entirety of the subsequent training days. 

Sources of the maximum peak of the P3b (585 ms) are displayed in Fig. 9. All sources 

overlap with those found in Fig. 8, however the amount of cingulate cortex activity 

appears to differ as a function of training day and P3b amplitude (yellow circles, Fig. 11). 

Specifically, the PCC demonstrates greater engagement with practice, whereas the 

remaining sources do not reflect this increase. 

 

Fig. 10. Source estimates for the P3b during the learning session. Activity in posterior cingulate cortex (yellow circles) is 
absent during the period before participants acquired the response mappings, and is visible immediately after. Green lines at 

each voxel correspond to orientation vectors pointing in the positive direction. 
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Discussion 

 The main goals of this study were to extend the relation between the MFN and 

P3b to learning of a realistic category learning task, in addition to framing the results 

within the dual model of learning and development of expertise. The results showed that 

participants learned the task, and their performance continued to improve with training. 

As participants' performance improved, MFN and P3b amplitude along with P3b latency 

closely tracked the improvements. Consistent with the canonical frontal-posterior shift 

during learning, the MFN and P3b marked the onset of learning in the first session with 

Fig. 11. Source estimates for the P3b across training sessions. Activity in posterior cingulate cortex (yellow circles) increases 
with training. 
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the MFN amplitude decreasing with learning and the P3b amplitude increasing. Across 

training days, behavior and P3b amplitude continued to show a positive linear trend, 

which is consistent with our previous results. However, MFN amplitude increased with 

extended practice. Although this effect was not statistically significant, it poses questions 

for the role of the ACC during extended training and how our results fit into the general 

framework   

Learning and Practice 

 The Go stimuli took significantly longer for our participants to acquire 

compared to No Go stimuli. This result can be explained by the fact that there were more 

ways to make an incorrect response for Go stimuli (4) compared to No Go (1). The larger 

variety of errors for Go compared to No Go can also explain the large margin of errors 

seen for the Go Stimuli over No Go stimuli in the initial training phase (pre-learning 

condition from session 1). However, once participants fulfilled the learning criterion, the 

difference in errors between our stimulus types diminished. This interaction is indicative 

of a successful acquisition of category associations. 

 The dual stage model of learning is supported by the behavioral data. 

Specifically, the magnitude of error rate and RT reductions between the first and second 

sessions and the much smaller difference in these two behavioral measures between the 

second and third sessions suggest a transition between early and late learning systems 

occurred (Shiffrin & Schneider, 1977; Chein & Schneider, 2005; Gabriel et al., 2002). 

Unlike error rates, which showed no statistical difference between the second and third 

sessions, a significant RT reduction was observed during this interval. During the first 

training session, incorrect response RTs were significantly longer than fully correct 
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response RTs. This difference decreased with training, as shown by a statistically 

significant training session x accuracy interaction. This implies that the nature of errors 

committed on the first day, when participants were learning the rules of the task, were not 

the same as those committed in the extended training days. The early learning stage is a 

time where controlled cognitive processing is most prominent, reflecting the trial-and-

error strategy associated with early learning (Logan, 1988). The shorter RTs associated 

with errors after learning suggest that a different mode of performance is engaged, being 

supported by the later learning system. Late learning stage errors, in the present task, 

likely reflects impulsive responses because they are associated with faster RTs than 

correct responses, even though this difference did not reach statistical significance.   

Event-Related Potentials 

MFN 

 Our initial hypothesis for the MFN was based off well-replicated fMRI findings 

that showed decreased ACC activity as cognitive control decreased in later stages of 

learning. During the first training session our hypothesis was supported, such that the 

MFN (indexing ACC engagement) decreased in amplitude as participants reached 

proficiency in the task. However, a mean comparison across training days showed that, 

after learning occurred, the MFN increased in amplitude from day to day. Although not 

statistically significant perhaps due to a small sample size, the evidence for the increase 

with extended training was consistent and matched that of our previous findings (Luu et 

al., 2010). Yet, in our previous studies, the MFN increased in the initial training session 

as well, so why would the MFN detract from these findings in only the first session? 
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 Folstein and Van Petten (2008) have demonstrated that there are two types of 

MFN (or N2) components, with one that indexes cognitive control and the other indexing 

the detection of novelty or mismatch. If the MFN seen in the current experiment was 

consistent with the cognitive-control MFN, we would have seen ours decrease across all 

training days. In contrast, if the MFN seen in the current experiment was consistent with 

mismatch or novelty monitoring we would expect it to increase. Previously we had 

formed a theory around this type of MFN which suggested the mid-ACC continuously 

monitors actions in relation to task parameters once the context for the response mapping 

has been solidified with training. It could be that the MFN seen in the initial training 

session is more reflective of the dorsal ACC establishing effortful control, and the MFN 

increase seen across days is a separate MFN altogether which indexes the mid-ACC’s 

role in action monitoring. One piece of supporting evidence for an increasing MFN 

amplitude with extended training comes from recent work with mice that has shown 

frontal areas become more engaged after learning has occurred. During a visual change 

detection task, Stern et al. (2018) demonstrated that visual cortex responded to changing 

stimuli during the naïve learning stage while frontal areas did not. With training, 

responses from visual cortex stayed the same while the average response rates of frontal 

areas increased along with synchronized global engagement of the entire cortex in 

response to task-relevant stimuli.  

 An alternative theory for the oscillating MFN seen in our study could be that the 

MFN is indeed indexing cognitive control or action monitoring, but the nature of the 

stimuli used in our task may be making it improbable to differentiate between which one 

is present at a given time. The stimuli used in our task consisted of football defensive 
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formations that had a varying degree of spatial configurations. The strategies our 

participants employed to learn the response mappings varied dramatically based off of  a 

debriefing questionnaire. Some participants used standard rote memorization, whereby 

the participants relied on constant repetition of the stimuli, while others developed their 

own explicit counting rules, and some attempted to compare the overall similarity of the 

formation shape to other members of the same category. Some participants used multiple 

strategies that depended on the category. It is possible that these strategies, although 

sharing a common goal (that is to learn the response mapping), are recruiting different 

memory systems each with a different reliance upon frontal cortical areas. For example, a 

visual similarity strategy has been shown to not rely as heavily on PFC compared to a 

strategy involved rule-application (Zeithamova & Maddox, 2006). The unreliable trend of 

the MFN could be the result of averaging the activity of multiple memory systems 

together. Yet, because the distribution of stimuli into each category was randomized and 

the strategies used by our participants varied so widely we cannot definitively test this 

theory. Relatedly, more variable reaction times during the first day of training could have 

led to an initial attenuation of the MFN amplitude during the first day of training. As 

behavior became more routinized and RT variance stabilized with extended training, the 

amplitude of the MFN increased. Reconciling these nuances will be essential for future 

interpretations of the MFN and how it relates to expertise.  

P3b 

 Consistent with our previous results, P3b amplitude increased with learning and 

extended practice (Luu et al., 2007; Luu et al., 2009; Luu et al., 2011). In other studies, 

such as that performed by Barcelo et al., (2000), P3b amplitude was found to increase 
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with performance on a Wisconsin card sorting task and decreased whenever participants 

were required to learn a new rule. We hypothesize that the amplitude of the P3b observed 

in the current study and in previous studies is consistent with the dual stage learning 

model. Under this model, we propose that the P3b reflects activity of a cortical network 

which forms a representation of an environmental context that is consolidated with 

practice, and the involvement of this network increases in the later learning stage in order 

to reinforce actions based on an action context (Donchin & Coles, 1988; Katayama & 

Polich, 1998). 

 In the first session when the early learning system is expected to be strongly 

engaged, the P3b was not apparent until participants demonstrated that the task was 

acquired. In a previous study we showed a large P3b that is time-locked to the onset of 

the feedback in the early learning stage and an absence of the stimulus-locked P3b. Once 

participants acquired our previous task, the feedback-locked P3b diminished, and was 

followed by the presence of a stimulus-locked P3b (Luu, et al., 2003). In the present 

study, even with the appearance of the P3b in the first session after learning, the dramatic 

P3b amplitude increase as well as the reduced latency observed with continued training 

suggest that the late learning system becomes progressively more engaged. In the present 

study we infer that, when the context was formed during the transition to the late learning 

stage, the stimuli themselves became a part of the context representation such that actions 

are now supported as part of the context.  

 The process of context updating, wherein action is integrated to be part of the 

context, helps us interpret the observed reduction of the RT/P3b latency ratio. In the 

present study, RT/P3b latency ratio was found to decrease sharply with training and 
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gradually stabilized with extended practice. It has been shown that RT is dissociable from 

P3b latency, with P3b latency being indicative of evaluation speed whereas RT is the 

behavioral output affected by multiple cognitive processes. The RT/P3b latency ratio 

decrease with training suggests that the action is now more closely integrated with the 

contextual representation, requiring less involvement of other cognitive or brain 

processes.  

Source Analysis  

P3b 

 Previously, sources of the P3b have been localized to ventrolateral prefrontal 

cortex, posterior parietal cortex, temporoparietal junction, and inferior temporal cortex 

using combined fMRI and EEG (Bledowski et al., 2004; Bledowski et al, 2006). 

Although no statistical analyses were run, our source analysis in the present study suggest 

similar sources for the P3b in the lateral and medial areas of parietal cortex (BA7). In 

addition, we found sources in Lingual Gyrus (BA18) that are consistent with Positron 

Emission Tomography (PET) results which showed an increase in Lingual Gyrus and 

Parahippocampal Gyrus involvement during visuomotor mapping (Toni & Passingham, 

1999). Our findings of strong cingulate gyrus and posterior cingulate cortex sources 

(BA31 and BA23) overlap with the P3b sources found in the human iEEG literature, non-

human vertebrate literature, and our previous attempts at source analysis discussed earlier 

(Halgren et al., 1994; Halgren et al., 1995a; Halgren et al., 1995b; Baudena et al., 1995; 

Smith et al., 1990; Brankack, et al., 1996; Shin, 2011; Kahana et al., 2001). An 

interesting result from this study is the lack of posterior cingulate cortex involvement 

before learning occurred, but the clear presence of all other sources for the P3b during 
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that time period. As learning developed, and with extended practice, the PCC appeared to 

increase in activation while the remaining sources were relatively stable (i.e. they did not 

follow the linear activation pattern shown in the PCC). We interpret this finding as a 

reflection of the representation and constant updating of action contexts carried out by the 

posterior dorsal corticolimbic system in the context-updating model of the P3b.   

Limitations 

 One limitation of the current study is the presence of saccades and other ocular 

artifacts in the EEG. In order to closely mimic the field of view a quarterback would 

realistically have on the playing field, the stimuli used in our task were large and caused 

our participants to horizontally scan each picture for identifying features. The presence of 

artifacts prevented us from subjecting our data to whole-brain analyses such as Principle 

Components Analysis (PCA), which would have helped us identify other potential 

components that correlate with the learning seen in our study. Ocular artifacts also 

prevented us from performing source analysis on the MFN. Source analysis would have 

been useful for determining whether the sources of the MFN shifted as a result of training 

(e.g. from anterior to middle cingulate cortex), and in turn would help us further explore 

the reasoning behind the MFN’s linear increase across days 2 and 3.  

 Another limitation of our study is that EEG only measures cortical activity, 

whereas there are numerous other studies which suggest several subcortical structures are 

essential to the learning process. This shortcoming forces us to rely on ERPs that may not 

directly reflect the processes we are interested in, for example we are interested in 

memory retrieval, but the P3b is an indirect way of measuring this component. There is a 

substantial amount of empirical evidence that suggest subcortical and cortical systems 



 

 

 

- 46 -

work synchronously during the early and late learning stages (Toni & Passingham, 1999; 

Groll, de Lange, Verstraten, Passingham, & Toni, 2006; Brovelli, Laksiri, Nazarian, 

Meunier, & Bossaoud, 2008). Similarly, it is known that some memory systems rely 

more heavily on subcortical structures than others, and thus if our hypothesis that the 

inconsistent trend of the MFN seen in our study is the work of averaging activity from 

different memory systems together, we would not be able to explore all components of 

those systems with EEG alone.  

Conclusions 

The goal of the present study was to investigate the changes in the dorsal posterior 

corticolimbic system and medial frontal areas as participants achieve learning and skilled 

performance in a realistic categorization task. By using a task that is relevant to 

participants' background and by leveraging information of the brain responses with 

behavioral measures, we were able to support previous findings and extend them to more 

realistic learning situations, while at the same time raising more questions about the role 

of frontal control regions during categorization of realistic stimuli. Results from this 

study serve as motivation for the study in the next chapter which will utilize fMRI to 

further understand the cortical and subcortical sources involved in our category learning 

task.     
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CHAPTER III 

DISSOCIATING MULTIPLE MEMORY SYSTEMS DURING 

FOOTBALL FORMATION CATEGORIZATION 

The experiment and analyses described in this chapter were developed by myself and Dr. 

Zeithamova. Dr. Zeithamova contributed substantially to this work by developing a set of 

guidelines for univariate and multivariate fMRI analyses. I was the primary contributor to 

the experimental design, performed the analyses under Dr. Zeithamova’s guidance, and 

did all the writing. 

Introduction 

 Prior research has shown that people are able to employ the memory system that 

is better suited for a given category structure. For example: there is behavioral and neural 

evidence for engaging a rule-based system when categorizing stimuli separable by a 

unidimensional rule, while engaging a similarity-based system for categories better 

separable by overall perceptual similarity (Rips, 1989; Smith & Sloman, 1994). As 

discussed in Chapter I, common methods for dissociating between memory systems 

require multiple tasks where each system in engaged in insolation. But in everyday tasks, 

it is likely that perceptual and formal categorization rules may both be drawn upon, 

perhaps on a case-by-case basis (Ashby et al., 1998; Poldrack et al., 2001). To date, no 

experiment has used neuroimaging to definitively demonstrate switching between the 

rule-based and perceptual similarity system in a single task.  

 The successful switching between memory systems has only been inferred 

through behavioral studies. Rips (1989) pioneered the first attempt at understanding if 

people can engage different strategies (supported by different memory systems) to 
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perform categorization of a single stimulus set. In his task, subjects were presented with 

two object categories along with a description of a test object where the description only 

included a value on a single dimension, such as the object’s diameter. Subjects were told 

ahead of time that the test objects were between the extreme values of the two categories 

on every trial. The categories always included one “variable” category where objects 

within this category can vary along the relevant dimension (such as pizza, as they come in 

difference sizes) and one “fixed” category where objects within this category cannot vary 

along the dimension (such as a quarter). If subjects were asked to apply a rule to govern 

category membership, subjects overwhelming placed the test objects into the “fixed” 

category, whereas if they were asked to make a similarity judgement they were more 

likely to place the test object into the “variable” category. The results from this 

experiment are the only evidence that people can utilize rule-based and similarity-based 

categorization to classify items within a single task, but made no attempts at correlating 

these behavioral differences with the memory systems supporting each strategy. 

 Recall that the rule-based categorization system generates and applies explicit 

rules for stimulus classification through hypothesis testing. On each trial, the learner 

selects a strategy or rule, and if feedback to their response indicates this rule was correct 

then the rule is recycled on the next trial. If the feedback indicates an incorrect response, 

the learner must generate a new rule and continue the cycle until they discover a rule that 

maximizes performance. Hypothesis testing requires participants to consciously attend to 

the rule they are applying and interpret the feedback which will inform their rule 

selection on subsequent trials (Ashby et al., 1998; Maddox, Ashby et al.,  2004; 

Zeithamova & Maddox, 2006; Waldron & Ashby, 2001).  Neuroimaging studies of rule-
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based categorization have shown that this system reliably engages dorsal lateral 

prefrontal cortex along with caudate nucleus – structures that are key to executive 

attention (Lombardi et al., 1999; Rao et al., 1997; Rogers et al., 2000; Ashby & Ell, 

2001). In addition, patients with legions to one or both of these regions perform poorly on 

rule-based categorization tasks while having little to no impairment on tasks that engage 

perceptual similarity (Brown & Mardsen, 1988; Robinson et al., 1980).    

 The perceptual similarity system is commonly engaged when subjects view a 

stimulus and rely on the retrieval of information from other stimuli that are similar to the 

probe to make a categorization decision (Medin & Shaffer, 1978). This system is also 

employed during A/Non-A prototype learning, where subjects are trained on exemplars 

from a single category and then asked whether a probe stimulus belongs to the trained 

category (Category A) or some other category (Category Non-A) (Zeithamova et al., 

2008). The former strategy suggests subjects rely on relevant features abstracted from 

related stimuli to perform classification, whereas in prototype learning subjects compare 

the probe stimulus to a representative example (prototype) of the category. Regardless, 

the perceptual similarity system involves posterior visual areas, and does not rely as 

heavily on the working memory system used for rule-based categorization (Aizenstein et 

al., 2000; Reber, Stark, & Squire, 1998a; Reber, Stark, & Squire, 1998b; Reber & Squire, 

1999).  

Our results from Chapter II serve as motivation for the current experiment, where 

we believe that subjects flexibly switched between explicit rule application and 

perceptual similarity analysis to categorize the football formations. However, the spatial 

resolution of EEG and the arbitrary category structure used in the previous task made it 
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difficult to resolve this speculation. The goal of the current experiment is to examine the 

extent to which two different memory systems can be engaged during a single task. To 

evaluate this question, we will use the same categorization task from Chapter I, except we 

will structure the categories such that members of the same category share a common set 

of features instead of the arbitrary association used previously. Formations from two 

categories will be visually similar to each other and require subjects to discover an 

explicit counting rule to accurately categorize these formations. One category of 

formations will be visually distinct from the other two, where subjects should 

theoretically rely on perceptual similarity when classifying members of this category. We 

hypothesize that the category structure used in this task will force subjects into flexibly 

changing between the rule-based and perceptual similarity-based system on a trial-by-

trial basis, and this alternation will be measurable with fMRI.  

Method 

Participants 

 Eleven right-handed subjects between the ages of 18 and 30 (M = 24.2) were 

recruited from the University of Oregon Human Subjects Pool to participate in this 

experiment (5 males, 6 females). Subjects had no self-reported neurological or 

psychiatric conditions, as well as no MRI contraindications. Subjects were compensated 

$35 for their participation and the protocol was approved by the Electrical Geodesics, 

Inc. and University of Oregon IRBs.  

Task 

 The task used was designed to interchangeably recruit a rule-based or similarity-

based memory system to categorize 3 categories of football defensive formations. Two 



 

 

 

- 51 -

formation categories were very similar to each other and one category was visually 

distinct from the other two. For the two similar categories, subjects needed to discover an 

explicit counting rule in order to categorize members of these two groups reliably: One 

category of formations displayed three people on the line of scrimmage, while the other 

had four. For the visually distinct category, subjects could rely on a simple visual 

similarity analysis to recognize members of this category as there were significantly more 

players on the line of scrimmage (six). This forced subjects to focus their attention to the 

line of scrimmage while ignoring irrelevant players positioned elsewhere on the field.   

Every category had three formations, each sharing the defining number of players 

on the line of scrimmage for that category, for a total of nine formations used throughout 

the experiment. On each training trial, subjects were shown a random formation for 2.5 s 

and were tasked with pressing a button on a keypad to place the formation into one of the 

three categories during the 2 s window (Fig. 12). Corrective feedback was given to the 

subject immediately after making their response and was on the screen for 1.5 s. The 

inter-trial-interval was optimized for event-related-design using Optseq2 software and 

varied between 2 and 8 s (Dale, 1999). Each formation was shown six times during each 

training block and there were six total training blocks.  

 

Fig. 12. Diagram of events in 

a training trial for 

experiment 2. Formations 
were shown for 2.5 s. 
Immediately following a 
response, contingent feedback 
was shown for 1.5 s . Upon 
feedback termination, a 
fixation mark was shown for 
the duration of the inter-trial 
interval of 2 – 8 s before the 

next formation was presented 
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A generalization block was implemented at the end of the experiment to test the 

subject’s ability to generalize the strategies they acquired during training. During this 

block, the nine old formations were intermixed with nine new formations that belonged to 

the learned category structures. Each stimulus was randomly shown one at a time and 

was on the screen for 2 s while the subject used a response pad to categorize the stimulus. 

No feedback was given during this block, and instead a black fixation screen was shown 

for 10 s before the next stimulus was presented – resulting in a total fixed trial length of 

12 s (Fig. 13). Each new and old stimulus was shown only once during the generalization 

block.  

 

fMRI 

 MRI data was acquired with a 3T Siemens Skyra. A high-resolution T1-weighted 

MPRAGE was acquired for co-registration and normalization before the task was 

administered (TR = 2.5 s, TE = 3.41 ms, flip angle = 7°, matrix size = 256x256, FOV = 

256 mm, 1 mm isotropic). Whole-brain fMRI was acquired using a gradient-echo EPI 

pulse sequence: TR = 2 s, TE = 26 ms, 100x100 matrix, FOV = 200 mm, 72 oblique axial 

slices, no skip, 2 mm isotropic voxels, GRAPA factor 2, multiband factor 3.  

 

Fig. 13. Diagram of 

events in a 

generalization trial for 

experiment 2. 

Formations were shown 
for 2.5 s regardless of 
when a subject made a 
response. No feedback 
was given. Instead, a 
fixation cross appeared 
for a fixed 9.5 s until the 
next formation was 

shown. 
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Procedure 

 Before coming to the scanning center, subjects were pre-screened over the 

telephone to ensure eligibility. Upon arrival at the center, a structural T1 scan was 

acquired followed by an exposure block with simultaneous scanning. During this block, 

subjects were asked to passively look at the screen and refrain from pressing any buttons. 

No other context or instructions were given. Each of the nine training formations were 

shown one at a time for 2 s each before a fixed 10 s ITI. Each formation was shown 4 

times for 36 total trials. Following the exposure block, subjects were read instructions for 

the experiment. They were told how many formations there would be in the experiment, 

along with the set number of categories the formations belonged to. Their job was to 

figure out which formations belong to each category by pressing the buttons on their 

response pad and utilizing the corrective feedback. A brief practice test (un-scanned) was 

given where they learned to categorize unrelated formations. After practice, six training 

blocks were run with brief breaks in-between, and after training the subjects sat through 

another exposure block where they passively viewed each stimulus. To end the 

experiment, subjects went through the generalization block, given only the instructions 

that they were going to go through a final block with no feedback. They were not told 

whether there would be novel formations in this block. Subjects were asked to write-

down their strategies in a debrief questionnaire for categorizing the formations before 

receiving compensation and leaving the center.   
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Results 

Behavioral 

Due to noise caused by motion during scanning, only 10 out of the 11 subjects 

were retained for analysis. When evaluating performance for each stimulus category 

across training runs, we can clearly see that subjects performed better at categorizing the 

visually distinct category compared to the two visually similar categories (Fig. 14). 

However, this performance difference was only present for the first 3 training runs, and 

by the end of run 4 subjects were able to accurately identify members of all categories 

equally.  
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Fig. 14. Categorization accuracy by run. Subjects accurately categorized the visually distinct category 
much quicker than the two visually similar categories. Accuracy for the visually similar categories peaked 

between runs 4 and 5, which we infer is the time at which subjects discovered the counting rule.  



 

 

 

- 55 -

A confusion matrix shows that subjects commonly mixed up the two visually 

similar categories when making errors. By block 4, subjects limited their confusion, and 

we can infer that this was the point at which most subjects discovered the explicit 

counting rule which allowed them to differentiate between members of the two categories 

(Fig. 15). 

 

The generalization run was used to ensure subjects acquired the correct 

categorization strategies by testing their ability to generalize their strategies to novel 

stimuli belonging to the same categories used in training. On average, subjects completed 

the generalization run with 92% accuracy for the visually distinct category and 88% 

accuracy for the visually similar categories (Fig. 16). Had subjects been relying on the 
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Fig. 15. Confusability matrix. During the first 3 training blocks, subjects commonly confused the two visually similar 
categories for one another. By run 4, subjects were able to accurately dissociate between these two categories. Subjects 

rarely confused any other category when classifying formations in the visually distinct category.  
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declarative recall of individual stimuli throughout training, their performance in the 

generalization run would have been closer to 50%. 

 

Univariate Analysis 

Training Runs 

Data from each training run and each participant was analyzed separately at a first 

level analysis. Visually distinct and rule-separable correct trials were modeled separately 

as two predictors. Each category stimulus onset time was convolved with a hemodynamic 

response function and entered into a general linear model with their temporal derivatives 

to estimate beta weights. Data from run 4, 5, and 6 (the runs after subjects could perform 

the task with proficiency) were combined at a second-level using fixed-effects analysis. 

A group analysis was then run, with contrasts showing areas that were more engaged 

during visually distinct trials over rule-separable trials, and vice-versa (Fig. 17). 
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Fig. 16. Generalization accuracy graph. During the generalization block, performance was highest for the visually 
distinct category – which included novel and old stimuli. Accuracy was slightly lower for the two visually similar 

categories, although not statistically significant.   
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Individual voxels were considered active when reaching Z > 1.9 and surviving a whole-

brain cluster size threshold set at p < .05 (Worsley, 2001).  

  

 Consistent with our hypotheses, the superior and inferior frontal gyri were 

engaged significantly more on rule-separable trials compared to trials categorizable using 

perceptual similarity (red clusters, Fig. 17).  The right hippocampus, a region associated 

with declarative recall, was also engaged during rule-separate trials. For perceptual 

similarity trials, the lateral occipital cortex and fusiform gyrus were engaged significantly 

more when compared to rule-separable trials (blue clusters, Fig. 17). A summary of the 

top 11 regions associated with each condition is displayed in Table 1 and Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Univariate contrasts of Rule >Similarity (Red) and Similarity > Rule (Blue) during training. Red: dorsal lateral 
and inferior frontal areas along with hippocampus were engaged significantly more during rule application compared to 
perceptual similarity analysis. Blue: Fusiform gyrus and lateral occipital cortex were engaged significantly more during 
perceptual similarity analysis compared to rule application.    
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Table 1 

 

 

Table 2 

 

 

 

 

Cluster location and size for Rule >Similarity contrast in blocks 4, 5, and 6

Location Cluster Size (Voxels) Z-Value X Y Z

L. Sup. Fr. Gyrus 58 2.79 -54 44 -10

L. IFG 50 2.95 -50 30 14

L. Sup. Fr. Gyrus 38 2.72 -12 40 56

L. Sup. Fr. Gyrus 34 2.47 -16 56 38

R. Hippocampus 26 2.88 22 -34 -10

L. Sup. Temp. Gryus 25 2.67 -50 10 -16

R. Fusiform Gyrus 25 3.04 40 -44 -20

L. Suppl. Motor Cortex 24 2.72 -10 -12 56

R. Lateral Occipital Cortex 22 2.42 58 -64 24

Brain Stem 22 2.63 6 -22 -28

R. Mid. Temp. Gyrus 20 2.56 40 -58 2

Cluster location and size for Similarity >Rule contrast in blocks 4, 5, and 6

Location Cluster Size (Voxels) Z-Value X Y Z

R. Lateral Occipital Cortex 519 3.16 6 -74 36

R. Lateral Occipital Cortex 154 2.87 34 -62 62

L. Fusiform Gyrus 106 3.17 -20 -66 -18

L. Lateral Occipital Cortex 98 2.83 -36 -56 38

R. IFG 89 3.25 20 56 -6

L. Post. Cingulate Gyrus 70 2.88 -8 -40 48

R. Lateral Occipital Cortex 55 2.47 20 -88 38

R. Fusiform Gyrus 52 2.62 20 -54 -16

L. Middle Frontal Gyrus 49 2.77 -38 34 18

R. Occipital Pole 41 2.34 20 -104 -10

Brain Stem 40 3.05 22 -32 -42
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Generalization Run 

 Similar to the preprocessing workflow used for the training runs, data from each 

subject was analyzed separately at a first-level analysis. Visually distinct and rule-

separable trials that involving new stimuli used only in the generalization block and old 

stimuli used during training were modeled as four separate predictors (i.e. Novel-Rule, 

Novel-Similarity, Old-Rule, Old-Similarity). Each category stimulus onset time was 

convolved with a hemodynamic response function and entered into a general linear model 

with their temporal derivatives to estimate beta weights.  A group analysis was then run, 

with contrasts showing areas that were more engaged during visually distinct trials over 

rule-separable trials, and vice-versa (Fig. 18).  Individual voxels were considered active 

when reaching Z > 1.9 and surviving a whole-brain cluster size threshold set at p < .05 

(Worsley, 2001). 

Results from our univariate analysis show that the left caudate nucleus, left 

superior frontal gyrus, and left inferior frontal gyrus were engaged significantly more on 

rule-based trials compared to perceptual similarity trials (Fig. 18). Caudate nucleus, 

instead of hippocampus, is one of the only observable differences between the training 

and generalization contrasts for this condition. A list of the top 11 clusters from this 

Fig. 18. Univariate contrasts of Rule >Similarity (Red) and Similarity > Rule (Blue) during generalization. Red: Frontal 
control regions were engaged significantly more during the rule-based trials compared to similarity-based trials during 
generalization. A cluster over caudate nucleus was also found. Blue: Similarity-based trials relied more heavily on lateral 

occipital cortex compared to trials separable by a counting rule.   
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contrast are listed in Table 3. In addition, the lateral occipital cortex and right fusiform 

gyrus were engaged significantly more for perceptual similarity trials over rule-separate 

trials during generalization (Fig. 18). A summary of the top 11 clusters is shown in Table 

4.  

Table 3 

 

Table 4 

 

Cluster location and size for Rule >Similarity contrast in generalization block

Location Cluster Size (Voxels) Z-Value X Y Z

L. Caudate Nucleus 290 3.5 -8 -10 24

Cerebellum 129 3.22 16 -72 -28

Cerebellum 125 3.43 32 -80 -22

Cerebellum 90 3.18 4 -50 -10

L. Sup. Frontal Gyrus 88 3.21 -28 6 64

L. Lateral Occipital Cortex 73 3.17 -26 -78 50

R. Lateral Occipital Cortex 71 3.08 40 -74 42

L. Inf. Frontal Gyrus 67 3.22 -42 22 4

Cerebellum 63 3.3 -26 -90 -26

L. Sup. Frontal Gyrus 59 3.17 -42 46 20

Brain Stem 58 2.92 14 -16 -38

Cluster location and size for Similarity >Rule contrast in generalization block

Location Cluster Size (Voxels) Z-Value X Y Z

R. Lateral Occipital Cortex 1922 4 18 -100 6

R. Fusiform Gyrus 335 3.41 12 -72 -2

R. Inf. Frontal Gyrus 213 3.11 62 6 12

L. Postcentral Gyrus 144 3.35 -40 -26 54

L. Sup. Temporal Gyrus 143 3.49 68 -24 28

Cerebellum 113 3.09 -20 -72 -52

L. Fusiform Gyrus 100 2.88 38 -54 -24

R. Mid. Temporal Gyrus 99 3.13 66 -40 2

R. Mid. Frontal Gyrus 82 3.25 32 18 30

R. Mid. Temporal Gyrus 79 3.37 54 -6 -28

R. Angular Gyrus 70 3.7 56 -46 30
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Multi-Voxel Pattern Analysis 

 In order to perform region-based Multi-Voxel Pattern Analysis (MVPA), cortical 

and subcortical regions of interest (ROIs) were automatically defined using Freesurfer 

software for each participant (Dale, Fischl, & Sereno, 1999; Fischl et al., 2002). ROIs 

included superior parietal lobe, anterior cingulate cortex (ACC), medial orbitofrontal 

cortex (MOFC), inferior parietal lobe, inferior frontal gyrus (IFG), and fusiform gyrus. 

Data from each participant was then modeled using a separate regressor for each trial to 

construct a betaseries representing each trial (Rissman, Gazzaley, & D’Esposito, 2004). 

Each betaseries was smoothed (σ = 3) before being registered to a normalized space 

using Advanced Neuroimaging Tools (ANTs) toolbox (Avants et al., 2011). A Support 

Vector Machine (SVM) classifier was trained on data from each individual ROI for 5 out 

of 6 training runs, and performed a binary classification of category membership (rule-

based vs similarity-based categories) on the 6th run (Mumford, Turner, Ashby, & 

Poldrack, 2012). Leave-one-run-out cross validation was performed and an average 

classification accuracy was obtained for every subject.  

 Due to a site-wide data loss, 9 out of 11 subjects were used for MVPA. A one-

sample t-test was used against a baseline value of .5 (50% chance) to determine each 

ROIs ability to classify between rule-based and similarity-based conditions. The IFG (M 

= .66; t(8) = 4.23, p = .003), inferior parietal lobe (M = .70; t(8) = 3.65, p = .007) , 

superior parietal lobe (M = .76; t(8) = 5.8, p < .001), MOFC (M = .58; t(8) = 3.3, p = 

.011), and fusiform gyrus (M = .62; t(8) = 3.75, p = .006) all predicted category 

membership with statistically significant accuracy (Fig. 19). The ACC (M = .58) failed to 

accurately differentiate between categories, t(8) = 2.02, p  = .078.  
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Discussion 

 The main goal of this experiment was determine the extent to which people 

engage multiple memory systems during a single categorization task. In-line with our 

hypotheses, the results showed that once subjects acquired the formations in the task, the 

rule-based and perceptual similarity system were both engaged but it depends on the 

formation presented. These two systems were also engaged during a test block where 

subjects were forced to generalize the categorizations strategies they developed during 

training. For the machine-learning analysis, regions in the superior and inferior parietal 

lobes, along with MOFC, fusiform, and IFG successfully dissociated between conditions 

in the task.  

Univariate fMRI 

Fig. 19. ROI-based MVPA classification accuracy.  The IFG, inferior parietal cortex, MOFC, superior parietal cortex, and 
fusiform gyrus were able to classify between our two conditions with significantly above-chance accuracy. Amongst these 
regions, the superior and inferior parietal cortices provided the most reliable classification. The ACC did not reach statistical 

significance.  
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The categories in this experiment were designed such that they require subjects to 

discover a counting rule to differentiate between two visually similar categories and 

utilize a perceptual similarity strategy to identify members of a visually distinct category. 

Our subjects’ performance on the generalization block support the assumption that they 

would recruit the proper strategies. Specifically, they would not have been able to 

accurately categorize novel formations into the trained categories had they relied 

exclusively on declarative recall of individual formations.  

The superior and inferior frontal gyri were more active during the categorization 

of visually-similar trials compared to visually distinct trials. These regions are a part of 

the working memory system, where it is inferred that they are responsible for orienting 

attention and establishing executive control (Lombardi et al., 1999; Rao et al., 1997; 

Rogers et al., 2000; Ashby & Ell, 2001). In our experiment, subjects focused their 

attention toward the players on the line of scrimmage, where they were required to count 

each player if the formation belonged to one of the two visually similar categories. These 

results support the findings of past research that have established a greater working 

memory requirement for the rule-based system compared to the perceptual similarity 

system. 

Interestingly, caudate nucleus, a region that is integral to rule application, did not 

reach a level of significance for the rule-based condition during training. Instead, a 

cluster over the hippocampus had the highest level of activation during training – a region 

that is well-known for its role in declarative recall (Eichenbaum, 2000). Given that 

subjects only needed to attend to a single feature within each stimulus to perform 

categorization (the number of players on the line of scrimmage), it is possible that 
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subjects utilized the rule for a short period of time during training but relied more on 

declarative recall of the few relevant players. However, when encountering novel 

formations in the generalization block that belong to the categories acquired during 

training, subjects were forced into applying the counting rule, and thus the strong 

presence of caudate nucleus during generalization could reflect a more consistent reliance 

on rule application.  

In support of our hypothesis, robust activation of the lateral occipital cortex was 

present for the visually distinct category when compared to the visually similar 

categories. This held true throughout training and extended into the generalization block. 

The lateral occipital cortex has been well-established as the main region governing 

perceptual similarity categorization (Aizenstein et al., 2000; Reber et al., 1998a; Reber et 

al., 1998b; Reber & Squire, 1999). Perceptual similarity categorization can be carried-out 

with minimal working memory resources, and is optimized for instances with low within-

category similarity (Nosofsky, 1986). The absence of the working memory system when 

subjects viewed members of the visually distinct category further support our conclusion 

that this category engages the perceptual similarity system. The novelty of our findings is 

rooted in our demonstration that subjects switch between the perceptual similarity-based 

or rule-based memory systems based on the structure of a given stimulus.  

MVPA 

 Our region-based MVPA showed that frontal and parietal regions provided the 

most reliable classification between the rule-based and perceptual similarity-based 

categories. From our univariate analyses, we saw that the rule-based condition relies 

heavily on these regions, and supports previous findings that this form of categorization 
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requires a higher degree of attentional resources. On the other hand, MVPA provides a 

more sensitive measure of these conditional effects. More specifically, MVPA provides 

an avenue to detect more subtle differences between our conditions that lie within the 

activity patterns of single regions – information that is sometimes subtracted-out by 

traditional analyses (Haynes & Rees, 2006). These small activation patterns can 

potentially code for task-relevant information that is important to both memory systems 

in our experiment. 

Frontoparietal regions are well-known for their importance to cognitive control, 

with an essential component being selective-attention to information that is relevant to 

the task (Desimone & Duncan, 1995; Miller & Cohen, 2001). However, non-human 

primate experiments have demonstrated that activity in frontal and parietal regions can 

code for an array of different task-relevant features, such as representations of individual 

stimuli, rule selection, and response selection (Asaad, Rainer, & Miller, 1998; Freedman 

& Assad, 2006; White & Wise, 1999). Follow-up studies in humans have shown similar 

dissociations between stimulus sets and rules using MVPA (Bode & Hanes, 2009; 

Haynes et al., 2007). These components are essential to the rule- and perceptual 

similarity-based systems, and we can interpret the reliable dissociation between our two 

conditions within these regions as reflecting these concepts.  

Limitations 

 A major limitation in this study was the small sample size of 11 subjects. This 

experiment was only made possible with the generous funding of a pilot grant from our 

scanning center. Unfortunately, attempts at securing additional funding to acquire a more 

interpretable sample size were unsuccessful. A larger sample size would have allowed us 
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to split subjects based off the strategies they used during the experiment. It would have 

been ideal to have a large enough sample to understand how each memory system relates 

to small variations in strategy. However, the reliability of the effects seen in our current 

sample (i.e. the small variance) leads us to believe that increasing the sample size would 

only make the presented results more robust. 

  Another limitation in our study is the inability to track strategies on a case-by-

case basis. The differences between the training and generalization contrasts make us 

wonder if subjects used rule-based categorization for only a short amount of time during 

training before switching to declarative recall. Future studies should prompt subjects to 

provide their categorization strategies at the end of each block, as opposed to at the end 

of the experiment. This would allow us to perform a better segmentation of our data and 

separate the different regions associated with strategy changes within a single subject. 

 Relatedly, the specific rules utilized in this experiment were counting rules that 

are associated with numerical cognition. We did not empirically test the generalizability 

of the results for our rule-based condition to other rules such as those used to differentiate 

between shapes or colors. Yet, the contrasts conducted in our fMRI analyses did not 

reveal posterior parietal cortex, the canonical area associated with numerical cognition, as 

differentiating between the rule-based and perceptual similarity-based conditions 

(Hubbard, Piazza, Pinel, & Dehaene, 2005; Arsalidou & Taylor, 2011; Mandelbaum, 

2013). This may suggest that our results are not specific to numerical cognition.  

Conclusions 

 The goal of the present study was to examine if people can engage multiple 

memory systems to categorize stimuli in a single task. Overall, the results from this 
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experiment support our hypotheses, and we conclude that people can switch between a 

rule-based and similarity-based memory system to optimize the categorization of a 

stimulus. Our results support the findings of decades worth of neuroimaging research that 

have established the differences between memory system, but expands on them by 

looking at how these systems are employed under more realistic learning conditions. This 

is an important precedent, as it establishes the need to take a more dynamic approach 

toward creating interventions to enhance learning in the real-world. Unfortunately, the 

spatial shortcomings of fMRI prohibit us from further investigating how these are 

selected and employed on timescales well below that of the hemodynamic response – 

information that would be useful for optimizing the timing of an intervention. The 

proceeding experiment in Chapter IV aims to augment the findings of the current 

experiment by attempting to describe the temporal dynamics of successful memory 

system engagement.  
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 CHAPTER IV 

EVALUATING TEMPORAL DYNAMICS OF CATEGORIZATION 

Introduction 

 In Chapter III we demonstrated that the rule-based and similarity-based 

categorization systems are differentially engaged during our categorization task, but the 

results did not provide any details about the timing under which these systems are 

employed. As discussed in Chapter I, fMRI operates on a time-scale that makes it 

difficult to separate temporal information between multiple processes that happen within 

the hemodynamic response window, such as orienting attention or selecting a rule to 

categorize a stimulus in our football task. In EEG, a recording method with exceptional 

temporal resolution, several ERPs exist which index some of the defining cognitive 

processes of the rule-based and similarity-based memory systems; the latencies of which 

could be used to extract information about the temporal dynamics of these two systems. 

However, at the time of this dissertation, no work has been done to describe the 

differences between these two systems using EEG.  

 Recall that the Medial Frontal Negativity (MFN) is an ERP component with a 

latency window of 180 – 300 ms after stimulus onset. From what we saw in Chapter II, 

the amplitude of the MFN is largest in the early stages of learning during visuomotor 

association tasks, and theories from similar experiments suggest the amplitude of this 

component reflects the amount of controlled attention required to complete the task (Bush 

et al., 2002). The rule-based memory system relies more heavily on working memory 

compared to the perceptual similarity system (Zeithamova et al., 2008). The overlap in 

function and general location of the MFN with the known frontal control regions 
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associated with the rule-based memory system makes it an ideal marker for indexing the 

attentional aspect of this system.  

 In addition to frontal cortical areas, the engagement of the dorsal striatum is 

reliably seen in fMRI during tasks that require participants to recall declarative 

information, such as an explicit rule seen in Chapter III (Lombardi et al., 1999; Rao et al., 

1997; Rogers et al., 2000; Ashby & Ell, 2001). It is becoming increasingly clear that the 

dorsal striatum is an essential component of the working memory system (Lewis et al., 

2004), where it is hypothesized to regulate the information contained in working memory 

(Frank, Loughry, & O’Reilly, 2001; Gruber, Dayan, Gutkin, & Solla, 2006). Although 

EEG cannot measure subcortical activity in the striatum, intracranial recordings from rats 

suggests that hippocampal theta rhythms show reliable coherence with striatal theta 

during declarative recall (DeCoteau et al., 2007). Due to the laminar cell structure of the 

hippocampus, hippocampal theta is measurable in humans using non-invasive EEG, and 

can been seen during working memory tasks (Tesche & Karhu, 2000). Theories for the 

hippocampus’s role in WM are similar to the ones proposed for the dorsal striatum, but 

are more commonly framed with respect to the context under which information was 

acquired. More specifically, hippocampal theta (as it relates to WM) has been 

hypothesized to index the monitoring of contextual information based off the items 

present in WM (Tesche & Karhu, 2000). This theory for hippocampal theta is almost 

identical to the context-updating theory used to describe the significance of the P3b ERP 

component discussed in Chapter II. It is no coincidence that a strong source of the P3b 

has been reliably traced to the medial temporal lobe, including the hippocampus, and has 

been historically used as an additional measure for hippocampal theta rhythms 
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(Brankack, et al., 1996; Shin, 2011; Kahana et al., 2001). We would expect the amplitude 

of the P3b to correlate with the retrieval of declarative information, which is an essential 

function for rule-based and similarity-based categorization – particularly if participants 

rely on declarative recall as opposed to a perceptual similarity strategy discussed in 

Chapter III.  

 A third component that could potentially dissociate between the two memory 

systems is the Lateral Inferior Anterior Negativity (LIAN). The LIAN is a lesser-known 

bilateral component that has shown clear dissociations between the recognition of spatial 

targets and digit targets in a visuomotor association task (Luu et al., 2007). Specifically, 

the amplitude of the right LIAN is anticorrelated with acquiring the ability to recognize 

spatial configurations and shows no changes when targets invoke the phonological loop. 

However, the amplitude of the left LIAN is positively correlated with learning to 

recognize phonological targets, and is insensitive to acquiring an ability to perform 

spatial analyses. The primary source of these components is inferred to be the Inferior 

Frontal Gyrus (IFG), but it is worth mentioning again that the LIAN is rarely discussed in 

the literature, where it doesn’t receive any mention outside of its role in visuomotor 

learning. Due to the lack of work being conducted on how the MFN, P3b, and LIAN 

relate to different memory systems, it would be worthwhile to employ methods that have 

a higher sensitivity for detecting a dissociation between these systems when compared to 

standard ERP/univariate analyses.  

 The use of machine learning in fMRI to evaluate the spatial representations of 

memories has seen a surge in popularity over the past two decades (Haxby et al., 2001; 

Haynes, 2015; Tong & Pratte, 2012; Norman, Plyn, Detre, & Haxby, 2006). Yet, the field 
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of EEG has only recently entered into the machine learning domain, and to date no work 

has utilized machine learning to evaluate when, on a given trial, the pattern representation 

of specific memories becomes reliable. Common methods for defining the spatial 

representation of memories in fMRI requires that activity in each voxel is averaged 

across a full trial which extends several seconds. However, as you will see later in this 

chapter, this technique can be applied to EEG where a spatial pattern is derived from the 

raw voltages of several groups of electrodes for individual samples (1-4 ms) within a 

trial. This results in a series of pattern representations, and by analyzing the classification 

accuracy of these patterns across time we can derive the earliest point at which a 

participant selects a memory system that is optimized for categorizing specific types of 

stimuli.  

The goal of this chapter is to examine the earliest point we can accurately 

differentiate between a participants’ selection of two different memory systems when 

viewing a stimulus. In addition, we are interested in evaluating overlap between the 

spatial distribution of any dissociating ERP components and the location of the memory 

systems described with fMRI in Chapter III. To accomplish this, we will have 

participants perform the same task used in Chapter III but this time they will perform the 

task during an EEG recording session. Having already established that this task reliably 

recruits the rule-based and similarity-based memory systems in the previous chapter, we 

will interpret standard ERP amplitude differences between categories as a reflection of 

the memory system chosen for each category. The onset of these ERP differences 

coupled with results from a machine learning analysis will lead us into a theory that 

describes the temporal dynamics of selecting and employing these two systems.  
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Method 

Participants 

 Forty-four right-handed participants were recruited from the University of Oregon 

Human Subjects Pool (22 males, 22 females), with ages ranging between 18 and 39 years 

old (M = 19.5, SD = 3.2). All participants had normal or corrected-to-normal vision, had 

no history of head trauma or seizures, and were not consuming medication that could 

affect their EEG. Participants were pre-screened online for their experience with football 

in order to reduce the chance of contextual familiarity confounding differences in skill 

acquisition rate. Only those subjects that were comfortable recognizing football defensive 

formations were allowed to participate. The research protocol was approved by the 

University of Oregon and Brain Electrophysiology Laboratory Company (BELCO) 

institutional review boards, and the study took place in the laboratory of BELCO. 

Task 

 The task used in this study was an EEG analogue of the fMRI task used in the 

previous chapter. Stimuli in this task consisted of three categories of football defensive 

formations with two categories being very visually similar to each other and one category 

being visually distinct from the other two. For the two similar categories, subjects needed 

to discover an explicit counting rule in order to categorize members of these two groups 

reliably: One category of formations displayed three people on the line of scrimmage, 

while the other had four. For the visually distinct category, subjects could rely on a 

simple visual similarity analysis to recognize members of this category. For the visually 

distinct category, six players were placed on the line of scrimmage. Within each category, 

all players were shuffled around the field of view with the exception of the players on the 
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line of scrimmage, as the number of players on the line dictated category membership 

(Fig. task breakdown). This forced subjects to focus their attention to the line of 

scrimmage over time while ignoring irrelevant players positioned elsewhere on the field.  

 Every category had three formations, each sharing the defining number of players 

on the line of scrimmage for that category, for a total of nine formations used throughout 

the experiment. On a given trial, participants were randomly shown one of the nine 

formations for 2,000 ms and were instructed to place the stimulus into one of the three 

categories by pressing a button on a response box within the stimulus exposure window. 

Once they made a response, the stimulus disappeared and the subject was presented with 

a corrective feedback screen which indicated whether they were correct along with text 

describing the correct category for the stimulus (Fig. 20). The feedback was on the screen 

for 1,500 ms, after which a fixation cross with a variable inter-stimulus-interval was 

shown for 2,000 – 3,000 ms (Fig. task breakdown).  The task was divided into eight 

training blocks consisting of 90 trials (or 10 exposures per stimulus) per block, which 

totaled 80 exposures of every stimulus throughout training.  

 

 After the final training block, a generalization block was used which tested each 

subject’s ability to apply any rules they developed during training to novel stimuli. 

2,000 ms

1,500 ms

2,000 – 3,000 ms

2,000 – 3,000 ms

Fig. 20. Diagram of events in 

a trial during training for 

experiment 3. Formations 
were shown for 2 s. 
Immediately following a 
response, contingent feedback 
was shown for 1.5 s . Upon 
feedback termination, a 
fixation mark was shown for 
the duration of the inter-trial 
interval of 2 – 3 s before the 

next formation was presented 
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During the training block, a mixture of the nine training stimuli and nine novel stimuli 

belonging to the same categories were used. Subjects were not told that the generalization 

block would include novel stimuli. No feedback was given to the participants after 

pressing a button to categorize each formation. Instead, a black screen was shown for 

1,500 ms after a response was made before the fixation cross appeared to begin the next 

trial. Each old and novel stimulus (18 total stimuli) was shown 5 times for a total of 90 

trials in the generalization block. 

Procedure  

 Following the informed consent process, participants were fitted with a 256-

channel HCGSN EEG net and placed 55 cm in front of the computer monitor. A chin-rest 

was used to minimize head movements and keep the distance to the monitor fixed for 

every participant. Participants were explicitly told that there were nine defensive 

formations in this study belonging to three categories, and that they must learn which 

formations go into each category. The response feedback that would help teach the 

participant to make the correct decision was explained clearly, and participants were 

allowed to ask questions before the experiment began. 

 Once the participant could demonstrate an understanding of the study to the 

research assistant, a short practice block consisting of 12 trials followed. Formations used 

in the practice block resembled different basketball formations to avoid familiarity effects 

once the real training began. After the practice block, 8 training blocks occurred followed 

by a final generalization block to test a subject’s strategies to novel members of the 

acquired categories. At the end of the experiment, participants filled out a debriefing 

questionnaire which asked them to describe the strategies they used to categorize each 
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group of formations. Each session lasted around 2.5 H, and participants were 

compensated course credit for their participation. 

Learning Criterion 

 To remain consistent with Chapter I, we used the fixed-number of consecutive 

responses method (FCCR) in order to determine when a participant had sufficiently 

acquired the formations in each category (Luu et al., 2007). To re-iterate this method: a 

subject fulfilled the learning criterion when they could make four correct responses in a 

row for each stimulus.  

EEG Recording and Post-Processing 

 EEG was recorded and processed for ERP analysis using the method described in 

Chapter I. Channel montages describing the location of each ERP are shown in Fig. 21. 

Results 

Behavioral 

 Behavioral measures for the two visually distinct categories were averaged 

together to represent the rule-based condition in our experiment. On average, subjects 

were significantly better at categorizing the similarity-based category (95%) than the 

rule-based categories (90%), t(43) = 5.45, p < .001. In addition, subjects had significantly 

faster reaction times when responding to the similarity-based category (708 ms) when 

compared to the rule-based categories (823 ms), t(43) = -8.97, p < .001.  
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Event-Related Potentials 

 

MFN 

For the MFN analysis, a cluster of electrodes that best represent the medial frontal 

distribution of the component were chosen (pink electrodes, Fig. 21). To quantify the 

MFN, an adaptive mean amplitude corresponding to 20 ms before and 20 ms after the 

maximum negative peak amplitude in a window extending from approximately 180 – 300 

ms after stimulus onset was computed for the MFN electrode cluster. The MFN was 

referenced to the preceding positive peak (P200) around 150 – 200 ms after stimulus 

onset. This method was applied for the post-learning trials for all three formation 

categories. Trials in the visually distinct category (6-1) were averaged together to form a 

single ERP for the similarity-based condition. Trials in the visually similar categories (3-

4 and 4-3) were averaged together to form a single ERP for the rule-based condition. A 

paired-samples t-test was run to evaluate differences in MFN amplitude for the similarity-

based and rule-based categories. The test revealed a marginally significant effect, such 

Fig. 21. Electrode montages 

used for the LIAN, MFN, 

and P3b ERP components. 

Orange and Yellow: 
Electrodes used for the LIAN 
analysis. Pink: Electrode 
cluster used to categorize the 
MFN. Blue: Electrodes used 
to analyze the P3b. 
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that the MFN was largest for the similarity-based category (M = -2.31  µV) than the rule-

based category (M = -2.07 µV), t(43) = -1.98, p = .054 (Fig. 22).  

 

P3b 

 For the P3b analysis, a set of channels corresponding to the posterior-parietal 

distribution of the component were used (blue electrodes, Fig. 21). To quantify the 

component, an adaptive mean amplitude corresponding to 22 ms before and after the 

peak amplitude window extending from approximately 450 – 950 ms after stimulus onset 

was computed for the group of electrodes. This method was applied for the post-learning 

trials for all three formation categories. A single ERP for the rule-based and similarity-

based categories was computed similar to the method described for the MFN. A paired 

samples t-test revealed that the amplitude of the P3b for the similarity-based category 

(6.02 µV) was significantly larger than the rule-based category (5.34 µV), t(43) = 4.17, p 

< .001. This effect is displayed in Fig. 23.  

Fig. 22. Voltage map and 

representative waveform of the MFN. 

Top: A voltage map displays the voltage 
across the scalp for the rule and 
similarity-based conditions at the peak of 
the MFN (asterisk in bottom waveform 
image). A stronger negative voltage is 
seen over the medial frontal areas for the 
similarity-based condition. Bottom: 
Representative waveform showing the 
shape of the MFN for both conditions. 
The amplitude of the MFN is higher 
(more negative) for the similarity-based 

condition.  
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LIAN 

 The LIAN was quantified by utilizing a set of channels in the left and right 

frontoparietal regions (orange and yellow electrodes in Fig. 21, respectively). An 

adaptive mean amplitude corresponding to 22 ms before and after the peak negative 

amplitude in a window extending from 450 - 950 ms (the same window as the P3b) was 

used to quantify the component. This method was applied for all post-learning trials for 

all three categories in each subject. Similar to the P3b and MFN, a single ERP was 

computed for the rule-based and similarity-based categories for both the left and right 

LIAN. A paired-samples t-test showed that the amplitude of the left LIAN was largest for 

the similarity-based category (-7.06 µV) compared to the amplitude of the rule-based 

category (-5.54 µV), t(43) = -2.98, p = .004 (Fig. 24). However, no significant amplitude 

difference for the right LIAN was found between the rule-based (-3.55 µV) and 

similarity-based category (-2.92 µV), t(43) = 1.23, p = .23 (Fig. 24).  

Fig. 23. Voltage map and 

representative waveform of the P3b. 

Top: A voltage map displays the voltage 
across the scalp for the rule and 
similarity-based conditions at the peak of 
the P3b (asterisk in bottom waveform 
image). A stronger positive voltage is 
seen over the posterior parietal areas for 
the similarity-based condition. Bottom: 
Representative waveform showing the 
shape of the P3b for both conditions. The 
amplitude of the P3b is higher (more 
positive) for the similarity-based 

condition.  
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Machine Learning 

Data Preparation 

For every subject, post-learning trials were chunked into individual segments 

extending 200 ms before and 1,000 ms after stimulus onset for each category. Segments 

containing ocular or movement artifacts were rejected from analysis. Each segment was 

baseline corrected using a 200 ms pre-stimulus baseline before averaging the segments 

together to form one averaged waveform for each category of stimuli. Waveforms for the 

two rule-based categories were averaged together to be compared against the similarity-

based category before re-referencing to an average reference. The waveforms were then 

broken down into their individual samples, which at a sampling rate of 250 

samples/second resulted in 300 total samples per waveform (each sample representing 4 

ms of recording).   

Fig. 24. Voltage maps and representative waveforms of the left and right LIAN. Top: Voltage maps display the voltage 
across the scalp for the rule and similarity-based conditions at the peak of the LIAN on the left and right sides (asterisks in 
bottom waveform images). A stronger negative voltage is seen over the left frontal areas for the similarity-based condition and a 
stronger negative voltage is seen over the right frontal areas for the rule-based condition. Bottom: Representative waveforms 
showing the shape of the LIAN for both conditions in the left and right hemispheres. The amplitude of the left LIAN is higher 
(more negative) for the similarity-based condition, whereas the right LIAN is higher (more negative) for the rule-based 
condition.  
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In order to reduce the number of predicting elements in this analysis, we averaged 

together the raw voltages of electrodes within 10 regions: left frontal, right frontal, 

medial prefrontal, medial frontal, posterior parietal, left temporoparietal, right 

temporoparietal, left occipital, right occipital, and medial occipital (Fig. 25). This process 

was done for each individual sample for both categories. We then averaged together 

every 5 consecutive samples together, resulting in 60 timepoints for each waveform with 

every timepoint representing 20 ms of data. However, because the first 10 timepoints 

were used in the baseline correction, we did not include these in the analysis. In the end, 

this gave us 2 matrices (one for rule-based and one for similarity-based) for each subject 

with dimensions 50 (timepoints) x 10 (electrode groups).  

 

 

 

Fig. 25. Electrode montages used to define regions during machine-learning analysis. Orange = left frontal, yellow = right 
frontal, green = medial prefrontal, pink = medial frontal, blue = posterior parietal, cyan = left temporoparietal, red = right 

temporoparietal, brown = left occipital, purple = medial occipital, black = right occipital.  
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Whole-Brain SVM Classification 

  For each individual timepoint, a Support Vector Machine (SVM) was trained on 

the voltages of all 10 electrode groups for both categories before performing binary 

classification (rule vs. similarity) on a set of test data. Leave-one-subject-out cross 

validation was used, such that 43 out of the 44 subjects were used to train the classifier, 

and the subject that was left out of training was used as the test subject. This type of 

training and test format was performed iteratively until all subjects were used as a test 

subject. For each iteration, the classifier made a prediction of whether the pattern of 

voltages for the test subject’s data reflected a rule-based or similarity-based category. 

Hypothetically, the classifier could label both pieces of test data as belonging to the same 

category even though the test data always included exactly one rule-based and one 

similarity-based array of voltages. To force the classifier into using each category label 

only once per subject, we evaluated the classifier evidence for the two categories in both 

predictions. The classifier prediction with the highest amount of evidence for a category 

was always given the prediction label for that category, and the other prediction was 

always given the opposing label regardless of the amount of evidence for both categories. 

The classification accuracy of all iterations were averaged together to get a more 

accurate classification accuracy for each timepoint. A one-sample t-test was performed 

for each timepoint against a hypothesized mean of 50% accuracy (chance). The cross-

validated classification accuracy for each timepoint is plotted chronologically in Fig. 26, 

and timepoints that had a classification accuracy significantly above chance at a 

significance level of below .05 are denoted by a blue diamond along the X axis. From this 

figure, we can clearly see that the earliest timepoint at which the classifier was able to 
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reliable differentiate between the two categories is between 260 and 320 ms, which 

coincides with the onset and peak of the MFN. Classification accuracy dips below 

significance between 320 and 420 ms, but returns to significantly above chance between 

440 and 700 ms, corresponding to the peak and onset of the LIAN and P3b.  

 

  

Region-Based SVM Classification 

 To determine if any one particular region was driving the classification accuracy 

at each timepoint, the same SVM classification was run again using only the voltages in 

each region individually. A separate classification accuracy plot (over time) was created 

for all 10 regions. As an additional measure, we ran a Pearson’s correlation between the 

classification accuracy of the SVM and the behavioral performance on the categorization 
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Fig. 26. Whole-brain classification accuracy over time on an experimental trial. Blue diamonds along the X-axis represent 
timepoints where classification accuracy is significantly above chance (i.e. p < .05). The earliest string of above-chance 
classification accuracies is observable between 200 and 300 ms after stimulus onset, followed by another group between 430 – 

700 ms. A late string of reliable classification occurs around 890 – 1,000 ms.  
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task of each subject. This analysis allowed us to determine if reliable pattern differences 

between the two systems lead to better or worse performance on the task for each region.  

 Results from this analysis indicated that the medial prefrontal, left frontal, and 

posterior parietal regions show the earliest reliable (and strongest) classification accuracy 

amongst all regions, with a maximum classification accuracy of 82% (Fig. 27). Within 

these regions, reliable differentiation between the two categories occurs around 250 ms, 

and remains stable until around 740 ms. However, classification accuracy peaked earlier 

in the posterior parietal region compared to the medial prefrontal and left frontal regions, 

even though we can differentiate between the two categories with reliable accuracy using 

any of these 3 regions within the entire 500 ms window. Interestingly, the classification 

accuracy of the medial prefrontal region did not predict behavioral outcome at virtually 

any timepoint, whereas the left frontal region, which is the location of the left LIAN 

component, was positively correlated with behavior throughout its classification peak. 

Classification accuracy of the posterior parietal region was surprisingly negatively 

correlated with behavior between 440 and 520 ms; the initial positive deflection of the 

P3b. Of all the regions, the right frontal area (the location of the right LIAN) was 

responsible for the very latest classification accuracy peak, occurring between 800 and 

1,000 ms. Classification accuracy in this region did not significantly correlate with 

behavior within this window. The three occipital areas along with the two parietal areas 

failed to demonstrate a consistent windows of reliable classification accuracy.  
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Fig. 27. Region-based classification accuracy over time and correlated with behavioral performance. Top: 
Classification accuracy for the left-frontal electrode montage. Classification accuracy peaks between 400 and 700 ms. 
During this timeslot, classification is positively correlated with performance. Middle: Classification accuracy for the 
medial frontal electrode montage. Accuracy peaks between 600 and 750 ms after stimulus onset and does not correlate 
with behavior in any way. Bottom: Classification accuracy for the posterior parietal electrode montage. Accuracy peaks 
the earliest in this region, occurring between 220 – 500 ms. Interestingly, classification accuracy is negatively correlated 

with behavioral performance within this window.  
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Discussion 

 The main goal of this experiment was to determine the earliest timepoint at which 

the brain differentiates between two memory systems during a categorization task. The 

results showed that, once participants acquired the task, clear differences in the Left 

LIAN, MFN, and P3b components were seen between the two conditions. However, the 

direction of each effect appeared to be contrary to what was predicted. Overall, the 

amplitude of each ERP that reflected a difference between the rule-based and similarity-

based categories was largest for the similarity-based category. However, amplitude for 

the right LIAN was larger for the rule-based category, although this effect did not reach 

statistical significance. For the machine learning analysis, classification accuracy peaked 

earliest in the posterior parietal region (the location of the P3b), but reliable classification 

could be performed using additional electrode clusters including the left prefrontal and 

medial prefrontal areas. Electrode clusters over the lateral occipital areas, which were 

preferentially recruited when subject performed a similarity-based categorization in 

Chapter III, failed to produce accurate classification between categories.  

ERP Analysis 

MFN 

 Originally we hypothesized that the amplitude of the MFN would be largest for 

the rule-based category compared to the similarity-based category. This assumption was 

based on past research that has established rule-based categorization primarily engages 

the working memory system and regions associated with declarative recall. However, the 

MFN amplitude in this experiment was larger for the similarity-based category, albeit the 

significance of this effect was only marginal. The moderate difference in amplitude 
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between our categories support recent findings that suggest rule-based and perceptual 

similarity-based categorization need executive functions in order to select the memory 

system that is optimal for a task (Miles, Matsuki, & Minda, 2014). For stimuli that would 

benefit most from perceptual similarity, this requirement of effortful control would be 

very brief -- commencing well before an action is committed (Miles et al., 2014). The 

latency of the MFN (180 - 300 ms) corresponds to the initial orienting of attention in a 

visuomotor association task, and thus we propose that the MFN in our task is indexing 

the controlled attention required to select the memory system best suited for categorizing 

the presented stimulus and does not depend on the optimal system needed to perform a 

task.  

P3b 

The amplitude of the P3b in our experiment was significantly larger for visually 

distinct stimuli when compared to stimuli that required the application of an explicit rule 

for categorization. Our hypothesis for this component was that the amplitude should be 

largest for the rule-based category, but this would only be the case if participants were 

exclusively relying on perceptual similarity to categorize members of the visually distinct 

category. This hypothesis was formulated based on results from Chapter III, which 

showed a robust activation of posterior visual cortex for the visually distinct category. 

However, subtle differences between the fMRI and current EEG versions of the task 

could result in subjects utilizing different systems to categorize formations in the visually 

distinct group.  

The fMRI version of our task included 36 exposures per stimulus, whereas the 

EEG version had 80 to account for the higher presence of noise in our recordings. It 



 

 

 

- 87 -

seems probable that having double the number of repetitions raises the chances of 

participants developing explicit rules or using declarative recall for categorizing 

formations in the visually distinct category through more trial and error. Indeed, when we 

analyze the strategies subjects used in the EEG version, 89% of participants reported 

using an explicit counting rule (e.g. “I counted 6 people on the line of scrimmage”) or 

declarative recall (e.g. “I memorized each formation individually”) for categorizing the 

visually distinct formations, while only 11% reported using a perceptual similarity 

strategy (e.g. “There appeared to be a lot of people on the line of scrimmage for 

formations in this category, such that I did not need to count any players”). Contrasted 

with the strategies used by subjects in Chapter III, 92% of participants reported using a 

perceptual similarity strategy. Based on these differences, we can interpret the P3b in our 

experiment as indexing posterior parietal engagement during declarative recall, similar to 

the theory described in Chapter II.  

As for the amplitude difference between our categories, no study to date has 

directly compared the amount posterior corticolimbic engagement during declarative 

recall of individual stimuli and the application of an explicit rule, although results from 

several different studies discussed earlier suggest both of these methods rely on the same 

memory system. The larger amplitude observed in the visually distinct category could be 

indicating that the recall of specific stimuli engages the posterior parietal region more 

than the recall of an explicit rule. A more controlled experiment that directly contrasts 

these two strategies with more spatial resolution is required.  

LIAN 
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The amplitude of the left LIAN was largest for the similarity-based condition 

whereas the right LIAN was largest for the rule-based condition, although the latter effect 

did not reach statistical significance. The left/right conditional flip makes the 

interpretation of this component fairly difficult. At this time we are unsure if both 

components are interpretable on their own, or if the LIAN is a hemisphere-specific 

component and the effect observed on the contralateral side is a byproduct of volume 

conduction. Given the lack of attention the LIAN has received in the literature, our 

current interpretation is mostly speculative.  

 Luu et al. (2007) found that the amplitude of the right LIAN decreased as 

subjects acquired the ability to perform spatial analyses in a visuomotor association task, 

but the amplitude of the component remained unchanged when the targets in the task 

were digits that evoked the phonological loop. They also found that the amplitude of the 

left LIAN increased as subjects acquired digit targets in their task, whereas the amplitude 

remained unchanged as they acquired the ability to perform spatial analyses. Motivated 

by the findings of their experiment, we drew an initial assumption that the amplitude of 

both the left and right LIAN should be largest for the rule-based condition in our 

experiment. As similarly discussed in our interpretation of the P3b, however, this would 

only be the case if subjects relied exclusively on perceptual similarity analyses to 

categorize formations in the visually distinct category – similar to the spatial analyses 

performed in Luu et al. (2007).  

Given the vast majority of subjects in our experiment used rote memorization to 

categorize the similarity-based condition instead of the hypothesized perceptual 

similarity, we interpret our findings as a contrast between declarative recall of individual 
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stimuli (visually distinct category) and explicit rule application (visually similar 

categories). When viewed from this perspective, the location of the LIAN coincides with 

structures that are essential for both forms of analysis, such as the temporal lobe and 

inferior frontal gyrus (IFG) (Toni, Rammani, Josephs, Ashburner, & Passingham, 2001; 

Grol et al., 2006). In addition, the latency of the LIAN is in-line with the action selection 

and memory retrieval processes, indexed by how closely it mirrored subject reaction 

times. Based on the higher accuracy and shorter reaction times for the visually distinct 

category, our findings that the right LIAN was smaller for this category matches meta-

analytic findings that show a right hemisphere-specific reduction in anterior temporal and 

IFG activity with the development of expertise in visuomotor tasks (Chein & Schneider, 

2005). We could be seeing right hemisphere-specific reductions in the attentional 

resources needed to categorize the visually distinct group of formations simply because 

our subjects are consistently at a more advanced stage of learning for this condition 

compared to the rule-based condition. This reduction could be a reflecting the shift 

towards the automaticity system (seen in our earlier EEG experiment), which is involved 

in more routinized or habitual memory retrieval. Our left LIAN results also become more 

interpretable through this lens. If our subjects are significantly more advanced at 

declaratively recalling the visually distinct formations, then we would expect the left 

LIAN to be larger for this condition based on the findings of Luu et al. (2007). The 

amplitude of the left LIAN linearly increased for digit targets in their visuomotor learning 

task which theoretically engage the same explicit form of memory as both conditions in 

our experiment. Thus, the left LIAN differences seen in our study could be reflecting 
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differences in expertise between our subject’s ability to categorize the visually similar 

and visually distinct categories.  

ML Analysis  

 Using machine learning we were able to successfully dissociate between our two 

conditions when utilizing raw voltages distributed across the entire scalp. The ability to 

predict the category of a currently viewed stimulus using the entire brain is not surprising 

given that the number of predictors (10 regions) greatly outnumbered the prediction 

outcomes (2 conditions). However, the novelty of our approach lies in the timepoint-by-

timepoint classification that helps us understand the earliest point at which we can 

differentiate between our conditions as a subject views a stimulus. This differs from 

standard approaches in fMRI and other EEG classification attempts which either average 

over several seconds of activity or ignore the time-domain altogether. In our study, the 

earliest reliable dissociation point was around 220 ms after stimulus onset, which 

coincides with the initial onset of the MFN ERP component. We interpret this early 

classification timepoint as a reflecting the initial controlled attention required to select a 

memory system based on the stimulus being presented.  

 To understand which individual regions were driving the classification accuracy 

at each time-point, we ran a second machine learning analysis on only the voltages of 

single groups of electrodes in 20 ms intervals. Our results from this analysis showed that 

the medial prefrontal, left frontal, and posterior parietal regions collectively contributed 

to the earliest reliable classification point. Results using MVPA in fMRI studies have 

consistently demonstrated that individual rules can be reliably decoded in frontal and 

parietal regions (Woolgar, Thompson, Bor, & Duncan, 2011; Reverberi, Görgen, & 
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Haynes, 2012; Nelissen, Strokes, Nobre, & Rushworth, 2013). Our results in the current 

study expand on these findings by specifying that the pattern representations of these 

concepts coincides with the initial orientation of attention. Through sufficient trial and 

error learning, the context under which an action is learned in a visuomotor task becomes 

tied to each individual stimulus in the task (Donchin & Coles, 1988). Since we only 

analyzed trials after our subjects had been sufficiently trained on the task, we can assume 

that the initial conscious registration of a stimulus prompted a conditioned re-

establishment of the explicit rules (the learning context) that would dictate their 

subsequent action selection. This theory could explain why the first pattern dissociation 

between our two categories happens around the earliest time that a person can explicitly 

orient attention. 

Although the spatial resolution of our EEG machine learning analysis is limited 

by default, the results from the current analyses are further supported by the strong 

classification accuracy of the IFG and superior parietal region discussed in Chapter III. 

We must caution that these spatial shortcomings may make it difficult to effectively 

detect patterns at the individual-stimulus level as is common in fMRI. Our inability to 

reliably dissociate between our categories in visual and other sensory areas leads us to 

believe that each electrode records data from too many sources to have the fine resolution 

necessary to detect individual item representations. Thus, we limit our interpretation of 

the EEG machine learning findings as dissociating between more general concepts such 

as rules and action selection.  

Limitations 
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 One limitation of the current study is the lack of continuity in strategies used by 

subjects in Chapter III. Ideally, subjects would have consistently utilized the same 

strategies between both studies to ensure the systems engaged between the two task 

versions are the same. It is possible that subjects in the current study used the 

hypothesized perceptual similarity analysis at some point in training, but with no way to 

label trials within this time period we may be forced into a future study which establishes 

control over the strategies used in the experiment.  

 Other limitations in our study are generally common when using EEG. Since we 

only analyzed stimulus-locked ERP components, we are undoubtedly attenuating the 

amplitude of our components by not controlling for reaction time variances between our 

conditions. Future analyses will need to control for RT effects, such as in joint-time-

frequency (JTF) or constructing ERPs around trials with similar RTs to better understand 

amplitude differences across our conditions. Volume conduction may also play a role in 

the uncertainty of our LIAN results, as at the time of this writing we cannot ensure that 

the laterality effects are independent of one another or a simple byproduct of EEG 

dynamics. We can investigate this concern by using independent components analysis 

(ICA) in future analyses of this dataset.  

Conclusions 

 The goal of the present study was to demonstrate the feasibility of dissociating 

between our two conditions using EEG and determine the earliest timepoint on a trial that 

we can reliable do so. Overall, the general location and known processes associated with 

the dissociating ERPs in this study do not map well onto the fMRI results discussed in 

Chapter III. However, some enthusiasm is restored when looking at pattern 
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representations of our conditions using region-based machine learning. Whereas our 

fMRI results showed us where in the brain we can find reliable patterns for dissociating 

between two memory systems, the results from this chapter establish when these patterns 

become reliable during a categorization trial. Results from this study serve as a stepping 

stone toward combining neuroimaging modalities to offset the weaknesses of each 

method and better describe the basic memory processes taking place in the human brain.  
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CHAPTER V 

GENERAL DISCUSSION 

Review of Empirical Results from Dissertation 

The main goal of this dissertation was to understand the degree to which distinct 

learning and memory systems may be recruited within a single task. In Chapter II, we 

conducted an EEG study where we used ERPs to correlate changes in cortical 

electrophysiology with marked performance improvements during category learning. The 

results from this study indicated that frontal and posterior regions were both essential for 

the development of expertise in the task. A possible interpretation of these findings is that 

multiple memory systems (rather than a single system) which may have different working 

memory requirements were engaged in the task. To empirically test this hypothesis, we 

designed an fMRI experiment (Chapter III) that was optimized for being able to identify 

distinct memory systems within a single task. Consistent with our predictions, we found 

that two different memory systems, the rule-based and perceptual similarity systems, 

were alternated between depending on the category structure presented. Finally, we tested 

whether the same dissociations may be observed when using EEG in Chapter IV, 

allowing us to better evaluate the timing of system engagement within a trial. We found 

evidence for distinct systems that differentiate very early during a categorization trial, 

around 250 ms after viewing a probe. However, we also found evidence that subjects 

shift away from relying on the two systems found in fMRI with extended training. This 

suggests that multiple memory systems may interact to optimize performance during the 

early learning stage before transitioning to the automaticity system.   
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Earlier we discussed a general two-stage model of learning; one that describes an 

anterior-posterior shift in brain activity as a person develops expertise. However, the 

results in our first EEG study detracted from classic models of the distinct brain 

mechanisms associated with each stage of learning, with anterior regions becoming 

increasingly important beyond the development of expertise. In retrospect, these models 

were primarily constructed around how expertise develops as people memorize individual 

exemplars, which is a strategy that is often viewed to be of lesser importance in category 

learning (Ashby & Waldron, 2000). The lack of supporting literature surrounding the 

phenomenon lead us to ponder the possibility that participants in our task were utilizing 

other methods of categorization beyond exemplar memorization, such as methods that 

rely on frontal control regions well after learning occurs.  

A large number of studies have outlined the behavioral and neural processes 

associated with different methods of categorization (see Chapter I for a review). The 

overwhelming consensus amongst these studies is that the different categorization 

systems serve the purpose of making learning as efficient as possible under different 

learning conditions. These strategies rely on distinct memory systems. A common feature 

of category learning studies is that they use tasks that are designed to recruit memory 

systems one at a time. Yet, they consistently pose an un-tested assumption that real-world 

learning relies on an innate ability to switch between memory systems. Through 

empirical testing throughout this dissertation, we established firm evidence that people 

can switch between memory systems to optimize performance in a single task. We 

demonstrated that subjects recruit the perceptual similarity, rule-based, and exemplar 

memorization systems depending on the structure of the stimulus being observed as well 
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as the amount of exposure a subject has had with that stimulus. We also determined the 

time course by which the brain shows dissociable neural signatures signifying the 

selection of these different memory systems. The memory systems described in our 

experiments have a differential reliance on controlled attention mediated by the frontal 

cortex, and can potentially help us explain the mechanisms associated with the stages of 

learning in our first EEG experiment. In the next section, we will describe these systems 

in greater detail, and highlight how the structure of the experiments in this dissertation 

lead to the recruitment of each system individually.    

Characteristics of Multiple Memory Systems Used in Category Learning 

Exemplar Memorization  

 Our hypotheses regarding the initial experiment looking at expertise development 

were based solely around distinct processes that happen during learning to remember 

individual exemplars. Exemplar memorization requires a conscious effort to evaluate a 

stimulus and search through individual items in memory to place an exemplar into the 

right category (Ashby & Ell, 2001; Smith & Minda, 2001). Over time, the amount of 

controlled attention required to recall individual exemplars decreases – marked by a 

noticeable reduction in frontal control regions and an increase in medial temporal lobe 

engagement (Shiffrin & Schneider, 1977). The arbitrary category structure used in our 

first EEG study should have forced subjects into remembering individual formations, as 

arbitrary/poor category structure is one instance where exemplar memorization is 

preferred over other methods (Lei & Zhansheng, 2003). Our assessments in this chapter 

established that subjects were performing under an automatic mode of operation during 

the extended training days, yet the frontal areas became increasingly important to their 
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success in the task. Despite our attempts to randomize the formations and the categories 

they belong to, we cannot discount the potential for subjects to develop their own set of 

explicit rules for making categorization decisions. When viewed from this perspective, 

the linear increases in both frontal and posterior parietal engagement throughout learning 

support the idea that subjects relied on rule application during this task, which in turn 

motivated the careful restructuring of our categories during the fMRI experiment. 

Rule-Based Categorization   

 Rule-based categorization is a memory system based-on explicit memory (Ashby 

et al., 1998). The development and application of explicit rules relies heavily on the 

working memory system – this typically holds true throughout the learning process 

(Ashby & Ell, 2001). A conscious effort is needed to analyze the stimulus being 

presented, recall the rule associated with the stimulus, and apply this rule to make a 

decision about category membership. This method of categorization is particularly useful 

when between-category similarity is high, such as a subtle location difference in one 

player on the line of scrimmage as seen in the visually similar categories used in our 

more structured category learning experiments. Indeed, our fMRI results supported our 

assumption that subjects rely on rule-based categorization to dissociate between 

categories with visually similar structures, indexed by the importance of frontal control 

regions correlated with successfully categorizing members of these groups. Looking back 

at Chapter II, had our subjects been relying on a rule to place exemplars into categories, 

then ERPs that index controlled attention (i.e. the MFN) should have increased as they 

did. However, our attempts at confirming this assumption were complicated by several 
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unsupported hypotheses when converting the experiment into a format that is compatible 

with EEG. 

Interactions Between Exemplar Memorization and Rule-Based Categorization  

As discussed earlier, a stark difference between the experiments utilizing fMRI 

and EEG was the number of repetitions used in each. Due to the nature of building ERPs, 

EEG often requires a considerably higher number of trials to measure conditional effects 

compared to fMRI. Although our assumptions were not supported using EEG, we know 

from each subject’s scores on the generalization block that they had discovered the 

explicit counting rule. This technique was further confirmed by their description of the 

strategies they used on the debriefing questionnaire. Yet, the ERPs for the rule-based 

condition during training more closely matched what we would expect if they had 

memorized each exemplar individually in the two visually similar categories. 

Specifically, the amplitude of the MFN was smallest for the rule-separable condition 

compared to the visually distinct category. To help explain this result, we must consider 

the possibility for subjects to switch their strategy (and underlying memory system) from 

one that is conducive to maximizing performance during initial training towards another 

strategy that maximizes efficiency and automation in later learning stages.  

At the time of this dissertation, a series of literature that specifically focuses on 

strategy changes throughout category learning does not exist. The category learning 

literature describes the various memory systems as being independent, without providing 

a clear narrative for how learning occurs within each system or if transitioning between 

them signifies different stages of learning. On the other hand, the expertise literature 

commonly describes the learning stages within the context of declarative memory, with 
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few references to how the mechanisms within each stage relates to a distinct memory 

system (Ashby et al., 1998; Ashby & Waldron, 1999; Medin, 1975; Medin & Schaffer, 

1978). Logan’s (1988) instance theory is perhaps the closest attempt at reconciling these 

two bodies of literature. Instance theory describes the development of automaticity as a 

shift from calculated algorithmic processes towards the retrieval of more specific 

memories from past actions, but does not specify how these processes are supported by 

dissociable memory systems. In our own attempt to resolve these differences, we 

postulate that the process of changing strategies as one becomes proficient in explicit 

category learning is synonymous with the distinct mechanisms associated with the stages 

of expertise development. Both changes serve the function of reducing effort to allow 

attentional resources to be available for other processes, and share the commonality that 

separate neural systems are associated with the measurable changes in behavior (Gabriel 

et al., 2002; Chein and Schnieder, 2005).  

Relevant to the experiments in this paper, we propose that rule-based and 

exemplar categorization can be viewed as intermediate strategies when learning to 

classify exemplars. The end-goal of both systems is to work towards a routinized method 

of categorization, supported by a posterior automaticity system. In the intermediate stages 

of learning, these systems can develop a reliable means for defining the relevant features 

that dictate category membership. An example of this would be our fMRI results, where 

the experiment was shorter and did not allow enough repetitions for subjects to move 

toward automaticity. With extended exposure to the same stimuli, the rule-based and 

exemplar memorization systems give-way to other systems that automate the attention 

process, such as the automaticity system centered on posterior corticolimbic structures. 
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An example would be our follow-up results using EEG, where several hundred exposures 

to the same stimuli prompted subjects to memorize each formation individually. The 

conditions under which rule-based categorization would not be beneficial as an 

intermediate strategy include instances where categories are small (only a few 

exemplars), or when exemplars include exceptions to a categorization rule (Minda & 

Smith, 2001; Erickson & Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994). For 

situations where neither of these strategies fit the conditions of the task, categorization 

strategies that do not rely on explicit memory may be more desirable.   

Perceptual Similarity Categorization  

 Our category learning tasks utilized a visually distinct category of football 

formations as a separate condition to compare against the two visually similar categories 

discussed in the previous section. We hypothesized that subjects would rely on the 

perceptual similarity memory system when categorizing exemplars of the visually distinct 

category. The perceptual similarity system specializes in rapid identification of stimuli 

that are perceptually similar to one another, and has been shown to be independent of 

several forms of explicit memory – including exemplar memorization (Schacter, Cooper, 

Tharan, & Rubens, 1991; Wagner, Gabrieli, & Verfaellie, 1997). These findings stem 

from studying perceptual similarity within the repetition priming framework, where quick 

categorization decisions are made for an individual stimulus even when a subject cannot 

explicitly recall if they had seen that particular stimulus on prior trials. The clear 

dissociation between perceptual similarity and multiple explicit memory systems has lead 

category learning researchers to classify this system as a form of implicit, non-

verbalizable memory (Tulving & Schacter, 1990). Yet, the conditions under which the 
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perceptual similarity system is engaged spans a variety of different task contexts 

including some where successful strategies are easily verbalizable. 

   Classically, the perceptual similarity system has been associated with prototype 

learning tasks (Keri et al., 2002). Recall that in these types of tasks subjects are exposed 

to exemplars with varying degrees of distortion from a central category prototype (i.e. a 

representative example of the category) (Posner & Keele, 1968; Posner & Keele, 1970). 

Often, the subject never sees the actual prototype itself, and instead creates a mental 

representation of the prototype by abstracting relevant features from perceptually similar 

members of the same category. Taking a closer look at the visually distinct category in 

our tasks, we do not believe the structure of this category was conducive to prototype 

abstraction and does not fit the implicit model described in the literature.  

In the visually distinct category, the relevant players on the line of scrimmage 

were distributed such that a central prototype would not be the most efficient method for 

accurately categorizing each exemplar. Matching each exemplar to a manifested 

prototype would sacrifice speed over them simply knowing that a large sum of players on 

the line of scrimmage determined the identification of formations in this category. In 

addition, our subjects’ strategies for identifying members of this category consisted of 

verbalizable rules in both the fMRI and EEG versions of the task. The behavioral results 

in our experiments clearly detract from the canonical conditions under which the 

perceptual similarity system should be engaged during category learning. However, the 

robust engagement of sensory cortices our fMRI experiment leave us convinced that this 

system was essential to subjects’ success. 
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 Perhaps a more accurate way to describe the categorization strategy used for the 

visually distinct category stems from context theory (Medin, 1975; Medin & Schaffer, 

1978). Under this theory, subjects are assumed to rely exclusively on stored exemplar 

information. Each new or old probe acts as a cue to retrieve information associated with 

other stimuli that are visually similar to that probe item. This diverges from prototype 

theory, such that it hypothesizes subjects do not make references to abstracted prototypes 

when categorizing a probe. Instead, it is the visually similar information shared amongst 

the probe and stored exemplars that is cross referenced and ultimately leads to a 

categorization decision (Medin & Schaffer, 1978; Nosofsky, 1984). In our own 

experiments, this would be the large group of players on the line of scrimmage that are 

the essential element dictating category membership. It is more probable that subjects 

compared this group of players within each exemplar to other exemplars of the visually 

distinct category they had recently come into contact with.  

An open question still remains whether subjects were relying on perceptual 

similarity or declarative recall when categorizing the visually distinct category in our 

final EEG experiment. One explanation is similar to the rule-based condition discussed 

earlier: subjects relied on perceptual similarity for a short period of time before 

transitioning to declarative recall associated with the automaticity system. This proposal 

is in-line with Logan’s instance theory, but would require labeling perceptual similarity 

as an algorithmic rule that eventually transitions to exemplar memorization to better fit 

the model. Given the poor spatial resolution of EEG combined with the trial count 

differences between the EEG and fMRI tasks, our interpretation is only speculation.  

Category Learning Strategies as a Function of Expertise 
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 The theories of categorization outlined thus far commonly discuss these memory 

systems individually. However, a novel finding from our experiments is that 

categorization systems can develop alongside one another in a single task, alternating 

from trial-to-trial to meet task demands. The development of expertise within each 

system happens independently, but they share the same end-goal of automating the 

attention process with extended training.  

 Palmeri (1997) made one of the first attempts at describing the time it takes 

subjects to reach automaticity using perceptual similarity versus rule-based 

categorization. In one experiment, Palmeri had subjects categorize objects with high 

within-category similarity, whereas in a separate experiment had subjects categorize 

objects with high between-category similarity which required the discovery of a rule. The 

results from these experiments demonstrated that subjects utilizing perceptual similarity 

reached automaticity notably faster than those relying on rules (Palmeri, 1997).  This lead 

to the development of a new theory termed Exemplar-Based Random Walk (EBRW), 

which is a synthesis between Logan’s (1988) Instance Theory and an alteration of Medin 

& Schaffer’s (1978) Context Theory (Nosofsky, 1984; Nosofsky, 1986). EBRW proposes 

that, when a probe is presented, exemplars stored in memory race to be retrieved with a 

speed that is proportional to their similarity to the probe. Each one of the retrieved 

exemplars drives a random walk until sufficient evidence is presented. Once enough 

evidence has been retrieved, a subject makes a response. In other words, decisions during 

category learning are driven by a race between stored exemplars and a calculated rule-

based/algorithmic process (Nosofsky et al., 1994; Palmeri & Nosofsky, 1995).  
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 Computational models of EBRW allow for reaction times to be sped up by 

increasing within-category similarity and increasing the number of exposures to an 

exemplar (Palmeri, 1997). This would result in a shorter training period before subjects 

reach automaticity when categorizing visually similar exemplars. The model also 

accounts for a longer training period when subjects are forced to rely more on the random 

walks or the evidence-gathering aspect of the process when categories have low within-

category similarity, which can be the case in rule-based categorization. EBRW, when 

interpreted on a purely conceptual level, helps explain how implicit and explicit forms of 

categorization are a simple function of expertise development. The different strategies are 

called upon depending on the structure of a category being presented, and share the 

common function of serving as an intermediate strategy before transitioning to an 

automatic mode of operation. However, a major flaw of EBRW is that it infers the race 

between exemplars and the random walks are the process of a single, unitary memory 

system that performs these operations in series. We propose that this theory be altered to 

accept these processes as the work of distinct memory systems. It is clear that future work 

is needed to develop new theories for  how these distinct systems develop under learning 

conditions that may require more than one type of system to optimize performance.  

Practical and Theoretical Implications  

Understanding the conditions under which different learning and memory systems 

are engaged has many theoretical and practical implications. Regarding theory, when we 

accepted the possibility that our category structures may have contributed to the 

unexpected findings in Chapter II, we were able to conduct a new series of experiments 

that showed the successful switching between memory systems to accomplish a common 
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goal. This increased our knowledge of how memory systems are utilized in the real-world 

by establishing the first piece of direct evidence of  something that only been posed as a 

theory predating this dissertation. We took these results a step further by focusing on 

describing the timings by which a memory system is selected. In the process we 

borrowed techniques from another neuroimaging method (fMRI), but applied them in a 

novel way which helps us understand when, on a millisecond timescale, pattern 

representations in the brain become reliable enough to perform classification. We expect 

that this new method of machine learning analysis will be adopted and refined by 

researchers spanning well beyond the domain of learning and memory. 

From a practical standpoint, our experiments motivate a careful look at how 

learning may be hindered in the real world by failing to structure training plans around 

the memory systems optimized for a task. Relatedly, and although learning can be slowed 

by many different factors, it is likely that a failure to recruit the appropriate system for 

categorization can lead to poor performance. It seems essential to work toward 

optimizing training paradigms and simultaneously helping people recruit the appropriate 

memory systems to make learning as efficient as possible. This starts with having a firm 

understanding of the memory systems underlying several forms of learning.  

In addition, our results have practical implications for the clinical realm, mainly in 

demented diseases such as Alzheimer’s (AD) and Parkinson’s (PD). Evidence from 

demented patients with AD and PD has demonstrated that memory loss as a result of each 

disease can be attributed to the degradation of 1-2 memory systems, with only a small 

minority showing global memory loss in the early and middle disease stages (Heindel, 

Salmon, Shults, Wallcke, & Butters, 1989; Kuzis et al., 1999). Having a better 
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understanding of the individually affected memory systems in such diseases can lead to 

more targeted interventions to rehabilitate memory loss. For example brain stimulation 

can be used to help facilitate the engagement of the degrading memory system, as well as 

facilitate switching between intact systems. Within this line of research, attempts at 

restoring motor function in PD using brain stimulation have already shown promising 

effects, but the efforts to improve memory are lacking (Fregni, Simon, Wu, & Pascual-

Leone, 2005). 

Future Directions 

    The results from this dissertation suggest multiple memory systems work in an 

alternating fashion to maximize success during category learning. Although in our 

experiments we only focused on the presence of each system, future work is needed to 

fully understand the development of expertise within each of these systems. It would be 

beneficial to understand the point at which subjects stop relying on algorithmic 

operations, and switch to exemplar memorization as seen in our final EEG study. Having 

a way to ensure that our individual ERPs are coming from subjects that are at the same 

learning stage will allow us to better separate the cortical signatures of the distinct 

memory systems. Gaining this control will also aid in mapping our ERP results onto 

those measured with fMRI. Currently, our understanding is that the systems used in both 

studies are not the same. Gaining control over which strategies (and underlying memory 

system) our subjects are relying on in both experiments will allow us to reconcile results 

from both imaging modalities. 

Questions still remain regarding if or how the rule-based, perceptual similarity, 

and exemplar memorization systems interact during categorization. We now have a firm 
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understanding that they can be flexibly engaged within a task. In addition, our EEG 

results indicate that memory systems are selected very early within a trial – around 250 

ms after viewing a stimulus. However, we are limited in the information we can extract 

from the current results regarding the selection process.  

Finally, we can continue to ask questions about how best to integrate our results 

into the practical applications discussed earlier. In the context of brain stimulation, 

understanding the neural signatures of different memory systems will enable us to 

establish confidence in the areas we target during these interventions. Future work can 

evaluate the extent to which stimulation over the areas associated with the memory 

systems discussed in this paper leads to enhanced learning. We may also use the temporal 

information described in our final EEG experiment to inform the optimal timing to 

deliver an intervention during a single trial. Many tasks can be accomplished using 

several strategies, and helping people recruit the system that is optimal can help 

overcome learning deficits. Through our future efforts, we will continue to expand our 

knowledge of how learning within each system coupled with the ability to recruit the 

appropriate system contributes to learning.   
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