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DISSERTATION ABSTRACT 
 
Christopher J. Funch 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
September 2019 
 
Title: Close-Spaced Vapor Transport Using HCl as Transport Agent – Process Capability 
Studies for Growth of III-V Films and Devices 
 
 

The price of photovoltaic (PV) modules has continued to drop in recent decades 

and the normalized cost ($/kW) is approaching that of some fossil fuel sources. Two 

fundamental components of the final PV cost are the efficiency of the system and the 

materials/fabrication cost necessary to produce it. Today, roughly 95% of all PV modules 

are produced from Si primarily due to the maturity of the Si microelectronics industry. 

Historically, PV modules made from III-V materials have limited applications, almost 

exclusively in either aerospace or concentrator applications, due to their record efficiencies 

but higher costs. A reduction in cost to produce III-V PVs could enable a greater number of 

aerospace applications and reduced costs in capturing renewable energy terrestrially. 

However, current manufacturing techniques for producing high-quality III-V materials 

require expensive precursors, have high capital costs, and reduced throughput. Close-

spaced vapor transport (CSVT) is an alternative, low-cost technique but has not been fully 

developed. This work describes the use of HCl as a transport agent (Cl-CSVT) to 

understand and expand the capabilities of this technique in a re-engineered system. 

Prior research demonstrated GaAs devices using water vapor as the transport agent 

(H2O-CSVT). Devices made using this strategy showed good electronic quality and 
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comparable efficiencies with other deposition techniques. However, oxide related defects 

and inaccessibility to some material systems (i.e. Si and Al) limit the capabilities of H2O-

CSVT. Chapter I further describes the motivation and basic theory behind this growth 

technique. Chapter II describes the design details of the Cl-CSVT reactor along with the 

procedures used for growths in the subsequent chapters. Chapter III gives details on the 

process conditions favorable for growth and the characterization of films prior to their 

integration into fabricated PV devices. Chapter IV explores the reproducibility of PV 

devices compared with those by H2O-CSVT. Chapter V highlights proof-of-principle 

capabilities of this system beyond H2O-CSVT. Chapter VI discusses possible future 

directions to improve upon the design of the Cl-CSVT system to better enable the use of 

some material systems investigated and make the system more commercially viable. 

This dissertation includes previously published and unpublished co-authored 

material. 
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CHAPTER I. 

THE NEED FOR LOW-COST III-V SOLAR AND THE POTENTIAL 

ROLE OF CLOSE-SPACED VAPORT TRANSPORT 

The Need for Cost-Effective Solar Energy Collection 

Regardless of the energy source, world-wide energy demand continues to rise. 

Total, annual energy demand is expected to require 24 TW of continuous power supply 

by 2040.[1] An increasing amount of this will need to be generated by renewable 

technologies to minimize the impact on the environment. Currently, renewable energy 

provides roughly 12% for U.S. energy consumption and photovoltaics (PV) alone 

accounts for roughly 1% of annual U.S. energy consumption.[2] While it has taken 

roughly four decades to get to that point, a main driving force has been the reduction in 

price of PV modules in that same time period.[3] Of that 1%, less than 1% is non-Si 

based PV, which means there is tremendous opportunity for other PV technologies in the 

renewable energy portfolio if efficiencies can remain high and costs can be reduced.[4] 

Many elements in group III and V (or 13 and 15 depending on nomenclature) of 

the periodic table can form compound semiconductors and are commonly used in 

integrated circuits (ICs) and other opto-electronic devices such as LEDs and PVs.[5] 

Epitaxial growth of III-V materials is dominated in industry, and in research, by 

molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE) since 

both enable precise control of alloy composition and dopant incorporation.[6,7] MBE is a 

high-vacuum process and has poor precursor utilization, which is why it is not utilized as 

often for industrial scale commercialization. MOVPE is more widely used in industry to 
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produce III-V IC components and multi-junction PV devices since it can be used in a 

batch process. However, MOVPE also has high capital costs, in part due to the costs 

associated with the toxic and pyrophoric precursors (i.e. AsH3 and trimethyl-gallium) and 

the safety infrastructure to handle them.[8] While reports vary, precursor utilization for 

MOVPE can be between 20-50% for group III elements and 1-5% for group V.[8] Due to 

the costs, III-V PV applications are generally limited to aerospace and concentrator 

applications.[9] Aerospace applications sacrifice cost in the name of efficiency, weight, 

and radiation hardness. Concentrator applications leverage the high efficiency with 

smaller devices to try and balance the cost with other terrestrial, solar applications such 

as Si. Currently, concentrator systems are only economically viable in climates with the 

most direct, and uninterrupted exposure to the sun’s incident light.[10] In the past decade, 

several alternative growth techniques have seen renewed interest to demonstrate high-

efficiency PV devices as the dominant Si-based technology approaches theoretical 

efficiency limits and cost reductions become more challenging.[5,11,12] 

Some of the high cost for III-V devices is associated with the cost of the 

underlying substrate and the precursor utilization. Most III-V devices are grown 

epitaxially on either GaAs or Ge substrates, both of which are more expensive than their 

Si counterpart.[13] To get around this, attempts to reuse these costly substrates has been 

explored via techniques such as epitaxial lift-off (ELO), where a sacrificial layer (e.g. 

AlAs) is used and etched away to separate the deposited films from the substrate.[14–16] 

However, techniques like this can take hours and reduce throughput.[14] Another 

technique is to deposit III-V films on Si to take advantage of a cheaper substrate. Besides 

GaP, most III-V materials are not well lattice matched to Si, which means direct 
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deposition on that substrate is not feasible for other desirable III-V compounds. Poor 

lattice matching can lead to both significant strain in the lattice and the generation of 

dislocations, both of which can negatively impact device performance.[17] To get around 

this, GaP can be deposited on Si, followed by a gradient layer to get to the desired film’s 

lattice parameter. However, antiphase boundaries can form during polar GaP growth on 

the nonpolar Si.[18] While this growth strategy has been well demonstrated,[19,20] there 

is still debate on whether the integration of III-V devices on Si provides enough of a cost-

efficiency improvement.[13,21] Regardless of the substrate used, the cost of the 

deposited films themselves are directly associated with the amount of precursor needed. 

As highlighted earlier, the most common techniques require an excess by a factor of 2-

100. Techniques that can utilize a greater fraction of the precursors for growth or use 

elemental sources (e.g. Bubbling HCl through liquid Ga or In to form the volatile 

chlorides in-situ as in hydride vapor phase epitaxy) have the potential to reduce the costs 

by an order of magnitude (e.g. ~ $250 g-1 for Ga via trimethyl-gallium precursor 

compared to ~ $10 g-1 for elemental gallium from Sigma Aldrich). In contrast, the close-

spaced vapor transport (CSVT) method can achieve 100% utilization (in theory) using 

solid precursors.[22–24] Its potential to utilize low-cost source materials with high 

utilization rates is why its capabilities are investigated here. 

Operating Principles Behind Close-Spaced Vapor Transport 

CSVT was initially developed and explored in the 1960s.[22] It is unique because 

it uses solid source material to generate the gaseous precursors in situ, eliminating the 

need for the toxic group V hydride. Traditionally, this method has used water vapor as 

the transport agent (H2O-CSVT).[25] Since its inception, the theory behind the growth 
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method has been well understood. An illustration of the growth method is shown in 

Figure I.I. 

 
Figure I.I.: Schematic of H2O-CSVT deposition of GaAs with thermal and diffusion 
gradients indicated. Equilibrium is reached at source and substrate material, held at 
independent temperatures by heating elements. A difference in partial pressure of the in-
situ gases drives the diffusion of those gas species across a small spacing (~1 mm), where 
they deposit and grow an epitaxial film. 

The underlying assumptions of this method are 1) an equilibrium is established 

for the chemical reaction occurring at both source and substrate inside the system; 2) 

growth is limited by the diffusion of the slowest precursor across the established 

concentration gradient; 3) precursors behave as ideal gases and there is no escape of 

generated precursors from the growth zone. While multiple reactions can happen at the 

same time the dominant reaction for H2O-CSVT and CSVT using HCl (Cl-CSVT) are 

given by Eqns. 1.1 and 1.2. 

2𝐺𝑎𝐴𝑠(𝑠) + 𝐻*𝑂(𝑔) ↔ 𝐺𝑎*𝑂(𝑔) + .
/𝐴𝑠0(𝑔) + 𝐻*(𝑔)	  (1.1) 

𝑮𝒂𝑨𝒔(𝒔) + 𝑯𝑪𝒍(𝒈) ↔ 𝑮𝒂𝑪𝒍(𝒈) + 𝟏
𝟒𝑨𝒔𝟒(𝒈) +

𝟏
𝟐𝑯𝟐(𝒈)            (1.2) 
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If equilibrium is established at the source and substrate for their respective 

temperatures the equilibrium constant can also be expressed by the partial pressures of 

each gaseous component, for Cl-CSVT, by 

𝐾>? =
[BCDE]	×	[HIJ]

.
J	×	[K/]

.
/

[KDE]
≈ 	MNOPQ	×	MRSJ

.
J	×	MT/

.
/	

MTPQ
      (1.3) 

The difference in partial pressures at source and substrate generates a 

concentration gradient across the short distance (~1mm). The diffusion of species from 

more to less concentrated regions can be described by Fick’s law by 

𝐽 = −𝐷 XY
XZ

     (1.4) 

where J is the diffusive flux, D is the diffusion coefficient, φ is the concentration, and x is 

the position. While multiple gases will diffuse across the spacing, it is the species with 

the slowest diffusion rate that will ultimately limit the growth rate of the film. Generally, 

this is the largest gas species since the diffusion coefficient is related to the volume of 

one gas species, i, diffusing through another, j, by [26]: 

𝐷[,] =
^.^^0`×a

b
/cd .

ef
g .
eh
i

M×jkf
.
bgkh

.
bl

/      (1.5) 

where D is the diffusion coefficient, T is the temperature in Kelvin, mi,j is the mass of the 

respective gas, and Vi,j is the molecular volume of the respective gas in this hard sphere 

model. For the GaAs-HCl system, GaCl is assumed to be the diffusion limited species, 

which is assumed to diffuse through H2 only for simplicity since it has the highest partial 

pressure. Assuming a linear concentration gradient and using the ideal gas law one can 

modify Eq. (1.4) to express the concentration as a function of partial pressure for the 

diffusion limited species and temperature by [25,27]: 
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𝐽[,] = −mf,h
n
oMf(a.)
pa.

− Mf(a/)
pa/

q     (1.6) 

where Pi is the partial pressure of the diffusion limited species at temperature T1 or T2, R 

is the ideal gas constant, and δ is the distance the gas species diffuses between T1 and T2. 

This expression can be modified further to express the growth rate as a function of the 

diffusion, molar mass, and density of the diffusion limited species. From this, the source 

and substrate temperatures, and therefore the temperature gradient between them (ΔT = 

Tsrc - Tsub) play a crucial role in the growth rate. Similarly, since the transport agent 

concentration directly influences the resultant concentrations of the gaseous precursors 

needed for growth it also plays a critical role on growth rate. Beyond understanding the 

process, it is also important to clarify what demonstrations are valuable to indicate 

possible commercial feasibility of this process and expand its capabilities. 

What is Needed to Demonstrate Cl-CSVT Feasibility 

Previous research using H2O-CSVT has shown numerous capabilities to grow the 

high-quality materials necessary for PV applications. This includes demonstrations of (1) 

doping control with improved minority carrier diffusion lengths than commercial n-GaAs 

wafers,[23,28] (2) control of composition for ternary compounds and heteroepitaxial 

growth on virtual substrates,[29,30] and (3) fabrication of pn-junction devices with Voc > 

910 mV.[31] However, some limitations in demonstrating reproducible devices was 

highlighted by the need to expose interfaces to atmosphere between growth, oxide related 

defects tied to the use of H2O, and poor scalability for future applications.[32] To address 

these shortcomings a new CSVT system was designed for use with HCl to address the 

operation, material, and scalability constraints of the previous H2O-CSVT system. 
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For the purposes of this investigation, there are several steps needed to 

demonstrate feasibility of the process. The primary elements are (1) identifying the 

system design changes needed to address both the shortcomings of the H2O-CSVT 

system and the use of HCl as a transport agent, (2) reproducing the same, or better, 

quality of films demonstrated via H2O-CSVT and (3) verifying the benefits of the new 

system design through improved reproducibility of high-efficiency pn-junction devices. 

Detail of the system design considerations is described in detail in Chapter II. 

Multiple components are needed to demonstrate the same capabilities of H2O-

CSVT growth. This includes growth rate control, high transport efficiency, uniform 

planar films, and doped films with mobilities comparable to industry standard techniques. 

Growth rate control is necessary to reproducibly grow films of a certain thickness. Higher 

growth rates increase throughput and lowers the cost of devices for high-volume 

manufacturing. In the case of MBE or MOVPE, growth rate is often limited to 0.25 µm 

min-1 or less.[33]  However, CSVT has growth rates reported as high as 1.5 µm min-1. 

[25,27] Characterizing the growth rate is necessary to highlight similar capability. High 

transport efficiency of both the film precursors but also any necessary dopant precursor is 

also important. As mentioned earlier, the low utilization rates in MBE and MOVPE 

contribute to their high costs. CSVT can in principle have 100% utilization but 

demonstrating levels of utilization higher than those achieved by the standard techniques 

is more imperative to provide lower operating costs. Reproducibility of that transport 

efficiency, especially for dopants, is important to demonstrate that the source or substrate 

will not become depleted, or concentrated, over time. High quality films are naturally a 

pre-requisite for any efficient electronic device. Demonstrating films with low defectivity 
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and high uniformity is part of that. Understanding the source of defects or film 

morphology that is observed can help lead to changes in process parameters or equipment 

design to minimize their impact. The characterization of these properties with Cl-CSVT 

is described in Chapter III. 

Additionally, demonstrating the capability to grow doped films individually, and 

as junctions, is fundamental to the demonstration of relevant electronic devices. 

Characterization of such films as devices serves the dual-purpose of feasibility and 

benchmarking against research and industry standards. The fabrication and 

characterization of such devices is described in Chapter IV. Lastly, demonstrating 

capabilities beyond what has been previously shown for H2O-CSVT and addressing 

future work is an important step to progress this technique to new applications. This is 

discussed in Chapter V. A summary and future outlook of this method and growth system 

is discussed in Chapter VI. 
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CHAPTER II. 

DESIGN DETAILS OF Cl-CSVT 

This chapter contains co-authored work published in Journal of Crystal Growth, 

2019, 506 (August 2018), 147-155. Copyright 2018 by Elsevier B.V. This work was 

written and edited primarily by myself with assistance from Greenaway, A. L., Boucher, 

J. W., Weiss, R., Welsh, A., and Aloni, S. Boettcher, S. W. provided editorial assistance 

Introduction 

High quality GaAs is utilized for a variety of optoelectronic device applications 

(i.e. light emitting diodes, photovoltaics, and integrated circuits).[5] This is primarily due 

to its physical properties including a direct band gap, high absorption coefficient, and 

high electron mobility.[11] Such properties make GaAs an excellent material for the 

production of solar cells as demonstrated by record efficiency single- and multi-junction 

cells.[34] However, material and fabrication costs severely limit terrestrial III-V solar 

applications.[35] 

Numerous growth methods have been developed over the past few decades to 

improve the quality of epitaxial III-V films or the cost-effectiveness of the growth 

method itself. The most prominent methods are metal-organic vapor phase epitaxy 

(MOVPE), molecular beam epitaxy (MBE), and hydride vapor phase epitaxy (HVPE). 

Less-established methods include thin-film vapor-liquid-solid (TF-VLS) growth and 

close-spaced vapor transport (CSVT). Several reviews provide context for each of these 

methods along with their advantages and disadvantages.[5,11,12] Here we describe the 
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design and development of a new CSVT reactor along with initial characterization of the 

resulting material. 

CSVT is not a new growth technique. While it has been used to grow a range of 

semiconducting materials,[25] as early as the 1960s,[36] it is not the prominent method 

for any of those materials, including GaAs.[11,37] While the growth of GaAs and other 

III-V films are dominated by MOVPE and MBE, CSVT-grown III-V materials have 

demonstrated suitable electronic properties for high-efficiency photovoltaic 

devices.[23,24,28,29,32,38] For this reason, CSVT is being investigated as an alternative, 

cost-effective method for the growth of III-V materials. CSVT has its limitations – such 

as its applicability to complex, low-dimensional structures – but is well-suited to the 

simpler structures needed for solar cells. CSVT employs solid-source precursors which 

become gaseous and are transported over short distances to grow at high rates (in some 

cases > 1 µm min-1). The key feature of the CSVT method is the close spacing (typically 

< 1 mm) between a solid source and the substrate. The growth is driven by a temperature 

gradient between source and substrate (DT) of typically 5 - 50 °C, and is thought to be 

diffusion limited under close-spacing conditions.[25] A schematic of this growth region 

and mechanism for Cl-CSVT is shown in Figure II.I. 
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Figure II.I.: Schematic of Cl-CSVT deposition of GaAs with thermal and diffusion 
gradients indicated. Source wafer is in contact with a graphite carrier, which is positioned 
above the bottom heater. Similarly, the substrate is supported on its own carrier, which 
sits upon the bottom carrier. Both are positioned below the top heater with a gap between 
to avoid crashing of the carriers during loading/unloading. 

This localized reaction, generating the volatile group III and V species, eliminates 

the need for pyrophoric metal-organic and toxic hydride precursors. The 

etching/deposition reaction is reversible and thus materials utilization can approach 100% 

with appropriately designed source and substrate holders that confine the generated 

precursor gases.[22] While H2O vapor has been the transport agent of choice for most 

growths, other transport agents include HCl and I2.[23,25] These agents, however, have 

not previously been explored or discussed in significant detail. 

The general design of a CSVT reactor has not changed much since its 

introduction in the 1960’s.[22,23,39,40] The vast majority of systems are built from a 

quartz tube as the main body. Inserted into the tube for each growth sequence is the 

heating assembly, which also contains the source and substrate material. Graphite heating 

elements are either passive susceptors heated by external lamps[22,39] or active resistive 
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heaters.[23,41] Source and substrate materials are separated by a quartz spacer, generally 

1 mm in thickness. Because the reactor holds only one source (which must also contain 

any desired dopant), growth of multiple layers requires opening the deposition system 

and changing the source material manually for each different layer. We have utilized such 

a simple, custom-built reactor for previous work on H2O-CSVT.[23] 

Despite its frequent use, H2O precludes the growth of Al-containing compounds 

(i.e. AlGaAs) or the use of Si (a possible low-cost substrate) in the reactor due to surface 

oxide formation. Oxide-related defects attributed to the use of H2O can also impact 

device performance.[32] Al-containing compounds are often used as passivation 

windows or epitaxial lift-off layers in high-efficiency GaAs-based solar cells.[14,15,42] 

AlxGa1-xAs deposition is dominated by MOVPE, with limited success in other vapor 

phase epitaxy techniques (e.g. HVPE), and not yet demonstrated by CSVT.[6] As for Si 

substrates, to our knowledge there is only one research group that reports growing GaAs 

on Si by H2O-CSVT.[43–45] In these reports there is limited characterization of the 

GaAs film itself, the defects present, or the degree of epitaxy. While monolithic tandem 

III-V-on-Si solar cells have been developed and investigated,[46–49] this capability has 

not yet been demonstrated by the CSVT technique. Deposition of gallium phosphide 

(GaP) on Si by CSVT was shown in the 1970s using H2 gas.[50] While the transport 

agent was not proven, it was suggested to be residual hydrogen chloride (HCl) from a 

prior etch step.[51]  

GaAs epitaxy via CSVT with HCl as the transport agent has also been sparsely 

studied.[52]  In that instance, GaAs was deposited onto GaAs and Ge substrates (with 

emphasis on the latter). For GaAs homoepitaxy, they reported mobilities between 2820 
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and 790 cm2 V-1 s-1 for carrier concentrations between 3 × 1015 and 2 × 1017 cm-3 

respectively, which is less than half the mobilities achieved by MOVPE. HCl 

concentrations between 500 and 7,000 ppm were used, along with source-to-substrate 

temperature differences (ΔT) of 75 to 180 °C. However, there is limited characterization 

of the as-deposited GaAs layers and process parameters were not explored in detail. 

Although transport species other than H2O have historically seen little use in CSVT, HCl 

and similar hydrides or halides are used in other vapor transport methods (e.g. HVPE) to 

successfully execute thin-film deposition.[5,11,53,54] 

Here, we report a new design for a CSVT system that (1) incorporates a load-lock 

vacuum chamber with automated source and substrate handling that in principle allows 

for growth of multiple layers without removing the sample from the growth chamber, (2) 

is constructed of materials compatible with the use of HCl as a transport agent such that 

growth with reactive elements such as Al and on substrates such as Si may be possible, 

and (3) is capable of handling substrates up to 2” in diameter. We report results on the 

initial growths of GaAs epitaxial layers using HCl as the transport agent in this new 

reactor and demonstrate the successful transport of n- and p-type dopants (Si and Zn 

respectively) which transported poorly in H2O-CSVT. 

Reactor Design 

Heater Prototype 

Prior to the final design and build of the Cl-CSVT system, a smaller scale 

chamber was set up with a single heating element from the proposed design (Figure 

II.II.). This was done to test the effectiveness of a small-scale water-cooling flange, the 

power requirements of the heating element to meet temperature needs, and the 



   
 

  
 

14 

temperature uniformity supplied by the element to the multiple graphite pieces 

surrounding it. The components and arrangement all closely matched that of the final 

system. 

 
Figure II.II.: (A) Test stand for heater element and temperature uniformity testing. 
Heater assembly had same configuration as final system, installed in a smaller stainless-
steel chamber. (B) Carbon composite heating element for heater tests. A base plate in the 
bottom provided water-cooling in addition to thermocouple feedthroughs for in situ 
temperature measurements. (C) The graphite source and substrate carrier were placed 
above the heating element. Temperature uniformity measurements were made on the 
source carrier. 

Limited information regarding corrosion rates of stainless steels in a low, dry HCl 

environment led to our conservative maximum allowable surface temperature of 150-200 

°C.[55] The final chamber is fabricated from 316L, which has increased corrosion 

resistance relative to the more common 304 or 316 stainless. Only the baseplate of our 

smaller “test stand” was water-cooled, which enabled us to see the effectiveness of that 

feature against an uncooled chamber elsewhere. There was sufficient cooling from the 

water-cooled flange to abate initial concerns the stainless steel could be a source of 
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contamination due to corrosion of HCl. However, there were no tests done with HCl gas 

on the test stand itself. Regardless, at element temperatures above 1000 °C, the external 

surface of the flange did not exceed 90 °C with a flow of 10 °C water through it. 

Additionally, the uncooled stainless parts reached a maximum external surface 

temperature of approximately 150 °C under the same element conditions. Since the 

stainless in the final design is all water-cooled, and further away from the heating 

elements, there is minimal concern it will reach an unwanted surface temperature. 

Given a limit to the total power we had supplied in our lab space, we wanted to 

achieve our temperature targets with less than 1500 W per element at 110 V. At an 

element temperature of 1000 °C, and subsequent source temperature around 800 °C, we 

were supplying less than 1400 W. With the addition of a second element, for the 

substrate, we anticipate that total supplied power will be well within our targets to 

achieve the range of suitable growth temperatures (650 to 850 °C). Temperature 

uniformity also met expectations. The four-inch element, shown in Figure II.II.B, heated 

in excess of 800 °C, produced only a 0.4 °C delta across the two-inch source carrier zone, 

which reached approximately 500 °C. Figure II.III. illustrates the ramp time and 

temperature uniformity under these conditions. 

The ability to maintain a chamber wall temperature below 150 °C, control the 

heating elements with 1500 W or less power to achieve the desired temperatures suitable 

for growth, and demonstrate excellent temperature uniformity all indicated that the 

system had been well designed. This allowed for design and installation of a complete 

system in less than a year.  
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Figure II.III.: Temperature profile of the source carrier at multiple positions. Three 
different voltage set points were applied to the heater, generating the three humps. The 
last one corresponds to an element temperature of approximately 800 °C. The level of 
uniformity where source material could be (positions A-C) can be seen in the inset. The 
chamber temperature of both ambient and water-cooled regions is also shown. 

Material Selection 

Material selection is crucial to minimize potential for unwanted dopants or 

contaminants from corrosion and etching, which has been observed in similar 

systems.[53,56,57] Designing a reactor with numerous moving parts, the ability to 

independently move source and substrate samples, and enabling scalability required a 

larger chamber than would be feasible for quartz tubing used for the H2O-CSVT system. 

Additionally, fused quartz is known to react with HCl at high temperature to generate Si 

impurities.[58,59] Alternatively, graphite has a high chemical resistance to 

HCl.[55,60,61] While numerous metal alloys will corrode, to varying degrees, in the 
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presence of HCl,[55,62,63] 316L is the most corrosion-resistant to HCl of the common, 

commercially available stainless steel alloy grades.[62,64] Therefore, carbon and 316L 

stainless steel were selected as the two primary reactor components (Figure II.IV). All 

components in contact with, and immediately surrounding, the source and substrate are 

made of pyrolytic-carbon-coated graphite. 

To minimize the potential for the corrosion of the stainless steel it is important to 

keep it below 200 °C.[55,62] To control the temperature of the stainless components the 

chamber body and baseplate are double-jacketed for water cooling. This enables greater 

control of the chamber surface temperatures and helps isolate the growth zone as the only 

location where etching occurs. 

Carbon was selected for the heating element itself (Figure II.IV.D.). Here, a 

carbon-carbon composite (Mersen) is used for its structural stability, thermal and 

electrical properties, and machinability.[65] The thickness and element pattern were 

optimized for the power supply used here to deliver adequate heating. Both the source 

and substrate heaters are independently controlled and monitored with thermocouples. 

The source and substrate carriers are made of graphite (Mersen). This enables 

custom machining of those parts to control additional process variables such as the 

spacing distance between source and substrate, which is fundamental to the CSVT 

growth process.[27] While the carriers are capable of handling substrates up to 2” in 

diameter the initial design supports samples of ~ 1.4 cm2. To minimize cross-

contamination, dedicated source carriers can be used for different III-V compositions or 

for sources with different dopants. The system is capable of handling three source carriers 

inside the chamber, allowing for the possibility of subsequent growths on the same 
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substrate utilizing different source materials. The use of pyrolytically-carbon-coated 

graphite serves to minimize outgassing of possible contaminants or dopants, which is 

discussed in Chapter III. 

 
Figure II.IV.: Images of Cl-CSVT system components. (A) Double-jacketed chamber 
dome (for water cooling), which encapsulates the whole system. (B) The water-cooled 
baseplate. Machined ports are present which allow for electrical and thermocouple 
feedthrough to the heater assembly and for sample transfer to or from the load-lock 
chamber. (C) Load-lock chamber with pull out drawer (green arrow) for manual transfer 
of the substrate carrier. (D) Four-inch carbon-carbon-composite resistive heating element. 
There is one element in each of the heater assemblies. (E) Overview of internal 
components. The rotating arms (seen in middle) hold the graphite carriers for source and 
substrate material. Source carriers are loaded manually, while the substrate carrier can be 
transferred to the arm via transfer from the load-lock chamber. Once all carriers are on 
the arms they can be transferred to and from the growth zone. 

Source and Substrate Handling 

The transfer of source and substrate carriers are executed independently (Figure 

II.V.). A carbon-carbon-composite rotating arm assembly can pick up the two unique 

graphite parts for transfer to/from the reactor and the growth zone. Similar to the recent 
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design of a two-stage HVPE reactor,[66] the design of the Cl-CSVT system included the 

capability to house multiple source materials for sequential homo- or heteroepitaxial 

growths with any necessary doping. Because the bottom heater moves vertically to allow 

the loading and unloading of the graphite carriers, it has flexible electrical contacts (strips 

of molybdenum sheet metal) between it and the stainless-steel feedthroughs to minimize 

stress on those components if they were to become embrittled. Electrical contacts within 

the heater assembly itself are made of graphite to minimize possible reaction with the 

process gases. To minimize exposure of the source or substrate to atmosphere, a load-

lock chamber was also installed. Because the source and substrate are not physically 

secured together, as they are with bolts in the H2O-CSVT reactor[23], the design enables 

substrate loading/unloading without exposing the source to atmosphere. 

 
Figure II.V. Source and substrate transfer process at the growth zone. (A) Prior to 
loading, the heater assembly is empty. (B) The source carrier is loaded above the bottom 
heater, followed by the (C) substrate carrier on top of the source carrier, as indicated by 
the arrows. Insets show 3D drawings of both carriers, highlighting a four-pocket design 
for holding multiple samples during the same growth. The carrier can also hold a single 
2” wafer with a different machined design. (D) Prior to growth, the bottom heater 
assembly is raised to bring the substrate carrier closer to the top heater assembly. 
Removal of the substrate carrier follows the reverse procedure. 



   
 

  
 

20 

Summary and Bridge 

With these design considerations met for both material compatibility and 

atmosphere-free handling of source and substrate the system was built and installed. To 

evaluate the film growth capabilities of this system the process parameters would need to 

be well understood first in order to control and tune the growth as desired. This includes 

parameters such as temperature control, temperature setpoints, transport agent 

concentration ([HCl]), and pressure on properties such as growth rate and uniformity. In 

addition, any film growths would need to be characterized. This involved both materials 

and device characterization, where the former is generally concerned with physical 

structure or chemical composition and the latter is concerned with electronic properties. 

The next chapter provides details on the parameters explored and their impact on the film 

material and device properties. 
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CHAPTER III. 

ESTABLISHING CONDITIONS NECESSARY FOR GROWTH AND 

CHARACTERIZATION OF Cl-CSVT FILMS 

This chapter contains co-authored work published in Journal of Crystal Growth, 

2019, 506 (August 2018), 147-155. Copyright 2018 by Elsevier B.V. This work was 

written and edited primarily by myself with assistance from Greenaway, A. L., Boucher, 

J. W., Weiss, R., Welsh, A., and Aloni, S. Boettcher, S. W. provided editorial assistance 

Growth Procedure 

GaAs epitaxial films were grown from both undoped and doped (Si and Zn) 

source wafers. Both source and substrate samples were obtained from single-crystal 

GaAs wafers (AXT, Inc.). The undoped source and substrate wafers were semi-insulating 

with a resistivity of ~2×108 Ω cm. The single Si and two Zn source wafers had carrier 

concentrations of ~1×1018 cm-3, ~2×1018 cm-3, and ~2×1019 cm-3 respectively. The 

undoped, Si doped, and higher Zn doped wafers all had an orientation of (100) ± 0.5° 

while the lower doped Zn source had an orientation of (100) 2° off towards (011) ± 0.5°. 

Source wafers are loaded onto the source carrier with the process chamber open, as seen 

in Figure II.IV.E. Once the chamber is closed, the system is pumped down below 1 Torr 

and purged with N2 to 600 Torr at least three times. The substrates were epi-ready as 

received and cleaned by blowing with N2. Clean substrates were loaded onto the substrate 

carrier via the load-lock chamber (Figure II.IV.C). After the load-lock chamber has also 

been pump/purged at least three times the substrate carrier is loaded into the process 

chamber under vacuum (~100 mTorr base pressure). The process chamber is then filled 

with the desired HCl-to-H2 ratio (Praxair: 4% HCl in H2 mixed with additional H2), via 
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two mass flow controllers, to the target growth pressure, typically 690 Torr. Once the 

target pressure is achieved, the source and substrate carriers are brought into position for 

growth, as seen in Figure II.V. The two heaters are independently controlled to create the 

desired temperature gradient between source and substrate. The total pressure in the 

chamber is maintained manually by adjusting a needle valve connected to the vacuum 

system. After a growth sequence is complete, the source and substrate are lowered (i.e. 

the reverse sequence as that shown in Figure II.V) and allowed to cool before unloading 

onto the transfer arms. This cooling procedure helps to inhibit pitting, discussed on page 

26. Substrate wafers are removed via the load-lock chamber. Source wafers can be reused 

as needed and unloaded directly from the vented process chamber to be exchanged. 

Temperature and Growth Rate 

Temperature 

Based on the H2O-CSVT system,[23,25] and similar HCl vapor systems,[52,67] 

we targeted growth rates ≥ 0.1 µm min-1 and ideally near 1 µm min-1. Initially, growth 

rates were closer to ~0.01 µm min-1 with a temperature difference (ΔT = Tsrc – Tsub) of 

30-50 °C between the thermocouples positioned near the heating elements. We 

hypothesized the low growth rate was due to a discrepancy between the heater setpoint 

temperature and the real local source/substrate temperature in the reaction zone. Similar 

discrepancies have been noted in previous publications.[25,27] This led to an 

investigation to obtain a more accurate picture of the actual ΔT  between source and 

substrate. A hole was drilled into each graphite carrier (i.e. part that holds the source and 

substrate) for placement of a thermocouple close to the actual source or substrate 

position. For the source carrier this corresponds to a position ~10 mm away and 5 mm 



   
 

  
 

23 

below the radial position for the center of a source pocket. For the substrate carrier this 

was ~ 2 mm away and 4 mm above the radial position for the center of a substrate pocket. 

This resulted in a vertical separation of ~ 9 mm between the two thermocouples in the 

test condition. Utilizing this setup, we calibrated the local temperature based on a given 

heater setpoint (Figure III.I.) In general, ΔT between source and substrate carrier was 

smaller by roughly an order of magnitude compared to the ΔT being measured with the 

thermocouples located in their normal operating positions (~80 mm of vertical separation, 

embedded in graphite above and below the top and bottom heater elements respectively). 

A maximum source-to-substrate temperature gradient of approximately 30 °C was 

achieved in this system. Future references to the temperature delta (ΔT) and substrate 

temperature will correspond to the calibrated values from the thermocouples in the 

graphite carriers during the test condition. 

Growth Rate 

With a more accurate understanding of the local temperature gradient between 

source and substrate, the growth rate at several substrate temperatures and temperature 

gradients was determined for GaAs on (100) substrates. The effect of pressure and [HCl] 

was also tested. The highest growth rates were achieved with a substrate temperature of ~ 

850 °C and ΔT of ~ 25 °C (Figure III.II). Currently, [HCl] appears to have the strongest 

effect on the rate. Growth at a substrate temperature of ~850 °C and increased [HCl] of 

20,000 ppm was 0.3 µm min-1. Growth rate data from multiple films grown under the 

same conditions are also compiled in Figure III.II to highlight reproducibility. 
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Figure III.I.: Temperature measurement positions and real temperature delta. (A) There 
are two thermocouple feedthroughs incorporated in the reactor which normally measure 
the temperature at the top and bottom heaters as shown in the left image. We need to 
know, however, the temperature gradient across the source and substrate carriers, which 
cannot normally have thermocouple leads attached as they are moved through the reactor. 
To measure the real temperature gradient across the source and substrate carriers we 
operate the system at a series of fixed-heater-power set points and measure the 
temperature across the bottom and top heater. We then move the thermocouples to 
measure the substrate and source temperature, as shown in the right image in panel (A), 
and drive the system through the same series of heater power set points while measuring 
the real substrate and source carrier temperatures. (B) Contour plot of the measured 
substrate carrier temperature based on the two heater setpoints. Black squares within the 
contour correspond to the same set of measurements plotted in panel (C). At setpoints 
generating a large (> 200 °C) delta between two heaters, the substrate temperature is 
roughly 200 °C hotter than reported by the top heater (the substrate carrier is nearest to 
top heater but also sits on top of the source carrier). The maximum temperature gradient 
across the heaters occurs when the top heater is turned off and all the heat originates from 
the bottom heater. This currently limits the maximum achievable temperature delta 
between source and substrate carrier to roughly 30°C. (C) Plot of temperature delta (ΔT = 
Tsrc – Tsub) between source and substrate carrier compared to those measured when the 
thermocouples are placed behind the heaters in the normal growth configuration. The real 
ΔT is roughly an order of magnitude smaller than that measured with the thermocouples 
in the operating position. The difference in sign between the carriers and the heaters 
when there is a 50 °C temperature inversion between the heaters highlights the fact that a 
majority of the heat transfer to the carriers comes from the bottom heater. 
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Figure III.II.: Growth rate and surface morphology profile. (A) Growth rate as a 
function of substrate temperature and ΔT. All samples grown with [HCl] = 3,000 ppm at 
a total system pressure of 690 Torr unless noted otherwise. Growth duration was 15-30 
min for all samples. Substrate carrier temperature and the source-substrate-carrier ΔT are 
calibrated values determined as described in Figure III.I. The actual source and substrate 
will be at a slightly different temperature than the carrier. In general, an increase in rate is 
observed with increasing substrate carrier temperature. The two points with error bars 
show the standard deviation of rates for multiple films grown under the same conditions 
(three films for purple circle, twenty-four films for black triangle). (B) Color-relief 
topographical image of wafer surface after film growth obtained using optical 
profilometry. The representative sample is that shown as a purple circle in panel A. (C) 
Height profile across the line scan shown in panel B. 

Utilization 

Utilization of  the group III and V precursors in MOVPE is typically around 30% 

and 10% respectively.[8,12,33] While the utilization for CSVT growth can approach 

100% in principle, the design cannot always ensure a completely closed system. 
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Measurements of source and substrate film mass pre- and post-growth, in addition to a 

mass calculation from the volume as measured via optical profilometry (e.g. Figure 

III.II.B.), indicated a net utilization for Ga and As as high as 64% at 690 Torr for [HCl] = 

3,000 ppm and ΔT = 20 °C. Transport efficiency of the different dopant species is 

discussed on page 34. It is expected that further improvements could be made in transport 

efficiency with additional engineering designs for the source and substrate carriers such 

that the source vapor cannot escape from the reaction zone. 

Morphology 

Pitting and Hillocks 

Many films exhibit unwanted surface features, including pits and non-planar 

growth (Figure III.III). Pitting was eliminated for growths at substrate temperatures 

below ~750 °C by keeping the source and substrate close together in the growth zone 

while the system was evacuated and cooled below 200 °C (Figure III.III.B.) – 

presumably retarding etching by HCl process gas during the cooling steps. At substrate 

temperatures closer to 800 °C, pitting was observed, despite the same cooling procedure. 

Pitting has previously been correlated with low concentrations of AsCl3 or GaCl in open 

tube systems.[68,69] However, pits and hillocks are generally prescribed to opposing 

causes and are not reported to occur simultaneously. Therefore, we propose pitting occurs 

after growth in our system, which is why pits can be seen on the surface of hillocks 

(Figure III.III.A.). Further increase of substrate temperature appears to further increase 

the pitting. This could be the result of a local temperature inversion during the cool down 

stage. Similarly, it could also be caused by the combination of a small ΔT and gas species 

escaping from the incompletely sealed reaction zone. Under this condition, if the source 
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and substrate were at a high enough temperature to be etched during cooling but ΔT was 

sufficiently low there may not be sufficient diffusion from the source to the substrate of 

the gaseous species to compensate the loss of etched material in the gas phase at the 

substrate. Ramping down the heaters while maintaining a higher ΔT could help to reduce 

this effect at higher growth temperatures in the future. 

 

Figure III.III.: Surface features generated during growth. (A) Pitting on surface 
presumably caused by etching in the HCl process gas following growth (the inset shows 
an SEM image). Pitting can be eliminated as seen in panel (B), however hillocks remain 
on the top of the film. The optical profilometer image (inset with matching scale bar) 
shows the general features observed in more detail. (C) Microscope and profilometry 
(inset) images of films that underwent a temperature ramp (~100 °C min-1) to the growth 
temperature (~800 °C) and were then cooled without growth of a thick film. (D) Height 
profiles of the hillock features from profilometry line scans for corresponding films in 
(B) and (C). The total film thickness for the sample labeled “normal growth” was ~ 3.9 
µm (i.e. the hillocks make up only a small fraction of the total film thickness) while the 
other two were both below 0.5 µm. All microscope images were captured with reflected 
light differential interference contrast. 
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We were not able to eliminate the hillock features, which were observed at all 

growth temperatures. These can be on the order of 0.6 µm high and hundreds of microns 

wide (Figure III.III.D.). Similar features have been noted in growth systems using 

H2O,[70] AsCl3,[68] and I2[71] with no detailed discussion of how to mitigate them.  

These and other reports on GaAs growth suggest hillocks may be related to orientation 

dependent growth or twinning near the substrate interface, the former of which is 

discussed on page 30.[71,72] 

To further investigate the origin of the hillock features we executed only the 

temperature ramp itself, stopping prior to the growth of a thick film. Typical (calibrated) 

carrier setpoints of Tsrc ~ 800 °C and Tsub ~ 775 °C are achieved in ~7.5 minutes, 

corresponding to a ramp rate of ~100 °C min-1. In these experiments the heaters were 

turned off immediately after the setpoint was reached. This ramp was executed once with 

[HCl] = 3,000 ppm and once with H2 only. Optical profilometry of these films showed 

the early stage formation of hillock features under both conditions (Figure III.III.C.). This 

suggests that the inhomogeneous growth rate that gives rise to the hillocks occurs 

throughout the growth period and initiates at the onset of growth. Some hillock features 

observed during the ramp up in HCl have flat tops. These mesas are consistent with the 

observations of Holloway and Bobb [72] who postulate that mesas result from more-rapid 

growth due to a twinned layer formed at the substrate interface during growth. There is 

still speculation on whether a particular type of contamination can initiate a twin but 

theories include oxygen or water vapor,[68,72] and metallic droplets of Ga.[73] Residual 

oxygen or water vapor could be the cause here since there is significant surface area 

inside the process chamber. Initial attempts at growths after a bake out of the process 
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chamber, with heaters set to ~400-500 °C while pumping to base pressure, showed no 

change in hillock formation. Bake outs at higher temperatures or achieving lower base 

pressures with a high vacuum pump could help to reduce this possible source of 

contamination. Additionally, the HCl flow rate and an excess of GaCl at the substrate has 

been attributed to the formation of hillocks in an open tube system.[69] A decrease in 

[HCl] could help to reduce the GaCl partial pressure but should also result in an 

unwanted decrease in growth rate. One alternative strategy would be to increase ΔT, 

which could modify process conditions for favorable growth of uniform films. 

Several growths were made with either a quartz spacer positioned between the 

source and substrate carrier or a machined piece of graphite placed on top of the substrate 

carrier that also rests inside of the substrate pockets (Figure II.V.C.) making thermal 

contact with the back of the substrate. These modifications are intended to effectively 

increase the ΔT by reducing the heat transfer between carriers or increasing heat transfer 

from the substrate to lower its local temperature respectively. While use of these 

modifications has been limited, initial growth rate and uniformity results suggest this 

could be an effective strategy to reduce hillock formation (Figure III.IV). Therefore, 

hillock formation, in addition to orientation dependent growth, may be modified further 

at larger temperature gradients than are currently capable in this system by modifying the 

concentration gradient of those species between the source and substrate. This should 

enable another way to maintain a higher growth rate even if [HCl] was reduced. 
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Figure III.IV.: Optical profilometry images and line scans of film growth uniformity 
with and without quartz spacer. Both samples growth with [HCl] = 3,000 ppm. White 
dashed line with arrow indicates direction and region of line scan profiles in plots below. 
(A) Representative growth under standard conditions. Growth was ~50 minutes in 
duration. Surface morphology can be close to 1 µm difference in height over 1 mm 
distance. (B) Growth with use of quartz spacer between source and substrate holder. 
Growth was ~ 15 minutes. Tsub and ΔT are not calibrated for use with quartz spacer so 
values are from standard calibration described in Figure III.I. The actual temperature 
gradient is expected to be greater than that listed above. 

Orientation 

Growth conditions (Tsub ~ 760 °C, ΔT ~ 20 °C, [HCl] = 3,000 ppm) that resulted 

in successful epitaxial growth on (100) GaAs (Figure III.VI) were repeated for both 

(111)B and (111)A GaAs (AXT, Inc.). The (111)B substrate was Si doped ~2×1018 cm-3, 

the (111)A substrate was Zn doped ~2×1019 cm-3, and both were ± 0.5° their nominal 

orientation. Microscope and SEM images of these are shown in Figure III.V. No growth 

was observed on (111)B GaAs, while small features and a thin continuous layer were 

observed on (111)A GaAs (Figure III.V.B.). The pits observed in the films grown on the 

(100) oriented samples (discussed above and shown in Figure III.III.A.) are all terminated 
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with (111) planes. This suggests that the (111) plane is stable under these growth 

conditions; consistent with the lack of significant growth observed here. The observed 

lack of growth on (111)-oriented GaAs under conditions that favor growth on (100)-

oriented GaAs could be useful for selective area epitaxy growth of three-dimensional 

structures. Related demonstrations of selective area epitaxy have been made in 

MOVPE,[74] HVPE,[75] MBE,[76] and H2O-CSVT.[30,77] 

 
Figure III.V.: Dependence of GaAs growth on substrate crystalline orientation. (A) 
Reflected light differential-interference-contrast microscope images of wafer surfaces 
after growth on the various substrate orientations. The film grown on the (100)-oriented 
substrate exhibits the hillock features discussed in detail on page 26. This film was 
approximately 780 nm thick with hillocks on the order of 100 nm in height. No growth 
was observed on the (111)B substrate under the same growth conditions (Tsub ~ 760 °C, 
ΔT ~ 20 °C, [HCl] ~ 3000 ppm). Small non-uniform features were observed on the 
(111)A substrate, as can be seen in (B) plan-view and cross-sectional SEM images of the 
(111)A surface after growth. Cross-sectional SEM images of regions without discrete 
features showed a continuous film roughly 150 nm in thickness. 



   
 

  
 

32 

Material Quality 

XRD 

High resolution ω scans of representative films showed them to be epitaxial, 

aligned to the (100) GaAs surface (Figure III.VI.). Typical full width at half maxima 

(FWHM) of x-ray rocking curve peaks associated with the (004) reflection were ~ 41.3, 

40.8, and 41.3 arcsec for a bare GaAs reference and two undoped film growths 

respectively.  Based on the operating conditions, and qualitative appearance, of those 

epitaxial films, we expect those analyzed by TOF-SIMS and Hall-effect measurements 

(Figure III.VIII and Figure III.IX) to be epitaxial as well. 

 
Figure III.VI.: Epitaxial film characterization of undoped films on (100) substrates. 
High resolution x-ray ω-rocking curves for the (004) reflection show films grown by Cl-
CSVT are single crystalline. Full width at half maximum (FWHM) was ~ 41.3, 40.8, and 
41.3 arcsec for a bare GaAs reference (black curve), and undoped samples (red and blue 
curves) respectively. 
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Doping 

Unintentional sulfur incorporation has been found in films grown in the H2O-

CSVT system.[28] In that system, the graphite heaters were identified as the sulfur 

source. Similarly, the graphite carriers were identified as a sulfur source here (via time-

of-flight secondary ion mass spectroscopy – TOF-SIMS) leading initially to a 

background n-type carrier concentration of ~ 4.5 × 1018 cm-3. By switching to pyrolytic 

graphite coated carriers (Mersen) the background n-type carrier concentration was 

brought down to ~5.7 × 1016 cm-3 (Figure III.VII). Continued use of the pyrolytically-

carbon-coated carriers, in addition to bake out processes, may help to reduce these levels 

further in future film growths. 

 

Figure III.VII.: Background sulfur impurity from graphite carriers. TOF-SIMS for 
background S concentrations for a sequence of films grown chronologically. Use of 
pyrolytic graphite reduced background sulfur concentration by approximately two orders 
of magnitude. 
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Si and Zn are both common dopants for GaAs.[78] In the H2O-CSVT system Zn 

transports with ~ 1% efficiency and Si does not transport due to the formation of 

SiOx.[28,39,57] We anticipated improved transport of Si and Zn with the substitution of 

HCl as the transport agent due to the higher vapor pressure of chlorosilanes and zinc 

chloride than SiOx and zinc oxide.  For both Si and Zn doped growths, three films were 

grown in succession from the same source wafer to test repeatability. Additionally, two 

Zn source wafers of different dopant concentrations were used to test control of the 

doping level.  

Initially, a HCl concentration of 3,000 ppm in H2 was tested for transport of Zn 

but Hall effect measurements indicated the film was n-type within the background levels 

of sulfur doping. A decreased mobility was also observed in films grown from a Zn-

doped source compared to a nominally undoped film grown at the same time from an 

undoped source. This suggests there was sufficient transport of Zn to compensate some of 

the background sulfur doping but not enough to generate a p-type film. Subsequent 

growths with [HCl] = 10,000 ppm did result in p-type films. The increase in [HCl] is 

expected to modify the concentration of the gas phase dopant species based on their 

respective chemical equilibrium reactions at both source and substrate. This same [HCl] 

was also used for the Si-doped growths for comparison. 

Hall effect measurements were made to determine the electron/hole mobility and 

the electronically active dopant concentration in the films (Figure III.VIII.). This 

provided an initial assessment for the transport efficiency of these dopant species in the 

Cl-CSVT. Here, transport efficiency is defined as the percent ratio of dopant 

concentration incorporated into the film growth to the original concentration in the source 
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material. Ideally, a grown film would have the same dopant concentration as the source, 

corresponding to a transport efficiency of 100%. The measured carrier concentrations for 

the Si and Zn films grown at 10,000 ppm were close to those reported for the source 

wafers (Figure III.VIII.). The average transport efficiency based on the Hall data was 

approximately 68% and 29% for Si and Zn respectively. The transport efficiency of Si 

increased with each subsequent film growth from the same source with the third sample 

having a transport efficiency near unity. While only three films were grown from the Si 

source, this may be evidence for residual oxygen in the chamber prior to growth, which 

inhibits transfer of Si initially but is reduced with each subsequent growth as the chamber 

is not opened to atmosphere between growths. These transport efficiencies for both Si 

and Zn are substantially higher than possible with H2O-CSVT. The improved transport of 

Si and Zn in Cl-CSVT is likely due to the increased volatility of their chloride species 

relative to the corresponding oxides. 

One film grown with each dopant type and concentration used was analyzed with 

TOF-SIMS (Figure III.IX). Carrier concentration calculations for doped films and source 

wafers from quantitative TOF-SIMS analysis indicated the transport efficiencies of Si 

and Zn (~2×1019 cm-3 source) were ~ 27% and 17% respectively, compared to 99% and 

26% measured on the exact same films by Hall Effect. The signal intensity for the film 

grown from the lower Zn doped source (~2×1018 cm-3) appeared to be within the 

background noise of the TOF-SIMS and no reliable transport efficiency could be 

calculated. While there is some disagreement between the transport efficiency measured 

for Si by Hall Effect versus TOF-SIMS, both measurements indicated dramatically 

enhanced transport compared to H2O-CSVT where no Si transport was possible. 
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Additional work investigating the effect of HCl concentration, temperature gradient, and 

chamber history on species transport may provide further insight into the limiting factors 

for Si and Zn transport in Cl-CSVT.[57] 

 
Figure III.VIII.: Hall mobilities of GaAs films and source wafers as a function of ND 
and NA. Solid curves represent Hall mobility of high-quality MOVPE GaAs.[79] Carrier 
concentration error is due to variability in film thickness. (A) Hall-effect data of 
intentionally n-type doped and nominally undoped films. Source wafers were also 
measured and are identified by open symbols. Carrier concentration measurements 
indicate an average transport efficiency of ~68% for Si. (B) Hall data for p-type doped 
films. Carrier concentration measurements indicate an average transport efficiency of 
~29% for Zn. Reduced mobility compared to the MOCVD standard for the films with 
lower doping concentrations may be caused by compensation of background n-type (e.g. 
sulfur) impurities.  

With background levels of sulfur below the concentration of intentionally added 

dopant species, we also executed simultaneous doped and nominally undoped film 

growth to evaluate the degree of cross contamination occurring across the ~ 5 mm 
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distance between adjacent pockets in the source/substrate carriers that can accommodate 

four separate samples (Figure II.V.B. and C.). These nominally undoped films are 

referred to as “witness” films. In general, TOF-SIMS shows that the witness films had 

roughly an order of magnitude less dopant in them than the intentionally doped films 

(Figure III.IX). This is consistent with loss of some of the source vapor from one reaction 

zone and diffusion of that source vapor to the neighboring reaction zone. Improved 

growth zone engineering to prevent escape of the source vapor would eliminate this. 

There was no sign of cross-contamination occurring from one growth to the next. 

This is supported by the fact that the first three p-type growths ([Zn] = 1-5 × 1018 cm-3) 

after execution of the three n-type growths (Si from Figure III.VIII.A.) demonstrated the 

same NA and mobilities. If significant cross contamination where to occur between 

growths then the initial growths would be heavily compensated and show lower NA or 

even n-type behavior from residual Si dopants. 

Utilization of a second source carrier will enable handling of two sources inside 

the chamber while only exposing one to the growth zone itself (Figure II.V.). Based on 

this and the degree of cross-contamination seen within a single carrier inside the growth 

zone we expect negligible cross-contamination from a second carrier which is not 

actively heated and is positioned more than 300 mm away from the growth zone. This 

would enable the ability to fabricate p-n junctions without opening the growth chamber. 
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Figure III.IX.: TOF-SIMS evaluation of intentionally doped (Si and Zn) and nominally 
undoped witness film growths. Nominally undoped witness growths (A and C) used 
undoped sources but were grown in a reaction zone pocket adjacent to the corresponding 
doped sample. Both witness samples show roughly an order of magnitude less doping 
than the intentionally doped films. The increase of Si counts in (B) confirm the vapor 
transport of that species. The background sulfur concentration for panels A and B (~ 
4×1016 cm-3) corresponds to the last two points in Figure III.VII. For the lower doped Zn 
source (1-5×1018 cm-3, not shown) the total TOF-SIMS counts of Zn species was 
approximately the same as its witness film and that in (C). This suggests that those counts 
are likely within the background signal of the instrument. The Zn doped film (D) had 
more than twice the counts of the witness, further confirming the vapor transport of that 
species. The inset (C and D) show a histogram for the number of times a given intensity 
was measured. Both films were profiled under identical conditions for the same amount 
of time. Counts for Te and S were consistent for both the Zn doped films and Zn doped 
source wafers suggesting those concentrations are also within the background signal for 
the positive polarity scan. 
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Conclusion and Bridge 

We reported a new Cl-CSVT reactor, with independent motion of source and 

substrate samples, that is suitable for deposition of GaAs. We investigated effects of 

process parameters during growth such as temperature, substrate orientation, dopant type, 

and HCl concentration on the growth rate, surface morphology, and transport efficiency. 

In general, the growth rate increases with an increase in substrate temperature, 

temperature gradient, and the concentration of the HCl transport agent. Pitting is a result 

of HCl etching after growth and can be eliminated at some substrate temperatures 

through a cooling procedure. Orientation-dependent growth was observed where the 

growth rate on the (111) surfaces was dramatically lower than on the (100) surfaces. Such 

orientation-dependent-growth may enable selective area epitaxy with Cl-CSVT to form 

controlled three dimensional structures. Vapor-liquid-solid catalyzed growth may also be 

possible by Cl-CSVT. Ga- or Au-catalyzed growth has been demonstrated in other 

growth systems such as HVPE[80] and MBE[81,82] respectively but not in a CSVT 

system. 

Successful n- and p-type growth of homoepitaxial GaAs with growth rates as high 

as 0.3 µm min-1 has been demonstrated. Si and Zn were found to transport with an 

average efficiency of 68 and 29% when [HCl] = 10,000 ppm. While the electronic 

characteristics are not yet equivalent to MOVPE grown material, they will likely be 

improved by continued refinement of the growth process as well as reducing background 

impurity levels in the reactor.[28] While some cross-contamination is seen between 

adjacent substrates when using four-pocket graphite carriers, the four-pocket design  

enables multiple growth experiments (i.e. substrate-orientation dependence or vertical 
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spacing from source) under the same process conditions to be completed simultaneously. 

A much greater reduction in cross-contamination is expected between sources in different 

carriers within the chamber. As a result, this should enable future growths of p-n 

junctions without exposing the substrate or source to atmosphere between growths. The 

growth of sequential films, their fabrication, and characterization is described in Chapter 

IV. 
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CHAPTER IV. 

GAAS SOLAR CELL FABRICATION AND CHARACTERIZATION 

Introduction 

III-V solar cells have repeatedly demonstrated record efficiency for both single- 

and multi-junction solar cells.[83] Unfortunately, terrestrial utilization of III-V solar cells 

is generally limited to solar concentrator (e.g. 500x) setups due to their higher 

manufacturing costs.[9] Today’s challenge is finding alternative processes to reduce 

those manufacturing costs while maintaining the high material quality, and efficiencies, 

of devices grown by the industry-standard metal-organic vapor phase epitaxy (MOVPE) 

process. Low-cost routes to depositing III-V materials often try to utilize elemental 

source material in place of the common MOVPE precursors, which can be an order of 

magnitude higher in cost.[12] 

One such route towards low-cost III-V solar is close-spaced vapor transport 

(CSVT). This technique, originally developed in the 1960s[22], has not been strongly 

investigated for device fabrication until lately. Our group has previously fabricated 

homojunction solar cells in the H2O-CSVT system.[32] Unpassivated devices exhibited 

lower Jsc and Voc, by roughly 2%, in reference to comparable devices fabricated by 

hydride vapor phase epitaxy (HVPE).[84,85] Additionally, an increased oxygen signal 

was observed at the junction of those devices via TOF-SIMS due to the necessary 

exposure of samples to atmosphere between p-type and n-type depositions in that H2O-

CSVT system. The achievable Voc was negatively influenced by surface defects attributed 

to small oxide particulates originating from the annealed pellet sources used in the 

system. A decrease in the Zn-doping was also observed over sequential growths, 
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presumably due to the low (~1%) transport efficiency of Zn in H2O-CSVT and a buildup 

of zinc oxide in the source.[28,32] To date, this technique has limited demonstrations of 

reproducible homo- or hetero-epitaxy due to the atmospheric exposure between 

depositions, and the use of water vapor.[25,29,38,45,86] In this work we will show initial 

results demonstrating similar performance and greater repeatability than H2O-CSVT for 

unpassivated devices grown by CSVT using HCl as the transport agent (Cl-CSVT). 

Experimental 

All growths were conducted using our Cl-CSVT reactor, which has been 

previously described elsewhere.[87] Growth occurs between two graphite carriers, which 

hold the solid source and substrate material, heated by two resistive heater elements. 

Source and substrate are approximately 1 mm apart. As a result, growth rate and material 

loss are driven by diffusion of the in-situ generated gas-phase reactants.[25] 

Junctions were grown over subsequent depositions. While samples are not 

exposed to atmosphere during growth there is a time delay between depositions to allow 

for cooling, transfer of source material, and re-introduction of the transport agent, and 

carrier gas, in the necessary ratio for growth (Praxair: mix of 4% HCl in H2 and 6.0 9’s 

H2). Currently, this time window is 60-120 minutes based on our current operating 

procedure but could be reduced if the rate of cooling could be increased or the transport 

agent and carrier gas were not evacuated and backfilled between each deposition. Doped 

GaAs wafers were used as source material for the p- and n-type layers while a solid pellet 

source was used for the window layer material. The procedure for pellet preparation is 

previously reported.[38] N-type sources were used for the emitter film and were Te doped 

with [Te] ~1×1018 cm-3. P-type sources were used for the absorber layer and were Zn 
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doped with [Zn] ~1×1019 cm-3. The [Te] in the emitter films were determined by 

transmission line measurements on multiple films. Growth conditions for the absorber 

were identical to our previous Zn-doping investigation. Based on that secondary ion mass 

spectrometry and Hall effect data the absorber film is expected to have [Zn] ~ 3×1018 cm-

3.[87] The substrate wafers were also p-type, with [Zn] ~1×1019 cm-3. All wafers were 

nominally (100)-GaAs provided by AXT Inc. 

Immediately prior to loading into the reactor the Zn-doped substrate wafers were 

cleaned in 5:1 H2O:HCl for 60 s, rinsed in 18.2 MΩ H2O then IPA, and spun dry. 

Absorber and emitter films were grown at substrate temperatures of 775 °C and 650 °C 

respectively. Emitter films were grown at a lower temperature to better control the 

emitter film thickness and limit cross diffusion of dopants. The temperature gradient (ΔT) 

for these growths was 25 °C and 20 °C respectively. Concentration of the transport agent, 

[HCl], was ~10,000 ppm for absorber films and ~100 ppm for emitter films. Except 

where noted, all films were grown at 690 torr. The growth times for absorber and emitter 

films were varied for several devices in an attempt to optimize the device architecture and 

demonstrate process control. A complete list of devices and their growth conditions is 

shown in Table IV.I. Additionally, due to the four-pocket design of our source and 

substrate carriers, two substrates were used side-by-side for multiple growths. Reference 

to films in the same growth but different pockets will be noted by an ‘a’ and ‘b’ 

respectively. 
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Table IV.I.: Film growth conditions for fabricated solid-state solar cells 

Film Absorber time 
(min) 

Emitter time 
(min) 

Window layer 
(min) Notes 

1 40 15 -  
2 40 15 -  
3 40 13 -  
4 35 11 -  
5 30 13 -  
6 35 12 -  
7 40 12 - Emitter at 590 torr 
8 35 12 - Emitter at 490 torr 
9 35 10 -  

GaAs solar cells were grown to evaluate the effectiveness of the Cl-CSVT to 

grow films with fewer interfacial defects, increasing their performance, repeatability, or 

both. The structure of the fabricated device is shown in Figure IV.I.. Front contacts were 

prepared by thermal evaporation of Ni/AuGe (20/100 nm) through a shadow mask. 

Device mesas with areas of ~0.04 cm2 were patterned by photolithography and etched in 

a 5:1 solution of aqueous citric acid (50 wt%) and hydrogen peroxide (30 wt%) for 

approximately 20-25 minutes to isolate up to 10 devices on each substrate. Back contacts 

were prepared by thermal evaporation of Au/Zn/Au (20/30/50 nm). Based on the 

transmission line measurements (TLM) for the front contact, or current-voltage 

measurements of the back contact, samples were additionally annealed at 375 °C for 90 s 

under forming gas to improve contact resistance. Growth conditions for several emitter 

films were repeated with undoped substrates as controls. Film thickness for the controls 

was determined by optical profilometry measurements (Zygo NewView 7300). A SEM 

cross-section of a device (not characterized) is shown in Figure IV.I. 
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Figure IV.I.: Device architecture and film thicknesses (A) Device architecture for film 
stacks. All CSVT-grown films were sequential without exposure to atmosphere between 
them. (B) SEM cross-section of a representative device. Inset shows contrast between 
absorber and emitter at junction. 

Current-voltage (J-V) measurements on fabricated devices were collected using a 

Keithley 2400 source meter. The grid area was determined using an OMAX microscope 

with corresponding OMAX ToupView software, which was used to account for the effect 

of grid shading in current density measurements. Illuminated J-V curves were collected 

under a simulated AM1.5 G solar spectrum using a Newport Oriel Sol3A Class AAA 

solar simulator calibrated to 100 mW cm-2 using a thermopile. External quantum 

efficiency (EQE) curves were collected using a Bentham PVE300 spectral response 

system and normalized using published reflectance data to extract internal quantum 

efficiency (IQE).[88] The illuminated spot size for the measurement was approximately 

0.1 mm, smaller than the size of the mesas, so the spot position was adjusted to produce 

the maximum responsivity at a wavelength of 860 nm. This was done to keep the effect 

of grid shading consistent between devices. Due to differences in dimension of the 

photomask and film growth area 4-5 of the 10 devices were on the edge with top contacts 

shunted to the absorber/substrate. For assessment of film uniformity and reproducibility 

5-6 devices from each film, except 4 from Film 1, were averaged for J-V measurements 

(Table IV.II.). 
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Results and Discussion 

Sheet resistance of emitter films were calculated from TLM measurements, and 

estimates of film thickness from control films, showed carrier concentrations ~1-2×1018 

cm-3 for all films. This suggests unity transport of Te, which is consistent with previous 

reports from our H2O-CSVT system.[28] A summary of contact and sheet resistance, 

along with illuminated J-V characteristics, for all films are shown in Table IV.II. Dark 

current measurements made on representative devices from each film showed an ideality 

factor n ~ 2 (Figure IV.II), which is generally attributed to recombination in the depletion 

region but perimeter recombination is also possible for devices of this size.[89,90] 

 
Figure IV.II.: Dark current and ideality Semi-log plot of dark current measurements on a 
representative device from each film. All devices exhibit an ideality factor n ~ 2 with a 
range of saturation currents as depicted by the two dashed lines. The impact of series 
resistance is seen on some devices around 0.8-0.9 V. 
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Table IV.II.: Average J-V characteristics of fabricated devices. Errors reported are one 
standard deviation. 

Film Rc (Ω) Rsheet 
(Ω cm) 

# 
devices Voc (mV) Jsc 

(mA cm-2) Eff. (%) FF (%) 

1 11 ± 0.3 75 ± 6.1 4 805 ± 59 8.6 ± 0.2 5.1 ± 0.5 73 ± 3 
2a 8.1 ± 1.1 95 ± 8.3 6 890 ± 26 11.7 ± 0.1 7.4 ± 1.4 70 ± 12 
2b 9.9 ± 4.6 101 ± 2.5 5 900 ± 0 11 ± 0.1 7.6 ± 0.2 77 ± 0 
3 9.0 ± 1.9 130 ± 15 5 742 ± 12 10.2 ± 0.4 4.8 ± 1.6 61 ± 14 
4a 9.0 ± 0.7 70 ± 6.2 5 852 ± 36 9.6 ± 0.3 6.1 ± 0.6 74 ± 4 
4b 18 ± 1.7 83 ± 5.3 6 880 ± 18 9.9 ± 0.2 6.7 ± 0.3 77 ± 2 
5a 13 ± 1.5 47 ± 0.1 5 890 ± 6 9.4 ± 0.2 6.1 ± 0.6 73 ± 7 
5b 24 55 6 868 ± 48 9.3 ± 0.2 5.6 ± 1.0 73 ± 9 
6 9.3 ± 2.2 89 ± 16 5 864 ± 12 6.9 ± 0.2 4.4 ± 0.6 74 ± 8 
7 11 160 6 745 ± 181 11.2 ± 0.2 5.2 ± 1.9 62 ± 11 
8a 19 ± 0.3 72 ± 1.9 5 894 ± 21 11 ± 0.2 6.8 ± 1.1 69 ± 10 
8b 11 ± 2.6 81 ± 5.6 6 898 ± 15 10.4 ± 0.6 7.2 ± 0.7 77 ± 2 
9 51 ± 13 140 ± 16 6 880 ± 38 12.4 ± 0.3 7.2 ± 1.3 65 ± 10 

 
Compared with  previous H2O-CSVT devices, including those with only the 

emitter grown via CSVT, average open-circuit voltage (Voc) is greater, with less 

variability across devices intra-film and inter-film.[31,32] This suggests less shunting due 

to surface defects and improved interface quality between the two CSVT grown films and 

the substrate.[31] This is likely due to the fact interfaces are not exposed to atmosphere 

between steps. Average short-circuit current (Jsc) is also higher compared with previous 

H2O-CSVT devices. Comparing the best performing devices between Cl- and H2O-CSVT 

they had nearly equivalent Voc (914 vs. 916 mV). However, they exhibited slightly lower 

Jsc (11.6 mA cm-2 vs. 13.9 mA cm-2) as seen in Figure IV.III. Unpassivated, single 

junction devices grown by HVPE have demonstrated Voc of 936 mV and 960 mV with an 

antireflective coating.[66,91] The importance of a quick transition between n- and p-type 

layers on device performance has been previously reported for HVPE,[85] which was 

part of the motivation for their dual HVPE reactor currently in use.[66] While the 

junction is not exposed to atmosphere in the Cl-CSVT system, the growth rate at the end 
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of the absorber film and beginning of the emitter is not constant due to temperature 

ramping with process gas present, which could introduce a short transition zone between 

the doped regions. Based on quantum efficiency measurements, and prior investigations 

into the impact of emitter thickness, it is clear that further optimization of the emitter 

thickness can improve the photocurrent (Figure IV.III).[31] Further tuning these growth 

conditions is expected to improve performance over H2O-CSVT and approach that of 

HVPE. 

 

Figure IV.III.: Record device comparison and IQE (A) Light J-V curves for the highest 
efficiency devices grown via Cl- and H2O-CSVT[31]. (B) Internal quantum efficiency for 
a series of Cl-CSVT devices with decreasing emitter growth times (red, purple, green, 
and blue corresponding to films 1, 5b, 8a, and 9). Champion device from H2O-CSVT 
indicates further photocurrent enhancement possible with additional film growth 
optimization. 

Conclusion and Bridge 

We demonstrated growth of GaAs solar cells by Cl-CSVT for the first time. 

Device performance is comparable to that achieved with H2O-CSVT with notable 

improvement in repeatability. The improvement in repeatability is attributed to the 

sequential growth of films without exposure of the interface to atmosphere. The best 

devices had Voc > 900mV and IQE data suggests that additional growth optimization can 
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improve the unpassivated photocurrent through increased absorption in the depletion 

region. Future work reducing recombination pathways through surface passivation will 

be key to improve efficiency via increased IQE and FF. This and other paths to further 

improve the demonstrations of this technique are highlighted in Chapter VI. 

Beyond demonstrating the capability for device fabrication utilizing this system 

we also explored proof-of-principle demonstrations which would expand the capabilities 

of this system, making it more versatile for other applications. The transition from H2O to 

HCl should enable growth on Si but this has not been well demonstrated with CSVT. 

Additionally, several other vapor phase techniques have recently been used to grow 

nanowires of different III-V compounds. The ability of Cl-CSVT to execute these same 

types of growths is briefly described in Chapter V. 
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CHAPTER V. 

EXPANDING GROWTH CAPABILITIES OF CSVT TECHNIQUE 

Introduction 

Several other material systems and growth processes were pursued as proof-of-

principle demonstrations for this growth process in addition to the demonstration and 

characterization of homoepitaxial GaAs in the previous chapters. These include the 

heteroepitaxy of GaP on Si and growth of GaAs via a vapor-liquid-solid (VLS) 

mechanism using Au patterning. As highlighted in Chapter I, GaP is closely lattice 

matched with Si and provides a pathway to grow a buffer layer, transitioning from GaP to 

a III-III'-V system (e.g. GaInP) that is lattice matched with GaAs or other semiconductors 

of interest. Growth on Si is prohibited in the H2O-CSVT system due to the preferential 

formation of SiOx, which inhibits growth on the crystalline Si substrate. VLS growth has 

been demonstrated in various chemical vapor deposition systems to grow GaAs 

nanowires.[81,82,92,93] These are of interest for some specialized solar applications, 

which utilize the optical confinement properties of the nanorods for increased absorption 

of photons.[94–97] Ga- or Au-catalyzed growth has been demonstrated in HVPE[80] and 

MBE[81,82] respectively but no such demonstration has been made with any CSVT 

system. 

GaP Growth on Si 

Conditions for GaP growth using H2O-CSVT are often similar to those reported 

for GaAs, with substrate temperatures between 700-1150 °C and ΔT between 10-100 

°C.[25,38] Preliminary attempts to deposit GaP on Si by Cl-CSVT were done at Tsub = 

850 °C, ΔT  = 25 °C, and [HCl] = 10,000 ppm. These conditions resulted in small 
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crystallites roughly 5-50 µm in size (Figure V.I.). Later attempts at growth utilized either 

a quartz spacer between source and substrate carrier or an added graphite thermal mass 

on the backside of the substrate as described in Chapter III. Since the growth process is 

driven by the concentration gradient, a greater ΔT is expected to create a greater driving 

force for gas transport and film deposition. This is also supported by the increased growth 

rate and film uniformity described in Chapter III. However, the local temperature with 

these modifications has not been measured so the actual Tsub and ΔT are unknown. Based 

on the known calibration with Tsub ~ 630 °C, ΔT  ~ 18 °C, and [HCl] = 2,000 ppm growth 

of GaP on Si was achieved with the use of a graphite thermal mass on the backside of the 

substrate as seen in Figure V.I. Based on the contrast difference between Si substrate and 

GaP film the layer is roughly 60 nm thick. This suggests that Cl-CSVT growth of GaP 

can be achieved at lower temperatures than what was possible with H2O-CSVT. 

 
Figure V.I.: SEM images of GaP growth on Si. (A) SEM plan view image of Si substrate 
surface with GaP crystallites. Growth conditions were Tsub = 850 °C, ΔT  = 25 °C, and 
[HCl] = 10,000 ppm. (B) SEM cross-section image of Si substrate with GaP film roughly 
60 nm in thickness. Growth conditions were Tsub ~ 630 °C, ΔT  ~ 18 °C, and [HCl] = 
2,000 ppm. Dotted line (inset) is guide for GaP/Si interface. The addition of a graphite 
thermal mass on the backside of the substrate was used for this growth. 
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Au-Catalyzed Vapor-Liquid-Solid Growth of GaAs 

At the same time of our initial investigation into growth on Si substrates we also 

attempted some proof-of-principle VLS growth in Cl-CSVT. Approximately 2 nm of Au 

was evaporated onto a roughly 5×5 mm window on GaAs and Si substrates. Growths at 

Tsub ~ 820 °C, ΔT  ~ 20 °C, and [HCl] = 3,000 ppm resulted in film growths underneath 

those Au patterned windows. The growth features were observed with optical profilometry, 

SEM, and energy dispersive x-ray spectroscopy (EDS) (Figure V.II.). Roughly 2-3 µm 

thick films of GaAs were grown on all GaAs substrates for the three orientations 

investigated before in Chapter III. This suggests that growth on the (111) surface can be 

greatly enhanced by Au-catalyzed growth when grown by CSVT. Evidence of some 

nanowire growth was seen on the (111)A substrate, which still retained nano-sized Au caps. 

No continuous film growth was observed on the Si substrate but polycrystalline GaAs was 

observed (Figure V.II.D.). Compared to previous attempts to deposit GaAs on Si, the 

deposition covered a much larger area than the crystallites observed without any Au 

deposition on previous growths. 

Conclusion and Bridge 

These initial demonstrations of deposition on Si and VLS-type growth both 

support and enhance prior demonstrations of CSVT as a growth technique. While other 

growth techniques may offer the same capabilities with more control at this time CSVT 

still provides the same low-cost advantage over MOVPE. Further investigation into the 

process parameters such as ΔT and [HCl] and their impact on the rate, uniformity, and 

quality of growth on Si could enable an alternative pathway for III-V integration onto Si 

photonic devices since lower temperatures and low-cost methods are needed.[98,99] In 
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addition to ΔT and [HCl] optimization of both the size and pitch of Au nanoparticles are 

also expected to improve the ability to successfully grow nanowires. A low-cost method 

for growing nanowires on various substrates could enable broader study of their 

electronic and optical properties. Together with the other process parameter 

investigations in Chapter III, these results show promise for the ability to execute III-V 

film growths on Si substrates and VLS growth with Cl-CSVT to grow nanowires of III-V 

materials. While these preliminary results may not generate the material quality needed 

for most applications this has the potential to expand the applications of CSVT beyond 

basic solar cell film growths. 

 
Figure V.II.: SEM plan view images of Au-catalyzed growth on GaAs and Si substrates. 
(a) No individual nanowire growth observed on (100) GaAs. Inset shows optical 
profilometry image of Au deposited region after growth. (b) Some nanowire formation on 
(111)A GaAs. EDS images for inset region, highlighting regions with Au on surface. (c) 
Hillocks with Au peaks seen on (111)B GaAs. (d) Polycrystalline GaAs growths on (100) 
Si substrate. EDS images of area highlighted in inset confirm GaAs growth and bare Si 
regions. 
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While the capabilities of CSVT have been expanded, more work is needed to 

better understand the local process conditions with this system and how that impacts 

growth. With greater control and variability in the process conditions a more detailed 

investigation can be made on the growth rates and film uniformity for the different 

depositions described in Chapters III, IV, and V. This is discussed further in Chapter VI. 
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CHAPTER VI. 

FUTURE DIRECTIONS 

This chapter contains co-authored work published in Journal of Crystal Growth, 

2019, 506 (August 2018), 147-155. Copyright 2018 by Elsevier B.V. This work was 

written and edited primarily by myself with assistance from Greenaway, A. L., Boucher, 

J. W., Weiss, R., Welsh, A., and Aloni, S. Boettcher, S. W. provided editorial assistance 

System Design Changes to Improve Process Control 

Despite demonstrating that this new CSVT system design can provide the same or 

better quality material and devices than the traditional design there is substantial room for 

further improvement. For example, better sealing of the reaction zone to improve 

transport efficiency and reduce cross contamination, further reduction in background 

impurity levels, increasing the achievable ΔT, improving temperature ramp rates or 

evacuation time of the chamber, and further understanding any compound effects of 

growth parameters would all be useful. 

Adding an additional pyrolytic-carbon-coated graphite piece on the backside of 

the substrate may help to weigh down the substrate against the carrier and improve both 

the seal around the growth zone and the contact with a thermal mass all along the 

backside of the substrate. This should improve transport efficiency of the source material, 

and any dopants, by minimizing their escape from the reaction zone. A beneficial side 

effect of this could be further reduced cross-contamination for any multi-reaction zone 

chamber. Additionally, the added thermal mass should allow for more uniform 

heating/cooling of the substrate, increasing the achievable ΔT in the system as initially 

discussed in Chapter III. This specific component may not be needed for industrial scale 
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since it could be integrated into the top heater assembly and finer motor control could 

enable backside contact of the substrate wafer without as much of an air gap present in 

the current Cl-CSVT. 

Reduction of background impurity levels could be achieved by identifying, and 

eliminating, additional sources of contamination within the chamber. The installation of a 

high-vacuum pumping system could also help to further remove background impurities 

associated with absorbed water, for example. To avoid the need for a high-vacuum pump, 

which can add significant cost to the system, a more robust bakeout procedure could also 

be implemented. While not fully investigated for this system, early growths with the new 

chamber were found to have higher oxygen content, which limited growth of continuous 

epitaxial films. This quickly dissipated as system use continued and was attributed to the 

high temperatures and subsequent evacuations removing adsorbed oxygen or water vapor 

molecules from the many stainless-steel surfaces inside the chamber. Implementation of a 

more robust evacuation of the chamber while being heated, or bake-out, could help to 

further reduce any such contamination. 

In addition to the backside thermal mass on the substrate for improved thermal 

gradient control, placement of a thermal insulator between the source and substrate 

carriers could increase the achievable ΔT during growth as demonstrated in Chapter III. 

(Figure III.IV). Unlike the quartz spacer used for proof-of-principle test, this thermal 

insulator would need to be sufficiently resistant to HCl etching to not significantly 

contribute to the background impurity level. A possible material could be Papyex®, a 

flexible graphite composite made by Mersen.[100] If this could be integrated into the top 

and bottom surfaces of the source and substrate carriers respectively it could help to 
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dissipate heat between source and substrate, insulating them from each other more than is 

currently possible. Enabling a ΔT greater than 20-30 °C could maintain high growth rates 

at even lower substrate temperatures, making this technique advantageous over MOVPE 

for applications where the thermal budget of the substrate/device is important. As 

highlighted previously, many prior CSVT investigations have reported ΔT closer to 50-

100 °C.[25] While these temperature gradients may not all be measured or calibrated in 

the same way the principle behind this growth is highly dependent on it and the related 

thermodynamics for the equilibrium reactions (Eqn. 1.6). Increasing the possible ΔT is 

critical to expanding the process parameter space and capabilities of this system. 

As highlighted in Chapter 4, the long heating and cooling times between 

subsequent depositions could create a larger, undesirable transition zone at the junction. 

Being able to create more abrupt junctions could improve the performance of future 

devices.[85] Junctions were initiated in the H2O-CSVT by bringing source and substrate 

to the target temperature in H2 then introducing H2O to start the growth. This procedure 

was not adapted for the Cl-CSVT reactor due to its size and the positioning of the gas 

inlet relative to the reaction zone. Enabling introduction of HCl closer to the reaction 

zone could enable a similar procedure and minimize any growth during the temperature 

ramp up. Similarly, during cool down the ratio of HCl-to-H2 is constant and cannot be 

reduced quickly. We are limited by the rate we can pump the exhaust through a custom 

scrubber (to neutralize the HCl). Being able to evacuate the chamber more rapidly and 

introduce either H2 or N2 after growth to flood the chamber, reducing the effective [HCl], 

would also help to limit growth after the desired setpoint. Such modifications could be 

easily integrated into a second design but were beyond the scope of this research. 
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As with the Si and Zn transport, it is clear that modifying the HCl concentration 

can have a significant impact. It has been previously demonstrated for the H2O-CSVT 

system that temperature and water vapor concentration play a critical role in the growth 

process, effecting photocurrent density in solar cells, electron trap concentration, and 

growth rate.[23,24,101] More information is needed on how these parameters influence 

the growth of GaAs, and related III-V semiconductors, and their corresponding electrical 

properties in Cl-CSVT. 

Integration of Ternary III-V Alloys into pn-Junction Devices 

H2O-CSVT has previously demonstrated composition control of the GaAsxP1-x 

ternary system.[29] Due to the greater difference in chemical equilibrium at a given 

temperature for the reaction of GaP or InP with either H2O or HCl there has been limited 

demonstration of GaxIn1-xP growth via CSVT.[38] This is a more desirable ternary 

system than GaAsxP1-x since it can be lattice matched to GaAs for use as a window or 

junction layer in single- and multi-junction solar cells respectively.[102–104] The use of 

HCl may allow for increased transport of GaP at lower temperatures and enable more 

uniform transport of the two binary systems to better control uniformity. Under growth 

conditions of Tsub ~ 650 °C, ΔT ~ 20 °C, and [HCl] = 2,000 ppm the growth rate for GaP 

was roughly 60% of InP on GaAs (Figure VI.I.). Further work is needed to understand 

how the process parameters discussed previously could be adjusted for more uniform 

transport of Ga and In. With this understanding, the mixed phase ratio of any pressed 

powder sample may not be as important on the final composition in the grown film.[38] 
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Figure VI.I.: SEM cross-section of InP and GaP growth on GaAs. Both films deposited 
at Tsub ~ 650 °C, ΔT ~ 20 °C, and [HCl] = 2,000 ppm. (A) InP growth on GaAs. (B) GaP 
growth on GaAs. 

More Robust Thermodynamic Data for Modeling Cl-CSVT Growth 

Prior to installation of the Cl-CSVT reactor attempts were made to model the 

growth rate of GaAs under varying substrate temperatures. This was done using the 

established growth model described in Chapter 1 along with published thermodynamic 

data to establish partial pressures for the key gas species of interest.[67,105,106] 

However, the variability and reliability in some of the published data limited the 

usefulness of this initial model. Initially, the model suggested the growth rate would 

increase with a decrease in substrate temperature, with ΔT, [HCl], and diffusion distance 

all held constant. This result was somewhat non-physical and not supported by early 

growth rate characterizations (Figure III.II.). Further analysis of existing thermodynamic 

data for reactions of interest or more robust calculations/modeling of the reaction 

thermodynamics may be necessary to produce an accurate growth model for this system. 

It is likely such a model would still be less complicated than the computational fluid 

dynamics and reaction modeling needed for other systems such as HVPE.[107–110] Such 

a model could aid in the industrial application of this technique if the other process 

control and growth issues discussed earlier can be addressed. 
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Conclusion 

The use of HCl as a transport agent has increased the flexibility of the CSVT 

technique while maintaining the material quality achieved by the H2O-CSVT system. We 

have shown the use of HCl increased the transport efficiency of dopants such as Zn and 

Si which had limited or no transport using H2O. We have demonstrated growth directly 

on Si substrates, enabling further investigation of its capabilities to integrate III-V 

devices with bare or IC Si substrates. Additionally, we have shown that the quality of 

interfacial junctions are less prone to defects as evidenced by the improved device 

performance in terms of both repeatability and uniformity. Collectively, this shows that 

the Cl-CSVT system can still provide a low-cost deposition strategy for certain 

applications and warrants further investigation into its capabilities. 

There are however numerous enhancements that could be made both on the 

equipment design and materials side along with a broader understanding of the process 

control window. If these challenges can be addressed CSVT may be better poised to 

compete with conventional deposition methods such as MOVPE and HVPE. 
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