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THESIS ABSTRACT 
 
Dan Li 
 
Master of Science 
 
Department of Computer and Information Science 
 
December 2019 
 
Title: Detecting Malicious Usage of Online Social Network Application Programming 

Interfaces from Network Flows 
 

While online social networks (OSNs) provide application programming interfaces 

(APIs) to enable the development of OSN applications, some of these applications, 

unfortunately, can be malicious. They can be running on the devices for OSN users 

throughout the Internet, causing security, privacy, and liability concerns to the network 

service providers of these OSN users. 

In this thesis, we study how a network service provider may inspect its network 

traffic to detect network flows from malicious API-based OSN applications. In particular, 

we devise a deep learning based methodology to detect network flows generated by 

malicious API-based OSN applications. We implement this methodology on a testbed, 

and show that our solution is effective and can accurately label 97.6% network flows 

from the malicious OSN applications, with only 1.6% false positives. 
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CHAPTER I 

INTRODUCTION 

 
Online social networks (OSN) have become extremely popular with an ever-

growing user base. At the time of writing this master thesis, Facebook, Twitter, and 

WeChat each has 2.2 billion, 0.4 billion, and 0.5 billion users, respectively. In particular, 

in order to further enrich and improve the user experience, OSNs have provided public 

Application Programming Interfaces (APIs) to enable the development of OSN 

applications that can access OSN data and functions. However, the provision of these 

APIs can cause severe security concerns.  

Whereas these public APIs make it easy and convenient for OSN applications to 

provide various legitimate OSN services, such as querying an OSN user’s profile 

information and friend lists, retweeting certain tweets, or making automated comments, 

they may also be abused or misused by malicious OSN applications. They can be running 

on the devices for OSN users throughout the Internet, causing security, privacy, and 

liability concerns to the network service providers of these OSN users. Very often, by 

using OSN APIs, a malicious OSN application may control bot accounts to post or reply 

with spam or fraudulent information, run a crawler to collect private and sensitive OSN 

user data, or act as a third-party application to obtain access to accounts of OSN users, 

followed by collecting the profiles of these users and even their friends. In a widely 

known case, Facebook was reported to leak data of up to 87 million users through a third-

part psychology quiz application (NC Matthew, 2018).  
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While abusing OSN APIs, these malicious OSN applications particularly cause 

concerns to network service providers (NSPs) for OSN users. It could be an Internet 

service provider (ISP), an enterprise or campus network. If a malicious OSN application 

is running inside a network, it can imply that one or multiple machines in the network are 

compromised, the application can subvert the privacy of OSN users, and the network may 

have to be liable for the security and privacy violations.  

However, an NSP is not at the same position as an OSN provider to deal with 

malicious OSN applications. An OSN provider can try to monitor API calls, obtain full 

knowledge of user profiles and posts, as well as access the entire OSN graph, in order to 

detect OSN spam accounts (X Zheng, 2015), (F Benevenuto, 2010), (A Almaatouq, 

2016), (M Fazi, 2018), limit large-scale crawling activities (M Mondal. 2012), detect 

malicious third-party OSN applications (SH Ahmadinejad, 2013), and so on. On the other 

hand, an NSP only has limited knowledge of OSN data (such as user posts, profiles, 

social behaviors, OSN graphs). It can only access the traffic across its network, thus not 

able to leverage the aforementioned existing work toward detecting malicious OSN 

applications.  

We therefore study how an NSP may monitor its traffic to detect traffic flows 

from malicious OSN applications. We make the following contributions:  

1) We define a problem of detecting flows from malicious API-based OSN 

applications, whereas the flow data used do not include traffic payload. In another 

word, the problem assumes no knowledge of OSN topologies or specific user 

profiles and data.  
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2) We propose a solution to detect flows from malicious API-based OSN 

applications. First, we train a deep learning model for malicious OSN flow 

detection based on three types of OSN flows: flows from malicious API-based 

OSN applications, flows from benign API- based OSN applications, and flows 

from human user operations on the OSN. For each machine running inside an 

NSP, we extract, aggregate, normalize and visualize flows generated between the 

machine and an OSN, then apply our trained model to determine whether the 

normalized flows are generated by a malicious OSN application running on a 

machine inside the NSP.� 

3) We implement our proposed solution on a testbed, where we simulate and 

collect flows for various malicious OSN applications, benign OSN applications, 

and human user operations. The trained deep learning model is able to detect 

flows generated by malicious OSN applications with high accuracy and low false 

positive. In particular, the trained model is able to label flows from three real- 

world benign OSN applications and three real-world malicious OSN applications 

with high accuracy. Our research demonstrates that it is feasible to detect flows 

from malicious API-based applications on OSNs. What’s more, our proposed 

solution can apply to any other social networks. e.g. Facebook, Twitter.  

The rest of this thesis is organized as follows. After Chapter II about related work, 

we first overview the problem and our solution in Chapter III, followed by a formal 

description of the problem in Chapter IV. We then generate flows on a test bed in 

Chapter V to implement our solution, describe our detailed solution in Chapter VI, 
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evaluate the performance of our solution in Chapter VII, discuss our work in Chapter VII, 

conclude our work in Chapter IX, and introduce our future work in Chapter X. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

 
While APIs released by OSNs are supposed to work for third-party developers to 

access OSN services, researchers have shown they can be easily misused by crawlers to 

crawl OSN data or by spammers to spread fraud or spam content ((AH Wang, 2010), (A 

Saroop, 2011) and (CM Zhang, 2011)). The work in (AH Wang, 2010) crawled a large 

amount of sensitive OSN data by using OSN APIs, and research in (A Saroop, 2011) 

even designed an API-based crawler that attackers can use to crawl a large amount of 

Twitter network structural information. At the same time, spam accounts controlled by 

malicious API applications are common on OSNs; as the research in (CM Zhang, 2011) 

points out that, many automated spam accounts on OSNs prefer to use API rather than a 

web browser to spread fraud or spam content.  

There are certain proposed methods that detect malicious automated spam 

accounts on OSNs, including recent work in (X Zheng, 2015), (F Benevenuto, 2010), (A 

Almaatouq, 2016), and (M Fazi, 2018). Basically, they all analyze the post content, user 

profiles, or social behaviors of spam accounts and rely on these features to detect spam 

accounts. However, a network service provider that usually only collect network flow 

data can hardly have access to such features, thus not able to employ such a method to 

detect OSN spam accounts inside their network.  

Methods are also proposed to prevent crawling activities on OSNs. Research in (J 

Herrera-Joancomartí, 2011) and (M Mondal, 2012) proposed countermeasures to prevent 

attackers from crawling sensitive OSN user data. Research in (J Herrera-Joancomartí, 
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2011) proposes an “Online Social Honey net” concept by deploying a set of users on 

network to attract and defend OSN crawler attackers, but it only proves the feasibility of 

using this concept to prevent crawlers, not about deploying it in the real world. Research 

in (M Mondal, 2012) proposes a Genie system which is deployed at OSN providers to 

thwart crawlers by detecting their different browsing patterns. This work analyzes user 

traces of visiting their friends and non-friends, which is sensitive and, again, not 

accessible in network flow data, so their methodology is not usable by a network service 

provider to detect malicious OSN activities.  

On the other hand, many methods have been proposed to analyze flow data to 

detect network attacks or anomalies. Research in (R Singh, 2012) uses campus traffic 

flows to detect anomaly broadcast traffic, while (J. François, 2011) extends the popular 

PageRank algorithm to detect botnet traffic. The work (A King, 2009) and (P Barfor, 

2001) both detect network traffic flow anomalies by analyzing flow-level anomaly 

features. And research in (ZQ Wang, 2008), (H Rick, 2013), and (VDS Daniël, 2015) 

also proposes several real-time intrusion detection systems based on monitoring network 

flow traffic. These papers all follow a similar idea by detecting a specific attack based on 

the flow- level features of the attack. However, the specific attack features explored in 

these existing methods are different from the features of OSN attacks, making their 

feature-based detection methods basically ineffective in detecting OSN attacks.  

In obtaining a better understanding how users use or interact with online social 

networks, research in (B Fabrício, 2012), (W Watcharee, 2012), (M Zoltán, 2011), (S 

Fabian, 2009) investigated how to use traffic analysis methods to study social networks. 

However, these methods analyze network traffic that includes packet payload in general, 
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which is different from our work that uses the network flow data that only carry 

aggregated packet header information.  
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CHAPTER III 

OVERVIEW 

 
The goal of this project is to detect flows from malicious API-based applications 

on OSNs. We assume that traffic flows of human OSN behaviors and benign API-based 

application behaviors share some normal flow-level features, while traffic flows of 

malicious API-based applications have some malicious flow-level features. We propose a 

solution to detect flows generated by malicious API-based applications. Our solution first 

aggregates flow for the above three category flows separately, normalizes each of the 

aggregated flows, then uses normalized flows as the input to train a deep learning model. 

The trained deep learning model can learn features effectively from high-dimensional 

network flows, and can label flows from malicious API-based applications. We 

implemented this solution on a test bed.  

Since there is no available dataset providing flow data generated by malicious 

API-based applications and other benign OSN flows, we use emulation to generate those 

flows. We deploy a small social network, WordPress, as a test bed where users can 

browse and reply to each other’s posts. We then collect flows for human OSN behaviors, 

benign API- based applications, and malicious API-based applications on this small 

social network. We performed these three behaviors on a client which is installed with 

flow generation software and flow collection software. In this way, when we simulate 

three behaviors on this client, their corresponding flows will be collected on the client 

side by flow collection software.  
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To simulate a large amount of various human OSN behaviors, we write scripts to 

emulate various possible human behaviors on a social network website. These operations 

include login, post, comment, browsing behaviors, and so on. Human behaviors on social 

networks are driven by a series of click events. We use scripts to emulate those click 

events instead, and flows generated by script-controlled click events should be the same 

as flows generated by human-controlled click events. For benign API-based applications, 

OSN APIs should only be a tool used by human beings. Such tools will post content on 

social networks for human beings whenever people want to. Therefore, those benign API-

based applications’ behavior time points should follow human post/comment/like timing 

patterns on OSN. Human behavior patterns can be modeled as different Poisson 

processes (CM Zhang, 2011), so benign API-based application behavior time points can 

also be modeled as different Poisson processes. We simulate various benign API- based 

application behavior time points as different Poisson processes by changing Poisson 

distribution parameters. At each behavior time point, the benign OSN application will 

post some useful content. For malicious API-based applications, we write five known 

malicious application scripts, and their behavior time points are decided by these five 

known malicious API-based applications’ behavioral patterns (CM Zhang, 2011). Each 

application posts spam or malicious posts, comments following one of five known 

malicious timing patterns. We model each malicious API-based application behavioral 

timing pattern as a combination of different probability distributions, and simulate each 

malicious pattern by changing all related parameters. To collect flow data generated by 

benign or malicious API-based applications and human OSN behaviors, we collect 

corresponding flows when we simulate those three behaviors on the client side.  
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To save time generating data for human OSN behaviors, benign and malicious 

API-based applications, we synthesize flows for each of those three behaviors. When 

people or applications are active and perform various operations on OSNs, there are some 

flows generated. Otherwise, no flows are generated. To synthesize flows generated in a 

long period of time, we only need to combine flows generated when people or 

applications are active on OSN together. First, we collect flows when applications or 

people are active on OSNs, then combine those flows together with proper intervals. 

Interval length indicates how long people or applications wait between two active 

sessions. In this way, we can synthesize flows generated in a long period of time for 

benign and malicious API-based applications, and human OSN behaviors.  

We’ve generated flows for the above three behaviors. After that, we extracted all 

flows generated by the communication between the client and our small social network 

by extracting flows whose source IPs or destination IPs belong to our deployed OSN 

server. We’ve found that even a very single user operation behavior, such as a click 

behavior, can generate several flows, so a single flow data carries very little information 

about how users behave on an OSN. Therefore, we aggregate flows that occurred in a 

pre-defined time window together, and those aggregated flows can carry more 

information about how a user behaves in the pre-defined time window. For each 

aggregated flow group, we transformed it into an image which carries the main 

information of the aggregated flow group. Those transformed images act as the input to 

train the deep learning model, which can automatically find potential flow-level features 

for human OSN behaviors, benign and malicious API-based applications. After the model 
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is well-trained, it is able to detect these flows generated by malicious API-based 

applications with high accuracy, precision and recall scores.  

The methodology described above enables NSPs to obtain a deep learning model 

with very good performance in detecting flows generated by malicious API-based 

applications. We built a small social network through the WordPress blog system as a 

testbed, and implemented our proposed solution to detect flows from malicious API-

based applications on this testbed. Furthermore, our proposed methodology not only 

works on the deployed testbed, but can also be applied to other OSNs (Twitter, Facebook, 

Instagram) to detect flows from any malicious API-based applications for any NSPs.  
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CHAPTER IV 

PROBLEM SETTINGS AND DEFINITION 

 
Now that we have introduced the background and motivation for this project, and 

given an overview of our work in Chapter III, we can now provide a more specific 

problem formulation. In this chapter, we begin by introducing network flow data. After 

that, we explain how we define malicious API- based applications, benign API-based 

applications and human OSN behaviors. Our purpose in this project is to detect malicious 

API-based application behaviors based on network flows. Finally, we summarize the 

problem to be solved in this project.  

A. Network Flow  

Current network communication is based on packet switching. Traffic flow is a 

sequence of aggregated packet headers from a source computer to a destination computer. 

Flows are identified by a five-tuple key, including the IP protocol, source computer’s IP 

address and port number, and destination computer’s IP address and port number. There 

are several attributes used to describe a flow, and those attributes are extracted from 

packet headers, such as the flow start timestamp, end timestamp, source IP and port 

number, destination IP and port number, the IP protocol and the protocol’s attributes. If 

the TCP protocol is used, the flow may also include the TCP flag as its attribute. Flow 

attributes can also include statistical numbers for total bytes and total packets received by 

each flow. A flow data can have any attribute which can be read from packet headers. In 

this thesis, we use the widely used NetFlow (B Claise, 2004) format of network flow 

traffic. Figure 1 shows several examples of the NetFlow data.  
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Based on our description, the flow data can carry very limited sensitive social 

network user data, and it could be challenging to detect malicious social network flows 

for API-based applications. However, our research proves that it’s feasible to detect 

malicious API-based applications generated flows.  

 
Figure 1. Network flow traffic 

B. Project Framework  

In this part, we will introduce the framework of this project and answer some 

basic questions, such as how malicious or benign OSN applications and humans within a 

NSP communicate with OSN servers, where OSN network flow data inside a NSP can be 

caught, and where our proposed malicious flows detection method should be deployed to 

detect malicious flows for a NSP.  

Figure 2 shows the framework of this project. Our purpose is to detect flows 

generated by malicious OSN applications for NSPs. NSPs provide network services to 

their users, and a NSP could be part of an Internet Services Provider (ISP). For example, 

a company network is a NSP, because it can provide network services to all workers in its 

company.  
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Figure 2. Setting of a network service provider (NSP) in detecting malicious OSN 

network flows 
 

Human, benign OSN applications and malicious OSN applications in some NSPs 

can send requests to OSN severs. When OSN servers receive their requests, OSN servers 

will reply responses to the people or applications who sent requests in previous NSPs. 

Both requests from the NSP to OSN servers and responses from OSN servers to the NSP 

will go through the NSP’s border router. Therefore, the border router can collect flows 

generated between the application or human within its network and the OSN servers. Our 

malicious flow detection method can be deployed at the border router of the NSP. If there 

are some malicious flows detected at the border router, it can send some alerts to the 

NSP.  

NSP

OSN 

Internet

Human user
Benign OSN application

Malicious OSN application

Border router

Human request
Malicious application request

Benign application request

OSN response

malicious flow detection algorithm
deployed at border router

ALERT!
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C. Malicious API-based Applications, Benign API-based Applications and Human 

OSN Behaviors  

1) Malicious API-based Application Behaviors 

Attackers usually run malicious API-based applications to frequently collect 

private OSN data or spread spam information on OSNs. Whether crawling behavior is 

benign or malicious can only be decided by how people use or analyze crawled data, and 

this is not our focus. In this project, we do not classify them as malicious only based on 

their crawling behaviors. This project mainly focus on detecting malicious API-based 

spammer applications on OSNs. The malicious behaviors to be detected are when 

malicious OSN API-based applications post or comment with spam content (post with 

malicious URLs for malwares, or spam advertisements) on OSNs. E.g. "Free Business 

Links For Chemical Suppliers at http://catalogs.indiamart.com/category/chemicals- 

fertilizers.html".  

Malicious API-based spam applications behave with malicious purposes, so their 

controlled benign accounts’ behavioral patterns are probably different from benign 

accounts. There are five known malicious patterns for malicious API application-

controlled spam/bot accounts on Twitter (CM Zhang, 2011). Those accounts’ 

post/retweet/like behavior time points on Twitter follow five malicious patterns in Figure 

3. Therefore, corresponding malicious API-based applications’ post/retweet/like time 

points should also follow those five known malicious patterns. For those five malicious 

patterns in Figure 3, the x axis indicates minutes of the hour for an account’s 

post/comment/like/retweet behavior time point, while the y axis indicates the seconds of 

the minute for this account’s post/comment/like/retweet behavior time point. 
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(a) Fixed malicious second pattern      (b) Fixed malicious interval pattern 

 

               
(b) Fixed malicious minute pattern    (d) Two fixed malicious minutes pattern 

 

         
             (e) Hybrid malicious pattern 

Figure 3. Malicious OSN application controlled accounts’ behavioral time points show 
five malicious patterns 

 
Attackers usually use OSN APIs to spread spam information by posting and 

commenting. In this project, we mainly focus on detecting malicious OSN applications 
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injecting spam contents into the network. In this situation, we define the two most 

common malicious API-based behaviors:  

(1) API-based post or comment with spam content for a single account.  

(2) API-based change accounts to post or comment with spam content.  

In this project, if any of those three API-based behaviors post spam posts or 

comments following any of five known malicious API usage patterns, we define it as a 

malicious API-based application behavior.  

2) Benign API-based Application Behaviors 

Some benign OSN API-based applications may use OSN-released APIs to 

provide people useful information, such as real-time weather warnings, earthquake 

information for a specific location, and news happening all around the world. In this 

project, we define benign OSN application behaviors are when OSN API-based 

applications post useful information to people.  

When OSN-released APIs are used for a benign purpose, public APIs are 

supposed to provide OSN services on those benign applications and work automatically 

for human beings with benign purposes whenever people need to post/comment/like. For 

example, "Flow" is a Microsoft application which integrates the Facebook API, Twitter 

API and Instagram API. It can help people post on Facebook, Twitter, Instagram at the 

same time when people want to publish their stories on multiple social networks. Since 

APIs are only tools for human beings to post and comment on OSNs, benign API usage 

behaviors should follow human beings’ post and comment patterns. It has been found that 

human post/comment/like time points on Twitter can be modeled as different Poisson 

Processes (CM Zhang, 2011). This benign pattern can be converted to the pattern in 
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Figure 4 which is drawn in a similar way to Figure 3’s depiction of five malicious 

patterns based on humans’ post/comment/like/retweet time points. The benign API-based 

application’s behavioral time point patterns should also follow this benign human 

post/comment pattern on OSNs. 

      
Figure 4. Benign API-based application controlled OSN accounts’ behavioral time points 

follow a benign pattern  
 

Therefore, in this project, if an API-based application posts benign 

posts/comments following this benign Poisson pattern, we define it as a benign API-

based application.  

3) Human OSN Behaviors 

In most cases, users visit social networks and perform some normal operations 

using browsers instead of APIs. Human beings usually access OSNs on browsers to do 

various operations, such as login, post, comment, browse and so on. Most OSN flows are 

generated by human operations on OSNs. In this project, we define various human-based 

browser operations on OSNs as normal behaviors, and define flow data generated by 

human operations as benign flows.  
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To summarize, we define three behaviors in Chapter IV: malicious API-based 

application behaviors, benign API-based application behaviors and human OSN 

behaviors. If APIs are used by applications to spread malicious information, then their 

behaviors follow five known bad timing patterns. If APIs are used by applications to 

spread benign information, then their behaviors follow the benign timing pattern. 

Humans can perform various operations on OSNs, and we define all human behaviors as 

benign. Our purpose is to detect flows for malicious API-based application behaviors 

from flows generated by all three behaviors. We assume that traffic flows of human OSN 

behaviors and benign API-based application behaviors share some benign flow-level 

features, while traffic flows of malicious API-based applications have some malicious 

flow-level features. We aim to detect flows of malicious API-based applications by 

detecting flows with malicious features.  
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CHAPTER V 

DATA PREPARATION 

 
Since there is no existing and available data set providing flows for malicious 

API-based application behaviors or benign OSN behaviors, we need to generate those 

data by ourselves. As described in the problem formulation from Chapter IV, we define 

three OSN behaviors in this project: malicious API-based application behaviors, benign 

API-based application behaviors, and human OSN behaviors. We will generate flows for 

those three behaviors.  

To generate flows for malicious API-based application behaviors, we have each 

malicious API-based OSN behavior simulate one of five malicious API usage timing 

patterns in posting malicious contents or malicious commenting contents by setting 

related parameters. To generate flows for benign API-based application behaviors, we 

have different API-based OSN behaviors simulate benign API usage timing patterns to 

post benign information by setting related parameters. In addition, we simulate all kinds 

of human operations on OSNs using browsers, and collect those generated flows as 

benign human OSN behavior flows.  

In this chapter, we will start by introducing the data preparation platform, then 

simulate malicious API-based application behaviors, benign API-based application 

behaviors and human OSN behaviors. After that, we describe how we synthesize flows 

for three behaviors respectively.  
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A. Data Preparation Platform  

As described in research method chapter, we deploy a small social network 

WordPress in order to replay our synthesized malicious API-based application behaviors, 

benign API-based behaviors and human OSN behaviors on this small social network.  

The small social network is a blog WordPress, where people can post and reply to 

each other. It is deployed on a reserved server on DigitalOcean with a fixed IP address 

165.227.20.24. The server is configured with 512 MB Memory, 20 GB Disk, and Ubuntu 

16.04.3 x64 Operating System. The client is a Dell laptop configured with 8GB Memory, 

128GB Disk, and Ubuntu 16.04 Operating System.  

We simulate malicious API-based application behaviors, benign API-based 

behaviors and human OSN behaviors on the client. The client is installed with traffic 

flow generation software softflowd and flow collection software nfdump. When we are 

simulating malicious API-based application behaviors, benign API-based behaviors and 

human OSN behaviors on the client separately, the flow data generation software 

softflowd and collection software nfdump are running on this client and collecting 

corresponding flow data for each behavior. In flow data generation and collection 

process, we collect flows mainly based on the below three defaulted flow collection 

parameters.  

(1) Maxlife value is set to 604800s. The value of this parameter is the maximum 

lifetime that a flow may exist for. The client and server may keep communicating 

to each other for a time longer than Maxlife. When the connection duration 

reaches to Maxlife, the current flow for the current connection will expire, and a 

new flow will be generated for describing this connection. � 
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(2) Expint value is set to 60s. This parameter of Expin specifies the interval 

between expiry checks. This is to say, when the client and server are sending 

packets to each other, if the interval of two consecutive packets is within Expint 

time, they will be classified into the same flow. If the interval of two consecutive 

packets is larger than Expint time, they will be classified into different flows. � 

(3) Flows have two directions: from source to destination, and from destination to 

source. If the traffic exceeds 2 Gib in either direction, then the corresponding 

flows will expire, and a new flow will be generated for continuous connections. ��

Based on the above built testbed and its set up environment and parameters, we 

collect flows for malicious OSN API-based applications, benign OSN API-based 

applications and human behaviors. � 

B. Synthesis of Malicious API-based Application Behaviors, Benign API-based 

Behaviors and Human OSN behaviors � 

1) Synthesis of Human OSN Behaviors 

Since most OSN flows are generated by normal human operations on OSNs, it is 

very important to synthesize normal human beings’ behaviors accurately. We can then 

collect human OSN behavior flows accurately as ground truth. ��

In order to simulate normal human beings’ behaviors comprehensively, we write 

scripts to simulate all kinds of human user behaviors on WordPress, e.g. login, browse, 

post, comment by browser. Table 1 shows all human basis operations on WordPress. 

Human beings’ operations on OSNs are driven by a series of click events on the browser. 

To simulate human behaviors accurately, the click event stream pattern in our scripts of 
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human operations on WordPress follows the click pattern summarized in a real Chinese 

social network RenRen (G Wang, 2017). �

Table 1. Human operations on OSN 
 
Category� Event type 
Account� Login 
Browse� View a post (go to the post webpage, then go back to previous page or 

main page) 
Browser feeds (scroll mouse, may go next page, or view a post, then 
go back to previous page or main page) 
Return to previous page 
Go to main page 
Go to next page 
View a recent post 
View a recent comment 

Comment� Login in then comment, no login and comment as a stranger 
Post� Login then post 

 

Human behaviors on OSN can be summarized as a series of events switching to 

each other. Figure 2 visualizes the logic of how different events switch to each other. We 

write scripts to simulate 27 streamlines of human behavior chains based on event 

occurrence sequences, which cover almost all possible user operation streamlines on 

WordPress in the real world except infinite looping browsing posts.  

For each streamline, we simulate various possible streamline implementations in 

the real world by changing parameters to simulate its operation logic. For example, one 

of the streamline is: login, then view page 0-10 separately. To simulate this streamline, 

after a user finishes the login step, he or she may browser page 0, pages 0 to 1, pages 0,1, 

2,...., page 0,1,2 ...10 separately. In this way, we simulate nearly all possible 

implementations for this streamline by changing page parameters. For all remaining 

streamlines, we simulate various implementations by changing related parameters, so our 
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simulation covers nearly all possible human behaviors on this small social network 

accurately and comprehensively.  

 
Figure 5. Streamline of how different events switch to each other on WordPress  

 
2) Synthesis of Benign API-based Application Behaviors 

We will introduce how we synthesize benign OSN API-based application 

behaviors in this part. APIs provided by OSNs are supposed to be used for third party 

developers so they can integrate OSN services to their own developed software. Third 

party software are supposed to use API-provided OSN services to serve human beings 

automatically when people need their functions. Therefore, the benign API third party 

applications’ behavioral timing patterns should follow human post/comment/like patterns 

on OSN. It’s known that the timing pattern of how human post/comment/like on Twitter 

can be modeled as different Poisson Processes (CM Zhang, 2011), so benign API-based 

third party applications’ behavioral time points should follow these Poisson Processes. 

Besides API-based benign third party applications, there are some benign API-based bot 

applications on OSNs, and those bots could provide helpful weather warnings or 

broadcast useful news to the general public. Benign bot applications will post content on 

a social network whenever there is news or a warning, and those news and warnings 
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occurrence patterns can also be modeled as various Poisson Processes, so benign API-

based bot applications’ behavioral patterns can also be modeled as Poisson Processes. 

Thus, all benign API-based applications’ behaviors should follow the Poisson 

Distribution.  

              
(a) Example 1                                             (b) Example 2 

              
(c) Example 3                                             (d) Example 4 

Figure 6. Simulation of 4 benign API-based applications by changing Poisson parameters  
 

If API-based applications post benign contents following this benign Poisson 

pattern in Figure 4, we define it as benign API usage behaviors. To simulate all possible 

benign API-based application behaviors, we crawl benign posts’ data from benign 

automatic accounts on Twitter, and simulate posting benign information behaviors. Their 

behavior time points follow various benign Poisson processes by changing different 
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parameters. Figure 6 shows four examples of our simulated benign API-based application 

behavioral timing patterns with four different Poisson parameters. 

3) Synthesis of Malicious API-based Application Behaviors 

Malicious OSN API-based applications behave with malicious purposes to post 

malicious data, and those applications’ behavior patterns are probably different from 

benign accounts. As we discussed in Chapter IV, there are five known malicious API-

based application behavioral timing patterns. We have also defined two categories of the 

most common API-based behaviors as API-based post or comment with spam contents 

for a single account or API-based change accounts to post or comment with spam 

contents.  

We download a Twitter dataset which provides malicious content that were 

posted or commented by malicious spam accounts. To simulate various malicious API-

based application behaviors, we have the behavior time points for each API-based OSN 

behavior decided by five known malicious timing patterns. The application will post or 

comment malicious content at each behavior time point. We model each malicious timing 

pattern as combinations of different probability distributions, and simulate each malicious 

timing pattern by changing related parameters for corresponding probability distributions.  

We take the first malicious API-based malicious pattern as an example. Based on 

observations, the probability density function of the first malicious timing pattern can be 

modeled as the combination of a uniform distribution (!0)  and a group exponential 

distributions (l#$l%) with the same l value. Therefore, we can obtain the first malicious 

timing pattern probability density as formula 1. In formula 1, !0 is the possibility density 

for the uniform distribution, while l#$l(%$'(∗*$(+) indicates probability densities for 
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multiple exponential distributions. The parameter -0 can adjust the weight of all 

exponential distribution densities. ./ is the time step length between each two adjacent 

exponential distributions, while /0 is the initialized time step length for the first 

exponential distribution. Parameters l can decide the shape for all exponential 

distributions.  

To simulate various implementations of the first malicious API usage timing 

patterns, we change parameters l, !0, -0, ./ and /0 in its density function, then use the 

density function with various changed parameters to simulate different first malicious 

API usage patterns. Figure 7 shows four simulation results for the first malicious API 

usage timing pattern with different parameters.  

In a similar way, the probability density of the second malicious timing pattern 

can be modeled as a combination of a uniform distribution and a group normal 

distributions with the same 1. The third malicious API usage timing pattern probability 

density is a combination of a uniform distribution and a group of Poisson distributions 

with the same 1. The fourth malicious API usage timing pattern can be modeled as a 

combination of a uniform distribution and two group Poisson distributions with 

parameters l1 and l2 separately, while the probability density for the fifth malicious 

timing pattern can be modeled as a combination of a uniform distribution and two group 

normal distributions with parameters 11 and 12 separately. All probability density 

functions for the five malicious API usage patterns are shown in formula 1, 2, 3, 4 and 5 

respectively.  
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As we described above, there are two categories of the most common API-based 

malicious behaviors, each behavior’s post or comment contains malicious content, and 

their behavioral time points are decided by any of five malicious API usage timing 

patterns. To simulate each malicious timing pattern accurately, we build a probability 

function for it, and simulate various implementations for this malicious timing pattern by 

changing related parameters in its corresponding probability function. We have each API-

based behavior’s time points follow five malicious patterns separately by changing 

corresponding probability function parameters for each malicious pattern. In this way, we 

can simulate various malicious API-based applications’ posts or comments of various 

malicious content with five known malicious patterns, and our simulation result is able to 

cover nearly all possible five known malicious API-based application behaviors.  
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(a) Example 1                                             (b) Example 2 

                
(c) Example 3                                             (d) Example 4 

Figure 7. Four simulation results for the first malicious API-based application  
 

C. Synthesis of Flows for Malicious API-based Applications, Benign API-based 

Applications and Human OSN Behaviors  

In the above Chapter V, we have introduced how we simulate malicious API-

based applications, benign API-based applications and human OSN behaviors to generate 

corresponding flow-level data. In this part, we will describe how we synthesize flows for 

malicious API-based applications, benign API-based applications and human OSN 

behaviors. To begin with, we explain why it’s necessary to synthesize flows for those 

three behaviors. After that, we introduce more details about how to synthesize flows for 

these three behaviors.  
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To speed up ground truth generation time, we synthesize flows for malicious API-

based applications, benign API-based applications and human OSN behaviors. We 

simulate users’ behaviors in both user active time and user waiting time. During user 

active time, users visit OSNs actively, and perform various operations on OSNs. During 

user waiting time, users don’t access OSNs and don’t do any operations on OSNs. To 

generate ground truth, we write scripts to simulate user behaviors both in their active time 

and in their waiting time. However, for both benign user accounts and malicious user 

accounts, the waiting time is much longer than the active time. Therefore, the speed of 

ground truth generation is very slow because a lot of time is wasted on simulating user 

waiting time.  

However, during user waiting time, there are no corresponding flows generated 

because users don’t communicate with OSNs during waiting time. In addition, based on 

observations, we find that a single API or human behavior on OSN can generate several 

flows. Even if API or human behavior time points are very close, an identical API or 

human behavior occurring at different time points can generate different flows. Not only 

could flow numbers generated by the same behavior be different, but also the attribute 

values of each flow are different, such as flow start time, flow number, flow duration, 

TCP flag, packets number, bytes, and so on. Therefore, flows generated by a single 

behavior at different time are independent and different. Since there are no flows 

generated during waiting time, we can synthesize flows for malicious and benign 

behaviors by combining flows of different OSN behaviors together and only change 

flows’ generation time attributes.  
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The following paragraphs will discuss how to synthesize flows for long time 

malicious and benign API-based application behaviors, and human behaviors.  

1) Synthesis of Flows for Malicious and Benign API-based Applications 

Our methodology of how to synthesize flows for automated malicious and benign 

API usage behaviors in a long period of time follows the logic stated below.  

(1)  To begin, collect flows generated by a single post or comment API operation. 

Benign applications will post or comment with benign content, while malicious 

applications will post or comment with malicious content. Save those flows into a 

file, then each file will include all flows generated by this single API operation. � 

(2)  In a similar way, repeat multiple single API post or comment operations, and 

save those flows into multiple flow files. � 

(3)  For each malicious and benign API behavior, we combine flow files 

generated by corresponding single API operations with different intervals 

separately into a large flow file by only changing each flow’s start and end time, 

while keep all other attributes the same. Time intervals are generated based on 

which malicious timing pattern and benign timing pattern the benign or malicious 

API-based application follows. � 

Based on the above method, the large generated flow file is the synthesized flows 

for malicious and benign API behaviors in a long period of time, and we can generate 

flows for each malicious and benign API-based application based on the time span we 

defined. We design Algorithm 1 to synthesize flows for OSN API based applications in a 

predefined time span. We first introduce the following definitions, and the Algorithm 1 is 

followed by those definitions. 
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(1) Flows set M: For each single benign or malicious OSN application post or 

comment behavior, we repeat those single behaviors for a large amount of 

times, then collect flows generated by each behavior into a separate file. The 

set M consists all those files, and each file includes all flows generated by a 

single OSN application behavior. 

(2) Possibility density function F: For a malicious or a benign OSN application, 

its behave time points follow a particular timing pattern, and F is the 

corresponding possibility density function for that timing pattern. 

(3) timeCount: This parameter indicates the time span of the flows we are 

synthesizing for the application. 

(4) Possibility[t]: The possibility density that an OSN application at time point t 

will do a post or comment behavior. 

(5) Set R: all flows in set R are the synthesized flows for an OSN application in 

timeCount seconds. 
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Algorithm 1: Generation of flows for Malicious or Benign OSN applications 
1:     Input: flows set M, a random behavior possibility density function F 
2:     Initialize possibility density array Possibility[timeCount] 
3:     Initialize timeCount as 24*60*60 seconds 
4:     Initialize result set R as empty set 
5:     FOR t in timeCount DO 
6:             Possibility[t] := F(t) 
7:     END FOR 
8:     FOR t in timeCount DO 
9:             Generated a random number rand which range in (0,1) 
10:           IF rand < Possibility[t] THEN 
11:                    Select flows S generated by a single OSN behavior in M 
12:                    Record the start time of first flow in S as firstStart 
13:                    FOR f in S DO 
14:                            IF f is the first flow THEN 
15:                                  Compute   f’s start time as t 
16:                                  Compute   f’s end time as t + f’s end time - firstStart 
17:                            ELSE 
18:                                  Compute  f’s start time as t + f’s start time - firstStart 
19:                                  Compute  f’s end time as t + f’s end time - firstStart 
20:                            END IF 
21:                    END FOR 
22:           Add those updated flows in S to result set R 
23:           END IF 
24:     END FOR 
25:     Output:  flows set R is synthesized flows for a malicious OSN application 

 

2) Synthesis of Flows for Human OSN Behaviors 

The method of synthesizing human OSN flows is a little different from 

synthesizing flows for malicious and benign API applications. For API-based 

applications, their behaviors mainly consist of different API-based post or comment 

behaviors. However, human operations on social networks are much different, so we 

collect user follows based on a single user session instead of a single operation on social 

networks. A single user session includes all activities from a user opening an OSN 

webpage to closing it, and the user may perform various operations on OSNs at each user 

session, as discussed in Chapter V. The user session time duration distribution and click 
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event pattern follow the pattern summarized in the real Chinese social network RenRen 

(G Wang, 2017).  

To generate flows for human behaviors in a long time period, we combine flows 

generated by different user sessions together, only changing each flow’s start and end 

time. Our methodology of how to synthesize flows for human behaviors in a long time 

period follows the steps below.  

(1) First, collect flows generated by a single user session, then save those flows 

into a file. Each file includes all flows generated by this single user session.  

(2)  In a similar way, save multiple flow files generated by multiple user sessions.  

(3)  Combine flow files generated by each user session with different Poisson 

intervals into a large flow file by only changing each flow’s start and end time 

while keeping other attributes the same. Human beings’ use of social network 

intervals follow the Poisson distribution, so we use Poisson intervals here. � 

In this way, the generated large flow file is the synthesis of flows for human 

behaviors in a long time period, and we can generate flows for human OSN behaviors 

based on our defined time span. Our methodology of how to synthesize flows for human 

behaviors in a long time period follows Algorithm 2. We first introduce the following 

definitions, and Algorithm 2 is followed by those definitions. 

(1) Flows set H: Each human user behavior in a human user session is instructed 

by the finite state machine. We run the finite state machine a large amount of 

times, then collect flows for each human user session, store corresponding 

flows for each behavior into a separate file. The set H consists all those files, 

and each file includes all flows generated by a single human user session. 
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(2) Intervals[]: Two adjacent human user sessions may have various intervals, and 

those intervals can be modeled as various Poisson process, the Intervals[] 

stored the intervals generated by a Poisson process. 

(3) timeCount: This parameter indicates the time span of the flows we are 

synthesizing for the human user. 

(4) curTime: Current time of synthesizing flows compared with the whole time 

span. 

(5) Set R: all flows in set R are the synthesized flows for a human user in 

timeCount seconds. 

Algorithm 2: Generation of flows for OSN human behaviors 
1:     Input: flows set H, a random user session intervals array Intervals[] 
2:     Initialize curTime as 0, interval counter i as 0 
3:     Initialize timeCount as 24*60*60 seconds 
4:     Initialize result set R as empty set 
5:     WHILE curTime + Interval[i] < timeCount DO 
6:             Compute curTime as curTime + Interval[i] 
7:             Select flows S generated by a single OSN user session behavior in H 
8:             Record the start time of first flow in S as firstStart 
9:             FOR f in S DO 
10:                   IF f is the first flow THEN 
11:                         Compute   f’s start time as curTime 
12:                         Compute   f’s end time as curTime + f’s end time - firstStart 
13:                   ELSE 
14:                         Compute  f’s start time as curTime + f’s start time - firstStart 
15:                         Compute  f’s end time as curTime + f’s end time - firstStart 
16:                   END IF 
17:           END FOR 
18:           Add those updated flows in S to result set R 
19:           Increase i as i + 1 
20:           END IF 
21:     END WHILE 
22:     Output:  flows set R is synthesized flows for a human user in a day 
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3) How We Control Flow Attributes When Generating Synthetic Flows  

Each flow includes several attributes, such as flow start time, flow end time, flow 

duration, source IP, source port, destination IP, destination port, TCP flag, and packets 

number in each flow. In this section, we will discuss what attributes of flow are 

controlled in our synthesized flows, and how we control different attributes for 

synthesized flows.  

For both benign and malicious OSN applications, their behavior can be defined 

from two aspects. The first is to decide when OSN applications do post or comment 

behaviors, the second is to decide what content they post or comment each time. For 

malicious OSN applications, their post or comment time points are decided by five 

malicious timing patterns by varying all possible parameters in our proposed malicious 

pattern formulations. The spam content (e.g. post with malicious URL) that they 

post/comment is downloaded from a Twitter spam dataset. The malicious OSN 

applications may use 1 or multiple accounts to post/comment spam information. For 

benign OSN applications, their post or comment time points are decided by a benign 

Poisson pattern by varying all possible parameters in Poisson distribution. The benign 

content (e.g. post for weather warnings) that they post is crawled from online benign bot-

controlled Twitter accounts.  

We have summarized how we simulate malicious and benign OSN application 

behaviors. Now we will answer the question of how we control flow attributes for benign 

and malicious OSN application behaviors. To begin, for malicious OSN applications, five 

malicious timing patterns decide flows’ start time and the behavior of "post or comment 

with spam content for 1 or multiple accounts" decides the flows’ other features. After 
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that, for benign OSN applications, 1 benign timing pattern decides the flows’ start time, 

and the behavior of "post or comment with benign content" decides the flows’ other 

features.  

For human behaviors, we use 27 streamlines of human behavior chains based on 

different event occurrence sequences to simulate all possible operations during each user 

session. A user session includes all human activities, from a user opening an OSN 

webpage to closing it. In each user session, user behaviors are actually driven by a series 

of click events, and the click event interval distribution in a user session is decided by the 

click pattern summarized in the real Chinese social network RenRen (G Wang, 2017). 

Since a human user may visit a social network several times a day, a human user may 

generate several user sessions. The intervals between different user sessions follow the 

Poisson distribution.  

For human behaviors, the timing pattern of "Poisson distribution for intervals 

between user sessions" and "click events’ distribution within a user session" work 

together to decide flows’ start time, and various human behavior streamlines decide 

flows’ other features.  

To summarize, in Chapter V we introduce how we simulate benign API-based 

application behaviors, malicious API-based application behaviors and human behaviors. 

After that, to speed up data generation, we synthesize flows for long periods of time of 

benign and malicious API-based application behaviors and human OSN behaviors. We 

also analyze how we control flow-level features for different synthesized flows.  
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CHAPTER VI 

DEEP LEARNING BASED APPROACH OF DETECTING 

FLOWS FROM MALICIOUS API-BASED APPLICATIONS 

We have discussed how to generate flows for malicious API-based applications, 

benign API-based applications and human OSN behaviors. Our purpose is to detect flows 

from malicious API-based applications. In this chapter, we will introduce how to use our 

generated ground truth to train a Convolutional Neural Network (CNN) model. This 

chapter also includes model selection, ground truth labeling, dataset size, data 

preprocessing and model structure.  

A. Model Selection  

Convolutional Neural Network (CNN) has been a very popular tool to finish 

various machine learning tasks in recent years. It is particularly powerful to learn 

hierarchical level features from complex high dimension data automatically, then finish 

classification task effectively. The aggregated flows in our project are actually high 

dimension data, so CNN is a good tool to classify malicious API flows and other benign 

flows. CNN needs uniform input size, but each of the aggregated flows in our project 

contains a different number of flows. Therefore, we normalize each of the aggregated 

flows by transforming each of the aggregated flows into an image. Each image still 

reserves the main useful information of each aggregated flow group, and then normalized 

images are used as the input to train the CNN model.  

B. Ground Truth Labeling  

There are three OSN behaviors defined in this thesis: malicious API-based 

application behaviors, benign API-based application and human OSN behaviors. Our 
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purpose is to detect flows of malicious API-based application behaviors separately from 

flows generated by all three behaviors. For flows generated by malicious API-based 

application behaviors, we label them as malicious flows. For flows generated by benign 

API-based application behaviors and human behaviors on social networks, we label them 

as benign flows.  

C. Dataset Size  

For flows generated by each malicious API-based application behaviors and 

benign behaviors, we aggregate their flows, and then convert each aggregated flow into 

an image, which can act as the normalized input of CNN model. We generate 40,000 

aggregated flows for both benign behaviors and malicious API application behaviors. The 

data size of categorized aggregated flows for each behavior is shown in Table 2.  

Table 2. Aggregated flows number for each OSN behaviors 

Aggregated flow type # of aggregated flows 
Aggregated malicious OSN application flows 15,000 
Aggregated benign OSN application flows 15,000 
Aggregated human user operations flows 10,000 

 

As we talked about in the data generation chapter, there are five malicious API-

based applications. They post or comment with spam contents, and behavior time points 

decided by five malicious timing patterns. We represent malicious applications with 

different malicious API usage timing patterns as bad1, bad2, bad3, bad4, and bad5, and 

represent the benign API- based applications with benign timing pattern as good1, while 

human behaviors are labeled as good0. Table 3 has shown generated aggregated flows’ 

size for each applications’ malicious timing patterns and benign timing patterns. The data 

set is split into a training set and a test set. The training set has 80% of all labeled 
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aggregated data, while the test set includes 20% of all labeled aggregated data. The 

32,000 training set are used to train the CNN model, while we reserve 8,000 test data to 

evaluate the performance of the trained model. 

Table 3. Aggregated flows number for applications with different malicious/benign 
application patterns 

Aggregated flow pattern type # of aggregated flows 
Malicious application pattern bad1 3,000 
Malicious application pattern bad2 3,000 
Malicious application pattern bad3 3,000 
Malicious application pattern bad4 3,000 
Malicious application pattern bad5 3,000 
Benign application pattern good0 15,000 
Benign human user pattern good1 10,000 

 

D. Flow Data Preprocessing  

For flows generated by each application and human behaviors, we will preprocess 

flows first, then train a deep learning model using preprocessed flows instead of raw 

flows. The flow pre-processing process includes several steps: flow extraction, 

aggregation, and normalizing aggregated flows into images. Normalized images will be 

act as the input of the deep learning model.  

First, we need to extract the OSN-generated flows. When we visit the small social 

network WordPress on the client side, the client is actually communicating with the 

server of our deployed small social network, and this process can generate a lot of 

network packets. The client is installed with flow data generation and collection software, 

so it can generate and collect flow data based on current incoming and outgoing packets 

on this client. However, when we simulate those three kinds of behavior on our client, the 

client is probably communicating with multiple network servers at the same time, so our 

collected flow data not only contains flows communicating with the WordPress server, 
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but also includes flows generated by other applications on the client. Therefore, we need 

to extract those flow data, which are generated by communication traffic between this 

client and the WordPress server. To collect those flows generated by our synthesized 

behaviors, we extract flows whose source IPs or destination IPs belong to the WordPress 

server. Our IP address matching method can also extract flows generated by other OSNs, 

such as Twitter and Facebook.  

After extracting WordPress traffic flows on the client, we will aggregate flow 

data. A single simple behavior on WordPress and any other website can generate several 

traffic flows, so a single traffic flow can carry very little information about how users 

actually operate on an OSN. Therefore, we want to aggregate traffic flows that occur in a 

relatively long pre-specified time window. The aggregated traffic flows can then carry 

information of how a user behaves in the pre-specified time window. Aggregated flows 

only collect flows that occurred in a specific time slot, and still preserve each flow’s start 

time, end time and other attributes, so the timing and other features are still preserved in 

aggregated flows. If an API-based application is used with malicious purposes in this pre-

specified time window, we can detect those aggregated traffic flows from this client.  

Since aggregated flows have a different number of flows, and the CNN model 

needs uniform input size, we normalize the input of each aggregated flows by converting 

it to an image which carries the main useful information for the aggregated flows. Each 

aggregated flow group is converted into a scatter image, and each point in this scatter 

image carries the main information for a flow in this aggregated flow group. A flow is 

converted to a point in the image, so the image consists of all points converted by all 

flows in an aggregated flow group.  
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A point carries four main attributes information from the corresponding flow: 

flow start time, flow duration, packet number and TCP flag. Those four attributes 

information of a flow are converted to a point’s location and (R, G, B) color value in the 

image. To be more specific, flow start time attribute decides a point’s location (x, y) in 

this image: x axis is the flow’s generated minute, while y axis is the flow’s generated 

second. The flow duration attribute decides the point’s R value, the packet number 

attribute decides the point’s G value, while the TCP flag decides the point’s B value. In 

this way, the four main useful attributes of a single flow data are carried by the 

corresponding point’s four features in the scatter image. Each converted image can carry 

information for all flows with their four attributes’ information in the aggregated flow 

group. In Figure 8, there are three examples of three converted images of aggregated 

flows from malicious API-based application behaviors, benign API-based application 

behaviors and human behaviors separately.  

 
(a) Benign application flows      (b) Human user flows       (c) Malicious application flows 
 

Figure 8. Converted images for human, malicious application and benign application 
flows 

 

E. CNN Model Structure  

By changing all related parameters and layers, the CNN model with structure in 

Figure 9 can achieve the best performance. Our trained CNN model consists of 10 layers. 

In the CNN model, the output of the previous layer is the input of the next layer, as seen 
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in Figure 9. The first layer is the input of the model, and the last layer is the prediction 

result of the model. The input layer of the model takes 128*128*3 dimension matrixes as 

input, which are read from images converted from aggregated flows. For each input data, 

the CNN model can predict it with label 0 or label 1 at the output layer. If it is predicted 

with 0, it indicates that the flows are generated by benign API-based application 

behaviors or human behaviors on OSNs. If it’s predicted with 1, it indicates that the flows 

are generated by malicious API-based application behaviors.  

 

Figure 9. CNN model structure 

conv2d_1_input: InputLayer

conv2d_1: Conv2D

max_pooling2d_2: MaxPooling2D

conv2d_2: Conv2D

max_pooling2d_1: MaxPooling2D

conv2d_3: Conv2D

max_pooling2d_3: MaxPooling2D

flatten_1: Flatten

dense_1: Dense

dense_2: Dense
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To summarize, in this chapter, we describe how to label data, the preprocessing of 

flows into images to train the CNN model, and the training of the CNN model structure.  
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CHAPTER VII 

EVALUATION 

 
In this chapter, we evaluate the performance of our trained CNN model. Four 

metrics are used to evaluate the detection performance of the trained CNN model: 

accuracy, recall, precision and F1-measure. To begin with, we evaluate the overall 

detection result for all test set data. After that, we evaluate the detection performance 

when malicious API-based applications post or comment 10 times, 20 times, 30 times, 40 

times, and 50 times. Afterwards, to obtain a better understanding of how our CNN model 

can detect each malicious API-based application’s behaviors effectively, we evaluate 

CNN’s detection performance when each malicious API-based application posts or 

comments 10 times, 20 times, 30 times, 40 times, and 50 times. At last, we evaluate the 

performance of the trained CNN model by detecting flows generated by three real world 

API-based malicious applications and three API-based benign applications.  

A. Test Set Size and Evaluation Metrics  

We reserve 8,000 (20% of generated ground truth data) aggregated flows as the 

test set. The test set includes aggregated flows for malicious API-based application 

behaviors, benign API-based application behaviors, and human behaviors on social 

networks. Their corresponding data sizes are shown in Table 4.  

Table 4. Test set data size for each behavior 

Test set aggregated flow type # of aggregated flows 
Malicious API-based applications 3,000 
Benign API-based applications 3,000 
Human OSN behaviors 2,000 
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We adopt the four most commonly-used metrics of accuracy, recall, precision and 

F1-measure to evaluate the performance of our trained CNN model. Accuracy is the 

proportion of predictions that are correct. Recall is the measurement of how many actual 

positive observations are predicted correctly. Precision measures how many positive 

predictions are actual positive observations. F1-measure is the harmony of precision and 

recall. We have /!, /W, X! and XW indicating the number of true positive, true negative, 

false positive and false negative in prediction results. Thus, all four metrics can be 

formulated based on /!, /W, X! and XW. 

YZZ[\]Z^ =
/! + /W

/! + /W + X! + XW
6  

`#Z]aa =
/!

/! + XW
7  

 

!\#Zcdcef =
/!

/! + X!
8  

 

X1 − h#]d[\# =
2/!

2/! + X! + XW
9  

 

B. Overall Detection Performance for All Test Set  

To begin with, we evaluate the overall performance of the trained CNN model by 

predicting the whole test set. As shown in Figure 10, the overall performance of our 

model is very good. It can achieve very high scores for accuracy, precision, recall and F1-

measure at the same time.  
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Figure 10. Detection performance for predicting all test sets  

 
C. Detection Performance for Malicious API-based Applications with Different 

Post/Comment Frequencies  

In part VII, it is shown that the trained CNN model’s overall prediction 

performance is very good. In this part, we would like to check if when malicious API-

based applications’ post/comment times vary from 10 to 50 times, our trained model can 

detect those malicious API applications effectively.  

In Figure 11, the x axis indicates malicious API applications post/comment total 

times in the aggregated flows, while the y axis shows our model’s corresponding 

detection performance. Based on observation, we find that when malicious applications 

post/comment less frequently, our model’s detection accuracy is relatively low. The 

accuracy is nearly 89.9% when malicious APIs post 10 times in a day. As malicious 

patterns post/comment increasingly frequently, our model’s detection accuracy increases, 

and will reach up to nearly 99.3% when malicious APIs post 50 times.  
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When malicious API-based applications act more frequently, their malicious 

patterns become increasingly obvious, such that their flows become more easily detected 

by our model. Figure 12 compares two examples of the first malicious API application 

with different post/comment times. The Figure 12a shows when the first malicious API 

application posts only 10 times, and has a malicious pattern which is not that obvious. In 

Figure 12b, the malicious pattern is much more obvious when it posts 50 times than when 

it posts 10 times. Therefore, we can find when malicious API-based applications post 

times increase, their malicious patterns will become more obvious. Our method can 

detect flows from frequently-acting API-based applications more effectively. 

 
Figure 11. Detection performance for malicious API usage with different 

posting/commenting times per day 
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(a) 10 times                                                         (b) 50 times  

Figure 12. Comparison for malicious API application #1 posting/commenting 10 and 50 
times, respectively 

 
D. Detection Performance for Each Malicious API-based Application with 

Different Post/Comment Frequencies  

To obtain a better understanding of how our trained model can detect each 

malicious API-based application’s generated flows effectively when the application 

posts/comments times changes, we display another group of detection results for each 

malicious application with post/comment frequency changing from 10 times, 20 times, 30 

times, 40 times to 50 times per day.  

Figure 13 shows the performance of our trained model in detecting flows of each 

malicious API-based applications when their posting frequency changes from 10 times to 

50 times per day. Based on our observation, we found that the detection result shows two 

patterns. For malicious API-based application bad1 and bad3, when post/comment times 

are less frequent, our model’s detection accuracy is very low. When their posts/comments 

become more frequent, our model’s detection accuracy increases until it is very high. 

However, for malicious API- based application bad2, bad4 and bad5, our model’s 

detection accuracy is always very high.  
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(a)Malicious application #1                        (b) Malicious application #2 

 
(c)Malicious application #3                        (d) Malicious application #4 

    
   (e) Malicious application #5 

Figure 13. Detection results for each malicious API-based application 
posting/commenting 10 to 50 times per day 

 
The reason why those results show two different patterns are related to how 

different malicious API-based applications post/comment. The example of bad1 and bad2 

is shown in Figure 14. For bad1, post/comment behavior time has relatively long 

intervals. When it posts less frequently (e.g., 10 times per day) the bad1 pattern is not 
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obvious, so our model’s detection accuracy is low. For bad2, post/comment behaviors 

mainly focus on a short time period. Even if it posts less frequently (e.g., 10 times per 

day), its malicious pattern is still very obvious, so our model’s detection accuracy for 

bad2 is always high.  

                  
(a) bad1                                                          (b) bad2  

Figure 14. Comparison for bad1 application and bad2 application for 
posting/commenting 10 times per day 

      
We also observed another phenomenon: when bad1 and bad3 post less frequently, 

even if our model’s detection accuracy scores are low, the precision scores are still very 

high. Precision is a measurement of how many positive predictions are actual positive 

observations. We represent malicious API behaviors as positive, which is described in 

chapter VI. This high precision result indicates that our model’s predicted malicious 

flows are very likely to be actual malicious flows, and our model may predict malicious 

flows as benign flows. This indicates when the behavior patterns of some malicious API-

based applications are not obvious, our model can mistakenly predict those malicious 

flows as benign.  
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E. Detection Performance for Detecting Real World API-based Benign Applications 

and Malicious Applications  

Since we have evaluated the performance of the trained model based on five 

synthesized malicious applications, we must demonstrate that our synthetic flows are 

very close to the real world generated malicious and benign flows. In this section, we use 

our trained CNN model to detect flows from three real world malicious OSN API-based 

applications and three real world benign OSN API-based applications.  

The three real world benign OSN API-based applications are an earthquake bot 

providing real time earthquakes happening in specific locations, a news bot providing 

important news to people, and a weather warning bot reporting weather warning 

information. The three malicious OSN API-based applications are all spam applications.  

We collected and aggregated corresponding flows by running those applications 

on our platform, and then used our trained model to detect aggregated flows generated by 

three malicious applications and three benign applications. Figure 16 shows our model’s 

performance for detecting flows for malicious API-based application behaviors. As we 

can see, our detection model performs well and can detect malicious flows with accuracy 

as high as 99.7%, 98.8% and 99.1%. Figure 15 shows the performance for detecting 

flows for benign API-based application behaviors. Our detection model performs well 

and can detect benign application flows with accuracy as high as 93.4%, 91.1% and 

99.2%. The precision score is 0, and recall and F1-measure cannot be calculated because 

of no instances of true positive (TP) and false negative (FN) results. All samples are 

either correctly predicted as TN or mistakenly predicted as FP. The Figure shows that our 
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model can detect flows from real world benign and malicious API-based applications 

well.  

 
Figure 15. Detection results for flows generated by three real world malicious 

API-based OSN applications 
 

 
Figure 16. Detection results for flows generated by three real world benign API-

based OSN applications 
 

To summarize, our trained CNN model might be not able to identify flows for 

some malicious API-based applications very accurately when they only post/comment 10 

times per day. When their post/comment times increase to at least 20 times per day, our 

model shows very good prediction performance. In addition, our model is also able to 
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label flows generated by real world benign and malicious OSN API-based applications 

with good performance.  
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CHAPTER VIII 

DISCUSSION 

 
In this chapter, we are going to discuss some concerns and the future work for this 

research. The first concern is that some people are worried that a single timing pattern 

feature is enough to detect flows generated by malicious OSN applications, and therefore 

it is unnecessary to train a deep learning model based on other features. The second is 

that people may claim that our project can only detect flows from malicious OSN 

programs that demonstrate similar timing patterns as the five malicious timing patterns 

we used. For future studies, we are going to discuss the real-world applications of our 

work in helping NSP detect flows from malicious OSN applications.  

A. Is A Single Timing Pattern Feature Enough to Detect Flows Generated by 

Malicious OSN Applications?  

Malicious OSN applications have the malicious purpose of spreading spam 

information, so their behavior patterns are probably different from benign applications 

and human behaviors. It is known that malicious OSN applications’ behavior timing 

patterns may be different from benign applications and human behaviors based on 

previous papers, and some people may think that a single timing pattern feature is 

sufficient to detect flows generated by malicious OSN applications. In this project, we 

train a deep learning model based on four features: flow start time, flow duration, packet 

number in each flow, and TCP flag in each flow. To investigate this concern, in this 

section, we train another CNN model only based on the timing feature, and show the 

detection result for the whole test set in Figure 17.  
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Figure 17. Detection result for predicting the test set for the model with only the 

timing feature 
 

As we can see, the detection accuracy of the single timing-feature based CNN 

model can only reach to 82.5% percentage accuracy and 70.2% precision. The 70.2% 

precision indicates only 70.2% labeled malicious flows are actually maliciously-

generated by malicious OSN applications, and many benign flows may be mislabeled as 

malicious. The detection performance of the single timing-feature based model is much 

worse than our trained four-feature based deep learning model. In our four-feature based 

deep learning model, the detection result for the whole test set achieved accuracy as high 

as 98.7% and precision as high as 97.5%.  

To obtain a better understanding of why the timing feature-based model obtains 

overall lower accuracy and lower precision, we investigated four questions and trained 

four timing-feature based models to answer those questions: (1) Can we distinguish 

malicious application flows from benign application flows from just their timing 

features? Model 1: trained under the presence of only malicious and benign application 

flows (2) Can we distinguish malicious application flows from human flows from just 
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their timing features? Model 2: trained under the presence of only malicious application 

flows and human flows (3) Can we distinguish benign application flows from human 

flows from just their timing features? Model 3: trained under the presence of only benign 

application flows and human flows (4) Can we distinguish benign application flows, 

malicious application flows, and human flows from just their timing features? Model 4: 

trained under the presence of benign application flows, malicious application, and human 

flows.  

Table 5. Detection accuracy result for different flow combinations in each timing-based 
model 

 Malicious application 
detection accuracy 

Benign application 
detection accuracy 

Human behavior 
detection accuracy 

Model 1 96.0% 98.9% - 
Model 2 99.6% - 75.8% 
Model 3 0 99.6% 99.2% 
Model 4 96.7% 98.9% 25.1% 

 

In Table 5, the timing-feature based Model 1 is trained by malicious application 

flows and benign application flows. We find that Model 1 can label flows from benign 

applications with accuracy as high as 98.9%, and flows from malicious applications with 

accuracy as high as 96.0%. This result indicates that a single timing feature is enough to 

distinguish flows generated by malicious applications or benign applications. For timing-

feature based Model 2 which is trained by flows from malicious applications and human 

behaviors, we find that our trained Model 2 can label malicious application flows with an 

accuracy of 99.6%, while label flows from human behavior only with an accuracy of 

75.8%. This indicates that a single timing pattern is not enough to distinguish flows 

generated by malicious applications or human behaviors. For Model 3 trained by benign 

application flows and human flows, the detection performance for labeling benign 
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application flows and human flows is very good, and a single timing feature is enough to 

distinguish flows generated by benign applications or human behaviors.  

For timing-feature based Model 4 trained by human flows, benign application 

flows and malicious application flows, we find that the model can distinguish benign and 

malicious application flows with very good performance, but detection of human flows 

resulted in very low accuracy. Based on Model 1, we know the timing feature is enough 

to distinguish benign application flows or malicious application flows. From Model 3, we 

know we know the timing feature is enough to distinguish benign application flows or 

human flows. In Model 2, human flows can be mislabeled as malicious flows when only 

detecting with the timing feature. Model 4 resulted in low accuracy in detecting human 

flows, and this is also caused by some human flows being mislabeled as malicious 

application flows (we have checked the detection result in labeling human flows, and 

many human flows are indeed mislabeled as malicious in Model 4), which is the same as 

Model 2. In Model 2, the model has already had a very hard time distinguishing human 

flows from malicious application flows only based on the timing feature. It can be 

understandable for Model 4 to have bad performance when distinguishing human flows 

from benign and malicious application flows too.  

We can conclude based on Table 5 that the timing feature is not sufficient for 

distinguishing between human and malicious applications, but can help distinguish 

malicious from benign applications and benign applications from humans. The timing 

feature is an important feature for detecting malicious flows, but a single timing feature is 

not enough to solely detect flows from malicious applications, because it can mislabel 

human flows as malicious, which will result in a high false positive rate.  
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We have already found that the timing-based Model 4’s low detection accuracy 

and precision is mainly caused by mislabeling some human flows as malicious, so the 

single timing pattern is not enough to distinguish flows generated by malicious 

applications or human behaviors. In this situation, we would like to investigate whether 

other features help distinguish between human flows or malicious application flows. 

Which features are particularly helpful? Does a combination of all useful features further 

improve the detection result?  

In our project, the malicious application flows’ detection model is trained based 

on timing pattern and three other features: TCP flag, packet number in each flow, and 

flow duration. We represent feature TCP flag, packet number in each flow, flow duration 

as feature 1, feature 2, feature 3 respectively. To check whether other three features 

(feature1, feature 2, and feature 3) are helpful to distinguish flows generated by human 

behaviors or malicious OSN applications, we train another 4 models with the timing 

feature and another feature: (1) Model 5: trained based on timing and feature 1 to 

distinguish human flows or malicious application flows. (2) Model 6: trained based on 

timing and feature 2 to distinguish human flows or malicious application flows. (3) 

Model 7: trained based on timing and feature 3 to distinguish human flows or malicious 

application flows. (4) Model 8: trained based on timing and feature 1,2,3 to distinguish 

human flows or malicious application flows.  

When distinguishing human flows and malicious application flows by training a 

model only based on timing pattern, the model’s accuracy for detecting human flows is 

75.6% in Model 2. If we train the model with timing and one of the other three features, 

the detection accuracy for human flows can be improved, as is shown in Table 6. If 
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feature 2 is added with the timing pattern to train Model 6, the accuracy of labeling 

human flows can be increased to an accuracy of 92.4%. If feature 1 is added to Model 5, 

the accuracy will increase to 82.8%. Feature 3 is the least useful feature, as it can only 

help improve accuracy to 79.9% in Model 7. Model 8 is trained based on timing pattern 

and all the other three features. This four-feature based Model 8 can detect the human 

flow detection with an accuracy as high as 99.8%. This result indicates that all the other 

three features can help distinguish human flows from malicious application flows 

independently.  

Table 6. Detection accuracy result for different flows in different feature based models 

 Human flow 
detection accuracy 

Malicious application 
detection accuracy 

Model 5: timing + feature 1 82.8% 99.5% 
Model 6: timing + feature 2 92.4% 99.4% 
Model 7: timing + feature 3 79.9% 99.1% 
Model 8: timing + feature 1,2,3 99.8% 100.0% 

 

A combination of the three other features improves accuracy for distinguishing 

human flows and malicious applications, with the best detection accuracy for human 

flows.  

Based on the above analysis, when Model 2 is trained under the presence of only 

malicious and benign application flows, it can’t achieve good performance when it’s only 

trained on a single timing pattern. If we train it with timing and all other three features in 

Model 8, the detection performance is very good.  

We also train a model with timing and three other features to distinguish flows 

between malicious or benign applications in Model 9 in Table 7, where we observe that 

Model 9’s detection performance is also very good. Model 10 is trained by timing and the 
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other three features to distinguish human flows and benign application flows, resulting in 

very good detection performance.  

Table 7. Detection accuracy result for different in each four-feature based model 

 Malicious application 
detection accuracy 

Benign application 
detection accuracy 

Human behavior 
detection accuracy 

Model 8 99.8% - 100.0% 
Model 9 97.9% 96.6% - 
Model 10 0 100.0% 100.0% 
Model 11 97.0% 98.8% 99.5% 

 

Therefore, if we train models based on timing and the other three features, the 

detection performance will not hurt for distinguishing between human flows and benign 

applications, and will not hurt for distinguishing between malicious application flows and 

benign applications flows.  

Finally, Model 11 is trained based on timing and the other three features to 

distinguish malicious application flows, benign application flows and human flows. The 

detection performance for all flows in this Model is also very good. Therefore, a timing 

feature is not enough to distinguish all three flows, but timing in addition to the other 

three features are enough.  

B. Can Our Project Only Detect Flows from Malicious OSN Programs That 

Demonstrate A Similar Timing Patterns with Our five Used Malicious Timing 

Patterns?  

We used four features to detect flows from malicious applications in this project: 

flow start time, TCP flag, flow duration, packet number in each flow. As we can see in 

chapter VIII, the timing feature could be an important feature for us to detect flows 

generated by malicious OSN applications. However, to achieve a high detection precision 
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result, the other three features are also helpful. In a more accurate way, this project is to 

identify applications that exhibit both five malicious timing patterns and other flow-level 

malicious features, instead of identifying applications that only exhibit the five malicious 

timing patterns.  

In this project, we have five malicious timing patterns decide when malicious 

OSN applications post/comment with spam content, so our trained model is indeed 

supposed to detect flows from malicious applications showing similar timing patterns 

with our used five malicious timing patterns.  

In order to create an expressive set of malicious timing patterns, we extended the 

findings of paper (CM Zhang, 2011). They present five malicious timing patterns of real-

life spam accounts. These timing patterns are a good basis to describe possible malicious 

timing behaviors, but they are not complete. For example, the paper suggests that posting 

once a minute throughout a day is an example of malicious behavior, but one can also 

further infer that posting twice a minute is also a reasonable example of malicious 

behavior. Therefore, we create an extensive set of possible malicious timing behaviors 

through slight modifications of the timing behaviors presented by this paper. In order to 

extend one of the five malicious timing patterns presented in that paper, we first create a 

model that describes the presented malicious timing pattern, and then we further add 

variances to this model, which creates an extensive set of possible malicious temporal 

patterns.  

In particular, the parameters of our model are each given a range of realistic 

values, and each derived malicious temporal pattern is a specific instance of possible 

parameter values of our model. This process creates a comprehensive set of malicious 
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timing behaviors. Based on this comprehensive set, we trained a CNN to classify future 

flows that exhibit similar timing patterns as malicious. In fact, we found and downloaded 

three malicious spam programs, and for each downloaded program, a specific instance of 

possible parameter values of our model describes its timing pattern. Therefore, it is no 

surprise that our CNN successfully detected the flows generated by these spam programs 

as malicious.  

To summarize, we varied all related parameters to simulate all possible malicious 

timing pattern instances, and our simulated instances can cover a wide variety of timing 

patterns used by real-world malicious programs. If the real world malicious program’s 

behavior timing pattern is covered in our dataset, our trained model can detect this 

malicious application’s generated flows.  
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CHAPTER IX 

CONCLUSION  

 
While most social network providers release some APIs for third-party developers 

to integrate OSN services to their own software, these APIs can be misused widely by 

malicious OSN applications, causing security, privacy and liability concerns to OSN 

providers, network service providers (NSPs), and users. This thesis mainly studies how 

NSPs may apply a methodology which first preprocesses network flows and then 

converts useful flow level features to images as input to train a deep learning model to 

detect network flows from malicious API- based OSN applications. The evaluation 

results show that via this methodology, we can detect flows generated by malicious OSN 

applications with 97.6% accuracy and only 1.6% false positive.  
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CHAPTER X 

FUTURE WORK  

 
We have proposed that our project can be used to detect flows generated by 

malicious OSN API-based applications for NSPs. In this chapter, we will discuss how to 

use our work help NSPs detect flows generated by malicious OSN applications in reality.  

To make use of our work in the real world, NSPs should deploy an OSN flow 

collector running continuously at its border router, where all incoming and outgoing 

traffic can be caught in this network. This process should not require that much effort, 

because flow data only aggregates packet head information, and the flow data size is 

much smaller than the total packets’ size. If a flow caught by the NSP has a source IP 

address or destination IP address belonging to an OSN, then this flow is generated by a 

connection between a machine inside the NSP and an OSN. There are real time online 

router tables that can provide IP blocks for an OSN by sending requests to BGPstream (O 

Chiara, 2016), so the NSP can decide whether a flow’s source or destination address 

belongs to an OSN through IP prefix matching. In this way, NSPs can obtain all traffic 

flows generated between machines inside its network and an OSN.  

The flow data are aggregated packet headers. When NSPs collect all OSN flows 

for each machine (associated with an IP) inside the network, NSPs can use our proposed 

method to detect whether flows generated between an IP and OSN servers are malicious. 

If flows are detected as malicious, it indicates that the machine with this IP is running 

malicious OSN applications. In response, the NSP can decide to block the bad traffic, 

block this compromised IP, or just not do anything.  
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To use our proposed method to train a deep learning model for detecting 

malicious flows, NSPs need to obtain the ground truth by labeling malicious OSN 

application flows, benign OSN application flows and human OSN flows for a particular 

OSN, then train the malicious flow detection model based on the ground truth for this 

OSN. Future work may further include automating the training of this model.  
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