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DISSERTATION ABSTRACT

Bradley Lewis Burdick

Doctor of Philosophy

Department of Mathematics

June 2019

Title: Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces,
Products, and Plumbings

The classification of simply connected manifolds admitting metrics of positive

scalar curvature of initiated by Gromov-Lawson, at its core, relies on a careful

geometric construction that preserves positive scalar curvature under surgery and,

in particular, under connected sum. For simply connected manifolds admitting

metrics of positive Ricci curvature, it is conjectured that a similar classification

should be possible, and, in particular, there is no suspected obstruction to

preserving positive Ricci curvature under connected sum. Yet there is no general

construction known to take two Ricci-positive Riemannian manifolds and form a

Ricci-positive metric on their connected sums. In this work, we utilize and extend

Perelman’s construction of Ricci-positive metrics on connected sums of complex

projective planes, to give an explicit construction of Ricci-positive metrics on

connected sums given that the individual summands admit very specific Ricci-

positive metrics, which we call core metrics. Working towards the new goal of

constructing core metrics on manifolds known to support metrics of positive Ricci

curvature: we show how to generalize Perelman’s construction to all projective
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spaces, we show that the existence of core metrics is preserved under iterated

sphere bundles, and we construct core metrics on certain boundaries of plumbing

disk bundles over spheres. These constructions come together to give many new

examples of Ricci-positive connected sums, in particular on the connected sum of

arbitrary products of spheres and on exotic projective spaces.

v



CURRICULUM VITAE

NAME OF AUTHOR: Bradley Lewis Burdick

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
The Ohio State University, Columbus, OH

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2019, University of Oregon
Masters of Science, Mathematics, 2016, University of Oregon
Bachelors of Science, Mathematics, 2014, The Ohio State University
Bachelors of Arts, English, 2014, The Ohio State University

AREAS OF SPECIAL INTEREST:

Riemannian Geometry, Smooth Topology

PROFESSIONAL EXPERIENCE:

Graduate Employee, University of Oregon 2016-2019

Graduate Teaching Fellow, University of Oregon, 2014-2016

Math and Physics Tutor, The Ohio State University NROTC, 2013-2014

Math and Statistics Tutor, The Ohio State University MSLC, 2011-2013

PUBLICATIONS:

Burdick, Bradley Lewis. (2019). Ricci-positive metrics on connected sums of
projective spaces. Di↵erential Geometry and its Applications, 62, 212–233.

Bajo, Carlos; Burdick, Bradley Lewis; and Chmutov, Sergei (2014). On
the Tutte-Krushkal-Renardy polynomial for cell complexes. Journal of
Combinatorial Theory, Series A, 123.1, 168–201.

vi



Burdick, Bradley Lewis and Jonker, Jonathan (2013). Generic Polynomials for
Transitive Permutation Groups of Degree 8 and 9. Rose-Hulman Institute of
Technology Undergraduate Math Journal, 13.1, 21 pages.

Burdick, Bradley Lewis (2018). Ricci-positive metrics on connected sums of
products with arbitrarily many spheres. ArXiv e-prints, 32 pages.

Burdick, Bradley Lewis (2014). A simplicial Tutte “5”-flow Conjecture. ArXiv
eprints, 26 pages.

vii



ACKNOWLEDGEMENTS

I would like to thank my academic brother and friend Demetre Kazaras, for

listening to arguments from early versions of my work. And for working with me on

a failed project, which nonetheless forced me to compute several of the quantities

that ended being indispensable in my arguments here.

I am very grateful for the guidance of my advisor Boris Botvinnik. For all

the guidance early on in this project, for all the helpful references, and for the very

healthy skepticism you provided throughout.

Thank you to David Wraith, Christine Escher, and Lee Kennard for the

encouragement and useful technical comments.

To my family, thank you for your patience and love despite how far physically

and mentally this work has taken me away from you.

Alicia, you have been here with me for most of this journey. Thank you for

keeping me grounded when I got lost in thought, comforting me when things were

not going well, and sharing the load when time was short. I truly would not have

succeeded without you by my side. My dear, thank you.

viii



To Perelman.

ix



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Ricci-positive connected sums . . . . . . . . . . . . . . . . . . 13

1.3. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II. RIEMANNIAN SUBMERSIONS . . . . . . . . . . . . . . . . . . . . . 37

2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2. Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3. Spherical Fibrations . . . . . . . . . . . . . . . . . . . . . . . . 57

III. THE TRANSITION METRIC . . . . . . . . . . . . . . . . . . . . . . . 62

3.1. The work of Perelman, again . . . . . . . . . . . . . . . . . . . 64

3.2. Embedding in the docking station . . . . . . . . . . . . . . . . 69

3.3. Assembling the Disk . . . . . . . . . . . . . . . . . . . . . . . 77

3.4. The Ricci-positive isotopy . . . . . . . . . . . . . . . . . . . . 83

x



Chapter Page

IV. PLUMBING DISK BUNDLES OVER SPHERES . . . . . . . . . . . . 90

4.1. Topological Background . . . . . . . . . . . . . . . . . . . . . 90

4.2. Core metrics on boundary of plumbing . . . . . . . . . . . . . 99

APPENDICES

A. GLUING AND SMOOTHING FOR RICCI-POSITIVE RIEMANNIAN
MANIFOLDS WITH CORNERS . . . . . . . . . . . . . . . . . . . 106

A.1. Manifolds with Corners . . . . . . . . . . . . . . . . . . . . . . 106

A.2. Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.3. The gluing theorem for manifolds with corners . . . . . . . . . 137

B. RICCI-POSITIVE ISOTOPY IMPLIES NECK EQUIVALENCE . . 150

B.1. Isotopy and Concordance of Metrics . . . . . . . . . . . . . . . 151

B.2. Neck Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.3. Ricci-positive Isotopy implies Ricci-positive Neck Equivalent . 159

C. CONSTRUCTION OF THE NECK . . . . . . . . . . . . . . . . . . 169

C.1. A two parameter family of warped product metrics . . . . . . 171

C.2. The metric on the neck . . . . . . . . . . . . . . . . . . . . . . 185

C.3. The curvatures of the neck . . . . . . . . . . . . . . . . . . . . 198

xi



Chapter Page

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

xii



LIST OF FIGURES

Figure Page

1.1. An illustration of (1.3). . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2. An illustration of (1.4). . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. A schematic of the embedding ◆ambient : Bm+1

+
,! (Sm+1

\Dm+1) given
by the grey region. The small dotted circle indicates a geodesic ball contained
in its interior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2. A schematic for the geodesic balls of Proposition 3.2.1. . . . . . . . . . 72

3.3. A graph of the functions h(t) and f(t) satisfying the conditions of Lemma
3.3.4 with the largest inflection point labeled for f(t). . . . . . . . . 82

3.4. A graph of f(t) and h(t) with f1(t) indicated by the dotted line. Compare
to (3.3.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5. A graph of f1(t) and h1(t) with T sin(t/T ) and T cos(t/T ) indicated by dotted
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1. The graph G1#G2 can be any graph as depicted, where the vertex labeled
by "n is connected via an edge to any vertex of G1 and G2 labeled by
a Dm-bundle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2. The E8 and A2 graphs, for which @(P (E8)) generates bP4k and @(P (A2))
generates bP4k+2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3. The labeling and numbering convention for G and G0. . . . . . . . . . . 102

A.1. The tubular neighborhood of the corners and faces, and the consistent tubular
neighborhoods making up the collar neighborhood. . . . . . . . . . 109

A.2. The construction of the embedding Xn ,! Mn. . . . . . . . . . . . . . . 111

A.3. The tubular neighborhood of the boundary and face. . . . . . . . . . . 112

A.4. Di↵erent choices of gluing result in di↵erent submanifolds with faces. . 114

A.5. The curve �(x), and Xn
Z
embedded in Xn. . . . . . . . . . . . . . . . . . 115

A.6. The process of cutting, gluing, and smoothing Xn. . . . . . . . . . . . . 118

xiii



Figure Page

A.7. Normal coordinates for Zn�2 relative to Yn�1. . . . . . . . . . . . . . . 121

A.8. A schematic of the corner charts of Xn
c ,! Mn. . . . . . . . . . . . . . 123

C.1. The neck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.2. The e↵ect of (a, b) on the metric g̃(a, b). . . . . . . . . . . . . . . . . . 175

C.3. The path
�
a, ⇢/

�
a1/↵̃

��
through the parameter space. . . . . . . . . . . 177

C.4. Graph of �(t) and |�0(t)|, demonstrating the bounds of Lemma C.2.4. . 190

C.5. The functions h(t) and k(t). . . . . . . . . . . . . . . . . . . . . . . . . 192

C.6. By Lemma C.1.3, the open set U = {(a, b) : Kg̃(a,b) > 1} contains�
a, ⇢/

�
a1/↵̃

��
. Clearly, if r̃ is close to r, then (h(t), k(t)) is also contained

in U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xiv



CHAPTER I

INTRODUCTION

Curvature is the complete, local obstruction to the triviality of a Riemannian

metric, and therefore occupies a central role in the study of the geometry and

topology of Riemannian manifolds. The Ricci curvature is the trace of the

curvatures in a given direction, and it plays a central role in the analysis of

distance functions on Riemannian manifolds. When the curvature is bounded

from below, in particular when it is positive, it severely restricts the topology of

the underlying smooth manifold. While a lower bound on Ricci curvature implies

a great deal about the geometry of the space, it is unclear how restrictive positive

Ricci curvature is on the topology. It is suspected that positive Ricci curvature is

very flexible, yet there are relatively few examples and relatively few constructions

that actually demonstrate this flexibility.

We will discuss this flexibility with the following very narrow question: under

what conditions on two Riemannian manifolds with positive Ricci curvature will

the connected sum also support a metric of positive Ricci curvature? It is suspected

for simply connected manifolds that it should always be possible to form Ricci-

positive connected sums. Our main results, Theorem A, B, and C, show that many

of the Ricci-positive metrics constructed on the manifolds in [1], [2], and [3] can be

modified so that the connected sum of any combination of these manifolds still has

positive Ricci curvature.
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1.1. Background

To begin we recall the definition of curvature and its traces, including the

Ricci and scalar curvatures, and the significance of positive curvature in the study

of Riemannian manifolds. In particular, we are interested in highlighting the

relationship between the smooth topology of a given manifold and the existence

of metrics whose curvature is positive in some sense. After establishing the

significance that positive sectional curvature plays in determining the topology

of space, we recall in greater detail the use of surgery to study manifolds that

admit metrics of positive scalar curvature. From the discussion of positive scalar

curvature, we expect the existence of positive Ricci curvature metrics to be

preserved under connected sum. We discuss to what extent surgery is known to

preserve positive Ricci curvature, and conclude that the construction of Ricci-

positive connected sums must follow an entirely di↵erent approach.

1.1.1. Positive Curvature

Riemannian geometry is the study of classical geometric quantities (angles,

distances, volume, and curvature) in the setting of an arbitrary smooth manifold

rather than Euclidean space. The principal object needed to define these quantities

is a Riemannian metric, which plays the role of the Euclidean dot product. A

Riemannian metric is a smoothly varying inner product on the tangent spaces

of a smooth manifold. Given a Riemannian metric, one can define the angle and

length of vector fields and consequently allows one to define distance, volume, and

curvature. We will denote by the pair (Mn, g) a Riemannian manifold, a smooth

manifold with specified Riemannian metric. By the remarkable Nash Embedding

Theorem [4], these intrinsic definitions are equivalent to considering embeddings
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' : Mn ,! Rn+m where we can define these geometric quantities extrinsically

using the ambient Euclidean dot product. Our primary interest will be curvature,

and specifically the interaction between curvature and the global topology of the

underlying smooth manifold.

As a motivating example, let us consider an oriented surface ' : ⌃2 ,! R3.

We can find a global unit normal vector field ⌫ consistent with the orientation of

⌃2 and R3. By translating ⌫ to the origin, we define the Gauss map G : ⌃2
! S2,

and define the Gaussian curvature K of ⌃2 as the Jacobian of G. The remarkable

Gauss-Bonnet theorem [5, Theorem 9.7] claims that

1

2⇡

Z

⌃2

K dA = �(⌃2).

Such an identity allows us to make global topological observations from local

geometric information and vice versa. For example if K > 0, then 0 < �(⌃2) =

2� 2g = 2 and hence ⌃2 is di↵eomorphic to the sphere. In the other direction, if we

know the genus of ⌃2 is g � 1, then K < 0 at some point in ⌃2.

1.1.1.1. Sectional Curvature

Given an arbitrary Riemannian manifold (Mn, g) we may isometrically embed

it into Rn+m via [4]. Rather than a single normal vector there is a rank m normal

bundle N Mn which is the compliment with respect to the Euclidean dot product

of the tangent bundle T Mn. For X and Y two vector fields of Mn, in analogy to

the definition of Gaussian curvature, we take the derivative of X with respect

to Y (in the usual sense for vector fields in Rn+m) and use the dot product to

project onto the normal bundle N Mn. This defines a symmetric bilinear form
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II : T Mn
⌦T Mn

! N Mn, called the second fundamental form, which is analogous

to the Gauss map. The sectional curvature is now defined for every oriented set of

vectors as

Kg(X, Y ) =
g(II(X,X), II(Y, Y ))� g(II(X, Y ), II(Y,X))

g(X,X)g(Y, Y )� g(X, Y )2
.

When Mn is a hypersurface and N Mn is rank 1 we can see that we have exactly

taken a 2 ⇥ 2 minor of the Gauss map, which therefore agrees with the Gaussian

curvature in dimension 2. There is an entirely intrinsic definition of Kg(X, Y ) in

terms of the Levi-Civita connection of g, but by Guass’ Theorema Egregium [5,

Theorem 8.6] the two definitions agree.

When Mn ,! (Nn+m, g) we similarly can define the second fundamental

form II. We define N Mn the compliment of T Mn with respect to g. Given two

tangent vectors of Mn, use the ambient Levi-Civita connection to di↵erentiate

X with respect to Y and then use g to project onto the normal bundle N Mn.

This too defines a symmetric bilinear form II : T Mn
⌦T Mn

! N Mn. Note

that, in the case the sectional curvature of Mn is defined in terms of the sectional

curvatures of Nn+m and II in terms of the Gauss equation [6, Theorem 3.2.4],

rather than the formula above. When Mn is a hypersurface, by convention, we

consider II : T Mn
⌦T Mn

! R by pairing with the unique oriented unit normal

of Mn. In this sense, II is a real bilinear form on T Mn. The eigenvalues of this

form (which are all real) are called the principal curvatures of Mn ,! (Nn+1, g). In

particular, when (Nn+1, g) is a Riemmanian manifold with boundary we can refer to

the principal curvatures of the boundary without ambiguity.

The most essential observation about sectional curvature is the Hopf-Killing

Theorem [7, 8], which claims that if Kg = ⇤ is constant then the universal cover
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of (Mn, g) is isometric to hyperbolic space if ⇤ < 0, Euclidean space if ⇤ = 0, or

a round sphere if ⇤ > 0. A Riemannian manifold (Mn, g) is said to have positive

(or nonnegative) sectional curvature if Kg(X, Y ) > 0 (or Kg(X, Y ) � 0). In

analogy to the Gauss-Bonnet Theorem for surfaces, we ask the following question:

to what extent does having positive sectional curvature imply that a Riemannian

manifold is like a sphere. We know by example that there are manifolds that

are not di↵eomorphic to Sn that still have Kg(X, Y ) > 0, for instance RPn,

CPn, and HPn with the Fubini-Study metrics. Yet if there is a ⇤ > 0 such that

⇤ < Kg(X, Y )  4⇤, then Mn is di↵eomorphic to the sphere [9].

The field of comparison geometry rephrases this question in a geometric

way: under the assumption that Kg >
1

R2
, the sectional curvature of a round

sphere, which other aspects of the geometry behave like the geometry of a round

sphere? Take for example Bonnet’s Theorem [10, Theorem 1.26], it claims that the

diameter of (Mn, g) is bounded above by ⇡R, the diameter of the round sphere. Or

for example Topogonov’s Comparison Theorem, it claims that the distance between

geodesics in (Mn, g) are bounded above by distance between great circles in round

spheres.

While these comparison theorems do not directly answer our topological

question, they turn out to be the main tools needed to deduce topological

information from positive sectional curvature. For instance, by applying Bonnet’s

Theorem to the universal cover of (Mn, g), we deduce that ⇡1(M
n) must be finite

if Kg > 0. Or for instance, the work of [11] uses Topogonov’s Comparison

theorem along with a very careful counting argument to study the homology of a

manifold with nonnegative sectional curvature. The main theorem of [11] claims

that there is a universal constant c(n) depending only on the dimension such
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that
P

bi(M
n) < c(n) if (Mn, g) is any complete, connected, and non-negatively

curved Riemannian manifold. This theorem produced the first examples of simply

connected manifolds that admit no metrics with positive sectional curvature but do

admit metrics of positive scalar curvature, for instance #k (S
n
⇥ Sm) or #k CPn for

k > c(n).

1.1.1.2. Ricci Curvature

Positive sectional curvature is a very rigid requirement; for instance, it is

expected that Sn
⇥ Sm admits no positively curved metric (see [12]). To weaken the

notion of positive curvature, we define the Ricci curvature as the trace of sectional

curvatures

Ricg(X,X) =
X

Y 6=X

Kg(X, Y )

g(Y, Y )
,

where the sum is over an orthogonal frame including X. The Ricci curvature

can expanded to a symmetric bilinear form Ricg(X, Y ) using the polarization

identity. We say the (Mn, g) has positive (or nonnegative) Ricci curvature if Ricg

is positive (or nonnegative) definite. We still are interested in the question: does

the assumption Ricg > 0 imply that a Riemannian manifold is like a sphere, or does

it restrict the underlying topology?

A number of results from comparison geometry still hold under the weakened

hypothesis Ricg(X,X) � (n � 1)
1

R2
, which is the Ricci curvature of the round

sphere. The reason that a lower bound on Ricci curvature is su�cient is because of

its appearance in the Bochner formula [13, Corollary 8.3]:

�u = r
⇤
ru+ Ricg(ru,ru).
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A lower bound on Ricci curvature produces a bound on the Laplacian of distance

functions via the Bochner formula, which in turn is the basis of a number of

results. Take for example Myers’ Theorem [14], it claims that Bonnet’s Theorems

holds under this weaker assumption. In particular, Myers’ Theorem implies

that ⇡1(M
n) is finite if (Mn, g) has positive Ricci curvature. Or for example, the

Cheeger-Gromoll Splitting Theorem [15], which has as a topological corollary that

b1(M
n)  n if (Mn, g) has nonnegative Ricci curvature.

For manifolds with positive Ricci curvature, other than the fundamental

group (see [16] for a survey), very little is known about the underlying topology.

For example, the main theorem of [11] does not hold under the weakened

hypothesis of positive Ricci curvature. The first examples of manifolds with

homology of arbitrarily large rank that admit metrics of positive Ricci curvature

were constructed in [17, 18], which construct Ricci-positive metrics respectively on

S4
⇥ S3 blown-up along arbitrarily many S3 and #k(S

n
⇥ Sm) for all k and n,m � 2.

These manifolds represent the first example of spaces known to admit metrics of

positive Ricci curvature but no metric of positive sectional curvature.

Though there are far fewer topological restrictions known for positive Ricci

curvature than positive sectional curvature, we also have relatively few examples

of manifolds which admit Ricci-positive metrics. Outside of those manifolds with

positive sectional curvature, one of the main ways to construct new examples of

manifolds with positive Ricci curvature is taking iterated fiber bundles, which was

initially observed in [2]. Another source of examples of positive Ricci curvature

metrics is Kähler and Sasakian geometry. In particular, the celebrated Calabi

Conjecture (proven in [19]) reduces the existence of a Ricci-positive Kähler metric

7



to the positivity of an algebraic invariant. For examples of Ricci-positive metrics

from Sasakian geometry see [20, 21].

1.1.1.3. Scalar Curvature

We may weaken the notion of curvature even further by taking the trace of

Ricci curvature to define the scalar curvature

Rg =
X

X

Ricg(X,X)

g(X,X)
,

where the sum is taken over an orthogonal frame. We say that a Riemannian

manifold has positive scalar curvature if Rg > 0 at each point. Even though the

assumption that Rg > 0 is not su�cient for most of comparison geometry, it still

enters into analysis on spin manifolds via the Lichnerowicz formula [13, Theorem

8.8]:

/@
2
s = r

⇤
rs+

1

4
Rg s,

where /@ is the spin Dirac operator. From the Lichnerowicz fomrula one deduces

that a metric with positive scalar curvature admits no harmonic spinors [22].

This with the Atiyah-Singer index theorem [13, Theorem 13.2] gives rise to

algebro-topological invariants ↵(Mn) 2 KO�n(⇤) that obstruct the existence of

positive scalar curvature metrics on a spin manifold Mn. The vanishing of these

obstructions is one of the few topological implications of admitting positive scalar

curvature metrics. It is a remarkable result of [23, 24] that, for simply connected

spin manifolds, the vanishing of ↵(Mn) is also su�cient to deduce the existence of

a positive scalar curvature metric.

8



This last fact illustrates that the existence of positive scalar curvature

metrics is very flexible: for simply connected manifolds it depends on the value of

a single numerical invariant. And, as discussed, the existence of a positive sectional

curvature metric is extremely rigid: it is expected that Sn ⇥ Sm is not positively

curved. While positive Ricci curvature implies a great deal about the geometry of

the Riemannian manifold, it is not clear how flexible the underlying topology is.

For example, if we strengthen our main question to ask whether or not it is possible

to preserve positive sectional curvature under connected sums, we know that there

is no general construction because of [11]. Or for example, if we weaken our main

question to ask whether or not it is possible to preserve positive scalar curvature

under connected sums, we know it is always possible by [25, 23]. Other than the

fundamental group [14], there is no known or expected obstruction to Ricci-positive

connected sums.

1.1.2. Positive curvature and Surgery

One of our main motivations for considering Ricci-positive connected sums is

the work of [25, 23]. The main theorem of [23, Theorem A] is that the existence of

a positive scalar curvature metric is invariant under p-surgery for p  n � 3. Given

an embedding ' : Sp
⇥Dq ,! Mn, we say that the manifold Mn

' is the result of

performing p-surgery on Mn along ', where

Mn
' := [Mn

\ Im'] [S
p
⇥ S

q�1

⇥
Dp+1

⇥ Sq�1
⇤
, (1.1)

where the identification along the boundary is given by restricting '. Note that in

the case p = 0, if the image of ' : S0
⇥Dn

! Mn lies in two seperate components

9



Nn
1
tNn

2
= Mn, that Mn

' = Nn
1
#Nn

2
. Thus connected sum is a particular instance of

p = 0 surgery. When n � 3, [23, Theorem A] implies that the existence of a positive

scalar curvature metric is invariant under connected sums.

1.1.2.1. Metrically local surgery and positive scalar curvature

Let us briefly describe the proof of [23, Theorem A]. Given (Mn, g) with

positive scalar curvature and an embedding ' : Sp
⇥Dq ,! Mn with q � 3, we

would like to produce a positive scalar curvature metric on Mn
'. The main technical

lemma claims that it is possible to alter the metric on Mn
\ Im' near the boundary

so that it still has positive scalar curvature and is isometric to dt2 + ds2p + "2ds2q�1

near the boundary. Assuming we have established this lemma, we could equally

well apply the lemma to Sp
⇥Dq ,! Sn with respect to the round metric to

produce a positive scalar curvature metric on Sn \(Sp
⇥Dq) = Dp+1

⇥ Sq�1 with

the same boundary metric. We may then glue together this metric with the metric

on Mn
\ Im' which by (1.1) is a positive scalar curvature metric defined on Mn

' as

desired. We emphasize that this surgery is metrically local in the sense that the

resulting metric agrees with the original metric g on Mn outside of an arbitrarily

small neighborhood of '(Sp) with respect to the metric g.

Surgery induces an equivalence relation on smooth manifolds, which by [26,

Corollary 2.10, Theorems 3.12 and 3.13] agrees with cobordism. The secondary

results of [23, Theorem B and C] are that existence of a positive scalar curvature

metric is invariant under oriented bordism between simply connected non-spin

manifolds and under spin bordism between simply connected spin manifolds, both

of which follow from standard handle cancelation arguments and the main theorem.

The obstruction to positive scalar curvature metric ↵(Mn) of [22] referenced above,
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is well defined on spin bordism classes. In [24], a homotopy theoretic computation

is carried out to find spin manifolds whose spin bordism classes generate the kernel

of ↵, and a positive scalar curvature metric is constructed on each representative.

This combined with the secondary results of [23] implies that every simply

connected spin manifold with ↵(Mn) = 0 must admit a metric with positive scalar

curvature.

1.1.2.2. Surgery and positive Ricci curvature

It was conjectured in [27], that the Witten genus �W (Mn), an invariant of

string manifolds, is an obstruction to positive Ricci curvature (see [28, Section

4] for motivation and evidence for this conjecture). A rational generating set for

the kernel of �W was computed in [29], which all admit metrics of positive Ricci

curvature. In analogy to the classification of simply connected manifolds admitting

positive scalar curvature metrics carried out in [22, 23, 24], this motivates the

following question: under what conditions is the existence of a positive Ricci

curvature metric invariant under surgery? In particular, the conjecture suggests

that the existence of a metric with positive Ricci curvature ought to be invariant

under connected sum, as the Witten genus, the conjectured obstruction, is additive

under connected sum.

One may ask if the construction used to prove [23, Theorem A], which we

outlined in Section 1.1.2.1 above, can be used to preserve positive Ricci curvature

under metrically local surgery. There is actually a metric obstruction to the

construction used in [23]. Assume that g̃(r) is a metric constructed on Mn
\'(Sp)

that agrees with g outside of a normal neighborhood of '(Sp) of radius r and agrees

with dt2 + ds2p + "2ds2q�1
near the boundary. If we let T denote the unit normal

11



of '(Sp) with respect to g̃(r), then applying the Codazzi-Mainardi equation [6,

Theorem 3.2.5] shows that

Ricg̃(r)(T, T ) = �
1

r2
+O(1).

Thus the construction used in [23, Theorem A] for positive scalar curvature metric

necessarily fails for positive Ricci curvature if the normal neighborhood is too

small. We conclude that Ricci-positive surgery cannot be metrically local.

Granted that metrically local surgery cannot preserve positive Ricci

curvature, we can still ask if there are any su�cient metric conditions on an

embedding ' : Sp
⇥Dq ,! (Mn, g) to construct a Ricci-positive metric on Mn

'.

The idea of metrically semi-local surgery was introduced in [17], where it was shown

that it is possible to preserve positive Ricci curvature under surgery in the following

setting. Given an embedding ' : S3
⇥D4 ,! (M7, g) into a Ricci-positive manifold,

assume that '⇤g = ⇢2ds2
3
+ ds2

4
, then it is possible to perform surgery on an "-

neighborhood of ' while preserving positive Ricci curvature if " > c(⇢) for some

constant c depending on ⇢. This is semi-local as it requires some global information

about g before deducing that M7

' has positive Ricci curvature. For example, we

need to know that c(⇢) is less than the injectivity radius of (Mn, g).

The semi-local approach to Ricci-positive surgery has been expanded upon

in [18] and [3], where similar Ricci-positive semi-local surgery results are proven.

Suppose p � 2 and q � 3, and we have ' : Sp
⇥ Sq ,! (Mn, g) where g is

Ricci-positive and '⇤g = ⇢2ds2p + ds2q. Then [18, Lemma 1] and [3, Theorem 0.3]

claim that we can perform surgery on an "-neighborhood of ' while preserving

positive Ricci curvature provided that " > c(p, q, ⇢). The author of the latter paper

has successfully applied this principle to construct new examples of positive Ricci
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curvature metrics on exotic spheres [30], to study the moduli space of positive Ricci

curvature metrics on spheres [31], and to show that highly connected manifolds

admit metrics with positive Ricci curvature [32].

1.1.2.3. Ricci-positive semi-local Connected Sum

While the results of [18] and [3] suggest that positive Ricci curvature might

always be preserved under semi-local surgery, it is important to note that this

technique only works for 2  p  n� 3, and so it does not work for connected sum.

There is a very simple reason why Ricci-positive connected sum cannot be local in

any sense. Were semi-local Ricci-positive connected sum possible, then we could

find an embedding ' : S0
⇥Dn ,! Sn and a Ricci-positive metric on Sn

' = S1
⇥ Sn�1,

which would contradict Myers’ Theorem. Thus Ricci-positive connected sums, while

expected to exist, must rely on an entirely di↵erent and global construction.

1.2. Ricci-positive connected sums

While Myers’ Theorem prevents Ricci-positive connected sums from being

achieved via a local or even semi-local deformation of the metric in the style of

[23], we still expect that Ricci-positive connected sums should always exist between

two simply connected Ricci-positive Riemannian manifolds. To answer our main

question we therefore need an entirely di↵erent and global construction of Ricci-

positive connected sums. We begin by summarizing previous work on Ricci-positive

connected sums in [1, 17, 18, 33, 34, 35]. We then elevate the work in [33] as a

general strategy for constructing metrics of positive Ricci curvature on connected

sums, by constructing core metrics on a given Riemannian manifold. We then

discuss some elementary topological considerations that immediately extends the
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work of [33] to include connected sums of products. We conclude by discussing

some preliminary facts about core metrics.

1.2.1. Previous Work

One of the first constructions of Ricci-positive connected sums can be found

in [1], where metrics of nonnegative sectional curvature are constructed on the

connected sum of any two projective spaces, with either orientation. Combining

this with the work of [36], these metrics can be deformed to have positive Ricci

curvature for the connected sum of any two of CPn, HPn, and OP2 (with either

orientation). The author constructs this metric using Riemannian submersion so

that, near the boundary, it is isometric to dt2 + ds2kn�1
. This construction is global,

it relies on elementary topology of punctured projective spaces, and therefore

cannot be used to produce a non-negatively curved metric with this boundary

condition after deleting more than one disk.

In some sense, the Ricci-positive semi-local surgery results of [17, 18] and

[3, 30] follow a similar logic to the construction of [1]. They use the elementary

topology of Dn
⇥ Sm and (CP2

\D4) ⇥ S3 to find a Ricci-positive metric that is,

near the boundary, isometric to R2ds2n�1
+ ⇢2ds2m+1

. Rather than being amenable

to glue two of these spaces together, this boundary condition is amenable to glue

arbitrarily many of these spaces onto a universal docking station. For [17, 18],

this universal docking station is Sn�1
⇥ Sm+1, while in [3, 30] the universal docking

station are nontrivial sphere bundles over spheres. It is then a matter of topology

to identify the spaces that result from these surgeries in [18] as #k(S
n
⇥ Sm). Even

though these are examples of Ricci-positive connected sums, the fact that they

rely on this artificial topological identification means that they do not give any
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insight into how to construct Ricci-positive connected sums given two abstract

Ricci-positive manifolds (Mn
i , gi).

1.2.2. The Work of Perelman: Gluing and Docking

The main purpose of [33] was to prove the following.

Theorem 1.2.1. [33] For all k > 0 there is a Ricci-positive metric on #k CP2.

While it is not explicitly stated in [33], the approach taken to construct these

metrics merges the ideas of [1] with the docking station idea of [17, 18]. A great

deal of the e↵ort needed in the constructions of [17, 18] comes from the fact that

the metrics being constructed not only needed to be Ricci-positive but also had to

agree on a neighborhood of their boundary with the metric of the docking station

being considered. Luckily the metrics being considered in [17, 18] on the docking

station transition easily to metrics on the pieces because both can be expressed

as doubly warped product metrics. If one wants to combine the Riemannian

submersions of [1] with the docking station of [17, 18], we run into the even greater

di�culty that this family of Riemannian submersions does not easily transition into

the doubly warped products. The two metrics are defined in terms of incompatible

topological decompositions of the underlying space.

This di�culty motivates the first technical result of [33]. It is a gluing

theorem that removes this necessity to construct metrics that already agree

smoothly along their boundary. This gluing theorem claims that we can find a

Ricci-positive metric on the boundary union of two Ricci-positive manifolds even

if the metrics agree only at the boundary provided that the principal curvatures are

compatible.
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Theorem 1.2.2. [33, Section 4] Given two Ricci-positive Riemannian manifolds

(Mn
i , gi) with boundaries Nn�1

i , if there is an isometry � : Nn�1

1
! Nn�1

2
such

that II1 +�⇤ II2 is positive definite on Nn
1
, then there is a Ricci-positive metric g

on Mn
1
[� Mn

2
that agrees with the gi outside of an arbitrarily small neighborhood of

gluing site.

Theorem 1.2.2 has been studied by a number of authors. It was used in [37] along

with the work on Ricci-flow in [38] to show that the space of Ricci-positive metrics

on D3 with convex boundary is path connected. A detailed proof is provided in [39,

Lemma 2.3], and a version for compact families is proven in [40, Theorem 2].

In order to construct Ricci-positive metrics on #k CP2, the idea is to find

Ricci-positive metrics CP2
\D4 with boundary conditions amenable to glue to a

universal docking station using Theorem 1.2.2 that will self-evidently produce a

Ricci-positive metric on the connected sum. The natural candidate for docking

station is S4
\
�F

k D
4
�
as S4 #

�
#k CP2

�
is di↵eomorphic to #k CP2. If one

wants to construct a Ricci-positive metric on S4 \
�F

k D
4
�
that is amenable to

Theorem 1.2.2, one wants the principal curvatures of the boundary to be as large as

possible. Sadly if the principal curvatures were nonnegative, then one could apply

Proposition 1.2.11 to find a Ricci-positive metric with positive principal curvatures

and then apply Theorem 1.2.2 to identify a pair of boundary components, which

would produce a Ricci-positive metric on S1 ⇥ S3 contradicting Myers’ Theorem.

Thus the principal curvatures all have to be negative.

The following proposition represents our perspective on the metrics

constructed in [33], it claims that we can make the principal curvatures of the

docking station arbitrarily close to 0.
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Proposition 1.2.3. [41, Proposition 1.3] If n � 4, then for all k > 0 and 1 > ⌫ > 0

su�ciently small there is a Ricci-positive metric gdocking(⌫) on Sn
\ (
F

k D
n) such

that

1. Each of the boundary Sn�1 are isometric to (Sn�1, ds2n�1
),

2. The principal curvatures of each boundary component are all greater than �⌫.

This proposition does not explicitly appear in [33], nonetheless is is a direct

consequence of the constructions of [33], which we will give a detailed account of

in Section 3.1 below.

Having established Theorem 1.2.2 and Proposition 1.2.3, the desired metric on

CP2
\D4 is clear. It motivates the following definition.

Definition 1.2.4. We say that a metric g on Mn is a core metric, if it has positive

Ricci curvature and there is an embedded disk for which the boundary of Mn
\Dn is

isometric to ds2n�1
and has positive principal curvatures.

If one can find core metrics on individual Riemannian manifolds, then gluing them

to the docking station using Theorem 1.2.2 produces a Ricci-positive metric on

the connected sum. Thus the approach taken in [33] to construct Ricci-positive

connected sums can be summarized as follows.

Theorem 1.2.5. [41, Theorem B] For n � 4, if Mn
i admits a core metric, then

#k
i=1

Mn
i admits a Ricci-positive metric.

So all that remains to prove Theorem 1.2.1 is to prove the following.

Proposition 1.2.6. [33, 34] CP2 admits a core metric.

We will discuss the proof of Proposition 1.2.6 below in Section 2.2.2.1.
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Dn+1 ⇥ Sm�1

Sn+m

Sn ⇥Dm

Sn ⇥ Sm (Sn ⇥ Sm) \ (Sn ⇥Dm)

FIGURE 1.1. An illustration of (1.3).

1.2.2.1. Topological considerations

We have already referenced that the surgery result of [18] can be used to

construct Ricci-positive metrics on #k (S
n
⇥ Sm) by identifying this space in as

iterated surgery on a product of spheres. This idea was carried further in [35] in

which Ricci-positive metrics were constructed on #k
i=1

(Sni ⇥ Smi) where ni,mi � 3

are allowed to vary by identifying this space with alternating surgeries on a product

of spheres. Both of these Ricci-positive connected sum results follow from applying

serious geometric constructions to elementary topological considerations. In this

section we o↵er one additional elementary topological observation that will allow us

to apply the serious work in [33] to construct new Ricci-positive connected sums.

Specifically, we claim the following

#k
i=1

(Nn
i ⇥ Sm) =

"
�
Sn�1

⇥ Sm+1
�
\

"
G

k+1

�
Sn�1

⇥Dm+1
�
##

[@

"
(Dn

⇥ Sm) t

"
kG

i=1

((Nn
i \D

n)⇥ Sm)

##
.

(1.2)

See [41, Proposition 5.2] for a full proof of this fact. In the special case Nn = Sn,

(1.2) claims that performing (n � 1)-surgery (k + 1) times on Sn�1
⇥ Sm+1 results

in #k(S
n
⇥ Sm). While elementary, this identification is not entirely obvious.

There are two essential observations that make this identification clear. The first
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Dn+m #(Nn ⇥ Sm) Dn+m \Dn+m

(Nn ⇥ Sm) \ Dn+m

Dn+m \Dn+m

(Nn \Dn) ⇥ Sm

[Dn ⇥ Dm

Dn+m \Dn+m

[Dn ⇥ Dm

(Nn \Dn) ⇥ Sm

Dn+m \(Sn�1 ⇥Dm+1)

Dn+m \(Sn�1 ⇥Dm+1)

[(Nn \Dn) ⇥ Sm

FIGURE 1.2. An illustration of (1.4).

observation is that equation (1.2) is true in the case k = 0.

Sn+m =
⇥�
Sn�1

⇥ Sm+1
�
\ (Sn�1

⇥Dm+1)
⇤
[S

n�1
⇥ S

m [Dn
⇥ Sm] . (1.3)

This fact is illustrated in Figure (1.1.).

The second observation is the following general fact. Performing surgery on a

trivially embedded Sn�1
⇥Dm+1 is the same as taking the connected sum.

Dn+m #(Nn
⇥ Sm) =

⇥
Dn+m

\(Sn�1
⇥Dm+1)

⇤
[S

n�1
⇥ S

m [(Nn
\Dn)⇥ Sm] . (1.4)

This fact is illustrated in Figure (1.2.). If we apply (1.3) to the righthand side of

(1.2), we note that the remaining Sn�1
⇥Dm+1 are trivially embedded within Sn+m.

After applying (1.4) k times to the righthand side of (1.2) illustrates the equality in

(1.2).

While the Ricci-positive surgery result of [18] only allowed for Nn = Sn in

(1.2), we note that the work of [33] allows us to use gdocking(⌫) of Proposition 1.2.3

as a Ricci-positive metric on the first term on the righthand side of (1.2). Thus

with this little bit of topological consideration we are able to state and prove one of

our first results.
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Proposition 1.2.7. [41, Proposition 5.5] For m � 3, if Mn
i admit core metrics then

there is a Ricci-positive metric on #k
i=1

(Mn
i ⇥ Sm).

Proof. Let Nn
0
= Dn. Note that a suitable round metric g0 will be a core metric for

Dn, so we may assume all of the Nn
i admit core metrics. The second term on the

righthand side of (1.2) is of the form

kG

i=0

(Nn
i \D

n)⇥ Sm . (1.5)

Let gi denote the core metrics on Nn
i \D

n, and define gp on (1.5) to agree with the

metric gi + ds2m on each component. It is clear that g has positive Ricci curvature,

that the boundaries are all isometric to ds2n�1
+ ds2m, and so that the principal

curvatures of the boundary are nonnegative. By Proposition 1.2.11, we can assume

instead that g has positive principal curvatures. Let ⌫ > 0 be a lower bound for all

of these principal curvatures.

The first term on the righthand side of (1.2) is of the form

Sn�1
⇥

"
Sm+1

\

"
G

k

Dm+1

##
(1.6)

We may take the metric gd = ds2n�1
+ gdocking(⌫), where this latter metric is

the metric constructed in Proposition 1.2.3. It is clear that gd has positive Ricci

curvatures, that the boundaries are all isometric to ds2n�1
+ ds2m, and that the

principal curvatures are all at least �⌫.

We may therefore glue together (1.5) and (1.6) along their common

boundary using Theorem 1.2.2, which by (1.2) produces a Ricci-positive metric

on #k
i=1

(Mn
i ⇥ Sm).
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At the moment, we do not know very many core metrics other than those for

Sn and CP2. In this first case Proposition 1.2.7 reduces to the work of [18], but

in this second case we have constructed Ricci-positive metrics on #k(CP2
⇥ Sm).

We note that Proposition 1.2.7 was originally proven alongside Theorem A in

[41], and represented one of the major results of the paper. Not so long after

we succeeded in proving Theorem B, which subsumes and greatly generalizes

all previous results. The reason we include Proposition 1.2.7 at all is that it will

provide clear motivation behind the proof of Theorem B in Chapter III below.

We make one final topological observation that allows for further

generalization of [33].

Proposition 1.2.8. [41, Corollary 4.5] For n � 4, let G  O(2)�O(n�1) act freely

on Sn with respect to the standard action. If Mn
i admit core metrics, then there is a

Ricci-positive metric on

(Sn /G)#
�
#k

i=1
Mn

i

�
.

In particular we may take (Sn /G) to be RPn or any lens space.

We will discuss the proof of Proposition 1.2.8 in Section 3.1.2.1 after giving a

more detailed description of the metric gdocking(⌫) in Proposition 1.2.3. It turns out

that lens spaces are the only spaces that can be realized as Sn /G in Proposition

1.2.8.

Lemma 1.2.9. Any finite subgroup of G  O(2)�O(n�1)  O(n+1) acting freely

on Sn is cyclic.

Proof. Let ⇡1 : O(2) � O(n � 1) ! O(2) be the obvious projection. Note

that ⇡(G) must act freely on S1, and therefore must contain no reflection. We

conclude that ⇡(G)  SO(2) = U(1). We immediately conclude that G has an
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irreducible complex representation of dimension 1. By [42, Theorem 7.2.18], this is

only possible if G is of Type I, where G is of Type I when

G = hA,B : An = Bm = 1;BAB�1 = Ar
i,

where rn ⌘ 1 mod m, gcd(n(r � 1),m) = 1, and r has order d in (Z/mZ)⇥, where

d is the dimension of each irreducible complex representation of G. As d = 1 in this

case, we conclude that r ⌘ 1 mod m (so that the order of r in (Z/mZ)⇥ is 1). As

(r � 1) ⌘ 0 mod m, the requirement that gcd(n(r � 1),m) = 1 is only possible if

m = 1. We conclude that G is cyclic of order n.

1.2.2.2. Core metrics

Theorem 1.2.5 gives an intrinsic characterization for which Ricci-positive

metrics on Mn
i can be used to construct Ricci-positive metrics on the connected

sum #i M
n
i . We emphasize that such core metrics cannot be produced by a local

metric deformation for the same reason outlined in Section 1.1.2.3. One might ask

if each Ricci-positive Riemannian metric g on Mn admits an embedding Dn ,! Mn

for which g is a core metric. As the boundary of this disk is required to be round,

we see that a generic Ricci-positive metric will not admit such an embedding.

Even if we drop the requirement that the boundary be round we make the

following observation.

Corollary 1.2.10. [41, Corollary 4.10] If (Mn
\Dn, g) has positive Ricci curvature

and the boundary has positive principal curvatures then ⇡1(M
n) = 0.
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Proof. Assume that (Mn
\Dn, g) has positive Ricci curvature and positive principal

curvatures. We may apply Theorem 1.2.2 to glue this manifold to itself and find a

Ricci-positive metric on Mn #Mn.

For surfaces, the Gauss-Bonnet Theorem implies that M2 #M2 is either a

sphere or a real projective plane. But both S2 and RP2 are prime, so we conclude

that M2 = S2 and hence ⇡1(M
2) = 0.

For n � 3, the Seifert-van Kampen theorem implies that ⇡1(M
n #Mn) =

⇡1(M
n) ⇤ ⇡1(M

n). As Mn #Mn is compact manifold with positive Ricci curvature,

Myers’ Theorem implies that ⇡1(M
n #Mn) = ⇡1(M

n) ⇤ ⇡1(M
n) is finite. But a free

product is only finite if each factor is trivial, i.e. if ⇡1(M
n) = 0.

In particular, this means that RPn cannot admit a core metric. More

generally, if Mn is any Ricci-nonnegative manifold with boundary with positive

principal curvatures then ◆⇤ : ⇡1(@M
n) ! ⇡1(M

n) is surjective by [43, Proposition

2.8]. This stronger observation implies that the boundary must be connected, which

in dimension 2 and 3 implies that Mn = Dn [43, Theorem 2.11(b)], though starting

in dimension 4 we have the nontrivial example of CP2 in Proposition 1.2.6.

It remains an interesting question whether or not a fixed smooth manifold

Mn with boundary admits a Ricci-positive (or Ricci-nonnegative) metric so that

the boundary has positive principal curvatures. In this paper we are narrowly

interested in the case when the boundary is a sphere. We note that Theorem II

below further reduces the construction of core metrics, to the construction of Ricci-

positive metrics with boundaries with positive principal curvatures so that the

boundary metrics are Ricci-positive isotopic to the round metric. One possible

approach to this question is to study the space of embeddings Dn ,! (Mn, g) for
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a fixed metric g. The perspective we take, however, is to ask which topological

constructions can be made to respect such metrics.

We emphasize that it is essential that the metric constructed in Proposition

1.2.3 have principal curvatures arbitrarily close to 0. It is a consequence of [44,

Theorem 1], that there is a ⌫ > 0 that depends only on n such that if the principal

curvatures of a core metric are greater than ⌫, then Mn = Sn. We suspect that

the supremum of the principal curvatures over all normalized core metrics is an

interesting geometric invariant, which will restrict the possible topology of Mn.

We conclude by noting that if (Mn, g) has positive Ricci curvature and

boundary with nonnegative principal curvatures, then one can easily perturb the

metric near the boundary so that it has positive Ricci curvature and boundary with

positive principal curvatures.

Proposition 1.2.11. If (Mn, g) is a Ricci-positive Riemannian manifold with

boundary such that the principal curvatures are nonnegative, then there is a Ricci-

positive metric g� on Mn such that the principal curvatures are positive and g� = g

along the boundary.

Proof. We will prove the stronger statement that there exists a � > 0 and a Ricci-

positive metric g� that agrees with g along the boundary such that

IIg� = IIg +�g.

Take normal coordinates of the boundary (a, x) : (�", 0] ⇥ @Mn ,! Mn. In

these coordinates the metric splits as da2 + ka where ka is smooth family of metrics

on @Mn, and in these coordinates the second fundamental form can be compute as
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follows [6, 3.2.1].

IIg = (1/2) (@aka|a=0
.

Let �� : R ! R+ be a family of smooth functions such that ��(a) ⌘ 1 � � for

a 2 (�1,�"/2), ��(0) = 1, �0

�(0) = �, and that ��(a) converges uniformly in all

derivatives to 1 as � ! 0. We can define a family of smooth metrics g� on Mn

g� =

8
>><

>>:

(1� �)2g p /2 (�", 0]⇥ @Mn

da2 + �2

�(a)ka p 2 (�", 0]⇥ @Mn

Clearly g� restricted to the boundary equals k0 and therefore agrees with g. Note

that g� converges uniformly to g in the C1 topology as � ! 0, and so if � > 0 is

su�ciently small g� will have positive Ricci curvature. We can again compute the

second fundamental form

IIg� = (1/2)
�
@a
�
�2

�(a)ga
���

a=0
= �2

�(0)(1/2) (@aga|a=0
+ �0

�(0)��(0)g0 = IIg +�g.

Thus to construct a core metric on Mn, it is su�cient to find a Ricci-positive

metric on Mn
\Dn with boundary metric Ricci-positive isotopic to the round metric

and with nonnegative principal curvatures.

1.3. Main Results

Our three main theorems, Theorems A, B, and C, all claim that there exist

core metrics on certain spaces. Combining these with Theorem 1.2.5 immediately

implies the existence of a number of Ricci-positive connected sums. We will give
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as separate corollaries those implications that are particularly interesting, but we

make no attempt to compile a comprehensive list of such examples. Such a project

would be impossible as Theorems B and C are both constructions that take as

input a core metric on manifold Mn and provide as output a new core metric on

a new manifold constructed out of bundles over Mn, so we will instead point out

the ways in which these theorems can be combined to produce new examples.

1.3.1. Projective spaces

Our original project was to understand the approach taken in [33, 34] to

construct Ricci-positive metrics on #k CP2 and to generalize the construction to

connected sums of other projective spaces. While Theorem 1.2.2 and Proposition

1.2.3 generalize immediately to higher dimensions, the construction used to

Proposition 1.2.6 relies in an essential way on the dimension. This is because

computation of the curvature in [34] relies on the fact that S3 is a Lie group, which

is not the case for higher dimensional spheres. Our first main theorem claims that

core metrics exist for all projective spaces.

Theorem A. [41, Theorem C] For all n � 1, the spaces CPn, HPn, and OP2

admit core metrics.

Combining Theorem A with Propositions 1.2.7 and 1.2.8 gives us the following

corollary.

Corollary 1.3.1. [41, Theorem A0] There is a Ricci-positive metric on the

connected sum of any of the following spaces: CPn, HPn, OP2, and at most one

RPn.

For a fixed m � 3, there is a Ricci-positive metric on the connected sum of

any of the following spaces: CPn
⇥ Sm, HPn

⇥ Sm, and OP2
⇥ Sm.
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The metric constructed to prove Theorem A is a straightforward

generalization of the metric used in Proposition 1.2.6. Both rely on the Hopf

fibrations to define a sort of doubly warped product metric on the punctured

projective spaces. In higher dimensions we need the theory of Riemannian

submersions to define these core metrics and to compute their curvatures. In

Chapter II we give the necessary background to define these metrics and ultimately

prove Theorem A in Section 2.2.2.2 below. We will also give a full account of the

core metrics of [33, 34] in Section 2.2.2.1.

1.3.2. Sphere bundles

The work of [17] and [35] combined with Proposition 1.2.7 motivates the

following question: is there a Ricci-positive metric on the connected sums of

products of three or more spheres? While this is a perfectly natural question, the

existing strategies to construct Ricci-positive metrics on such spaces run into the

essential di�culty that there is no statement similar to (1.4) for a product of three

or more spheres. By Theorem 1.2.5, it would su�ce to construct a core metric on a

product of three or more spheres. Comparing this with Proposition 1.2.7, we might

conjecture that within the metric constructed in Proposition 1.2.7 is an embedded

(Nn
⇥ Sm) \ Dn+m with a round boundary and positive principal curvatures. While

this is not the case, it motivates the following theorem.

Theorem B. If Bn admits a core metric and ⇡ : E ! Bn is a rank m+1 � 4 vector

bundle, then S(E) also admits a core metric.

Note that we may apply Theorem B iteratively, so that any iterated sphere

bundle over the space Bn will also admit a core metric, provided that Bn admits a

core metric and the fiber spheres all have dimension 3 or more. In particular, we
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may take trivial bundles in Theorem B and the core metrics from Theorem A to

deduce the following.

Corollary 1.3.2. For ni � 3, there is a Ricci-positive metric on the connected sum

of any of the following spaces: Sn
⇥

"
kY

i=1

Sni

#
, CPn

⇥

"
kY

i=1

Sni

#
, HPn

⇥

"
kY

i=1

Sni

#
,

OP2
⇥

"
kY

i=1

Sni

#
, and at most one lens space Ln or RPn

We emphasize that the the values of n and ni can vary from summand to

summand. In particular, if N2n = #k
i N

2n
i where each N2n

i admits core metrics, then

Corollary 1.3.2 and Theorem 1.2.5 produces a Ricci-positive metric on the manifold

N2n
g = N2n #(#g (S

n
⇥ Sn)). When N2n is spin, we have the following corollary of

the main theorem of [45].

Corollary 1.3.3. For n 6⌘ 3 mod 4 and n � 10, suppose that N2n = #k
i N

2n
i is

spin and each of the N2n
i admit core metrics, then Hj(RpRc(N2n

g );Q) is nontrivial

for some 1  j  5 for all g su�ciently large.

In particular, we may take N2n
i as any spin manifold appearing in Theorems A, B,

C. Essentially, one only needs to avoid using CP2k in Theorem B.

We note that Corollary 1.3.2 has a fundamental gap in its conclusion:

whether or not we may have summands that contain more than one S2

factor. There is no known obstruction to finding a Ricci-positive metric on

#k

�
S2

⇥ S2
⇥ S2

�
, yet our techniques fail to construct such metrics. The one aspect

of our construction that fails is the existence of the metric gneck(⌫) of Proposition

3.1.2, which is an essential ingredient in the proof of Proposition 1.2.3 and hence

Theorem 1.2.5. We emphasize that [18] has constructed Ricci-positive metrics on

#k

�
S2

⇥ S2
�
, yet when this result was generalized in [35] to #k (S

ni ⇥ Smi) we must

restrict to ni,mi � 3. The di�culties that arise in these constructions is we require
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further topological decomposition of S2 into components that will not intrinsically

support positive curvature.

While the metric constructed in Proposition 1.2.7 does not directly construct

a core metric on Nn
⇥ Sm it is still be the basis for the proof of Theorem B. We will

discuss in the following section what problems arise when attempting to construct

core metrics in this way and how to overcome them. In Section 2.3 we will show

how to reduce the construction in Theorem B for all Sm-bundles to the construction

for products. The rest of the proof makes up the body of Chapter III, which relies

on the Theorems I and II below.

1.3.2.1. The technical constructions

When one attempts to locate an embedded (Nn
⇥ Sm) \ Dn+m within the

topological decomposition (1.2) used in the proof of Proposition 1.2.7, one realizes

that the boundary Sn+m�1 will bound a disk in (1.3). This disk will intersect the

two terms on the righthand side of (1.3) which in turn decomposes the disk as

Dn+m = (Dn
⇥Dm) [S

n�1
⇥D

m

�
Sn�1

⇥Bm+1

+

�
. (1.7)

This is a decomposition of a smooth manifold with boundary as the union of two

manifolds with corners along a common face. We would like to study the resulting

metric on the boundary of this disk and its principal curvatures. As the two terms

on the righthand side of (1.3) are glued together using Theorem 1.2.2 in the proof

of Proposition 1.2.7, we need to understand how this construction interacts with

manifolds with corners.
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Our first technical theorem is Theorem I, which is a generalization of

Theorem 1.2.2 to manifolds with corners. As already observed, we wish to glue

together two Ricci-positive Riemannian manifolds with corners along a common

face and deduce similarly to Theorem 1.2.2 that there is a smooth Ricci-positive

metric on the resulting smooth manifold with boundary. If this is all that one

wishes to conclude, then Theorem 1.2.2 would immediately imply this provided

we impose the same condition on second fundamental forms of the glued faces. As

we are trying to construct core metrics, in addition to preserving Ricci-positivity,

we are also interested in preserving the positivity of the principal curvatures of

the remaining faces. Theorem I claims it is possible to preserve Ricci-positivity

and face convexity under the same hypotheses as Theorem 1.2.2 with the added

assumption that the dihedral angles along the corners are not too large.

Theorem I. If (Xn
i , gi) are Ricci-positive Riemannian manifolds with codimension

2 corners such that the principal curvatures of the faces are all positive and the

dihedral angles along the corners are everywhere less than ⇡/2. Suppose that there

is an isometry � : Fn�1

1
! Fn�1

2
between on of their faces such that II1 +�⇤ II2 is

positive definite, then there is a smooth Ricci-positive metric on Xn = Xn
1
[� Xn

2
so

that the smooth boundary has positive principal curvatures.

We will discuss Riemannian manifolds with corners in Appendix A where we

will rephrase Theorem I in a more precise fashion. We will also introduce the

technical tools used in the proof of Theorem 1.2.2 and explain how to adapt them

to Riemannian manifolds with corners to prove Theorem I.

Having established Theorem I, we are now able to study the construction of

the metric in Proposition 1.2.3 and describe an embedding of the two terms in (1.7)

into the corresponding pieces in (1.3) to which a version of Theorem I can be used
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to construct a Ricci-positive metric on (Nn
⇥ Sm) \ Dn+m so that the boundary has

positive principal curvatures. This is carried out in Sections 3.2.3 and 3.3. This

overcomes the first di�culty in proving Theorem B.

The second di�culty in proving Theorem B is precisely that the metric

constructed on (Nn
⇥ Sm) \ Dn+m using Theorem I restricted to the boundary

will not be round. We therefore require a technique that would allow us to alter

the metric near the boundary. The boundary metric turns out to have positive

Ricci curvature, and is connected via a path of positive Ricci curvature metrics to

the round metric. This itself is far from obvious, but even if we suppose it were

true, this still requires a technique to use Ricci-positive isotopies to deform a collar

neighborhood of the boundary. Our second technical theorem claims that the

existence of a Ricci-positive isotopy can be used to construct a particular Ricci-

positive “neck.”

Theorem II. If g0 and g1 are isotopic in the space of Ricci-positive metrics, then

g0 and g1 are neck-equivalent.

We give a precise definition of what we mean by neck-equivalent in Appendix

B. This definition combined with Theorem 1.2.2 precisely allows us to alter the

metric near the boundary in the following way.

Corollary 1.3.4. If (Mn, g) is a Ricci-positive manifold with boundary so that the

principal curvatures of the boundary are positive and the metric g restricted to the

boundary is isometric to a Ricci-positive metric g0 on @Mn. Suppose that g0 and

g1 are Ricci-positive isotopic, then there is a Ricci-positive metric g̃ on Mn still

has positive principal curvatures along the boundary but now g̃ restricted to the

boundary is isometric to g1.
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The remainder of the proof of Theorem B carried out in Section 3.4 is to show that

the metric constructed on the boundary of (Nn
⇥ Sm) \ Dn+m using Theorem I is

Ricci-positive isotopic to the round metric.

1.3.3. Plumbing

One of the main applications of the Ricci-positive surgery theorem of

[3] is the construction of Ricci-positive metrics on exotic spheres that bound

parallelizable manifolds in [30]. Every such sphere can be built using a construction

known as plumbing. Suppose we are given a rank n disk bundle over an m

dimensional manifold and a rank m disk bundle over an n dimensional manifold,

then we can locally glue these bundles together interchanging base and fibers so

that the corresponding zero sections are plumb with another. This can be repeated

with varying bundles and base manifolds, and these particular exotic spheres can

be realized as the boundaries of certain plumbings of disk bundles over spheres.

The surgery theorem of [3] is applicable because one can equally well describe these

boundaries as iterated surgery on a sphere bundle over a spheres. We will discuss

these construction in further detail in Chapter IV.

As Theorem B already shows that sphere bundles admit core metrics, and

[30, Theorem 2.2] precisely claims that Ricci-positive metrics can be preserved

under iterated k surgery, it is reasonable to ask if these exotic spheres admit core

metrics as well. These spheres belong to a broader class of manifolds that occur as

the boundary of tree-like plumbings, i.e. simply connected manifolds constructed by

plumbing Dk-bundles over Sk. When plumbing together Dp-bundles over Sq when

p 6= q, [3, Theorem 2.3] applies to construct a Ricci-positive metric when only

plumbing together two disks bundles. Our contribution is that the ideas behind
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Theorem B can be combined with the proofs of [30, Theorems 2.2 and 2.3] to

conclude that these boundaries of plumbings also admit core metrics.

Theorem C. For k � 4, if M2k�1 is the boundary of a tree-like plumbing, then

M2k�1 admits a core metric.

For p � 4 and q � 3, if Mp+q�1 is the boundary of plumbing a Dp-bundle over

Sq with a Dq-bundle over Sp, then Mp+q�1 admits a core metric.

We give more detailed description of the work of [3, 30] and its application to prove

Theorem C below in Chapter IV.

The class of manifolds realized as boundaries of tree-like plumbings is much

more than exotic spheres; it contains a sizable portion of all highly connected

manifolds [32, Theorem C]. We note that we may use any of the Mn in Theorem

C as inputs for Theorem B to produce additional core metrics, which then may

be combined with any of the other core metrics constructed using Theorem A and

Theorem B using Proposition 1.2.8 to construct further examples of Ricci-positive

connected sums.

The exotic spheres that are known to be included in Theorem C are listed in

the following corollary.

Corollary 1.3.5. ([46],[47, Satz 12.1]) If ⌃2k�1
2 bP2k, then ⌃2k�1 admits a core

metric. Each ⌃8
2 ⇥8, ⌃16

2 ⇥16, and ⌃19
2 ⇥19/bP20 admit a core metric.

Thus Proposition 1.2.8 allows us to find Ricci-positive metrics on the connected

sum of any the exotic spheres in Corollary 1.3.5 with any of the other manifolds

constructed in Theorems A, B, and C. While taking a connected sum with an

exotic sphere has no e↵ect on the underlying topological manifold, it can sometimes

alter the smooth structure. Thus Corollary 1.3.5 gives us an approach to construct

new examples of exotic smooth structures supporting positive Ricci curvature.
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By 1.2.8 we may find a Ricci-positive metric on the connected of any of the

exotic spheres in Corollary 1.3.5 with RPn. In dimension 7, by [48, Corollary 2.11]

these connected sums all change the smooth structure.

Corollary 1.3.6. For all ⌃7
2 bP8 = ⇥7, there is a Ricci-positive metric

on ⌃7#RP7, and each ⌃7#RP7 represent distinct smooth structures on RP7.

Moreover, if M7 is PL-homeomorphic to RP7, then it admits a Ricci-positive

metric.

By Theorem A and Theorem 1.2.5 we can construct a Ricci-positive metric on

the connected sums of any of the exotic spheres of Corollary 1.3.5 with any other

projective spaces. For CPn in low dimensions n  8, by [49, Theorem 1] these

connected sums will always change the smooth structures.

Corollary 1.3.7. Let n = 4 or 8. For ⌃2n
2 ⇥2n

⇠= Z/2Z, there is a Ricci-positive

metric on ⌃2n#CPn, and each ⌃2n#CPn represent distinct smooth structures on

CPn. Moreover, if M8 is homeomorphic to CP4, then M8 admits a Ricci-positive

metric.

Where this last sentence is due to [50, Theorem 2.7]. By Theorem B and Theorem

1.2.5 we can construct a Ricci-positive metric on the connected sums of any of the

exotic spheres of Corollary 1.3.5 with products of spheres. In dimension 5 or more,

by [51, Theorem A] these connected sums will always change the smooth structure.

Corollary 1.3.8. Let k � 2 and let di be any sequence with d1 � 2 and di � 3

which sums to d. Let Md be the space

Md :=
lY

i=1

Sdi .
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Then for each ⌃d listed in Corollary 1.3.5 there is a Ricci-positive metric on

⌃d#Md, and each ⌃d#Md represent distinct smooth structures on Md.

By Theorem 1.2.5 we can construct a Ricci-positive metric on the connected

sum of arbitrarily many manifolds admitting core metrics with the exotic spheres

of Corollary 1.3.5. It is likely that many of these connected sums represent distinct

smooth structures as well, but very little is known about the e↵ect of connected

sum on smooth structures. At the very least, by [52, Corollary 2] we know that

taking connected sums with S2
⇥ Sd�2 preserves smooth structure.

Corollary 1.3.9. Let k � 2 and let di be any sequence with di � 3 which sums to

d. Let Md be the space

Md :=
lY

i=1

Sdi .

And let Md
k = Md#

�
#k

�
S2

⇥ Sd�2
��
, then for each ⌃d listed in Corollary 1.3.5

there is a Ricci-positive metric on ⌃d#Md
k, and each ⌃d#Md

k represent distinct

smooth structures on Md
k.

By theorem C and Theorem 1.2.5 we can also construct Ricci-positive metrics

on the connected sums of any of the exotic spheres of Corollary 1.3.5 with other

manifolds belonging to the class of manifolds realized as boundaries of tree-like

plumbings. This allows us to strengthen [32, Theorem A] in dimension 19 to the

following.

Corollary 1.3.10. If M19 is 8-connected and 9-parallelizable, then there exists a

Ricci-positive metric on M19.

We again emphasize that there are a great deal more examples of Ricci-positive

metrics constructed by Theorems A, B, and C and Proposition 1.2.8 then those
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listed as Corollaries here. These are merely the examples that are known to give

distinct smooth structures on the same underlying topological manifolds.
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CHAPTER II

RIEMANNIAN SUBMERSIONS

This chapter represents a tour through the theory of Riemannian submersions

necessary to include nontrivial sphere bundles in Theorems B and C. Riemannian

submersions also arise naturally when considering core metrics on projective spaces,

where we recall that projective spaces are built iteratively out of attaching cells to

disk bundles. We begin in Section 2.1 providing the definitions, constructions, and

preliminary results that will be necessary for our various applications, including

the key observation of [41] needed to prove Theorem A, Lemma 2.1.6. Our first

application of Riemannian submersions will be to prove Theorem A in Section

2.2 after summarizing the basic topology and geometry of projective spaces.

We conclude with our second application of Riemannian submersions in Section

2.3, where we reduce the proof of Theorem B to a technical construction, which

occupies the body of our next chapter, Chapter III, as well as set up the proof of

Theorem C, which occupies the body of Chapter IV.

2.1. Background

In this section we provide the background to the theory of Riemannian

submersions that will be necessary for our two applications. We refer the reader

to [53, Chapter 9], which is the standard reference for the subject, and [54] for

additional background on the subject. Much of our notation and statements

are follow closely to [53, Chapter 9]. We begin with notation, definitions, and

constructions, and conclude with our formulas for curvature.
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2.1.1. Definitions and constructions

For any smooth surjective submersion between Riemannian manifolds ⇡ :

(En+m, g) ! (Bn, ǧ) we may define the vertical distribution to be the rank m sub-

bundle of T En+m given by ker d⇡ denoted by V . We may define the horizontal

distribution to be the rank n sub-bundle to be the compliment of V with respect

to g denoted by H, so that T En+m = V � H. In this decomposition we have two

orthogonal bundle projections V : T En+m
! V and H : T En+m

! H. The sections

of V and H are respectively referred to as vertical and emphhorizontal vector fields.

A Riemannian submersion is a submersion where the above data is

compatible with the metric ǧ on the base manifold Bn. We say that a smooth

surjective submersion ⇡ : (En+m, g) ! (Bn, ǧ) is a Riemannian submersion if

d⇡ : (H, g) ! (T Bn, ǧ) is a fiber-wise isometry of Euclidean vector bundles, i.e.

that g(X, Y ) = ǧ(d⇡X, d⇡Y ) for horizontal vector fields X, Y . When both En+m

and Bn are compact manifolds, then the fibers Fb = ⇡�1(b) are all di↵eomorphic

to a compact manifolds Fm [53, Theorem 9.3]. We may define the fiber metric ĝb

by restricting g to Fb. In this case, the vertical distribution agrees with the tangent

bundle of the fibers Vx = TxF⇡(x).

The main reason for considering Riemannian submersions is that we would

like to relate the geometric properties of the total space and base space. This is

similar to the study of immersions ◆ : (Nn, gN) ,! (Mn+m, gM), where we restrict

to Riemannian immersions, i.e. ◆⇤gM = gN, in order to compare their geometry.

The primary geometric quantity we are interested in is the curvature, which we will

discuss in detail in Section 2.1.2 below. The curvature of total space, fibers, and

base space are related using two tensorial obstruction defined as follows (where r is
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the Levi-Civita connection of (En+m, g)).

TE1E2 = HrVE1VE2 + VrVE1HE2, (2.1)

AE1E2 = HrHE1VE2 + VrHE1HE2. (2.2)

Both T and A are tensors, and satisfy a range of identities when restricting the Ei

to be horizontal or vertical (see [53, Section 9.C]).

Recall that the curvature of an immersed submanifold is related to the

curvature of the ambient manifold in terms of the second fundamental form

II(X, Y ) = NrXY , where N : T Mn+m
! N Nn is the normal projection and r

is the Levi-Civita connection with respect to gM. If we restrict T to vertical vector

fields Vi and we restrict A to horizontal vector fields Yi we have

TV1V2 = HrV1V2 AY1Y2 = VrY1Y2.

If we think of H and V as the normal projections for V and H respectively, we

see that T and A can be thought of as second fundamental forms for V and H

respectively. As V agrees with the tangent bundles of the fibers Fb, we see that

T actually agrees with the second fundamental form of (Fb, ĝb) ,! (En+m, g). In

fact, T ⌘ 0 if and only if every fiber Fb is a totally geodesic submanifold, and A ⌘ 0

if and only if H is integrable so that (En+m, g) = (Fm
⇥Bn, ǧ + ĝb) [53, 9.26].

We can also use Riemannian submersions as a device for constructing new

metrics on En+m out of existing metrics on Fm and Bn. Using the curvature

computations in Section 2.1.2 below, we will be able to construct Ricci-positive

metrics in this manner. All constructions in this chapter are of the following
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general form, which will allow us to discuss slightly narrower constructions in

Sections 2.1.1.1 and 2.1.1.2.

Proposition 2.1.1. [53, 9.15] Let ⇡ : En+m
! Bn be any smooth fiber bundle with

fiber Fn. Suppose we are given the following data:

1. a base metric ǧ on Bn

2. a smooth family of fiber metric ĝb on Fm parameterized by b 2 Bn

3. a rank n sub-bundle H of T En+m that is a vector bundle compliment of V

Then there is a unique smooth metric g on En+m such that ⇡ : (En+m, g) ! (Bn, ǧ)

is a Riemannian submersion that restricts to ĝb on the fiber Fb and has horizontal

distribution given by H. Specifically this metric takes the form

g = (⇡⇤ǧ) �H + ĝb � V (2.3)

2.1.1.1. Principal Bundles

A principal G-bundle is a fiber bundle p : P ! Bn for which the Lie group

G acts freely on P on the right and p : P ! P /G = Bn is the quotient map.

A principal connection ✓, for us, will be a horizontal distribution of the principal

bundle that is invariant under of the action of G, i.e. R⇤

g✓ = ✓ for each g 2 G.

Given a manifold Fm on which G acts on the left, we can form the associated Fm-

bundle

P⇥G Fm := (P⇥Fm)/G,

where g 2 G acts on (x, y) 2 P⇥Fm on the right by (x, y)g = (xg, g�1y). We

have that ⇡ : P⇥G Fm
! Bn is a fiber bundle with fiber Fm, and from a principal
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connection ✓ on the principal bundle we have a preferred horizontal distribution of

the associated bundle by setting H = d⇡(✓ � T Fm), which again will be invariant

under the action of G on the fiber. Fiber bundles formed in this way are said to

have structure group G.

In cases where the Riemannian manifold (Fm, ĝ) has nontrivial isometry group

G, Proposition 2.1.1 can be used to construct metrics on Fm-bundles with structure

group G. The following theorem claims that such Riemannian submersions formed

in this way also have totally geodesic fibers, i.e. T ⌘ 0, which is a particularly

desirable trait for curvature computations.

Theorem 2.1.2. [53, Theorem 9.59] Let G be a lie group, p : P ! Bn a principal

G-bundle, and Fm be any manifold on which G acts. Let ⇡ : En+m
! Bn be the

associated bundle En+m = P⇥G Fm.

Given a metric ǧ on Bn, a G-invariant metric ĝ on Fn, and a principal

connection ✓ on P, there exists a unique smooth metric g on En+m such that

⇡ : (En+m, g) ! (Bn, ǧ) is a Riemmanian submersion with totally geodesic fibers

isometric to (Fn, ĝ) and horizontal distribution associated with ✓.

One of the main examples of fiber bundles with designated structure group

are vector bundles, which are Rm-bundles with structure group O(m) (though we

will only consider oriented vector bundles). In this setting Theorem 2.1.2 takes the

following form.

Corollary 2.1.3. [53, 9.60] Let ⇡ : En+m
! Bn be a rank m Euclidean vector

with fiber inner product µ and metric connection r. Given a metric ǧ on Bn and

an O(Rm, µ) invariant metric ĝ on Rm there is a unique metric g on En+m such

that ⇡ : (En+m, g) ! (Bn, ǧ) is a Riemannian submersion with totally geodesic fibers

isometric to (Rm, ĝ) and horizontal distribution H corresponding to r.
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Similarly, given a metric ǧ on Bn and a radius r > 0 there is a unique metric

g on S(E) such that ⇡ : (S(E), g) ! (Bn, ǧ) is a Riemannian submersion with

geodesic fibers isometric to r2ds2m�1
and horizontal distribution H corresponding to

r.

We note that any O(m) invariant metric on Rm (see [6, Section 4.3.2]) is a warped

product metric ĝ = dt2 + r2(t)ds2m�1
where we think of Rn = [0,1) ⇥

Sm�1 /
�
{0}⇥ Sm�1

�
as spherical coordinates and r(t) is a function defined on

[0,1) that is positive for all values of t other than t = 0 where r(even)(0) = 0

and r0(0) = 1. We again emphasize that the distributions H produced in Theorem

2.1.2 and Corollary 2.1.3 are invariant with respect to the action of the structure

group on the fiber.

2.1.1.2. Warped Products and Linear Bundles

In the last section, we have discussed warped product metrics on Rn, in this

section we begin by describing the general situation (see [6, Section 4.2.3]). Given

any two Riemannian manifolds (Bn, ǧ) and (Fm, ĝ), a warped product metric on

Bn
⇥Fm is a metric ǧ + f 2(b)ĝ, where ǧ is a metric on Bn, ĝ a metric on Fm, and

f(b) is a positive smooth function defined on Bn. We call the function f(b) the

warping function. One can generalize this notion by allowing a product of more

than two Riemannian manifolds and allowing warping functions defined on the

whole product to scale each metric. Such constructions are quite useful to give

examples of certain geometries as the curvature can be computed explicitly in

terms of the curvature of the individual Riemannian manifolds and the derivatives

of the warping functions. In this paper, when we say doubly warped products we

will always be referring to a metric on [0, 1]⇥ Bn
⇥Fm defined as g = dt2 + h2(t)ǧ +
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f 2(t)ĝ for two positive functions f(t) and h(t) defined on t 2 [0, 1]. This is not the

most general concept of doubly warped product metric, but will be su�cient for our

purposes.

If instead we are given a nontrivial fiber bundle ⇡ : En+m
! Bn we have an

analogous notion of warped Riemannian submersion metric. We call a metric g on

En+m a warped Riemannian submersion metric if it is constructed via Proposition

2.1.1 using a metric ǧ and the family of fiber metrics given by ĝb = f 2(b)ĝ for a

fixed metric ĝ on Fm and a positive smooth function f(b) defined on Bn. Hidden

in this definition is the additional data of a horizontal distribution, so one should

think of this as taking an existing Riemannian submersion with isometric fibers and

allowing the scale of the fiber to change as we move throughout the base. Similarly,

a doubly warped Riemannian submersion metric is any metric g̃ on [0, 1] ⇥ En+m

such that id ⇥ ⇡ : ([0, 1] ⇥ En+m, g̃) ! ([0, 1] ⇥ Bn, dt2 + h2(t)ǧ) is the Riemannian

submersion constructed via Proposition 2.1.1 with family of fiber metrics given

by ĝb = f 2(t)ĝ for a fixed metric ĝ on Fm and a positive smooth function f(t)

defined on t 2 [0, 1] and the horizontal distribution is specifically flat with respect

to t, i.e. is of the form T [0, 1] � H where H is any horizontal distribution of

⇡ : En+m
! Bn. One should think of doubly warped Riemannian submersion

metrics as allowing a fixed Riemannian submersion metric to evolve in time by

changing the scale of the base and fibers. Note that we have specified all the

data necessary to apply Proposition 2.1.1 to construct a Riemannian submersion

⇡ : (En+m, g) ! (Bn, ǧ) with fibers isometric to (Fm, ĝ). We will say that g̃ is

the doubly warped Riemannian submersion metric associated to the Riemannian

submersion ⇡ : (En+m, g) ! (Bn, ǧ) with warping functions f(t) and h(t).
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In the special case when (Fm, ĝ) = (Sm, ds2m) a doubly warped product metric

can be used to construct metrics on Dm+1
⇥Bn and Sm+1

⇥Bn in the following way.

By allowing the radii of the spheres to decrease to 0 as t 2 [0, 1] approaches 0 or

1, this has the topological e↵ect of taking the point-wise quotient of the subsets

Sm
⇥{0} ⇥ {x} or Sm

⇥{1} ⇥ {x}. Doing this at either end produces Dm+1
⇥Bn

while doing this at both ends produces Sm+1
⇥Bn. The doubly warped product

g = dt2 + h2(t)ǧ + f 2(t)ds2m can be used to define a metric on either of these

quotients by allowing f(0) = 0 or f(1) = 0. This metric will have a cusp at t = 0

or t = 1 if we are not careful about the derivatives of f(t) and h(t) at t = 0 or

t = 1. If we require g to be smooth we must impose the following condition on f(t)

[6, Section 1.4.4],

f (even)(t) = 0 and f 0(t) = (�1)t for t 2 {0, 1}. (2.4)

The symmetry imposed by allowing f(t) to vanish forces the function h(t) to satisfy

the following condition [6, Section 1.4.5],

h(odd)(t) = 0 for t 2 {0, 1}. (2.5)

Thus g defines a smooth metric on Dm+1
⇥Bn if f(t) and h(t) satisfy respectively

(2.4) and (2.5) at either t = 0 or t = 1, and defines a smooth metric on Sm+1
⇥Bn

if f(t) and h(t) satisfy respectively (2.4) and (2.5) at both t = 0 and t = 1. If, in

addition (Bn, ǧ) = (Sn, ds2n), then g will define a smooth metric on Sn+m+1 if f(t)

and h(t) satisfy respectively (2.4) and (2.5) at t = 0 and respectively (2.5) and (2.4)

at t = 1.
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We would like to extend this idea to use doubly warped Riemannian

submersion metrics to define smooth metrics on quotients of sphere bundles.

Unlike the standard doubly warped product metric, these metrics also depend on

a horizontal distribution. If we hope to form a smooth metric on the quotient, these

distributions must also be rotationally symmetric. We claim that this is the only

additional hypothesis needed to form these quotients.

Proposition 2.1.4. [41, Proposition 2.6] Let ⇡ : S(En+m+1) ! Bn be the

sphere bundle of a rank m + 1 vector bundle with O(m + 1) invariant horizontal

distribution H. Let g̃ be the doubly warped Riemannian submersion metric

associated constructed via Proposition 2.1.1 on id ⇥ ⇡ : [0, 1] ⇥ S(En+m+1) !

[0, 1] ⇥ Bn with base metric dt2 + h2(t)ǧ, family of fiber metrics given by f 2(t)ds2m,

and horizontal distribution T [0, 1]⇥H.

The metric g̃ descends to a smooth metric on D(En+m+1) if f(t) and h(t)

satisfy respectively conditions (2.4) and (2.5) at either t = 0 or t = 1, S(R ⇥

En+m+1) if f(t) and h(t) satisfy respectively conditions (2.4) and (2.5) at both t = 0

and t = 1.

Proof. Using the fact that our horizontal distribution is the product T [0, 1]�H, the

formula (2.3) can be written in this case as

g̃ = dt2 + h2(t)(⇡⇤ǧ) �H + f 2(t)ĝ � V .

Restricting the ambient tangent bundle to the submanifold [0, 1] ⇥ Fb
⇠= [0, 1] ⇥ Sm,

we see that dt2+f 2(T )ĝ�V = dt2+f 2(t)ds2m, which will descend to a smooth metric

on Dm+1 if f(t) satisfies (2.4) at t = 0 or t = 1 and will descend to a smooth metric

on Sm+1 if f(t) satisfies (2.4) at both t = 0 and t = 1. For each horizontal vector
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field Xi of tangent to H we see that h2(t)(⇡⇤ǧ)(Xi, Xj) will satisfy (2.5) whenever

h(t) does. We conclude that h2(t)(⇡⇤ǧ)(Xi, Xj) descends to a smooth function on

Dm+1 or Sm+1, and so h2(t)(⇡⇤ǧ) � H will descend to a smooth tensor on Dm+1 or

Sm+1.

Note that the metric constructed in Proposition 2.1.4 on D(En+m+1) cannot

be constructed by Corollary 2.1.3 as the fibers will not be totally geodesic. That

said the second half of Corollary 2.1.3 provides us a natural setting in which

rotation invariant horizontal distributions arise, which we will need below Section

2.2 to apply Proposition 2.1.4 to construct metrics on projective spaces. In

particular, this means that metrics constructed by 2.1.4 will restrict to metrics on

S(En+m+1) that will agree with those constructed in Corollary 2.1.3 and therefore

have totally geodesic fibers. This will be useful when we need to compute the

curvature of such metrics in Section 2.1.2.2.

2.1.2. Curvature

In much the same way that the curvatures of an immersed submanifold and

the ambient manifold in a Riemannian immersion are related in terms of II via the

Gauss [6, Theorem 3.2.4] and Codazzi-Mainardi [6, Theorem 3.2.5] equations, the

curvatures of the total space, base space, and fibers in a Riemannian submersion

are related in terms of A and T via the O’Neill formulas [53, Theorem 9.28]

originally proven in [55].

2.1.2.1. O’Neill formulas

In this section we let ⇡ : (En+m, g) ! (Bn, ǧ) be a Riemannian submersion.

For the statement of the O’Neill formulas we will let U and V denote any vertical
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vector fields and X and Y denote any horizontal vector fields of of En+m. Let Xi

with 1  i  n denote any collection of orthonormal horizontal vector fields. We

will not state the O’Neill formulas in their generality, instead we will assume we

have a Riemannian submersion with totally geodesic fibers all isometric to (Fn, ĝ).

The version of the O’Neill formulas for Ricci curvatures are as follows.

Theorem 2.1.5. If g has totally geodesic fibers, then its Ricci curvatures are as

follows

Ricg(U, V ) = Ricĝ(U, V ) +
nX

i=1

g(AXiU,AXiU), (2.6)

Ricg(X,U) =
nX

i=1

g((rXiA)XiX,U), (2.7)

Ricg(X, Y ) = Ricǧ(⇡⇤X, ⇡⇤Y )� 2
nX

i=1

g(AXXi, XYXi). (2.8)

2.1.2.2. Curvature of warped products

In this section we let ⇡ : (En+m, g) ! (Bn, ǧ) denote a Riemannian submersion

with horizontal distribution H and totally geodesic fibers isometric to (Fm, ĝ). And

we let g̃ be the associated doubly warped Riemannian submersion metric on id⇥ ⇡ :

[0, 1]⇥ En+m
! [0, 1]⇥ Bn. In this setting (2.3) becomes

g̃ = dt2 + h2(t)(⇡⇤ǧ) �H + f 2(t)ĝ � V (2.9)

If we denote by IIt the second fundamental form of {t}⇥En+m
⇢ [0, 1]⇥En+m

with respect to g̃ and the unit normal @t, then we can compute IIt readily from
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(2.9) and [6, Proposition 3.2.1] as

IIt = h0(t)h(t)(⇡⇤ǧ) �H + f 0(t)f(t)ĝ � V (2.10)

We would like explain how Theorem 2.1.5 is used to compute the Ricci

curvature of such metrics. To give a formula for these curvatures we will need the

following coordinates. Let Yi for 1  i  n and Vj for 1  j  m be horizontal and

vertical vector fields of En+m that comprise a local orthonormal frame with respect

to g. If we extend Yi and Vj to [0, 1] ⇥ En+m in the obvious way, let h2(t)Xi = Yi

and f 2(t)Uj = Vj. Together with @t, Xi and Uj form a local orthonormal frame of

[0, 1]⇥ En+m with respect to g̃.

The family of doubly warped Riemannian submersion metrics were previously

studied in [56] as part of a broader class of metrics, which we will describe now.

Construct a Riemannian submersion metric g̃ on id ⇥ ⇡ : [0, 1] ⇥ Sp
⇥S(En+m) !

[0, 1] ⇥ Sp
⇥Bn via Proposition 2.1.1 using base metric dt2 + ✓2(t)ds2p + h2(t)Ǧ,

family of fiber metric f 2(t)ĝ, and horizontal distribution T [0, 1]�T Sp
�H. It is this

class of metrics whose curvatures are computed in [56, Proposition 4.2]. The first

step in this computation is to express Ã, the A-tensor of g̃, in terms of the A-tensor

of g. This along Theorem 2.1.5 finishes the computation. Our metrics correspond

to the special case ✓(t) ⌘ 1 and p = 0. We chose to record the formulas of [56,

Proposition 4.2] by rewriting the A-tensor of g in terms of the Ricg, Ricǧ, and Ricĝ

using Theorem 2.1.5.

Lemma 2.1.6. [56, Proposition 4.2] Let g̃ be a doubly warped Riemannian

submersion metric associated to the Riemannian submersion ⇡ : (En+m, g) !

(Bm, ǧ) with totally geodesic fibers isometric to (Fn, ĝ), then the Ricci curvature of g̃
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are as follows.

Ricg̃(@t, @t) = �n
h00

h
�m

f 00

f
. (2.11)

Ricg̃(Xi, Xi) =
Ricǧ(Y̌i, Y̌i)� (n� 1)h02

h2
�

h00

h
�m

f 0h0

fh

+ (Ricg(Yi, Yi)� Ricǧ(Y̌i, Y̌i))
f 2

h4
. (2.12)

Ricg̃(Uj, Uj) =
Ricĝ(Vj, Vj)� (m� 1)f 02

f 2
�

f 00

f
� n

f 0h0

fh

+ (Ricg(Vj, Vj)� Ricĝ(Vj, Vj))
f 2

h4
. (2.13)

Ricg̃(Xi, Vj) = Ricg(Yi, Uj)
f

h3
(2.14)

Ricg̃(Xi, @t) = Ricg̃(Ui, @t) = 0.

2.1.2.3. The Canonical Variation

One of the primary di�culties of using Proposition 2.1.1 to construct metrics

satisfying certain curvature conditions is precisely the presence of the A tensor

terms in Theorem 2.1.5. While we may have good understanding of the curvature

of (Bn, ǧ) and (Fm, ĝ), it is unlikely, unless we have a concrete construction of

the fiber bundle En+m, that we will understand H well enough to compute A.

In Lemma 2.1.6 this is avoided by relating the Ricci curvatures of g̃ to the Ricci

curvatures of g. Another approach to avoid this di�culty is the so-called canonical

variation.

For a given Riemannian submersion ⇡ : (En+m, g) ! (Bn, ǧ) we define the

canonical variation to be the family of metrics gt where the family of fiber metric of

ĝb of g is replaced by t2ĝb. In other words, we scale the fibers of g by t2 to construct

gt. Shrinking the fiber spheres causes the corresponding curvatures to blow up, so if
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the fiber spheres are totally geodesic we may expect this to counteract any negative

contribution of the A tensor in the formulas of Corollary 2.1.5.

Proposition 2.1.7. [53, Proposition 9.70] If g has totally geodesic fibers isometric

to (Fm, ĝ), then the Ricci curvatures of the canonical variation gt are as follows

Ricgt(U, V ) = Ricĝ(U, V ) + t2
nX

i=1

g(AXiU,AXiU), (2.15)

Ricgt(X,U) = t
nX

i=1

g((rXiA)XiX,U), (2.16)

Ricgt(X, Y ) = Ricǧ(⇡⇤X, ⇡⇤Y )� 2t
nX

i=1

g(AXXi, XYXi). (2.17)

We see that Ricci curvatures of gt on En+m converge to the corresponding

Ricci curvatures of product metric ǧ + ĝ on Bn
⇥Fm as t ! 0. Using Theorem

2.1.2 we can construct Riemannian submersions with totally geodesic fibers, and

then consider the canonical variation gt, which by Proposition 2.1.7 will have

positive Ricci curvature for t su�ciently small if (Fn, ĝ) and (Bm, ǧ) both have

positive Ricci curvature for any horizontal distribution H. This idea was used in

[2] to show that metrics of positive Ricci curvature are closed under nontrivial fiber

bundles with structure groups acting by isometries on the fibers. This is precisely

the construction we will use in Section 2.3 below to reduce the proof of Theorem B

to a technical metric construction on an elementary space.

2.2. Projective Spaces

In this section we will use doubly warped Riemannian submersion metrics

to construct core metrics for CPn, HPn, and OP2. Recall that the real division
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algebras are R, C, H, and O. The projective spaces are defined as

RPn = (Rn+1)⇤/R⇤ = Sn / S0

CPn = (Cn+1)⇤/C⇤ = S2n+1 / S1

HPn = (Hn+1)⇤/H⇤ = S4n+3 / S3

Where, this second equality follows by scaling every vector by 1/|v| and restricting

the multiplicative action.

We must discuss the octonionic projective plane OP2 separately as the

multiplicative structure of O⇤ restricted to S7 does not form group. We can define

OP1 := S8 without issue. The action of S7 by multiplication on S15
2 (O2)⇤ yields a

fiber bundle ⌘ : S15
! S8 with fiber S7, which is the sphere bundle of a disk bundle

D(�1O). This allows us to define OP2 = D16
[S

15D(�2O). The action of S7 fails to be

free on S8n�1
2 (On)⇤ for n � 3, and using cohomology operations one can show

that there is no CW complex with cohomology ring Z[x]/(xn) with |x| = 8 and

n � 3 (see [57, 4.L.10]).

2.2.1. The tautological bundle

We have already referenced the existence of a rank 8 vector bundle �1O !

OP1, for which

OP2 = D16
[S

15D(�1O).

We call �1O the tautological bundle of OP1. In this section we will discuss the

tautological bundles �nR ! RPn, �nC ! CPn, and �nH ! HPn. To avoid repetition

we will let K denote the real division algebra of real dimension k, for k = 1, 2, or 4,

and KPn denote the corresponding projective space.
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As points in KPn can be thought of as one-dimensional subalgebras of Kn+1,

we can define vector bundles �nK ! KPn of rank k defined by

�nK = {(x, v) 2 KPn
⇥Kn+1 : [v] = x}.

The corresponding sphere bundle S(�nK) is di↵eomorphic to Sk(n+1)�1. The fiber

bundles defined by these sphere bundles, ⌘ : Skn+1
! KPn�1 and ⌘ : S15

! S8

with fibers Sk�1 and S7 respectively are called the generalized hopf fibrations, while

the special case ⌘ : S3
! S2 is usually referred to as the Hopf fibration. The usual

cell structure of KPn uses these hopf fibrations as the attaching maps, which as a

smooth manifold can be realized as

KPn = Dkn
[

S
kn�1D(�n�1

K ). (2.18)

2.2.1.1. As a Riemannian submersion

Note that the action of Sk�1 on (Skn�1, ds2kn�1
) is by isometries as it acts on

all of Kn with the euclidean metric by isometries. There is a unique metric ǧ on

KPn�1, called the Fubini-Study metric, such that ⇡ : (Skn�1, ds2kn�1
) ! (KPn�1, ǧ)

is a Riemannian submersion with totally geodesic fibers isometric to (Sk�1, ds2k�1
).

If we were to construct a new metric g on Skn�1 via Corollary 2.1.3 using base

metric ǧ the Fubini-Study metric, the fiber metric ĝ = ds2k�1
, and the horizontal

connection determined by the round metric, the resulting metric g must equal

ds2kn�1
by uniqueness.

One of the key features of the Hopf fibrations as a Riemannian submersion is

that it is a rare example where total space, fibers, and base space are all Einstein
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manifolds. We say that a Riemannian manifold (Mn, g) is an Einstein manifold if

Ricg = ⇤g for some constant ⇤. The round spheres (Sn, ds2n) are Einstein with

Ricg = (n � 1)g. We note the Einstein constants for the Fubini-Study metric in the

following proposition.

Proposition 2.2.1. [53, Examples 9.81, 9.82, 9.84] If ǧ is the Fubini-Study metric

on KPn, then

Ricǧ = [(n� 1)k + 4(k � 1)]ǧ.

In the following section we will use doubly warped Riemannian submersion

metrics associated to Hopf fibration to construct smooth metrics on KPn
\Dkn.

The fact that the round sphere fibers over projective spaces with totally geodesic

fibers allows us to construct these nontrivial core metrics. Sadly we cannot expect

to produce any further core metrics in this way, for if (Sn, ds2n) ! (Bn, ǧ) is a

Riemannian submersion with totally geodesic fibers then by [58] the base (Bn, ǧ)

is isometric to a projective space equipped with the Fubini-Study metric. Thus

one cannot produce additional core metrics without considering more complicated

topological or geometric situations, as we will in the proofs of Theorem B and C.

2.2.2. Core metrics on projective spaces

Having established the basic topology of projective spaces in terms of the

tautological bundles as well as the basic geometry of the hopf fibrations, we are

prepared to construct core metrics for projective spaces. We start by summarizing

the approach taken in [33, 34] to construct core metrics on CP2, drawing parallels

to the construction of Proposition 2.1.4 and the computation in Lemma 2.1.6

above. Then we apply this construction to general projective spaces and prove

Theorem A.
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2.2.2.1. The work of Perelman: cores

In [33, Section 1], core metrics are constructed on CP2. As we have noted

in (2.18), CP2
\D4 = D(�1C). As S(�

1

C) = S3 and S3 is a Lie group, there is a

left-invariant coframe dx2, dy2, and dz2 dual with respect to ds2
3
to a left-invariant

orthonormal frame X, Y , and Z. The round metric splits as ds2
3
= dx2 + dy2 + dz2

with respect to this coframe. We can choose this coframe so that dz2 = d✓2, where

d✓2 is the image of the standard volume form of S1 under the action of S1 on S3.

We can define warped product metrics g on [0, 1]⇥ S3 of the form

g = dt2 + h2(t)(dx2 + dy2) + f 2(t)dz2 (2.19)

Similarly to Proposition 2.1.4, we see that g will descend to a smooth metric on

D(�1C) = CP2
\D4 if f(t) and h(t) satisfy respectively (2.4) and (2.5) at t = 0.

Moreover the boundary will be round if f(1) = h(1) and will have positive principal

curvatures if f 0(1) and h0(1) are positive.

The Ricci curvatures of such metrics was computed in [34] in terms of the

derivatives of the warping functions. This computation relies on the fact that the

curvature in a Lie group can be computed in terms of the Lie brackets of the left

invariant frame:

R(X, Y )Z =
1

4
[[X, Y ], Z].

Applying this computation to the case (2.19) yields the following.
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Proposition 2.2.2. [33, Section 2] Let X, Y , and Z are the global left-invariant

vector fields of S3 dual to dx2, dy2, and dz2, then

Ricg(@t, @t) = �2
f 00

f
�

h00

h
,

Ricg(X,X) = Ricg(Y, Y ) = 4
h2

� f 2

h4
�

h00

h
� 2

h02

h2
�

f 0h0

fh
+ 2

f 2

h4
,

Ricg(Z,Z) = �
f 00

f
� 2

f 0h0

fh
+ 2

f 2

h4
.

For a sanity check, we note that Lemma 2.1.6 specialized to the case m = 1, n = 2,

Ricg = 2ds2
3
, Ricĝ = 0, and Ricǧ = (1/2)2ds2

2
agrees with Lemma 2.2.2.

Using Lemma 2.2.2, Perelman concludes his construction of a core metric for

CP2 by taking the metric g in (2.19) with the choice of f(t) = sin t cos t and h(t) =

(1/100) cosh(t/100) restricted to t 2 [0, t0] where f(t0) = h(t0). Our construction

will directly generalize this construction, using the doubly warped Riemannian

submersion metrics of Proposition 2.1.4 to construct core metrics on KPn. While

defining such metrics is a straightforward generalization, the principal di�culty

in showing you have constructed a metric, is ensuring that they will have positive

Ricci curvature. Unlike the case considered by Perelman, the spheres we will be

considering will not be Lie groups. Thus the use of O’Neill formulas to compute

the curvatures in Lemma 2.1.6 represents the main technical contribution needed to

prove Theorem A.

2.2.2.2. Generalized cores

We are now ready to construct core metrics on projective spaces. Note that,

up until this point, everything we have said about projective spaces has applied
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equally well to RPn. The following construction does not work for RPn; we will

point out where the construction does not work.

Proof of Theorem A. Note that KPn
\Dkn = D(�n�1

K ) by (2.18). If f(t) and h(t)

are smooth functions on [0, 1] that satisfy (2.4) and (2.5) respectively at t = 0, then

by Proposition 2.1.4 the doubly warped Riemannian submersion metric g̃ associated

to the Hopf fibration ⌘ : (Skn�1, ds2kn�1
) ! (KPn�1, ǧ) will descend to a smooth

metric on KPn
\Dkn. As observed, if f(t) = h(t) = r then the metric g̃ restricted

to {t} ⇥ Skn�1 will agree with r2ds2kn�1
by (2.9) and the uniqueness in Proposition

2.1.3. By (2.10) the boundary will have positive principal curvatures provided that

f 0(t) and h0(t) are positive. It remains to show that we can find such functions f(t)

and h(t) for which g̃ will have positive Ricci curvatures.

To begin set f(t) = sin(t) and h(t) = ", these clearly satisfy (2.4) and (2.5)

at t = 0. We would like to apply Lemma 2.1.6 to g̃ in this case. In this case the

fiber dimension is (k � 1) and the base dimension is k(n � 1). We have Ricg =

(kn�2)ds2kn�1
, Ricĝ = (k�2)ds2k�1

, and Ricǧ = [(n�2)k+4(k�1)]ǧ by Proposition

2.2.1. Substituting these quantities into Lemma 2.1.6 yields:

Ricg̃(@t, @t) = (k � 1),

Ricg̃(Xi, Xi) = [(n� 2)d+ 4(k � 1)]
"2 � sin2 t

"4
+ (kn� 2)

sin2 t

"4
,

Ricg̃(Uj, Uj) = (k � 2) tan2 t+ 1 + [(nk � 2)� (k � 2)]
sin2 t

"4
.

If we restrict to t  t0 where sin t0 = ", we see that g̃ has positive Ricci curvature,

provided that k > 1. This is there reason we must restrict ourselves to CPn, HPn,

and OP2.
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Clearly if we use h(t) = ", then h0(t) is not positive, so the boundary will not

have positive principal curvatures. We will instead let h(t) be a smooth function

satisfying (2.5) at t = 0 such that h0(t) > 0 for t > 0. If we choose h(t) close

enough to " then Ricci curvature will still be positive. We can take, for instance

h(t) = " cosh(t"). If we again restrict to t  t0 where f(t0) = h(t0), then g̃ will be a

core metric on KPn
\Dkn.

2.3. Spherical Fibrations

In this section we will reduce Theorems B and C to two technical

constructions that will be carried out in Chapters III and IV respectively. To start

we will give a topological decomposition of En+m
\Dn+m. For simplicity, denote

Bn
⇤
:= Bn

\Dn. For any fiber bundle ⇡ : En+m
! Bn we may fix a trivialization over

an embedded Dn ,! Bn, which gives us the following decomposition.

En+m =
�
En+m

|Bn
⇤

�
[S

n
⇥F

m (Dn
⇥Fm) . (2.20)

Thus we may delete Dn+m from the interior of Dn
⇥Fm on the righthand side of

(2.20).

In the case that Fm = Sm, we note that (1.4) applied to Nn = Dn gives us

(Dn
⇥ Sm) \Dn+m ⇠= Dn+m

\
�
Sn�1

⇥Dm+1
�
.

Combining this with (2.20) we can decompose En+m
\Dn+m as follows

En+m
\Dn+m =

⇥
En+m

|Bn
⇤

⇤
[S

n
⇥ S

m

⇥
Dn+m

\(Sn�1
⇥Dm+1)

⇤
(2.21)
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Thus to prove Theorem B it su�ces to construct Ricci-positive metrics on

each term in (2.21) that can be glued together using Theorem 1.2.2. In Section

2.3.1 we will apply the theory of Riemannian submersions to produce a Ricci-

positive metric on En+m
|Bn

⇤ that is particularly well adapted to Theorem 1.2.2 that

will reduce the proof of Theorem B to the construction of the following metrics on

Dn+m
\
�
Sn�1

⇥Dm+1
�
.

Theorem 2.3.1. For n � 2 and m � 3 and for all R > 1 and 1 > ⌫ > 0, there

exists a Ricci-positive metric gtransition(R, ⌫) on Dn+m
\
�
Sn�1

⇥Dm+1
�
such that

1. The boundary Sn+m�1 is isometric to a round sphere,

2. The principal curvatures of the boundary Sn+m�1 are all positive,

3. The boundary Sn�1
⇥ Sm is isometric to R2ds2n�1

+ ds2m,

4. The principal curvatures of the boundary Sn�1
⇥ Sm are all greater than �⌫.

If we restrict further to the case Bn = Sn, then we have a very particular

core metric for Sn, the round metric. This allows us in Section 2.3.2 to construct

a metric on S(En+m+1)|Dn that will both be amenable to Theorem 1.2.2, (2.21), to

the Ricci-positive surgery theorem of [3]. This will allow us to reduce Theorem C to

Theorem 2.3.1 and a careful application of the work in [30] in Chapter IV below.

2.3.1. Spherical fibrations over cores

In this section we will construct metrics on En+m
|Bn

⇤ using Theorem 2.1.2

that can be glued using Theorem 1.2.2 to the metric gtransition(R, ⌫). To begin we

consider an arbitrary fiber.
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Lemma 2.3.2. Let ⇡ : En+m
! Bn be an Fm-bundle with structure group G acting

by isometries on (Fm, ĝ). Suppose that (Fm, ĝ) has positive Ricci curvature and that

(Bn
⇤
, ǧ) is a core metric for Bn, then for some R > 1 there is a Ricci-positive metric

gpiece on En+m
|Bn

⇤ so that the boundary is isometric R2ds2n�1
+ ĝ and has positive

principal curvatures.

Proof. Trivialize En+m over Dn ,! Bn so that the boundary of En+m
|Bn

⇤ is

di↵eomorphic to Sn�1
⇥Fm. There is a principal G-bundle p : P ! Bn

⇤
so that

En+m is the associated Fm-bundle. Let ✓ be any principal connection on P that is

flat on a neighborhood of the boundary of Bn
⇤
. Let gt denote the metric on En+m

|Bn
⇤

constructed using Theorem 2.1.2 with the base metric ǧ, fiber metric t2ĝ, and

principal connection ✓. Because we chose ✓ flat on a neighborhood of the boundary,

the metrics is isometric to ǧ + t2ĝ there. By Proposition 2.1.7, we know that gt has

positive Ricci curvature for all t su�ciently small.

Note that the second fundamental form of gt agrees with IIgt = IIǧ +0ĝ. Thus

gt has nonnegative principal curvatures. By applying Corollary 1.2.11 and scaling

the metric by R2 = (1/t)2 we have constructed the desired metric gpiece.

Specializing to linear sphere bundles as in Corollary 2.1.3, Lemma 2.3.2

immediately implies the following.

Corollary 2.3.3. Let ⇡ : En+m+1
! Bn be a rank m + 1 vector bundle over Bn. If

(Bn
⇤
, ǧ) is a core metric for Bn, then for some R > 1 there is a Ricci-positive metric

gpiece on S(En+m+1)|Bn
⇤ so that the boundary is is isometric to R2ds2n�1

+ ds2m and

has positive principal curvatures.

We now note that we Theorem B has been entirely reduced to the proof of

Theorem 2.3.1. Observe that one could expand Theorem B to include arbitrary
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fibers if we could construct metrics on (Dn
⇥Fm) \ Dn+m similar to gtransition of

Theorem B. We make no claims to having constructed such metrics, as we rely

heavily on the trivial topology of Sm in Section III.

Proof of Theorem B. By Corollary 2.3.3 there is a Ricci-positive metric gpiece on

S(En+m+1)|Bn
⇤ with boundary isometric to R2ds2n�1

+ ds2m and positive principal

curvatures. Let ⌫ > 0 be less than smallest principal curvature of gpiece, and take

gtransition(R, ⌫) as in Theorem 2.3.1 on Dn+m
\(Sn�1

⇥Dm+1). By Theorem 1.2.2 and

(2.21) there is a Ricci-positive metric on S(En+m+1)\Dn+m with boundary isometric

to a round sphere with positive principal curvatures.

2.3.2. Spherical fibrations over disks

In this section we revisit the proof of Lemma 2.3.2 in the special case

(Fm, ĝ) = (Sm, ds2m) and (Bn, ǧ) = (Sn, ds2j), which will allow us to be more specific

about the metric and set up our proof of Theorem C.

Lemma 2.3.4. For m � 3, let ⇡ : En+m+1
! Sn be a rank m + 1 vector bundle

over Sn. Then for each k > 0, there exists an N > 0 and a Ricci-positive metric

groot on S(En+m+1) \ Dn+m so that the boundary is is isometric a round sphere with

positive principal curvatures and so that there are k disjoint isometric embeddings

of (Dn
N ⇥ Sm, ds2n�1

+ ⇢2ds2m) for any ⇢ > 0 su�ciently small, where the radius of the

embedded Dn is N .

Proof. Fix a geodesics disk Dn
r ,! (Sn, ds2n) with radius r < ⇡/2. We can find an N

that depends only k, r, and n such that there are k geodesic balls Dn
N ,! (Dn

r , ds
2

n)

of radius N that are pairwise disjoint. Trivialize S(En+m+1)|Dn
r
near its boundary so

that it has boundary di↵eomorphic to Sn�1
⇥ Sm. There is a principal SO(m + 1)-

bundle p : P ! Dn
r so that S(En+m+1) is the associated Sm-bundle. Let ✓ be any
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principal connection on P that is flat on a neighborhood of the boundary and is

also flat over each of the embedded Dn
N ,! Dn

r . Let gt denote the metric constructed

on S(En+m+1)|Dn
r
using Corollary 2.1.3 with base metric ds2n, fiber metric t2ds2m,

and principal connection ✓. Because we chose ✓ to be flat on a neighborhood of the

boundary, the boundary is isometric to sin2 rds2n�1
+ t2ds2m. Because we chose ✓ to

be flat on each of the Dn
N , the metric is isometric to ds2n + t2ds2m.

By Proposition 2.1.7, we know gt will have positive Ricci curvature for all

t su�ciently small. The metric gt again has nonnegative principal curvatures,

after applying Corollary 1.2.11 we can glue this metric using Theorem 1.2.2 to the

metric t2gtransition((1/t), ⌫) for ⌫ su�ciently small to produce the desired metric on

S(En+m+1) \Dn+m by (2.21).
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CHAPTER III

THE TRANSITION METRIC

In the previous chapter we have reduced the proof of Theorem B to the proof

of Theorem 2.3.1. As mentioned in Section 1.3, our original inspiration behind

stating Theorem B was our proof of Proposition 1.2.7. This same idea will be

the approach we take to prove Theorem 2.3.1 in this chapter. Unlike Proposition

1.2.7, to deal with nontrivial sphere bundles in Lemma 2.3.3 we had to assume

an asymmetry in the boundary metric. So we now revisit the first half of the

construction of Proposition 1.2.7 to incorporate this asymmetry.

Lemma 3.0.1. For all R > 0 there is a ⌫(R) > 0 such that for all ⌫(R) > ⌫ > 0

there is a Ricci-positive metric gsphere(R, ⌫) on Sn+m
\(Sn�1

⇥Dm+1) such that

1. The boundary Sn�1
⇥ Sm is isometric to R2ds2n�1

+ ds2m,

2. The principal curvatures of the boundary are all greater than �⌫.

Proof. For all R > 0, consider the metric 4R2ds2n + ds2m on Dn
⇥ Sm, where the

Dn has radius ⇡/6. The boundary of this metric is isometric to R2ds2n�1
+ ds2m and

has nonnegative principal curvatures. Apply Proposition 1.2.11 to produce a Ricci-

positive metric ghandle(R) with isometric boundary and positive principal curvatures

bounded below by ⌫(R) > 0 (we will be more specific below in Section 3.3) .

For all ⌫(R) > ⌫ > 0, glue (Sn�1
⇥
⇥
Sm+1

\
F

2
Dm+1

⇤
, R2ds2n�1

+ gdocking(⌫))

to (Dn
⇥ Sm, ghandle(R)) using Theorem 1.2.2, which by (1.3) is a Ricci-positive

metric on Sn+m
\(Sn�1

⇥Dm+1). Call this metric gsphere(R, ⌫). To see why it has

these properties near the boundary, note that near the boundary this metric agrees

with R2ds2n�1
+ gdocking(⌫).
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The first step in our proof of Theorem 2.3.1 will be to construct an

embedding Dn+m ,! Sn+m respecting (1.7) and (1.3). By restricting gsphere(R, ⌫)

to this embedded Dn+m and deleting an embedded Sn�1
⇥Dm+1, we have a metric

gdisk(R, ⌫). We claim that the embedding can be chosen so that the following is

true.

Lemma 3.0.2. Let n � 2 and m � 3, for each R > 1 and 1 > ⌫ > 0 there exists a

Ricci-positive metric gdisk(R, ⌫) on Dn+m
\(Sn�1

⇥Dm+1) such that

1. The boundary Sn+m�1 is isometric to g0(R, ⌫),

2. The principal curvatures of the boundary Sn+m�1 are positive,

3. The boundary Sn�1
⇥ Sm is isometric to R2ds2n�1

+ ds2m,

4. The principal curvatures of the boundary Sn�1
⇥ Sm are greater than �⌫.

Where we will give a fairly explicit description of the metric of (1) in Lemma

3.3.4 below. We note that conditions (3) and (4) of Lemma 3.0.2 will follow directly

from the construction in Lemma 3.0.1. The biggest di�culty we will run into in

the proof of Lemma 3.0.2 will to be to describe the geometric properties of the

boundary of the embedding Bm+1

+
,!
�
Sm+1

\Dm+1, gdocking(⇢)
�
. This is precisely

because the construction of the metric gdocking(⇢) is itself built out of two very

technical metrics glued together using Theorem 1.2.2. It is this embedding that

will actually require the application of Theorem I (or, more accurately, the version

Theorem II00). We will describe the construction of gdocking(⇢) in Section 3.1 below.

The reason we need to apply the more precise version Theorem II00 is precisely

to give a qualitative description of the boundary metric g0(R, ⌫) in Lemma 3.0.2.

This metric will be a doubly warped product metric, and for ⌫ su�ciently small

63



will have positive Ricci-curvature. Because the Ricci curvatures of a doubly warped

product metric are so elementary, we can write down a piecewise linear path in the

space of Ricci-positive metrics connecting it to the round metric.

Lemma 3.0.3. For each R > 1, if ⌫ > 0 is su�ciently small the metric g0(R, ⌫) of

Lemma 3.0.2 is Ricci-positive isotopic to the round metric.

Once we have established Lemmas 3.0.2 and 3.0.3, we can prove Theorem

2.3.1 and consequently Theorem B.

Proof of Theorem 2.3.1. Take the Ricci-positive metric gdisk(R, ⌫) on

Dn+m
\(Sn�1

⇥Dm+1) of Lemma 3.0.2. By (3) and (4) of Lemma 3.0.2, the

boundary Sn�1
⇥ Sm already satisfies conditions (3) and (4) of Theorem 2.3.1.

By (2) of Lemma 3.0.2, the boundary Sn+m�1 has positive principal curvatures

bounded below by ". By Lemma 3.0.3 and Corollary 1.3.4 of Theorem II there is

a Ricci-positive metric gtransition(R, ⌫) on Dn+m
\(Sn�1

⇥Dm+1) so that boundary

Sn+m�1 satisfy (1) and (2) of Theorem 2.3.1 and agrees with gdisk(R, ⌫) away

from the boundary Sn+m�1. This metric clearly satisfies all conditions of Theorem

2.3.1.

3.1. The work of Perelman, again

The metric gdocking(⇢) is constructed out of metrics on the following

topological decomposition of the punctured sphere.

Sm+1
\

G

k

Dm+1 =

"
Sm+1

\

G

k

Dm+1

#
[@ [[0, 1]⇥ Sm] (3.1)

While topologically this is completely trivial, the metric constructed on [0, 1] ⇥

Sm is the most delicate and technical aspect of [33] and cannot be avoided. The

64



embedding we wish to construct with respect to gdocking(⇢)

◆docking : B
m+1

+
,! (Sm+1

\Dm+1, gdocking(⇢)), (3.2)

will be decomposed as a union of two further embeddings

◆ambient : B
m+1

+
,! (Sm+1

\Dm+1, gambient(⇢)),

◆neck :[0, 1]⇥Dm ,! ([0, 1]⇥ Sm, gneck(⇢)).
(3.3)

We will ultimately apply Theorem II00 to the embeddings (3.3) to construct the

embedding (3.2).

3.1.1. Perelman’s Ambient Space and Neck

Keeping Proposition 1.2.3 in mind, one would look to doubly warped product

metrics on Sn+m that admits arbitrarily many disjoint geodesic balls with principal

curvatures relatively small compared to the radius. The boundary of these geodesic

balls will themselves be doubly warped product metrics, which we will need to

correct to prove Proposition 1.2.3. This problem can be minimized by considering

metrics of the form dt2 + h2(t)dx2 + f 2(t)dsn�2 on [0, ⇡/2] ⇥ S1
⇥ Sn�2, where

the boundary of a geodesic ball will be isometric to warped products (rather than

doubly warped products). The following proposition claims that, after rescaling, we

can find a Ricci-positive metric on Sn
\
F

k D
n with principal curvatures relatively

small.
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Proposition 3.1.1. [33, Section 3] For m � 3 and any 0 < ⇢ < r su�ciently small

there exists an R0 > 0, a function R : [0, ⇡/2] ! [0, R0], and k > 0 there is a metric

gambient(⇢) = cot r(dt2 + cos2(t)dx2 +R2(t)ds2m�1
),

defined on Sm+1 with t 2 [0, ⇡/2] and x 2 [0, 2⇡] such that:

1. is positively curved,

2. the geodesic balls of radius r centered along the subspace t = 0 for the metric

are isometric to A1(�b)db2 +B2

1
cos2(�b) for b 2 [�⇡, 0],

3. the principal curvatures of boundary of such a geodesic ball are all less than 1,

4. the sectional curvatures of the boundary of such a geodesic ball are all greater

than 1.

The construction of the function R(t) is elementary, and the verification of the

conditions (1)-(4) is straightforward.

The most technical aspect of [33] is the construction of the neck. This is

a particular metric on the cylinder that transitions from the boundary metric

of gambient(⇢) to a round metric in a way that allows the principal curvatures to

remain relatively large relative to the radius of the boundary. As the construction

of this metric is the central to our proof of Theorem 2.3.1 and hence our proof of

Theorem B, we take the time to explain the construction in detail in Appendix

C. The aspects of this metric that are needed for the proof of Theorem 2.3.1 are

summarized as follows.

Proposition 3.1.2. [33, Assertion] For m � 3 and any 0 < ⇢ < r su�ciently small

there exists a l > 0, a function A : [0, l] ⇥ [0, ⇡] ! R, and function B : [0, l] ! R
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there is a metric

gneck = da2 + A2(a,�b)db2 +B2(a) cos2(�b)ds2m�1
,

defined on [0, k]⇥ Sm with a 2 [0, l] and b 2 [�⇡, 0] such that:

1. has positive Ricci curvature,

2. at a = l has A(a,�b) = A1(�b) and B(l) = B1,

3. at a = 0 has A(0,�b) = B(0) = ⇢/�,

4. the principal curvatures at a = l are all greater than 1,

5. the principal curvatures at a = 0 are all ��,

6. the function B(a) is increasing and concave down.

A proof of Proposition 3.1.2 is given in Section C.3.4.1 below.

Note that the construction of gneck(⇢) in [33], is the one aspect of our

construction that cannot be reduced to dimension m = 2. This is why we cannot

assert Theorem B with ni = 2.

3.1.2. The Docking Station

In order to apply Theorem I to the two embeddings (3.3) to construct (3.2),

we must first describe how to apply Theorem 1.2.2 to the two metrics Propositions

3.1.1 and 3.1.2 to construct the metric gdocking(⌫) out of (A.1.2).

Proof of Proposition 1.2.3. For all r > ⇢ > 0 su�ciently small take gambient(⇢)

on Sm+1 and delete the k disjoint geodesic balls of radius r to produce a metric

on Sm+1
\
F

k D
m+1. Take gneck(⇢) on each component of

F
k ([0, l]⇥ Sm). These

67



are both Ricci-positive metrics by (1) and (1) of Propositions 3.1.1 and 3.1.2. The

boundaries of Sm+1
\
F

k D
m+1 are isometric to the boundaries of

F
k ([0, l]⇥ Sm)

at a = l by (2) and (2) of Propositions 3.1.1 and 3.1.2. The principal curvatures

are compatible to apply Theorem 1.2.2 by (3) and (4) of Propositions 3.1.1 and

3.1.2. We may therefore glue these metrics together using Theorem 1.2.2 and scale

the metric by (�/⇢)2, for any ⌫ > ⇢ call the resulting metric gdocking(⌫). By (3)

of Proposition 3.1.2, the boundary components of gdocking(⌫) are all isometric to

ds2m. By (5) of Proposition 3.1.2, the principal curvatures of the boundary are all

�⇢ > �⌫.

3.1.2.1. Lens Spaces as Docking Stations

Having described the construction of gdocking(⌫) we can now describe how to

modify this construction to prove Proposition 1.2.8.

Proof of Proposition 1.2.8. Let G  O(2) � O(n � 1) be finite with |G| = d

that acts freely on Sn under the standard action. Take gambient(⌫) on Sm+1 so

that there are k disjoint geodesic balls of radius r > ⇢ centered along t = 0.

We can assume that we have chosen r small enough so that the orbits of these

geodesic balls under G are also disjoint, so that we have a collection of kd geodesic

balls that are left fixed by the action of G. We note that G acts by isometries on

(Sm+1
\
F

kd D
m+1, gambient(⇢)), and so this descends to a Ricci-positve metric glens(⇢)

on (Sm+1 /G) \
F

k D
m+1. Proceeding identically to Proposition 1.2.3 by gluing necks

to glens(⇢) using Theorem 1.2.2 we produce a Ricci-positive metric gdocking(⇢) on

(Sm+1 /G) \
F

k D
m+1 that satisfies the conclusions of Proposition 1.2.3. The proof

of Proposition 1.2.8 now follows identically to the proof of Theorem 1.2.5 by scaling

and gluing the cores to (Sm+1 /G) \
F

k D
m+1.
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3.2. Embedding in the docking station

In this section we make explicit choices for the embeddings (3.3), and apply

Theorem II00 To construct the embedding (3.2). We also take time to describe the

metric gdocking(⌫) restricted to the interior face of ◆docking : Bm+1

+
,! (Sm+1

\Dm+1),

which will be necessary in order to describe the metric gsphere(R, ⌫) restricted to the

boundary of ◆ : Dn+m ,! Sn+m in Lemma 3.0.2.

3.2.1. Embedding in the Ambient Space

In this section we will describe the embedding ◆ambient : Bm+1

+
,!

(Sm+1
\Dm+1). In Proposition 3.1.1, the metric gambient(⇢) is defined in terms of

the coordinates

(t, x, ✓) : [0, 1]⇥ [0, 2⇡]⇥ Sm�1
! Sm+1,

where t is given by the distance from a great circle (with respect to the round

metric), x is the arclength parameterization of said great circle, and ✓ surjects

onto the level sets of (t, x). In the construction of gdocking(⌫) of Proposition 1.2.3,

we delete a geodesic ball of radius r centered at the point p = (0, 0, ✓) in Sm+1

(when t = 0, ✓ is the point map) with respect to the metric gambient(⇢). We want

the embedding ◆ambient to have nonnegative definite boundary as well as contain

a second geodesic ball of radius r centered at a point q = (0, x0, ✓) in its interior

in order to satisfy (3) and (4) of Lemma 3.0.2. Let (r1(s), r2(s)) be the arclength

parameterization of the geodesic sphere of radius r centered at (0, 0) in the (t, x)-

plane with respect to the metric dt2 + cos2(t)dx2. By symmetry of the metric, the

boundary of a geodesic ball centered at (0, x0) can be realized as (r1(s), x0r2(s), q).
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Sm+1

Bm+1

+

FIGURE 3.1. A schematic of the embedding ◆ambient : B
m+1

+
,! (Sm+1

\Dm+1) given
by the grey region. The small dotted circle indicates a geodesic ball contained in its
interior.

Using the terminology of Section A.1, we have a manifold Xm+1

1
= Bm+1

+
with

faces Ym+1

1
= Dm and eY

m+1

1
= Dm that intersect in the corner Zm�1

1
= Sm�1. We

also have a manifold Mm+1

1
= Sm+1

\Dm+1 with boundary Nm
1

= Sm. We would

like to describe an embedding ◆ambient : Bm+1

+
,! (Sm+1

\Dm+1) of a manifold

with faces into a manifold with boundary relative to the face Ym
1
. To begin we will

specify an embedding of the boundary Y1 [
eY1 ,! (Sm+1

\Dm+1). Let (�1(s), �2(s))

be a curve in the (t, x)-plane that starts at the point (r1(s0), r2(s0)) where it meets

(r1(s), r2(s)) perpendicularly, and ends at the point (0, x1) where it meets the x-

axis perpendicularly. Define

Ym
1
= {(t, x, ✓) : (t, x) = (r1(s), r2(s)) for s  s0} ⇠= Dm

eY
m

1
= {(t, x, ✓) : (t, x) = (�1(s), �2(s))} ⇠= Dm .

Note that Ym
1
lies entirely with the boundary of Sm+1

\Dm+1 and that eY
m

1

intersects boundary intersects Ym
1
perpendicularly in the set

Zm�1

1
= {(t, x, ✓) 2 [0, ⇡/2]⇥ [0, 2⇡]⇥ Sm�1 : (t, x) = (r1(s0), r2(s0))} ⇠= Sm�1 .
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Topologically the union of Y2 and eY2 is an Sm, which bounds a disk in Mm+1

1
. We

may therefore extend this embedding of the boundary to a smooth embedding

◆ambient : B
m+1

+
,! Sm+1

\Dm+1.

As we would like to apply Theorem II00, we will need to make a specific choice

of the curve (�1(s), �2(s)) to define ◆ambient and record the geometric properties of

its faces. We will specifically need to refer to coordinate dependent quantities that

utilize the normal coordinates of Section A.1.2.2 below. We note however that the

coordinates used to define gambient(⇢) do not agree with these normal coordinates.

Lemma 3.2.1. For any r1(s0) > 0 and r2(s0) > 0, one can choose r small enough

and a curve (�1(s), �2(s)) so that the embedding ◆ambient : Bm+1

+
,! Sm+1

\Dm+1

defined above in terms of this curve has the following properties.

1. The principal curvatures of the face Ym
1

are all greater than �1 with respect to

gambient(⇢),

2. The principal curvatures of the face eY
m

1
are nonnegative, and are positive for

all s for which �2(s) 6= 0,

3. The image of ◆ambient contains another geodesic ball of gambient(⇢) of radius r

centered at a point (0, x1, ✓),

4. The function �1(a) that defines the face eY
m

1
in the normal coordinates of

Section A.1.2.2 depends only on a and satisfies �0

1
(0) = 0,

5. The metric gambient(⇢) restricted to eY
m

1
takes the form ds2 + R2(s)ds2m�1

where

R00(s) < 0.
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t

x

(�2(s), �1(s))

(r2(s), r1(s)) s = s0
r

x0c

2r + �

FIGURE 3.2. A schematic for the geodesic balls of Proposition 3.2.1.

Proof. Note that regardless of the chosen curve, that the principal curvatures of Ym
1

will agree with the principal curvatures of Nm
1
, which by (3) of Proposition 3.1.1

implies (1).

The tangent space of eY
m

1
is spanned by a tangent vector @s = �0

1
(s)@t+�02(s)@x

tangent to the (t, x)-plane and by those tangent to {�1(s)}⇥{�2(s)}⇥Sm�1. Because

@s is entirely tangent to the (t, x) plane and the metric dt2 + cos2 tdx2 = ds2
2
, we see

that that II(@s, @s) must agree with principal curvatures of a geodesic ball of radius

2r + � embedded in the unit radius round 2-sphere. This is a standard computation

to show that it is cot(2r + �), which is clearly positive provided r < ⇡/4 and � > 0

is su�ciently small.

Let � denote a coordinate vector field of {�1(s)} ⇥ {�2(s)} ⇥ Sm�1. We can

compute at a given point that the Christo↵el symbols are

�t
�� = �R0(t)R(t) and �x

�� = 0.
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The unit normal vector to the hypersurface {�1(s)}⇥ {�2(s)}⇥ Sm�1 must lie in the

(t, x)-plane and can be written as

N =
cos2(t)�0

2
(s)@t � �0

1
(s)@x

cos(t)
p
1 + sin2(t)(�0

2
(s))2

.

We can now compute

II(@�, @�) = �g(r@�@�, N) = �g(�t
��@tN) =

cos(�1(s))R0(�1(s))R(�1(s))�02(s)p
1 + sin2(�1(s))(�02(s))

2
.

As �0
2
(s) � 0 and R0(t) � 0, this quantity is nonnegative definite. Note that �0

2
(s) =

0 only when �2(s) = 0.

Clearly if c � x1 < �, then this ball contains the geodesic ball of radius

r centered at (0, x1, ✓). By changing � and c it is possible to intersect the curve

(r1(s), r2(s)) perpendicularly at any point without upsetting the nonnegativity of

the principal curvatures. Because (�1(s), �2(s)) is assumed to be perpendicular to

Y2, this means that �0

2
(0) = 0.

Let (�1(s), �2(s)) be the unit length parameterization of a geodesic ball of

radius 2r + � centered at (0, c, ✓). The metric gambient(⇢) restricted to the face eY
m

1

clearly takes the following

gambient(⇢)|eYm
1
= ds2 +R2(�1(s))ds

2

m�1
(3.4)

On the other hand the metric gambient(⇢) has positive sectional curvature (by (1) of

Proposition 3.1.1). It follows that the intrinsic sectional curvature of this boundary

is also positive. The sectional curvature of a warped product metric is positive only

if @2sR(�2(s)) < 0 (see [6, Section 4.2.3]).
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3.2.2. Embedding in the Neck

In this section we will describe the embedding ◆neck : [0, l] ⇥ Dm ,! [0, l] ⇥ Sm.

In Proposition 3.1.2 the metric gneck(⇢) is defined in the coordinates

(a, b, q) : [0, k]⇥ [�⇡, 0]⇥ Sm�1
! ⇥[0, k]⇥ Sm,

where a is the identity, �b is the distance from the north pole (with respect to the

round metric), and q surjects onto the level sets of �b.

We have a manifold Xm+1

2
= [0, l] ⇥ Dm with faces Ym

2
= {l} ⇥ Dm, eY

m

2
=

[0, l] ⇥ Sm, and Y̌
m
2

= {0} ⇥ Dm, and we have a manifold Mm+1

2
= [0, l] ⇥ Sm

with boundary Nm
1

= {l} ⇥ Sm and Ň
m
2

= {0} ⇥ Sm. We would like to specify

an embedding ◆ : Xm+1

2
,! Mm+1

2
of a manifold with faces within a manifold with

boundary relative to its face Ym
2
. Define the image of ◆neck by

◆neck ([0, l]⇥ Sm) = {(a, b, q) 2 [0, l]⇥ [�⇡, 0]⇥ Sm�1 : b  �b0},

where b0 2 [0, ⇡/2]. These coordinates are consistent with the normal coordinates of

Section A.1.2.2, we note that the faces of Xm+1

2
agree with

Ym
2
= {(a, b, q) 2 [0, l]⇥ [�⇡, 0]⇥ Sm�1 : b  �b0 and a = l} ⇠= Dm

eY
m

2
= {(a, b, q) 2 [0, l]⇥ [�⇡, 0]⇥ Sm�1 : b = �b0} ⇠= [0, l]⇥ Sm�1,

Y̌
m
2
= {(a, b, q) 2 [0, l]⇥ [�⇡, 0]⇥ Sm�1 : b  �b0 and a = 0} ⇠= Dm .

As we intend to apply Theorem II00 to glue together the embeddings (3.3), we

need to record some metric properties of ◆neck. We note that the coordinates used
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to define gneck(⇢) actually do agree with the normal coordinates of Section A.1.2.2

for the corners relative to either face {0}⇥Dm or {1}⇥Dm.

Lemma 3.2.2. The embedding ◆neck satisfies the following

1. The principal curvatures of Ym
2

with respect to gneck(⇢) are greater than 1.

2. The principal curvatures of eY2 with respect to gneck(⇢) are all positive.

3. The boundary function that defines eY2 as in Section A.1.2.2 is �2(a) = �b

4. The metric gneck(⇢) restricted to eY1 takes the form ds2+B2(s), where B00(s) <

0.

Proof. Note that (1) follows from (4) of Proposition 3.1.2. To compute the

principal curvatures of eY
m

2
we may apply Lemma A.1.12, with �(a) = �b0,

µ(a, b) = A(a,�b), and h(a, b) = B2(a) cos2(�b)ds2m�1
. One can verify from the

formulas in Lemma A.1.12 that (2) is true.

Condition (3) is evident from the definition of ◆neck. By Lemma 3.1.2 we see

that the metric gneck(⇢) restricted to eY2 takes the form

da2 +B2(a) cos2(�b0)ds
2

m�1
.

Condition (4) follows from the fact that the second derivative of B(a) cos(�b0) is

negative by (6) of Lemma 3.1.2.

3.2.3. Embeddings in the docking station

We have described our two embeddings of (3.3), which we would like to apply

Theorem II00 to produce the embedding of (3.2). In addition to this, the following
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Lemma records the special nature of the metric restricted to the interior face eY
m
=

eY
m

1
[Z

m�1 eY
m

2
.

Lemma 3.2.3. For all ⌫ > 0 su�ciently small, there is an embedding ◆docking :

Bm+1

+
,! Sm+1

\Dm+1 of a manifold with faces into a manifold with boundary

with respect to one of its faces, such that the principal curvatures of the interior

face eY
m

are nonnegative and positive near the boundary. Moreover the image of

◆docking contains a geodesic ball of radius r with respect to gambient(⇢) contained on its

interior.

Restricted to the interior face eY, the metric gdocking(⌫) takes the form

ds2 + k2

1
(s)ds2m�1

,

with s 2 [0, P ]. If � = cos(b0)⌫, then we also have

1. k1(0) = cos(b0),

2. k0

1
(0) = �,

3. k00

1
(s) < 0 for s < P ,

4. k(even)
1

(P ) = 0,

5. k0

1
(P ) = �1.

Proof. By (1) and (1) of Lemmas 3.1.1 and 3.1.2 we have two Ricci-positive

Riemannian manifolds (Mm+1

1
, gambient(⇢)) and (Mm+1

2
, gneck(⇢)), which by (2) and

(2) of Lemmas 3.1.1 and 3.1.2 have isometric boundaries � : Nm
1
! Nm

2
. By (3) and

(3) of Lemmas 3.2.1 and 3.2.2, we can make sure that this isometry respects the

corners � : Zm�1

1
! Zm�1

2
. By (3) and (4) of Lemmas 3.1.1 and 3.1.2 the principal
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curvatures are such that Theorem 1.2.2 is applicable. By (2) and (5) of Lemma

3.2.1 and (2) and (4) of Lemma 3.2.2 the remaining hypotheses of theorem II00 are

true. Thus we may apply Theorem II00 to the embeddings ◆ambient and ◆neck to define

an embedding ◆docking : B
m+1

+
,! (Sm+1

\Dm+1, gdocking(⌫)).

We immediately conclude that the principal curvatures of the interior face eY

are nonnegative and positive near the boundary.

Because both gambient(⇢) and gneck(⇢) are both of the form da2 + µ2(a, b)db2 +

H2(a, b)ds2m�1
, the resulting metric gdocking(⇢) must also take this form. After

substituting b = �(a) and reparameterizing, we have that the metric restricted

to the boundary takes the form ds2 + k2

1
(s)ds2m, with s 2 [0, P ] for some P > 0.

Conditions (1) and (2) follow from (3) and (5) of Lemmas 3.1.1 and 3.1.2 and the

fact that we have scaled by (�/⇢)2. Condition (3) is just the conclusion of Theorem

II00. Conditions (4) and (5) follow from the fact that gambient(⇢) is a warped product

metric on Sm+1 (see [6, Section 1.4.5]).

3.3. Assembling the Disk

In this section we will describe an embeddings ◆handle : Dn
⇥Dm ,! Dn

⇥ Sm

with respect to the metric ghandle of Lemma 3.0.1. This will allows us to glue the

embedding ◆handle to the embedding ◆docking of Lemma 3.2.3 to prove Lemma 3.0.2.

3.3.1. Embedding in the handle

We would like to elaborate on the construction of gsphere(R, ⌫) outlined in

Lemma 3.0.1, by constructing a specific Ricci-positive metric ghandle on Dn
⇥ Sm.

Definition 3.3.1. For each ⌫ > 0, let k2(a) be function defined on [0, R⇡/3] such

that
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1. k2(0) = 1� ⌫

2. k2(R⇡/3) = 1

3. k(odd)
2

(0) = 0

4. ⌫ < k0

2
(R⇡/3) < 2⌫

5. 0  k00

2
(a) < ⌫/(R⇡/3)

Define the metric ghandle(R, ⌫) on Dn
⇥ Sm to be da2 + (2R)2 sin2(a/2R)ds2n�1

+

k2

2
(a)ds2m.

We claim that ghandle(R, ⌫) can be used in Lemma 3.0.1 to construct the

metric gsphere(R, ⌫).

Lemma 3.3.2. For each R, if ⌫ is su�ciently small, then ghandle(R, ⌫) has

positive Ricci curvature. Moreover, it is possible to glue ghandle(R, ⌫) to R2ds2n�1
+

gdocking(⌫) for all ⌫ su�ciently small using Theorem 1.2.2. Let gsphere(R, ⌫) be the

corresponding metric which by (1.3) is defined on Sn+m.

Proof. Clearly ghandle(R, ⌫) converges to da2 + (2R)2 sin2(a/2R)ds2n�1
+ ds2m�1

in the

C2-topology as ⌫ ! 0. As this latter metric has positive Ricci curvature, it follows

that ghandle(R, ⌫) will have positive Ricci curvature for ⌫ su�ciently small.

Using [6, Proposition 3.2.1], we can compute that the principal curvatures

of the boundary with respect to ghandle(R, ⌫) are (
p
3/4) and k0(R⇡/3), which are

greater than ⌫ for ⌫ su�ciently small. The corresponding principal curvatures

of R2ds2n�1
+ gdocking(⌫) are 0 and �⌫. Clearly the boundary of ghandle(R, ⌫) and

gdocking(⌫) are both isometric to R2ds2n�1
+ ds2m. Thus Theorem 1.2.2 applies for ⌫

su�ciently small.
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Next we will specify an embedding ◆handle : Dn
⇥Dm ,! Dn

⇥ Sm. In defining

ghandle(R, ⌫) we used the coordinates

(a, p, b, q) : [0, ⇡/2]⇥ Sn�1
⇥[�⇡, 0]⇥ Sm�1

! Dn
⇥ Sm,

where (a, p) and (b, q) are respectively spherical coordinates on Dn and Sm+1. The

embedding is given in these coordinates by

◆handle(D
n
⇥Dm) = {(a, p, b, q) : b  �b0}.

For some b0 2 [0, ⇡/2]. Note that in the notation of Section A.1.2.2 that �0(a) =

�b0 and that

Yn+m�1

0
= {(a, p, b, q) : b  �b0 and a = ⇡/2} ⇠= Sn�1

⇥Dm

eY
n+m�1

0
= {(a, p, b, q) : b = �b0} ⇠= Dn

⇥ Sm�1

As we want to glue ◆handle to ◆docking, we must describe the metric property of

the faces of this embedding.

Lemma 3.3.3. For all ⌫ > 0 there is an embedding ◆handle : D
n
⇥Dm ,! Dn

⇥ Sm+1

such that with respect to ghandle(R, ⌫):

1. The principal curvatures of Yn+m�1

0
are greater than ⇢,

2. The principal curvatures of the interior face eY
n+m�1

0
are positive,

3. The function that defines the interior face eY
n+m�1

0
in the normal coordinates

of Section A.1.2.2 is �0(a) = �b0.
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4. The metric ghandle(⇢) restricted to the interior face eY
n+m�1

0
is ds2 +

(2R)2 sin2(a/2R)ds2n�1
+ k2

2
(a) cos2(b)ds2m.

Proof. Condition (1) follows from Lemma 3.3.2. For (2), we can compute the

principal curvatures of the boundary with respect to ghandle(R, ⌫) using Lemma

A.1.12 with �0 = �b0, µ0(a, b) = k1(a), and h0(a, b) = (2R)2 sin2(a/2R)ds2n�1
+

k2

1
(a) cos2(b)ds2m�1

. Condition (3) is evident from the construction of ◆handle.

Evaluating the metric ghandle(R, ⌫) at b = �b0 yields the formula in (4).

3.3.2. The boundary metric of the Disk

The construction of gsphere(R, ⌫) in Lemma 3.0.1 follows by gluing together

(Dn
⇥ Sm, ghandle(R, ⌫)) and (Sn�1

⇥
�
Sm+1

\Dm+1
�
, R2ds2n�1

+ gdocking(⌫)) using

Theorem 1.2.2. We note that both the embeddings ◆handle and ◆docking define interior

faces using the same boundary function �(a) = �b0 in normal coordinates. As

these functions already smoothly agree, we conclude that the embeddings ◆docking

and ◆handle glue together, which by (1.7) gives a smooth embedding ◆disk : Dn+m ,!

Dn+m. We conclude by recording the metric of the boundary of this embedding.

Lemma 3.3.4. There is a metric gdisk(R, ⌫) satisfying the claims of Lemma 3.0.2

such that the metric of the boundary Sn+m�1 takes the form

g0 = dt2 + h2(t)ds2n�1
+ f 2(t)ds2m,

with t 2 [0, T ], such that f(t) and h(t) satisfy the boundary conditions of a doubly

warped product metric on Sn+m�1 (see [6, Section 1.4.5]). Moreover there exists

0 < T0 < T1 < T such that f(t) and h(t) satisfy the following for some " and �

su�ciently small used in the proof of Theorem 1.2.2.
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1. f 00(t) < 0 for t � T0

2. cos b0 � 2�R⇡/3  f(t)  2 for t < T1

3. 0  f 0(t)  2� for t  T1

4. f 00(t) < 6�/R⇡ for t  T1

5. h(t) ⌘ R for t � T1

6. h00(t) < 0 for t < T1

7. �
h00(t)

h(t)
>

1

4R
for t  T0

Proof. By (1.7), the two embeddings ◆handle and ◆docking glue together to define a

smooth embedding of Dn+m ,! (Sn+m, gsphere(R, ⌫)). By (3) of Lemma 3.2.1, there

is an embedding of Sn�1
⇥Dm+1 into the interior of this Dn+m such that, after

deleting we may glue another copy of ([0, l] ⇥ Sm, gneck(⇢)) using Theorem 1.2.2.

The boundary is now isometric to R2ds2n�1
+ ds2m with principal curvatures greater

than �⌫. Call this metric gdisk(R, ⌫), which by construction this metric satisfies (3)

and (4) of Lemma 3.0.2.

While we know that each part of Dn+m in (1.7) had positive principal

curvatures near the gluing site by Lemmas 3.2.3 and 3.3.3. When we apply

Theorem 1.2.2 this a↵ects the boundary metric as well as the principal curvatures

of the respective boundary. Because the boundary function used to define this

boundary is identically �b0 near the gluing site, we see that principal curvatures

depend only on the @b derivatives of the metric, which by (1) and (1) of Lemmas

A.2.1 and A.2.2 will be relatively unchanged by an application of Theorem 1.2.2

(see the proof of Theorem 1.2.2 outlined in Section A.2.2). Thus this metric

satisfies (2) of Lemma 3.0.2.
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T0T1
T

FIGURE 3.3. A graph of the functions h(t) and f(t) satisfying the conditions of
Lemma 3.3.4 with the largest inflection point labeled for f(t).

Note that both ghandle(R, ⌫) and gdocking(⌫) are of the form

da2 +H2(a, b)ds2n�1
+ µ2(a, b)db2 + F 2(a, b)ds2m�1

.

Clearly the defining equation (A.9) respects this form, so that the resulting metric

gsphere(R, ⌫) will also take this form near the gluing site. As the function defining

the boundary is �b0, we see that the boundary will take the form dt2+h2(t)ds2n�1
+

f 2(t)ds2m�1
for some smooth functions.

Let T = R⇡/3 + P and T1 > R⇡/3 + " + �. Note that R⇡/3 + " + � is

largest value of t a↵ected in the smoothing process of Theorem 1.2.2. And therefore

h(t) = R so that (5) is true and f(t) = k2

1
(t) for all t � T1.

By (3) of Proposition 3.2.3, f 00(t) < 0 for all t � T1. If we consider the value

of f 00(t) computed in Lemma A.3.1, we see that the terms involving the derivatives

of � are all 0, so that f 00(t) and h00(t) are both equal to haa(a,�b0), where this h is

the h in A.1.2.2). We conclude that the e↵ect of applying Theorem 1.2.2 on f(t)

and h(t) is dictated by Lemmas A.2.1 and A.2.2 applied directly to the warping

functions f(t) and h(t). We will use the same decorations to refer to the two-stage

smoothing of f(t) and h(t) as in the proof of Theorem 1.2.2 in Section A.2.2.
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When applying (3) of Lemma A.2.1 to f(t), we see that f
00

(t) < 0 for t �

R⇡/3� ". When we apply (3) of Lemma A.2.2 to f(t), we see that f̆ 00(t) < 0 for all

t > R⇡/3�"+�. Let T0 < R⇡/3�"+� be the least value for which f 00(t) < 0 for all

t > T0, thus demonstrating (1). Conditions (2), (3), and (4) follow by considering

the e↵ect of applying Lemmas A.2.1 and A.2.2 where the boundary values are given

by (1), (2), and (3) of Definition 3.3.1 and (1) and (2) of Lemma 3.2.3.

To see why h(t) satisfies (6), one must consult the formula (A.15) for h̆(t)

in the specific case where h(t) ⌘ R for t � R⇡/3 + " and h
00

(t) < 0 for

t < R⇡/3 + ". Condition (7) merely claim that the sectional curvature of

dt2 + h2(t)ds2n�1
is bounded below uniformly in terms of the sectional curvatures

of dt2 + (2R)2 sin2(t/2R)ds2n�1
for t  T0. This is a straightforward conclusion after

noting that the denominator in the formulas for sectional curvature (see [6, Section

4.2.4]) is essentially constant during the smoothing process by (1) of Lemma A.2.1

and (1) of Lemma A.2.2, and that the numerator in the formula for the sectional

curvature is causing its value to actually increase through the smoothing process by

(3) of Lemma A.2.1.

3.4. The Ricci-positive isotopy

In this section we will demonstrate that the metric g0 := g0(R, ⌫) is Ricci-

positive isotopic to the round metric if ⌫ is su�ciently small. The path is piecewise

linear and utilizes the fact that g0 is a doubly warped product metric. We will first

show that g0 is Ricci-positive isotopic to g1, where g1 is a doubly warped product

metric with nonnegative sectional curvature. We will conclude by showing any

nonnegatively curved doubly warped produce metric is Ricci-positive isotopic

to g2 = ds2n+m+1
(to simplify our subscripts in this section we will reindex our
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dimensions so that the sphere in question has dimension n +m + 1). The isotopies

will both take the form

g� = dt2 + ((1� �)hl(t) + �hr(t))
2ds2n + ((1� �)fl(t) + �fr(t))

2ds2m.

Using an isotopy of doubly warped product metrics will allow us to argue in an

elementary fashion using the formulas for curvature found in [6, Section 4.2.4]. In

this context, we will let @t, �i, and ✓j denote an orthonormal frame with respect to

g� tangent to [0, T ], Sn, and Sm respectively.

3.4.1. Path to Non-negatively Curved

Let f0(t) = f(t) and h0(t) = h(t) be any smooth functions that satisfy the

conditions of Lemma 3.3.4. Let h1(t) = h0(t), and let f1(t) be any function defined

on [0, T ] that satisfies

1. f (odd)

1
(0) = f (even)

1
(T ) = 0

2. f 0

1
(T ) = �1

3. f 00

1
(t) < 0 for t < T .

4. f1(T1) = f0(T1)

5. �� < f 0

1
(t) < 0 for t  T1

The function f1(t) is concave and crosses over f0(t) at its largest point of inflection.

84



FIGURE 3.4. A graph of f(t) and h(t) with f1(t) indicated by the dotted line.
Compare to (3.3.).

Define functions f� and h� and metric g� as follows.

f�(t) = (1� �)f0(t) + �f1(t),

h�(t) = (1� �)h0(t) + �h1(t) = h(t),

g� = dt2 + h2

�(t)ds
2

n + f 2

�(t)ds
2

m.

Note that g� defines a metric on Sn+m+1 for all � as the conditions on the warping

functions in [6, Section 1.4.5] are all linear, and we have assumed that f0, h0, f1,

and h1 satisfy these conditions.

Lemma 3.4.1. If f(t) and h(t) are any functions that satisfy the conditions

of Lemma 3.3.4, then for ⌫ su�ciently small the metric g� has positive Ricci

curvature for all � 2 [0, 1].

Proof. First, we will restrict our attention to t � T1. Note that f 00

0
(t) is nonpositive

by Lemma 3.2.3, and f 00

1
(t) is nonpositive by assumption. So f 00

� (t)  0 for all � 2

[0, 1]. We claim that �1  f 0

�(t) < 1 for t � T1 and each � 2 [0, 1]. Note that

0 < f 0

0
(T1) < 2� < 1 by (2) of Lemma 3.3.4, and that �1 < �� < f 0

1
(T1) < 0 by

assumption. Thus we have �1 < f 0

�(T1) < 1 for all �. We also have that f 0

�(T ) =

�1 for all � 2 [0, 1] by [6, Section 1.4.5]. Because f 00

� (t)  0 for all t � T1, we

conclude that �1  f 0

�(t) < 1.
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As g� is a doubly warped product for each � 2 [0, 1], the formulas for its

sectional curvature can be found in [6, Section 4.2.4]. By (5) of Proposition 3.3.4,

the only sectional curvature that will be nonzero for t � T1 will be the following

K�(@t, ✓) =
�f 00

� (t)

f�(t)
, K�(✓i, ✓j) =

1� (f 0

�(t))
2

f 2

�(t)
, and K�(�i,�j) =

1

R2
.

As we have observed f 00

� (t) < 0 and �1 < f�(t) < 1 for T1  t < T , thus these first

two terms are positive for T1  t < T . One can check that the limit of these terms

as t ! T , is proportional to f 000

� (t), which is necessarily positive. Thus these three

sectional curvatures are positive, and so Ricg� > 0 for all T1  t  T .

Next, consider T0  t < T1. Note that by definition f 00

1
(t) < 0, and by (1) of

Lemma 3.2.3 that f 00

0
(t) < 0. Thus f 00

� (t) < 0 for all � 2 [0, 1]. Similarly we have

h00

�(t)  0 by (6) of Lemma 3.2.3. Thus K�(@t, ✓) > 0 and K�(@t,�) � 0 from [6,

Section 4.2.4], and we conclude that Ricg�(@t, @t) > 0.

For the remaining Ricci curvatures we will utilize (2) and (3) of Lemma 3.2.3.

Note that by assumption f1(t) satisfies the same bound as (2) in absolute value and

the upper bound of (3), so these bounds must remain true for all f�(t). Applying

these to the formulas of [6, Section 4.2.4] gives us the following bounds

K�(✓i, ✓j) �
1� (2�)2

cos2 b0
and K�(✓,�) � �

6�h0

�(t)

R⇡(cos b0 � 2�R⇡/3)h�(t)
.

We can take � = ⌫ cos b0 to be arbitrarily small, so that

K�(✓i, ✓j) =
1

cos2 b0
+O(⌫), and K�(✓,�) = O(⌫).
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We immediately have that Ricg�(✓, ✓) = K�(@t, ✓)+ (m� 2)(1/ cos2 b0)+O(⌫), which

will be positive if ⌫ is taken initially to be small enough.

Because h0

�(t) = h0

0
(t), h0

0
(T1) ⌘ 0, h0

0
(0) = 1, and h00

0
(t) < 0 for t < T1, we

conclude that h0

�(t) < 1 for all t > 0. And hence that K�(�i,�j) > 0. We conclude

that Ricg�(�,�) = K�(@t,�) + (n � 2)K�(�i,�j) + O(⌫) is positive if ⌫ is taken

su�ciently small.

Finally, we consider 0  t < T0. For Ricg�(✓, ✓) and Ricg�(�,�), we argue

similarly as for T0  t < T1 taking ⌫ su�ciently small. For Ricg�(@t, @t), we no

longer have f 00

� (t) < 0. But by (4) and (7) of Proposition 3.2.3, we have that

K�(@t, ✓) = O(⌫) and K�(@t,�) >
1

4R
.

We conclude Ricg�(@t, @t) = (n � 1)/4R + O(⌫) is positive if ⌫ is taken su�ciently

small.

3.4.2. Path to Round

Consider a Ricci-positive doubly warped product metric

g1 = dt2 + h2

1
(t)ds2n�1

+ f 2

1
(t)ds2m�1

,

defined on [0, ⇡T/2]. Note that g1 has nonnegative sectional curvature if and only

if f 00

1
(t)  0 and h00

1
(t)  0. We will show that any such metric is Ricci-positive
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FIGURE 3.5. A graph of f1(t) and h1(t) with T sin(t/T ) and T cos(t/T ) indicated
by dotted lines.

isotopic to a round metric. For � 2 [1, 2] we define,

h�(t) = ((2� �)h1(t) + �T sin(t/T )),

f�(t) = ((1� �)f1(t) + (�� 1)T cos(t/T )),

g� = dt2 + h2

�ds
2

n + f 2

�ds
2

m.

Note g� interpolates between g1 and g2 = T 2ds2n+m+1
the round metric of radius T .

Lemma 3.4.2. If f 00

1
(t)  0, h00

1
(t)  0, and g1 has positive Ricci curvature, then g�

has positive Ricci curvature for all � 2 [1, 2].

Proof. Note that f 00

� (t) < 0 and h00

�(t) < 0 for all � 2 (1, 2] and t 2 (0, ⇡T/2).

Thus we immediately have by [6, Section 4.2.4] that K�(T, ✓) > 0 and K�(T,�) > 0

for all � 2 (1, 2] and t 2 (0, ⇡T/2). It is straightforward to see that the limit at

t approaches the endpoints of these curvatures is proportional to h000

� (T ) or f
000

� (0),

which combined with the boundary conditions of [6, Section 1.3.4] implies that

these curvatures remain positive for t = 0, ⇡T/2.

Because f 00

� (t)  0 and h00

�(t)  0, it must be that f 0

�(t) and h0

�(t) lie between

their extreme values: 0  f 0

�(t)  1 and �1  h0

�(t)  0. Thus by [6, Section 4.2.4]

we have K�(✓i, ✓j) � 0, K�(✓,�) � 0, and K�(�i,�j) � 0 for all � 2 [1, 2].
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It follows that g� has positive Ricci curvature for all � 2 (1, 2] and by

assumption g1 has positive Ricci curvature.

At this point we have finished the proof of Lemma 3.0.3 and consequently our

proofs of Proposition 2.3.1 and Theorem B as well.

Proof of Lemma 3.0.3. By Lemma 3.3.4 and Lemma 3.4.1, the boundary metric

g0 of gdisk(⇢) restricted to the boundary Sn+m�1 can be connected by a path g� of

Ricci-positive metrics to a doubly warped product metric g1, where both warping

functions have nonpositive second derivative by construction. By Lemma 3.4.2, this

nonnegatively curved doubly warped product metric can be connected by a path g�

of Ricci-positive metrics to the round metric g2 = T 2ds2n+m+1
.
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CHAPTER IV

PLUMBING DISK BUNDLES OVER SPHERES

In this Chapter we describe precisely what plumbing is, and how it is used

to construct smooth manifolds with particular topological characteristics. In [30],

Ricci-positive metrics are constructed on a particular class of simply connected

manifolds that occur as the boundary of plumbing disk bundles over spheres, which

includes a large number of exotic spheres. We claim that the techniques of [30]

can be combined with the proof of Theorem B to construct a core metric on the

same spaces, proving Theorem C. We begin in Section 4.1 by introducing the basic

topological construction related to plumbing and discuss the necessary background

of exotic spheres. We conclude in Section 4.2 by discussing the work of [3, 30] and

its application to the proof Theorem C.

4.1. Topological Background

We begin in Section 4.1.1 by introducing the basic constructions of plumbing.

We will pay special attention to the case of disk bundles over spheres and their

relationship to surgery. In Section 4.1.2 we discuss some of the basics of exotic

spheres, in particular which exotic spheres can be described as boundaries of

plumbings. We conclude in Section 4.1.3 by discussing the relationships between

exotic spheres and exotic smooth structures on arbitrary smooth manifolds, which

accounts for all of the corollaries to Theorem C in Section 1.3.3.
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4.1.1. Plumbing

Given a Dm bundle E1 over Bn and a Dn bundle E2 over Bm, fix Dn ,! Bn

and Dm ,! Bm. Trivializing the Ei over these embedded disks yields embeddings of

disk bundles

�1 : E1 |Dn ! Dn
⇥Dm and �2 : E2 |Dm ! Dm

⇥Dn .

Let � : Dn
⇥Dm

! Dm
⇥Dn be the obvious map. We denote by E1 ⇤E2 the

plumbing of E1 and E2, which we define as

E1⇤E2 = (E1 t E2) / ⇠ where x ⇠ ��1

2
� � � �1(y). (4.1)

We consider E1⇤E2 as a smooth manifold with boundary by smoothing the

inherent corners in the definition (see Lemma A.1.6, for a description of smoothing

corners). If Bn and Bm are connected, then the di↵eomorphism type of E1 ⇤E2 is

independent of the choices made in the definition. If E1 and E2 are oriented disk

bundles then an orientation on E1⇤E2 can be chosen to agree with the orientation

of E1, but may disagree with E2 if n or m is odd. We will assume that E1⇤E2 is

oriented to agree with an orientation on E1.

More generally, a plumbing diagram is a bipartite graph G = (V0, V1, E) with

the first vertex set V0 being labeled by Dm-bundles over n-dimensional manifolds

and V1 being labeled by Dn-bundles over m-dimensional manifolds. If n = m, then

we will consider arbitrary graphs G = (V,E) with vertices labeled by Dn-bundles

over n-dimensional manifolds. In either case, to such a labeled graph G we define

a smooth manifold with boundary, denoted P (G), which we call the plumbing of
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the labeld graph G. To construct P (G), first take the disjoint union of all of Ei

the disk bundles associated to each vertex vi of G. Next, trivialize the bundle Ei

over as many disks as there are edges emanating from vi. Finally, make the same

identification as in (4.1) between any two bundles whose vertices are connected by

an edge. In order for the orientation to be well defined we must consider rooted

graphs, graphs with a designated vertex as the root. We will assume the orientation

on P (G) agrees with the orientation of the bundle associated to the root. See [59,

Section V] for further detail.

Plumbing is a useful way to construct manifolds with certain characteristic

numbers and intersection forms. If we restrict to n = m, then the intersection

form of P (G) can be expressed in terms of the adjacency matrix of G labeled

by Euler classes of the various bundles [59, V.1.5]. One can also relate the

characteristics classes of P (G) to the characteristics classes of the bundles and

the base manifolds in the plumbing diagram. If we restrict to plumbing linear disk

bundles over spheres, then the homotopy type of such plumbings is straightforward

to understand: it is
Wi S1

_
Wj Sn

_
Wk Sm, where i is the rank of ⇡1(G), j = |V0|,

and k = |V1|. As we are interested in constructing Ricci-positive metrics on these

plumbings, we will restrict ourselves to simply connected manifolds, so we will only

consider plumbing diagrams coming from trees.

The boundary of plumbings are smooth closed manifolds of dimension n +

m � 1. If we still restrict ourselves to plumbing diagrams with underlying graphs

as trees and only disk bundles over spheres, we can describe the boundary of such

plumbings in a familiar way. Let v 2 V0 be a free vertex (a vertex adjacent to a
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single edge), then we have

@(P (G)) =
⇥
@(P (G \ {v})) \

�
Sn�1

⇥Dm
�⇤

[f (D
n
⇥ Sm�1), (4.2)

where f is some di↵eomorphism between the respective boundaries. To see this,

we note that removing Dn
⇥Dm from a Dm bundle has the e↵ect of removing a

Dn
⇥ Sm�1 from the boundary, and that @(Ei)\ (D

n
⇥ Sm�1) ⇠= Dn

⇥ Sm�1. When we

compare (4.2) to (1.1), we see that @(P (G)) can be constructed out of a sequence of

alternating (n � 1) and (m � 1) surgeries on the manifold @(E1), the sphere bundle

of the root.

We will denote by @T Pk the class of tree-like plumbings: all manifolds

realized as boundaries of plumbing linear Dk-bundles over Sk where the underlying

graphs are trees. It was observed in [32] that this family is closed under connected

sum. If "k denotes the trivial bundle, then we denote by G0#G1 any graph of the

form depicted in Figure (4.1.), then by [32, Proposition 2.6] we have

@P (G0#G1) = @P (G0)#@P (G1). (4.3)

It is an elementary exercise in topology to use (4.2) to show that @(E1⇤E2)

has the homotopy type of a sphere if n < m. If ⇥d denotes the group of exotic d-

dimensional spheres (see Section 4.1.2 for further discussion), then for each n < m

and n+m� 1 = d we define the Milnor plumbing pairing

�n,m : ⇡n�1(SO(m))⇥ ⇡m�1(SO(n)) ! ⇥d, where �n,m(�1, �2) = @(P (E1 ⇤E2)).

(4.4)

93



G1

"m

"n

G2

FIGURE 4.1. The graph G1#G2 can be any graph as depicted, where the vertex
labeled by "n is connected via an edge to any vertex of G1 and G2 labeled by a
Dm-bundle.

Here, Ei is the disk bundle defined by the clutching function �i. Though each set

involved in the definition (4.4) is a group, the plumbing pairing �n,m is not bilinear.

See [60] for the formula; it is in fact sesquilinear.

The two sets of manifolds @T Pk and Im �p,q are precisely those for which

Ricci-positive metrics are constructed in [30], and are precisely the sets we have

claimed admit core metrics in Theorem C. Though Im�p, q ⇢ ⇥p+q�1, the set

@T Pk contains many manifolds that are not homotopy spheres. In particular, we

can see from our discussion above, that Hk(M
2k�1) = Z2j, where j is the number

of vertices of G. When k is even, this class of manifolds has been described in [32,

Theorem C], as those (k � 2)-connected, (k � 1)-parallelizable (2k � 1)-dimensional

manifolds (modulo the action of ⇥2k�1, which we will discuss in Section 4.1.2). We

will discuss in Section 4.1.2 which exotic spheres occur in @T Pk.

4.1.2. Exotic Spheres

Let ⇥n denote the set of h-cobordism classes of smooth n-dimensional

manifolds that are homotopy equivalent to the sphere. For n > 4, the h-cobordism
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Theorem implies that ⇥n can be thought of as di↵eomorphism classes of smooth

homotopy spheres, which can also be described as the set of smooth structures

on the topological sphere. Smooth structures which are non-di↵eomorphic to the

standard smooths structure, are typically called exotic smooth structures. This is

why the set ⇥n is also called the set of exotic spheres. This set is endowed with a

group structure via connected sum, in much the same way as the set of cobordism

classes of smooth manifolds. We will now outline the key ideas from the seminal

work of [46] on exotic spheres.

Using obstruction theory it can be shown that every exotic sphere has trivial

stable normal bundle. This framing is not unique, and the class of all framings can

be generated by the action of ⇡n(SO(n + 1)). This action extends to the group ⌦fr

n

of framed n-dimensional manifolds by modify the framing on a embedded Dn ,!

Mn. This gives rise to a well defined map ⇥n ! ⌦fr

n/⇡n(SO(n + 1)) sending a

homotopy sphere to the class of all possible framings on the underlying sphere.

This map has a kernel bPn+1, which is those homotopy spheres which occur as the

boundary of a parallelizable (n + 1)-dimensional smooth manifold. The Pontryagin

collapse map ⌦fr

n ! ⇡S
n is an isomorphism, and the action of ⇡n(SO(n + 1)) under

this isomorphism can be identified with the action defined via the J-homomorphism

Jn : ⇡n(SO(n + 1)) ! ⇡2n+1(Sn+1) ⇠= ⇡S
n . This composition gives rise to an injective

map ⌘n : ⇥n/bPn+1 ! ⇡S
n/ Im Jn. The approach taken to classify ⇥n, initiated in

[46], is precisely to study bPn+1 and ⇡S
n/ Im Jn.

If n 6= 4k + 2, then ⌘n is shown to be surjective in [46], and in dimension

n = 4k + 2, the cokernel was shown to either be trivial or order 2. Determining this

indeterminacy has since become known as “the Kervaire invariant one problem.”

This problem, though fairly elementary to state, has only been resolved in the past
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⌧2k

⌧2k ⌧2k ⌧2k ⌧2k ⌧2k ⌧2k ⌧2k

⌧2k+1 ⌧2k+1

FIGURE 4.2. The E8 and A2 graphs, for which @(P (E8)) generates bP4k and
@(P (A2)) generates bP4k+2.

decade in [61]. If n ⌘ 2 mod 4, then the cokernel of ⌘n is trivial other than when

n = 6, 14, 30, 62, and maybe 126.

The order of the subgroup bPn+1 is also determined in [46]. It is shown

using surgery that when n = 2k, that bPn+1 is trivial. When n = 2k + 1 an

explicit generator is constructed using plumbing. If E8 and A2 are as in (4.2.),

then @(P (E8)) generates bP4k and @(P (A2)) generates bP4k+2. The order of bP4k

is computed exactly, and it is super exponential in k. The order of bP4k+2 is shown

to either be 1 or 2, and computing the order of bP4k+2 is equivalent to the Kervaire

invariant one problem: bP4k+2 = Z/2Z if and only if the cokernel of ⌘n is trivial.

Thus from the above discussion, bP4k+2 = Z/2Z other than when n = 6, 14, 30, 62,

and maybe 126. Thus other than dimension n = 126 the computation of ✓n has

been reduced to computing ⇡S
n and the extension problem:

0 ! bPn+1 ! ✓n ! ⇡S
n/ Im J ! coker ⌘n ! 0.

Which is known to split in most dimensions: when n 6= 2j � 3 [62].
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Regardless of their order, we know that bP2k is generated by elements in

@T Pk. Because the group operation of ⇥n is connected sum and because we know

that @T Pk is closed under connected sum by [32, Proposition 2.6], we see that

bP2k ✓ @T Pk. We therefore have concrete geometric descriptions of each element

in bP2k as either the boundary of a suitable plumbing diagram or, by (4.2), as a

sequence of (k � 1)-surgeries on an Sk�1-bundle over Sk. These concrete geometric

constructions allow us to construct very concrete metrics on this family of exotic

spheres. It is these dual viewpoints that allow [30] to construct Ricci-positive

metrics on this family, and will allow us in Section 4.2 to construct core metrics

for this family as well.

One can ask if there are any exotic spheres that represent a nontrivial

class ⇡S
n/ Im Jn represented in this way. The manifold P (G) will often be stably

parallelizable as most of the unstable vector bundles ⇡k�1(SO(k)) are stably

trivializable. It may happen occasionally that a homotopy sphere is built in

this way as the boundary of P (G) that is not stably parallelizable, for example,

this is always true when considering Im �p,q, if p < q, and we have chosen

�1 2 ⇡p�1(SO(q)) ⇠= gKO
q
(Sp) that is not stably trivializable. Even in these

cases, it might be that there is an entirely di↵erent stably parallelizable manifold

that is bounded by the sphere built in this way. While we do not know any general

nontriviality statement for �p,q, in [47, Satz 12.1] it was noted that the nontrivial

elements of ⇥8
⇠= ⇥16

⇠= ⇥19/bP20
⇠= Z/2Z are in the image of �4,5, �8,9, and �9,11

respectively.

While the image of �p,q in ⇥d/bPd+1 is not always trivial, we note that it

is not surjective. If ↵ : ⇥d ! KO�d(pt) is the KO-valued index of the spin

Dirac operator defined in [22], then ⌃d admits a positive scalar curvature metric
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if and only if ↵(⌃d) = 0. There are examples of homotopy spheres ⌃9
2 ⇥9 with

↵(⌃9) 6= 0 [26, Theorem 2]. But by Proposition 2.1.7, (4.2), and [23, Theorem

A] the image of �p,q will always admit a metric with positive scalar curvature if

d � 3. We conclude that the image of �p,q lies in the kernel of ↵, and is therefore

not surjective.

4.1.3. Inertia Groups

Motivated by ⇥n, for any smooth manifold Mn we define S
Top/O(Mn) to be

the oriented di↵eomorphism classes of smooth manifolds homeomorphic to Mn.

This set has a base point given by the identity map. Unlike ⇥n, there will not be a

group structure on this set, but STop/O(Mn) will admit a ⇥n action given by eM
n
7!

eM
n
#⌃n. The inertia group of Mn, denoted by I(Mn)  ⇥n, is the stabilizer of the

base point, i.e. the subgroup consisting of ⌃n such that Mn #⌃n is di↵eomorphic to

Mn. We have a subset ⇥n/ I(M
n) ✓ S

Top/O(Mn). Thus whenever I(Mn) = 0, we

have ⇥n ,! S
Top/O(Mn). And Mn #⌃n each represent distinct smooth structures on

the same underlying topological manifold Mn.

From a computational perspective it is actually more di�cult to determine

I(Mn) than it is to determine S
Top/O(Mn). But from a geometric perspective,

knowledge that a smooth structure of Mn is realized by Mn #⌃n for some ⌃n
2

⇥n gives us a construction of this smooth structure that is as concrete as our

understanding of the exotic sphere ⌃n. Thus if Mn #⌃n is an exotic smooth

structure for ⌃2k
2 bP2k or ⌃d

2 Im �p,q, we have a good chance to understand

the geometric properties of the possible metrics on Mn #⌃n.

In our case, as we will have successfully constructed core metrics on ⌃n as in

Corollary 1.3.5, by Theorem 1.2.5 we will have constructed Ricci-positive metrics
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on many manifolds of the form Mn #⌃n, provided that Mn is known to admit

a core metric. Corollaries 1.3.6, 1.3.7, 1.3.8, and 1.3.9 as explained in Section

1.3.3 follow from the work of [48], [49], [51], and [52] respectively. These papers

respectively prove that I(RP7) = 0; I(CPn) = 0 for n  8; I(
Q

i S
di) = 0; and

I(Mn) = I(Mn #(#k(S
2
⇥ Sn�2)) if n � 7 and Mn is 2-connected. These results

allow us to conclude that Ricci-positive metrics constructed on Mn #⌃n are all

defined on exotic smooth structures on Mn.

4.2. Core metrics on boundary of plumbing

Having established a the relationship between plumbing and surgery, we now

explain the work of [3, 30] on Ricci-positive surgery in Section 4.2.1 and how it

is applied to construct Ricci-positive metrics on the boundaries of plumbings.

In Section 4.2.2 we prove Theorem C by combining the logic of the proofs [30,

Theorem 2.2 & Theorem 2.3] with the initial metrics constructed in Lemma 2.3.4

above.

4.2.1. Ricci-positive Surgery

Given a Ricci positive manifold (Mn+m, g), suppose we are given an isometric

embedding,

' :
�
Sn

⇥Dm
R , ⇢

2ds2n +N2ds2m
�
,! (Mn+m, g). (4.5)

Here, by (Dm
R , N

2ds2m), we mean a geodesic ball of radius R in (Sm, N2ds2m).

The main technical constructions in [3, 30] were to show that under a suitable

compatibility of ⇢, N , and R, there is a Ricci-positive metric on Mn
'.
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Lemma 4.2.1. [30, Lemma 2.4] If m� 1 � n � 3, then there is a (n,m,', R/N),

such that if ⇢/N <  we can find a Ricci-positive metric g' on the manifold En+m
'

defined by (1.1) and the embedding (4.5).

Lemma 4.2.1 is su�cient to construct Ricci-positive metrics and prove [30,

Theorem 2.3], and will also be su�cient to construct core metrics on Im�p,q.

One may ask if the metric g' of Lemma 4.2.1 can be constructed in such a

way as to allow for further applications of Lemma 4.2.1. This is necessary if one

hopes to construct Ricci-positive metrics on elements of @T Pk.

Lemma 4.2.2. [30, Lemma 2.5] If n = m � 1 � 3 and 1 > 0, there exists a

0(n,'0, R0/N0,1) > 0 such that if ⇢0/Ni < 0 then there is a Ricci-positive metric

g1 on the manifold Mn+m
'0

defined by (1.1) and the embedding (4.5). Moreover there

is an isometric embedding '1 : (Sn
⇥Dn+1

R1
, ⇢2

1
ds2n + N2

1
ds2n+1

) ,! (Mn+m
'0

, g1), where

⇢1/N1 < 1 and R1/N1 = �(n), where �(n) is a dimensional constant.

Lemma 4.2.2 does not imply that one can continue to perform Ricci-positive

surgery indefinitely, but as observed in the proof of [30, Theorem 2.3], in the case

of sphere bundles over spheres, we can find a suitable initial metric to perform any

fixed number of surgeries. Thus Lemma 4.2.2 will be su�cient to construct core

metrics on @T Pk.

4.2.2. Core metrics on plumbing pairing

We are now prepared to prove Theorem C. The proof follows the same logic

as the proofs of [30, Theorem 2.2 & Theorem 2.3]. The proof begins by taking

a suitable Ricci-positive metric on S(E1), the sphere bundle of the disk bundle

corresponding to the root of G to which Lemmas 4.2.1 and 4.2.2 may be applied.

100



This is the one aspect of these proofs that we modify: we instead start with a

suitable Ricci-positive metric on S(E1) \D
n+m, groot of Lemma 2.3.4.

Proof of Theorem C. Let p � 4 and q � 3, and let �1 2 ⇡p�1SO(q) and

�2 2 ⇡q�1SO(p). Let E1 be the Dq-bundle over Sp corresponding to �1. By

Lemma 2.3.4 there is a Ricci-positive metric groot on S(E1) \ Dp+q�1 with round

boundary that has positive principal curvatures and an isometric embedding ' :

(Sq�1
⇥Dp

N , ds
2

q�1
+ ⇢2ds2p) ,! (S(E1) \D

p+q�1, groot) for a fixed N and all su�ciently

small ⇢. By Lemma 4.2.1, if we take ⇢ small enough so that ⇢/N < (p, q,', 1/N)

we may find a Ricci-positive metric on S(Ep+1

1
)' \ Dp+q�1, with round boundary

with positive principal curvatures. But by (4.4) and (4.2),

S(Ep+1

1
)' \Dp+q�1 ⇠= @(E1 ⇤E2) \D

p+q�1 = �p,q(�1, �2) \D
p+q�1 .

Thus each element of Im�p,q admits a core metric for q � 4 and p � 3.

For P (G) 2 @T Pk, we will argue by induction on the height h of the rooted

tree G. Our inductive hypothesis will be much more involved than the conclusion

of Theorem C. For all h > 0, we will assume that for each rooted tree G of height

h with leaves vjG with 1  j  lG each labeled by a natural number dj with 1 

j  lG that there is a Ricci-positive metric g(G, dj,h) on @P (G) \ D2k�1 with

round boundary that has positive principal curvatures and that for all 1  i  dj

embeddings 'i
G,j : (S

k�1
⇥Dk

N i
G,j

, ⇢2ds2k�1
+ (Ri

G,j)
2ds2k) ,! (@P (G) \ D2k�1, g) whose

images lie in the portion corresponding to the leaves vjG where Ri
G,j/N

i
G,j depends

only on dj, G, and the dimension k and ⇢ can be chosen such that ⇢/N i
G,j < h.

The idea behind this inductive hypothesis, is that for each rooted tree G of

height (h+ 1) there is a rooted tree G0 of height h, so that G can be recovered from
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v2
G0,0

v2
G0,1

FIGURE 4.3. The labeling and numbering convention for G and G0.

G0 by allowing the leaves vjG0 of G0 to bud dj new leaves. Note that the inductive

hypothesis is much stronger than the conclusion of Theorem C. Should we be able

to prove the inductive hypothesis holds for (h+ 1) assuming it is true for h, then by

disregarding the additional data we will have constructed a Ricci-positive metric on

@(P (G)) \D2k�1 with round boundary that has positive principal curvatures.

The base case h = 0 corresponds to G a single vertex and @P (G) = S(E1)

an Sk�1-bundle over Sk. In this case there is only one leaf, and the inductive

hypothesis is precisely the conclusion of Lemma 2.3.4.

We now assume our inductive hypothesis holds for graphs of height h, and

seek to show it is true for rooted trees of height (h + 1). Fix (h+1) > 0 and let G

be a rooted graph of height h+ 1. Let us label those leaves whose distance from the

root are less than (h + 1) by viG,1 for 1  i  lG,1. If we delete the vertices that are

exactly a distance of (h + 1) from the root, this produces a rooted tree G0 of height

h. Some of the leaves of G0 have already been labeled as vjG,1, let us also refer to

them as vjG0,1 for 1  i  lG0,1 = lG,1. Let us label the remaining vertices of G0 by

vjG0,0 for 1  j  lG0,0. Note that each of these leaves may also be considered as

vertices of G, where they are adjacent to at least one leave of G. Let djG0,0 denote
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the number of leaves of G adjacent to vjG0,0. We may now finish labeling the leaves

of G, by labeling the leaves of G adjacent to vjG0,0 as viG,0,j for 1  i  djG0,0. Let us

assume with this labeling scheme, that we have assigned natural numbers diG,0,j and

diG,1 to each of the similarly labeled leaves of G.

We will apply the inductive hypothesis for height h and Lemma 4.2.2 to show

that the inductive hypothesis holds for rooted trees of height (h+ 1). We will apply

the inductive hypothesis to G0 for suitably chosen data. We already have labeled

the vertices of G0, corresponding to these labels we assign natural numbers djG0,0 to

the leaves vjG0,0 as above the number of leaves of G adjacent to vjG0,0 and djG0,1 = djG,1

to leaves vjG0,1 agreeing with those numbers assigned to vjG,1 of G. By the inductive

hypothesis, for any h > 0 we get a Ricci-positive metric g0 that depends on G0 and

the number djG0,l on @P (G0) \D2k�1 and isometric embeddings for each 1  i  djG0,l,

'i
G0,l,j : (S

k�1
⇥Dk

N i
G0,l,j

, ⇢2ds2k�1
+ (Ri

G,l,j)
2ds2k) ,! (@P (G0) \D2k�1, g0).

By Lemma 4.2.2, for any (h+1) > 0 there is a iG0,l,j > 0 that depends on k,

'i
G0,l,j, N

i
G0,l,j/R

i
G0,l,j, and (h+1) that guarantees the conclusion of Lemma 4.2.2

under the assumption that ⇢/N i
G0,l,j < iG0,l,j. We have assumed in the inductive

hypothesis that the embedding 'i
G0,l,j and the quantity N i

G0,l,j/R
i
G0,l,j depend only

on the dimension k, the graph G0, and the numbers djG0,l. We conclude that iG0,l,j is

independent of h and therefore we may take h < iG0,l,j. We will also assume that

h < (h+1), which is valid as (h+1) has been fixed.

We may now apply Lemma 4.2.2 on all of the embeddings 'i
G0,0,j to produce

a Ricci-positive metric g on the resulting space. The smooth manifold that results

from performing surgery on all 'i
G0,0,j in @P (G0)\D2k�1 is, by (4.2), di↵eomorphic to

@P (G) \D2k�1. As we have not altered the metric outside of the embeddings 'i
G0,0,j,
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the boundary is still round and has positive principal curvatures with respect to g.

We emphasize that we have not applied Lemma 4.2.2 to the embeddings 'i
G0,1,j. We

instead relabel these embeddings as

'i
G,1,j : (S

k�1
⇥Dk+1

N i
G,1,j

, ⇢2ds2k�1
+ (Ri

G,1,j)
2ds2k) ,! (@P (G) \D2k�1, g).

Their image still lies in the portion of @P (G) \ D2k�1 corresponding to vjG0,1,

which we also have relabeled as vjG,1. Lemma 4.2.2 also guarantees the existence

of isometric embeddings

'G,0,j,i : (S
k�1

⇥Dk
NG,0,j,i

, ⇢2ds2k�1
+ (RG,0,j,i)

2ds2k) ,! (@P (G) \D2k�1, g).

Where the image lies in the portion of @P (G) \ D2k�1 corresponding to viG,0,j, and

the constant NG,0,j,i/RG,0,j,i depends only on k and ⇢/RG,0,j,i < (h+1).

The only part of the inductive hypothesis that we have not shown for height

(h + 1), is that we may actually find isometric embeddings 'l
G,0,j,i for 1  l 

diG,0,j. Given (Dk
N , R

2ds2k), we may find an N 0 = N/c(d, k) depending only on d

and k for which there are d disjoint isometric embeddings 'i : (Dk
N 0 , R2ds2k) ,!

(Dk
N , R

2ds2k). Applying this observation to the embeddings 'G,0,j,i, we may find

diG,0,j many disjoint isometric embeddings

'l : (Sk�1
⇥Dk

N l
G,0,j,i

, ⇢2ds2k�1
+ (RG,0,j,i)

2ds2k) ,!

(Sk�1
⇥Dk

NG,0,j,i
, ⇢2ds2k�1

+ (RG,0,j,i)
2ds2k).
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Where N l
G,0,j,i/RG,0,j,i = (NG,0,j,i/RG,0,j,i)

�
1/c(diG,0,j, k)

�
clearly only depends on

diG,0,j and the dimension k. The desired embeddings are now 'l
G,0,j,i = 'l

� 'G,0,j,i.
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APPENDIX A

GLUING AND SMOOTHING FOR RICCI-POSITIVE RIEMANNIAN

MANIFOLDS WITH CORNERS

This appendix represents a self contained proof of Theorem I. We begin

in Section A.1 by discussing Riemannian manifolds with corners. Much of the

terminology and notation introduced in this section has been used above in

Chapter III when specifying embeddings of manifolds with corners into manifolds

with boundaries. After establishing the needed notation and constructions for

manifolds with corners, we then consider an entirely di↵erent technical aspect

to the proof of Theorem I. In Section A.2, we introduce an explicit family of

polynomial splines and study how their derivatives are entirely controlled by their

boundary conditions. After completing these two seemingly disparate discussions,

we then prove Theorem I in Section A.3 by applying the theory of polynomial

splines of Section A.2 to smooth the corners introduced in the constructions of

Section A.1.

A.1. Manifolds with Corners

We begin in Section A.1.1 by defining manifolds with corners and outlining

the basic smooth topological constructions: collar neighborhoods, smoothing

corners, and gluing together two manifolds with corners along a common face.

These constructions, while elementary, are not well known. For example, the

statement of Theorem I is not precise without discussing exactly what is meant

when we say Xn
1
[� Xn

2
, which we discuss in Section A.1.1.2 below. Unlike

Riemannian manifolds with boundary, where collar neighborhoods agree with
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normal coordinates of the boundary, Riemannian manifolds with corners require

have competing normal coordinates coming from adjacent faces. Much of the work

in Section A.1.2 is to make a choice of normal coordinates for the corners that

are amenable to the construction of Xn
1
[� Xn

2
in Theorem I. In Section A.1.2.1

we rephrase Theorem I as the more technical Theorem I0. We then describe the

coordinates we will use to prove Theorem I0 in Section A.1.2.2 and compute the

relevant curvatures in these coordinates in Section A.1.2.3.

A.1.1. Smooth topology of Manifolds with corners

A smooth manifold with corners is a topological space Xn together with a

smooth atlas of charts whose images are (�1, 0]c ⇥ Rn�c for some 0  c  n. We

choose the interval (�1, 0] as we follow the convention that corners are oriented

with respect to outward normal vectors. For such a manifolds we can define the

non-continuous function h(x) = c as the maximal value c for which the image of x

in (�1, 0]c ⇥ Rn�c lies in the set {0}c ⇥ Rn�c. We call the closure of a connected

component of the set h�1(c), a codimension c corner of Xn, which by definition is a

manifold with corners of dimension (n�c). We refer to the codimension 1 corners of

Xn as the faces of Xn. The boundary of a manifold with corners @ Xn is the union

of its faces along their boundaries, and is not by our convention a manifold with

corners.

We say that a manifold with corners is a manifold with faces if the

codimension c corners are the intersection of c distinct faces. It is with respect

to these manifolds that we have stated Theorem I. This is because we have

decomposed a manifold into a union of manifolds with boundaries, which in turn
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decomposes an embedded submanifold with boundary into a union of manifolds

with corners. Such intersections will generically result in manifolds with faces.

Proposition A.1.1. The generic intersection of two codimension 0 manifolds with

boundaries is a manifolds with faces with corners of codimension at most 2.

To see this, we note that the corners occur when the two boundaries intersect,

which in turn is the intersection of the two faces that correspond to the two

boundary components entering the interior of the other manifold.

A.1.1.1. Collar Neighborhoods

We will need a notion of collar neighborhood for the boundary of a manifold

with corners. For a given corner Zn�c note that there are c � k distinct inclusion

'k
i : Zn�c ,! Zn�k

i , where Zn�k
i are not necessarily distinct corners. A collar

neighborhood for the boundary of Xn will be a collection of collar neighborhoods

� : (�1, 0]c⇥Zn�c ,! Xn that respect the collar neighborhoods of every embedding

'k
i : Zn�c ,! Zn�k

i . We will not prove the existence of collar neighborhoods

in generality, though the argument is much the same as the specific case we are

interested in.

Lemma A.1.2. Let Xn be a manifold with corners of codimension at most 2. For

each corner Zn�2, there are two inclusions '1

i : Zn�2 ,! Yn�1

i , where Yn�1

i might be

the same face. Then there are tubular neighborhoods �1

i : (�1, 0] ⇥ Zn�2 ,! Yn�1

i ,

�0 : (�1, 0]2 ⇥ Zn�1 ,! Xn, and �0

i : (�1, 0]⇥ Yn�1

i ,! Xn, such that

�0

1
(x0,�

1

1
(x1, z)) = �0(x0, x1, z) = �0

0
(x1,�

1

0
(x0, z)).
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FIGURE A.1. The tubular neighborhood of the corners and faces, and the
consistent tubular neighborhoods making up the collar neighborhood.

Proof. We start by noting that each corner ' : Zn�2 ,! Xn admits an individual

collar neighborhood by [63, Theorem 1]. This means that there is an embedding

� : (�1, 0]2 ⇥ Zn�2 ,! Xn of manifolds with corners. Note that there

are two embedings '1

i : Zn�2 ,! Yn�1

i , where Yn�1

i are two, not necessarily

distinct, faces. In this coordinates, � : {0} ⇥ (�1, 0] ⇥ Zn�2 ,! Yn�1

0
and

� : (�1, 0] ⇥ {0} ⇥ Zn�2 ,! Yn�1

1
. Similarly for each face 'i : Yn�1

i ,! Xn,

there are collar neighborhoods �i : (�1, 0] ⇥ Yn�1 ,! Xn. By compactness, we

may shrink the constructed tubular neighborhoods in such a way that the collar

neighborhood of Zn�2 is disjoint from the neighborhood of any other corner, that

the neighborhoods of the faces Yn�1

i only intersect with one another on the interior

of the collar neighborhood for a mutual corner, and that the tubular neighborhood

of a face only intersect the tubular neighborhood of corners in its boundary.

In order to make these neighborhoods compatible in the desired way, we

will need to construct a particular metric on this neighborhood of the boundary

we have constructed. On the collar neighborhood of each corner let (x0, x1, z)

denote the coordinates. Take the metric g = dx2

0
+ dx2

1
+ h with respect to this

decomposition, where h is any fixed metric on Zn�2. Note that restriction x0 = 0
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corresponds to the Yn�1

1
and vice versa, so that the metric restricts to Yn�1

i is

dx2

i + h.

We may extend the function x0 to the tubular neighborhood of Yn�1

1
, by

taking a convex combination of this function with the normal coordinate in this

tubular neighborhood we get a new coordinate function which we will call x0 that

agrees with x0 on the collar neighborhood of the corner. We may similarly extend

x1 in this way to Yn�1

0
. We may also extend the metric dx2

i + h to a metric ki on

Yn�1

i . We define the metric gi = dt2 + ki on the tubular neighborhood of Yn�1

i ,

which by construction agrees with g in the corner neighborhoods. Taking the gi

together with g gives rise to a smooth metric on a neighborhood of @ Xn.

Taking normal coordinates with respect to this metric gives rise to the desired

tubular neighborhoods. By construction the corners and faces are totally geodesic

and on the collar neighborhood of the corners the metric restricted to the normal

bundle is flat. This first fact means that geodesics emanating from Zn�2 in a

direction tangent to Yn�1

i will remain inside Yn�1

i . This second fact means that

any geodesics emanating from Zn�2 in a direction normal to Zn�2 commute with

one another. These two facts therefore imply the desired compatibility.

With the existence of collar neighborhoods established we can now describe

the elementary smooth constructions that underline the metric constructions we

wish to carry out in the proof of Theorem I. The first construction is an embedding

theorem for Riemannian manifolds with faces, which allows us to always consider

an ambient Riemannian manifold with boundary.

Lemma A.1.3. Let Xn be a smooth manifold with faces with corners of

codimension at most 2. For each face Yn�1 of Xn there is a manifold Mn with

boundary Nn�1, an embedding ◆ : Xn ,! Mn such that Yn�1 = Xn
\Nn�1 and any
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Mn

Nn�1
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1

Yn�1

1

FIGURE A.2. The construction of the embedding Xn ,! Mn.

other face eY
n�1

intersects Nn�1 transversely, and a di↵eomorphisms r : Mn ,! Xn

onto a subspace of Xn that carries Nn�1 to the interior of Yn�1.

Given a metric g on Xn and a choice of an extension of this metric from

Yn�1 to Nn�1, for all " > 0 there is an extension g̃ to Mn such that r⇤g and g̃

are " close in the C1 topology.

Proof. Take a collar neighborhood of the boundary of Xn by Lemma A.1.2. Define

Mn as the subspace of Xn,

Mn := Xn
\

2

4

0

@
[

eY 6=Y

eY
n�1

1

A [
�
(�1, 0]⇥ Yn�1

�
3

5 .

We let r : Mn ,! Xn denote any map that smoothly sends(�2, 1]⇥Yn�1 to (�2, 0]⇥

Yn�1. One can similarly choose a di↵eomorphism ◆ : Xn
! Xn

1
, where

Xn
1
:= Xn

\

"
[

Y

(�1, 0]⇥ Yn�1

#
.

The rest of the smooth topological claims can be verified from the definition of

collar neighborhood.
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FIGURE A.3. The tubular neighborhood of the boundary and face.

Given a metric g on Xn, we can extend as desired because Yn�1 is closed

in Nn�1 and Nn�1 is closed in Mn. That g̃ and r⇤g can be made arbitrarily close

follows because we can shrink the initial collar neighborhoods, in such a way that

we get a family of metrics g̃" on Mn that will converges smoothly to g.

Note that Lemma A.1.3 allows us to talk about any smooth manifold with

corners extrinsically. This will be useful in the proof of Theorem I, as we can

appeal to existing proofs of Theorem 1.2.2 to immediately conclude the desired

metric exists.

Henceforth, we will say that a manifold with faces Xn is embedded within a

manifold with boundary Mn relative to a face Yn�1 if the faces of Xn intersect Nn�1

as in Lemma A.1.3. Note that the proof of Lemma A.1.3 can be modified slightly

to prove the following, which claims that we may also choose collar neighborhoods

of Xn and Mn that respects the embedding.

Lemma A.1.4. Given an embedding of a manifold with faces Xn into a manifold

with boundary Mn such that Yn�1 = Xn
\Nn�1 and any other face eY

n�1

intersects

Nn�1 transversely, there is a collar neighborhood of Nn�1 that agrees with the

tubular neighborhood of the boundary of Xn.
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A.1.1.2. Gluing and smoothing

The underlying smooth construction behind Theorem 1.2.2 is summarized in

the following lemma.

Lemma A.1.5. [64, Lemmas 8.1 and 8.2] Given two smooth manifolds Mn
i with

boundaries Nn�1

i and an orientation reversing di↵eomorphism � : Nn�1

1
! Nn�1

2
,

there is a smooth structure on the topological manifold Mn = Mn
1
[� Mn

2
that agrees

with the smooth structure on each Mn
i . Moreover, any two smooth structures on Mn

that respects the given smooth structures on each Mn
i are di↵eomorphic.

The construction of the smooth structure takes any collar neighborhoods for the

Nn�1

i and identifies these collar neighborhoods by (t, x) 7! (1 � t,�(x)). A

construction of such a smooth structure can be described similarly using a di↵erent

choice of collar neighborhoods, or might be described in entirely di↵erent terms.

The importance of Lemma A.1.5, is that it su�ces to find a metric on any preferred

smooth structure of Mn. In particular the choice of collar neighborhood could come

from normal coordinates of Ni with respect to gi.

When we have two embedded manifolds with faces Xn
i inside manifolds

with boundaries Mn
i , by Lemma A.1.4 we have a collar neighborhood of Nn�1

i

that respects the collar neighborhood of the boundary of Xn
i . If we assume that

� restricted to � : Yn�1

1
! Yn�1

2
is an orientation reversing orientation of

manifolds with boundary, then the smooth structure defined on Mn by these collar

neighborhoods will naturally give rise to a smooth structure on Xn
1
[� Xn

2
which is a

smooth manifold with faces, where the faces of Xn can be described as those faces

of Xn
1
and Xn

0
disjoint from Yn�1

1
and Yn�1

2
and as eY

n�1

= eY
n�1

1
[�

eY
n�1

2
where
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FIGURE A.4. Di↵erent choices of gluing result in di↵erent submanifolds with faces.

eY
n�1

i is the collection of faces that intersect Yn�1

i . This is what we will mean when

we write Xn

If we choose a di↵erent tubular neighborhood, we can still form a smooth

structure on Mn, but it will not form the same smooth manifold with corners.

Instead, it will give rise to a di↵erent smooth structure on Xn
1
[� Xn

2
, where the

faces can be described as all faces of Xn
1
and Xn

2
other than the identified faces

Yn�1

1
and Yn�1

2
. This is what we will mean when we write Xn

c . We can recover Xn

from Xn
c by the process of smoothing corners, which we describe in the following

Lemma.

Lemma A.1.6. Given a manifold with faces Xn with corners of codimension at

most 2. For any corner Zn�2 which bounds two faces Yn�1

1
and Yn�1

2
, there is a

smooth structure Xn
Z
of a manifold with faces on the underlying topological manifold

Xn so that the smooth structure agrees with smooth structure on Xn outside of Zn�1,

but so that the faces of Xn
Z
agree with the faces of Xn except Yn�1

1
and Yn�1

2
have

been replaced by Yn�1 = Yn�1

1
[Z Y

n�1

2
. Moreover, any two manifolds with faces

satisfying these claims are di↵eomorphic as manifolds with faces.

114



FIGURE A.5. The curve �(x), and Xn
Z
embedded in Xn.

Proof. To construct one such Xn
Z
, we take collar neighborhoods as in Lemma A.1.2.

Let (�0(x), �1(x)) ✓ (�1, 0]2 be a curve that agrees with {�1/2} ⇥ (�1,�2] and

(�1,�2]⇥ {�1/2}. In the tubular neighborhood of the corner, we define Xn
Z
to be

the set {(x0, x1, z) : �0(x) < x0 and x1 = �1(x)}, and in the tubular neighborhood of

the faces outside of the corner neighborhoods to be the set {(t, z) : t = �1/2}.

That the smooth structure on Xn
Z
agrees with Xn outside of Zn�2 follows

form the fact that the boundary of Xn
Z
is the graph of a smooth function over @ Xn.

Uniqueness follows from Lemma A.1.5 applied to the faces Yn�1

1
and Yn�1

2
.

It follows from the uniqueness in Lemma A.1.6 that smoothing the corners

of Xn
c introduced along the gluing site is di↵eomorphic to Xn. This is precisely the

approach we take in Theorem I: we will take coordinates of Mn
i well adapted to

the metric to form Mn, and then smooth the corners of Xn
c to produce a smooth

embedding Xn ,! Mn.

A.1.2. Riemannian Manifolds with Faces

Suppose that (Xn, g) is a Riemannian manifold with faces with corners of

codimension at most 2. In this setting, each face Yn�1

i has a second fundamental

form IIi with respect to the metric g defined with respect of the outward unit

normal in the same way as a manifold with boundary. Each corner Zn�2 bounds
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two distinct faces Yn�1

0
and Yn�1

1
. By restring g to Yn�1

i and considering Zn�2 as

the boundary of Yn�1

i we get two outward unit normals of Zn�2, which we may then

measure the angle between using g to get a well defined scalar valued function ✓

defined on each corner Zn�2, which is called the dihedral angle of the corner.

A.1.2.1. Theorem I revisited

Lemma A.1.3 allows us to translate between intrinsically defined manifolds

with faces and those defined extrinsically. We can now rephrase Theorem I in this

extrinsic setting. In this setting, we will denote by eY
n�1

the collection of faces that

intersect the designated face Yn�1.

Theorem I0. Fix two manifolds with faces Xn
i with corners of codimension at most

2, and assume they are embedded within two Riemannian manifolds (Mn
i , gi) with

boundary Nn�1

i relative to their face Yn�1

i .

Assume there is an isometry � : (Nn�1

1
, g1) ! (Nn�1

2
, g2) that restricts to an

isometry � : (Yn�1

1
, g1) ! (Yn�1

2
, g2) of manifolds with boundaries. Assume that

Ricgi > 0, and that the second fundamental forms of Nn
i satisfy II1 +�⇤ II2 > 0.

Assume also that the second fundamental form of eY
n�1

i satisfies eIIi > 0, and that

the dihedral angles ✓i along every corner that bounds Yn�1

i satisfies ✓1 + �⇤✓2 < ⇡.

If these assumptions are met, then there exists a smooth Ricci-positive metric

g on Mn = Mn
1
[� Mn

2
and an embedding Xn ,! Mn where Xn = Xn

1
[� Xn

2
, so

that eII the second fundamental form of the resulting smooth faces eY
n�1

= eY
n�1

1
[�

eY
n�1

2
with respect to g is positive definite. Moreover the metric g restricted to Mn

i

agrees with gi outside of an arbitrarily small neighborhood of the gluing site, and the

embedding of Xn ,! Mn restricted to Xn
i ,! Mn

i agrees with the initial embedding

outside of an arbitrarily small neighborhood of the gluing site.
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We will now explain how Theorem I0 implies Theorem I. The reason we focus

instead on proving Theorem I0, is that it has the benefit that we can we appeal to

existing proofs of Theorem 1.2.2 to construct such a metric g, which reduces the

proof of Theorem I0 to describing how to smooth the resulting corners on Xn
c while

preserving the positivity of eII with respect to the metric g.

Proof of Theorem I. By Lemma A.1.3 we can find Mn
i and Nn�1

i such that there

is an embedding Xn
i ,! Mn

i relative to their face Yn�1

i , where the Nn�1

i are

di↵eomorphic because the Yn�1

i are di↵eomorphic by assumption. We can extend

the gi from Yn�1

i to metrics on Nn�1

i in such a way that there is still an isometry

� : Nn�1

1
! Nn�1

2
. We may then extend gi to all of Mn

i by Lemma A.1.3. If we take

" > 0 su�ciently small we will have Ricgi > 0 on all of Mn
i , and that II1 +�⇤ II2 > 0

on all of Nn�1

1
. We may now apply Theorem I0 to construct a metric g on Mn and

an embedding Xn ,! Mn such that the metric restricted to Xn has the desired

properties.

Before we move on to talk about the normal coordinates we will use in the

proof of Theorem I0, we take a moment to state a natural corollary of Theorem

I0. In our proof of Theorem B, we are constructing a Riemannian metric on a

smooth manifold with boundary by building it out of Riemannian manifolds with

faces glued together. If we instead think about a manifold with boundary as the

smoothing of a manifold with faces (in the sense of Lemma A.1.6), we can ask

under what conditions will a metric on the manifold with faces with positive

principal curvatures give rise to a metric on the smooth manifold with boundary

with positive principal curvatures. The distinction between these two points of

views is subtle, and we have chosen to state Theorem I because of the application
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FIGURE A.6. The process of cutting, gluing, and smoothing Xn.

we had in mind. We claim that the following result, which is analogous to Theorem

I, follows as a direct corollary of Theorem I0.

Corollary A.1.7. Given (Xn, g) is a Riemannian manifold with faces with corners

of codimension at most 2, suppose that Ricg > 0, that each face has positive

principal curvatures, and that the dihedral angle along each corner never exceeds

⇡, then there is a Ricci-positive metric g on the smooth manifold with boundary Mn

that is the result of smoothing each corner of Xn.

Proof. Take a collar neighborhood of the boundary of Xn as in Lemma A.1.2. Fix

a face Yn�1 of Xn. We will define a submanifold of Xn, which we will call Yn�1

�
as

a perturbation of Yn�1 relative to its boundary. Let �(x) be any smooth function

define on (�1, 0] such that �(0) = 0, �0(0) = 1, 0 � �(x) � �1, and �(x) ⌘ �1 for

all x  �1. For each corner that bounds Yn�1, in the coordinates (�1, 0]2 ⇥ Zn�2

we define Yn�1

�
= {(x0, x1, z) : x1 � �(x0)} (assuming that the points (x0, 0, z)

correspond to Yn�1). On the collar neighborhood (�1, 0]⇥ Yn�1 of Yn�1 we define

Yn�1

�
= {(t, y) : t ⌘ �1}. Note that Yn�1

�
is di↵eomorphic to Yn�1, and is an

oriented smooth submanifold of codimension 1 with no relative boundary. It follows

that Yn�1

�
separates Xn into two submanifolds with faces: Xn

�
and Xn

+
. Note that

Xn
�
is di↵eomorphic to Xn and that Xn

+
deformation retracts onto Yn�1 and has

boundary di↵eomorphic to the unsmoothed doubling of Yn�1. If were able to apply
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Theorem I to Xn
�
and Xn

+
along the face Yn�1

�
, the resulting manifold with faces Xn

Y

can be identified with the manifold Xn with all of the corners bounding Yn�1 being

smoothed. We claim that with a slight modification of the metric, we can directly

apply Theorem I. By cutting, gluing, and smoothing in this fashion for each face of

Xn, we will produce the desired metric on Mn.

By construction there is an isometry between the faces Yn�1

�
of Xn

�
and Xn

+
.

The sum of dihedral angles ✓1 + �⇤✓2 is equal to the original dihedral angles of the

corners of Xn, which by assumption is less than ⇡. By assumption each manifold

has positive Ricci curvature and all faces other than Yn�1

�
has positive principal

curvatures. The only hypothesis in Theorem I not met is that the sum of principal

curvatures along Yn�1

�
is not positive, it is 0 because the original metric is smooth.

This can be corrected as follows. By Lemma A.1.3, we may embed both Xn
�
and

Xn
+
into smooth manifolds with boundary relative to their face Yn�1

�
in such a

way that the faces are still isometric. Apply Proposition 1.2.11 to these manifolds

with boundary and then restrict this metric back to Xn
Y
and Xn

+
. By taking the

change small enough we can assume all other hypotheses are preserved, and now

may apply Theorem I directly to conclude Xn
Y
admits a Ricci-positive metric where

all faces have positive principal curvatures.

A.1.2.2. Normal coordinates for corners

Let g be a Riemannian metric on a smooth manifold with faces Xn with

corners of codimension at most 2. We would like to specify normal coordinates

for a fixed corner Zn�2 with respect to g. As each corner of Zn�2 embeds into two

faces, it is reasonable to ask if the normal coordinates for Zn�2 can be taken to

be compatible with the normal coordinates for both of these faces as the tubular
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neighborhoods in Lemma A.1.2. As explained in the proof of A.1.2, if the normal

coordinates were compatible in this way, that would imply one of the sectional

curvatures of g is identically 0 along the corner, which will not be true for arbitrary

g. Instead, we need to designate one of the two faces that Zn�2 bounds, and take

normal coordinates of Zn�2 relative to the face Yn�1. Note that certain geodesics

emanating from Zn�2 may not exist for any positive time, so we will need to expand

our manifold with faces using Lemma A.1.3 to define our normal coordinates.

Lemma A.1.8. Given a Riemannian manifold with faces (Xn, g) with corners of

codimension at most 2, fix face Yn�1 and one of its boundary components Zn�2.

Let eY
n�1

denote the other face bounded by Zn�2. Take an isometric embedding

(Xn, g) ,! (Mn, g) of a manifold with faces into a manifold with boundary relative to

its face Yn�1 as in Lemma A.1.3.

Then there are normal coordinates (a, b, z) : (�1, 0]⇥R⇥Zn�2 ,! Mn of Zn�2

relative to Yn�1 such that

g = da2 + µ2(a, b)db2 + h(a, b). (A.1)

Where µ(a, b) is a positive function satisfying µ(0, 0) = 1 and h(a, b) is a two

parameter family of metrics on Zn�2. In these coordinates Zn�2 = {(a, b, z) : a =

b = 0} and Yn�1 = {(a, b, z) : a = 0 and b  0}. Moreover, there is a function

�(a, z) satisfying �(0, z) = 0 and such that eY
n�1

= {(a, b, z) : a  0 and b = �(a, z)}

and Xn = {(a, b, z) : a  0 and b  �(a, z)}.

Proof. Let a be the normal coordinate of Nn�1 ,! (Mn, g). Taking the geodesic

flowout of Nn�1 after time a we have a di↵eomorphisms Nn�1
! {a} ⇥ Nn�1

which caries Zn�2 to {a} ⇥ Zn�2. The metric g = da2 + k(a), where k(a) is a
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FIGURE A.7. Normal coordinates for Zn�2 relative to Yn�1.

metric on {a} ⇥ Nn�1. For each a, let ba be normal coordinates for {a} ⇥ Zn�2 ,!

({a} ⇥ Nn�1, k(a)). In these coordinates the metric k(a) = db2a + h(a, b). Because

solutions to ordinary di↵erential equations vary smoothly as initial data varies

smoothly, we have that ba is smoothly varying with respect to a and in turn h(a, b)

is smooth. By constriction the coordinates of {a} ⇥ {b} ⇥ Zn�2, @a, and @b are

mutually orthogonal, so the metric must split as g = da2 + µ2(a, b)db2 + h(a, b)

for some smooth function µ(a, b). We cannot assume µ(a, b) = 1, lest the curvature

K(@a, @b) vanish. We may however perform a single reparameterization of b so that

µ(0, 0) = 1.

By construction, the points (0, 0, z) correspond to Zn�2 = {0}⇥ Zn�2
✓ {0}⇥

Nn�1 = Nn�1, and the points {(0, b, z) : b  0} corresponds to Yn�1 = {0}⇥ Yn�1
✓

{0} ⇥ Nn�1 = Nn�1. In these coordinates, the face eY
n�1

exists as some smooth

hypersurface di↵eomorphic to R ⇥ Zn�2. By assumption, this hypersurface meets

Nn�1, the set (0, b, z), transversely. Therefore eY
n�1

will be the graph of a smooth

function b = �(a, z), on some su�ciently small normal neighborhood of Nn�1. That

�(0, z) = 0, follows from the fact that Zn�2 = {(0, 0, z)} bounds eY
n�1

.
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As promised in Section A.1.1.2, these will be the coordinates we use to form

the smooth structure on Mn = Mn
1
[� Mn

2
. We see that if we have fixed metrics

gi on each Xn
i , then it is not possible to assume we get a smooth structure on Xn

unless eY
n�1

i is totally geodesic near their boundary. Nonetheless, these coordinates

will fit together nicely to give us a framework to smooth the metric and the corners

simultaneously.

Lemma A.1.9. Suppose we have two manifolds with faces Xn
i embedded in

Riemannian manifolds (Mn
i , gi) with boundary Nn�1

i relative to the face Yn�1

i .

Suppose moreover that there is an isometry � : (Nn�1

1
, g0) ! (Nn�1

2
, g1) that restricts

to an isometry � : (Yn�1

1
, g1) ! (Yn�1

2
, g2). Let M

n = Mn
1
[� Mn

2
and Xn

c be as in

Section A.1.1.2.

Fix a corner Zn�2

i of Yn�1

i and let eY
n�1

i be the other face bounded by Zn�2.

Then there are coordinates (a, b, z) : R2
⇥ Zn�2

! Mn such that the C0 metric

g = g1 [� g2 decomposes as

g = da2 + µ2(a, b)db2 + h(a, b),

where µ(a, b) = µi((�1)i+1a, b) and h(a, b) = hi((�1)i+1a, b) corresponds to those

metric components of the normal coordinates for Zn�2

i in (Mn�1

i , gi) relative to its

face Yn�1

i as in Lemma A.1.8. Moreover, there is a C0 function �(a, z) in these

coordinates that agrees with �i((�1)i+1a, z) the function that defines the face eY
n�1

i

in the normal coordinates of Lemma A.1.8.

Proof. Take the normal coordinates of Zn�2

i inside of (Mn
i , gi) relative to its face

Yn�1

i as in Lemma A.1.8. By construction these coordinates agree with normal

coordinates of Nn�1

i ,! (Mn�1

i , gi). We may use these normal coordinates to
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FIGURE A.8. A schematic of the corner charts of Xn
c ,! Mn.

smoothly form Mn = Mn
1
[� Mn

2
as in Lemma A.1.5. This construction glues

(�1, 0] ⇥ Nn�1

1
in an orientation reversing fashion to (�1, 0] ⇥ Nn�1

2
along

the set {0} ⇥ Nn�1, thus giving us coordinates R ⇥ Nn�1 where for a  0 the

coordinate a correspond to normal coordinates for Nn�1

1
with respect to (Mn

1
, g1)

and for a � 0 the coordinate �a correspond to normal coordinates for Nn�1

2
with

respect to (Mn
2
, g2). The rest of the claim follows from Lemma A.1.8.

As noted at the end of Section A.1.1.2, Lemma A.1.6 implies that smoothing

the corners of Xn
c results in Xn. Again by the uniqueness in Lemma A.1.6, we see

in Lemma A.1.9 that we may smooth the corners of Xn
c by smoothing the function

�(a, z) along the set a = 0. We will discuss in Section A.2 a particularly concrete

method of smoothing that will in turn allow us to prove Theorem I.

A.1.2.3. Curvatures in normal coordinates

In Theorem I there are two curvatures we are interested in: the Ricci

curvature and the principal curvatures of the faces. As discussed in the previous
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section, we will utilize the coordinates of Lemma A.1.9 to prove Theorem I. Thus

we will need to actually compute the relevant curvature terms in these coordinates.

Because the coordinates in Lemma A.1.9 agree with the normal coordinates

of Nn�1

i with respect to gi. If (a, x) : (�1, 0] ⇥ Nn�1

i ,! Mn
i are these normal

coordinates, then gi = da2 + ki(a) and we may appeal to the Gauss-Codazzi

equations to fully compute the curvature.

Proposition A.1.10. [6, Theorem 3.2.4 & 3.2.5] Let @a and Xi be a local

orthonormal frame of Mn on the normal neighborhood of the boundary Nn�1 with

respect to g = da2 + k(a), then

Ricg(@a, @a) = �

n�1X

i=1

⇣
(1/2)k00(a)(Xi,Xi) + [(1/2)k0(a)(Xi,Xi)]

2

⌘
. (A.2)

Ricg(Xi, Xi) = �(1/2)k00(a)(Xi, Xi)� k0(a)2(Xi, Xi) + Rick(a)(Xi, Xi) (A.3)

+
X

j 6=i

(1/4)
⇥
k0(a)2(Xi, Xj)� k0(a)(Xi, Xi)k

0(a)(Xj, Xj)
⇤
.

The remaining o↵-diagonals of the Ricci tensor can all be expressed in terms of the

derivatives of k0(a) and k(a) with respect to Xi.

As mentioned in Section A.1, for each face of Xn there is a corresponding

second fundamental form with respect to g. As normal coordinates for Zn�2 relative

to Yn�1 in Lemma A.1.2.2 agree with the normal coordinates of Nn�1, we may

appeal to existing computation of the second fundamental form.

Proposition A.1.11. [6, Proposition 3.2.1] Let @a and Xi be a local orthonormal

frame of Mn on the normal neighborhood of the boundary Nn�1 with respect to g =

da2 + k(a), then

II(Xi, Xj) = (1/2)k0(a)(Xi, Xj). (A.4)
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Suppose eY
n�1

is the other face that is bounded by Zn�2 and let eII represent

its second fundamental form with respect to g. If we take normal coordinates

as in Lemma A.1.2.2 for Zn�2 relative to its face Yn�1, then eII will not be as

elementary to compute as (A.4) but can still be computed in terms of µ(a, b),

h(a, b), and �(a, z). In order to perform this computation we must first pick a

local frame for T eY
n�1

. Note that there is a unit vector ⌧ 2 T eY
n�1

that lies in the

space spanned by @a and @b of Lemma A.1.2.2, and that g gives rise to a splitting

T eY
n�1

= h⌧i � T Zn�2. It is in these coordinates that we compute eII.

Lemma A.1.12. Let (a, b, z) : (�1, 0]2⇥Zn�2 ,! Mn be the normal coordinates for

Zn�2 relative to a face Yn�1. If µ(a, b), h(a, b), and �(a, z) be as in Lemma A.1.2.2,

then the second fundamental form of eY
n�1

can be computed as follows.

eII(⌧, ⌧) =
��aaµ2

� �aµa

�
(µ�a)

2 + 2
�
� �2

aµb

µ2
�
1 + (µ�a))

2
�3/2 ,

eII(v, w) = ��aµ2ha(v, w) + hb(v, w)

2µ
q
1 + (µ�a)

2

.

Where we have suppressed the dependency of µ(a, b), h(a, b), and �(a, z) on (a, b, z)

for legibility.

Proof. Note that the vector @a + �̇(a)@b is tangent to eY n�1, and that

��̇(a)µ2(a, b)@a + @b is normal to this. Thus ⌧ and its unit normal ⌫ must take

the form:

⌧ =
@a + �a@bp
1 + µ2�2

a

and ⌫ =
�µ2�a@a + @b

µ
p
1 + µ2�2

a

. (A.5)

We will let ⌧a, ⌧b, ⌫a, and ⌫b denote the coe�cients of @a and @b that appear in the

above expressions of ⌧ and ⌫ (which are all functions of a, b, and z). Note because
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g = da2 + µ2(a, b)db2 + h(a, b), that ⌫ is also normal to T Zn�2. Thus ⌫ is in fact the

unit normal of the hypersurface eY
n�1

with respect to g.

Next we compute the Christo↵el symbols of the metric da2 + µ2(a, b)db2 +

h(a, b) in coordinates. Let v, w 2 T Zn�2 be any coordinate vector fields. As

eII(x, y) = �g(rxy, ⌫) and ⌫ = ⌫a@a + ⌫b@b, we only need to compute Christo↵el

symbols of the form �a
⇤⇤

and �b
⇤⇤
. Up to symmetry, the only nonzero Christo↵el

symbols of this form are

�a
ab =

µa

µ
,�a

bb = �µaµ,�
b
bb =

µb

µ
,�a

vw = �
1

2
ha(v, w), and �b

v,w = �
1

2

hb(v, w)

µ2
. (A.6)

For eII(⌧, ⌧) we have

eII(⌧, ⌧) = �g(r⌧⌧, ⌫),

eII(⌧, ⌧) = �⌫a(⌧a(@a⌧a) + ⌧b(@b⌧a))� µ2⌫b(⌧a(@a⌧b) + ⌧b(@b⌧b)) (A.7)

� ⌧a⌧bµ
2⌫b(�

b
ab + �b

ba)� ⌧ 2b (⌫a�
a
bb + µ2⌫b�

b
bb).

One can compute that

@a⌧a = �
µ2�a�aa + µµa�2

a

(1 + µ2�2
a)

3/2
, @b⌧a = �

µµb�2

a

(1 + µ2�2
a)

3/2
,

@a⌧b =
�aa � µµa�3

a

(1 + µ2�2
a)

3/2
, and @b⌧b = �

µµb�3

a

(1 + µ2�2
a)

3/2
.

(A.8)

Combining equations (A.5), (A.8), and (A.6) into the equation (A.7) yields the

desired equation for eII(⌧, ⌧).

Then noting that eII(v, w) = �g(rvw, ⌫) = ��a
vw⌫a � µ2(a, b)�b

vw⌫b combined

with equations (A.5) and (A.6) yields the desired equation for eII|T Z
n�2 .
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A.2. Splines

A spline is any piecewise polynomial function. Typically splines are used to

interpolate between a sequence of points with specified derivatives or at least a

specified degree of di↵erentiability. Splines are particularly well adapted to the

field of design and engineering as they produce explicit formulas for models from

intuitive user input that can achieve any degree of di↵erentiability while also

minimizing computational complexity. It was the insight of [33] that splines are

also useful for constructive Riemannian geometry, using them in particular to prove

Theorem 1.2.2.

We begin by defining the class of splines we will consider in Section A.2.1

as depending on a continuous family of sections F (a) and a small parameter ",

which represents the scale at which the smoothing occurs. We then study the

asymptotic behavior of our splines and their derivatives with respect to " ! 0 in

Sections A.2.1.1 and A.2.1.2. We conclude in Section A.2.2 by repeating the proof

of Theorem 1.2.2, which is nearly identically to [40, Proof of Theorem 2], for the

sake of completeness in our proof of Theorem I.

A.2.1. Ferguson Splines

We will use a very basic version of a spline in the following general situation.

Given a Euclidean vector bundle E ! Mn, suppose we have F (a), a continuous

family of sections of E parameterized by a 2 R that is smooth for a 6= 0. Define

Pk,"(a) to be the unique degree 2k + 1 in �(E)[a] whose coe�cients are defined by

the following system of 2k + 2 linear equations

P (i)
k,"(±") = F (i)(±"), for 0  i  k. (A.9)
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The spline Pk,"(a) is a natural choice for locally smoothing families of sections that

fail to be di↵erentiable at a point. These splines are often called Ferguson curves as

they were first used by a Boeing engineer in [65] applied to parametric curves and

surfaces in R3.

For each 0  i  k and j = 0, 1, one expects there to be real valued

polynomials H ij
k,"(a) such that

Pk,"(a) =
kX

i=0

⇥
F (i)(�")H i0

k,"(a) + F (i)(")H i1
k,"(a)

⇤
. (A.10)

These are the degree 2k + 1 Hermite polynomials. They are completely independent

of the family of sections F (a) and are defined as the unique degree 2k + 1 real-

valued polynomials with coe�cients defined by the following system of 2k + 2 linear

equations

(H ij
k,")

(l)((�1)m+1") = �il�jm (A.11)

As H ij
k,"(a) are polynomials, (A.11) reduces to a system of 2k + 2 linear equations

in 2k + 2 variables, and it is not hard to check that this system always has nonzero

determinant. Clearly if H ij
k,"(a) solve (A.11), then Pk,"(a) defined by (A.10) solves

(A.9).

If one expands (A.10) to find the coe�cients of ak, because (A.11) is entirely

independent of E, we see that the coe�cients of H ij
k,"(a) define a collection of linear

functionals Lij
k," : R

k+1
! R that transform the derivatives of F (a) at a = ±" into

the coe�cients of ak in Pk,"(a) defined by (A.9). If we let Jk
aF 2 (�E)�k be the

vector whose i-th component is (Jk
aF )i = F (i)(a), then

Pk,"(a) =
kX

i=0

�⇥
Li0
k,"(J

k
�"F ) + Li1

k,"(J
k
" F )

⇤
ak
�
, (A.12)
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where we let linear functionals defined on Rn also acts as a linear maps Lij
k," :

V �n
! V for any real vector space V using component-wise scalar multiplication.

We will ultimately apply Pk,"(a) for k = 1, 2 to the metric g = da2 +

µ2(a, b)db2 + h(a, b) and the boundary function �(a) in the combined normal

coordinates described at the end of Section A.1.2.2 to prove Theorem I0. The

remainder of this section is dedicated to explicitly computing P1,"(a) and P2,"(a)

in order to summarize the asymptotic behavior as " ! 0 in Sections A.2.1.1 and

A.2.1.2 respectively. We should emphasize that the this approach is motivated by

the original proof of Theorem 1.2.2 in [33, Section 4], which claims there exists an

interpolation with the desired asymptotics. This proof has been revisited in detail

in [40, Section 2], where a specific choice of interpolating functions is made, and

these are the functions we also have settled on in (A.9) for our proof of Theorem I0.

A.2.1.1. First order

In this section we will consider the first order spline P1,"(a), and study the

behavior of its first and second derivatives as "! 0.

To begin we solve the di↵erential equations (A.11) in the case k = 1 to find:

H00

1,"(a) =
a3

4"3
�

3a

4"
+

1

2
H01

1,"(a) = �
a3

4"3
+

3a

4"
+

1

2

H10

1,"(a) =
a3

4"2
�

a2

4"
�

a

4
+
"

4
H11

1,"(a) =
a3

4"2
+

a2

4"
�

a

4
�
"

4
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Let J1

�"F = (l0, l1) and J1

"F = (r0, r1), we can expand (A.10) and solve for the

linear functionals in (A.12) as follows.

L00

1,"J
1

�"F =
2l0 + "l1

4
L01

1,"J
1

"F =
2r0 � "r1

4

L10

1,"J
1

�"F = �
3l0 + "l1

4"
L11

1,"J
1

"F =
3r0 � "r1

4"

L20

1,"J
1

�"F = �
l1
4"

L21

1,"J
1

"F =
r1
4"

L30

1,"J
1

�"F =
l0 + "l1
4"3

L31

1,"J
1

"F =
�r0 + "r1

4"3

Using (A.12) it is now trivial to compute the derivatives of P1,"(a). As we

intend to apply P1,"(a) to g and � of Section A.1.2.2 to prove Theorem I0, we

see that we need control on the first and second derivatives of P1,"(a) in order

to preserve Ricg > 0 and eII > 0 as in Proposition A.1.10 and Lemma A.1.12.

The following Lemma summarizes the aspects of P1,"(a) and its first and second

derivative that we will need to prove Theorem I0.

Before we state our lemma, we explain big O notation used in this setting.

When we write F (a) = G(a) + O("k) we mean that ||F (a) � G(a)|| = O("k) in the

usual sense, where the norm is taken with respect to the bundle metric on E.

Lemma A.2.1. Let F (a) be a continuous family of sections of a Euclidean vector

bundle E ! Mn parametrized by a 2 R, which is smooth for a 6= 0. Let P1,"(a) be

the cubic polynomial in �(E)[a] with coe�cients defined via equation A.9, then for

all a 2 [�", "] we have

1. DP1,"(a) = DF (0) +O("2), where D is any di↵erential operator of E

2. DP 0

k,"(a) =
"� a

2"
DF 0(�") +

"+ a

2"
DF 0(") +O(")

3. P 0

k,"(a) =
F 0

+
(0)� F 0

�
(0)

2"
+O(1).
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Proof. Using (A.12) we have

P 00

1,"(a) = 2
⇥
L20

1,"J
1

�"F + L21

1,"J
1

"F
⇤
+ 6

⇥
L30

1,"J
1

"F + L31

1,"J
1

"F
⇤
a

P 00

1,"(a) =
r1 � l1
2"

+ 6a

✓
l0 � r0
4"3

+
l1 + r1
4"2

◆
(A.13)

Note that

l0 � r0
"

= �

✓
F (0)� F (�")

"
+

F (")� F (0)

"

◆
= �(l1 + r1) +O("). (A.14)

Combining (A.14) with the formula P 00

1,"(a) in (A.13) yields (3).

P 00

1,"(a) =
r1 � l1
2"

+
6a

4"

O(")

"
=

r1 � l1
2"

+O(1).

The formulas in (1) and (2) follow by integrating (3) over the interval [0, a]

for a 2 [�", "].

A.2.1.2. Second order

In this section we will consider the second order spline P2,"(a), and study the

behavior of its first and second derivatives as "! 0.
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To begin we solve the di↵erential equations (A.11) in the case k = 2 to find:

H00

2," = �
3a5

16"5
+

5a3

8"3
�

15a

16"
+

1

2

H01

2," =
3a5

16"5
�

5a3

8"3
+

15a

16"
+

1

2

H10

2," = �
3a5

16"4
+

a4

16"3
+

5a3

8"2
�

3a2

8"
�

7a

16
+

5"

16

H11

2," = �
3a5

16"4
�

a4

16"3
+

5a3

8"2
+

3a2

8"
�

7a

16
�

5"

16

H20

2," = �
a5

16"3
+

a4

16"2
+

a3

8"
�

a2

8
�
"a

16
+
"2

16

H21

2," =
a5

16"3
+

a4

16"2
�

a3

8"
�

a2

8
+
"a

16
+
"2

16

Let J2

�"F = (l0, l1, l2) and J2

"F = (r0, r1, r2), we can expand (A.10) and solve

for the linear functionals in (A.12) as follows.

L00

2,"J
2

�"F =
"2l2 + 5"l1 + 8l0

16
L01

2,"J
2

"F =
"2r2 � 5"r1 + 8r0

16

L10

2,"J
2

�"F =
�"2l2 � 7"l1 � 15l0

16"
L11

2,"J
2

"F =
"2r2 � 7"r1 + 15"r0

16"

L20

2,"J
2

�"F =
�3l1 � "l2

8"
L21

2,"J
2

"F =
3r1 � "r2

8"

L30

2,"J
2

�"F =
"2l2 + 5"l1 + 5l0

8"3
L31

2,"J
2

"F =
�"2r2 + 5"r1 � 5r0

8"3

L40

2,"J
2

�"F =
"l2 + l1
16"3

L41

2,"J
2

"F =
"r2 � r1
16"3

L50

2,"J
2

�"F =
�"2l2 � 3"l1 � 3l0

16"5
L51

2,"J
2

"F =
"2r2 � 3"r1 + 3r0

16"5

Using (A.12) it is now trivial to compute the derivatives of P2,"(a).

Recall that we intend to use P1,"(a) to smooth g and � of Section A.1.2.2 to

prove Theorem I0. As eII and Ricg depend on the second derivatives of � and g

respectively, and P1,"(a) is only once di↵erentiable at a = ±", we will need to
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apply P2,"(a) to further smooth the family. Again, we will need to have control over

P2,"(a) and its derivatives. The following lemma summarizes the aspects of P2,"(a)

we will need in the proof of Theorem I0.

Lemma A.2.2. Let F (a) be a once-di↵erentiable family of sections of a Euclidean

vector bundle E ! Mn parametrized by a 2 R, which is smooth for a 6= 0. Let

P2,"(a) be the quintic polynomial in �(E)[a] with coe�cients defined via equation

A.9, then for all a 2 [�", "] we have

1. DP2,"(a) = DF (0) +O("3)

2. DP 0

2,"(a) = DF 0(0) +O("2)

3. P 00

2,"(a) =
2� p(a)

4
F 00(�") +

2 + p(a)

2
F 00(") +O("), for some p(a) 2 [�2, 2].

Proof. Using (A.12) we can easily compute the P 00

2,"(a).

P 00

2,"(a) = 2
�
L20

2,"J
2

�"F + L21

2,"J
2

"F
�
+ 6

�
L30

2,"J
2

�"F + L31

2,"J
2

"F
�
a

+ 12
�
L40

2,"J
2

�"F + L41

2,"J
2

"F
�
a2 + 20

�
L50

2,"J
2

�"F + L51

2,"J
2

"F
�
a3

P 00

2,"(a) =

✓
�(l2 + r2) +

3

"
(r1 � l1)

◆
1

4
+

✓
�(r2 � l2) +

5

"
(l1 + r1)�

5

"2
(r0 � l0)

◆
3a

4"

+

✓
(l2 + r2)�

1

"
(r1 � l1)

◆
3a2

4"2
+

✓
(r2 � l2)�

3

"
(l1 + r1) +

3

"2
(r0 � l0)

◆
5a3

4"3

(A.15)

In order to study P 00

2,"(a) as " ! 0, there are a number of terms in (A.15) with "

in their denominator that need to be considered. Using Taylor’s theorem we can

rewrite the terms of the following two forms.

r0 � l0
"

=
F (")� F (0) + F (0)� F (�")

"
= r1 + l1 +O("),

r1 � l1
"

=
F 0(")� F 0(0) + F 0(0)� F 0(�")

"
= r2 + l2 +O(").

(A.16)
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Substituting (A.16) into (A.15) we have

P 00

2,"(a) =
1

2
(l2 + r2)�

3a

4"
(r2 � l2) +

5a3

4"3
(r2 � l2) +O(").

From this, if we set p(a) =
5a3

4"3
�

3a

4"
, then we have (A.15) as desired

P 00

2,"(a) =
2� p(a)

4
l2 +

2 + p(a)

2
r2 +O(").

Equations (1) and (2) follow from integrating (3) on the interval [0, a] for

a 2 [�", "].

A.2.2. Sketch of the proof of Theorem 1.2.2

In this section we will give a sketch of the proof of Theorem 1.2.2 from [40].

This is in part because Theorem I0 would require us to repeat the proof, while

simultaneously keeping track of eII. Our main motivation for including this proof

is to demonstrate, in a slightly simpler setting, the utility of polynomial splines

in preserving curvature conditions while smoothing metrics or corners. Indeed,

much of the logic in our proof of Theorem I0 will be similar to the proof of Theorem

1.2.2, we will consider the e↵ect of smoothing g or � of Section A.1.2.2 using the

splines P1," and P2," on the formulas for Ricg and eII in these coordinates provided

in Proposition A.1.10 and Lemma A.1.12 respectively.

Proof of Theorem 1.2.2. Take normal coordinates (a, x) : (�1, 0] ⇥ Nn�1

i ! Mn
i

with respect to gi. Using these coordinates we identify the Nn�1

i in an orientation

reversing fashion, which gives rise to coordinates (a, x) : R ⇥ Nn�1 ,! Mn =

Mn
1
[� Mn

2
. In these coordinates, the C0 metric g = g1 [� g2 splits as da2 + k(a).

134



By assumption Ricg > 0 for all a 6= 0, where it is not well defined. Note that

k(a) = ki((�1)i+1a) for (�1)ia > 0, thus II1 +�⇤ II2 = k0(0�) � k0(0+). The

assumption that II1 +�⇤ II2 > 0 implies that

k0(0�)� k0(0+) > 0. (A.17)

Note that k(a) is a continuous family of sections of Sym2
�
T ⇤ Nn�1

�
, which

is naturally endowed with a bundle metric given by g1 = g2 on Nn�1. We may

therefore define, for any " > 0, a new metric g = da2 + k(a), where k(a) agrees

with k(a) for a /2 [�", "] but is replaced by P1,"(a) defined by (A.9) using k(a)

for a 2 [�", "]. By (1) of Lemma A.2.1, g will actually be positive definite for

" > 0 su�ciently small. This new metric g is everywhere once-di↵erentiable and

is smooth for a 6= ±". We claim that, for " su�ciently small, the metric g will

have Ricg > 0 for a 6= ±" where it is not well defined. By construction g = g for

a /2 [�", "], and so Ricg > 0 by assumption for a /2 [�", "]. It remains to show that

Ricg > 0 for a 2 (�", ").

Take @a and Xi to be a local orthonormal frame of Mn with respect to g on

[�", "] ⇥ Nn�1 as in Proposition A.1.10. We note from the formulas in Proposition

A.1.10 that the Ricci tensor takes the form

Ricg = �(1/2)k
00

(a) +Dk(a). (A.18)

Where D is some di↵erential operator for which @a has order at most one. While

we have no control over the signature of this second term in (A.18), using (1) and

(2) of Lemma A.2.1 we see that this term may be bounded independently of ".
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Applying (3) of Lemma A.2.1 to the first term in (A.18) yields

Ricg = �
k0(0+)� k0(0�)

2"
+O(1). (A.19)

The first term in A.19 is positive by (A.17). We see then that the limit of

Ricg(X,X) as " ! 0 is positive, and so Ricg is positive definite for some "

su�ciently small. Fix such an " > 0.

Next for � > 0 we define a new metric ğ = da2 + k̆(a), where k̆(a) agrees with

k(a) for a /2 [±" � �,±" + �] and is replaced by P2,"(a) defined by (A.9) using k(a)

for a 2 [±" � �,±" + �]. This new metric ğ is everywhere twice-di↵erentiable and

is smooth for a 6= ±" ± �. We claim that, for � su�ciently small, the metric ğ will

have Ricğ > 0. By construction ğ = g for a /2 [±" � �,±" + �] and so Ricğ > 0 for

a /2 [±"� �,±"+ �]. It remains to show that Ricğ > 0 fora 2 [±"� �,±"+ �]. After

a linear reparameterization of a 2 R we can shift either interval to a 2 [��, �] to

avoid repetition.

Again we take @a and Xi to be a local orthonormal frame of Mn with respect

to ğ on [��, �] ⇥ Nn�1 as in Proposition A.1.10. Note that the diagonals of Ricğ in

these coordinates, computed in Proposition A.1.10, are linear in k̆00(a), which by (3)

of Lemma A.2.2 is arbitrarily close to a convex combination of the values of k
00

(��)

and k
00

(�). The remaining terms in the diagonals of Ricğ depend only on Dk̆0(a)

and Dk̆(a), which by (1) and (2) of Lemma A.2.2 are arbitrarily close to the values

Dk
0

(0) and Dk(0). We conclude that

Ricğ =
2� p(a)

4
Ricg |{��}⇥N

n�1 +
2 + p(a)

4
Ricg |{�}⇥N

n�1 +O(�), (A.20)
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where p(a) 2 [�2, 2]. By construction Ricg is well defined and positive definite for

a = ±�, and since the space of positive definite 2-tensors is convex we conclude that

(A.20) is positive definite for a 2 [��, �] if � is su�ciently small.

We have found a twice-di↵erentiable metric ğ on Mn = Mn
1
[� Mn

2
with

positive Ricci curvature. It is clear from Proposition A.1.10 that Ric is a second

order operator on the metric in normal coordinates. As smooth metrics are dense

in the space of twice-di↵erentiable metrics, we can find a smooth metric on Mn

arbitrarily close to ğ that will also have positive Ricci curvature.

A.3. The gluing theorem for manifolds with corners

In this section we will prove Theorem I0 and consequently Theorem I. The

proof will proceed parallel to the proof of Theorem 1.2.2 outlined above in Section

A.2.2, simultaneously smoothing the boundary functions �(a, z) and the metric g

using the same splines on the same intervals. This proof makes up the entirety of

Section A.3.1.

The remainder of this section is dedicated to a di↵erent generalization of

Theorem 1.2.2 than Theorem I that will be needed in our proof of Theorem B. We

consider a second boundary condition that we would like to be preserved under the

smoothing process of Theorem I other than eII > 0. In Section A.3.2 we introduce

the notion of intrinsic concavity, and compute the relevant curvatures in the normal

coordinates for the corner.

The intrinsic concavity of the boundary is not preserved by the smoothing

of Theorem I under the hypothesis that dihedral angles add to less than ⇡. In the

borderline case when the dihedral angles are exactly ⇡, the intrinsic concavity can

be shown to be preserved under the smoothing of Theorem I. This is Theorem II00,
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which is the version of Theorem I needed in our proof of Theorem B. We prove it

below in Section A.3.3.

A.3.1. The two step smoothing process

Proof of Theorem I0. As in the proof of Theorem 1.2.2 in Section A.2.2, we take

combined normal coordinates for Zn�2 inside of Mn = Mn
1
[� Mn

2
relative to the

faces Yn�1

i and the metrics gi as in Lemma A.1.9.

Because the normal coordinates of the corners agree with the normal

coordinates of Nn�1

i , we again have that (A.17) is satisfied. The assumption that

eIIi > 0 implies that the formulas in Lemma A.1.12 are positive definite for

a 6= 0 where they are not well defined. The assumption that the dihedral angle

✓1 + �⇤✓2 < ⇡, corresponds to the assumption that

�a(0�, a)� �a(0+, z) > 0 (A.21)

The reason for this is that the metric is Euclidean with respect to @a and @b at

(0, 0, z), and one can verify that the angle made by the left and right tangent

vectors of �(a, z) at a = 0 will be less than ⇡ if and only if (A.21) is satisfied.

Recall that Xn
c ,! Mn is realized in these combined normal coordinates for

Zn�2 as the set b  �(a, z). As mentioned, by the uniqueness in Lemma A.1.6, we

may construct an embedding Xn ,! Mn by smoothing the function �(a, z) at a = 0.

This is the approach we will take in this proof. We will follow along with the proof

of Theorem 1.2.2 in Section A.2.2, smoothing the metric g while simultaneously

smoothing the function �(a, z). We note that because Ricg independent of the
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boundary function �(a, z), that we can make identical conclusions as in the proof

of Theorem 1.2.2.

For " > 0 we define g = da2 + k(a) as in Section A.2.2, where k(a)

agrees with k(a) for a /2 [�", "] but is replaced by P1,"(a) defined by (A.9)

using k(a) for a 2 [�", "]. Note that because equation (A.9) is linear in F , that

g = da2 + µ2(a, b)db2 + h(a, b) where µ and h are themselves similarly defined using

P1,"(a) defined by (A.9) using µ(a, b) and h(a, b). We also define �(a, z) to agree

with �(a, z) for a /2 [�", "] but to be replaced by P1,"(a) defined by (A.9) using

�(a, z) for a 2 [�", "]. We claim that, for " > 0 su�ciently small, that Ricg > 0

and eIIg > 0. By the proof of Theorem 1.2.2 in Section A.2.2 we only need to show

that eIIg > 0 for " su�ciently small. By construction, g = g and �(a, z) = �(a, z)

for a /2 [�", "], and so eIIg > 0 for a /2 [�", "]. It remains to show that eIIg > 0 for

a 2 [�", "].

We will show that eIIg(⌧, ⌧) > 0 and eIIg|T Z
n�2 > 0 as in Lemma A.1.12

separately to conclude that eIIg > 0. We will consider first eIIg(⌧, ⌧). Note that

the denominator of the expression for eIIg(⌧, ⌧) is always positive. We may therefore

clear the denominator and to show that the following expression is positive

��aa + L(Dµ, µa,�,�a), (A.22)

Where the precise formula for L(Dµ, µa,�,�a) can be deduced from Lemma A.1.12.

By (1) and (2) of Lemma A.2.1 we have that the second term in (A.22) is O(1)

with respect to ". Substituting this observations and (3) of Lemma A.2.1 into

(A.22) yields

eIIg(⌧, ⌧) > �
C(�a(0+, z)� �a(0�, z))

"
+O(1). (A.23)
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By (A.21) this first term in (A.23) positive, and so the limit of (A.23) is 1 as " !

0. In particular, eIIg(⌧, ⌧) will be positive for " su�ciently small.

Next, we will show that eIIg|T Z
n�2 > 0. Note that the denominator in the

expression for eIIg|T Z
n�2 in Lemma A.1.12 is always positive. We may therefore clear

the denominator, and show the positivity of

�µ2(a, b)�a(a, z)ha + hb(a, b) (A.24)

By (1) of Lemma A.2.1, µ2(a, b) = µ2(0, b) + O("), similarly b = �(a, z) = �(0, z) +

O(") = O("). We conclude that µ2(a, b) = 1+O("). Similarly we conclude hb(a, b) =

hb(0, 0) + O("). By (2) of Lemma A.2.1 we have that ha = O(1) and �a = O(1).

Combining these observations, equation (A.24) becomes

��a(a, z)ha(a, 0) + hb(0, 0) +O("). (A.25)

By assumption, eIIg|TZ
n�2 is positive definite at a = ±". In particular, this

means that (A.24) is positive definite when a = ±", which in turn implies (A.25)

is positive definite when a = ±". Taking the convex combination of (A.25) at the

values a = ±" we have

hb(0, 0)�

✓
"� a

2"

◆
(ha(�", 0)�a(�", z)) +

✓
"+ a

2"

◆
(ha(", 0)�a(", z))

�
+O(") > 0.

(A.26)

Where we have used the definition of �
0

(a, z) and µa(a, b) to rewrite in terms of the

µ(a, b) and h(a, b) at a = ±".

We claim that (A.25) is bounded below by the expression in (A.26) for all

a 2 [�", "]. Indeed, note that by (2) of Lemma A.2.1 that both ha and �a are

140



approximately linear functions in a with slopes (�a(", z) � �a(�", z))/2" and

(ha(", 0) � ha(�", 0))/2" respectively. By (A.21) and (A.17), these slopes are

negative if " is chosen to be small enough (taking the infimum over all z 2 Zn�2). It

follows that the product �a(a, z)ha(a, 0) is approximately the product of decreasing

linear functions, which is approximately a concave up quadratic function. It follows

from concavity that, for " su�ciently small that

�a(a, z)ha(a, 0) <

✓
"� a

2"

◆
(ha(�", 0)�a(�", z)) +

✓
"+ a

2"

◆
(ha(", 0)�a(", z))

�

+O(")

(A.27)

Applying the inequality (A.27) to equation (A.25) shows that (A.25) and

consequently (A.24) is bounded below by the expression in (A.26) provided " is

chosen adequately small. We conclude that eIIg|T Z
n�2 > 0 for " su�ciently small.

Fix an " > 0 so that Ricg > 0 and eIIg > 0. Next, we will choose � > 0 and

define a metric ğ = da2 + k̆(a), where k̆(a) agrees with k(a) for a /2 [±"� �,±" + �]

and is replaced by P2,"(a) defined by (A.9) using k(a) for a 2 [±" � �,±" + �].

This new metric ğ is everywhere twice-di↵erentiable and is smooth for a 6= ±" ± �.

Because (A.9) is linear in F (a), we see that ğ = da2 + µ̆2(a, b)db2 + h̆(a, b) where

µ̆ and h̆ are themselves modified by P2,"(a) in (A.9) using µ and h. We may also

define a function �̆(a, z) that agrees with �(a, z) for a /2 [±" � �,±" + �] and is

replaced by P2,"(a) defined by (A.9) using �(a, z) on a 2 [±"� �,±" + �]. We claim

that, for � su�ciently small, that Ricğ > 0 and eIIğ > 0. By the proof of Theorem

1.2.2 in Section A.2.2 we only need to show that eIIğ > 0 for � su�ciently small. By

construction, ğ = g and �̆(a, z) = �(a, z) for a /2 [±" � �,±" + �], and so eIIğ > 0

for a /2 [±" � �,±" + �]. It remains to show that eIIğ > 0 for a 2 [±" � �,±" + �].
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Ater a linear reparameterization of a 2 R we can shift either interval to a 2 [��, �]

to avoid repetition.

We will again show that eIIğ(⌧, ⌧) > 0 and eIIğ|T Z
n�2 > 0 separately. We begin

by considering the formula for eIIğ(⌧, ⌧) in Lemma A.1.12, the numerator of which is

of the form

eIIğ(⌧, ⌧) = ��̆aa(a, z) + Q̆(a, b, z), (A.28)

where Q̆(a, b, z) is an expression involving the first derivatives of µ̆ and �̆. By (1)

and (2) of Lemma A.2.2, we see that Q̆(a, b, z) = Q(0, b, z) + O(�), where Q(a, b, z)

is the corresponding expression for µ and �. By assumption eIIğ(⌧, ⌧) > 0 at a = ±�,

taking the convex combination of (A.28) at these two endpoints we deduce that


a+ �

2�
�aa(��, z) +

a� �

2�
�aa(�, z)

�
+Q(0, b, z) + � > 0. (A.29)

But applying (3) of Lemma A.2.2 to �̆aa(a, z), we see that the lefthand side of

(A.29) is arbitrarily close to �̆aa(a, z). From which we deduce that (A.28) is

positive and in turn eIIğ(⌧, ⌧) > 0 provided � is chosen small enough.

Finally, we consider eIIğ|T Z
n�2 . Note from (1) and (2) of Lemma A.2.2 that all

the terms in equation for eIIğ|T Z
n�2 in Lemma A.1.12 are arbitrarily close to those

terms for g and �. Because eIIg|T Z
n�2 > 0, we immediately conclude that eIIğ|T Z

n�2 >

0 if � > 0 is chosen su�ciently small.

We have found a twice-di↵erentiable metric ğ and a twice-di↵erentiable

boundary function �̆(a, z) on Mn = Mn
1
[� Mn

2
with positive Ricci curvature and

convex faces. It is clear from Proposition A.1.10 and Lemma A.1.12 that Ric and

eII are a second order operator on the metric in normal coordinates. As smooth

metrics are dense in the space of twice-di↵erentiable metrics, we can find a smooth
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metric on Mn arbitrarily close to ğ that will also have positive Ricci curvature and

convex faces.

A.3.2. The intrinsic concavity of the boundary

In normal coordinates for Zn�2 relative to Yn�1 with respect to g recall that

eY can describe as the set b = �(a, z). In this section we assume that �(a, z) = �(a)

is independent of z. Let g̃ denote the metric g restricted to Ỹ. In this situation we

have that

g̃ = da2 + µ2(a,�(a))(�0(a))2da2 + h(a,�(a)).

We may find an arc-length parameterization a(s) so that g̃ = ds2 + h(a(s), b(s)) =

ds2 + h(s), where b(s) = �(a(s)). In this setting, we may discuss the signature

of h00(s), which measures the intrinsic concavity of the metric g̃. In particular, we

are interested in studying this condition because if h00(s) < 0 then necessarily

Ricg̃(@s, @s) > 0 by Proposition A.1.10. In our proof of Theorem B, we will need

to show that the boundary metric produced by Theorem I is Ricci-positive isotopic

to a round metric, which in particular means we need to show that the boundary

will be Ricci-positive. In order to prove such a thing we must consider h0(s) and

h00(s) in normal coordinates.

Lemma A.3.1. Given a Riemannian manifold with faces (Xn, g), in normal

coordinates of a corner Zn relative to a face Yn�1 the metric restricted to eY
n�1

can

be written as g̃ = ds2 + h(a(s), b(s)). Moreover we have that

@sh(a(s), b(s)) =
ha + �ahbp
1 + µ2�2

a

, (A.30)

@2sh(a(s), b(s)) =
haa

(1 + µ2�2
a)

2
+D(h, µ,�), (A.31)
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where D is some di↵erential operator that has order 1 with respect to @a.

Proof. Clearly we have

@sh(a(s), b(s)) = a0ha + b0hb (A.32)

@2sh(a(s), b(s)) = a00ha + b00hb + (a0)2haa + 2a0b0hab + (b0)2hbb. (A.33)

So it su�ces to compute the first and second derivatives of a(s) and b(s) in terms

of µ(a, b) and �(a). Let  (a) denote the arclength of the path (a,�(a)) with respect

to the metric da2 + µ(a, b)db2. It is straightforward to compute

 0(a) =
p
1 + µ2�2

a

 00(a) =
µµa�2

a + µµb�3

a + µ2�a�aap
1 + µ2�2

a

(A.34)

If s denotes the arclength parameterization, then a(s) =  �1(s), and b(s) = � �

 �1(s).

a0(s) =
1

 0(a)
,

a00(s) = �
 00(a)

( 0(a))3
,

b0(s) =
�a(a)

 0(a)
,

b00(s) =
�aa(a)

( 0(a))2
�
�a(a) 00(a)

( 0(a))3
.

(A.35)

Substituting (A.34) and (A.35) into (A.32) yields (A.30), and similarly substituting

(A.34) and (A.35) into (A.33) will give a precise formula for D in (A.31).

The issue we run into when considering smoothing g and � using the splines

defined by (A.9), is that (3) of Lemma A.2.1 implies that the signature of h00(s) will
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be determined by those terms involving haa and �aa in (A.31) above. If one works

out the coe�cient of �aa from formulas (A.34), (A.35), and (A.33), we see that it

does not have a definitive sign. This is why, in section A.3.3 we must restrict to

the borderline case when �a(0+) + �a(0�) = 0, so that the signature of h00(s) is

determined by the signature of haa when applying the first order spline to g and �.

A.3.3. A borderline case

Assuming that we are in the same situation as Theorem I except we assume

that �(a, z) = �(a) is independent of z and �a(0+) + �a(0�) = 0. Under

these assumptions, an arbitrarily small perturbation of the �i(a) will result in

�a(0+) + �a(0�) > 0 to which we may apply Theorem I. To begin we will show

that it is possible to make this perturbation so small, that the second derivatives of

the smoothing of �(a) are bounded.

Lemma A.3.2. Assuming everything is the same as in Theorem I0 except that the

hypothesis that �a(0+) + �a(0�) > 0 is replaced by the hypothesis that �a(0+) +

�a(0�) = 0. Then there is a family of boundary functions �⇠(a) and decreasing

functions "(⇠) and �(⇠) such that the conclusions of Theorem I0 holds by smoothing

g and �⇠(a) with the first order spline on [�"(⇠), "(⇠)] and the second order spline

on [±"(⇠)� �(⇠),±"(⇠) + �(⇠)]. Denote by g and �⇠ this first order smoothing and ğ

and �̆⇠ this second order smoothing.

In addition to the conclusions of Theorem I0, we may also bound |�
00

⇠ (a)| < C

in terms of some C independent of ⇠.

Proof. Let �⇠(a) be any family of smooth function defined with ⇠ 2 [0, 1) such that

�⇠(a) ⌘ 1 for a < �⇠, �⇠(0) = 1 and �0

⇠(0) > 0, and �⇠(a) uniformly converges to

1 as ⇠ ! 0. Note that the functions �⇠(a)�1(a) and �2(a) satisfy the hypotheses of
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Theorem I0 for ⇠ > 0 su�ciently small (so that eIIg > 0). By the proof of Theorem

I0, for each ⇠, there is a range of possible " for which g and �⇠ will have Ricg > 0

and eIIg > 0. We claim that we can choose "(⇠) for which �
00

⇠ (a) = O(1) with respect

to ⇠.

First note that the equation for Ricg > 0 in Proposition A.1.10 is completely

independent of �⇠(a), thus there exists an "0 for which Ricg > 0 for "(⇠) < "0. The

equation for eIIg|T Z
n�2 in Lemma A.1.12 depends only on the first derivatives of �⇠

and g. In the proof of Theorem I0, it is shown that eIIg > 0 solely by controlling the

error term in (2) of Lemma A.2.1. This error term can be expressed in terms the

second derivatives of �⇠(a). As �⇠ converges uniformly to �, this error term can be

made arbitrarily small independent of ⇠ so again there will be a "0 > 0 for which

eIIg|T Z
n�2 > 0 if "(⇠) < "0.

Finally, we must consider the equation for eIIg(⌧, ⌧) in Lemma A.2.1. Recall

that we needed the fact that �00

⇠ (a) ! 1 as " ! 0 to dominate the other

terms. The other terms are all the first derivatives of �⇠(a) and g, which by (1)

and (2) of Lemma A.2.1 can be bounded independently of ⇠. Thus there is a

C > 0 independent of ⇠ such that eIIg(⌧, ⌧) > 0 provided that �
00

⇠ (a) < �C for

a 2 [�"(⇠), "(⇠)]. We claim that we can choose "(⇠) so that �
00

⇠ (a) < �C but

|�
00

⇠ (a)| < M for an M independent of ⇠. Considering (3) of Lemma A.2.1, if we

can bound the error term in absolute value by D independently of ⇠, let "(⇠) < "0

be a solution to the following:

�
0

⇠("(⇠))� �
0

⇠(�"(⇠))

2"(⇠)
+D < �M.
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For such a "(⇠) we have that |�
00

⇠ (a)| < M + D as desired. The error term in (3) of

Lemma A.2.1 again depends on the second derivatives of �⇠(a), which again can be

bounded in terms of the second derivatives of �(a) independently of ⇠.

For each ⇠ > 0 su�ciently small, fix such a "(⇠). Then the proof continues

identically to the proof of Theorem I0 to produce a �(⇠) for which the conclusions

hold.

With Lemma A.3.2 established, we can state the following generalization of

Theorem I which in addition claims that intrinsic concavity of the faces is preserved

under the smoothing procedure.

Theorem II00. Assuming everything is the same as in Theorem I0 except that the

hypothesis that ✓1+�⇤✓2 < ⇡ is replaced by the hypothesis that ✓1+�⇤⇥2 = ⇡. Then

the same conclusions as Theorem I0 holds.

Assume additionally that boundary function of Lemma A.1.9 depends only on

a, so that �(a, z) = �(a), and that the arclength parameterized boundary metrics

satisfy h00(s) < 0 in normal coordinates for the gi, then we can conclude the same

for the smooth metric g.

Proof. We let �⇠, "(⇠) and �(⇠) be as in Lemma A.3.2. We want to in addition

consider the e↵ect of these smoothings on the formula for @2sh(a(s), b(s)) in Lemma

A.3.1. Let g and �⇠ be the first order smoothing on the interval [�"(⇠), "(⇠)]. By

assumption we have @2sh(a(s), b(s)) < 0 for a /2 [�"(⇠), "(⇠)], we claim this remains

true for a 2 (�"(⇠), "(⇠)).

By (1) and (2) of Lemma A.2.1, all of the arguments of D in the formula

for @2sh(a(s), b(s)) in Lemma A.3.1 other than �00

⇠ (a) can be bounded in terms

of the first derivatives of g and �⇠, which because �⇠ converges uniformly to �
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can be bounded independently of ⇠. By Lemma A.3.2, we also can bound �00

⇠ (a)

independently of ⇠. Combining this with (3) of Lemma A.2.1 we have

@2sh(a(s), b(s)) =
ha("(⇠), b)� ha(�"(⇠), b)

2"(⇠)
+O(1) (A.36)

We claim that, for "(⇠) su�ciently small, that (ha("(⇠), b) � ha(�"(⇠), b)) < 0 by

assumption. The limit as "(⇠) ! 0 is ha(0�, 0) � ha(0+, 0) = �2(II1 +�⇤ II2),

which is negative by hypothesis. Thus we see that @2sh(a(s), b(s)) ! �1 for a 2

[�"(⇠), "(⇠)] as ⇠ ! 0. Fix a ⇠ for which @2sh(a(s), b(s)) < 0.

Next let ğ and �̆ denote the second order smoothings of g and �⇠ on [±"(⇠) �

�,±"(⇠) + �]. By Lemma A.3.2, there is a �(⇠) such that Ricğ > 0 and eIIğ > 0 for all

� < �(⇠). We claim that @2s h̆(ă(s), b̆(s)) < 0 for � su�ciently small. We will again

perform a linear reparameterization so that a 2 [��, �] to avoid repetition.

By inspecting equations (A.33), (A.34), and (A.35), we can see that equation

(A.31) is linear in h̆aa and �̆aa. We conclude that

@2s h̆(ă(s), b̆(s)) = H̆(a, b)h̆aa + F̆ (a, b)�̆aa + R̆(a, b) (A.37)

Where H̆(a, b), F̆ (a, b), and R̆(a, b) are expressed in terms of the first and second

b-derivatives of ğ, the mixed derivatives of ğ, and the first a-derivatives of ğ and

�̆. By (1) and (2) of Lemma A.2.2 we conclude that these functions are equal to

H(0, b) + O(�), F (0, b) + O(�), R(0, b) + O(�), where these are the corresponding

expressions evaluated on g and �. Substituting these into (A.37) we have

@2s h̆(ă(s), b̆(s)) = H(0, b)h̆aa + F (0, b)�̆aa +R(0, b) +O(�) (A.38)
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By assumption, (A.38) is negative at a = ±�, where it agrees with @2sh(a(s), b(s)).

By (3), equation (A.38) is arbitrarily close to a convex combination of these

endpoints and is therefore negative for � su�ciently small. Fix such a � < �(⇠)

such that @2s h̆(ă(s), b̆(s)) < 0.

We have found twice di↵erentiable ğ and �̆ for which Ricğ > 0, eIIğ > 0, and

@2s h̆(s) < 0. Note that Ric, eII, and @2sh(s) are each second order operators in normal

coordinates by Proposition A.1.10, Lemma A.1.12, and Lemma A.3.1 respectively.

Taking a smooth metric and smooth boundary function arbitrarily close to ğ and �̆

proves the claim.
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APPENDIX B

RICCI-POSITIVE ISOTOPY IMPLIES NECK EQUIVALENCE

Fix a smooth manifold Mn. Then the set of all metrics is the subset of the

bundle of symmetric 2-tensors Sym2 (T ⇤ Mn) ! Mn consisting of those 2-tensors

that are everywhere positive definite. The space �(Sym2 (T ⇤ Mn)) is naturally a

Frechet manifold by taking the topology of uniform convergence of all derivatives

on compact subsets (using some fixed metric g on Mn to define a metric on the

bundle Sym2 (T ⇤ Mn)). The space of all metrics can be endowed with the topology

of an open Frechet submanifold by taking the preimage of C1(Mn, (0,1)n) under

the eigenvalue map � : Sym2 (T ⇤ Mn) ! C1(Mn,Rn). We denote this space of

Riemannian metrics on Mn as R(Mn).

In this paper, we are interested in a narrower class of metrics, namely those

metrics with positive Ricci curvature. The Ricci and scalar curvature give rise

to well-defined functions Ric : R(Mn) ! Sym2(T ⇤ Mn) and R : R(Mn) !

C1(Mn). By definition, these maps are related by tr � Ric = R where the

map tr : Sym2(T ⇤ Mn) ! C1(Mn) is the trace of the eigenvalue map. Note

that a given metric g 2 R(Mn) has positive Ricci curvature precisely when

(� � Ric) (g) 2 C1(Mn, (0,1)n), and has positive scalar curvature precisely when

R(g) 2 C1(Mn, (0,1)). We see therefore that the set of Ricci-positive metrics

and positive scalar curvature metrics are themselves open Frechet submanifold in

the space R(Mn). Denote these spaces by R
pRc(Mn) and R

psc(Mn) respectively.

Moreover because R factors as tr � Ric we see that RpRc(Mn) ✓ R
psc(Mn) ✓ R(Mn).
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B.1. Isotopy and Concordance of Metrics

Given two g0, g1 2 R(Mn), we say that they are isotopic if there is a

path gt 2 R(Mn) with t 2 [0, 1] connecting g0 to g1. If g0, g1 2 R
psc(Mn) or

g0, g1 2 R
pRc(Mn), we similarly say that g0 and g1 are psc isotopic or Ricci-positive

isotopic if they are connected by a path within the space R
psc(Mn) or RpRc(Mn)

respectively. Isotopy defines an equivalence relation, and the set of equivalence

classes are the path components of the relevant space of metrics, which is typically

denoted by ⇡0 (R(Mn)), ⇡0 (Rpsc(Mn)), or ⇡0
�
R

pRc(Mn)
�
.

We say that two metrics g0, g1 2 R(Mn) are concordant if there is a metric

G 2 R([0, 1] ⇥ Mn) and a " > 0 such that metric G restricted to [0, ") ⇥ Mn is

isometric to dt2 + g0 and G restricted to (1 � ", 1] ⇥ Mn is isometric to dt2 + g1,

and the metric G is referred to as a concordance. Concordance is an equivalence

relation. For this reason we required the data of product collar neighborhoods,

which is needed to show that concordance is transitive. Note that concordance and

isotopy define the same equivalence relation on the space of all metrics R(Mn).

Given an isotopy gt we define a concordance G = dt2 + g�(t) for some �(t) : [0, 1] !

[0, 1] such that �(t) ⌘ 0 for t < " and �(t) ⌘ 1 for 1�" < t, and given a concordance

G we define a path gt = G|{t}Mn .

If we restrict to the spaces of positive scalar curvature or positive Ricci

curvature, we already have defined what it means to be isotopic. We can define

positive scalar concordance of positive scalar curvature metrics as a concordance

G 2 R
psc([0, 1]⇥Mn) that itself has positive scalar curvature. This definition makes

sense because the product metric satisfies

R(dt2+g)(t, x) = Rg(x).
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Thus the collar condition of concordance can be satisfied by positive scalar

curvature metrics G, and we can similarly check that psc concordance is an

equivalence relation. Unlike the space of all metrics, it is no longer clear if the

equivalence relations defined by concordance and isotopy are comparable. In

Section B.1.1, we discuss how they are related.

If we attempt to define Ricci-positive concordance in a similar manner, we run

into the di�culty that

Ricdt2+g(@t, @t) = 0.

And so the collar condition of concordance leaves the space of Ricci-positive

metrics. For this reason concordance is not well suited for positive Ricci curvature.

We will see in Section B.1.1 that the notion of psc concordance is useful for an

array of geometric constructions. Thus even though Ricci-positive concordance is

not defined, we would still like to find a Ricci-positive analogue for psc concordance

that can be used for similar geometric constructions. This is precisely the idea

behind the notion of neck equivalence.

B.1.1. Isotopy implies Concordance for Positive Scalar curvature

metrics

Given a psc concordance G, when we restrict G to the sets {t} ⇥ Mn, the

scalar curvature might be everywhere negative, and there is no clear way how

to correct this defect. In dimension 4, [66] used the Seiberg-Witten invariants

to show that there are psc concordant psc metrics that are not psc isotopic. It is

conjectured in general that there is an obstruction to two concordant positive scalar

curvature metrics being positive scalar curvature isotopic.
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Given a psc isotopy, we may consider the concordance G = dt2 + g�(t) as we

did for a general isotopy of metrics. When we compute the scalar curvature of this

concordance, we see that it depends on the scalar curvature of Rg(t) as well as the

parametrizing function �(t) and its derivatives. In this case, we have total freedom

over our choice �(t), so it becomes plausible that we can, for each path gt, find an

appropriate parametrization �(t) for which G has positive scalar curvature.

Proposition B.1.1 ([67, Lemma II.1]). If g1, g2 2 R
psc(Mn) are psc isotopic, then

they are psc concordant.

Proof. Let gs be a positive scalar curvature isotopy between g1 and g2. We claim

that there is a positive scalar curvature concordance between g1 and g2. We will

consider metrics of the form G = dt2 + g�(t), on [0, t1]⇥Mn, where � : [0, t1] ! [1, 2]

is some smooth function such that �(t) ⌘ 1, 2 for t "-close to the endpoints of [0, t1].

After reparameterizing the interval, G is a concordance from g1 to g2.

It remains to see if we can chose �(t) so that G has positive scalar curvature.

By [67, Lemma II.1], the scalar curvature of G takes the following form

RG(t, x) = Rg�(t)(x) +O(�00(t),�0(t)).

From this we see that G will be a psc concordance if �0(t) and �00(t) are su�ciently

small. By taking t1 su�ciently large, we can find such an �(t).

As mentioned, the set of equivalence classes of psc isotopy is set of path

components of the space of psc metrics Rpsc(Mn). The space of all metrics is in

fact convex, and hence path connected. It is unclear whether or not the space of

psc metrics is path connected, as the equation Rg > 0 is far from convex. It is a

remarkable theorem of [68], that the space R
psc(S4k�1) has infinitely many path
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components for all k > 1. One of the key geometric constructions needed in the

proof of this theorem, is the idea of psc concordance and Proposition B.1.1. Let

us briefly describe the construction used in [68] to illustrate the importance of

Proposition B.1.1.

Using a plumbing construction, [68] constructs positive scalar curvature

metrics gi on a sequence of spin manifolds M4k
i with boundaries equal to S4k�1 so

that gi = dt2 + hi near their boundaries. If there was a positive scalar curvature

isotopy between hi and hj, we may find a positive scalar curvature concordance Hij

on [0, 1] ⇥ S4k�1. Then by gluing hi, H, and hj together, we may find a positive

scalar curvature metric on M4k
ij = M4k

i [
S
4k�1 M4k

j . The ↵-invariant (see [22]) is

computed for these M4k
ij and is shown to be nonzero if i 6= j. As the existence of a

positive scalar curvature metric on Mn implies ↵(Mn) = 0, this is a contradiction,

and we conclude that no psc concordance Hij could exist and hence no psc isotopy

between hi and hj. Thus the positive scalar curvature metrics hi each lie in distinct

path components of Rpsc(S4k�1), and therefore ⇡0(Rpsc(S4k�1)) is infinite.

B.2. Neck Equivalence

The ability to turn an psc isotopy into a psc concordance, allows us to

apply our knowledge of the topological restriction on finite dimensional manifolds

supporting psc metrics to deduce topological information about the space of all

psc metrics. While Ricci-positive concordances, strictly speaking, do not exist, we

would still like to consider Ricci-positive metrics on the cylinder [0, 1]⇥Mn that can

be used similarly to psc concordance.

As demonstrated by the example of [68], we would like to consider Ricci-

positive metrics on [0, 1] ⇥ Mn that can be smoothly glued to a Ricci-positive
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metric on Wn+1 with isometric boundary satisfying a certain collar condition.

For positive scalar curvature we require that metrics splits as a product, but this

requirement is actually equivalent to requiring that the boundary have positive

mean curvature by Proposition 1.2.11 and [69]. Considering Theorem 1.2.2 as a

technique to glue together Ricci-positive manifolds with isometric boundary, we see

that it is reasonable that in place of the collar condition we require a bound on the

principal curvatures of the boundary.

If G is a Ricci-positive metric on [0, 1]⇥Mn, we note that only one of the two

boundary components can be convex. Suppose to the contrary that both boundary

components were convex, then by Theorem 1.2.2 we may smoothly identify the

boundaries and produce a Ricci-positive metric on S1
⇥Mn, which contradicts

Myers’ Theorem. Granted that one end cannot be convex, we must consider metrics

on the cylinder with asymmetrical boundary conditions. With this in mind, we now

introduce the notion of convex neck.

Definition B.2.1. Given two metrics g0, g1 2 R(Mn), we say that a metric G 2

R([0, 1] ⇥ Mn) is a convex neck from g0 to g1 with data (⌫, r), if it satisfies the

following

(i) G restricted to the boundary {0}⇥Mn is isometric to g0,

(ii) the principal curvatures of the boundary {0}⇥Mn with respect to G are greater

than �⌫,

(iii) G restricted to the boundary {1}⇥Mn is isometric to r2g1 for some r > 0.

(iv) the principal curvatures of the boundary {1} ⇥ Mn with respect to G are

positive.
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Comparing the definition of convex neck with Theorem 1.2.2, we see that

Ricci-positive convex necks are a suitable stand in for Ricc-positive concordances in

the following sense.

Proposition B.2.2. If (Wn+1, H) has positive Ricci curvature with boundary

isometric to (Mn, g0) with principal curvatures greater than ⌫ > 0 and G is a Ricci-

positive convex neck from g0 to g1 with data (⌫, r), then there is a Ricci positive

metric H̃ on Wn+1 so that the boundary is isometric to (Mn, r2g1) and has positive

principal curvatures.

While Proposition B.2.2 allows us to perform the same types of constructions

as we did with psc concordances, we would still like to use them to define an

equivalence relation on the space R
pRc(Mn) and be able able to compare that

equivalence to Ricci-positive isotopy. As already observed, the notion is inherently

not symmetric. But using Theorem 1.2.2 we can discuss to what extent the relation

of Ricci-positive convex neck is transitive.

Lemma B.2.3. Suppose we are given G1

0
, a Ricci-positive convex neck from g0 to

g1 with data (⌫1
0
, r0

1
) such that the principal curvatures at {1} ⇥ Mn are at least

⌫0
1
, and suppose we are given G2

1
, a Ricci-positive convex neck from g1 to g2 with

data (⌫2
1
, r1

2
). Then there is a Ricci-positive convex neck G2

0
from g0 to g2 with data

(⌫1
0
, r0

1
r1
2
) provided that

�
⌫2
1

r0
1

+ ⌫0
1
> 0. (B.1)

Proof. Scale G2

1
by (r0

1
)2. The resulting metric (r0

1
)2G2

1
is a Ricci-positive convex

neck from (r0
1
)2g1 to g2 with data (⌫1

0
/r0

1
, r0

1
r1
2
). Note that G1

0
and G2

1
have

boundary {1}⇥Mn and {0}⇥Mn respectively isometric to (r0
1
)2g1, and the principal

curvatures there are bounded below respectively by ⌫0
1
and ⌫2

1
/r0

1
. If the sum of
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these bounds is positive, then by Theorem 1.2.2 we may glue G1

0
to (r0

1
)2G2

1
to

produce a smooth Ricci-positive metric G2

0
on [0, 1] ⇥ Mn with the desired data.

Equation (B.1) is exactly this statement.

From (B.1) we see that the existence of a single Ricci-positive convex neck

from g0 to g1 is not su�cient to define a transitive relationship. Thus even though

transitivity and symmetry fail for the relationship defined by the existence of a

single Ricci-positive convex neck, we are ready to define neck equivalence in terms

of the existence of a family Ricci-positive convex necks in both directions, which

forces symmetry by definition and forces transitivity by Lemma B.2.3.

Definition B.2.4. Two metrics g0, g1 2 R
pRc(Mn) are neck equivalent if there

exists ri > 1 such that for all 1 > ⌫ > 0 there exists a Ricci-positive convex neck

G0(") from g0 to g1 with data (⌫, r1) and a Ricci-positive convex neck G1(") from g1

to g0 with data (⌫, r0).

While we have called this an equivalence, it is far from obvious why it is

reflexive. We will prove this below in Lemma B.2.5. By Proposition B.2.2 we see

that if g0 and g1 are neck equivalent, then given any Ricci-positive (Wn+1, H) with

convex boundary isometric to (Mn, g0) we may find a Ricci-positive metric H̃ on

Wn+1 with convex boundary isometric to (Mn, r1g1) and vice-versa. The main

result of this chapter is Theorem II, which claims that if two metrics are Ricci-

positive isotopic then they are Ricci-positive neck equivalent. Thus Proposition

B.2.2 and Theorem II together imply Corollary 1.3.4.

Before we prove that neck equivalence is indeed an equivalence, we mention

that unlike the case of psc concordance, which is expected to be a coarser

equivalence than psc isotopy, we expect that neck equivalence and Ricci-positive
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isotopy are equivalent. We expect this because we may concatenate infinitely many

convex necks to find a Ricci-positive on [0,1) ⇥ Mn. One should be able to argue

using techniques like those used in [15] to show that the metric splits, giving rise to

an isotopy gt.

Lemma B.2.5. Ricci-positive neck equivalence is an equivalence relation on

R
pRc(Mn).

Proof. As symmetry is clear from the definition, it su�ces to show that it is

transitive and reflexive.

We begin by showing transitivity. Let g0 and g1 be Ricci-positive neck

equivalent, and let g1 and g2 be Ricci-positive neck equivalent. Moreover let

G1

0
(⌫), G0

1
(⌫), G2

1
(⌫), and G1

2
(⌫) be the four families of Ricci-positive convex

necks guaranteed to exist by Definition B.2.4 with constants r1
0
, r0

1
, r2

1
, and r1

2

respectively. In order to show that g0 and g2 are Ricci-positive neck equivalent

we must find two families of Ricci-positive convex necks G2

0
(⌫) and G0

2
(⌫) and

constants r2
0
and r0

2
. We will show how to construct G2

0
(⌫) and r2

0
in terms of G1

0
(⌫),

G2

1
(⌫), r1

0
, and r2

1
. The construction of G0

2
(⌫) and r0

2
is entirely symmetric.

Fix ⌫ > 0, take G1

0
(⌫). Let ⌫0

1
(⌫) > 0 be a lower bound on the principal

curvatures of {1} ⇥Mn with respect to G1

0
(⌫). By Lemma B.2.3 we can scale G2

1
(")

by (r1
0
)2 and glue it to G1

0
(⌫) provided that

�"

r1
0

+ ⌫0
1
(⌫) > 0.

We can find " small enough so that equation (B.1) is satisfied. Define G2

0
(⌫) to be

the result of applying Lemma B.2.3 to G1

0
(⌫) and r1

0
G2

1
("). This is a Ricci-positive
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convex neck from g0 to g2 with data (⌫, r0
1
r1
2
). We conclude that neck equivalence is

transitive.

All that remains is to show that neck equivalence is reflexive. Let g be any

Ricci-positive metric on Mn. Fix r > 1, to show that Ricci-positive concordance is

reflexive, for all " > 0 we will consider metrics of the form G(⌫) = dt2 + R2(t)g

where R(t) are smooth functions R : [0, T (⌫)] ! [1, r]. We claim that there exists

a choice R(t) (that depends on T (⌫)) for which G(⌫) will be a Ricci-positive convex

neck from g to g with data (⌫, r).

To start, we note that (1/2)@tG(⌫) = R0(t)R(t)g. We must choose R(t) so

that �⌫ < �R0(0) and 0 < rR0(T ). If we decompose T ([0, 1] ⇥ Mn) = T ([0, 1]) �

T Mn then the Ricci tensor with respect to G decomposes as

RicG = �nR00(t)R(t)dt2+
�
R2(t) Ricg �

�
R00(t)R(t) + (n� 1)(R0(t)R(t))2

�
g
�
. (B.2)

We see from (B.2) that there exists a c > 0 depending only on g and r such that

RicG is positive definite if R00(t) < 0 and |R0(t)| < c.

We may take, for example, the function R(t) = (r � 1)
p
2 sin(⇡t/4T (⌫)) + 1.

Clearly R0(T ) > 0, and as T (⌫) ! 1 we have R0(t) and R00(t) converging to 0 as

needed. Thus for T (⌫) adequately large, the metric G(⌫) is a Ricci-positive convex

neck with data (⌫, r).

B.3. Ricci-positive Isotopy implies Ricci-positive Neck Equivalent

The goal of this section is to prove Theorem II. Throughout we will assume

that gs with s 2 [0, 1] is a Ricci-positive isotopy. As isotopy is a symmetric

relationship, it su�ces to find an r such that for all ⌫ > 0 a Ricci-positive
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convex neck G from g0 to g1 with data (⌫, r). The construction of the convex

neck combines the constructions used for reflexivity in Lemma B.2.5 and for psc

concordance in Proposition B.1.1. We will construct Ricci-positive convex necks G

on [t0, t1]⇥Mn in the following form

G = dt2 +R2(t)g�(t), (B.3)

for smooth functions R : [t0, t1] ! [1, r] and � : [t0, t1] ! [0, 1].

The careful reader will notice that the metrics constructed in this section are

very similar to the ones considered in the proof (due to [33]) of Lemma C.0.1 in

Appendix C below. The metrics we consider in this section are entirely motivated

by the work of [33]. The neck metric and convex necks are both Ricci-positive

metrics on a cylinder with particular boundary conditions. In Lemma C.0.1 we

require a much stronger condition on the principal curvatures of the boundary

than we do for convex necks, and it is for this reason that the Lemma C.0.1 cannot

be proven for arbitrary boundary metrics but only a very special class of warped

product metrics on Sn. Because we only need positive principal curvatures for

convex necks, this allows us to prove Theorem II for general Ricci-positive isotopies.

B.3.1. The curvatures of the convex neck

In this section we will compute the curvatures of metric G of (B.3) in terms

of the curvatures of gs. In order to succinctly record the curvatures of the metric G,

we will introduce the intermediate metric G on [0, 1]⇥Mn defined as

G = ds2 + gs, (B.4)

160



where we will always assume that s = �(t). Note that the curvatures of G are

completely independent of the functions R(t), �(t), and the interval [t0, t1].

We will let Xi(s) denote normal coordinate frame for T Mn with respect to gs

for a fixed point p 2 Mn. We will denote by Xi to be sections of T ([t0, t1] ⇥ Mn)

defined in the obvious way by the Xi(�(t)). Define the vector fields Yi =
Xi

R(t)
.

The Yi together with @t will form a normal coordinate frame for T ([0, 1] ⇥ Mn)

with respect to G at the point (t, p) for each t. We will express all of our curvature

computations in terms of Yi, @t, and Xi(s).

To begin we record the extrinsic curvatures of {t} ⇥ Mn. Denote by IIG the

second fundamental form of {t} ⇥ Mn embedded in [t0, t1] ⇥ Mn with respect to

G and the unit normal @t, similarly let IIG denote the second fundamental form of

{s}⇥Mn embedded in [0, 1]⇥Mn with respect to G and the unit normal @s.

Proposition B.3.1. IIG(Yi, Yj) =
R0(t)

R(t)
gs(Xi, Xj) + �0(t) IIG(Xi, Xj).

Proof. This is a straightforward application of [6, Proposition 3.2.1] to (B.3).

Note that we have no control over the signature or magnitude of IIG in

Proposition B.3.1; it is determined entirely by the family gs. Because [0, 1] ⇥ Mn

is compact we can find a constant N that depends only on gs for which | IIG | < N .

Next we record the sectional curvatures of G involving @t. The actual formula

can be derived by applying the Codazzi-Mainardi equation to Proposition B.3.1.

The complete formula is very complicated, and will not be necessary to prove

Theorem II. Instead we only need to know the specific coe�cients of the second

order terms.
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Proposition B.3.2. If KG is sectional curvature of G, then

KG(@t, Y ) = �
R00(t)

R(t)
gs(X,X)� �00(t) IIG(X,X) +O

✓
R0(t)

R(t)
,�0(t)

◆2

.

Where the coe�cients in this error term depends on gs and its first and second

derivatives.

Proof. This is a straightforward application of [6, Proposition 3.2.11] to Proposition

B.3.1.

The remaining sectional curvatures can all be expressed in terms of the

sectional curvatures of gs and IIG using Gauss’ formula. We now record the Ricci

tensor of G, again only recording the specific coe�cients for the second order terms.

Proposition B.3.3. At each point in [t0, t1] ⇥Mn there are local coordinate vector

fields @t and Xi tangent to [t0, t1] and Mn respectively for which the Ricci tensor of

G decomposes as a direct sum:

RicG(@t, @t) = �n
R00(t)

R(t)
� �00(t)HG +O

✓
R0(t)

R(t)
,�0(t)

◆2

,

RicG(Yi, Yj) = �
R00(t)

R(t)
gs(Xi, Xj)� �00(t) IIG(Xi, Xj) +

1

R2(t)
Ricgs(Xi, Xj)

+O

✓
R0(t)

R(t)
,�0(t)

◆2

,

RicG(@t, Y ) = 0.

Where HG is the mean curvature of G. Where the error term for RicG(Yi, Yj) again

depends on gs and its first and second derivatives.

Proof. The equation for RicG(@t, @t) follows directly from Proposition B.3.2. The

equation for RicG(Yi, Yj) follows by applying Gauss’ equations (see [6, Theorem
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3.2.4]) to Propositions B.3.1 and B.3.2. That RicG(@t, Y ) = 0 follows applying the

Codazzi-Mainardi equation (see [6, Theorem 3.2.5]) to Proposition B.3.1.

B.3.2. The metric functions

We will define the functions R(t) and �(t) in terms of the following

di↵erential equation

↵(t0, t1, r)
R0(t)

R(t)
= �(t0, t1)�

0(t) = �(t), (B.5)

where ↵ and � are determined by the boundary conditions imposed by requiring

bijections R : [t0, t1] ! [1, r] and � : [t0, t1] ! [0, 1]. One can solve explicitly for

these functions from (B.5).

↵(t0, t1, r) =

Z t1

t0

�(t)dt

ln r
and �(t0, t1) =

Z t1

t0

�(t)dt (B.6)

The idea behind the proof of Theorem II is to investigate the asymptotic

behavior of IIG and RicG as t0 ! 1 and t1 � t0 ! 1 in terms of the function

�(t), �0(t), and
R t1
t0

�(t)dt. If we ask that G to be a Ricci-positive convex neck with

data (⌫, r), this imposes certain conditions on the function �(t). While it is not

immediately obvious what those conditions will be, we emphasize that the following

choice of �(t) is entirely motivated by such a consideration. Fix t1 = t2
0
and let

�(t) =
1

t ln2 t
. (B.7)
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B.3.3. Bounding the Curvatures

In this section we bound the curvatures computed in Section B.3.1 in terms

of the metric functions chosen in Section B.3.2. Note that because R(t) : [t0, t1] !

[1, r], from equation (B.3), G is a convex neck from g0 and g1 with data (⌫, r) for

some ⌫. It remains to show for any ⌫ > 0 that | IIG | < ⌫, IIG > 0, and RicG > 0.

We start by bounding IIG provided above by Proposition B.3.1 in terms of

�(t), ↵, and � of Section B.3.2.

Proposition B.3.4. If G is defined as in (B.3) with functions R(t) and �(t)

defined as in (B.5). There are constants N,C > 0 that depend only on gs such

that

IIG(Yi, Yj) >

✓
1

↵
�

N

�

◆
�(t)gs(Xi, Xj) (B.8)

| IIG(Yi, Yj)| <

✓
1

↵
+

N

�

◆
�(t)C (B.9)

Proof. These equations follow directly from Proposition B.3.1 and the definition of

R(t) and �(t) in (B.5). The precise values of N and C are determined by IIG and

gs respectively.

Next we bound RicG below, again in terms of �(t), ↵, and � of Section B.3.2.
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Proposition B.3.5. If G is defined as in (B.3) with functions R(t) and �(t)

defined as in (B.5). There is a constant N > 0 that depend only on gs such that

Ricg(@t, @t) > �

✓
n

↵
�

N

�

◆
�0(t) +O

✓
1

↵
,
1

�

◆2

�2(t) (B.10)

RicG(Yi, Yj) > �

✓
1

↵
�

N

�

◆
�0(t) +

1

r2
Ricgs(Xi, Xj) (B.11)

O

✓
1

↵
,
1

�

◆2

�2(t), (B.12)

where the coe�cients in these error terms again depend on gs and its first and

second derivative.

Proof. First we note how
R00(t)

R(t)
can be expressed in terms of �(t) and ↵ from

(B.5).

R00(t)

R(t)
=

✓
R0(t)

R(t)

◆0

+

✓
R0(t)

R(t)

◆2

=
�0(t)

↵
+

�2(t)

↵2
. (B.13)

In the expressions for RicG in Proposition B.3.3 we rewrite
R0(t)

R(t)
, �0(t), and

�00(t) in terms of �(t) using (B.5) and we rewrite
R00(t)

R(t)
using (B.13). We group the

term coming from
�2(t)

↵2
in (B.13) with the error term.

Taking N to be larger than |HG| and | IIG(X,X)| these lower bounds are now

clear.

B.3.4. Limiting Behavior

To finish our proof of Theorem II we make the observation that the coe�cient

of �0(t) in (B.8) can be made to be negative by choosing a suitable r.
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Proposition B.3.6. Let ↵ and � be as in (C.28). For any constant N > 0

depending only on gs, there is an r > 0 for which

1

↵
�

N

�
> 0.

Proof. From (C.28) this is equivalent to ln r � N > 0, which can be solved as N is

assumed to be independent of r.

Proposition B.3.7. For some r > 1 depending only on gs and all ⌫ > 0, we have

IIG > 0 and | IIG | < ⌫ for t1 = t2
0
and all t0 su�ciently large.

Proof. By Proposition B.3.6 we see that the lower bound on IIG in Proposition B.8

is positive if we take r su�ciently large.

We claim that the upper bound for | IIG | converges to 0 as t0 ! 1. We see

from (C.28) that it is su�cient to show that

lim
t0!1

0

BBB@
�(t)

Z t20

t0

�(t)dt

1

CCCA
= 0.

Using (C.25), this large parenthetical is equivalent to

2 ln t0
t ln2 t

.

Clearly this converges to 0 as t0 ! 1.

Proposition B.3.8. For some r > 1 depending only on gs, for t1 = t2
0
, RicG > 0

for all t0 adequately large.
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Proof. Let C0, C1 > 0 be constants that are independent of t0 and t1. Define the

function L(t) by

L(t) = C0

�0(t)
Z t1

t0

�(t)dt

� C1

�2(t)
✓Z t1

t0

�(t)dt

◆2
(B.14)

We claim that for t1 = t2
0
that L(t) < 0 for all t0 su�ciently large. Using the

definition of �(t) in (C.25), this is equivalent to

�
4C0

t2
0
ln t0

+
4(C1 � C0)

t2
0
ln2 t0

< 0.

If we divide the lefthand side by
1

t2
0
ln t0

, we see that resulting quantity converges

to �4C0 as t0 ! 1. As
1

t2
0
ln t0

> 0, we conclude that the lefthand side must be

negative for all t0 su�ciently large.

Considering the lower bound for RicG(@t, @t) in Proposition B.3.5, by

Proposition B.3.6, if r is chosen su�ciently large there are constants C0, C1 > 0

for which RicG(@t, @t) > �L(t), where L(t) is as in (B.14). Thus if we take t1 = t2
0

and t0 su�ciently large, RicG(@t, @t) > 0.

Because @t is an eigenvector of RicG at every point of [t0, t1] ⇥Mn, if E is any

other eigenvector of RicG at a point (t, p) it must be tangent to {t} ⇥Mn. We may

therefore define a family of vector fields F (s) of Mn such that F (�(t)) = ER2(t).

It is possible to extend E and F to belong to the normal coordinate vector fields

Yi and Xi respectively. We can now argue similarly for RicG(E,E) as we did for

RicG(@t, @t).

Considering the lower bound in Proposition B.3.5 for RicG(E,E), by

Proposition B.3.6, if r is chosen su�ciently large there are constants C0, C1 > 0
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for which

RicG(E,E) > �L(t)gs(F, F ) +
1

r2
Ricgs(F, F ).

By assumption Ricgs is positive definite, thus if t1 = t2
0
and t0 is su�ciently large,

the righthand side is positive and consequently RicG(E,E) > 0.
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APPENDIX C

CONSTRUCTION OF THE NECK

In this section we will construct the metric gneck(⇢) promised to exist in

Lemma 3.1.2 above. This metric is explicitly claimed to exist in [33], so we will

now quote the original statement. The added details in Lemma 3.1.2 above can be

deduced from the construction given below.

Lemma C.0.1. [33, Assertion] Assume that n � 3, 0 < r < R < 1, and g1 =

d�2 + f 2

1
(�)ds2n�1

is a metric on Sn with � 2 [0, ⇡R], sup� f1(�) = r, and Kg1 > 1.

Then for any any ⇢ > 0 satisfying r(n�1)/n < ⇢ < R, there exists a metric g = g(⇢)

defined on Sn
⇥ [0, 1] and constant � > 0 such that the following are true.

(i) Ricg is positive definite;

(ii) the restriction g|t=0 coincides with ⇢2/�2ds2n on Sn
⇥ {0};

(iii) the restriction g|t=1 coincides with g1 on Sn
⇥ {1};

(iv) the principal curvatures along the boundary Sn
⇥ {0} are equal to ��;

(v) the principal curvatures along the boundary Sn
⇥ {1} are at least 1.

Lemma C.0.1 was originally proven in [33, Section 2]. The purpose of this

appendix is to provide a detailed version of this proof, filling in some of the missing

technical details. Indeed, the proof given in [33] is completely accurate, though

several assertions go without explanation.

This section is organized into four parts. The first, Section C.1, considers

families of warped product metrics and demonstrates the existence of a one
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r ⇡R(Sn, g1)

[0, 1]
⌫0

⇢/�

⌫1

(Sn, ⇢2/�2ds2n)

FIGURE C.1. The neck.

parameter family g̃(a, b(a)) connecting the metric g1 to the round metric of radius

⇢, so that the sectional curvatures remain bounded below by 1 in this entire family.

The second part, Section C.2, considers metrics on the cylinder [t0, t1] ⇥ Sn of the

form g = 2(dt2+ t2g̃(h(t), k(t))), where h and k are essentially parameterizations of

the path (a, b(a)). The definition of h and k includes three independent parameters

that determine a family of metrics g(t0, ", �) that will all satisfy the claims of

Lemma C.0.1 at t = t0 and t = t1 and will have large sectional curvature in the

spherical directions. The third part, Section C.3, is dedicated to showing that

the parameters of g can be chosen so that Ricg is positive definite. The last part,

Section C.3.5 is dedicated to computing the relevant curvatures needed for the

previous three sections.

The main theme of this proof, which is entirely due to Perelman, is to define

for any interval [t0, t1] a metric whose ends are isometric to the desired metrics
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⇢2/�2ds2n and g1 so that the sectional curvatures and extrinsic curvatures of the

ends will exhibit the desired behavior as you take the limit as t0 ! 1 and (t1 �

t0) ! 1. While the details needed to make this work are very technical, the key

insight in [33] is the existence of the path of metric g̃(a, b(a)), the result of which is

that the sectional curvature in the spherical directions are bounded below by 1/t2.

This essentially reduces the problem to choosing functions h and k that cause the

other curvatures decay faster than this.

C.1. A two parameter family of warped product metrics

In this section we begin by defining a two parameter family of warped

product metrics g̃(a, b) on Sn that will connect ⇢2ds2n to g1. In Section C.1.1 we

give some background on warped products metrics. Specifically in Lemma C.1.1

we reparameterize all positively curved warped product metrics so that they are

defined on a universal domain [�⇡/2, ⇡/2] ⇥ Sn. This domain is essential to

defining the two parameter family in Section C.1.2. The parameter b is the waist

of the warped product metric, and the parameter a is the maximum velocity of the

parameterization given in Section C.1.1. The metrics g̃(a, b) are defined by taking

a convex combination of the metric functions for r2ds2n and g1 in terms of a and

scaling that metric by b. We conclude with Section C.1.3 in which we show that

the one parameter family defined by assuming b is proportional to a power of a has

sectional curvature larger than 1. Thus showing that ⇢2ds2n and g1 are in the same

path component of the space of all metrics on Sn with Kg > 1. This path will be

used explicitly to construct a Ricci positive metric on the cylinder in Section C.2.
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C.1.1. Renormalizing warped products

We begin by recalling the definition of warped product metric on Sn, which

we have already touched on in Section 2.1.1.2 above. Such metrics can be defined

as d�2 + f 2(�)ds2n�1
on [0, D]⇥ Sn�1 for a function f : [0, D] ! [0,W ] such that

f (even)(0) = f (even)(D) = 0, f 0(0) = 1, and f 0(D) = 1. (C.1)

In this application, we will only be considering W  D. In this case, we will call

W the waist and D the diameter. Let X and {⌃i}
n�1

i=1
denote an orthonormal local

frame of Sn tangent to [0, D] and Sn�1 respectively. The sectional curvatures of the

warped product metric in these coordinates is given by

K(X,⌃i) = �
f 00(�)

f(�)
and K(⌃i,⌃j) =

1� (f 0(�))2

f 2(�)
. (C.2)

By assumption, g1 is a warped product with D = ⇡R and W = r. The

assumption of Lemma C.0.1, that g1 is a metric on Sn is equivalent to the fact

that f1 satisfies equation (C.1). The assumption that Kg1 > 1 is equivalent to f1

satisfying certain inequalities determined by equation (C.2). Notice also that round

metrics can be realized as warped products on [0, ⇡⇢]⇥ Sn�1 as follows

⇢2ds2n = d�2 + ⇢2 sin2

✓
�

⇢

◆
ds2n�1

.

We wish to define a family of warped product metrics that connect g1 to

⇢2ds2n. Because these metrics are defined for � in intervals of di↵erent lengths, one

would have to write down a family of functions defined on a family of intervals. To
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reduce this complexity, we reparameterize any warped product metric with concave

warping function to be defined on the universal domain: [�⇡/2, ⇡/2]⇥ Sn�1.

Lemma C.1.1. Let f : [0, D] ! [0,W ] be a concave function satisfying equation

(C.1), let gf = d�2+f 2(�)ds2n�1
. Then there is a parameterization � : [�⇡/2, ⇡/2] !

[0, D] such that gf�� = A2(x)dx2+W 2 cos2 xds2n�1
. Where A(x) is a positive function

that satisfies

A (±⇡/2) = W, A0 (±⇡/2) = 0, and sup
x

A(x) �
D

⇡
. (C.3)

Proof. As f is concave, there is a unique point at which f has a global maximum.

This splits [0, D] into two intervals on which f is bijective. On each interval, we

may therefore define

�(x) = f�1(W cos x). (C.4)

This function is smooth, and by definition f(�(x)) = W cos x. It follows then that

gf�� =

✓
d�

dx

◆2

dx2 +W 2 cos2 xds2n�1
.

Therefore A(x) = �0(x), which by (C.4) can be computed explicitly as

A(x) =
�W sin(x)

f 0(�(x))
. (C.5)

The statements in equation (C.3) about the values of A and A0 at 0 and D follow

immediately from equation (C.1).

To see the claim about the supremum of A(x), suppose the the contrary that

�0(x) < D/⇡. It follows that the arc-length of �(x) is less than D contradicting the

fact that � is a bijection.

173



C.1.2. The two parameters

If K(X,⌃i) > 0 for a warped product metric, from equation (C.2) we see

f 00 < 0. Thus Lemma C.1.1 applies, in particular to g1 and ⇢2ds2n. Let A1(x) be the

function A(x) determined by g1. In this case D = R and W = r. For ⇢2ds2n, we

see that the function A(x) is ⇢, and D = W = ⇢. We want use Lemma C.1.1 to

define a two parameter family of metrics g̃(a, b) that will connect g1 and ⇢2ds2n�1
.

To achieve this, we will define functions A(a, b, x) and B(b, x) that interpolate

between ⇢ and A1(x) and between ⇢ cos x and W cos x respectively. The latter has

an obvious candidate, B(b, x) = b cos x with b 2 [r, ⇢]. As we see that b is already

naturally associated with the waist, we now endeavor to find a suitable choice for a.

If we imagine fixing the waist b = W , then we want a way of transitioning

from b2ds2n to (b/r) g1 (two metrics with waist b). In this case, we need a function

A(a, b, x) that interpolates between b and ((b/r)A1(x) . We can consider the convex

combination of these functions with respect to ⌧ 2 [0, 1],

A(⌧, b, x) = ⌧
b

r
A1(x) + (1� ⌧)b. (C.6)

We want to replace the parameter ⌧ with one that has geometric meaning, we will

take a to be the maximum velocity of g̃(a, b) of the parameterization determined by

Lemma C.1.1. We can define a(⌧) = supx (1/b)A(⌧, b, x). Clearly a is linear in ⌧ .

Let a1 = supx (A1(x)/r). Clearly A(0, b, x) = (b/r)A1(x) and A(1, b, x) = b. Thus

a(0) = a1 and a(1) = 1. Thus ⌧ = (a� 1) / (a1 � 1) for a 2 [1, a1], and we may

replace ⌧ with this in equation (C.6) to get

A(a, b, x) = b

✓
a� 1

a1 � 1

A1(x)

r
+

✓
1�

a� 1

a1 � 1

◆◆
.
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1 a a1

b

⇢

r

FIGURE C.2. The e↵ect of (a, b) on the metric g̃(a, b).

Which, following Perelman, we will rewrite in terms of a function ⌘(x) as follows

A(a, b, x) = b

✓
a� 1

a1 � 1

A1(x)� r

r
+ 1

◆
= b((a� 1)⌘(x) + 1). (C.7)

Definition C.1.2. Let a1 = supx (A1(x)/r) and ⌘(x) be as defined in equation

(C.7). Define for each (a, b) 2 [1, a1]⇥ [r, ⇢] a metric g̃(a, b) on Sn as follows.

g̃(a, b) = A2(a, b, x)dx2 +B2(b, x)ds2n�1
.

Where A and B are defined as follows.

A(a, b, x) = b(⌘(x)(a� 1) + 1),

B(b, x) = b cos x.

For a fixed a, we see that changing b simply scales the metric. For a fixed

b we see that changing a interpolates the velocity of the parameterizations

[�⇡/2, ⇡/2] ! [0, b] between the constant velocity parameterization and the
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parameterization determined by (b/r)�1. This behavior is illustrated in Figure

C.2..

C.1.3. A one parameter family with K > 1

By definition g̃(1, ⇢) = ⇢2ds2n and g̃(a1, r) = g1, so we have succeeded in

finding a two parameter family of metrics that connects our two significant metrics.

We now wish to study the curvature of these metrics. In particular, both ⇢2ds2n

and g1 have sectional curvature bounded below by 1. This family of metrics g̃(a, b)

remain close to the extreme metrics, so it is reasonable to believe that there is path

through this parameter space along which the sectional curvature remains bounded

below by 1. If we assume that b is a function of a, then we can consider the one

parameter family g̃(a) = g̃(a, b(a)) and ask which choice of b(a) will have Kg̃(a) > 1.

A first guess at which function will work, would be to take a linear relationship. In

the course of trying to bound the curvature below by one, one needs to bound the

slope (a1 � 1) / (r � ⇢) below by 1, which is false for some choices of g1.

The next simplest relationship is to assume proportionality. Indeed, if b(a) =

c/
�
a1/↵̃

�
, then

↵̃ =
ln a1

ln ⇢� ln r
and c = ⇢.

To bound the curvature below by 1, one must bound ↵̃ below by 1. This is implied

by the hypotheses of Lemma C.0.1. To see this, recall the fact that supx A1(x) � R,

by Lemma C.1.1, and the assumption that R > ⇢ in Lemma C.0.1. Thus a1 �

R/r > ⇢/r, which shows ↵̃ > 1. Note that the proportionality of b to a is equivalent

to

�
b0(a)

b(a)
=

1

↵̃a
. (C.8)
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r

⇢

⇢2ds2n

1 a1

g1

FIGURE C.3. The path
�
a, ⇢/

�
a1/↵̃

��
through the parameter space.

This characterization will be convenient in Section C.2 when we want to consider

metrics on the cylinder. If we imagine that b(t) and a(t) are functions of interval,

then equation (C.8) is equivalent to

�
b0(t)

b(t)
=

a0(t)

↵̃a(1)
. (C.9)

This will allow us to define functions in a way that is easily relatable to the path

(a, b(a)), but that will also be convenient for prescribing certain asymptotics and

boundary conditions.

We define a one parameter family of metrics with respect to a 2 [1, a1] as

follows

g̃(a) = g̃
⇣
a,

⇢

a1/↵̃

⌘
. (C.10)

The following Lemma is implicit in [33, Section 2], it claims that this one

parameter family satisfies the desired curvature bound.

Lemma C.1.3. Let g̃(a) be as in (C.10), then Kg̃(a) > 1 for all a 2 [1, a1].

Before proving this lemma we provide the formulas for the sectional

curvatures of g̃(a, b). These curvatures can be computed directly from Definition

C.1.2 and (i) of Proposition C.3.9.
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Corollary C.1.4. The sectional curvatures of g̃(a, b) are as follows.

Kg̃(a,b)(X,⌃) =
1

b2

✓
1

(1 + ⌘(x)(a� 1))2
�
⌘0(x) tan x(a� 1)

(1 + ⌘(x)(a� 1))3

◆

Kg̃(a,b)(⌃i,⌃j) =
1

b2

✓
1

cos2 x
�

tan2 x

(1 + ⌘(x)(a� 1))2

◆

Before turning to prove Lemma C.1.3, we state a lemma concerning the

function (1 + (a � 1)⌘(x)). As this function is key to the definition of g̃(a, b), it

will appear in all but one curvature term. While the following lemma is elementary,

it is used repeatedly in the proof of Lemma C.1.3.

Lemma C.1.5. For all x 2 [�⇡/2, ⇡/2],

�1

a1 � 1
< ⌘(x)  1. (C.11)

If ⌘(x) � 0, then (1 + (a � 1)⌘(x)) is nondecreasing with respect to a 2 [1, a1]

and

1  (1 + (a� 1)⌘(x))  a1. (C.12)

If ⌘(x) < 0, then (1 + (a� 1)⌘(x)) is decreasing with respect to a 2 [1, a1] and

0  | sin x| < (1 + (a� 1)⌘(x))  1. (C.13)

Moreover, there is a constant h > 0, depending only on g1, such that for all a

and x we have

(1 + (a� 1)⌘(x)) > ha. (C.14)

Proof. By the definition of ⌘(x) and a1 in equation (C.7), we see that ⌘(x)  1

(with equality necessarily attained). Considering equation (C.5) we see that there is
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a constant c > 0 depending only on g1, such that A1(x) > c. Applying this to the

definition of ⌘(x) in equation (C.7) we may assume that c < r, and so we see that

⌘(x) > �
r � c

r

1

a1 � 1
.

This proves the bounds in equation (C.11).

Assume now that ⌘(x) � 0. The function is linear in a, so the fact that it is

nondecreasing is clear. By (C.11) we have 0  ⌘(x)  1, which yields

1  1 + (a� 1)⌘(x)  1 + (a� 1).

This proves equation (C.12).

Assume next that ⌘(x) < 0. Again, that the function is decreasing is clear. So

for each ⌘(x) < 0 the function has a maximum at a = 1, implying

1 + (a� 1)⌘(x)  1.

For the lower bound, one must use the definition of A1(x) in equation (C.5) in more

detail. By assumption, Kg1 > 1. Looking at the equation for Kg1(⌃i,⌃j) in equation

(C.2) yields that f 0

1
(�(x)) < 1. The definition of �(x) in equation (C.4) for f1,

forces the sign of �r sin x and f 0

1
(�(X)) to agree. Thus we have

A1(x) =
�r sin x

f 0

1
(�(x))

> r| sin x|.
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Rewriting 1 + (a� 1)⌘(x) in terms of A1(x) yields

1 + (a� 1)⌘(x) = 1 +
a� 1

a1 � 1

✓
A1(x)

r
� 1

◆
> 1 +

a� 1

a1 � 1
(| sin x|� 1) (C.15)

That this function is decreasing means it obtains a minimum value at a = a1.

Substituting a = a1 into the righthand side of equation (C.15), yields the lower

bound of equation (C.13).

To see why equation (C.14) holds, notice that 1 + (a � 1)⌘(x) is linear in a

with vertical intercept 1 � ⌘(x) and slope ⌘(x). By (C.11), the vertical intercept

is always nonnegative. Consider now the value at a1. By equation (C.13), for all x

this has a minimum value equal to d > 0. It follows then that

1 + (a� 1)⌘(x) >
d

a1 � 1
a.

Because ⌘(x) in equation (C.7) is entirely determined by g1, so is this constant

h > 0.

The geometric meaning of Lemma C.1.5 is roughly as follows. The function

1 + (a � 1)⌘(x), by definition interpolates between 1 and a function A(x) =

r�1A1(x). For a fixed a, the function determines the parameterization of the angle

of inclination in terms of the variable x 2 [�⇡/2, ⇡/2]. Necessarily, as a increases

this will compress the interval to [0, ⇡R]. The purpose of Lemma C.1.5 is to keep

track of behavior with respect to an individual point x 2 [�⇡/2, ⇡/2]. This is

important as the curvature is determined by this variable as given by equation

(C.2). That the sign of ⌘(x) determines the behavior is clear from the formulas,

but also has a clear geometric meaning. If we consider equation (C.7), we can see

that the sign of ⌘(x) is determined by the di↵erence in slope of f1(�) and r cos x at
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the same output values, which by (C.2) is the sign of Kg1(⌃i,⌃j) � Kr2ds2n(⌃i,⌃j).

If we think carefully about the definition of �(x) in Lemma C.1.1, we can see that

⌘(x) being positive or negative corresponds to whether (1 + (a � 1)⌘(x)) is locally

stretching or compressing the interval as a increases. Thus one expects distinct

behaviors, which is seen directly in Lemma C.1.5.

We now give the proof Lemma C.1.3. The interested reader can see the

penultimate line of [33, Page 160] for Perelman’s statement of the lemma, and read

the following two paragraphs for his proof. Our proof is not substantially di↵erent,

though we include some elementary arguments that were omitted. For instance, the

results of C.1.5 are omitted, which are elementary but not obvious.

Proof of Lemma C.1.3. Define two functions L⌃(a) and LX(a) as follows

L⌃(a) = ln
�
Kg̃(a)(⌃i,⌃j)

�
and LX(a) = ln

�
Kg̃(a)(X,⌃i)

�
.

Where we have suppressed the fact that LX(a) and L⌃(a) also depend on the

parameter x 2 [�⇡/2, ⇡/2]. We will consider a fixed x by cases corresponding to

Lemma C.1.5. Note that the claim of Lemma C.1.3 is equivalent to showing that

LX(a) > 0 and L⌃(a) > 0. By construction the metric g̃(a) interpolates between

⇢2ds2n and g1 on the interval a 2 [1, a1], which by assumption have sectional

curvatures greater than 1. Thus LX(a) and L⌃(a) are both positive at a = 1 and

a1.

We begin by considering L⌃(a). First we compute L0

⌃
(a) using Corollary

C.1.4 and equation (C.9).

L0

⌃
(a) =

2

↵̃a

✓
1 +

↵̃⌘(x)a

(1 + (a� 1)⌘(x))((1 + (a� 1)⌘(x))2 � sin2 x)

◆
. (C.16)
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Following Lemma C.1.5, we will consider the cases ⌘(x) � 0 and ⌘(x) < 0

separately.

Assume that x is fixed such that ⌘(x) � 0. We claim that L0

⌃
(a) � 0 for such

values of x. Were this the case, then L⌃(a) � L⌃(a1) > 0 proving the claim. To see

this, consider equation (C.12). We see that both factors in the denominator of the

large fraction in equation (C.16) are nonnegative. By assumption, the numerator is

nonnegative. Since ↵̃a is positive, this shows that L0

⌃
(a) is nonnegative.

Next, fix x so that ⌘(x) < 0. For such x, we claim that L⌃(a) has no

relative minima and hence is bounded below by its boundary values. To see this

we claim that L0

⌃
(a) is decreasing. Note that the large fraction in equation (C.16)

is decreasing with respect to a. Indeed, by equation (C.13), both factors in the

denominator are positive and decreasing, and by assumption the numerator is

negative and decreasing. Applying the quotient and product rules shows directly

that the sign of the derivative of this fraction must be negative.

This covers all possible values of x, and we conclude that L⌃(a) > 0 for all x

and a.

Next consider LX(a). One sees in Corollary C.1.4 that the sign of tan x⌘0(x)

will influence the behavior of LX(a). We will therefore consider tan x⌘0(x) � 0 and

tan x⌘0(x) < 0 separately.

Fix x such that tan x⌘0(x) < 0. We claim that LX(a) > �2 (ln a+ ln b(a)).

This is obvious from Corollary C.1.4 and equation (C.13). We claim that

�2 (ln a+ ln b(a)) is positive. Note that

�2
d

da
(ln a+ ln b) = �2

✓
1

a
�

1

↵̃a

◆
= �2

1

↵̃a
(↵̃� 1) .
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Because ↵̃ > 1, �2 (ln a+ ln b(a)) is decreasing and therefore bounded below by

�2 (ln a1 + ln r), where b(a1) = r. Notice that when ⌘(x) = 1 (which is guaranteed

to happen), by Corollary C.1.4, Kg1(X,⌃i) = 1/ (r2a2
1
), but by assumption Kg1 > 1.

Taking logarithms shows that �2(ln a1 + ln r) > 0, therefore proving that LX(a) > 0

in this case.

Next fix x such that tan x⌘0(x) � 0. We will again need to consider the log

derivative of Kg̃(a)(X,⌃i), L0

X(a).

L0

X(a) =
1

↵̃a

✓
2 +

⌘(x)↵̃a� ⌘0(x) tan x↵̃a

(1 + (⌘(x)� ⌘0(x) tan x)(a� 1)
� 3

⌘(x)↵̃a

1 + ⌘(x)(a� 1)

◆
. (C.17)

We will again need to consider the cases ⌘(x) � 0 and ⌘(x) < 0 seperately.

Fix x such that tan x⌘0(x) � 0 and ⌘(x) � 0. Equation (C.17) can be factored

as follows.

L0

X(a) =
1

↵̃a

1

1 + ⌘(x)(a� 1)
(2(1� ⌘(x)) + 2⌘(x)a(1� ↵̃)

�
⌘0(x) tan x↵̃a

1 + (⌘(x)� ⌘0(x) tan x)(a� 1)

◆
.

(C.18)

We claim that L0

X(a) is decreasing, which would demonstrate that LX(a) > 0.

The two terms in equation (C.18) outside of the large parentheses are nonnegative

by assumption and equation (C.13). We claim that the function inside the large

parentheses is decreasing with a. The terms on the first line of equation (C.18) are

linear in a with slope 2⌘(x)(1�↵̃), which by assumption is negative. Thus this term

is decreasing. It remains to check that the large fraction is increasing (as it appears

with a minus sign). Its derivative is

d

da

✓
⌘0(x) tan x↵̃a

1 + (⌘(x)� tan x⌘0(x))(a� 1)

◆
=
↵̃ (⌘0(x) tan x(1� ⌘(x)) + (⌘0(x) tan x)2)

(1 + (⌘(x)� tan x⌘0(x))(a� 1))2
,
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which is nonnegative by assumption and equation (C.12). We conclude that L0

X(a)

is decreasing and hence LX(a) > 0

Finally, fix x such that tan x⌘0(x) � 0 and ⌘(x) < 0. Equation (C.17) can be

factored as follows.

L0

X(a) =
1

↵̃a
[2

�
↵̃a

1 + ⌘(x)(a� 1)

✓
2⌘(x) +

⌘0(x) tan x

1 + (⌘(x)� tan x⌘0(x))(a� 1)

◆�
.

(C.19)

We claim that either L0

X(a) 6= 0 or that LX(a) has no relative minima. In either of

these cases we conclude that LX(a) is bounded by its boundary values and hence

positive. If L0

X(a) has constant sign we are done, so let us assume that LX(a) = 0

at some point. Because ↵̃a is positive, this is only possible if the large bracketed

term is zero and changes sign. Notice that the large bracketed term is zero only

if the large parenthetical term is positive. The fraction in the large parenthetical

term, is the reciprocal of a linear function of a with negative slope, which is

therefore increasing. Consider next the fraction multiplying the parenthetical

term. It is the quotient of a positive linear functions of a with positive slope by

a positive linear function of a with negative slope. Thus this fraction is positive and

increasing. Thus the large bracketed term is decreasing as we are subtracting an

increasing function from 2, and so can only change from positive to negative. We

conclude that LX(a) has no relative minima.

This covers all possible cases of x, and we conclude that LX(a) > 0 for all x

and a.
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C.2. The metric on the neck

We now wish to use g̃(a, b) of Definition C.1.2 to define a metric g on the

cylinder [0, 1] ⇥ Sn. We will define this metric on the cylinder so that the metric

restricted to each slice {t} ⇥ Sn is conformal to g̃(h(t), k(t)), where h(t) and k(t)

are some functions on the interval. This choice of metric allows us to use Lemma

C.1.3 to reduce bounding the sectional curvatures in the spherical directions

below by bounding the second fundamental form of the slices above. This second

fundamental form is proportional to @tg̃(h(t), k(t)). Thus to make this small we

want h0(t) and k0(t) to essentially vanish. To achieve this end, we will instead

consider defining g(, h(t), k(t)) on [t0, t1]⇥Sn assuming that [t0, t1] is an arbitrarily

long interval. After a reparameterization, this will define a metric on [0, 1]⇥Sn with

the same curvature properties. Thus to prove Lemma C.0.1 it su�ces to construct

a metric on [t0, t1]⇥ Sn.

We begin in Section C.2.1 by defining the family of metrics g(, h(t), k(t)),

referred to in the preceding paragraph, on [t0, t1] ⇥ Sn, where h(t) and k(t) are

functions on [t0, t1] and  > 0 is a scaling factor. We then spend some time

discussing the necessary assumptions on h(t), k(t), and  imposed by assuming

that g satisfies (ii) through (v) of Lemma C.0.1, which turns out to be very easily

summarized with Proposition C.2.3. Next in section C.2.2, we find a class of

functions h(t) and k(t) defined in terms of two new parameters " and � that will

satisfy the necessary conditions described in Section C.2.1 and that remain close

enough to the special path in Lemma C.1.3 for suitable choice of parameters.

In section C.2.3 we give a precise description of the control we have over g with

our choice of parameters. And finally in Section C.2.4, we explain which choices

of parameters will guarantee that g satisfies Proposition C.2.3 and therefore (ii)
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through (v) of Lemma C.0.1, and we show how the parameters force g to inherit

large sectional curvature in the spherical directions from Lemma C.1.3. Going

forward we will have produced a three parameter family of metrics g(t0, ", �) on

[0, 1] ⇥ Sn that satisfy (ii) through (v) of Lemma C.0.1 and that has large sectional

curvatures which will facilitate in the proof of (i) in Section C.3.

C.2.1. The form of the metric

While g̃(a, b) of definition C.1.2 was discussed only for (a, b) 2 [1, a1] ⇥ [r, ⇢],

it is well defined for all a � 1 and b > 0. Thus we can consider metrics of the

following form on [t0, t1]⇥ Sn.

Definition C.2.1. Suppose we are given functions h(t) � 1 and k(t) > 0 defined on

[t0, t1] and a constant  > 0. Define the metric g = g(, h(t), k(t)) on [t0, t1] ⇥ Sn,

as follows

g(, h(t), k(t)) = 2
�
dt2 + t2g̃(h(t), k(t))

�

= 2
�
dt2 + t2k2(t)(1 + (h(t)� 1)⌘(x))2dx2 + t2k2(t) cos2 xds2n�1

�
.

(C.20)

We see that the metric restricted to {t} ⇥ Sn will be (t)2g̃(h(t), k(t)).

Thus the intrinsic curvature of {t} ⇥ Sn with respect to g is clearly just

1/ (t22)Kg̃(h(t),k(t)). If (h(t), k(t)) is close to the path
�
a, ⇢/

�
a1/↵̃

��
, then we can

immediately conclude from Lemma C.1.3 that the intrinsic curvatures are greater

than 1/ (t22). We will explain in a moment why (h(t), k(t)) is not exactly a

parameterization of this path. The extrinsic curvature can be computed directly

from (i) of Proposition C.3.9.
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Corollary C.2.2. Let IIt denote the second fundamental form of ({t} ⇥

Sn, g(, h(t), k(t))) with respect to the unit normal @t. The extrinsic curvatures are

as follows.

IIt(X,⌃i) = IIt(⌃i,⌃j) = 0,

IIt(X,X) =
1



✓
1

t
+

k0(t)

k(t)
+

⌘(x)h0(t)

1 + (h(t)� 1)⌘(x)

◆
, (C.21)

IIt(⌃i,⌃i) =
1



✓
1

t
+

k0(t)

k(t)

◆
. (C.22)

We can now explain the motivation for defining g(, h(t), k(t)) in this way.

Obviously, we want the slices {t} ⇥ Sn to be conformal to g̃, so we can conclude

the intrinsic curvatures are large. The purpose of scaling g̃ by t is to correct the

following defect. If we considered instead the metric 2(dt2 + g̃(h(t), k(t))), then the

second fundamental form of {t}⇥ Sn as in (i) of Proposition C.3.9 gives

IIt(⌃i,⌃i) =
1



k0(t)

k(t)
.

Since k(t) is decreasing from ⇢ to r, we see that IIt(⌃i,⌃i) < 0. Thus the

metric 2(dt2 + g̃(h(t), k(t))) could not satisfy claims (iv) or (v) of Lemma C.0.1.

Considering instead g(, h(t), k(t)) then the second fundamental becomes as in

equation (C.22). The limit of this as t increases can be made to be positive if

k0(t)/k(t) decays more rapidly than 1/t. Since we have the freedom to choose [t0, t1]

and the function k(t), this can be used to make IIt positive definite for all t. It will

satisfy (v) if 1/ (t1) > 1.

We will consider very carefully which choices of h(t) and k(t) should be made,

but regardless, to satisfy (iii) of Lemma C.0.1, we need g|t=t1 = g1. We can see from
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formula (C.20) that this can only happen if h(t1) = a1 and that we choose our scale

to be  = r/t1k(t1). In order for g to satisfy (ii) we see from equation (C.20) that

h(t0) = 1 and therefore the choice of � must be

� =
⇢t1k(t1)

rt0k(t0)
.

In our application, we will assume for ease that k(t0) = ⇢, thus � = (t1k(t1)) / (rt0).

Then considering (iv), we see that IIt = �� if and only if k0(t0) = h0(t0) = 0.

Already with this short discussion we have seen how metrics of the form

g(, h(t), k(t)) satisfy the claims of Lemma C.0.1 at t = t0 and t = t1 under certain

assumptions. We summarize this in the following proposition.

Proposition C.2.3. For any functions h(t) and k(t) on [t0, t1] let  = r/ (t1k(t1))

and let � = (t1k(t1)) / (t0r). Then the claims of Lemma C.0.1 for the metric

g(, h(t), k(t)) reduce to the following conditions on h(t) and k(t).

(ii) h(t0) = 1 and k(t0) = ⇢,

(iii) h(t1) = a1,

(iv) h0(t0) = k0(t0) = 0,

(v) �k0(t1)/k(t1) < 1/t1 and  < 1/t1.

Proposition C.2.3 shows that the one condition of Lemma C.0.1 that requires

the most work is (i), that the metric has positive Ricci curvature. The key

observation needed to show this has already been established in Lemma C.1.3. We

will use the fact that the intrinsic curvatures of time slices are relatively large to

dominate all other terms appearing in the Ricci tensor.
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C.2.2. The choice of metric functions

We still have the freedom to choose h(t) and k(t). As mentioned, we wish

to choose (h(t), k(t)) close to the path
�
a, ⇢/

�
a1/ã

��
. Notice that assuming this

(h(t), k(t)) is a parameterization of this path is equivalent to assuming similar to

equation (C.9) that

h0(t)

↵̃h(t)
= �

k0(t)

k(t)
. (C.23)

We will therefore define h(t) and k(t) in terms of a separable di↵erential equation.

We see that this is also amenable to Proposition C.2.3, as we have the freedom

to assume initial conditions to satisfy (ii) and (iv). This definition will also allow

us to have direct control over the magnitude of �k0(t1)/k(t1). However, if we

take equation (C.23) as our definition, then k(t1) = r and so  = 1/t1. Thus

IIt1(⌃i,⌃i) < 1, and g will not satisfy (v). To correct this, we will assume that

k(t1) = r̃ > r, forcing  < 1/t1. We will assume then that

h0(t)

↵h(t)
= �

k0(t)

k(t)
= ��(t). (C.24)

Where ↵ and � are some constants that will be determined by the assumptions

that h(t1) = a1 and k(t1) = r̃, and �(t) is some function with the appropriate

asymptotics and initial conditions.

We begin by making a choice for �(t). According to Proposition C.2.3, in

order for g to satisfy (iv), we must have that �(t0) = 0. And in order to satisfy (v)

we must assume something like �(t) = O (1/ (t ln t)). This motivates the following
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t0 2t0

(t0 (ln t+ 2)) /
�
t2 ln3 t

�

|�0(t)|

2t0t0

t0/
�
t ln2 t

�

�(t)

FIGURE C.4. Graph of �(t) and |�0(t)|, demonstrating the bounds of Lemma
C.2.4.

definition of the function �(t).

�(t) =

8
>>><

>>>:

t� t0
2t2

0
ln(2t0)

t0  t  2t0

ln(2t0)

t ln2 t
2t0 < t

(C.25)

The graphs of this function and its derivative appear in Figure C.4.. One can

see that this function is only continuous at t = 2t0, so the functions h(t) and k(t)

will only be once-di↵erentiable. This issue has no bearing on the metric at t = t0

and t = t1 nor does it a↵ect the smoothness of Kg is the spherical directions. So

we will wait to resolve this issue in Section C.3. The following claim is obvious from

Figure C.4. and is easy to verify from the definition (C.25).

Lemma C.2.4. If t0 > 2, then there exists constants c� and d� such that �(t) and

�0(t) satisfy the following bounds for all t � t0.

|�(t)| <
c� ln(2t0)

t ln2 t

|�0(t)| <
d� ln(2t0)

t2 ln2 t
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For fixed [t0, t1] and r̃, then ↵ and � are uniquely determined by equation

(C.24). As we are partly trying to illuminate Perelman’s proof of Lemma C.0.1, we

now introduce two new parameters " and � in the following way. Assuming that

h(t1) = a1, then the limit of h(t) as t ! 1 must be greater than a1. Therefore

there must exist a � > 0 such that

Z
1

t0

h0(t)

h(t)
dt = (1 + �) ln a1. (C.26)

Assuming that k(t1) = r̃ > r, we may assume that the limit of k(t) as t ! 1 is

greater than r. Therefore there must exist an " > 0 such that

Z
1

t0

k0(t)

k(t)
dt = (1� ")(ln r � ln ⇢). (C.27)

Conversely if we define h(t) and k(t) by equation (C.24), then h(t) and k(t) satisfy

equations (C.26) and (C.27) only if ↵ and � are as follows

�(t0, ") =
(1� ")(ln r � ln ⇢)

�(t0)
and ↵(t0, ", �) =

(1 + �) ln a1
��(t0)

. (C.28)

Where �(t0) =
R

1

t0
�(t)dt. Clearly t0 and � determines the value of t1 by the

equation h(t1) = a1, and then k(t1) = r̃ is determined additionally by ". With

this we are ready to define our metric in terms of this choice of h(t) and k(t)

parameterized by t0, ", and �.

We have finally settled on the following choice of metric.

Definition C.2.5. For any t0 > 2, 0 < "  1/4, and 0 < �  1/4, let ↵ = ↵(t0, ", �)

and � = �(t0, ") be as defined in equation (C.28), and h(t) and k(t) be as defined

by equation (C.24) with initial conditions h(t0) = 1 and k(t0) = ⇢. Then define
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⇢

r̃

1

a1

t0 2t0 t1

k(t)

h(t)

FIGURE C.5. The functions h(t) and k(t).

g = g(t0, ", �) = g (r/ (t1k(t1)) , h(t), k(t)), and define t1 to be the unique number so

that h(t1) = a1.

C.2.3. Control

We claim that the metric g(t0, ", �) will satisfy Lemma C.0.1 for suitably

chosen parameters. Let us briefly explain how each of these parameters will be

used in the proof of Lemma C.0.1. By choosing t0 larger, one can see from Lemma

C.2.4 that this controls the size of the functions h0(t)/h(t) and k0(t)/k(t). This is

made precise in Lemma C.2.6. By choosing � smaller, we make t1 larger relative to

t0, essentially controlling the length of the interval. By choosing " smaller, we have

control over the lower bound on r̃, which is also determined by t1. These last two

facts are made precise in Lemma C.2.7.
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Lemma C.2.6. Let h(t) and k(t) be as in Definition C.2.5. There are constants

c1 > 0 and c2 > 0 that depend only on g1, such that

����
h0(t)

↵h(t)

���� =
����
k0(t)

k(t)

���� <
c1 ln(2t0)

t ln2 t
, (C.29)

����
⌘(x)h0(t)

(1 + (h(t)� 1)⌘(x))

���� <
c1 ln(2t0)

t ln2 t
, (C.30)

����
⌘(x)h00(t)

1 + (h(t)� 1)⌘(x)

���� <
c2 ln(2t0)

t2 ln2 t
, (C.31)

����
k00(t)

k(t)

���� <
c2 ln(2t0)

t2 ln2 t
. (C.32)

Proof. The constants c1 and c2 are partially determined by ↵ and �. It is

important to notice that by assuming t0 > 2, 0 < "  1/4, and 0 < �  1/4,

we have assumed that ↵ and � are bounded above and below independently of our

specific choices t0, ", and �.

Inequality (C.29) follows from Definition C.2.5 and Lemma C.2.4. Using the

definition of k(t) to compute k00(t)/k(t) yields.

�
k00(t)

k(t)
= ��2�2(t) + ��0(t).

By applying Lemma C.2.4, and noting that ln(2t0) < ln t proves equation (C.32).

By equation (C.13) and (C.12) we have

|⌘(x)| < max

⇢
1,

1

a1 � 1

�
.
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And by equation (C.14), there is an c > 0 such that (1 + (h(t) � 1)⌘(x)) > ch(t).

Thus there is a constant d > 0 such that

����
⌘(x)

1 + (h(t)� 1)⌘(x)

���� < d

����
1

h(t)

���� .

Thus we have

����
⌘(x)h0(t)

1 + (h(t)� 1)⌘(x)

���� < d

����
h0(t)

h(t)

���� and

����
⌘(x)h00(t)

1 + (h(t)� 1)⌘(x)

���� < d

����
h00(t)

h(t)

���� . (C.33)

Applying equations (C.29) and (C.32) to equation (C.33) proves equations (C.30)

and (C.31).

The following lemma is a straightforward computation achieved by explicitly

solving the separable di↵erential equation (C.24).

Lemma C.2.7. Let h(t), k(t), and � be as in Definition C.2.5. The number t1

such that h(t1) = t1 and r̃ = k(t1) are expressed in terms of t0, ", and � as follows.

t1(t0, �) = exp

✓
1 + �

�

4 ln2(2t0)

1 + 4 ln(2t0)

◆
,

r̃(t0, �, ") = r
⇣⇢
r

⌘"
exp

✓
� ln(2t0)

ln t1

◆
. (C.34)

Moreover, for all T1 > 0, there are T0 > 0 and �0 > 0 such that t1 > T1 either

if t0 > T0 or � < �0. And, for all r < r0 < r1, there are 0 < "0 < "1 and �1 > 0 such

that r0 < r̃ < r1 if both "0 < " < "1 and � < �1.
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C.2.4. Summary of benefits

Now that we understand the precise relationship of t0, ", and � to our metric

g, we are ready to summarize the discussion of this section in two corollaries. The

first Corollary summarizes the discussion of Section C.2.1. It says that Proposition

C.2.3 will apply to our metric g if " is fixed and � is chosen small relative to �. The

second summarizes the discussion of Section C.2.2. It says that if " and � are small

enough, then the path (h(t), k(t)) is close enough to
�
a, ⇢/

�
a1/↵̃

��
, implying that

the curvature of g is relatively large.

Corollary C.2.8. There is an "0 > 0, and �("0) > 0 so that g(t0, ", �) satisfies

claims (ii), (iii), (iv), and (v) of Lemma C.0.1 with � = (t1k(t1)) / (t0r) for all

" > "0 and � < �0("0).

Proof. By definition h(t0) = 1 and k(t0) = ⇢, h0(t0) = k0(t0) = 0, and h(t1) = a1, so

by Proposition C.2.3, g satisfies (ii) with the specified �, (iv) with the specified �,

and (iii). It remains to show that we can choose �0 and "0 such that g also satisfies

(v).

By Corollary C.2.2 and equations (C.29) and (C.30) of Lemma C.2.6, there is

some c > 0 such that

| IIt1 | >
r̃

r
�

c

ln t1
�

c

ln2 t1
. (C.35)

If we fix "0 > 0, then by Lemma C.2.7 r̃/r � 1 + ⇣ for some ⇣("0) > 0. Substituting

this into equation (C.35), we see that | IIt1 | > 1 if t1 is chosen large enough so

that the remaining terms are bounded by ⇣. Again, by Lemma C.2.7, there exists a

�0("0) > 0 depending on "0, such that this holds for all � < �0. Thus for all � < �0,

g satisfies (v).
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r

⇢
(1, ⇢)

1 a1

(a1, r)
(a1, r̃)

U

FIGURE C.6. By Lemma C.1.3, the open set U = {(a, b) : Kg̃(a,b) > 1} contains�
a, ⇢/

�
a1/↵̃

��
. Clearly, if r̃ is close to r, then (h(t), k(t)) is also contained in U .

The above discussion of (v) in the proof of Corollary C.2.8 is the final

consideration in Perelman’s proof of Lemma C.0.1. In the last paragraph of [33,

p. 160], having already fixed " and before scaling by , Perelman says, “it remains

to choose � > 0 so small, and correspondingly t1 so large, that normal curvatures of

Sn
⇥ {t1} are > (r/⇢)" 1/t1.” We can see from equation (C.34), that r̃/r > (⇢/r)",

so after scaling by  = r/ (r̃t1) we will have normal curvatures greater than 1.

Corollary C.2.9. Let g(t0, ", �) be as in Definition C.2.5, then there exists "0 > 0,

�0 > 0, and cs > 0 such that for all " < "0 and � < �0 the ambient sectional

curvatures in the spherical of {t}⇥ Sn are as follows.

Kg(X,⌃i) >
cs
t2
, and Kg(⌃i,⌃j) >

cs
t2
.

Proof. Let a 2 [1, a1] and ↵̃ = ln a1/ (ln ⇢� ln r) be as in Section C.1. Define b̃(a)

b̃(a) =
⇢

a1/↵̃
. (C.36)

By Lemma C.1.3, Kg̃(a,b̃(a)) > 1.
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Let ↵ be defined as in equation (C.28), then the definition of h(t) and k(t) in

Definition C.2.5 is equivalent to

k(t) =
⇢

h1/↵(t)
. (C.37)

Which we may in turn take to define a function b(a) for a 2 [1, a1]. It is clear by

comparing equation (C.36) and (C.37) that ||b(a) � b̃(a)||C2 ! 0 as (↵ � ↵̃) ! 0,

where explicitly

↵� ↵̃ =

✓
1 + �

1� "
� 1

◆
ln a1

ln ⇢� ln r
.

Thus ||b(a) � b̃(a)||C2 ! 0 as (", �) ! (0, 0). This is also clear graphically in Figure

C.6., noting that, by Lemma C.2.7, r̃ ! r as (", �) ! (0, 0).

Because K > 1 is an open condition on the space of all metrics, the set U =

{(a, b) : Kg̃(a,b) > 1} is open, and by Lemma C.1.3 (a, b̃(a)) 2 U . It follows that

there exists "0 > 0 and �0 > 0 such that (a, b(a)) 2 U for all " < "0 and � < �0.

Thus Kg̃(h(t),k(t)) > d > 1 for all " < "0 and � < �0.

Still assuming that " < "0 and � < �0. If we combine this fact with Gauss’

formula, Corollary C.2.2, and equations (C.29) and (C.30) of Lemma C.2.6 we have

the following.

Kg(X,⌃i) =

✓
t1k(t1)

r

◆2 �
Kt2g̃(h(t),k(t))(X,⌃i)� II2t (X,⌃i)

�

>

✓
t1k(t1)

r

◆2✓ d

t2
�

1

t2
�

c

t2 ln t
�

c

t2 ln3 t

◆
.

Kg(⌃i,⌃j) =

✓
t1k(t1)

r

◆2 �
Kt2g̃(h(t),k(t))(⌃i,⌃j)� II2t (⌃i,⌃j)

�

>

✓
t1k(t1)

r

◆2✓ d

t2
�

1

t2
�

c

t2 ln t
�

c

t2 ln3 t

◆
.
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There is some T > 0 such that the remaining terms c/ (t2 ln t) and c/
�
t2 ln3 t

�

bounded above by (d� 1) /t2 for all t > T . Thus if t0 > T we have proven the

claim.

In the second full paragraph of [33, p. 160], Perelman suggests “we choose

" > 0 first in such a way that (⇢/r)" g1 still has sectional curvatures > 1.” We can

see this in our formula (C.34) that r̃/r ⇡ (⇢/r)" if � is chosen very small, and by

definition g̃(h(t1), k(t1)) = (r̃/r) g1. The assumption that the sectional curvatures

of (⇢/r)" g1 are greater than 1, imply that the proof of Lemma C.1.3 still applies to

the path (a, b) = (h(t), k(t)). The proof of Corollary C.2.9, is essentially the same

observation.

C.3. The curvatures of the neck

By Corollary C.2.8, the metric g(t0, ", �) can be chosen to satisfy claims (ii)

through (v) of Lemma C.0.1. In this section we consider the validity of (i) for

suitable choices of t0, ", and �. That is, we prove that Ricg is positive definite

for suitable choices of parameters. The care that was taken in Section C.2.2 was

to ensure that the curvature in spherical directions was large, as recorded in

Corollary C.2.9. This one fact will allow us to dominate other sectional curvatures

by choosing t0 even larger.

The first di�culty we face in proving something about Ricg is that the

remaining curvatures are all second order in h(t) and k(t), but h(t) and k(t) are

both only once di↵erentiable at t = 2t0. In Section C.3.1, we explain how to

apply Perelman’s gluing lemma to resolve this issue, and therefore only need to

prove positive Ricci curvature for t 6= 2t0. Once this is resolved, in Section 1.3 we

see directly that the spherical curvatures dominate Ricg(X,X) and Ricg(⌃i,⌃i),
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ensuring their positivity. In Section C.3.3, with a little more care, we show that

Ricg(T, T ) is also positive. As the Ricci tensor is not diagonalized in this frame,

this does not prove that it is positive definite. There is exactly one nonzero o↵-

diagonal term: Ricg(T,X). Thus positive definiteness of Ricg reduces to showing

that the 2-by-2 sub-matrix spanned by T and X is positive definite. As we will

have proven that its trace is positive, we need only show that the determinant

is positive. In Section C.3.4, we check that this determinant is dominated by

Ricg(X,X). We conclude by carefully examining the dependency of choices of t0,

", and �, to ensure that there is a metric g satisfying all of the claims of Lemma

C.0.1.

C.3.1. Smoothing the neck

In [33, p. 160], when Perelman defines h(t) and k(t), he recommends that, “b

must be smoothed near t = 2t0.” Certainly this works, but then Lemma C.2.6 does

not follow directly from Lemma C.2.4. Instead of smoothing the metric functions,

we claim that if we succeed in constructing a metric that satisfies Lemma 3.1.2 that

is C1 at t = 2t0, then we can smooth the metric while still satisfying Lemma 3.1.2.

Corollary C.3.1. Assume that there is a T > 0 such that, for all t0 > T the metric

g = g(t0, ", �) defined on [t0, t1] ⇥ Sn satisfies claims (ii) through (v) of Lemma

C.0.1 and satisfies claim (i) for all t 6= 2t0. Then for some t0 > T there exists a

smooth metric g̃ on [t0, t1] ⇥ Sn that agrees with g outside of an arbitrarily small

neighborhood of the set t = 2t0 that satisfies (i) for all t.

Proof. Note that because g is C1, the two Riemannian manifolds ([t0, 2t0] ⇥ Sn, g)

and ([2t0, t1] ⇥ Sn, g) have isometric boundaries at {2t0} ⇥ Sn where the second

fundamental forms satisfy II1 +�⇤ II2 = 0. Apply Lemma 1.2.11 to one of these
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two manifolds and then apply Theorem 1.2.2 to glue these together to produce a

Ricci-positive metric g̃ that agrees with g outside of a neighborhood of the gluing

site.

C.3.2. The Ricci curvature in the spherical directions is large

We have already found suitable lower bound for Kg(X,⌃i) and Kg(⌃i,⌃j)

in Corollary C.2.9. We must now consider the remaining curvatures of g. The

following is a direct corollary of (iii) of Proposition C.3.9 and Lemma C.3.10. Keep

in mind that not all of the formulas are defined at t = 2t0.

Corollary C.3.2. Let g be as in Definition C.2.5. The sectional curvatures in the

time direction are as follows.

Kg(T,⌃i) = �

✓
t1k(t1)

r

◆2✓k00(t)

k(t)
+

2k0(t)

tk(t)

◆
, (C.38)

Kg(T,X) = �

✓
t1k(t1)

r

◆2✓k00(t)

k(t)
+

2k0(t)

tk(t)
+

⌘(x)h00(t)

1 + (h(t)� 1)⌘(x)
(C.39)

+
2⌘(x)h0(t)

t(1 + (h(t)� 1)⌘(x))
+

k0(t)

k(t)

2⌘(x)h0(t)

1 + (h(t)� 1)⌘(x)

◆
,

Rg(T,⌃i,⌃i, X) = �

✓
t1k(t1)

r

◆2✓ tan(x)⌘(x)h0(t)

tk(t)(1� (h(t)� 1)⌘(x))2

◆
.

All other Riemannian curvatures of the form Rg(A,B,B,C) vanish.

Investigating Corollary C.3.2 term by term, we see that each is bounded in

absolutely value by (c ln(2t0)) /
�
t2 ln2 t

�
as in Lemma C.2.6. Thus the following

corollary is immediate.
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Corollary C.3.3. There exists cu > 0 such that the curvature of g in the time

directions is bounded in absolute value as follows.

|Kg(T,⌃i)| <
cu ln(2t0)

t2 ln2 t
,

|Kg(T,X)| <
cu ln(2t0)

t2 ln2 t
,

|R(T,⌃i,⌃i, X)| <
cu ln(2t0)

t2 ln2 t
.

Comparing Corollary C.3.3 with the asymptotics of Kg(X,⌃i) and Kg(⌃i,⌃j)

in Corollary C.2.9 shows that Ricg(X,X) and Ricg(⌃i,⌃i) remain as large. In

particular, these Ricci curvatures are positive.

Corollary C.3.4. Let "0 > 0 and �0 > 0 be as in Corollary C.2.9. There exists

T > 0 and cl > 0 such that for all t0 > T , " < "0, � < �0 we have

Ricg(X,X) >
cl
t2
,

Ricg(⌃i,⌃i) >
cl
t2
.

C.3.3. The Ricci curvature in the time direction is positive

It remains to show that Ricg(T, T ) is positive and that Ricg(T,X) is

dominated by Ricg(T, T ) and Ricg(X,X). To achieve both we must bound

Ricg(T, T ) below. Let us begin by considering equation (C.38) and (C.39). For

simplicity, let us focus on equation (C.38) and ignore the scaling factor, we want to

show that the following is negative

k00(t)

k(t)
+

2k0(t)

tk(t)
. (C.40)
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Note that k00(t) changes from positive to negative at t = 2t0. For small choices of

t0, we can see directly from the definition that this curvature will be negative. It

is also not immediately clear from the asymptotics in Lemma C.2.6 that picking t0

large will resolve this as the two terms in equation (C.38) are both proportional to

(ln(2t0)) /
�
t2 ln2 t

�
. We must therefore return to the definition. In terms of �(t),

equation (C.40) becomes

�

✓
��2(t)� �0(t)�

2

t
�(t)

◆
.

By Lemma C.2.4, the �2(t) term has smaller asymptotic behavior, so we must show

that �0(t) + (2/t)�(t) is positive for large enough t0.

Lemma C.3.5. There exists a T > 0 and cn > 0, such that for all t0 > T we have

�0(t) +
2

t
�(t) >

cn ln(2t0)

t2 ln2 t
.

Proof. For t < 2t0, we have

�0(t) +
2

t
�(t) =

1

2t2
0
ln(2t0)

+
1

t2
0
ln(2t0)

�
1

tt0 ln(2t0)

>
1

2t2
0
ln(2t0)

.

Because 1/ (t2 ln t) is decreasing, we have 1/ (t2
0
ln t0) � 1/ (t2 ln t). This proves the

claim for t < 2t0.
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For t > 2t0, we have

�0(t) +
2

t
�(t) = �

ln(2t0)

t2 ln2 t
�

2 ln(2t0)

t2 ln3 t
+

2 ln(2t0)

t2 ln2 t

>
ln(2t0)

t2 ln2 t
�

2 ln(2t0)

t2 ln3 t
.

Clearly if t0 is large enough the negative term may be ignored, thus there exists a

T > 0 for which the claim is true for t0 > T .

It follows that K(T,⌃i) > 0 for t0 large enough (so that �2(t) is su�ciently

small). While the first terms of K(T,X) in equation (C.39) agree with K(T,⌃i),

the following two terms that appear have identical asymptotics with opposite sign.

One must therefore consider Ric(T, T ) in its entirety, and show that terms from

K(T,⌃i) dominate those from K(T,X). Rewriting h0(t)/h(t) in terms of k0(t)/k(t),

one sees that the coe�cients that need to be compared are determined by n and

↵. The following lemma compares the exact coe�cients of the terms that dominate

Ric(T, T ).

Lemma C.3.6. Let ↵ be as in equation (C.28), where ⇢ and r satisfy the

hypotheses of Lemma C.0.1. There exists "0 > 0 and �0 > 0 such that ↵ satisfies

the following for all " < "0 and � < �0.

↵h(t)

1 + (h(t)� 1)⌘(x)
� n < 0. (C.41)

Proof. We begin by claiming that ↵ < n for " and � small enough. As observed in

the proof of Lemma C.1.3, by Corollary C.1.4 and the assumption that Kg1 > 0

that 1/ (r2a2
1
) > 1. It follows then that ln a1 < � ln r. By assumption, rn�1 < ⇢n.

Taking logarithms and solving for � ln r yields � ln r < n(ln ⇢ � ln r). Combining
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these observations yields ln a1 < n(ln ⇢� ln r). Plugging this into the definition of ↵

in equation (C.28) yields

↵ <
1 + �

1� "
n.

Thus ↵ < n if " = � = 0. As this is an open condition, there exists "0 > 0 and

�0 > 0 such that ↵ < n for all " < "0 and � < �0.

Now we turn to prove inequality (C.41). If ⌘(x) < 0, then both terms are

negative and the claim is obvious. If 0  ⌘(x)  1, then clearly ⌘(x)h(t) + (1 �

⌘(x)) � ⌘(x)h(t). Thus the left-hand side of (C.41) is bounded above by ↵ � n,

which is negative if " < "0 and � < �0.

The first paragraph in the proof of Lemma C.3.6 appears as the penultimate

paragraph of [33, p. 160], where Perelman has already assumed that " is fixed as

in the remark after Corollary C.2.9 so that (⇢/r)" g1 still has sectional curvatures

greater than 1.

We are now ready to prove that Ric(T, T ) is positive for large enough t0. The

proof amounts to showing that the coe�cient of �� (�0(t) + (2/t)�(t)) in Ric(T, T )

is the left-hand side of (C.41).

Lemma C.3.7. Let "0 > 0 and �0 > 0 be as in Lemma C.3.6. There exists T > 2

such that Ric(T, T ) is positive for all t0 > T , " < "0, and � < �0. Moreover, there

exists cT > 0 such that Ric(T, T ) satisfies the following.

Ric(T, T ) >
cT ln(2t0)

t2 ln2 t
.

Proof. We can compute Ric(T, T ) by adding together equations (C.39) and

(C.38). We then factor this expression for Ric(T, T ) so that the leading term is
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transparently �� (�0(t) + (2/t)�(t)), where we notice that

✓
k0(t)

k(t)

◆0

+
2

t

k0(t)

k(t)
= ��

✓
�0(t) +

2

t
�(t)

◆
.

We then combine Lemmas C.1.5, C.2.6, C.3.5, and C.3.6 bound Ric(T, T ) below as

follows.

Ric(T, T ) = (n� 1)K(T,⌃i) +K(T,X),

=

✓
↵⌘(x)h(t)

1 + (h(t)� 1)⌘(x)
� n

◆✓✓
k0(t)

k(t)

◆0

+
2

t

k0(t)

k(t)

◆

� n

✓
k0(t)

k(t)

◆2

�
⌘(x)h(t)

1 + (h(t)� 1)⌘(x)

 
2
k0(t)

k(t)

h0(t)

h(t)
+

✓
h0(t)

h(t)

◆2
!
,

>
c ln(2t0)

t2 ln2 t
�

c ln2(2t0)

t2 ln4 t
.

To apply Lemma C.3.6, we must assume that " < "0 and � < �0. It is clear that

there exists a T > 2 for which we may disregard the negative term for all t0 >

T .

C.3.4. The existence of the neck

With Corollary C.3.4, this shows that the diagonals of the Ricci tensor of g

are positive. As mentioned in the introduction of Section C.3, in order to prove

positive definiteness we must show that the determinant of the 2-by-2 submatrix

spanned by T and X is positive, i.e. that Ricg(T, T ) Ricg(X,X) � Ric2g(T,X) is

positive. The following claims that this is true for large enough t0. It is a direct

corollary of Corollary C.3.3, Corollary C.3.4, and Lemma C.3.7.
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Corollary C.3.8. There exists a T > 0 such that for all t0 > T we have

Ricg(T, T ) Ricg(X,X) > Ric2g(T,X).

Proof. Taking the lower bounds for Corollary C.3.4 and Lemma C.3.7 on the left-

hand side, and the upper bounds from Corollary C.3.3 for the right-hand side. The

claim reduces to the following inequality

c ln(2t0)

t4 ln2 t
>

ln2(2t0)

t4 ln4 t
.

And clearly, there is a T > 2 for which this is true for all t0 > T .

We have shown therefore that for large t0 and small " and � that the Ricci

tensor of g is positive definite. Combining this with Corollaries C.2.8 and C.3.1 we

are ready to prove Lemma C.0.1.

Proof of Lemma C.0.1. By Corollary C.2.8, g will satisfy claims (ii), (iii), and (iv)

of Lemma C.0.1 for any choice of t0, ", and �.

Consider next the curvature of g. By Corollary C.3.1, it su�ces to show that

there is a T > 0 and specific choices of " and � for which g(t0, ", �) satisfies (i) for

all t0 > T . So we may disregard the fact that g is not smooth at t = 2t0.

The conclusions of Corollary C.3.4, Lemma C.3.7, and Corollary C.3.8

combined tell us that Ricg is positive definite if t0 is large. The hypotheses of these

claims require that " and � be chosen small in the sense of Corollary C.2.9 so that

the sectional curvatures in the spherical directions are bigger than c/t2 and in the

sense of Lemma C.3.6 so that Ricg(T, T ) is positive. Fix " small enough for the

hypotheses of both Corollary C.2.9 and Lemma C.3.6.
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Finally, by Corollary C.2.8, g will satisfy (v) if � is chosen small relative to ".

Fix � small enough to satisfy Corollary C.2.8 as well as Corollary C.2.9 and Lemma

C.3.6. Thus there is a T > 0 such that Ricg is positive definite for all t0 > T . We

conclude that there exists a t0 so that g(t0, ", �) will, after smoothing, satisfy all of

the claims of Lemma C.0.1.

C.3.4.1. Describing gneck(⇢)

Proof of Proposition 3.1.2. We have not gone over the construction of

gambient(⇢) of [33, Section 3], but it directly established that the boundary of

(Sn
\
F

k D
n, gdocking(⇢)) takes the form g1 = A2

1
(x)dx2 + B2

1
cos2 xds2n�1

with

Kg1 � 1. This allows us to apply Lemma C.0.1 to g1 to produce the metric gneck(⇢).

Conditions (1)-(5) of Proposition 3.1.2 correspond directly to Lemma C.0.1. The

last condition (6), follows from the fact that B(t, x) = t2k2(t) cos2 x. We have

already shown that Btt(t, x) < 0 in Lemma C.3.5, and similarly that Bt(T, x) > 0 in

Lemma C.2.6.

C.3.5. Scaled One-parameter Families of Warped Products

In this section we will use g to denote a metric on [t0, t1]⇥ [x0, x1]⇥ Sn of the

form g = dt2 + gt, and gt is a one parameter family of warped product metrics on

[x0, x1] ⇥ Sn of the form gt = A(t, x)dx2 + B(t, x)ds2n. Let T , X, and ⌃i denote a

local orthonormal frame for g tangent to [t0, t1], [x0, x1], and Sn respectively. The

purpose of this section is to prove the following for such metrics g.

Proposition C.3.9. The curvatures of g are as follows.
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(i) The sectional curvature of g(t) on {t}⇥ [x0, x1]⇥ Sn is as follows.

Kgt(X,⌃i) =
AxBx

A3B
�

Bxx

BA2
, and Kgt(⌃i,⌃j) =

1

B2
�

B2

x

A2B2
.

Moreover Ricg(t) is diagonalized in this frame.

(ii) The second fundamental form IIt of the submanifold {t} ⇥ [x0, x1] ⇥ Sn inside

of [t0, t1]⇥ [x0, x1]⇥ Sn with respect to the normal vector T is as follows.

IIt(X,X) =
At

A
, IIt(X,⌃i) = 0, and IIt(⌃i,⌃j) =

Bt

B
�ij.

(iii) Combining (1) and (2), the sectional curvatures of g not involving T are

Kg(X,⌃j) = �
AtBt

AB
+

AxBx

A3B
�

Bxx

BA2
, and Kg(⌃i,⌃j) =

1

B2
�

B2

x

A2B2
�

B2

t

B2
.

The remaining sectional curvatures are

Kg(T,X) = �
Att

A
, and Kg(T,⌃i) = �

Btt

B
.

And the Ricci tensor has one o↵-diagonal term

Ricg(X, T ) = nRg(X,⌃i,⌃i, T ) = n

✓
AtBx

BA2
�

Bxt

AB

◆
.

The proof of Proposition C.3.9 is presented in the following sections.

In Section C.3.5.1 we compute the second fundamental forms relevant to the

computation, in particular proving (ii). Next in Section C.3.5.2, we compute the

instrinsic sectional curvatures of the time slice {t} ⇥ [x0, x1] ⇥ Sn proving part (i).
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In Section C.3.5.3 the sectional curvatures of g are computed proving most of (iii).

And finally concluding in Section C.3.5.4 by proving the part of (iii) concerning the

o↵-diagonals of the Ricci tensor.

As our main application is the metric of Definition C.2.5, which is of the form

2g, we quote the following is general fact about scaling metrics.

Lemma C.3.10. [53, Theorem 1.159] Let A0, B0, C 0, and D0 be the orthonormal

vector fields of 2g corresponding to the orthonormal vector fields A, B, C, and D

of g. Let II0 and II be second fundamental forms of the same embedded hypersurface

with respect to 2g and g respectively.

R2g(A
0, B0, C 0, D0) =

1

2
Rg(A,B,C,D) and II0(A0, B0) =

1


II(A,B).

C.3.5.1. Extrinsic Curvature

In this short section we record the second fundamental forms relevant to our

curvature computations. Obviously we will consider the second fundamental form

of {t} ⇥ [x0, x1] ⇥ Sn inside of [t0, t1] ⇥ [x0, x1] ⇥ Sn. Notice that gt is a warped

product metric on [x0, x1] ⇥ Sn, so it will also be necessary to consider the second

fundamental form of {t}⇥ {x}⇥ Sn inside of {t}⇥ [x0, x1]⇥ Sn with respect to gt.

Lemma C.3.11. Let IIt be the second fundamental form of {t} ⇥ [x0, x1] ⇥ Sn

embedded in [t0, t1]⇥ [x0, x1]⇥ Sn with respect to g and the unit normal T . Then

IIt =
At

A
(A2dx2) +

Bt

B
(B2ds2n). (C.42)

Proof. Because the intervals [t0, t1] ⇥ {x} ⇥ {p} are geodesics with respect to g, by

[6, Proposition 3.2.1] we have that the second fundamental form of {t}⇥[x0, x1]⇥Sn
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is

IIt =
1

2
@tg =

At

A
(A2dx2) +

Bt

B
(B2ds2n).

As dx2 and ds2n are invariant with respect to T .

Lemma C.3.12. Let IIx be the second fundamental form of {t}⇥{x}⇥Sn embedded

in {t}⇥ [x0, x1]⇥ Sn with respect to gt and the unit normal X. Then

IIx =
Ax

A2
(A2dx2) +

Bx

AB
(B2ds2n) (C.43)

Proof. Note that g restricted to {t} ⇥ [x0, x1] ⇥ Sn is A2(t, x)dx2 + B2(t, x)ds2n.

Because X = @x/A is a unit vector, applying [6, Proposition 3.2.1] we have

IIx =
1

2
LXgt =

Ax

A2
(A2dx2) +

Bx

AB
ds2n.

As dx2 and ds2n are invariant with respect to X.

C.3.5.2. The intrinsic curvatures of a time slice

Next we compute the curvatures in the spherical directions, X and ⌃. To do

this, we consider the restricted metric g(t) on the submanifolds {t} ⇥ [x0, x1] ⇥ Sn,

and compute its intrinsic curvature.

Lemma C.3.13. The curvatures gt involving X are as follows.

Kgt(⌃, Xi) =
AxBx

A3B
�

Bxx

A2B

Proof. By [6, Proposition 3.2.11] we have

Kgt(X,W ) = II2x(W,W )� (LX IIx)(W,W ). (C.44)
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Where IIx is as in (C.43). We compute the derivative of IIx as follows

LX IIx =

✓
AxxA2

� 2A2

xA

A5
+

Ax

A4

◆
(A2dx2)

+

✓
BxxAB � B2

xA� BxAxB

A3B2
+

2B2

x

A2B2

◆
(B2ds2n)

=
Axx

A3
(A2dx2) +

✓
Bxx

A2B
+

B2

x

A2B2
�

AxBx

A3B

◆
(B2ds2n). (C.45)

Taking the square of equation (C.43) and substituting it with (C.45) into

(C.44) yields the following

Kgt(X,�) =
A2

x

A4
(A2dx2) +

B2

x

A2B2
(B2ds2n)�

Axx

A3
(A2dx2)

�

✓
Bxx

A2B
+

B2

x

A2B2
�

AxBx

A3B

◆
(B2ds2n)

=

✓
A2

x

A4
�

Axx

A3

◆
(A2dx2) +

✓
�

Bxx

A2B
+

AxBx

A3B

◆
(B2ds2n)

The claim follows.

Finally we must compute those curvatures of gt in the spherical directions.

Lemma C.3.14. The curvatures of gt not involving X are as follows.

Kgt(⌃i,⌃j) =
1

B2
�

B2

x

A2B2
.

Proof. Let gx denote the metric gt restricted to {t} ⇥ {x} ⇥ Sn inside of {t} ⇥

[x0, x1]⇥ Sn. Notice that gx = B2(t, x)ds2n is round with radius B, so Kgx(⌃i,⌃j) =

1/B2. By Gauss’ formula and equation (C.43) we have

Kgt(⌃i,⌃j) = Kgx(⌃i,⌃j)� IIx(⌃i,⌃i) IIx(⌃j,⌃j) =
1

B2
�

B2

x

A2B2
.

211



C.3.5.3. The sectional curvatures

We begin by computing the sectional curvatures involving T .

Lemma C.3.15. The sectional curvatures of g involving T are as follows.

Kg(T,X) = �
Att

A
, and Kg(T,⌃) = �

Btt

B
.

Proof. Because the intervals [t0, t1] ⇥ {x} ⇥ {p} are geodesics of g, the Codazzi-

Mainardi equations reduce to

K(T,W ) = II2t (W,W )� (@t IIt)(W,W ), (C.46)

where W is any vector normal to T . Computing the derivative of IIt we have

@t IIt =
AttA� A2

t

A2
(A2dx2) +

2A2

t

A2
(A2dx2) +

BttB � B2

t

B2
(B2ds2n�1

) +
2B2

t

B2
(B2ds2n�1

),

=
AttA+ A2

t

A2
(A2dx2) +

BttB +B2

t

B2
(B2ds2n�1

). (C.47)

Taking the square of equation (C.42) and substituting that with (C.47) into (C.46)

yields the following.

K(T,�) =
A2

t

A2
(A2dx2) +

B2

t

B2
(B2ds2n�1

)�
AttA+ A2

t

A2
(A2dx2)�

BttB +B2

t

B2
(B2ds2n�1

)

= �
Att

A
(A2dx2)�

Btt

B
(B2ds2n�1

).

The claim follows.
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Having determined Kgt in Lemmas C.3.13 and C.3.14 and IIt in equation

(C.42), the following is a direct consequence of Gauss’ formula.

Corollary C.3.16. The curvatures of g not involving T are as follows.

Kg(X,⌃i) =
BxAx

A3B
�

Bxx

A2B
�

BtAt

AB
, and Kg(⌃i,⌃j) =

1

B2
�

B2

x

B2A2
�

B2

t

B2
.

C.3.5.4. O↵-diagonals of the Ricci tensor

In this section we consider those curvatures of the form Rg(A,B,B,C).

Choose local coordinates �i for Sn so that Si := @�i is an orthonormal basis of

(Sn, ds2n) at one point. We may assume that Si/B = ⌃i at this point. We will

use Si along with @x and @t as a local frame. Because @x and @t are global and

g is homogeneous in the Sn factor, it su�ces to perform computations in these

coordinates.

Lemma C.3.17. In this frame, the o↵-diagonals of Ricg are zero except for

Ricg(X, T ) = nRg(X,⌃i,⌃i, T ), where

Rg(X,⌃i,⌃i, T ) =
Bxt

AB
�

AtBx

A2B
.

Proof. As Ric(A,B) =
P

Ci
R(A,Ci, Ci, B), the o↵-diagonal terms of Ricg

are determined by R(T,⌃i,⌃i, X), Rg(T,⌃i,⌃i,⌃j), Rg(X,⌃i,⌃i,⌃j), and

R(⌃i,⌃j,⌃j,⌃k).

First, consider Rg(⌃i,⌃j,⌃j,⌃k). By applying Gauss’ formula twice using IIx

followed by IIt, one sees that the terms involving IIt and IIx vanish, thus reducing

to Rg(⌃i,⌃j,⌃j,⌃k) = Rgx(⌃i,⌃j,⌃j,⌃k). But gx is round, and it is known that

this curvature vanishes for the round metric in these coordinates.
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Consider next Rg(T,⌃i,⌃i,⌃j) and Rg(X,⌃i,⌃i,⌃j). Let II
0

x and g0x be

the second fundamental form and metric of [t0, t1] ⇥ {x} ⇥ Sn with respect to

g. By applying Gauss’ formula with respect to IIt and II0x, one can check that

Rg(T,⌃i,⌃i,⌃j) = Rg0x(T,⌃i,⌃i,⌃j) and Rg(X,⌃i,⌃i,⌃j) = Rgt(X,⌃i,⌃i,⌃j).

Both the metric gt and g0x are warped product metrics. This curvature is known to

vanish in these coordinates [6, Section 4.2.3].

We can compute Rg(@x, Si, Si, T ) in these coordinates as follows.

Rg(@x, Si, Si, T ) =
1

2
(@�i@�igtx + @t@xg�i�i � @�i@xgt�i � @t@�ig�ix)

+gab
�
�a
�i�i

�b
tx � �a

�ix�
b
t�i

�
.

(C.48)

First consider the second derivatives of the metric. Of those metric functions

being considered, only g�i�i is nonzero. And the desired second derivative is as

follows.

@t@xg�i�i = @t@x(B
2) = 2@t(BxB) = 2(BxtB +BxBt). (C.49)

Second, considering the metric functions being summed against in the

Christo↵el symbol term, the function is nonzero only if i = j. Consider the second

Christo↵el identity.

�c
ab =

1

2
gcd (@agbd � @dgab + @bgad) .

If all three indices a, b and c are distinct, then all three metric functions will

vanish. Thus, in equation (C.48) the only indices that could possibly give a nonzero

summand are a = b = t, a = b = x, and a = b = �i. Within these, only 9 need to be

computed. Of those 9, only 5 are nonzero. These are as follows.

�t
�i�i

= �BtB, �x
�i�i

=
�BxB

A2
, �x

tx =
At

A
, ��i

�ix =
Bx

B
, and ��i

t�i
=

Bt

B
.
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Finally, when written down, only the cases a = b = x and a = b = �i are

nonzero. These are as follows.

gxx
�
�x
�i�i

�x
tx � 0

�
= A2

✓
�BxB

A2

At

A

◆
=

�AtBx

A
(C.50)

g�i�i

�
0� ��i

�ix�
�i
t�i

�
= �B2

✓
Bx

B

Bt

B

◆
= �BtBx. (C.51)

Thus the only nonzero terms of (C.48) are those computed in equations

(C.49), (C.50), and (C.51). Combining these yields the following.

Rg(@x, Si, Si, T ) =
1

2
(2(BxtB +BxBt)) +

�AtBxB

A
� BtBx = BxtB �

AtBxB

A
.

Finally, using the fact that Rg is a tensor, we see that

Rg(X,⌃i,⌃i, T ) = Rg

✓
@x
A
,
Si

B
,
Si

B
, T

◆
=

1

AB2
Rg(@x, Si, Si, T ) =
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�
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A2B
.
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