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A longstanding goal in evolutionary biology is to link differences in traits 

among organisms with genetic variants in their genomes. Hybrid populations are 

excellent models for studies that aim to associate such phenotypic variation with regions 

of the genome. The Riverbend section of the McKenzie river in Oregon is home to a 

hybrid population of freshwater-like and ocean-like threespine stickleback 

(Gasterosteus aculeatus). Stickleback are small fish that live in a variety of aquatic 

habitats and appear highly armored in oceanic and brackish environments and often 

exhibit a loss of armor in freshwater systems. Previous work in this population 

demonstrated that variation in a handful of bony traits encompassed the differences 

observed between oceanic and freshwater types. I hypothesized I would see similar 

variation in the pelvic defensive structure–a group of bones that surround the fish and 

protects it from predation–and that by association mapping, I would identify genetic 

variants contributing to the diversity in this trait. For this thesis, I measured 12 aspects 

of the defensive structure in 192 fish and used 19,540 genetic markers to perform a 

genome-wide association analysis. Here, I show that the defensive structure and its 
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components display abundant variation between individuals in this population. I 

describe the genetic architecture of this set of traits and report genetic regions of 

association, some of which overlap with previously discovered regions. In addition, I 

found novel regions of association for a subset of the traits and report candidate genes 

in these regions that may contribute to the phenotypic differences observed.  
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Chapter I 

The Genetic Basis of Phenotypic Variation: How Do We Connect Genotypes to 

Phenotypes? 

 Biologists and other observers of the natural world have long been interested in 

the appearance of organisms and the diversity of forms organisms can take (Gessner 

1551; Darwin 1859; Mendel 1865; Wallace 1871). Phenotypes–the appearances or 

behaviors of organisms (Roll-Hanson 2009)–can vary not just between different 

species, but also between individuals that belong to the same species (Liu et al. 2009; 

Branicki et al. 2011; Wood et al. 2014). Humans are a straightforward example of 

intraspecific variation. We have different skin tones, face and body shapes and hair 

color, among many other features. These variations are controlled by changes in our 

genome (Mendel 1865) and are called genotypes (Roll-Hanson 2009). Before the 

invention of recent technologies such as high-throughput sequencing tools, we did not 

have a clear understanding of the link between genotypes and phenotypes (Reuter et al. 

2015). But with the discovery of DNA (Watson and Crick 1953) and how traits are 

passed from one generation to the next (Darwin 1859; Mendel 1865), we are beginning 

to understand how these differences in appearance arise.  

A Brief History of Landmark Genetic Discoveries 

 In order to understand to explore the connection between phenotype and 

genotype, we must first understand the early discoveries of genetic drivers and 

inheritance that made studies like this thesis possible.     
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Czech scientist Gregor Mendel was the first to discover the particulate 

mechanism of inheritance with his famous pea experiments (Mendel 1865). Mendel 

cross-bred pea plants (Pisum sativum) over several generations and found that the seven 

traits: flower color, flower position, stem length, seed color, seed shape, pod color, pod 

shape were inherited without a blending of parental characteristics (Mendel 1865). This 

blending, called incomplete dominance, was the prevailing assumption at the time 

(Darwin 1868; Fisher 1931). The peas displayed complete dominance, where one allele 

completely masks the other. From these experiments, Mendel was able to conclude that 

each trait was inherited by factors we now call alleles. He also deduced that an 

individual inherits one allele from each parent for each trait and that the trait may not 

show up in an individual but can show up in future generations (Mendel 1865; Wood 

1995). Mendel’s research helped establish a basis for studies of genetic drivers of 

appearance (Bateson 1913; Parsons and Bodmer 1961; Dunn 1991).  

Heritable traits are more likely to persist in a population–through a process 

called natural selection (Darwin 1859; Fisher 1930). English scientist Charles Darwin 

gathered significant evidence from the natural world–just before Mendel’s work with 

peas–including on the now famous Galápagos finches. He concluded that the finches on 

the Galápagos islands were different but closely related species that, due to a process 

called adaptive radiation, evolved different beak shapes to become more effective 

foragers of a variety of foods (Darwin 1859). In natural selection, organisms better 

suited to their environment reproduce and pass on their genes, changing the phenotypic 

and genotypic makeup of a population (Fisher 1930; Williams 1966). Just like pea 

color, beak shape is a heritable trait (Darwin 1859; Grant and Grant 2002; Abzhanov et 
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al. 2004; Grant and Grant 2006). The genome ‘instructs’ the beak to look a certain way 

and that same script is more likely to be passed down to future generations if the beak 

shape allows the bird to acquire more resources (Darwin 1859; Grant and Grant 2002). 

Darwin’s findings helped reveal the connection between environment and phenotypic 

variation and thus serves as a foundation for this thesis.  

Technological Advancement Makes Improved Genetic Studies Possible 

New sequencing technologies are producing genetic sequences from a vast array 

of organisms at an ever-improving rate (Reuter et al. 2015; Hohenlohe 2018). We now 

have the capacity to identify and quantify genetic variation of populations (Yu and 

Buckler 2006; Baird et al. 2008; Li 2011; Catchen et al. 2013; Alligood 2017). This 

allows us to potentially identify the genetic basis of phenotypic variation (Arya et al. 

2011; Pallares et al. 2014; Kusakabe et al. 2016; Alligood 2017). One method to link 

genotype to phenotype is a technique called association mapping (Weigel and Nordborg 

2005; Hoekstra et al. 2006; Yu and Buckler 2006; Li 2011; Reed et al. 2011; Pallares et 

al. 2014; Alligood 2017). Variation in the genome of an organism is correlated with 

differences in a quantifiable phenotype, such as height. When individuals within a 

population mate and reproduce, undergoing genetic recombination, the population 

evolves, through natural selection, to better adapt to its environment (Darwin 1859; 

Fisher 1930). By studying a single population, we can look at the small, individual 

changes in a near-identical genome called single-nucleotide polymorphisms (SNPs) and 

by controlling for location, we eliminate any kind of confounding environmental 

variables. Though we are beginning to understand the link between genetic and 

phenotypic variation, there’s still much work to be done.  
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Genetic Architecture: Monogenic vs. Polygenic Bases for Phenotypes 

 Genetic architecture describes the way the genome codes for heritable 

phenotypic variation (Hansen 2006; Fuchsberger et al. 2016). One of the simplest ways 

of looking at the genetic architecture of a trait is to understand how many genes 

influence variation in a given phenotype. Phenotypes controlled by one or a few genes 

are called ‘monogenic’ while phenotypes controlled by many genes are called 

‘polygenic’ (Cooke and Buckley 1987).  

Monogenic traits are most often discrete in nature, such as color morphs or the 

presence/absence of a trait (Mendel 1865; Cooke and Buckley 1987; Colosimo et al. 

2005; Hoekstra et al. 2006). The beach mouse (Peromyscus polionotus) is a good 

example of monogenic inheritance of a discrete phenotype. The mouse can display a 

dark or light color morph depending on two genes, the melanocortin-1 receptor (Mc1r) 

and Agouti (Hoekstra et al. 2006). On the other hand, polygenic inheritance is 

commonly found in complex, indiscrete, or quantitative traits such as human height 

(Cheverud 1984; Charlesworth 1990; Orr and Coyne 1992; Wood et al. 2014). About 

80% of the human height is thought to be genetically controlled and about 50 genomic 

regions have been found to contribute to variation in human height (Yang et al. 2010). 

Being taller or shorter may not directly affect fitness but may contribute over 

generational and evolutionary time and may be a result of steady diet and lower rates of 

infectious disease which have been shown to negatively influence height (Mummert et 

al. 2011; Stulp and Barrett 2014).  

The stickleback has also been analyzed for the purposes of unpacking the 

differences between mendelian and polygenic drivers of quantitative traits. For the most 
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part, the indiscrete and quantitative traits of the stickleback have been found to be 

polygenically inherited (Bell 1988; Blouw and Boyd 1992; Bell and Ortí 1994; Hatfield 

1996; Benson et al. 2010; McGuigan et al. 2010; Li et al. 2017). However, this is not 

necessarily the case. Sometimes even discrete traits can be polygenically inherited and 

do not fit an ‘additive model’ (Banbura 1994; Cabot et al 1994; Davis et al. 1994; 

Hatfield 1996; Colosimo et al. 2004; Cresko et al. 2004; Glazer et al. 2014). This thesis 

aims–in part–to address the ongoing debate between the genetic architecture of certain 

traits. Based on previous findings, I expect to see polygenic inheritance for the linear 

traits that make up the defensive structure.  

The Threespine Stickleback as a Model Organism  

In order to study phenotypic variation, biologists use model organisms that 

possess characteristics that facilitate research. The stickleback is a model organism 

especially suited for studying the link between genotypes and phenotypes (Figure 1) 

(McPhail 1969; Moodie 1972; Bell and Foster 1994; Walker 1997; Cresko et al. 2007; 

Currey 2014; Alligood 2017). It has several characteristics that make it so:  

Stickleback are relatively easy to trap and to maintain in the lab. They are tolerant to 

laboratory environments and have short generation times. Once euthanized, bleached, 

and stained, stickleback display bright bone structures, making for easy quantification 

of phenotypic traits (Cresko et al. 2004; Kimmel et al. 2005; Conte et al. 2015). Their 

small size makes euthanized specimens easy to image as well as to preserve and store. 

A major consideration for this thesis was that the stickleback genome had already been 

sequenced. This made it possible for genetic analysis to be performed.  
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Figure 1. (Top) Live still of a threespine stickleback from Boot Lake, AK. (Bottom) Image of a 

euthanized stickleback, bleached and stained with Alizarin red from the Riverbend population in 

OR.  

Besides lab handling, stickleback also have several natural characteristics that 

make them useful for studying the link between genotype and phenotype. Two of these 

characteristics make them especially suited for this thesis: 

First, stickleback are found in a variety of aquatic habitats and life histories 

throughout the Holarctic region of the Northern hemisphere. These habitats include 

marine, estuarine, and freshwater environments (Bell and Foster 1994; Schluter 1995; 

Rundle et al. 2000; von Hippel 2010; Hendry et al. 2011). For example, anadromous 

stickleback develop and hatch in freshwater, migrate to the sea to grow, and then return 

to freshwater to spawn. Important for studies of adaptation, anadromous stickleback 

have repeatedly given rise to thousands of freshwater populations over the last millennia 

(Bell and Ortí 1994; Olafsdottir et al. 2007; Kitano et al. 2008; Gelmon et al. 2009; 

Reimchen et al. 2013). These different freshwater populations display a multiplicity of 
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adaptations necessary for survival in new habitats (Lavin and McPhail 1986; Bell and 

Foster 1994; Kalbe and Kurtz 2006; Hendry et al. 2011; Reimchen et al. 2013).  

Second, stickleback display distinct phenotypes among populations, such as the 

number of lateral plates, which makes it relatively simple to identify noteworthy 

populations in order to further study their atypical appearances (Cresko et al. 2004; 

Kimmel et al. 2005; Conte et al. 2015). Lateral plates are plates of bone located along 

the sides of the fish and protect the fish from predators (Bell and Foster 1994; 

Reimchen et al. 1983). The number of lateral plates shows high variance among 

different populations (Colosimo et al. 2005; Alligood 2017). This is due to the range of 

environments that different populations can occupy, which leads to diversification as 

they rapidly adapt to the environment. More extensive armor is thought to protect the 

fish at the cost of slowing it down (Taylor and McPhail 1986; Bell and Foster 1994; 

Reimchen 1995; Walker 1997; Reimchen 2000). Marine and estuarine environments 

suit the greater armor mass whereas the freshwater systems promote the loss of armor to 

allow for faster swim speed. In addition, freshwater stickleback with reduced lateral 

plate armor have been shown to grow faster (Marchinko and Schluter 2007). Faster 

growth may increase the survival rate of juvenile stickleback against predating insects, 

as well as boosting nutritional reserves for overwintering and improving reproductive 

fitness (Barrett et al. 2008; Schluter et al. 2010).  

Previous studies on threespine stickleback have identified the morphological 

variation in bone structure within natural populations of stickleback. This variation has 

been categorized into two distinct phenotypes: oceanic and freshwater (Figure 2). Other 

studies have shown that there are associations between separate bone structures 
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(Reimchen et al. 1983; Bell and Foster 1994). Furthermore, through QTL mapping 

studies, it has been shown that genomic regions are linked to these two phenotypes 

(Reimchen et al. 2013). Finally, a genome-wide association study (GWAS) has been 

performed on the skeletal variation on specific bone structures in Riverbend stickleback 

(Alligood 2017). 

  
Figure 2. Ocean-like (top) vs. freshwater-like (bottom) stickleback, as seen in the Riverbend 

population. Posterior lateral plates are lost in freshwater-like stickleback, but parts of the 

defensive structure can also experience loss. Note: the smaller spines on the freshwater-like 

stickleback.  

 

Association Mapping in a Hybrid Population 

While quantitative trait loci (QTL) mapping studies are commonplace in 

addressing the link between phenotype and genotype, they require laboratory crosses 

that may not provide an accurate depiction of the mechanisms underlying natural 

populations. Laboratory crosses can also be difficult to execute if the wild species is 
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difficult to capture or if there are problems associated with the breeding and 

propagation of the laboratory populations (Rieseberg and Buerkle 2001). Thankfully, 

association mapping can be performed in natural populations by taking advantage of 

hybrid populations, where once separate genotypes and phenotypes have been allowed 

to undergo recombination (Hatfield et al. 1992; Sites et al. 1995; Kruuk et al. 1999; 

Currey 2014; Alligood 2017). Hybrid populations are extremely useful for studying the 

link between genotype and phenotype because recombination breaks down genomic 

linkage blocks and population structure that hinders the ability to associate variation 

with changes in the genome (Rieseberg et al. 1999, Rieseberg and Buerkle 2001; Currey 

2014). 

Genome-wide association studies (GWAS) are widely used methods of linking 

genes to phenotypes in natural populations (Visscher et al. 2012; Lee et al. 2014; 

Nadeau et al. 2014; Pallares et al. 2014; Turner and Harr 2014; Wang et al. 2014; 

Brelsford et al. 2017). GWAS identifies common variants in a set of sample individuals 

without loci or a candidate gene in mind (Cantor et al. 2010; Zhou and Stephens 2012). 

GWAS are exploratory in nature because of this, which suits the purposes of this thesis, 

and are usually followed up by more specific association studies that can narrow down a 

genomic locus of interest. GWAS has been used to great effect (Pasaniuc and Price 

2016) in a variety of systems, including stickleback (Alligood 2017), though it has a 

major pitfall. In some cases, a GWAS will return numerous associations for genetic loci 

with common variants in the sample set (Ward and Kellis 2012). This is problematic in 

itself because it makes it difficult to parse the significance of the association but it also 

assumes that the marker is biologically relevant. Without knowing the exact 
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mechanisms that underlie the genome, it is difficult to tell whether that marker is 

actually coding for the phenotype of interest or merely mathematically associated 

(Smith and O’Brien 2005; Korte and Farlow 2013). Despite the drawbacks, GWAS still 

remains the best tool for exploratory studies of linking genotype to phenotype in natural 

populations (Pallares et al. 2014). Genomic associations can be cross-referenced with 

previously discovered genetic loci and analyzed for biological relevance–often based on 

orthologues. Then, as previously stated, candidate genes can be further analyzed for 

association.  
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Chapter II  

Introduction 

Variation in organism morphology has long interested biologists. Individuals 

within the same species can possess various phenotypes, often caused by environmental 

adaptation over evolutionary time. This phenotypic variation can be associated with 

genomic regions through analytical techniques such as genome-wide association studies 

(GWAS). However, such studies require both knowledge of the phenotype and the 

genotype of individuals within the population of interest. Fortunately, recent 

technological advances, such as high-throughput sequencing, have allowed researchers 

to sequence entire genomes, enabling the linking of genotype to phenotype.   

While many association studies use laboratory crosses, GWAS can be utilized in 

natural populations. For this to work, individuals of different phenotypes and genotypes 

must interbreed and allow enough generational time for genomic recombination. 

Fortunately, the Riverbend section of the McKenzie river in Oregon contains a hybrid 

population of an evolutionary model organism, a small, bony fish called the threespine 

stickleback (Gasterosteus aculeatus). The stickleback inhabits a variety of 

environments, including marine, brackish, and freshwater systems and displays distinct 

skeletal phenotypes, thought to be adaptive in nature. In the Riverbend section, oceanic-

like stickleback have been introduced to an endemic freshwater population and–as I 

show in this thesis–have had enough time to intermix.   

Association studies in the Riverbend population have previously focused on 

cranial-facial morphology and lateral plate counts and have found that the Riverbend 
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population expresses intermediate phenotypes compared to other low- and high-plated 

Oregon populations. I am interested in the genomic basis of phenotypic variation of the 

mid-lateral region of the stickleback, responsible for the defense of the fish against 

natural predators.  

The Riverbend Population: Ideal for Linking Genotype to Phenotype 

Stickleback display clear phenotypes depending on their environment. 

Stickleback living in and around the coast, in salty or brackish water tend to display 

heavily-armored phenotypes most noticeably characterized by high numbers of lateral 

plates. These fish also tend to have cranial-facial morphologies that suit hunting instead 

of filter-feeding, so their heads are tall and rounded instead of long and thin. When two 

distinct phenotypes undergo recombination, they can produce intermediate phenotypes 

that fall between the two original ends of the spectrum. Depending on the nature of the 

system and the severity of the introduction process, hybrids can be selected against due 

to lowered fitness due to an inability to fit into an ecological niche (Schluter 1993). 

However, this is not always the case. Intermediate phenotypes can have no effect on a 

population or even a beneficial effect if the environment allows it. Stickleback hybrids 

have been shown to have not fitness disadvantages in the laboratory (McPhail 1984, 

1992, 1994; Hatfield 1995) but have been shown to fare worse in the wild (Schluter 

1995; Hatfield 1995) due to disruptive selection in natural environments.  

There are several different hybrid zones, where high and low-plated individuals 

intermix. There are several causes for emergence of hybrid zones. A common cause is a 

natural environmental influence such as the formation of a temporary or permanent 

bridge between previously allopatric habitats. Flooding of low-elevation regions is a 
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common example of this. Another cause could be an environmental cline such as salt 

concentration as one moves up-river from the ocean. One could expect to see a mixed 

phenotype near the river delta and the extreme phenotypes in the ocean and up-river.   

Stickleback are found throughout the Willamette Basin in Oregon. Low-plated 

stickleback are generally found in inland freshwater systems such as lakes and rivers 

and the high-plated stickleback are generally found in saltwater near the coast and in the 

ocean. An apparent hybrid population has formed in the McKenzie river near the 

Riverbend hospital located ~11.0 river miles from the confluence of the McKenzie and 

main stem of the Willamette river (Figure 3). This hybrid population is thought to be 

the result of human introduction of ocean-like stickleback upstream with subsequent 

admixture of the ocean-like fish with freshwater fish found on the valley floor (Currey 

2019). The resulting population shows both high, intermediate, and low-plated 

individuals as well as much variation in other phenotypes. Previous work in the 

Riverbend population successfully used GWAS to identify genomic regions associated 

with lateral plate count and cranial-facial variation (Alligood 2017) suggesting that this 

population and this approach may prove useful for investigating the genetic basis of the 

defensive structure.  

Aspects of the defensive structure also appear to vary in this population. This 

observation has led to the hypotheses for this thesis. The unique makeup of the 

Riverbend population makes it ideal for studying the genetic basis of defensive structure 

because it may allow us to associate apparent phenotypic variation in this structure with 

genetic variation and ultimately understand the genetic basis of this structure.  
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Figure 3. The location of Riverbend in the McKenzie river within the Willamette basin of 

Oregon. 

 When a divergent population is introduced to an existing population, there can 

be considerable differences–due to the natural processes of divergence–in the genome 

between the two groups. If there has not been enough time for recombination to 

disassociate this population structure, it can be an inhibitor of any GWAS study because 

any attempt at association will result in a reflection of the population structure. The 
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Riverbend population has had adequate time to hybridize between the oceanic-like and 

freshwater-like forms and thus lacks significant population structure (Alligood 2017). 

This makes the population suitable for association studies.  

Addressing the Defensive Structure as a Sum of its Parts 

The defensive structure, as defined by this thesis, is the entire mid-lateral region 

of the stickleback from the dorsal spines to the pelvic spines, and is composed of a 

number of overlapping and interacting protective overlying bones and cartilage that 

defend the fish against predation from avian and piscine predators such as pacific 

salmon and trout from the Oncorhynchus genus (Figure 4) (Bell and Foster 1994; Olsen 

et al. 2000; Reimchen 1992, 2000). The components of the structure work together to 

form a protective buttress around the midsection of the fish, attaching to and 

strengthening each other (Bruet et al. 2008; Song et al. 2010). The spines, when 

extended, create a wide and spiny bite radius for large piscine predators (Hoogland et al. 

1956; Reimchen 2000, et al. 2013). Various components of the defensive structure have 

been studied, such as the pelvic structure and spines lengths, yet the structure has not 

been analyzed as a possibly-covarying unit. The literature has mostly ignored the basal 

plates and the ascending process, which work to hold the dorsal spines in place and 

connect both dorsal and ventral ends of the structure, respectively (Reimchen 1983). 



 
 

 
 

16 

 
Figure 4. The Defensive Structure of a low-plated Threespine Stickleback (G. aculeatus). The 

ventral structure is shown in the box in the bottom-right of the figure.   

In addition, the studied aspects of the structure have been linear or numerical in nature 

(Song et al. 2010; Reimchen et al. 2013), which may not provide a comprehensive view 

of the structure (Wiig et al. 2016).  

Due to the importance of the structure in the overall fitness of the stickleback 

and the lack of literature on the entire structure, I set out to characterize the variation 

between individual traits within the structure and link that variation to regions on the 

genome. A previous study by Reimchen et al. (2013) identified eleven skeletal elements 

that appear to covary in the defensive structure. This finding serves as the starting point 

for this thesis, which aims to expand upon the traits in the previous study. The traits 

were all examples of linear measures; therefore, I expanded the scope of traits measured 

by including overall areas of different elements of the defensive structure. For example, 

as the ascending process is a major component that overlaps and integrates the dorsal 
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and ventral elements, the area of this trait may be more important than its height or 

length.   

Research Aims and Hypothesis 

Here I aim to take advantage of a hybrid population of stickleback to first 

quantify the phenotypic variation of the different elements of the defensive structure. I 

then aim to associate the phenotypic variation that I measure with genetic variation to 

understand the genomic architecture of these traits and to look for specific regions that 

associate with these traits or groups of traits. 

Based on previous work and initial observations I expect to find significant 

variation within the different elements of the defensive structure and I also expect the 

individual elements to demonstrate a high degree of covariance with one another 

(Reimchen et al. 1983). Traits located closer to each other should show a stronger 

covariance than those which are farther away because they are forced to accommodate 

each other (Reimchen et al. 2013). The variation should be associated with regions on 

the genome that have already been located and also novel regions to unstudied traits in 

the defensive structure (Alligood 2017).  

Methods 

Collection and processing of stickleback samples 

The first step in addressing the research questions was to collect stickleback 

from the Riverbend population. 600 individuals were all caught in one day. Non-baited 

0.635 cm mesh minnow traps were placed in the water at the Riverbend location and 

left for 24 hours. 192 of the 600 were used for this analysis. The fish were caught and 
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euthanized using MS222 and fixed in 95% ETOH. Collections were made in 

accordance with IACUC protocols. The stickleback were then bleached and stained 

with Alizarin red solution in order to aid in visualization of the skeletal structures 

(Cresko et al. 2004; Kimmel et al. 2005; Conte et al. 2015).  

Collection and scaling of phenotypic data 

Instead of measuring the phenotypes of the stickleback using a physical 

measuring tool, each individual was imaged (with scale bars and labels) and then 

measured using the image analysis program ImageJ v. 1.x, for ease and accuracy 

(Schneider et al. 2012). In order to get a comprehensive view of the defensive structure 

as a whole, I collected numerical, linear, and area measurements from a variety of 

components of this trait. This required four different types of images for each 

individual: whole lateral, zoomed lateral, ventral, and anterior. 

Whole lateral images of the stickleback were taken using a mounted Nikon D70 

digital camera. In order to measure some of the more minute phenotypes, high quality 

imaging of the defensive structure, zoomed lateral, ventral, and anterior were taken 

using an Olympus SZX16 dissecting microscope equipped with an Olympus DP71 

microscope digital camera. Olympus DP Controller version 3.3.1.292 was used to take 

and label images. In ImageJ, each individual was analyzed for 20 phenotypic traits, 

using the linear and freehand drawing functions to measure linear and area phenotypes 

respectively (Figure 5). Area measurements were performed by using the freehand 

draw tool in ImageJ v. 1.x to trace the outside of the bones and using the measure 

function to calculate the area of the inside.  
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I started with a broad approach to choosing which traits to measure. Previous 

research has measured a few linear aspects of the structure, including spines and the 

ventral plates (Reimchen 2013). I used those as a starting point, including other aspects 

of the structure such as the basal plates and ascending process, and including area 

measurements in addition to linear. The 20 traits were each thought to have some 

biological significance in terms of the fish’s defense and were all observed to vary from 

individual to individual. Due to the amount of scholarship on lateral plate counts, they 

were included as a control to test the methodology of this thesis. Standard length was 

also included as a control to account for the varying sizes of the individuals.   

Lateral Plates 

The first of the 20 traits measured was a count of lateral plates (LPC). As 

previously stated, this measure is a control for the experimental design of this thesis. In 

addition to the count, I looked at the total area of all lateral plates (LPA), in case the 

size of the plates did not directly associate with the count (Wiig et al. 2016). A majority 

of association studies have focused on the lateral plates, as they are perhaps the most 

obvious source of variation (Bell 2001; Colosimo et al. 2004; Cresko et al. 2004; 

Shapiro et al. 2004; Colosimo et al. 2005; DeFaveri et al. 2011; Jones et al. 2012; 

Alligood 2017). They have also been heavily linked to a specific gene located in 

chromosome 4, the Eda gene (Colosimo et al. 2004). Although lateral plates attached to 

the basal plates and/or ascending process are part of the defensive structure, the rest are 

not (Figure 2) 
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Figure 5. Linear traits measured on the stickleback (along the dashed lines). Area traits were 

traced along the outline of each of the outlined bones structures. APH – Ascending Process 

Height, APW – Ascending Process Width, BPH – Basal Plate Height, DSL – Dorsal Spine 

Length, MBH – Maximum Body Height, PSL – Pelvic Spine Length, SDL – Standard Length, 

VPL – Ventral Plate Length, VPW – Ventral Plate Width.  

Size Axis 

The standard length of the stickleback (SDL) was measured along with 

maximum body height (MBH). These size measures vary with the age and sex of the 

fish (Hunt et al. 2009; DeFaveri et al. 2013). SDL is a control for the size of the fish 

while the maximum body height can be considered part of the defensive structure, as it 

plays a role in increasing the bite-radius a predator must account for (Hoogland et al. 

1956; Reimchen 2000, et al. 2013). SDL was measured by starting at the anterior edge 

of the lip bone and drawing to the posterior end of the fish, stopping where the tail fin 

begins. MBH was measured as the tallest point of the fish, from the dorsal end of the 

second basal plate to the ventral end of the pelvic structure, excluding spines (Figure 

5).  
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Spine Axis 

 Much research has been done on the length of the spines in stickleback, 

including the second dorsal spine (DSL) and the pelvic spine (PSL) (Reimchen 1983; 

Peichel et al. 2001; Shapiro et al. 2004; Kitano et al. 2009, Reimchen 2013). In my 

initial sample, I analyzed the width of the second dorsal spine (DSW) and the cross-

sectional diameter (CSD) which is the diameter of the outstretched dorsal and pelvic 

spines, mimicking the bite-radius of a potential predator (Reimchen 2013). DSL and 

PSL were measured linearly (as seen in Figure 5) and DSW and CSD were measured 

using anterior-facing images of the stickleback. DSW was measured at the base of the 

spine and CSD was measured from the anterior edge of the outstretched DSL in a 

straight line through the fish to the posterior edge of the outstretched PSL, forming a 

diameter.  

Basal Plates 

 The basal plates play an important role in stabilizing the dorsal spines and 

connecting the spines to the rest of the defensive structure (Reimchen et al. 1983). 

Because of this, I analyzed the area of both plates (BPA1, BPA2) and the height of the 

second basal plate (BPH). I also looked at the margin of overlap between the lateral and 

basal plates as a measure of the strength of the attachment (LBO) (Reimchen 2013). 

BPH was drawn from the ventral edge of the second dorsal spine (DSL) to the ventral 

edge of BPA2. LBO was measured by tracing the length of the margin where BPA2 

touches any lateral plates, including gaps between the touching plates (Figure 5).  
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Ascending Process 

The ascending process is connected to the lateral plates and the ventral structure 

and shows a wide range of variance in appearance, most notably in the shape and 

number of forks (APC). I also measured the area (APA), width (APW), and the height 

of the ascending process (APH). Finally, I measured the margin of overlap between the 

ascending process and the lateral plates (LAO) to measure the strength of attachment. 

APW was measured at the widest part of the ascending process. APH was measured 

from the dorsal edge of the ascending process to the recession seen in the pelvic spine 

(PSL). LAO was measured by tracing the length of the margin where the ascending 

process touches any lateral plates, including gaps between the touching plates (Figure 

5). 

Ventral Structure 

The ventral structure (or pelvic girdle), connects the ascending process to the 

pelvic spine and has been previously studied (Reimchen et al. 1985, Cresko et al. 2004; 

Shapiro et al. 2004; Chan et al. 2010). I measured the area of both left and right ventral 

plates (VPA) and the length and width of the plates (VPL and VPW). VPL was 

measured from the farthest anterior to the farthest posterior edge of the combined 

ventral plates. VPW was measured between the recessions in both pelvic spines (Figure 

5).  

Log-transformation and size-standardization 

A replicate of each measurement was taken for every fish. The average between 

replicates was then taken and size-standardized. Size-standardization is necessary for 
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association mapping studies due to the high amount of variation of body size due to a 

variety of factors (age, sex, food availability, etc.) (Hunt et al. 2009; DeFaveri et al. 

2013). In order to properly address the size of certain traits, I set the traits against the 

length of the individual. The traits were log-transformed to reduce the skewness of the 

data. Finally, the measurements were log-scaled and size-standardized. Using this 

standardization equation (Reimchen et al. 2013): 

log𝑦𝑦𝑖𝑖𝑖𝑖′ = log𝑦𝑦𝑖𝑖𝑖𝑖–β(log𝑥𝑥𝑖𝑖– log𝑥̅𝑥) 

where 𝑦𝑦𝑖𝑖𝑖𝑖′  is the adjusted value of trait j for individual i, 𝑦𝑦𝑖𝑖𝑖𝑖 is the unadjusted value, β is 

the unstandardized regression slope, 𝑥𝑥𝑖𝑖 is the standard length of individual I, and 𝑥̅𝑥 is 

the overall mean standard length of all the individuals in the study (Reimchen et al. 

1985; 2013). The unstandardized regression slope was calculated in R 3.4.0 using the 

package smatr, and the command sma.  

Analysis of measurement accuracy and trait redundancy 

A sample of 20 fish randomly selected from the larger sample of 192 were 

analyzed for replication accuracy and initial reading of variation. Regression analysis 

showed that the R2 for all traits measured were all above 0.878 and a one-sample 

analysis of variance (ANOVA) found that the P values for all traits were above 0.05 

(minimum 0.830). There was no significant difference between the two replicate 

measurements. This shows that there was high repeatability in the measuring technique.    

The sample was then expanded from 20 to 50 randomly selected fish to increase 

the sample’s power. Using principle component analysis, I found that several traits 

overlapped in their variance. Strongly covarying traits were eliminated from the final 
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analysis for the purpose of this thesis. 6 traits in total were eliminated: CSD, BP1A, 

DSW, LAO, LBO, LPA.  

PC1 explained 45.7% of the covariance between traits and PC2 explained 9.7% 

(Figure 6). This indicates that this is a good model for studying covariance. The area of 

the first basal plate (BP1A) covaried strongly with that of the second basal plate 

(BP2A). I eliminated it due to redundancy.  

Cross-sectional diameter (CSD) and dorsal spine width (DSW) are good 

measures of defensive traits, as they are thought to hinder the ability of a predator to 

bite down on the fish. However, due to difficulty of measurement, the measurements 

were not closely replicated. Time was also a factor in the reduction of the two traits, as 

they required a new set of images for each individual. The margin of overlap between 

the lateral plates and the basal plates (LBO) and the margin of overlap between the 

lateral plates and the ascending process (LBA) was initially included because the 

overlap was hypothesized to play a role in the overall strength of the defensive structure 

as a buttress against piercing predators and due to previous literature (Reimchen et al. 

2013) that included a similar measure. Yet, the measures overlap in covariance with the 

height and area of the basal plates and were difficult to replicate. Individuals 8, 19, 20, 

and 24 were outliers along PC1. Initially this was thought to be due to a deformation of 

the preserved state of the individuals, but after close examination, they were preserved 

well and included in the final analysis.   
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Figure 6. Principle component analysis for 20 traits. PC1 explains 45.1% of the variance and 

PC2 explains 9.5%.    

This left 12 traits: Maximum body height (MBH), dorsal spine length (DSL), 

pelvic spine length (PSL), the area of the second basal plate (BP2A, re-abbreviated 

BPA), the height of the second basal plate (BPH), the number of forks on the ascending 

process (APC), the ascending process area (APA), the ascending process width (APW), 

the ascending process height (APH), the area of the ventral plates (VPA), the length of 

the ventral plates (VPL), and the width of the ventral plates (VPW). There was also the 

two controls: standard length (SDL) and the lateral plate count (LPC).  

These traits were then grouped based on similar biological function to look for 

associations between the genome and highly covarying traits. There were eight groups 
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total: 1. The Ascending Process (included APA, APC, APH, APW), 2. The Basal Plate 

(BPA, BPH), 3. The Dorsal Complex (BPA, BPH, DSL), 4. The Size Axis (MBH, 

SDL), 5. The Spine Axis (DSL, PSL), 6. The Ventral Complex (PSL, VPA, VPL, 

VPW), 7. The Ventral Plates (VPA, VPL, VPW), and 8. The Defensive Structure (All 

traits). The size axis included the standard length (SDL) control as way to examine the 

relationship between height (MBH) and length (SDL).  

The traits were then analyzed in all 192 individuals that had previously been 

RAD-sequenced. The procedure included the randomization of the order in which each 

individual was analyzed for each trait to reduce any bias with regards to improved 

accuracy of measurement over time. All counts and measurements were done twice for 

each individual. These replicates were not measured back-to-back per individual (ie. the 

APH was not taken twice on a single image before moving on), in order to reduce bias 

with regards to memorizing the previous measurement. The replications were then 

averaged. Principle component analyses were run for several combinations of 

phenotypes thought to contain biological significance in their groupings (Table 2).  

Genetic Analysis 

RAD library construction and SNP discovery 

The genetic data used in this thesis was generated by Currey (2014) and 

Alligood (2017): DNA was collected through fin-clippings of each of the 192 

stickleback individuals. This DNA was then digested with Sbfl-HF (NEB) restriction 

enzyme and RAD-seq libraries were prepared (Baird et al. 2008; Hohenlohe et al. 2012; 

Alligood 2017). This DNA was then run through the Illumina HiSeq 2500 platform, a 
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dye-sequencing tool. The barcode was demultiplexed and quality filtered through 

process_radtag in the Stacks software suite (Catchen et al. 2011). The reads were 

then aligned against the stickleback reference genome (version BROADSs1, Ensembl 

release 64) with GSnap (Wu and Watanabe 2005; Currey 2014; Alligood 2017).  

Stacks programs pstacks, cstacks, and sstacks were used to identify SNPs 

across the genome. I used the populations program in Stacks to output filtered SNP data 

in PLINK in 21 linkage groups (Purcell et al. 2007). This resulted in 19,540 SNPs 

filtered and identified and included in subsequent association analysis.  

In order to perform the association analysis I followed similar approaches as in 

Pallares and Alligood (Pallares et al. 2014; Alligood 2017). The associations were run 

using a univariate linear mixed model (LMM) in a genome-wide efficient mixed-model 

association (GEMMA v. 0.98.1) that controls for population structure and relatedness 

(Zhou and Stephens 2012). P-values were calculated through the likelihood-ratio test 

(LRT) in GEMMA and the likelihood of odds (LOD) scores were calculated using -

log10 of the LRT p-values.  

To correct for proximal contamination, a phenomenon that occurs when a mean-

centered relatedness matrix is created where causative SNPs are fitted twice to the 

LMM, once in the matrix and once in the association, resulting in heightened 

background noise that makes it difficult to identify the causative SNP (Lippert et al. 

2011; Listgarten et al. 2012). Using the method described in Pallares (2014) and 

Alligood (2017), associations were performed for individual linkage groups (LGs) using 

relatedness matrices that were created for all LGs except for the LG used in the 

association (Pallares et al. 2014).  
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In order to account for multiple testing, I used a Bonferroni correction with an 

alpha of 0.05. This resulted in correction was set at a LOD of 5.592. The Bonferroni 

correction is considered highly conservative for QTL mapping studies and thus, LOD 

scores lower than the Bonferroni correction may still be significant (Pallares et al. 

2014).  

Results 

The Traits of the Defensive Structure Show Variation 

All traits of the defensive structure show variation (Figure 7, Table 1). The 

average standard deviation between all unstandardized traits was 2.047, ranging 

between 0.208 for BPH and 6.246 for VPA (excluding controls). Lateral plate counts 

(LPC) and ascending process fork counts (APC) were not size-standardized because 

they are independent of size. The size-standardization showed reduced variation as a 

whole, however there is still a visible gap between sample set in each measurement, 

indicating there is a spectrum of phenotypes in the Riverbend population. The relatively 

low standard deviation is likely due to the presence of intermediate phenotypes in the 

Riverbend population (Alligood 2017).  
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Figure 7. Adjusted values (Log10) for each of the measured phenotypic traits.  

Table 1. Phenotypic variance between measured traits. Unstandardized and size-standardized 

mean and standard deviation. Measurements in millimeters or square millimeters.  
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Principle Component Analysis Shows Covariance in Defensive Structure Traits 

We used principle component analysis (PCA) to group multiple traits into 

biologically relevant units to determine these grouped traits varied and covaried. The 

resulting principle components (PCs) were then used in subsequent association analysis 

(Table 2). All of the groupings except for the entire defensive structure (40.9%) had a 

PC1 greater than 0.5000 or 50% variance explained. By definition, there can only be as 

many principle components as there are traits, therefore groups with less than 4 traits 

did not have PC4s.  

Table 2. Principle component scores for each grouping of traits for GWAS. Only the PC1 scores 

were used for GWAS.  

 

GWAS Indicates the Defensive Structure is a Polygenic System 

19,540 SNPs were analyzed in 13 individual traits (including SDL) and 7 

groupings of traits (Figures 8-18). I found an association on linkage group 4, with an 

LOD >40, with lateral plate counts similar to previous work done with this population 

(Alligood 2017), which provided confidence in our approach. I saw the same steep peak 

for lateral plate counts in the same region of the linkage group IV that the Eda gene is 

found, which gives me confidence in these findings (Colosimo et al. 2004). The 

baseline LOD for determining which SNPs are significant is LOD = 3, but this does not 
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optimally account for false discovery, so I also used a method of finding significance 

called the Bonferroni correction, which sets the number of trials against the number of 

traits. The line was set at 5.592, however, the Bonferroni correction is considered highly 

conservative for association studies. Because of this, I determined an LOD of 4 would 

be conservative enough to account for false discovery. Despite this, I found 2 peaks that 

had a LOD greater than the Bonferroni correction line, the dorsal spine length (DSL), 

and the spines PC1 (DSL and PSL).    
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Figure 8. (Left) Ascending Process Area (APA) – Manhattan plot visualizing the association 

between genomic regions and the area of the ascending process. (Right) Ascending Process Fork 

Count (APC) – Manhattan plot visualizing the association between genomic regions and the 

number of forks on the ascending process. 

 
Figure 9. (Left) Ascending Process Height (APH) – Manhattan plot visualizing the association between 

genomic regions and the height of the ascending process. (Right) Ascending Process Width (APW) – 

Manhattan plot visualizing the association between genomic regions and the width of the ascending 

process. 
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Figure 10. (Left) Basal Plate Area (BPA) – Manhattan plot visualizing the association between 

genomic regions and the area of the 2nd basal plate. (Right) Basal Plate Height (BPH) – 

Manhattan plot visualizing the association between genomic regions and the height of the 2nd 

basal plate. 

 
Figure 11. (Left) Dorsal Spine Length (DSL) – Manhattan plot visualizing the association 

between genomic regions and the length of the 2nd dorsal spine. (Right) Maximum Body Height 

(MBH) – Manhattan plot visualizing the association between genomic regions and the maximum 

body height. 
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Figure 12. (Left) Pelvic Spine Length (PSL) – Manhattan plot visualizing the association 

between genomic regions and the length of the left pelvic spine. (Right) Standard Length (SDL) 

– Manhattan plot visualizing the association between genomic regions and the standard length of 

the fish. 

 
Figure 13. (Left) Ventral Plate Area (SDL) – Manhattan plot visualizing the association between 

genomic regions and the area of the ventral plates. (Right) Ventral Plate Length (VPA) – 

Manhattan plot visualizing the association between genomic regions and the length of the ventral 

plates. 
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Figure 14. (Left) Ventral Plate Width (VPW) – Manhattan plot visualizing the association 

between genomic regions and the width of the ventral plates. (Right) Ascending Process PC1 – 

Manhattan plot visualizing the association between genomic regions and the PC1 score for APA, 

APC, APH, and APW. 

 
Figure 15. (Left) Basal Plate PC1 – Manhattan plot visualizing the association between genomic 

regions and the PC1 score for BPA and BPH. (Right) Dorsal Complex PC1 – Manhattan plot 

visualizing the association between genomic regions and the PC1 score for BPA, BPH, and 

DSL. 
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Figure 16. (Left) Size Axis PC1 – Manhattan plot visualizing the association between genomic 

regions and the PC1 score for MBH and SDL. (Right) Spine Axis PC1 – Manhattan plot 

visualizing the association between genomic regions and the PC1 score for DSL and PSL. 

 
Figure 17. (Left) Ventral Complex PC1 – Manhattan plot visualizing the association between 

genomic regions and the PC1 score for PSL, VPA, VPL, VPW. (Right) Defensive Structure PC1 

– Manhattan plot visualizing the association between genomic regions and the PC1 score for all 

defensive structure traits.  

Peaks of Interest are Associated with the Basal Plate, Spines, Standard Length, and 

Ventral Plate Length 

Significant peaks of association were found for the dorsal spine length (DSL) 

and the PC1 covariance for both the dorsal and pelvic spine lengths (DSL, PSL). I 

discovered 3 peaks above the Bonferroni correction line and several that were just 

below and might be associated with genetic regions that influence this trait due to the 
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conservative nature of the correction. The dorsal spine length (DSL) and spines PC1 

(DSL & PSL) were highly significant. Other peaks of interest for us are the pelvic spine 

length (PSL), ventral plate length (VPL), the standard length (SDL), and the basal plate 

PC1 (Table 3).  

Table 3. SNPs of interest for 4 different groups and traits. Bonferroni correction line is at a -

log10 p-value of 5.592.  

 
The basal plate PC1 combines both the basal plate area (BPA) and the basal 

plate height (BPH) and shows a strong association on LG XIII (Figures 10, 15). The 

highest SNP has a -log10 p-value of 4.250 at 7.390 mb (position on the linkage group) 

(Figure 19). The SNPs shows a large grouping of about 15 mb. 

The spine axis PC1 combines both the dorsal spine length (DSL) and the pelvic 

spine length (PSL) and shows a strong association on LGs V and IX (Figures 11, 12, 

17). The highest SNP on LG V has a -log10 p-value of 4.844 at 11.312 mb. The second 

highest SNP is located on a separate peak with a -log10 p-value of 3.878 at 6.158 mb 

(Figure 20). The highest SNP on LG IX has a -log10 p-value of 5.950 at 10.122 mb, the 
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second-highest has a -log10 p-value of 5.471 at 9.501 mb, and the third-highest has a -

log10 p-value of 5.230 at 9.512 mb (Figure 21).  

The standard length shows a strong association on LG IV (Figure 13). The 

highest SNP on LG IV has a -log10 p-value of 4.225 at 29.658 mb (Figure 22).  

The ventral plate length shows a strong association on LG IV (Figure 14). The 

highest SNP on LG IV has a -log10 p-value of 5.302 at 29.424 mb and the second-

highest SNP has a -log10 p-value of 5.014 at 17.908 mb (Figure 23).   

 
Figure 18. Basal Plate PC1, LG XIII – Manhattan plot visualizing the association between 

genomic regions and the PC1 score for BPA and BPH on LG XIII.  

 



 
 

 
 

39 

 
Figure 19. Spines PC1, LG V – Manhattan plot visualizing the association between genomic 

regions and the PC1 score for DSL and PSL on LG V. 

 
Figure 20. Spines PC1, LG IX – Manhattan plot visualizing the association between genomic 

regions and the PC1 score for DSL and PSL on LG IX. 
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Figure 21. Standard Length (SDL), LG IV – Manhattan plot visualizing the association between 

genomic regions and the SDL on LG IV.  

 

 
Figure 22. Ventral Plate Length (VPL), LG IV – Manhattan plot visualizing the association 

between genomic regions and the VPL on LG IV.  
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Discussion 

The Riverbend Population of Stickleback: A Good System for Association Studies 

Riverbend is a good model for studying overall variation between stickleback 

due to the intermixing of oceanic and freshwater forms (Currey 2014; Alligood 2017). 

Each of the defensive structure traits I examined showed high degrees of variance 

which is critical to the nature of the association study and may imply that the structure 

plays an important role in the fitness of the stickleback in different environments 

(Visscher et al. 2012; Lee et al. 2014; Nadeau et al. 2014; Pallares et al. 2014; Turner 

and Harr 2014; Wang et al. 2014; Brelsford et al. 2017). Counts and the more discrete 

linear measurements showed the greatest amount of variation, which could also be due 

to the effect these have on fitness (Hoekstra et al. 2006). A less discrete trait such as the 

width of the ascending process may not have a strong and direct fitness advantage or 

disadvantage as opposed to the body depth of the stickleback and thus, these smaller 

traits may not be selected for or against (Orr and Coyne 1992; Wood et al. 2014).  

Alligood et al. (2017), who found that PC1 only explained ~5.624% of the 

covariation between opercle shape and lateral plate number in the Riverbend 

population. However, this makes sense because the opercle is not related to the lateral 

plate count in function or location and therefore likely evolves and varies separately. 

In contrast, the PC1 for the entire defensive structure explained a high amount of 

the covariance (40.9%), which is positive for the purposes of this study because it 

means that the defensive structure is heavily influenced in the same direction: either a 

high amount of armor as in the marine phenotype or a low amount of armor in the 

freshwater phenotype. Reimchen (2013) saw similarly high covariance within the 
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defensive structure in hybrid Canadian populations of stickleback. This contributes to 

the evidence that the defensive structure is an important component to the fitness of 

individuals within a population (Bell and Foster 1994; Reimchen 2000; Marchinko and 

Schluter 2007; Barrett et al. 2008; Schluter et al. 2010).  

The Defensive Structure is a Polygenic System 

All of the analyzed traits showed multiple peaks of association and high 

background levels of SNP markers. The majority of the traits should be considered 

highly complex, in the sense that the width of a ventral plate may have something to do 

with defense but is probably not highly-specific to the defensive capabilities of an 

individual like lateral plate count or spine length (Davis et al. 1994; Ward and Kellis 

2012). Instead of directly influencing defensive capabilities, the remaining traits likely 

play a synergistic role with each other, contributing as a whole instead of as an 

individual (Paaby and Rockman 2013). This is opposed to the Mendelian inheritance 

seen in several systems, including beach mice (Hoekstra et al. 2006) and the lateral 

plate counts seen in this thesis and in the stickleback literature (Reimchen et al. 1985; 

Cresko et al. 2004; Alligood 2017).  

Unexplored Influences on Variation 

Two factors were not included in this study, that have been reported to play a 

role in possible morphological differences between individuals: sexual dimorphism and 

bilateral asymmetry. Sexual dimorphism has been found to influence trait variation in 

stickleback (Leinonen et al. 2011). However, this should be at least partially controlled 

for by the size and randomness of our sample collection. Despite this, future work might 
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take sexual dimorphism into consideration. Bilateral asymmetry has been mostly 

observed in the ventral structure, between the two ventral plates, right and left 

(Trokovic et al. 2012). The pelvic spines have not been found to vary significantly 

between left and right sides of the stickleback. The ventral length, width, and area 

measurements performed in this thesis take into account both sides of the ventral 

structure and thus should not be influenced by this bilateral asymmetry.  

Novel Genomic Regions Associate with Defensive Structure Traits in the Riverbend 

Population 

Out of the multiple peaks of interest above LOD 4, I chose five that appeared to 

show the strongest association. These traits are the basal plate PC1, spine axis PC1, the 

standard length (SDL), and the ventral plate length (VPL). Excitingly, these traits all 

associate with genomic regions on the stickleback genome that have not been 

previously linked. In general, the literature has not addressed most of the indiscrete 

traits of the defensive structure, but for the more discrete traits, the literature has found 

different genomic regions associating with the traits.  

The Basal Plate PC1 Associates with LG XIII 

The basal plate PC1 incorporates both the basal plate area (BPA) and the basal 

plate height (BPH). Naturally, they covary with each other strongly (90.2% PC1), due 

to the association of linear height and area (Table 2). Association studies have 

neglected to analyze the properties of the basal plate. This is remiss as the basal plate 

plays a key role in stabilizing the dorsal spines and linking them to the rest of the 

defensive structure (Reimchen 1983). The area of the basal plates are also highly 
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variable, indicating a strong fitness benefit of having substantial or less substantial 

plates. The peak of interest was seen on LG XIII and is interesting not for the height of 

its peak but for the area the peak spans in genomic space (Table 3, Figure 19). Wide 

peaks can be attributed to several factors: the first, that there is not enough power in the 

sample size to make a strong association (Ward and Kellis 2012). The second, that there 

has been a recent recombination event that has affected the genome (Rieseberg et al. 

1999; Rieseberg and Buerkle 2001). The third, is that there are inversions that 

subsequently affect more than one SNP (Jones et al. 2012; Kapun et al. 2016). In Jones 

et al. (2012), several stickleback genomes were sequenced, and chromosomal inversions 

were found on LGs I, XI, and XXI. This doesn’t prove that such an inversion hasn’t 

occurred on LG XIII in the Riverbend population but it may indicate the power of the 

study is not strong enough for the basal plates, as the recent recombination explanation 

is unlikely given what is known of the history of the Riverbend population (Currey 

2014). Another explanation may be that the basal plates may be associated with a 

genomic island on LG XIII that includes genes that all have to be linked together in 

order for the individual to develop and function (Turner et al. 2005; Boyd et al. 2009; 

Feder and Nosil 2010). 

The Standard Length and Ventral Plate Length Associate with LG IV 

The standard length and ventral plate length have been understudied in the 

stickleback literature. Ventral plate length has been associated with LG VII and the 

Pitx1 locus (Shapiro et al. 2004; Hohenlohe et al. 2010). The ventral plate length has 

been previously associated with LG IV in Shapiro et al. (2004) with the Gac4174 

marker with a LOD of 4.7 at 32.4 cM. LG IV has been well-studied in the literature, 
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contributing to many of the genomic regions associated with discrete traits such as 

lateral plate counts. The association plots (Figures 22, 23) show a similarity between 

the standard length and the ventral plate length which may be due to an overlap in 

measuring, as the ventral plate length may vary with the standard length. However, the 

ventral plate length was size-standardized, which should remove any association with 

standard length. Also, in the PCA (Figure 6), the SDL and VPL did not show any 

covariance. The distal portion of LG IV may simply be a strong contributor to a variety 

of phenotypes in freshwater populations (Hohenlohe et al. 2010).  

 There are many more peaks of association that deserve analysis for previously-

discovered and novel candidate genes. This thesis served as an exploratory analysis of 

the defensive structure as a system and is a starting point for future studies to further 

examine the novel genomic regions found in this study.   

The Spine Axis PC1 Associates with LGs V and IX  

Both the second dorsal spine length and the spine axis (the second dorsal spine 

length (DSL) and the pelvic spine length (PSL)) showed similar peaks of interest on LG 

V and IX, with the peak on LG IX rising above even the highly-conservative Bonferroni 

correction line. The peak on LG V is novel to what has been previously found with 

regards to both the dorsal and pelvic spine. The peak on LG IX is novel to the second 

dorsal spine, although the length of the first dorsal spine has been associated with LG 

IX in Japanese Sea stickleback (Kitano et al. 2009). The length of the second dorsal 

spine has been associated with several linkage groups including II, X (Miller et al. 

2014), VIII, and XI (Peichel et al. 2001; Raeymaekers et al. 2007). The length of the 

pelvic spine has been associated with the Pitx1 gene on LG VII with minor peaks on LG 
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IV and II (Shapiro et al. 2004). It has also been associated with linkage group VIII 

(Peichel et al. 2001). The spines are of special interest, not only due to the strength of 

their association but also due to their discrete appearance and defensive function. Future 

studies should investigate the relationship between the first dorsal spine and the DSL 

and PSL because of the covariance between it and the DSL, to see if it associates with 

the same genome regions. 

A Candidate Gene for the Spine Axis on LG IX  

The peak on LG IX for the spine axis PC1 was the only peak above the 

Bonferroni correction line and thus demanded further examination. The highest four 

SNPs were located between 8.361 and 10.720 mb on LG IX, which became the region 

of interest for searching for a candidate gene. There are 94 named genes in that region, 

11 of which were documented in the literature as being related to bone-growth or loss in 

orthologous regions in humans (Table 4) (Kiel et al. 2007; Xiao et al. 2010; Wang et al. 

2014; Lee et al. 2015; Rauch et al. 2015; Watson et al. 2015; Abrahao-Machado et al. 

2017; Feng et al. 2018). One in particular, prolyl 4-hydroxylase subunit beta (P4HB) 

stood out as the most likely candidate for further research. P4HB is a protein coding 

gene involved in metabolism and protein processing in the endoplasmic reticulum. In 

stickleback, it is located on LG IX between 10.226 and 10.236. In humans, it is located 

on LG XVII between 81.843 and 81.860 (Hunt et al. 2018).  
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Table 4. Annotated genes-of-interest within narrow region around SNP most highly associated 

with dorsal and pelvic spine length. Bold gene name indicates most-interesting candidate based 

on literature. 
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A heterozygous missense mutation in P4HB that impairs the disulfide isomerase 

activity of protein disulfide isomerase (PDI) is responsible for Cole-Carpenter 

syndrome: a bone fragility disorder distinguished by frequent fractures, 

craniosynostosis, ocular proptosis, hydrocephalus, and distinctive facial features (Cole 

and Carpenter 1987; Benham 2012; Rauch et al. 2015). Whether or not P4HB is 

controlling for the variation in spine lengths is yet to be seen and would require in-depth 

association studies that are hypothesis-focused. While I identify P4HB as the most 

likely candidate gene at this point in the study, the other 93 named genes in the chosen 

region, as well as the unnamed or unidentified genes in the region may also be 

controlling spine lengths. Finally, because there is a high level of background noise 

related to the spine axis, as well as the peak on LG V, this gene likely only plays a 

shared role in controlling spine lengths. Despite this knowledge, this finding represents 

an exciting association that could have positive consequences for human health as well 

as furthered understanding of the stickleback genome.  

Conclusions 

The defensive structure is composed of a complex set of bones that overlap and 

interact to protect the stickleback from predators. The structure varies widely between 

oceanic and freshwater populations of stickleback, implying that this structure is 

adaptive in nature. The Riverbend population has proven to be good for association 

studies of stickleback due to its hybrid population that has no population structure. 

Here, I find that for most of the individual traits and the complex as a whole (or in 

parts) may have a polygenic genetic basis. The basal plate (BPA, BPH) has been 

previously unstudied, but I found a strong association at linkage group XIII. I also 
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found associations between standard length (SDL) and the ventral plate length (VPL) on 

linkage group IV. The VPL has already been associated with LG IV but the SDL has 

not and contributes to the evidence that LG IV controls multiple phenotypes on the 

stickleback. Each of these traits are strong candidates for future, in-depth studies.  

The genetic basis of the second dorsal and pelvic spine length (DSL, PSL) 

appear to be controlled by one or a few genetic loci and I have found evidence of never-

before-seen genetic association on linkage group IX located between 8.361 and 10.720 

mb on LG IX. This region contains 94 named genes, including a promising candidate, 

prolyl 4-hydroxylase subunit beta (P4HB) which has implications for Cole-Carpenter 

syndrome in humans. This candidate gene and the entire genomic region presents an 

exciting discovery for further research.
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