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DNA replication is a core biological process that rapidly occurs in both 

eukaryotic and prokaryotic cells with extreme precision. Gene product 32 (gp32) is a 

ssDNA binding protein that is important in the T4 bacteriophage DNA replication 

complex. Gp32 is known to bind cooperatively spanning 7 nucleotides of ssDNA. Not 

only is it known to bind, but it has the ability to unbind from regions of exposed ssDNA  

during DNA synthesis. This thesis reports microsecond single-molecule FRET 

(smFRET) measurements on Cy3/Cy5-labeled primer- template (p/t) DNA constructs of 

known length and polarity with and without an addition of 0.5uM gp32. The p/t 

constructs are characterized by two different lengths, 14-nt poly(deoxythymidine) 

[p(dt)14] vs 15-nt poly(deoxythymidine) [p(dt)14] and by the location that the cyanine 

dyes(Cy3 and Cy5) are covalently attached to the DNA at the 3’ or 5’ ends. The 

measurements obtained report the distance between the chromophores that are used to 

label the ends of 14 and 15 nucleotide segments of ssDNA attached to a p/t DNA 

construct. These distance measurements can track the conformational changes seen 

between protein bound vs. unbound states on the microsecond time scale. To analyze 
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the data, a multipoint time correlation function analysis is utilized in order to compare 

the revealed kinetics of the possible conformational adaptation experienced by the 

ssDNA of interest. The results of our analysis demonstrate that both length and polarity 

of the ssDNA influence the way in which gp32 interacts with the ssDNA. The 14-nt 

templates have slower fluctuations than the 15-nt templates. The 5’ ssDNA constructs 

experience fluctuations faster than the 3’ ssDNA constructs. Therefore, this SSB is 

likely to play a critical role at the replication fork during DNA synthesis.  
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Introduction 

Background 

A primer on DNA: 

Deoxyribonucleic acid (DNA) is responsible for storing genetic information. 

DNA is a linear polymer molecule whose structure consists of a sugar-phosphate 

backbone connecting the sequences of nucleotide(nt) bases that is the genetic “code”. 

DNA is structured as a double-helix and consists of two complementary single DNA 

strands. There are four nucleotide bases that make up DNA: Thymine, Cytosine, 

Adenine, and Guanine. These nucleotide bases pair in a predictable fashion. There are 

three core biological processes in which DNA is involved: replication, repair, and 

recombination. DNA is preserved and replicated with high fidelity. In all organisms, 

DNA replication is necessary to allow for growth and reproduction upon cell division. 

However, as DNA is passed down from one generation to the next, fidelity errors can 

occur in the replication process. In order to minimize these errors, the DNA is involved 

in mechanisms known as repair and recombination. It is important to highlight that the 

human body exhibits these mechanisms of repair and recombination so that the human 

genome is only altered by a few nucleotides at most upon undergoing cell division. 

DNA is the key component of our diverse make-up as individual human beings. Thus, it 

is important that humans pass down non-mutated genetic information from generation 

to generation to avoid changes in cells that can lead to diseases such as cancer.  

DNA replication occurs at rates, “as high as 1,000 nucleotides per second” 

(Alberts, 2015). The double helix secondary structure of DNA allows for semi-
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conservative replication. Because Thymine only binds with Adenine, and Cytosine only 

binds with Guanine, each strand of DNA can act as a template to specifically duplicate 

the complementary strand by DNA base-pairing. Thus, in order to replicate DNA, the 

double stranded helix must be unwound and separated. Several proteins work in 

collaboration to successfully open up the DNA double helix and effectively create a 

replication fork of two single stranded regions of DNA, which are available as 

templates for the synthesis of new daughter strands. An enzyme helicase is responsible 

for unwinding the double-stranded (ds) DNA and functionally melting its secondary 

structure by separating the base pairs at the replication fork. At the replication fork, the 

single-stranded (ss) DNA templates are exposed for the template-directed synthesis of 

new daughter strands, which are catalyzed by DNA polymerases. Once the replication 

fork is established, there are two exposed single-stranded DNA. Single-stranded DNA-

binding proteins (SSBs) bind to the exposed regions of ssDNA while leaving the bases 

exposed to the surrounding aqueous environment so that they can still act as templates 

for DNA synthesis. DNA has a 5’ and 3’ end which creates the directionality observed 

in DNA synthesis. The 5' end contains a phosphate group, while the 3'end contains a 

hydroxyl (-OH) group. DNA is synthesized in the 5’ to 3’ direction, therefore, this 

known polarity is important because it allows one strand to be synthesized continuously  

(leading strand) and explains why the other is synthesized in pieces forming okazaki 

fragments (lagging strand). 
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Figure 1(Lodishh, et. al, 2000): This figure shows three 

nucleotides of DNA connected by two phosphor-diester bonds. 

The difference in structure that accounts for directionality is 

depicted.  

Single stranded DNA binding proteins: 

At the site of the replication fork, SSB proteins bind 

both tightly and cooperatively to ssDNA in order to protect 

and stabilize the ssDNA prior to the synthesis of daughter 

DNA strands. Immediately after the DNA helicase has 

melted the dsDNA, the ssDNA must maintain its single-

stranded structure free of base pairing until it is able to act as a template for DNA 

replication. Thus, SSBs bind to ssDNA to stabilize the separated strands and to prevent 

the DNA from adopting unfavorable conformations. For example, ssDNA will readily 

form short hairpin helices that can obstruct the desired DNA synthesis. However, when 

SSBs are bound to ssDNA, such secondary structural motifs cannot form. Once an 

individual SSB binds, it attracts other SSBs to bind in a cooperative fashion (Watson et. 

al., 2014). This cooperative binding allows the SSBs to also bind to each other. The 

interaction between SSBs acts to strengthen the stabilization of subsequent SSB binding 

to ssDNA. 
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Figure 2: This schematic demonstrates gp32’s three binding domains: N-terminal 

domain, Core domain, C-terminal domain. 

 Thus, it is important that these SSBs bind because when ssDNA is coated with SSBs, it 

takes on an elongated state that facilitates the ssDNA’s function for templating 

replication. As seen in Figure 3, SSB proteins are an integral component of the DNA 

replication system, allowing the single-stranded regions of DNA to carry out its 

function as the template for DNA polymerization (von Hippel, 2007).  Figure 3 

demonstrates a supposed distribution of gp32 molecules which inevitably varies from 

one complex to the next depending on the lengths of the exposed ssDNA segments. 

Nonetheless, the SSB proteins have been found to form a “central part of the T4 DNA 

replication complex” (Albert & Frey, 1970), in addition to playing important roles in 

DNA recombination and repair mechanisms. Therefore, advancing our understanding of 

their functional mechanisms is significant to all biological processes involved in gene 

regulation.  

 

 



 
 

5 
 

 

 

 

 

 

 

 

 

Figure 3(Lee, et. al, 2016): This is a schematic of the primary protein components 

involved in the replication of DNA within the T4 bacteriophage. The schematic 

demonstrates the elongating DNA replication complex. It depicts the gp32 proteins 

bound in a polar fashion to the single-stranded portions of the DNA within the 

replication complex.  

The specific SSB being studied is gene product 32 (gp32). Gp32 is known to 

cooperatively bind to ssDNA and takes up seven DNA nucleotides (Alberts & Frey, 

1970). Because gp32 takes up seven DNA nucleotides on a region of ssDNA, the 

p(dT)15 DNA construct can only bind up to two gp32 molecules as seen in figure 2. On 

the phosphate backbone of the ssDNA, the gp32 protein’s positive core is bound. 

Subsequently, when another gp32 protein binds, it will be in an adjacent position and 

bound to the n-terminal domain of the initially bound gp32.  Gp32 is a non-specific SSB 

with three binding domains: N-terminal domain, core domain, and the C-terminal 

domain (Jordan & Morrical, 2015). Three binding domains mean that the protein can 

bind or interact with other components at three different sites. The N-terminal domain is 

responsible for mediating self-association to encourage bound monomers to 

cooperatively interact with additional gp32 monomers. The core domain of gp32 



 
 

6 
 

contains the ssDNA binding site, and the C-terminal domain mediates interactions with 

other proteins (Jordan & Morrical, 2015). Furthermore, gp32 bound on ssDNA can 

inhibit it’s uncoiling, which indicates that this formation acts as a “stearic regulator” for 

the components of DNA accessible to the DNA dependent ATPase (Dda) helicase for 

processing (Jordan & Morrical, 2015).  The addition of SSB’s help straighten out the 

DNA, therefore when two gp32 are bound, figure 4 shows a straighter conformation of 

the ssDNA construct. As a steric regulator, the SSBs help determine which 

intermediates are accessible for processing by the Dda helicase during the core 

biological processes of replication and recombination.  

 

 

 

 

 

 
 

Figure 4: This is a schematic of the unbound vs. bound states of gp32 binding on the 

p(dT)15 DNA construct. Two bound gp32 saturates the area of ssDNA on the p(dT)15 

DNA construct, thus it can only bind up to two molecules of protein.  

The T4 bacteriophage: 

There are two types of organisms: eukaryotes and prokaryotes. Eukaryotes are 

complex multicellular organisms such as human beings, while prokaryotes are viruses 

and bacteria whose genetic material is packaged into much simpler chromosomes than 

their eukaryotic counterparts. Therefore, in order to better understand eukaryotic 



 
 

7 
 

processes, prokaryotes can serve as simpler models to investigate the core biological 

processes that regulate genomes. The T4 bacteriophage is one example of a common 

prokaryotic virus that has not only been thoroughly studied but has also influenced 

many discoveries in molecular genetics.  For instance, the genetic code, and the 

confirmation that DNA is the genetic substance has been understood more clearly after 

studying T phages. The T4 Bacteriophage is able to replicate its genome in a simple 

manner by using a limited number of molecular components, while still using the major 

replication sub-assemblies that characterize eukaryotic organisms (Lee et. al., 2016). 

Similar to eukaryotic replication, T4 utilizes a helicase-primase complex to open 

dsDNA into two single-stranded regions, primes DNA synthesis on the “lagging” 

strand, has a DNA polymerase, and replication clamps (Lee et. al., 2016).  As a result, it 

is the simplest model for understanding DNA replication in higher organisms and 

allows us to explore in the mechanistic pathway of SSB assembly and the 

conformational dynamics between these proteins and their nucleic acid targets.  

Previous Research and Rationale: 

The structure of DNA plays a major role in determining whether or not a SSB 

will bind. Segments of DNA that are rich in adenine and tyrosine base pairs are less 

stable due to segments of DNA that are rich in cytosine and guanine base pairs. 

Therefore, due to DNA’s length with heterogeneous sequences, the genome will melt in 

a multistate fashion (von Hipple, 2013). This heterogeneity of dsDNA stability suggests 

that the DNA genome will experience thermally motivated fluctuations in conformation 

at physiological temperatures.  Thus, the behavior of the DNA is sequence dependent 

and the changes in conformation it experiences may reveal information that influences 
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the binding of regulatory proteins and protein complexes in reactions that require 

dsDNA ‘opening’” (von Hipple, 2013). Gp32 is more likely to bind to ssDNA than 

dsDNA, therefore this suggests that according to the laws of thermodynamics, this 

specific SSB should function as a ‘DNA melting protein’ (Alberts & Frey, 1970).  This 

implies that gp32 should, in theory, decrease the melting temperature to allow for 

saturation of ssDNA with gp32 (von Hipple, 2013). However, previous experiments did 

not find this to be the case in most duplex DNA molecules. Because there wasn’t 

significant evidence of gp32 acting in this expected manner, it can be predicted that the 

melting must be kinetically blocked (von Hipple, 2013). 

In 2015, research showed that Gp32 is undeniably a significant SSB that plays a 

role in regulating Dda helicase activity which may have influence on the outcomes of 

the core biological processes that DNA is involved in (Jordan & Morrical, 2015). The 

SSB Gp32 has been found to form cooperatively bound clusters that prefer to assemble 

in the 5′ to 3′ direction during DNA replication at the replication fork of ssDNA (Jones 

et al., 2004). Understanding this preferential assembly is important because it 

encourages the availability of the generated ssDNA for replication prior to full 

saturation by the Gp32 protein (Jordan & Morrical, 2015). It was proposed in 1995 that 

Gp32 slides freely along ssDNA (Shamoo et al., 1995). If this is true, it is important to 

know how assembly and “sliding” affects the conformation of the ssDNA during 

replication because it may exert influence over the likeliness that replication errors will 

occur. Furthermore, if Gp32 does in fact slide freely, the clusters that Gp32 forms could 

be moved by Dda and act as if it were a break on the helicase, which would functionally 

slow down the rate at which DNA is replicated (Jordan & Morrical, 2015). Ultimately, 
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the results of the study suggest the paramount importance of the Gp32 SSB regulatory 

function. With that being said, understanding the protein’s mechanism for regulation of 

helicase activity in the T4 bacteriophage system with respect to ssDNA is valuable to 

understanding how it achieves this function and can be indicative of the role SSBs have 

in the replication of eukaryotic DNA.  

In early research on the mechanism of SSB’s, bulk solution studies had been 

used in order to explain binding thermodynamics of gp32. However, since then high-

resolution research has been performed in order to indicate a detailed explanation of the 

structure and interactions of SSBs with ssDNA. After improvements in single-molecule 

spectroscopic techniques, researchers in the Marcus and von Hippel labs at the 

University of Oregon presented an approach to further studying the dynamics of gp32-

ssDNA interactions. They published an article in 2016 describing that their approach 

was based on the analysis of single-molecule Förster resonance energy transfer 

(smFRET) studies of ssDNA backbone fluctuations using fluorescent cyanine dyes as 

FRET pairs on constructs of DNA replication forks. The study initiated a 

characterization of the binding dynamics of gp32 as necessary for influence of the 

binding of sub-assemblies necessary to carry out DNA replication.   

  Research didn’t cease there. Another article was published in 2017 by 

researchers in the Marcus-von Hippel labs. The publication focuses on how the use of 

microsecond single-molecule FRET has been used to determine the assembly pathways 

of T4 ssDNA binding protein onto model DNA replication forks. The experiments 

allowed for the determination of detailed kinetic pathways about the assembly of gp32 

dimer-ssDNA filaments using a 15-nucleotide ssDNA template as the substrate. The 
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analysis of these experiments led to identification of short-lived gp32 monomer-ssDNA 

intermediates (Phelps et. al, 2017). However, it was concluded that the observation of 

the bound states mandates signal fluctuations on the microsecond timescale and their 

sample of smFRET experiments were far too noisy to undergo analysis using hidden 

markov modeling (HMM). Therefore, in the future it will be important to collect data 

with an increased signal to noise ratio in order to perform this desired HMM analysis. 

Without this modeling, the research was still able to conclude that gp32 monomers do 

not slide freely along ssDNA like gp32 clusters do as proposed by the previously 

discussed study that was performed in 2015 by Jordan and Morrical. Thus, it can be 

deduced that the formation of cooperatively bound clusters of the SSBs must have an 

initially bound gp32 monomer that’s positioned so that it can accommodate additional 

binding of gp32 proteins (Phelps et. al., 2017).  Their research makes it clear that the 

subsequent binding after an initially bound gp32 is important because otherwise the 

singly bound protein will dissociate and be unable to act as a regulatory component of 

DNA replication. Nevertheless, additional research is necessary to determine the limits 

to this mechanism, and to provide further detail about what determines whether there is 

a bound gp32 monomer or gp32 clusters.  

Research Question 

The topic of research I am investigating in my thesis is to further understand the 

mechanisms of gp32 filament assembly and sliding on ssDNA templates of known size 

and polarity. In order to achieve this purpose, my exploration consists of asking "What 

is the binding mechanism of gp32 on single stranded DNA, what conformational 

changes are seen, and how does polarity and length affect gp32 protein sliding?”  
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Methodology 

In order to determine the binding mechanism of gp32 we take advantage of 

single-molecule FRET. The FRET efficiency reflects changes in distance and is useful 

for determining conformational changes of molecules. The phenomenon of FRET 

spectroscopy involves the distance-dependent transfer of energy between two 

fluorophores with spectral overlap.  FRET is calculated by dividing the intensity of the 

donor molecule by the sum of the intensity of both the donor and acceptor over a certain 

amount of time. Therefore, by site-specifically labeling the DNA with FRET 

chromophores Cy3 and Cy5, the change in FRET signal is interpreted as a distance on 

the DNA polymer. Cy3 and Cy5 are utilized because they have a high florescence 

quantum yield and they do not disturb the DNA backbone. They are able to attach to 

DNA templates without disruption of the DNA structure because they are small 

chromophores characterized by a structure very similar to that of the DNA backbone as 

demonstrated in figure 5.  

 

 

 

 

 

Figure 5: This is the structure of the Cy 3 and Cy 5 chromophores being utilized during 

the single molecule experimentation to record fluorescent signals and calculate FRET.  
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In this work, four different fluorescently labeled primer-template(p/t) DNA 

constructs are being used to collect single molecule data. These constructs are 

characterized by two different lengths, 14-nt poly(deoxythymidine) [p(dt)14] vs 15-nt 

poly(deoxythymidine) [p(dt)14]. In addition, the cyanine dyes(Cy3 and Cy5) are 

covalently attached to DNA on either the 3’ or 5’ side of the fork junction. Thus, the 

constructs allow us to study different polarities, 3’ Cy3 attachment vs 5’ Cy3 

attachment. The four constructs utilized are depicted by a schematic in figure 6.  

 

 

 

 

 

 

Figure 6: This is a schematic of the four constructs used during the single molecule 

experimentation. The blue circle at the base of the dsDNA region represents the biotin-

chemistry that is used to bind the DNA to the quartz slide that is being imaged. The red 

circle depicts where the cy5 chromophore is attached and the green shows where the 

cy3 chromophores are attached for each of the four constructs.  

Traditional ensemble measurements are limited to determining an average signal 

of many molecules and thus can’t reveal the transition between short-lived intermediate 

states. Therefore, single molecule spectroscopy is being utilized instead to allow the 

observation of one molecule over time. In doing so, it allows us to learn about the 

dynamics and identify short-lived intermediate states. To perform the single molecule 

experiment, we use a microscope to image labeled DNA chemically attached to a quartz 

slide. The DNA is attached to the quartz slide using biotin neutravidin chemistry. The 



 
 

13 
 

DNA is attached to the slide to ensure that the DNA does not move around during 

imaging which allows the imaging of the single molecule over extended time. The 

microscope sends the image to the electron-multiplying charged coupled device 

(emCCD) or avalanche photo-diodes (APD). emCCD’s image the molecules at 

millisecond(ms) resolution, while the APDs measure fluorescence at a faster resolution 

(𝜇𝜇sec, or one-millionth of a second). The emCCDs image many molecules 

simultaneously(figure 8B), whereas the APD has a single element for measuring 

fluorescence intensity which can only be used to monitor a single molecule at a time 

(figure 8A).  

 

 

 

 

 

 

 

 

Figure 7: This is a screenshot of the emCCD split screen. The donor is detected on the 

left side while the acceptor is detected on the right side of the image. From this image, 

the donor is mapped to the acceptor to determine the location of the corresponding 

chromophore pair.  

Because many of the important intermediates only last for milliseconds (one-thousandth 

of a second) and less, we need the faster detection resolution in order to visualize them. 

The single-molecule set up includes a 100µm pinhole that limits the fluorescence to one 
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molecule and focused onto the APDs (figure 8A).  The fluorescence from the donor and 

acceptor is spectrally separated in order to monitor both fluorophores independently so 

that the relative fluorescence intensity can be used to calculate FRET. Single-molecule 

data is taken on all four constructs that consist of only DNA, and on constructs of DNA 

with an addition of gp32 protein.  

The purpose of the single molecule experiment is to determine the quantity and 

nature of conformational states observed, as well as the rates associated with transitions 

between states from the analysis of single-molecule trajectories.  

 

 

 

 

Figure 8: (A) A 100-micron pinhole blocks the fluorescence from all but one molecule. 

Subsequent to the pinhole, the light that passes through is separated and focused onto 

two avalanche photo-diodes (APDs).  APDs  are utilized for μsec resolution. (B) Biotin-

labeled DNA constructs are chemically attached to quartz slides. The slide is then 

imaged with a high magnification microscope onto a detector. The electron-multiplying 

charge coupled device (emCCD) is used for millisecond resolution.   
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Results 

The primer template strands of DNA being used are 14- and 15- nucleotides 

long.  Because a gp32 protein occupies a binding site of seven nucleotides long, both of 

these ssDNA templates are limited to supporting a maximum of two gp32 proteins at 

the same time.  When a gp32 protein binds to ssDNA, it is known to straighten out the 

conformation of the region to which it is bound. This interaction increases the 

separation between the Cy3 and Cy5 labels added to the regions of ssDNA being 

studied. In turn, when a gp32 protein is bound it results in a decreased smFRET 

efficiency. Therefore, gp32 binding to varied ssDNA templates induces stochastic 

transitions between conformational states of the primer template strands under 

investigation.  

Figure 9 highlights the differences in raw data retrieved between DNA only and 

DNA with 0.5uM gp32. Looking at the smFRET trajectories of donor(Cy3) and 

acceptor(Cy5) it becomes apparent that the two intensities experience a dramatic 

increase in correlated fluctuations in the presence of 0.5uM gp32. This is also 

demonstrated in the graphical representation of FRET(blue). In the raw data from 

a DNA only recording, there is a relatively stable calculation for FRET. The sudden 

decrease is representative of a photo bleach that occurred during the duration of 

the recording. The DNA with 0.5uM gp32 data, in contrast, shows clear fluctuations 

in FRET values. These FRET value fluctuations are predictive of the DNA 

undergoing conformational changes throughout the recording as a result of the 

binding and unbinding of gp32.  
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Figure 9: Representative single-molecule donor Cy3 (green), acceptor Cy5 (red), and 

smFRET trajectories (blue) taken from the 3’ -p(dT)14  DNA construct, and linear 

dichroism (black). (A) Microsecond Resolution Single-Molecule FRET on the 3`-

p(dT)14 with 0.0uM gp32. (B) Microsecond Resolution Single-Molecule FRET on the 

3`-p(dT)14 with 0.5uM gp32. 

Furthermore, the histograms seen in figure 10 provides insight to all the possible 

conformational states taken on by the DNA at a given resolution. In addition, they 

clearly depict the distribution of these conformations for the constructs of varied length 

and polarity. There is clearly a wider distribution of observed FRET in the data taken 

with 0.5μM gp32 in comparison to the FRET values calculated from the data taken 

of DNA only. This wider distribution implies that the DNA is undergoing more 

fluctuations and taking on different confirmations when gp32 is present at 0.5μM. 

Examples of these conformations are depicted by the 0-bound, 1-bound, or 2-

bound state demonstrated in figure 3.  
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Figure 

10: These are the histograms associated with each of the DNA constructs that were 

imaged with DNA only and with DNA + 0.5𝜇𝜇𝜇𝜇 gp32. Each of the histograms reveals 

the observed distribution in FRET states.  
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In order to interpret the data that was collected during the smFRET experiment, 

the application of  time correlation functions (TCFs) was utilized. TCFs demonstrate the 

rate at which the system experiences changes between states. Furthermore, TCF’s allow 

the study of kinetics in addition to the mechanisms of protein binding, unbinding, and 

the possible sliding of gp32. The second-order TCF of the signal from the FRET at a 

particular instant is the average product of two consecutive measurements made at times 

t1 and t2, which are separated by the interval τ = t2 – t. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Calculated, normalized C(2)(𝜏𝜏) (2-point time correlation functions) at 1 µsec 

resolution. The decays are plotted using a linear-log axes scale. The graph shows that 

the templates without an addition of gp32 the C(2)(𝜏𝜏) can be fit with three exponentials, 

however, when gp32 is added, to properly fit the C(2)(𝜏𝜏), it required at least four 

exponentials. 

In the graph of the second-order TCF seen in figure 11, it is clear that when data 

was taken on the constructs of DNA only, the rate of decay is faster than the data taken 
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on the constructs of DNA with an added 0.5𝜇𝜇𝜇𝜇 of gp32. Furthermore, the DNA only 

data required 3 exponentials,  while the DNA + 0.5𝜇𝜇𝜇𝜇 gp32 data required at least 4 

exponentials. It is important to recognize that this difference in fit exists. The 

significance of the decay components in second-order TCF’s are explained by the 

theory of Markov chains (Phelps et al., 2016). Markov chain theory is responsible for 

characterizing a chemical system’s potential kinetics in equilibrium and states that often 

times stochastic transitions between identified N states occur (Reichl, 1998). According 

to the Markov chain theory, second-order TCF’s contain N-1 decay components. 

Therefore, the data taken on all four constructs of DNA only TCF suggests that N ≥ 4, 

and the data taken on all four constructs of DNA +0.5𝜇𝜇𝜇𝜇 gp32.suggests that when 

SSB’s are added N ≥ 5.  

Table 1: This table organizes the results of fitting the microsecond resolution 2-point 

TCFs. The reported fluctuation rates are inverse rate constants.  

             According to the data represented in table 1, the 14-nt templates have 

slower fluctuations than the 15-nt templates. In addition, the 5’ ssDNA 

constructs experience fluctuations faster than the 3’ ssDNA constructs. In all 

four constructs, the smFRET trajectories qualitatively  reveal the same behavior 

as the experimental trajectories, therefore the data is able to provide evidence  
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that describes the dynamics of the ssDNA-(gp32)n system. It is important, 

however, to keep in mind that the indicated intermediates are incredibly short 

lived.  

Discussion 

The results of the analysis above provides indication of the basic assembly 

mechanism of  the cooperatively bound T4 bacteriophage ssDNA and gp32. In addition, 

the results can contribute insight to the way in which the replication cofactors are 

attracted by the binding of SSB’s during replication, recombination and repair. In each 

of the constructs, with and without gp32, a fast fluctuation occurs around 1.8𝜇𝜇𝜇𝜇. The 

consistency across the constructs both with and without gp32 suggest this could 

potentially be the timescale in which nucleotides fluctuate. The slow fluctuation rate is 

only observed in the DNA + 0.5𝜇𝜇𝜇𝜇 gp32 data. Therefore, it can be inferred that this 

slowest fluctuation is the time scale that the protein is interacting with the DNA 

forks. 

It is important to note that the data described in the results demonstrates 

something about both length and polarity. When there is DNA only, the length of the 

single stranded region dictates the timescale of the fluctuations between intermediates. 

The ssDNA with a length of 14 nucleotides displays faster fluctuations than the ssDNA 

with a length of 15 nucleotides. However, when protein is present in solution, the 

polarity appears to take precedence and determines the timescale of the characteristic 

fluctuations. The constructs where the single stranded region’s 5’ end is exposed 

demonstrates faster fluctuations than when the 3’ end is exposed.  
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Why do the 14-nt constructs fluctuate faster than the 15-nt constructs? 

The faster fluctuations observed in the 14-nt constructs can be a result of the 

decreased distance for the Cy3 and Cy5 molecules to travel in order to become close in 

proximity. With a decreased distance between the fluorescent molecules, it allows for a 

greater transfer of energy quicker due to the molecules having to travel a smaller 

distance to become within close proximity. In addition, in the presence of protein, the 

15-nt templates can have a gp32 dimer bound in two ways (1-14 or 2-15). This is 

because gp32 takes up 7-nt and therefore, a bound dimer would saturate the 14-nt 

templates leaving it with only one possible location to bind (1-14). With that being said, 

because the 15-nt has more potential orientations for the protein of interest to bind, it 

may experience slower fluctuations.   

Why do the 5’ constructs fluctuate faster with protein? 

Figure 12: (A) This schematic demonstrates the proposed mechanism of sliding on the 

5’ templates. It demonstrates that because analysis suggests gp32 slides from the 3’ to 

5’ direction, on the templates being studied the gp32 could “fall off.”(B) This schematic 

demonstrates the proposed mechanism of sliding on the 3’ templates. It demonstrates 

that because analysis suggests gp32 slides from the 3’ to 5’ direction, on the templates 

being studied the gp32 could be inhibited from unbinding due to interaction with the 

DNA replication fork.  

The analysis suggests that the dimer slides from the 3’ to 5’ of end of the 

ssDNA. This proposed direction of “sliding” is consistent with the direction in 
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which DNA polymerase reads DNA  which would make physiological sense due to 

gp32’s regulatory role in both potentially attracting DNA polymerase, and in 

coordinating repair mechanisms to ensure DNA is replicated with precision. With 

that being said, this proposed sliding mechanism is consistent with our data 

because it would mean that dimers bound to the 3’ constructs will slide toward the fork, 

but dimers bound to the 5’ construct will slide away from the fork as seen in figure 12. 

On the DNA constructs being studied, if the dimer is sliding away from the fork, it may 

“fall off” the single stranded region of DNA (figure 12A). The potential for the dimer to 

“fall off” would promote a quicker rate of fluctuation between the bound and unbound 

conformations, which is consistent with our data (table 1). However, for the 3’ 

constructs being studied, the dimer would slide toward the DNA fork (table 12B). If the 

protein slides toward the DNA fork, it’s interaction with the double-stranded region of 

DNA may encourage the dimer to stay bound for a longer duration of time and hence 

lead to the observed slower rate of fluctuation consistent with the data in table 1.  
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Conclusion 

Correlation functions can now be fit to smFRET experiments on DNA at 

microsecond resolution. The two-point time correlation functions have assigned 

preliminary values that are able to describe the decay.  With respect to the four primer 

templates we studied, there is evidence that the DNA templates with 14 nucleotides 

experience fluctuations slower than the DNA templates with 15 nucleotides. In addition, 

the 5`-constructs fluctuate at faster rates than the 3`-constructs.  

Relevance 

Based on previous research, it becomes clear that SSBs play a significant role in 

the regulation of helicase activity (Jordan & Morrical, 2015). Given that helicase is the 

primary enzyme responsible for initiating DNA replication, it is important to understand 

the mechanism and regulation of ssDNA binding proteins for advancement in the fields 

of oncology, and drug development. Cancer, although extremely complex, can be 

simply defined as a genetic disease that is developed as a result of mutation in genes 

that exert influence over cell birth and cell death. When there is a balance between cell 

birth and death the tissues are healthy and at a state of homeostasis. Proto-oncogenes 

are responsible for promoting cell division or cell survival in eukaryotes, while tumor 

suppressor genes are in charge of inhibiting unnecessary cell division or cell survival. 

Mutating either of these could cause inappropriate activity that leads to a disruption in 

the cell ultimately leading to cancer. Therefore, it is extremely important to understand 

the core biological processes associated with DNA in order to understand what specific 

mutants have possible relation to cancer.   
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Existing research provides evidence of the central roles played by SSB’s in 

DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-

checkpoint activation, and telomere maintenance (Ashton et. al., 2013). Therefore, 

because of SSB’s importance in mechanisms used to maintain a homeostatic balance 

between cell birth and cell death, drugs have been developed to inhibit certain SSBs 

from binding ssDNA in humans preventing the progress of replication (Wu et. al., 

2016). With that being said, it is of increased importance to fully understand their 

mechanisms of interaction with DNA in order to continue to develop the necessary 

pharmaceuticals to aid in inhibiting the progression of unwanted DNA replication in 

addition to encouraging the mechanisms of DNA repair when necessary to avoid 

unwanted mutations that can lead to malignancy.  

Future Directions 

Although there have been preliminary values associated with the TCF’s reported 

according to the three-exponential fit to the DNA only data and at lease a four-

exponential fit to the DNA with 0. 5μM gp32, it is possible that there is an additional 

component to these reported protein-mediated decays.  A reason this component may 

have gone undetected includes the possibility that it occurred over a longer period of 

time that wasn’t able to be captured with the microsecond resolution data. A future 

direction of this research includes determining if this additional component does 

indeed exist.  

In addition, time density plots (TDP’s) and hidden markov models (HMM) 

can be utilized as a method of analyzing the single molecule data collected during the 
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experiment. HMM could help determine which conformations are statistically 

significant, and TDP’s could help determine the ways in which the conformational 

states are connected with one another.  

Other SSB’s that are known to play a direct role in DNA replication can be 

studied in a similar manner to see how the data retrieved compares or contrasts to the 

data yielded as a result of the experiment with gp32. Furthermore, in the future human 

SSB’s can be analyzed to identify differences between the simple T4 bacteriophage and 

higher order organisms. 
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