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THESIS ABSTRACT 
 
Cory LeeWays 
 
Master of Science 
 
Department of Biology 
 
June 2019 
 
Title: Soil Warming Effects on Methane Production Pathways and Homoacetogenesis in 

a Northern Minnesota Peatland 
 
 

Peatlands have sequestered one third of terrestrial soil organic carbon while 

simultaneously emitting the potent greenhouse gas methane, and the response of these 

ecosystem functions to climate change remains largely unknown. Gaining a mechanistic 

understanding of the processes underlying anaerobic methane cycling is imperative to this 

question, especially elucidating the relative importance of the acetoclastic and 

hydrogenotrophic methane production pathways. Homoacetogenesis, the reduction of 

carbon dioxide with dihydrogen to acetate, is a highly understudied process due to being 

viewed as thermodynamically unfavorable, but it may play an important role in anaerobic 

carbon cycling. Here we show that homoacetogens are strong potential competitors with 

hydrogenotrophic methanogens, and this effect is most pronounced in deeper and colder 

peat depths. Our results indicate that a better understanding of understudied processes 

may be essential in predicting the response of anaerobic carbon cycling in peatlands to 

climate change. This dissertation contains unpublished co-authored material. 
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CHAPTER I 
 

INTRODUCTION 
 

Wetlands and Carbon Storage 

Wetlands are globally significant ecosystems with a variety of critical ecosystem 

functions, most notably storing considerable amounts of carbon1,2. This is due to the 

prolonged inundation of the soil, which greatly reduces the availability of oxygen and 

lowers subsequent decomposition rates to a point where annual production of biomass is 

greater than decomposition3. This carbon accumulation is most extensive in peatlands, 

which comprise 4 million km2 globally4. As a result, peatlands, covering approximately 

2.7% of the earth's surface, contain roughly one third of the planet’s terrestrial organic 

carbon stores, with estimates ranging from 455-612 Pg carbon5–7.  As a consequence of 

anoxic conditions in the soil, peatlands also produce methane (CH4), a potent greenhouse 

gas8. Wetlands are the largest natural source of atmospheric CH4, and the response of 

their large carbon stores to future warming is still not well understood9,10. 

 

Sources of CH4 

CH4 is the most abundant organic chemical in the atmosphere, contributing to 

about 20% of total radiative forcing11. Due to its molecular structure, CH4 has a 

sustained-flux global warming potential of 45 over 100 year period, meaning when fluxes 

are sustained over time, the emission of 1 kg CH4 would be offset by the sequestration of 

45 kg carbon dioxide (CO2)8. CH4 emissions can come from a variety of anthropogenic 

and natural sources. Since 1980, natural sources have contributed between 33 and 54% of 

CH4 emissions, while between 46 and 67% have been attributed to anthropogenic 
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sources11. The prominent natural sources include wetlands, freshwaters, and geological 

sources, whereas anthropogenic emissions are attributed to burning of fossil fuels, enteric 

fermentation, rice cultivation and others10,12,13. Of these, wetlands are the single largest 

natural source, although rice fields could be considered agricultural wetlands controlled 

by the same principles as natural wetlands. While the median wetland emission of CH4 

from published studies is 164 Tg yr-1, about a third of total global emissions, wetlands 

also explain 70% of recent interannual variability in surface emissions (± 12 Tg of 

CH4 yr-1) 9,14. The large and variable CH4 fluxes from wetlands highlight the importance 

of understanding the processes that control CH4 production in order to inform future 

climate models.  

  

Anaerobic Controls on CH4 Production 

Heterotrophic microbial communities within soils utilize inputs of organic carbon 

from plant photosynthates for use as electron donors. This organic matter is broken down 

into simple substrates through a suite of microbial metabolic pathways. Within anaerobic 

soils, this process starts with degradation of complex polymers by microbial exoenzymes, 

followed by degradation by fermenters into organic acids, alcohols, and methylated 

compounds15. These compounds are further broken down into the substrates for the two 

major methanogenic pathways: hydrogenotrophic and acetoclastic methanogenesis 

(Figure 1). 
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 FIGURE 1 | Conceptual diagram of CH4 production and homoacetogenesis 

pathways. The production of CH4 in carbon-rich anaerobic ecosystems is controlled by a 

complex suite of microbial reactions. In particular, the relative importance of CH4 

production pathways as well as homoacetogenesis are poorly understood; 

homoacetogenesis has been traditionally discounted due to commonly being viewed as 

thermodynamically unfavorable. However, our findings demonstrate homoacetogenesis is 

an important pathway within anaerobic carbon and acetate cycling and may 

consequentially impact how CH4 producing systems respond to climate change.  

 Hydrogenotrophic methanogenesis is a chemoautotrophic pathway that oxidizes 

di-hydrogen (H2) to CH4 using CO2. Acetoclastic methanogenesis utilizes the dismutation 

of acetate, where the molecule is activated into acetyl-coenzyme A, from which it is 

cleaved to produce CO2 and CH4
16,17. The fermentation products utilized by methanogens 

can also be utilized by other microbial groups that use a variety of terminal electron 

acceptors (TEAs) in their metabolism18. These processes include NO3
− (denitrification), 
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Fe(III) (iron reduction), Mn(III, IV) (manganese reduction), SO4
2− (sulfate reduction), 

and humic substance reduction19. According to thermodynamic theory, all of these 

reactions are more favorable than methanogenesis, and therefore CH4 production would 

be competitively suppressed by TEA-reducing processes until those TEAs have been 

consumed. However, these processes have been shown occurring simultaneously in situ 

and in laboratory incubations20. Additionally, when carbohydrates or similar forms of 

organic matter are degraded, hydrogenotrophic methanogenesis should theoretically 

account for no greater than 33% of total CH4 production; however, observational 

evidence shows that the hydrogenotrophic pathway dominates in ombrotrophic bogs21–24. 

This is one example of a large body of evidence that thermodynamics does not always 

control if microbial reactions occur, and that ecological and physiological factors may 

regulate microbial competition more than previously thought. 

 

 Homoacetogenesis 

Within anaerobic environments, acetate is an important intermediate metabolite as 

it is utilized by various groups of microorganisms, including iron and sulfate reducers as 

well as methanogens18. Acetate is produced through fermentation of complex organic 

polymers or through homoacetogenesis. Homoacetogenesis, also known as 

chemoautotrophic acetogenesis, is defined as the reduction of CO2 with H2 to acetate 

through the acetyl Co-A pathway25. Therefore, the production of acetate serves as an 

important control in CH4 dynamics because it is both a substrate for acetoclastic 

methanogens, and homoacetogens are a potential competitor for H2 with 

hydrogenotrophic methanogens. Homoacetogenesis is generally considered a 
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thermodynamically unfavorable reaction due to low H2 partial pressure in porewater as a 

result of H2 consumption by TEA reducers and methanogens26–28. However, 

homoacetogens have been suggested to outcompete methanogens at low temperatures29–

32, and have been shown to do so across multiple wetland types33. A possible explanation 

for this competition could be homoacetogens utilizing interspecies H2 transfer34. 

Additionally, anaerobic peatland soils with low concentrations of TEAs have been shown 

to accumulate acetate and produce little CH4
22,24,35,36. The mechanistic controls of these 

dynamics are not well understood, but one possibility is homoacetogens are outcompeting 

methanogens under certain conditions.  

Recently, the importance of homoacetogenesis has become apparent in reaction-

network models attempting to quantify rates of microbial carbon transformation in 

peatlands37. These models incorporate temporal changes in porewater concentrations and 

stable carbon isotopes of CH4 and CO2, as well as microbial community data suggesting 

abundance of homoacetogens, to predict rates of greenhouse gas production38. The 

inclusion of homoacetogenesis not only increases the convergence of models with field 

data, but the presence of the process and degree to which it is coupled to acetoclastic 

methanogenesis leads to the interpretation that hydrogenotrophic methanogenesis has less 

relative importance for total CH4 production than previous models suggested. 

 

Objectives and hypothesis 

In this experiment we attempted, for the first time, to measure homoacetogenesis 

rates along with hydrogenotrophic methanogenesis in a northern Minnesota bog 

undergoing whole-ecosystem climate manipulation. The Spruce and Peatland Response 
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Under Changing Environments (SPRUCE) is a US Department of Energy funded project, 

which aims to assess the response of northern peatlands to increases in temperature 

throughout the soil profile and increased atmospheric CO2 concentrations. We utilized the 

regression-based design of the SPRUCE experiment to generate a range of incubation 

temperatures corresponding to depths throughout the peat profile. We predicted that 

homoacetogenesis rates would be low in shallow peat and at high temperatures 

corresponding with larger rates of hydrogenotrophic methanogenesis, and, 

correspondingly, homoacetogenesis rates would be higher at deeper peat depths and 

lower temperatures with respect to hydrogenotrophic methanogenesis. Chapter II of this 

dissertation contains co-authored work. 
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CHAPTER II 

MATERIALS AND METHODS 

Coauthor acknowledgement 

 The experimental procedures described in the chapter were performed 

concurrently with Laura McCullough’s research. While I was the primary contributor to 

my experiments, this project would not have been feasible without her assistance. 

Site description 

The SPRUCE (Spruce and Peatland Response Under Changing Environments) 

experimental field site is in the 8.1 ha S1 Bog (47º30.476’ N, 93º 27.162’ W) located 

within Marcell Experimental Forest (MEF) in northern Minnesota, USA. S1 Bog has 

been the subject of extensive scientific investigations and has been thoroughly described 

previously39–42. The subhumid continental climate at MEF has an average annual air 

temperature of 3.3 ºC, with daily mean extremes of -38 and 30ºC and mean annual 

precipitation of 768 mm43. S1 Bog is an ombrotrophic (i.e., precipitation-fed) peatland 

with minimal groundwater influence due to a perched water table. The bog soil is 

primarily the Greenwood series (Typic Borohemist, http://websoilsurvey.nrcs.usda.gov) 

with average peat depths of 2 to 3 m44, and a surface soil pH of ~4.1 that increases with 

depth to ~5.1 at 2 m. The vegetation is dominated by Picea mariana (black spruce) and 

Larix laricina (larch) with low-stature ericaceous shrubs and a nearly 100% cover of 

Sphagnum mosses.  
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Experimental Design 

 The SPRUCE experiment is a unique whole-ecosystem climate manipulative 

experiment that is examining how a northern bog responds to warming and elevated 

CO2
42 . The experiment uses a regression-based design within 10 open-top enclosures (7 

m tall, 12.8 m diameter): there are five warming treatments (ambient, 2.25, 4.5, 6.75, and 

9.0 ⁰C above ambient), each with an ambient and elevated CO2 (eCO2, ~ + 500 ppmv) 

treatment. Whole-ecosystem warming is achieved by a combination of deep peat heating 

to 3 m depth through an array of vertically installed below-ground electrical heaters and 

air warming from a propane-fired heat exchanger42. The experiment came on line in 

phases, with soil warming beginning in June 2014, whole-ecosystem warming in August 

2015, and eCO2 in June 2016. 

 

Sampling 

Peat was collected from each of the 10 enclosures in August and October of 2018. 

Using a Russian corer, we collected peat below the water table at depth increments of 30, 

50, 75, 125, and 200 cm. Each depth increment was divided into three subsamples (see 

below). Samples above the water table were not utilized for this experiment. In the field 

within 10 minutes of sample collection, ~ 7 g wet peat was placed into 25 mL serum 

bottles that were sealed with 20 mm butyl rubber septa and immediately flushed with N2 

gas for 10 minutes to maintain an anaerobic environment.  

Porewater was collected from piezometers installed at depths corresponding to the 

peat-sampling depths. The piezometers were open to the atmosphere, but their small 

diameter (< 1 cm) and pumping them out within 24 hr of sampling limited oxygen 
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exposure of the porewater. We used a peristaltic pump to collect porewater in syringes to 

eliminate bubbling, and the collected porewater was directly injected into N2-filled serum 

bottles. Total sampling time for both peat and porewater took 3 days, during which 

samples already collected were stored on ice or at 4 ⁰C. Peat and porewater bottles were 

then shipped on ice to the University of Oregon, weighed, and placed into incubators 

within 1 ºC of depth-specific, in situ temperatures over the prior week. 

 

Sample preparation 

In the laboratory, samples were processed in an anaerobic glove box filled with 

98% N2 and 2% H2 gas (Coy Laboratory Products Inc., Grass Lake, MI, USA). Porewater 

corresponding to the plot and depth the peat was collected from was added to create an 

approximately 5 cm3 headspace. The bottles were then capped and bubbled for 10 min 

with N2. The samples were then pre-incubated at in situ temperatures for ~48 hr in the 

dark to allow buildup of hydrogen and carbon dioxide. After the pre-incubation, CH4 and 

CO2 concentrations were measured in the samples. The samples were then spiked with 

CH4 to reflect typical in situ dissolved concentrations at each depth of 30 cm (0.25 mM), 

50 cm (0.35 mM), 75 cm (0.45 mM), 125 and 200 cm (0.7 mM)45. Two of the three 

subsamples were spiked with 0.695 μCi of NaH14CO3 tracer to track pathways of 

homoacetogenesis and hydrogenotrophic methanogenesis. Samples were then incubated 

at in situ temperatures for 48 hr in the dark. A subsample of peat from each plot and 

depth at the SPRUCE site was dried at 60 ⁰C for 3 d to determine moisture content. 
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CH4 pathway, hydrogen and acetate production 

Headspace CO2 and CH4 were quantified by gas chromatography using a flame 

ionization detector equipped with a methanizer (SRI Instruments, Torrance, CA, USA), 

and 14CO2 and 14CH4 production were measured separately with an in-line radioactive gas 

detector (LabLogic Systems Inc., Brandon, FL, USA). Hydrogenotrophic methane 

production (CH4,hyd) was calculated according to Keller and Bridgham (2007)24, as 

CH4,hyd  = aCα/Atg. The recovered activity of 14CH4 is represented by a, C represents the 

average ΣCO2 pool size during the incubation, A is the amount of 14C-labeled NaHCO3 

added, t is the incubation time, and g is the dry mass of peat in the slurry. For 

hydrogenotrophic methanogenesis, there is a 14C:12C isotope fractionation factor of 1.12, 

represented by α in the equation.  

Hydrogen production was quantified by gas chromatography with a Peak 

Performer 1 (Peak Laboratories, Mountain View, CA, USA). From a third replicate set of 

samples incubated without NaH14CO3, porewater was collected and filtered with a 

Whatman GF/F glass fiber filter (Sigma–Aldrich, MO, USA) and PES Membrane 0.22 

μm syringe filter (Millipore Express PLUS, Burlington, MA, USA). Acetate in filtered 

porewater was measured using a Dionex DX500 ion chromatograph system equipped 

with an HC-75 column (Hamilton Company, Reno, ND, USA) located at Chapman 

University (Orange, CA, USA).  

 

Quantifying homoacetogenesis 

We had previously measured rates of homoacetogenesis in soil samples using a 

H14CO3
- tracer and ion chromatography with an in-line fraction collector to isolate 
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radiolabeled acetate33. However, this method is extremely laborious, so we developed a 

new rapid method (Figure 2) to measure putative homoacetogenesis by quantifying the 

conversion of H14CO3
- to dissolved organic matter (DOM). This method is predicated on 

the assumption that after removal of radiolabeled microbial biomass, unreacted dissolved 

inorganic C (DIC), and CH4 produced that the remaining 14C in DOM is produced by 

homoacetogenesis. A variety of chemoautotrophic processes can occur under anaerobic 

conditions in nature that involve inorganic redox couples including sulfur, nitrogen, and 

iron compounds46,47. However, these reactions do not directly produce DOM and these 

compounds tend to be have very low concentrations in highly organic peats24. 

Hydrogenotrophic methanogenesis is also chemoautotrophic, but it too does not directly 

produce DOM. Thus, in short, dark, anaerobic incubations where microbial biomass 

turnover is minimized, the only known pathway to produced DOM is homoacetogenesis. 

There is one documented case where the chemoautotrophic production of propionate 

occurred in anaerobic excised rice roots48. Thus, there is some possibility that our 

putative homoacetogenesis measurements include the production of both acetate and 

propionate, which would not significantly change the ecological importance of this 

process. 

Following gas measurements of the 14C-radiolabeled samples, a 3 mL liquid 

aliquot from the bottles was passed through a 0.22 μm filter (Cole-Parmer, IL, USA) to 

remove microbial biomass, and briefly bubbled with air to strip out dissolved 14CH4. 

Then 200 μL 1M NaOH was added to drive pH above 10 and convert all DIC to the 

carbonate form, and 100 μL 1M BaCl2 was added to precipitate out excess 14C-DIC as 

BaCO3. After 24 hr, an aliquot without precipitate, where all 14C should be in DOM, was 
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added to 4 mL liquid scintillation cocktail (Sigma-Alrich, St. Louis, MO, USA), and 

quantified on a Tri-Carb® 2810 TR liquid scintillation analyzer (PerkinElmer, Waltham, 

MA, USA) after at least 8 hr of equilibration in the dark. We did extensive preliminary 

experiments to optimize the conditions for this procedure that minimized loss of acetate 

by bubbling while removing the vast majority of CH4 and DIC. Dead samples were run in 

all incubations and routinely had radioactivity < 0.237 nCi/mL, which was subtracted 

from live samples.  

 

 

FIGURE 2 | Conceptual diagram of the novel procedure to measure 

homoacetogenesis under in situ conditions. After removing all other forms of 14C, 14C-

DOM produced through presumptive homoacetogenesis was quantified on a liquid 

scintillation counter. Additionally, 14CH4 production in the headspace was measured 

using a radiometric gas detector. 
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Rates of homoacetogenesis (H) were calculated according to Ye et. al (2014)33, 

described originally by Hoehler et al. (1999)26, as H = aCα/ 2Atg. The recovered activity 

of DOM produced through homoacetogenesis is represented by a, and the other variables 

are the same as described above. For every mole of acetate produced, 2 moles of CO2 

must be consumed, which is accounted for by the factor of 2 in the denominator.  

 

Thermodynamic calculations 

The Gibbs free energy of hydrogenotrophic methanogenesis and 

homoacetogenesis was calculated for conditions at the SPRUCE site, as well as our 

laboratory incubation conditions, according to Conrad and Wetter (1990)29. 

 

Statistical analyses 

Log-transformed rates of hydrogenotrophic methanogenesis and 

homoacetogenesis, as well as the ratio between the two, were analyzed in R (version 

3.6.0) using linear mixed effect models (Linear and Nonlinear Mixed Effect Models 

version 3.1-137) with temperature as a continuous variable, depth as a categorical 

variable, and plot as a random variable. If there was a significant interaction between 

depth and temperature, a Tukey’s post hoc test (Least-Squares Means version 2.30-0) at P 

< 0.05 was performed to determine significant differences among depths. For 

significantly different depths or groups of depths, linear models with temperature as a 

response variable were created.  
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CHAPTER III 

RESULTS AND DISCUSSION 

Peatlands store globally significant amounts of carbon  

Peatland ecosystems contribute significantly to the global carbon (C) cycle 

because of their vast C storage in organic soils and substantial impact on atmospheric 

greenhouse gases6,9,49.   Anaerobic degradation of organic matter within these systems 

produces methane (CH4), a potent greenhouse gas. Methane has a sustained global 

warming potential 45-times greater than CO2 over 100 years8, and currently accounts for 

~20% of total radiative forcing11. Wetlands are the largest natural atmospheric CH4 

source and are currently responsible for about one-third of global CH4 emissions9,11. 

Methane emissions from wetlands have provided important feedbacks in past climates9, 

and whether climate change will increase CH4 or CO2 emissions from peatlands in a 

positive feedback mechanism is one of the most pressing questions in global change 

biogeochemistry9,49–52.  

 

Microbial pathways controlling CH4 dynamics 

Predicting the response of peatland C stores and CH4 fluxes to future climate 

forcing is challenging due to the mechanistic complexity of processes controlling CH4 

emissions. The two major microbial metabolic pathways that produce CH4 in freshwater 

anaerobic systems are hydrogenotrophic and acetoclastic methanogenesis16,17 (Figure 1); 

however, the respective contribution of these pathways to CH4 production in peatlands is 

not fully known36,53–55. Understanding the relative importance of these pathways is 
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crucial to informing Earth System Models (ESMs), which often do a poor job of 

capturing the large variation in rates of CH4 emissions among wetlands56–58.  

Homoacetogenesis, a microbial metabolic process in which CO2 is reduced with 

H2 to acetate through the acetyl Co-A pathway25,59, potentially contributes to CH4 

dynamics through competing for substrates with hydrogenotrophic methanogenesis and 

producing acetate to fuel acetoclastic methanogenesis. Yet this pathway is almost totally 

unstudied in natural systems, because it is methodologically difficult to quantify and it is 

considered thermodynamically unfavorable under low H2 porewater partial pressures60, 

which are typical in peatlands61. However, in natural systems, processes are not solely 

driven by thermodynamics; ecological and physiological factors can be highly influential. 

At lower temperatures homoacetogenesis appears to be more competitive than 

methanogenesis for H2
29–32, and has been shown to do so across multiple peatland types33. 

In this study, we elucidate the importance of homoacetogenesis relative to 

hydrogenotrophic methanogenesis and their response to future climate change, and 

analyze the implications of this research in modeling CH4 dynamics. We hypothesized 

that hydrogenotrophic methanogens would consume more H2 relative to homoacetogens 

in shallow peat corresponding with higher temperatures, and homoacetogens would be 

more competitive for H2 at deeper peat depths corresponding with lower temperatures. 
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Anaerobic C pathways in a peatland manipulative climate change study 

This study was part of the Spruce and Peatland Response Under Changing 

Environments (SPRUCE; http://mnspruce.ornl.gov) project located in the ombrotrophic 

(i.e., ran-fed) S1 Bog in Marcell Experimental Forest in northern Minnesota, USA. 

SPRUCE is the first field experiment to warm an entire bog, including vegetation and 

peat to at least 3 m depth in 115 m2 open-topped chambers42. It uses a regression-based 

design with five warming treatments ranging from +0 to +9 ºC above ambient at +0 and 

+500 ppmv atmospheric CO2 (eCO2). In August and October of 2018 (3 and 5 years after 

initiation of eCO2 and warming, respectively), we sampled anaerobic peat and porewater 

from the SPRUCE plots from depths ranging 25 to 200 cm below the surface. Samples 

were incubated anaerobically within 1 degree C of in situ temperatures, as well as at in 

situ CH4 concentrations, along with the addition of a NaH14CO3 radio-tracer to track 

pathways of hydrogenotrophic methanogenesis and homoacetogenesis. 

 Following a 48-hr incubation, hydrogenotrophic methanogenesis rates were 

quantified via gas chromatography and a radioactive gas detector, and calculated 

according to Keller and Bridgham (2007)24. Rates of homoacetogenesis were quantified 

through a procedure developed by us, and calculated according to Ye et al (2014)33. Our 

novel method, described in more detail within the Methods section, estimates putative 

homoacetogenesis through quantifying the conversion of H14CO3
- to dissolved organic 

matter (DOM). After removal of radiolabeled microbial biomass, unreacted H14CO3
-, and 

14CH4, homoacetogenesis is the only chemoautotrophic pathway currently known to 

produce DOM within a dark, anaerobic environment. There is one documented case of 

chemoautotrophic propionate production seen in washed rice roots48; however, the 

http://mnspruce.ornl.gov/
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occurrence of this process would not substantially change the ecological significance of 

our results.  

Rates of hydrogenotrophic methanogenesis decreased exponentially with depth 

and increased linearly with temperature in all but the 50 cm depth increment (Figure 3, 

Supplementary Table 1). These rates are similar to other measurements of 

hydrogenotrophic methanogenesis from similar systems24,62. Rates of putative 

homoacetogenesis decreased sharply with depth and linearly increased with temperature 

(Figure 4). As stated above, homoacetogenesis rates have rarely been measured in natural 

ecosystems, and this is the first study to examine temperature and depth responses under 

relatively in situ conditions. There was no significant correlation of eCO2 treatment with 

either rates of hydrogenotrophic methanogenesis or homoacetogenesis (Supplementary 

Table 1). 
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FIGURE 3 | Hydrogenotrophic methane production from anaerobic 

incubations. (a) Box plot of hydrogenotrophic methanogenesis rates in samples 

anaerobically incubated within 1⁰C of in situ temperatures. Different letters indicate 

significant differences among depths. (b) Within the significantly different depth 

increments, positive correlations with temperature occurred at 30 cm and (c) 75-200 cm. 

Linear regressions with 95% confidence intervals are depicted in black and gray, 

respectively. Note: The temperature effect of the 50 cm depth increment is not shown 

because the linear regression was not significant (p = 0.55, r2 = 0.02). 
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FIGURE 4 | Homoacetogenesis rates from anaerobic incubations. (a) Box 

plots of rates of homoacetogenesis in samples anaerobically incubated within 1⁰C of in 

situ temperatures. Different letters indicate significant differences among depths. (b) 

Positive correlations with temperature occurred at 30 cm and (c) 50-200 cm depth 

increments. Linear regressions and 95% confidence intervals are shown in black and 

gray, respectively. 
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The hydrogenotrophic methanogenesis and homoacetogenesis pathways utilize H2 

at a stoichiometrically equivalent ratio, allowing them to be directly compared with 

respect to their H2 use. The ratio of homoacetogenesis to hydrogenotrophic 

methanogenesis (Figure 5) increased with depth to a maximum at 100 cm and decreased 

with increasing temperature. Under the relatively in situ conditions of our experiment, 

rates of H2 consumption by homoacetogenesis at several depths were close to and at 

certain points exceeded that of hydrogenotrophic methanogenesis, suggesting substantial 

competition for H2 is occurring between these processes. Additionally, our results show 

this competition is sensitive to temperature, with increasing warming shifting the system 

away from homoacetogenesis and towards methane production via hydrogenotrophic 

methanogenesis.  
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 FIGURE 5 | Ratio of homoacetogenesis to hydrogenotrophic methanogenesis. 

The use of H2 at stoichiometrically equivalent ratios by homoacetogenesis and 

hydrogenotrophic methanogenesis allows for a 1:1 comparison of rates with respect to H2 

consumption. This ratio increases with depth (a) and decreases with temperature (b). 

Boxplots and linear regressions are in the same style described previously. 
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Dihydrogen concentrations increased substantially at 75 cm depth and below and 

at cooler temperatures (Supplementary Figure 1). These levels were weakly correlated 

with homoacetogenesis rates (p = 0.04, r2 = 0.05), but not with hydrogenotrophic 

methanogenesis (p = 0.26, r2 = 0.02). Additionally, acetate accumulation occurred during 

the incubation, and this accumulation was correlated with rates of hydrogenotrophic 

methanogenesis (p = 0.002, r2 = 0.09) as well as homoacetogenesis (p = 0.035, r2 = 0.04).  

 We calculated Gibbs free energy of hydrogenotrophic methanogenesis and 

homoacetogenesis for our incubations as well as field conditions. In all cases 

hydrogenotrophic methanogenesis was more negative, and homoacetogenesis often had 

thermodynamically unfavorable positive values. A possible explanation for these two 

processes to be occurring simultaneously is interspecies H2 transfer34,63,64 (Conrad and 

Babbel, 1989, Thauer et al, 2008, Stams and Plugge, 2009). 

 

Implications of results 

Acetoclastic methanogenesis is typically the dominant CH4 production pathway in 

anaerobic systems21,24, and increasing CH4 emissions are associated with a shift from the 

hydrogenotrophic to acetoclastic pathway65. Homoacetogenesis has been suggested to 

account for a considerable portion of acetate production in anoxic sediments33,66. Thus, to 

the extent this process is important in natural systems, its contribution of substrate to 

acetoclastic methanogenesis could have significant implications for global CH4 

production.  

The different methanogenesis pathways and CH4 oxidation have relatively strong 

isotopic discrimination that has often been used for decades to estimate in situ the relative 
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importance of the acetoclastic versus hydrogenotrophic pathway of methanogenesis and 

rates of methanotrophy67–69. However, homoacetogenesis has a similar isotopic fraction 

signature to hydrogenotrophic methanogenesis70, so the degree to which it is important 

may overestimate hydrogenotrophic methanogenesis. This has been demonstrated in 

reaction-network modeling of microbial carbon transformation in peatlands, where 

incorporation of homoacetogenesis into models increases the convergence of the model 

with field data when microbial community data is considered37,38. Additionally, CH4 

stable isotopes are used with atmospheric inverse modeling to estimate the wetland 

contribution to global CH4 emissions and their spatial distribution14,71. These models 

analyze atmospheric stable isotopic signatures with an assumption about the relative 

importance of the CH4 production pathways72. To the extent that these assumptions are 

incorrect due to the contribution of homoacetogenesis will make the global model 

assumptions incorrect. 
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APPENDIX: SUPPLEMENTARY FIGURES 

Linear mixed effect model Analysis Degrees of 

freedom 

P-value 

Hydrogenotrophic 

methanogenesis rates 

Temperature 1 <0.0001 

Depth 4 <0.0001 

Temperature:Depth 4 <0.0001 

CO2 treatment 1 0.23 

Homoacetogenesis rates Temperature 1 <0.0001 

Depth 4 <0.0001 

Temperature:Depth 4 0.007 

CO2 treatment 1 0.86 

Ratio of homoacetogenesis 

to hydrogenotrophic 

methanogenesis  

Temperature 1 0.007 

Depth 4 <0.001 

Temperature:Depth 4 0.50 

CO2 treatment 1 0.83 

 

SUPPLEMENTARY TABLE 1 | Table of linear mixed effect model results. 

Linear mixed effect models of hydrogenotrophic methanogenesis rates, 

homoacetogenesis rates, and the ratio of homoacetogenesis to hydrogenotrophic 
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methanogenesis were performed with temperature, depth, their interaction, and CO2 

treatment as predictor variables, with plot as a random variable. 

 

SUPPLEMENTARY FIGURE 1 | Hydrogen levels from anaerobic 

incubations. Hydrogen increased with depth (a) and decreased with temperature (b) 

following anaerobic incubations. Different letters indicate significant differences among 

depths. Linear regressions and 95% confidence intervals are shown in black and gray, 

respectively.  
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