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Beavers (Castor canadensis) are a keystone species capable ofrapidly altering 

habitat and hydrologic conditions in aquatic ecosystems. At Wasson Creek, a degraded 

stream in the South Slough National Estuarine Research Reserve, beaver activity may be 

able to restore channel complexity. To evaluate current conditions and the influence of 

beavers at Wasson Creek, I recorded stream stage in high and low beaver activity areas 

relative to a range of precipitation events, measured stream channel patterns and the fate 

of over-bank flow on the floodplain, mapped change in the original agricultural ditch 

through time, and monitored beaver activity. 

During the study, Wasson Creek over-topped the banks of the main channel at the 

two stage- recording sites in response to a 6-10-year storm event. Following the event, 

the floodplain above the two largest beaver dams and around dams in a shallower, 

narrower secondary channel remained inundated for most of the study period. Despite 

minimal change in the path and sinuosity of the main channel over 65 years, beaver 

activity has altered water movt:ment on the floodplain-particularly in areas where 

beaver dams cross the floodplain, beavers excavated channels on the floodplain, and 

flows were re-directed into a smaller, secondary drainage ditch. Given the high level of 

beaver activity on the floodplain (17 actively maintained dams) and suitable habitat, we 

can expect beavers to remain in the system- further creating a new complex of channels 

and wetlands on the Wasson Creek floodplain. Human intervention may be necessary to 

control reed canary grass (Phalaris arundinacea) and other invasive species. 
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I. INTRODUCTION 

Beavers have always fascinated me in their ability to rapidly transform the 

landscape-creating a diverse array of habitats and hydrologic conditions that we, as 

humans, could only hope to replicate in restoration projects. Using only what is available 

to them in the region immediately surrounding their home stream, beavers engineer 

incredibly durable structures often capable of withstanding high and variable water 

pressure, animal and human foot traffic, and weathering over time. 

In this study, I have set out to document the relationship between beavers and 

stream hydrology at Wasson Creek, a degraded stream in the South Slough National 

Estuarine Research Reserve (SSNERR). Over the course of a year I observed conditions 

and changes to the channel and floodplain at Wasson with the hope of determining 

whether beaver activ ity alone can restore channel complexity at the site. With the 

restoration goal ofretuming Wasson Creek to a more sinuous, dynamic channel having 

greater interaction with the floodplain in mind, I evaluated beaver activity and hydrology 

using flooding frequency, the current floodplain layout, channel structure, and analysis of 

historical data for the region. 

Ideally, my findings will help the South Slough NERR managers assess how 

much human intervention is necessary to achieve the goal of a more sinuous and dynamic 

channel that reflects the un-ditched state of Wasson Creek. Additionally, passive 

restoration at Wasson Creek, if successful, would provide a case study for landowners 

and land managers of other coastal watersheds like Wasson Creek. If beavers, which are 

present in many of these coastal stream systems, have the potential to catalyze the 

transition from a drainage ditch to a more structurally diverse meandering stream, then 



passive restoration could potentially be a more feasible, less costly option than active 

restoration measures in many coastal valleys. 

Site History 

The South Slough watershed, an 8,100 hectare (20,000 acre) sub-basin of the 

Coos watershed (Figure 1) has been altered by logging, agriculture, mining, and other 

human disturbances dating back to the early 20th century. Wasson Creek, which drains 

into the southernmost branch of the South Slough via the slough's main tidal channel, 

Winchester Creek (Figure 2), is one of many altered coastal streams that was historically 

straightened and dredged for agricultural purposes. Such channel simplification is one of 

a series of human activities in Oregon's coastal watersheds that have resulted in a 

reduction ofriparian habitat and species diversity (Hudson and Heikkila, 1997; Reeves et 

al., 2002). 

The earliest aerial photos on record for the region indicate that by 1939, Wasson 

Creek was re-routed into a series oflinear drainage ditches along the margins of its 

former floodplain. Over time, Wasson Creek has cut further into its channel bed and 

steepened its banks through erosion. Since its initial alteration for agricultural purposes, 

the lower Wasson Creek floodplain has remained relatively undisturbed by human 

activity-including restoration work. Ifwe compare aerial photos from 1939 and the 

present, there has been little change in the location of the main ditch and plant cover on 

the floodplain over the span of 65 years (Figure 3). As a result of such static conditions 

in what should be a relatively dynamic system, many of the habitats and processes that 

may have occurred on the floodplain prior to European settlement, such as a mosaic of 



wet meadow, wooded wetland, open water and shrub swamp habitats (Guard, 1995) and 

seasonal flooding, are now either fragmented or absent. 

In 1974, the South Slough estuary became the first National Estuarine Research 

Reserve, which changed the focus of land management from natural resource extraction 

and farming to restoration, education, and research. Currently, land managers at the 

South Slough NERR are assessing what measures should be taken to restore Wasson 

Creek. 

Restoring Wasson Creek 

Restoration is often defined as the re-establishment of diverse ecosystem structure 

and function(s) in a disturbed or degraded landscape (Cairns, 1988; National Research 

Council, 1992; Williams et al., 1997). Ecosystem structure refers to components like 

stream channel shape, dams and other in-stream debris, and plant community 

composition corresponding with different habitat types on the floodplain. Ecosystem 

functions at Wasson Creek include processes like seasonal flooding, retention and 

filtration of water and sediments in floodplain wetlands, and successional changes in the 

biotic community. 

Stream and wetlands restoration is a holistic approach to recovering a degraded 

system and must take into account ecosystem-wide processes and components rather than 

simply targeting isolated elements (NRC, 1992). Planning for a restoration project 

requires investigation of the natural processes, structures, and species that are currently 

present and would have historically occurred on a site (Ebersole et al., 1997). Though we 

cannot replicate or bring back the full range of historic processes and components once 
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found at Wasson Creek, we can attempt to restore ecological processes necessary to the 

recovery of habitats and biological communities adapted to historic site conditions 

(Ebersole et al., 1997; Reeves et al., 2002). 

Once a site' s history and current status have been researched, a restoration plan 

can be developed. A restoration strategy for Wasson Creek could potentially involve an 

active, passive or a combined approach. Active restoration at Wasson would most likely 

entail using hea';y equipment to fill in the incised ditch where necessary and then re­

creating a meandering channel on the floodplain. Anderson Creek, adjacent to Wasson 

Creek, is an example of an active restoration project (Figure 4). At Anderson Creek, old 

drainage ditches were filled and stream flow was diverted into reconstructed complex 

stream channels. Large woody debris was then placed in the new channels and native 

trees, grasses, and shrubs were planted on the floodplain. Following initial active 

restoration work, land managers at the South Slough are letting nature take its course at 

Anderson and monitoring the progress. 

A purely passivt' appro~ch to restoring Wasson Creek would allow the system to 

recover on its own while being monitored, and would eliminate the need for substantial 

human intervention. Since the agricultural activity that led to Wasson's degraded state is 

no longer present, in-system components and processes (i.e. beavers and flooding) would 

be left to alter the current shape of the Wasson Creek ditch and return the stream to a 

more natural, sinuous state. 

Mitsch and Gosselink (2000) suggest some general principles that may be adapted 

to help frame a restoration plan for Wasson Creek: 



I. Plan for a system that can maintain itself in the long-run. This includes the use of existing 

ecosystem components (i.e. beavers, native plants, soil, and site hydrology) whenever possible. 

2. Use existing processes and forces (such as a stream's potential energy and flooding) to accomplish 

restoration goals when possible. 

3. Natural disturbances, as well as the hydrology and ecology ofa site should be included in any 

restoration plan. Though the timing and scale of disturbances like floods cannot always be 

predicted, systems can generally recover and benefit from these "re-setting" events. 

4. A restoration plan should have many goals, but a hierarchy consisting of one primary goal, 

followed by several secondary goals is useful. 

5. Riparian and wetland habitats are ecotones, or interstitial habitats between a stream and an upland 

area, and this should be factored into the planning process. 

6. A long-term time frame is essential. Recruitment and establishment of native species, 

development of soils, and stabilization of a stream channel are all processes that require time and 

patience. 

7. Function should be prioritized over form. The success of a project will be, in part, determined by 

whether or not its main ohjectives, such as the reestablishment of critical processes like flooding, 

have been met. 

8. Refuse the urge to over-engineer a system. Forms and structures should mimic and complement 

natural and historic systems. 

According to this framework, a passive (or "hands-off') approach to restoration at 

Wasson Creek would leave beavers to develop the site over time, with the assumption 

that flooding, sediment impoundment in the ditch, excavation of new channels on the 

floodplain, and wetland creation resulting from their damming and other activities could 

lead to the accompli::,hment of several key goals. If the establishment of a new 

meandering channel and wetlands on the floodplain in place of the current ditch is a 



primary goal at Wasson, beaver dams may continue to 1) move water onto the 

floodplain and 2) create additional in-channel debris and sediment traps that will 

gradually fill in much of the existing ditch in the long-run. Secondary goals might 

include the restoratii)il of habitat and species diversity on the floodplain and flooding out 

some of the non-native and invasive species like pasture grasses and reed canary grass 

(Phalaris arundinacea). 

A combined active-passive restoration approach would involve many of the same 

goals and using site elements like beavers and seasonal flooding to restore Wasson Creek, 

but could include the addition of human intervention where necessary-particularly in 

areas where the channel is deeply incised and there is little beaver activity and where 

there is a high concentration of invasive species like reed canary grass and Himalayan 

blackberry (Rubus discolor) Some of the most incised portions of the stream channel, as 

observed in the lowest section of the floodplain, could be filled with sediments excavated 

to form a new channel on the floodplain, large woody debris could be added to the new 

channel (as seen at Anderson Creek), and disturbed areas could be replanted with species 

like alder (Alnus rubra), willow (Salix spp.), small-fruited bulrush (Scirpus microcarpus), 

and slough sedge (Carex obnupta). 

Beavers as Restoration Engineers 

Regardless of whether a more passive or active restoration approach is adopted at 

Wasson Creek, b0ave1s will likely continue to be the predominant natural disturbance in 

this and other similar watersheds along the Oregon Coast. Of the estimated 70,000 

beavers in Oregon, about halfreside in Oregon's coastal watersheds, where they can 



successfully colonize lower order (1 st-5 th
) streams (Naiman et al., 1986; Guthrie and 

Sedell, 1988; Suzuki and McComb, 1998). 

Beavers are considered riparian obligates and a keystone species because of their 

active alteration of the surrounding biological and physical environment (Naiman et al., 

1986; Jones et al., 1997; Hayes and Hagar, 2002). Jones et al. refer to beavers as 

"physical ecosystem engineers" in their ability to change aquatic landscapes such that 

overall structural and functional habitat diversity is enhanced (1994; 1997). Through 

dam construction and foraging, beavers significantly affect local surface and groundwater 

levels, stream channel form, retention of sediment and organic material, nutrient cycles, 

and the diversity and growth of strea!nside and wetland plants (Naiman et al., 1986). 

In the absence of beavers, few natural disturbance agents are capable of 

transforming or restoring complexity in a stream channel over such a brief period of time. 

If we place their activity into a restoration context, beavers may be able to re-instate 

processes like stream channel adjustment, seasonal interaction between the stream and its 

floodplain, and the creation of diverse habitat types in a degraded system like the Wasson 

Creek watershed. In a sense, some of the positive impacts of beaver disturbances­

including an increase in species richness in response to newly available habitats, extent 

and occurrence of processes like flooding and lateral migration of stream channels, and 

overall productivity on the Wasson Creek floodplain-may reverse some of the negative 

effects of previous human disturbance. 

The key to understanding why and how beavers can dramatically alter aquatic 

landscapes like the Wasson Creek Valley is in basic beaver ecology. First of all, beavers 



are awkward on land, but anatomically well-adapted to the aquatic environment. On 

land, poor eyesight, body shape, and a large tail make beavers more vulnerable to 

predation (Hilfiker, 1991). In water, webbed hind feet, a dense, water-tight coat, 

adjustable metabolic rate, and high lung capacity all make locomotion and other 

submerged activities highly efficient (Warren, 1927; Hilfiker, 1991; Muller-Schwarze 

and Sun, 2003). 

For beavers, damming and other earth-moving activities are often necessary to 

create a network of canals, pools, and other water passageways that facilitate safe 

movement and provide sufficient space and routes for food transport (Mills, 1913). By 

definition, a dam is used to collect water during higher flows and thus create a reservoir 

for periods of lower flow (Leopold, 1995). At Wasson Creek, beaver dams generally 

retain water during the winter months and then store it during the drier spring and 

summer months. Usually, dams buffer the surrounding stream system against abrupt 

changes in water level following storm events and increased base flow in a stream as 

water is slowly metered out (Leopold, 1995). 

Depending on storage capacity and integrity, a human-made dam can potentially 

retain over 95% of sediment that reaches its upstream edge (Leopold, 1995). Beaver 

dams often function like human-engineered dams in retaining large quantities of 

sediment, but are far more dynamic in nature (Middleton, 1999). As observed at Wasson 

Creek, beaver dams are highly variable in their permanence and degree of maintenance. 

While some dams may persist for years and retain large volumes of sediment, others are 

washed out during periods of high winter flows and then reconstructed in the spring, 

summer, and fall. At times, dams may be abandoned altogether if a beaver colony re-



locates to another activity center or area where food and dam-building materials are 

more abundant. 

In addition to introducing and retaining large woody debris in streams, beaver 

dams of all sizes and levels of maintenance trap coarse particulate organic matter 

(CPOM) like sticks and leaves along with sediment, which provides habitat for aquatic 

invertebrates and vertebrates (Gorshkov, 1999; personal observation). A single beaver' s 

work in a coastal stream can result in the annual accumulation of several tons of woody 

debris (Maser and Sedell, 1994). At Wasson Creek, low stream flows during most of the 

year facilitate debris retention in the stream. Still, fine sediment in the channel bed, 

abrupt peaks in stream level in response to storm events, and the absence of large logs at 

Wasson Creek may restrict when and how much debris can be captured (Allan, 1995). 

With a dense composition of woody debris and sediment, most of the dams at 

Wasson Creek are strong enough to support human and even elk traffic. To obtain such 

strength to withstand the force exerted by a large volume of water in pools upstream of 

their dams, beavers must begin with a strong foundation. Most dam work occurs at night, 

and construction activity tends to increase during seasons like spring and summer, when 

there are longer periods of dry weather (Strong, 1997; personal observation). For beavers 

on a small stream like Wasson Creek, a dam may only take a few nights to build (Long, 

2000). 

Initially, beavers lay branches on the channel bottom, parallel to the stream 

current (Long, 2000). When available on-site, rocks or larger pieces of logs may be used 

to anchor foundation material. Once a foundation is laid, sticks, branches, sod, root balls 
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and other plant material are interwoven to add strength to the structure. Though strong 

branches and dense, cohesive sediments like the silty clays found at the Wasson site are 

preferable, beavers are opportunistic in their use of material and incorporate everything 

from sedges and salmonberry branches to old drainage pipe into dams. Sediment is then 

used to patch holes in the dam and secure all material (Long, 2000). 

Any additions of sticks and other debris are made from the upstream side of the 

dam. When the water level of an upstream pond increases, beavers respond by adding 

new layers at the dam surface (Long, 2000). If water overtops a stream's banks and 

flows around the dam, beavers will extend the dam outward from the initial structure. At 

Wasson Creek, one dam (BD7) was extended for a total of 60 meters out across the 

floodplain (Figure 2). 

Often, secondary dams built downstream of main beaver dams help to minimize 

the difference in wat ' r pressure on the upstream and downstream sides of a large dam 

(Strong, 1997; Long, 2000). Though this may seem like clever engineering, it is more 

likely a reflection of a healthy beaver colony, which through the availability of a large 

pond and abundant food resources has more builders available and a greater need to 

increase the number of safe water transit passages (Long, 2000). Where beavers are left 

undisturbed by human activities and excessive predation, habitat and food availability are 

the most determinate factors in beaver population size (Muller-Schwarze and Sun, 2003). 

Beaver Activity at Wasson Creek 

Currently, ont: or 1~ore beaver colonies occupy the Wasson Creek floodplain. As 

primary biological disturbance agents on the site, beavers have begun to significantly 
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alter the stream channel as well as the surrounding floodplain by constructing a series 

of dams and creating ponds throughout the Wasson Creek ditch. The resulting sediment 

accumulation in pools behind the dams, in concert with the beavers' continual 

maintenance of dams, access channels, and plunge holes (tunnels that allow an escape 

route from foraging areas on the floodplain to the main channel; Figure 5), has led to a 

number of transformations in the shape and path of the ditch-particularly where dams 

extend out across the floodplain. 

In these areas, a significant portion of the stream flow above the dams is 

redirected onto the floodplain over which it once meandered, especially during the winter 

months when stream flow is the highest. Downstream of a large beaver dam, altered 

stream flow patterns oftrn lead to bank erosion and lowering of the channel bed 

(Leopold, 1995). As a result of downstream channel degradation and upstream 

aggradation of sediments, a stream's overall competence, or ability to transport sediment, 

is reduced around a dam (Leopold, 1995). 

Through dynamic channel bed aggradation and degradation at Wasson Creek, 

beaver activity may be sufficient to, over time, help restore diversity and complexity to 

the entire degraded stream channel and floodplain. As anecdotal evidence, we can look 

at landscape alteration resulting from approximately 30 years of beaver activity at Deton 

Creek (Figure 6), anotht7 Coos Watershed tributary with a floodplain of comparable size 

to that of Wasson Creek (Mahaffey, personal correspondence). 

Since the time when the landowner stopped using the creek's floodplain for cattle 

pasture, beavers have created extensive networks of dams, plunge holes, and canals that 
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have transformed the entfre floodplain into a terraced marsh filled with small islands 

and willow thickets. Deton Creek courses through the marsh, constantly recharging the 

water supply, with its main flow located in a wide, shallow channel along the valley edge. 

In addition to beavers, the overall structural diversity at Deton Creek provides a 

patchwork of habitats suitable for a number of marsh birds, salmon, amphibians, elk, and 

deer. 

The beavers at Wasson Creek have been working to transform the floodplain 

since at least 1986. When Stone conducted an inventory of Wasson Creek (which he 

named "Theodore Johr. Creel<:") between June 1 and September 20, 1986, he documented 

15 beaver dams between the Wasson Creek/Winchester Creek confluence and where 

Wasson Creek crosses the floodplain (Figure 2) and 33 dams in the entire Wasson Creek 

drainage (Stone, 1987). Stone noted that from around 600' (-183m) upstream of 

Winchester Creek, he encountered a large freshwater marsh with grasses up to 6' (1.83m) 

in height-consistent with current conditions on the lower Wasson floodplain, where reed 

canary grass (Phalaris arundinacea) is the dominant plant cover (Stone, 1987). From 

that point on, he remarked that "beaver dam after beaver dam after beaver dam, water 

was not moving" and that beavers occupied such a large portion of the Wasson Creek 

valley that it was best left as it was (Stone, 1987). 

Since Stone's report was published, one of the dams obstructing the northernmost 

culvert at the mouth of the Wasson floodplain was removed in spring, 1991 (Mike 

Graybill, personal communication; Figure 2; Appendix A). This practice is not 

uncommon, as beavers are notorious for using water control devices as a foundation for 

dams (Middleton, 1999). During this study, the old road and culvert were obliterated, but 
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the beavers have yet to return. With the exception of dams 0 and 0.1, which are around 

120m and 140m upstream of the former road, and were built in spring, 2004, there is still 

minimal beaver activity here. 
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II. STUDY AREA AND METHODS 

The study was conducted in the Wasson Creek watershed (43°16'N, 124°19'W) 

of the South Slough National Estuarine Research Reserve, Coos County, Oregon between 

fall 2003 and summer 2004 (Figure 1). Elevation at the site ranges from sea level to 12m 

on the lower floodplain and to 171m at the highest point in the Wasson drainage. 

Wasson Creek, a 2.lSkm long tributary of Winchester Creek, is a precipitation-fed, third 

order stream in the Coast Ranges physiographic province (Franklin and Dyrness, 1988). 

Average annual precipitation for the Coos County region is 163 .9cm, with 71.9% of 

rainfall occurring between November and March (Oregon Climate Service, 2004). 

Extreme fluctuations in temperature are rare in this coastal climate, with average annual 

mean high temperatures of 1S.S°C and annual mean low temperatures of7.S°C (Oregon 

Climate Service, 2004). 

Soils on the Wasson Creek floodplain are primarily in the Nestucca silt loam 

group, characterized by a surface layer of silt loam overlying layers of silty clay, and 

respond to precipitation with relatively slow water permeability and runoff, and frequent 

winter flooding-all of which can be observed at Wasson Creek (USDA Soil 

Conservation Service, 1989). When used for hay or grazing livestock, as this site was 

historically used, the surface layer of these soils is subject to conditions like summer 

drought, winter flooding, wetness, and overall compaction-resulting in limited root 

growth for plants and overall compromised soil productivity (USDA Soil Conservation 

Service, 1989). 

Seasonal soil saturation and standing water on the floodplain limit flora to 

primarily wetland plants. Vegetation on the floodplain is dominated by grasses, sedges, 
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Creek, just before it crosses a former road, we can observe conditions with minimal 

current beaver influence. 

To measure current conditions and predict future outcomes, I focused the majority 

ofmy field work on the lower and middle, transitory section of Wasson Creek. The three 

major objectives in the field component of this study were to: 1) Determine the location 

and frequency of over-bank flow in the Wasson Creek floodplain relative to a range of 

precipitation events; 2) Map and record stream channel patterns and the fate of over-bank 

flow on the floodplain; and 3) Describe and quantify how and the degree to which the 

original agricultural ditch has changed through time. 

Determining Location and Frequency of Flooding with Respect to Precipitation 

Recording Stream Stage 

Between the autumn and spring seasons, watersheds in the Oregon Coast Range 

receive the majority of their hydrological input via precipitation. At the scale of Wasson 

Creek, rainfall events should roughly correlate with increases in both discharge (volume 

of water/ unit of time) and stream depth. By having a eight-month record of stream level 

during this study, I could link the current water year with the corresponding precipitation 

record and channel form in order to understand a) how beaver-dammed channel reaches 

react to precipitation events and b) what quantity and duration of precipitation are 

necessary for water to leave the Wasson Creek channel and spread out onto the 

floodplain. 

Stage, or relative stream depth, was recorded at two points along Wasson Creek 

using data from two Global Water Instrumentation© WL15 water level loggers. The first 
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logger (W.L.L.1) was located midway up the Wasson Creek floodplain between two of 

the largest dams in this study area (~40m upstream ofBDS and ~20m downstream of 

BD6-see Figure 2; Appendix A for dam and sensor locations) in an area with intensive 

beaver activity and water levels not exceeding bank full in the first six weeks of the 2003-

2004 water year (October I-November 11). The second logger (W.L.L.2), downstream, 

was located~ 70m above BD 1 and ~ 1 00m below BD2, and on the inside of a slight bend 

in the stream channel. 

Each logger, or gauge, comprised an in-stream pressure transducer ( converts 

pressure exerted by a given volume of water into relative stream depth) connected to a 

data logger above the water by a cable (Figure 7). Gauges were housed inside PVC 

schedule 40 pipes with 90 degree electrical conduit sweeps protecting the sensors at their 

base. Fence posts, tied to each pipe with wire, anchored the equipment 0.5-lm deep in 

the channel sediments. Both setups were secured to the stream bank using several bent 

rebar staples. A survey was conducted to establish elevations of water level logger 

placement and elevations required to exceed bank full at each recording point. 

W.L.L.1 recorded stream level at 30-minute intervals from November 14, 2003 to 

July 2, 2004. W.L.L.2 recorded stream level from January 9, 2004 to July 2, 2004 at 30-

minute intervals. Data were periodically downloaded from the loggers in the field and 

then analyzed using Global Logger and Microsoft Excel software. 

Precipitation Data 

The majority ofhydrologic input into the Wasson Creek watershed comes from 

rainfall, which often leads to soil saturation, overland flow, and peaks in stream flow and 
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level that drive many important geomorphic processes in the watershed (including 

chemical and physical weathering, initiation of mass movements, sediment transport, 

erosion and flooding) . The precipitation record is a useful tool in understanding how 

these hydrologic processes are manifested on a beaver-impounded floodplain. Knowing 

what sort of precipitation event will potentially cause water to top the banks in a) areas of 

heavy beaver activity and b) areas of lower beaver activity can help us to understand how 

the beavers at Wasson Creek are influencing their immediate floodplain surroundings and 

the potential for diversion of water from the ditched base channel. 

In order to relate stream stage data from this seven-month study to concurrent and 

past precipitation trends and predict the frequency of precipitation events that cause bank­

topping flows on various sections of the Wasson Creek floodplain, I used real-time 

continuous precipitation data from the NOAA atmospheric monitoring station on the 

Oregon Institute of Marine Biology (01MB) campus for analysis. The NOAA station is 

located approximately 8 kilometers from the Wasson Creek site. 

In order to estimate the frequency of the large rainfall events that resulted in 

over-bank flow during this study, I analyzed the longer precipitation record from the 

North Bend airport ( dating back to January 1, 1931 ), since these events should show up 

in comparable magnitude on a regional scale while smaller precipitation events are often 

variable across this landscape due to factors like topography. From all of these 

comparisons, I attempted to place the events at Wasson Creek during this six-month 

study into a historical (and future) context. 
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Measuring Stream Channel Patterns and Over-bank Flow 

Lower Wasson Creek Survey 

Understanding the morphology of the Wasson Creek channel and its associated 

floodplain is critical in both recording current conditions and predicting possible future 

responses to peak flow events and other disturbances. By constructing longitudinal and 

cross-sectional profiles of the lower Wasson Creek study area (from the former road to 

where the main Wasson Creek channel has crossed the floodplain since 1939, 

Appendices A, B and C), I attempted to quantify where, how, and to what extent beaver 

activity and other stream processes are leading to dynamic channel aggradation, erosion 

and initiation as well as place all other observations and measurements within the larger 

site context. 

The elevation survey component combined data from a topographic survey 

conducted by a contracted professional surveyor in early May, 2004 with my own 

floodplain and channel bed measurements using a staff gauge, meter tape and compass. 

The surveyor provided assumed coordinates, based upon north-south and west-east axes, 

and corresponding elevations for points along fifty-six cross-floodplain transects taken at 

approximately 40' (12.2m) intervals. In addition to the cross-sections, I created three 

longitudinal transects from where the former road crosses Wasson Creek up to where the 

creek crosses the floodplain . Overall, the survey data, supplemented with my field 

measurements, provided a thorough elevation profile for the area covered in this study. 

In-channel measurements at each cross-section allowed me to calculate bank-full 

width, bank-full depth at the thalweg (deepest part of the channel bed), and channel 

gradient using a combination of the surveyor's coordinates and graphs of the cross-
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sections in MS Excel. Bank-full height was calculated with respect to the left and 

occasionally the right bank of the main ditch and the right bank of the smaller channel 

located along the north end of the floodplain. Channel gradient was calculated across 

areas of high and low beaver activity, and for the entire length of the study area in both 

the main and secondary channel. Low beaver activity areas included the first -41 Om of 

the main channel (survey cross sections 0+00-12+00) and the first-230m of the 

secondary channel upstream from the Wasson Mouth (survey cross sections 0+00-7+60; 

Appendices A and B). High beaver activity (average dam density>2 dams/lOOm) areas 

extended up from the end points oflow activity areas by-304m in the main channel 

(survey x-sec. 12+00-21+50) and -361m in the secondary channel (survey x-sec. 7+60-

18+00). 

Degree of channel incision at each cross section was calculated using bank-full 

width-to-depth ratios in the channel and entrenchment ratios. Since Wasson Creek 

courses a relatively narrow floodplain, entrenchment ratios were found using the 

floodplain width/bank-full channel width ratio. These calculations helped me assess 

where Wasson Creek is more or less capable of frequently topping its banks, combined 

with other factors like beaver activity. Calculations were field-checked through visual 

inspection of sediment deposition and matted or altered vegetation resulting from over­

bank flow during the study period. Areas where the channel is deeply incised (and where 

Wasson Creek is limited in its ability to reach the floodplain) should have low width-to­

depth and high entrenchment ratios and thus have a lesser likelihood of flooding. 
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Measuring Change in the Agricultural Ditch 

Mapping 

Beaver activity and erosion are two main forces that alter the shape of Wasson 

Creek. One goal of this research was to construct a map of the main ditches and channels 

that are in existence or currently forming on the floodplain to establish a baseline from 

which future change can be measured. Using this map, subsequent research can record 

changes in the extent of beaver activity, alterations in channel form, and the water level/ 

extent of water retention across the floodplain in response to a range of precipitation 

events. 

In order to record the current path of the main channel and smaller channels 

forming on the floodplain (including those created by beavers), I used a topographic map 

created by a surveyor contracted by the SSNERR as a base map to trace water movement. 

Next, I transferred this information onto my own Wasson map and then supplemented 

finer-scale details such as the location of beaver dams, micro-channels and beaver plunge 

holes using cross-sections that I generated in Adobe Illustrator, using recent air photos, a 

meter tape and a compass. Using the map I generated and the surveyor' s coordinates I 

also estimated the current sinuosity (S, where S=channel length/straight-line valley 

length, Knighton, 1998) and length of the main channels on the Wasson floodplain. 

For the two widest dams in the study area, BD7 and BDH, I recorded depth 

profiles lm upstream of the dams at 2m intervals along their entire span. BD7 was 

measured on November 10, 2003, starting on the south edge of the floodplain (Figure 8a), 

and BDH was measured on March 27, 2004, starting from the north edge of the 

floodplain (Figure 8b ). 
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To analyze change in channel form and location of beaver dams and activity 

through time at Wasson Creek, I used aerial photos, taken by the USDA, BLM, Coos 

County, Oregon State Forestry, and USGS from 1939, 1955, 1962, 1991, 1999 and 2003, 

with the 1939 BLM set being the earliest photos on record for the Coos County region. 

The photos allowed me estimate sinuosity where channels were visible and unobstructed 

by extensive riparian vegetation, map any lateral migration of channels through time, and 

establish a timeline for beaver transformation of the floodplains where applicable. 

Final maps included a main "plan view" map, overlays for stream change through 

time, three separate longitudinal cross-sections for the thalweg in the main ditch, the 

thalweg in the ditch along the north end of the floodplain, and the approximate center of 

the floodplain, and a series of fifty-six valley-wide cross-sections extending up the 

Wasson Creek floodplain to illustrate relative channel forms. Beaver dams and other 

prominent features were included on all maps as a reference. 

Beaver Activity Monitoring 

Beavers are primarily nocturnal in their feeding and construction and maintenance 

of dams; thus observation of animals in the act of dam maintenance at Wasson Creek is 

difficult during daylight hours (Muller-Schwarze and Sun, 2003). For the purpose of this 

study, monitoring where and approximately when beavers were actively maintaining 

dams and excavating channels was sufficient. All visible beaver activity was catalogued 

with photographs, measurements of dam dimensions where possible, and field notes, but 

study dams were limited to those that crossed the stream and presented a significant 

barrier to the downstream movement of water, evidenced by a hydraulic drop, or change 

in water level upstream and downstream of each dam. 
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To determine which dams were being actively maintained during this study, I 

staked pieces of 5mm diameter white nylon cord ranging from 0.75 to 2m in length 

(depending on how much cord was necessary to keep the downstream ends visible) at the 

points corresponding with where the main flow of the stream passed over Dams I-VII in 

the main Wasson channel. The first set of cords, installed in the fall, 2003, proved 

effective in indicating where beavers were adding new material to dams, but many were 

washed out with other material on the top layers of the dams during high winter flow 

events. On April 23-24, 2004, I installed new cords to monitor beaver dam maintenance 

through the remainder of this study on the dams in the main Wasson Channel and also on 

a large dam constructed on the opposite side of the floodplain in early spring, 2004 

(BDH, Figure 2). 

Cords were secured at the leading edge of each dam (where new additions of 

material are made) and then allowed to trail off the downstream side for visibility in case 

of coverage by sediment and plant material. When taking dam measurements or visiting 

the Wasson site, I noted changes in cord cover and then at the end ofmy study, recorded 

the total depth of material added to the surface of dams either by passive entrapment or 

by beavers. Placement of material by beavers, as opposed to passive input of leaves and 

other detritus, is generally apparent due to clues like streaked paw marks in sediment, 

piles of sediment ( and often visible holes in the upstream channel where they have been 

excavated) or well-secured plant material with angled, gnawed ends. 

In addition to documenting dam activity using cords and notes, I set up photo 

points at each dam in the lower Wasson Creek drainage at approximately the same 
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compass reading. Photos were useful in constructing a supplemental visual record of 

dam change through the study period, and were taken approximately once every month. 

--- - -------

~ 



III. RES UL TS 

Location and Frequency of Flooding with Respect to Precipitation 

Stream Stage 
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Between November 14, 2003 and July 2, 2004, stream level exceeded bank level 

once at the water level logger sites. To overtop the banks at the W.L.L.l station, stream 

level had to reach l.lm (110cm) with respect to the logger' s placement. From 10:11 on 

December 13 to 01 :41 on December 14, 2003, W.L.L.l recorded stream stage > l.lOm 

(110cm), reaching a maximum of 1.33m (133cm) at 19: 11 on December 13 (Figure 9). 

Total continuous precipitation in the 36 hours between 12:00 December 12 and 24:00 

December 13 was 13 .54cm at the OIMB gauge. During this period, there was a positive 

correlation between hourly precipitation and stream stage data, a strong relationship 

between daily rainfall and stream level (Table la) and a ~7-hour lag time between the 

highest hourly precipitation (14.48mm/hr) and stream level values in the study period 

(133cm). 

At the W.L.L.2 station, stream level relative to the logger had to reach a predicted 

threshold of~ 1.3m to overtop the stream bank and reach the floodplain. Though 

W.L.L.2 was not yet installed when the high flows occurred on December 13-14, 

sediment deposits, debris, and matted vegetation on the floodplain adjacent to the 

eventual W.L.L.2 station were evidence that flooding occurred around the site (Figure 

10). 

Between the launch ofW.L.L.2 on January 9, 2004 and March 10, 2004 (11), 

there was a strong positive correlation between stream stage data sets (Table 1 a). Within 

this time frame, W.L.L. l stage was > 60.0cm 72.7% of the time (Figure 12a) and 
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W.L.L.2 stream level was < 30.0cm 87.9% of the time (Figure 12b). From 4:00 

March 8, 2004 to 4:15 March 18, 2004, water level at W.L.L.2 dropped from 8.2cm to a 

minimum of3.7cm at 5:00 March 11, 2004 and then rose to 27.8cm (Figure 12b). During 

this same period, W.L.L. l stream stage declined from 55.5cm to 47.0cm and the 01MB 

precipitation gauge recorded no rainfall. 

On April 7, 2004, the battery in W.L.L. l had to be replaced-leading to a loss of 

-6 days worth of stream stage data. Once both loggers were online again, there was a 

positive correlation between logger data sets (Table la) for the remainder of the study. 

From April 7, 2004 through July 2, 2004, W.L.L.l recorded stream levels< 60.0cm 

99.5% of the time and W.L.L.2 recorded stage >30.0cm 100% of the time (Figure 12). 

Precipitation at the 01MB gauge during the same period totaled 20.2cm-13.5% of the 

November, 2003- June 2004 total. 

Overall, there was a positive correlation between daily 01MB gauge precipitation 

totals and peak stream levels at W.L.L.l from November 15, 2003-July 1, 2004, and a 

stronger correlation from November 15, 2004 to March 10, 2004 (Table la; Figure 12a). 

Generally, the rise and fall of stream stage at both loggers was affected by the quantity 

and consistency of rainfall (Figure 12). When rainfall increased quickly and in high 

magnitude, or gradually built up to a peak event over the course of several days, stream 

level reached its highest peaks. Following a peak in stream stage, if there was little or no 

rainfall, the descending slope of the hydrograph was most extreme. Conversely, ifrainfall 

continued in progressively smaller amounts, the slope of the hydrograph was more 

moderate (Figure 11). 
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When dams were impounding water downstream of the water level loggers, 

peaks and drops in stream level were generally smaller in magnitude and slope. During 

the times of peak stream flow in December, BDl and BD3 were washed downstream­

leaving only fragments of their foundation material behind. Prior to the reconstruction of 

BDl, between January 9 and March 11, 2004, W.L.L.2 recorded stream level changes 

between peaks and iow poin.ts that were approximately double those recorded at W.L.L.1 

(Figure 11 ). 

Precipitation 

Precipitation recorded at the OIMB gauge between November 1, 2003 and June 

30, 2004 totaled 149.35cm (Figure 12). Of the rainfall recorded during the study, 86.48% 

fell between November 1, 2003 and March 31, 2004. When I compared precipitation 

data between the OIMB and North Bend FAA weather stations, there was a strong 

positive correlation between monthly data sets (Table 1 b ). Given the strong correlation 

between data sets, I calculated the recurrence interval (RI), or predicted frequency of 

occurrence through time, for yearly peak precipitation events, based upon the North Bend 

FAA station's data for the 1932-2003 water years. Events were ranked and then the total 

number of water years in the data set was divided by each rank number to calculate RI. 

Using the equation for the best fit line of the precipitation vs. RI graph (Figure 

13), a 9.7cm precipitation event should occur at a frequency of approximately every 5 

years. A 6-year rainfall event equates to 10.2cm, a 10-year rainfall event is around 

11.6cm, a 20-year event around 13.6cm, and a SO-year event around 16.1 cm. 

On December 13, 2003, when Wasson Creek overtopped its banks, the OIMB 

gauge recorded total daily precipitation at 11.63cm (-10-year event at the NB FAA 
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gauge), with a peak hourly precipitation value of 14.48mm between 11 :00 and 12:00 

(Figure 9). Cumulative precipitation on the same day at the North Bend FAA gauge was 

10.30cm (~6-year event)-l.33cm less than the 01MB gauge. Between December 12 

and 14, 2003, there was only a 0.15cm difference in total precipitation at each station 

(14.45cm at NB FAA and 14.60cm at 01MB). From these figures, we can estimate that 

the storm event that caused flooding at both loggers (and most likely the ruin ofBDl and 

BD3) occurs approximately every 6-10 years. 

Lower Wasson Creek Channel Patterns 

Of the 56 cross sections taken by the surveyor, 37 provided sufficient data to 

estimate bank full width and depth in the main channel (Cl) and 40 for the secondary 

channel (C2) on the north end of the floodplain (Figure 14; See Appendix B for cross 

sections). Elevation at the deepest point in the channel (thalweg) was recorded at every 

cross-section for the main channel and at 43 of the 46 cross sections where the secondary 

channel was present. Some of the surveyor's work may have been limited by heavy 

vegetation cover, extensive beaver plunge holes and unpredictable terrain south of the 

main channel. Several thickets of Himalayan blackberry (Rubus discolor) that have 

overgrown the channel on the north side of the floodplain may have provided a similar 

obstacle. 

Across the total reach of the main channel, the slope of the deepest part of the 

channel bed was less than the gradient of the adjacent floodplain (Table 2a). Channel bed 

slope in the main ditch was the greatest in the high beaver activity area and the least in 

the low beaver activity section (Table 2a). In the secondary channel, channel bed slope 

was similar across all levels of beaver activity (Table 2a). Though there is some local 
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variation in slope due to the presence of beaver dams (Appendix C), lower Wasson 

Creek is a very low-gradient stream. 

Overall, mean bank full width was greater in the main channel (Cl) than the 

secondary channel (C2) and in sections of both channels where there was higher beaver 

activity-particularly in Cl (Table 2b). Cl mean bank full depth was more than double 

that of C2 (Table 2b ). Areas oflow beaver activity were associated with slightly higher 

mean floodplain widths than areas of higher beaver activity (Table 2b ). 

Mean channel width/depth (W /D) and entrenchment ratios (ER) were greater in 

C2 than in Cl for all sections (Table 2b). Overall, Cl is more deeply incised, but C2 is a 

narrower channel with respect to the width of the floodplain. In areas of intense beaver 

activity in both Cl and C2, W/D ratios were slightly higher and ER lower (Table 2b)­

indicating that where there was extensive beaver activity, the potential of Wasson Creek 

to flood and channel extent across the floodplain were greater. In comparing 

entrenchment ratios against bank full width/depth ratios, there was a rapid rate of increase 

in entrenchment ratio as bank full W/D ratio decreased (Figure 15). 

Change in the Agricultural Ditch 

Floodplain Transformation 

Between 1939 and the present, there has been little change in the overall shape of 

the main Wasson Creek chmnel (Figure 16)- such that historical sinuosity is essentially 

equal to that of current conditions. The most significant difference between aerial photos 

is in the management/human activity visible on the floodplain and throughout the Wasson 

watershed. In 1939, the lower floodplain was divided into -3 main zones for agriculture 
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(Figure 3), with the lowPst section ending just below the current bridge and path 

(Figure 2). Downed trees and bare land in the upper watershed indicate logging activity. 

From 1955 to 1962, there was a slight difference in vegetation patterns on the 

floodplain. In the 1955 air photo, vegetation is uniform across the floodplain (Figure 17). 

The 1962 photo, however, shows mottled vegetation color on the lower floodplain and 

darker vegetation areas in adjacent to the secondary channel-indicating where seasonal 

flooding may have occurred (Figure 17). Such vegetation patterns in the 2003 air photos 

are often associated with sedges and other wetland plants (vs. pasture grasses, which 

appear lighter and more uniform in color). 

By 1991, beaver activity was evident on site-especially on the floodplain above 

where the Wasson Main channel switches to the north side (Figure 17). Diversity in plant 

cover and visible ponds suggest that dams were present, and the Stone report (1986) 

confirms that beavers were active throughout the watershed by this time. From this point 

on, air photos suggest a gradual increase in the diversity of sedges, rushes, and other 

grasses across the lower floodplain-which may be the result of the water table being 

locally altered by beaver activity. The removal of agricultural activity on the floodplain 

also probably contributed to an increase in plant diversity on the floodplain. 

Currently, beaver i ctivity has led to the development of a number of small 

channels on the floodplain outside of the relatively straight main and secondary 

channels-especially upstream and downstream ofBD7 (Figure 16). In the depth profiles 

taken Im upstream ofBD7 and BDH, I could observe where the deepest points were with 

respect to the dams (Figure 8). At BD7, the profile taken in November, 2003 shows 
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where the main channel would form after the dam was partially breached in December, 

2003 (Figure 8a). 

Where beavers created the largest dams, as seen at BD7, water and sediment were 

impounded both upstream and sometimes downstream of the dam. When the flow of the 

water became concentrated enough to breach a dam where the upstream pond was the 

deepest, the pond's bed upstream of the dam was further scoured by the concentrated 

flow of water and a number of meandering channels were slowly cut out onto the 

floodplain below the dam (Figure 16). Initially, much of the water was moving as 

overland flow, and these channels likely developed in places where there was the least 

resistance to erosion, such as some of the ground that had been saturated for more than a 

year (personal observation, Spring, 2003). 

Eventually, much of the flow coming through the dam was either concentrated 

into a primary channel that moved water along a sinuous path toward the right side of the 

floodplain or drained off the floodplain through a beaver plunge hole with its outlet 

immediately above W.L.L. l. Sediments in the new channel were scoured and deposited 

downstream- leaving a mere rigid clay layer exposed. 

From the topo map generated by the surveyor, my own observations, and cross 

sections, I estimated the total length of the entire channel network formed on the 

floodplain in the BD7/BDH section, excluding the main or secondary channel, at >550m. 

In the deepest of the channels forming on the floodplain (Figure 16), sinuosity was 

greater than in any other main or secondary channel section in the study area (S=l .3, 

where total channel length=146m and straight line valley length=l 14m). 
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Using the map I generated and the surveyor's data points, I found an overall 

current sinuosity of 1.08 for the main channel in the study area and 1.12 for the secondary 

channel (Table 2a). Across high and low beaver activity areas, there was little difference 

in sinuosity. 

Beaver Activity 

Of the seven beaver dams included in the study area at the beginning of fall, 2003, 

all were actively impounding water and sediment as of November this year. Two washed 

downstream in December, 2003, when stream flow was at a maximum. Beginning in 

early spring, 2004, one washed-out dam (BDl) was replaced, followed by the second 

dam (BD3) in later months. Also, eight new dams were constructed in the secondary 

channel (Figure 2). All dams were measured and documented either at the beginning of 

the study (BDl-7) or as they were built (Table 3). 

Overall, cords were useful in determining where beavers were actively 

maintaining dams in the study area. On November 11, 2003, -5 days after the first set of 

cords was installed on dams, beavers had already added new vegetation and sediment 

over the cords on BD2 and BD6. In December, 2003, most of the cords were washed 

downstream-along with BDl, BD3, and much of the surface material on all of the dams. 

Had the cords been secured to a piece of rebar or other more substantial stake in the 

dams, they may have remained intact. By January 9, 2004, when W.L.L.2 was installed, 

most of the dam surfaces had been well-scoured by four peak flow events exceeding 

80.0cm at the W.L.L.1 station and approximately six other peaks resulting in >70.0cm 

stage at W.L.L. l. 
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Until February-March, 2004, when some of the highest peak flows subsided in 

Wasson Creek, there was a lag in dam maintenance by beavers. By March 22, however, 

much of the floodplain extension of BD7 had been reconstructed, and eight new dams 

had been built in the stx:ondary channel on the north side of the floodplain (Craig Comu, 

personal communication). Where the secondary channel previously had little flow and 

no beaver activity, there were now large ponds of standing water and small streams of 

water flowing around dams onto the floodplain (Figure 16). 

When I visited Wasson Creek to photo-document and measure the new dams on 

March 26 (Table 3), BDl (located ~70m downstream ofW.L.L.2) had also been mostly 

reconstructed-with its composition dominated by large branches, small logs, grasses and 

sedge (Figure 18). Overall, there was a substantial volume of water flowing over and 

around all of the dams in the study area. When dams were checked again on April 2, new 

grasses and twigs had been added to BDl, and most of the dam' s upper surface was dry. 

Upstream, at the BD3 site, the only hint of a new dam was a large chunk of sediment and 

part of a log left over from the previous dam that were trapping some grasses and other 

material floating by. 

On April 23 , 2004, new cords were installed on Dams 1-6, BD0 (discovered on 

this date) and BDH (Figure 2). At this point in time, BDl had already begun to back up 

more sediment and had additional material added to its surface since April 2 (Figure 18). 

BD2 had a new large log atop its surface, and additional material added to BD3 had 

created a slight drop between upstream and downstream water levels. Much of the 

sediment that had been trapped upstream ofBD6, some of which was probably deposited 
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exposed, and water flowing over the dam had been reduced to a trickle. 
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When dams were checked on May 14, 2004, BD3 showed the greatest change in 

added material, with ~30cm of sticks, grasses, and sediment on top of the cord. Below 

BD3, BD0 had no new beaver additions and BD2 had ~6cm of new material. I could not 

locate the cord on BDl (as with BDS), but new material-evidenced by a comparison 

with the April 23, 2004 photo and recently cut plant debris-had been placed on the dam 

(Figure 18). With BD4 and BD6, new material was added upstream of, but not atop the 

cords, and beaver tracks were visible in the sediment on BD6. At BDH, both cords were 

still visible and had not been covered by any new material. 

On June 9, 2004, two new dams were discovered. BD0. l , beneath a large sitka 

spruce (Picea sitchensis) was composed primarily of conifer branches. BD7 .1, composed 

of silty clay sediment, small-fruited bulrush (Scirpus microcarpus), salmonberry (Rubus 

spectabilis), and other branches, was constructed where the main flow had breached the 

floodplain-wide extension ofBD7 and created a new channel on the floodplain during the 

winter. BD0 had ~ 10cm of new material. The cord on BD 1 was found, and showed that 

~20cm of material had been added since its placement. All other dams showed some 

degree of activity in the presence of beaver-clipped green plant material and newly 

packed sediment. By this roint, several of the dams, including BD2, BD4, BDS, and 

BD6 were heavily overgrown with reed canary grass (Phalaris arundinar: ea). 

On August 13, 2004, a total of ~8cm of material had been added to BD0, 30cm to 

BDl, and ~40cm to BD2. I was unable to locate the other cords because they had either 
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been buried m debr: :· or the dams had been covered with a dense patch of reed canary 

grass and some small-fruited bulrush. BD7, and 7.1, which was then incorporated into a 

re-constructed floodplain-wide dam, had created a substantial body of standing water on 

the floodplain and active maintenance was apparent by the presence of newly cut small­

fruited bulrush, slough sedge (Carex obnupta), and sediment. 
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IV. DISCUSSION 

Flooding Dynamics 

Of the processes I observed at Wasson, flooding resulting from beaver activity 

was one of the most influential factors in altering the shape, path of water, and movement 

and deposition of sediment on the floodplain. Though only one rain storm caused 

Wasson Creek to flood its main channel at both of the water level logger stations, this ~6-

10-year event provided insight into how the main Wasson Creek channel responds to 

rapid peaks in stream level and discharge when there is a high level of beaver activity. 

With base stream flow in beaver-dammed reaches already high from previous rainfall 

(>60cm at W.L.L.2), this storm event was sufficient to cause flooding around most of the 

main channel. Stream flow during the event appears to have scoured many of the beaver 

dam surfaces, but resulted in the destruction of only one smaller beaver dam (BD3) in the 

high-beaver activity area. In the lower beaver activity area, where there is a ~ 170m gap 

between BD 1 and BD2, stream energy was probably greater because of less resistance 

from beaver dams. BDl was most likely destroyed at this time, but may have remained 

intact long enough to be a contributing factor in over-bank full flow upstream. 

Upstream ofW.L.L.1, the floodplain extension ofBD7 was also probably 

breached when W.L.L.1 recorded an abrupt peak in stream stage on December 13, 2003 . 

Though we were unable to observe the relationship between peak timing at both water 

level loggers during the event, W.L.L.1 data illustrate how a rapid peak in stream stage 

can occur even in the presence of two large beaver dams ~20m and ~60m upstream and a 

series of dams beginning with BDS ~40m downstream. Matted reed canary grass on the 

downstream side of both BD6 and BD7, in addition to some observed overflow at the 
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dams in November, 2003, and January, 2004, suggested that some water was probably 

flowing over the upstream dams, but another main contributor may have been water 

draining off the floodplain upstream ofW.L.L.2. 

Beaver Activity on the Floodplain 

Between December, 2003 and April, 2004, flooding in the form of overland flow 

and the creation of small channels on the floodplain around BD6 and BD7 was at its 

maximum extent. During this period, beaver-created features shaped many of the flow 

patterns observed on the floodplain- including drainage of a substantial volume of water 

through a beaver plunge hole at the downstream-most extent of overland flow adjacent to 

the main channel. 

What was initially constructed as a beaver escape tunnel between the floodplain 

and the main channel turned into a drain for much of the overland flow caused by 

flooding of the channel above BD6 and BD7 (Figure 5; Figure 19). By early May, when 

surveyors constructed an e1evation profile of the site, the plunge hole had developed into 

a hollow that declined 0.30m from the surrounding floodplain and had a maximum 

diameter of ~8m. Other plunge holes are abundant around BD6 and BD7, but none were 

observed to drain significant volumes of water off the floodplain . 

Beaver plunge holes and channels, which are excavated in the form of ditches 

extending out from a beaver pond, may play an important role in slowly re-shaping and 

adding channel complexity to the Wasson floodplain-especially when they are scoured 

by one or several seasonal floods. In the channel network surrounding BD7, for instance, 

nearly all channels above the dam's floodplain extensi0n have been created by beavers 

(Figure 16). While these channels and plunge holes re-direct flow into the main channel 
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at times, most of the channels I observed were built off large beaver ponds extending 

on the floodplain and many of the plunge holes I discovered were in areas where there 

was no substantial overland flow on the floodplain. 

As a reference for the cumulative effects ofbe~ver channels, plunge holes, and 

dams, we can look at the floodplain upstream of the area covered in this study. Upper 

Wasson Creek is laced with an elaborate network of channels and dams while the deep 

main channel on the north side of the floodplain remains (Figure 2; Figure 3). To give a 

rough estimate of depth in the main channel just above where Wasson Creek crosses the 

floodplain, I measured one dam that was over 1.5m in height from its uppermost surface 

to the channel bottom downstream! Large volumes of water remaining on the floodplain 

may be the result of a raised water table, low-permeability soil, and having the energy of 

the main stream flow dissipated by a winding path through channels and a series of dams 

(Hillman, 1998). 

Yet another beaver activity-pond excavation above a dam-can alter main­

channel shape and at times lead to increased channel complexity on the floodplain. The 

two depth profiles, recorded at BD7 and BDH, illustrate the formation of new channels 

and topography on the floodplain when beavers excavated sediment to use in dam 

construction. At BD7, where water from the main channel upstream was re-directed onto 

the floodplain, the depth profile taken before the dam was partially breached in 

December, 2003 , shows where flow was the most concentrated and thus exerted the most 

force on the dam (Figure 8a). Since the floodplain extension ofBD7 was composed 

primarily of sedges and sediment, it lacked much of the structural stability found in the 

portion of the dam built in the main ditch. 
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Following the mid-December, 2003 storm event, the floodplain in many areas 

was inundated such that lesser peak flow events caused extensive flooding in areas along 

the secondary channel (especially between BDA-C, BDD-H), above BD6, and all around 

BD7 (Figure 16). Where a substantial volume of sediment was deposited on the 

floodplain below the breached points along BD7, additional rainfall events provided 

water to re-work and organize the sediment into bars. Wherever water left the channel, 

sediment and organic material from the stream bed were deposited on the floodplain 

(Figure 10). In areas oflow topographic relief, water collected in pools-many of which 

remained into the late spring/early summer. 

Cross sections and other topographic data from this study provide a useful 

reference for determining where high a:r..d low points exist on the floodplain-creating 

surface convexity and concavity that help direct the movement of water. Concave land 

surfaces on a floodplain are typically less stable than convex surfaces in the event of 

small disturbances (Knighton, 1998), and may suggest where a future channel could form 

on the floodplain if seasonal flooding and beaver activity persist. In addition to providing 

a footprint for the movement of water on the floodplain, topographic relief on the 

floodplain at Wasson also allows us to see where the historic main channel may have 

flowed (Figure 16). 

Beaver Activity in the M:iin and Secondary Channels 

Given that nearly all dams in both the main and secondary channels were actively 

maintained at some point dming the eight months of this study, we can most likely expect 

a continued beaver presence in shaping the lower Wasson Creek valley. During the 

study, only one dam (BD5) was not confirmed as actively maintained. In addition, 



beavers at Wasson appear to exhibit some site fidelity in re-constructing BDl, BD3, 

and BD7 at the exact locations where they were destroyed by winter flows. 
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Dams at the Wasson site varied in size and composition-most often related to 

what materials were available close to the dam sites. All dams played some role in 

impounding water, sediment, and other materials in the channel bed or on the floodplain, 

but the most influential dams, in terms of altering the adjacent floodplain, were those that 

exceeded bank full channel height and had been extended out across the floodplain 

(particularly BD7 and BDH). These findings are consistent with a study by Naiman et al. 

(1986), where researchers found that the determining factor in a dam's retention capacity 

was not the bulk volume of the dam, but rather the surface area of meadows and ponds 

upstream of dams, with even small dams of 4- l 8m3 in volume impounding between 2000 

and 6500m3 of sediment (Naiman et al., 1986). 

Although beaver dams causing prolonged seasonal flooding across the floodplain 

are critical in large-scale sediment and water retention on a year-round basis, relatively 

small dams in the main channel still play an important role in buffering changes in stream 

flow upstream and downstream of the dam. Looking at the combined W.L.L.1/W.L.L.2 

hydrograph, (Figure 11), the abrupt change in stream levei at W.L.L.2 in mid-March, 

2004 illustrates the effect of beaver dam construction on stream level upr.!.ream. Despite 

a lack of rainfall between March 8 and March 18, stream level rose and stabilized at 

W.L.L.2 following BDl reconstruction -70m downstream. 

One of the most impressiYe beaver feats observed during this study was the 

construction of eight dams in less than two months in the secondary channel. This side 

channel, which was not initially a focus in this study, could potentially be a crucial 
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component in the restoration of channel complexity at Wasson Creek. Since the 

smaller secondary channel is, on average, less than half the depth of the main channel, 

has higher channel width/depth ratios, and is far more diverse in channel form (Table l; 

Appendix B), water can reach the floodplain twice as easily as from the main channel. 

Originally, the secondary ditch was probably constructed as an overflow channel 

to keep the floodplain drained for agriculture. Most of the Wasson Creek flow was 

directed through the- main dit:::h-leading to greater erosion and incision of the main 

channel bed through time. Since there is little evidence of previous beaver activity in the 

secondary channel, new construction probably spiked in response to the re-direction of 

the main Wasson flow beginning in December, 2003. While the main BD7 dam 

remained intact and kept sediment and water impounded upstream, holes in the 

floodplain extension of the dam acted like floodgates-releasing water into both the 

secondary channel and the main channel downstream of the dam. 

As water continued to flow across the floodplain toward BDH between early 

January and early June, 2004, I saw the water impounded behind BD7 go from a pond 

spanning nearly the entire width of the floodplain to barely a trickle by mid-May (Figure 

21). Meanwhile, water level in the secondary channel remained over bank full in most 

places. On June 9, water was again backed up behind the full extent ofBD7, but the 

secondary channel was still flooded in many areas-particularly around BDG-H. 

Beavers had repaired the full extent ofBD7, added onto BDH, further excavated ditches 

extending up the floodplain from the pond, and created a marsh. By July 2, despite little 

rainfall in the summer months, the pond was deeper and more expansive than it had been 

in the spring (Figure 21 ). 
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Predicting the Trajectory of Change for Wasson Creek 

According to Johnston and Naiman (1990), the landscape alteration we see in the 

first - 30 years of beavers occupying and damming Wasson Creek will most likely have 

the greatest influence in directing the site's trajectory of change-consistent with the 

approximate time fr~me for beaver alteration at Deton Creek between 197 6 and 2004 

(Figure 6). From the Stone report (1986) and aerial photos, we know that beavers have 

been active in the Wasson Creek system since at least the mid- l 980s. Still, the activity 

level and time span required for beavers to sufficiently fill in sections of the main channel 

in the future is unknown. 

Though trapping or other means would be required to accurately estimate how 

many beaver colonies occupy the Wasson Creek watershed, we can predict beaver 

activity on the lower floodplain based on the number oflarge ponds. Johnston and 

Naiman (1990) fou:!d that a single colony of beavers created, on average, 2.2 substantial 

ponds and occupied &round l0ha ofland. At Wasson Creek, where the largest active 

pond (above BD7) covers at least 2000m2 of the floodplain, and the remaining ponds are 

smaller and confined primarily to the main and secondary channels, we may be seeing the 

work of only one healthy colony below where Wasson Creek crosses the floodplain 

(Figure 2). 

Though it is possible for 3 colonies to occupy lkm2 ofland (Voigt et al. , 1976; 

Naiman et al., 1986), 0.4-0.8 colonies/km2 in optimal habitat is a more commonly 

observed figure (Aleksiuk, 1968; Voigt et al., 1976, Bergerud and Miller, 1977; Naiman 

et al., 1986). Home ranges of colonies, which consist of the entire area used by the 

members of a group for foraging, may overlap, but territories (consisting of beaver ponds, 



43 
lodges, dams, canals, trails, and food caches) are more exclusive and limited to kin 

groups (Muller-Schwarze and Sun, 2003). 

A single beaver colony typically consists of about six individuals, but can range 

between one and ten animals (Muller-Schwarze and Sun, 2003). Within a colony, there 

are generally two each of adults, two-year-olds and one-year-olds (Muller-Schwarze and 

Sun, 2003). Average life expectancy for an adult beaver is around ten years, and females 

begin to reproduce around age two-reaching maximum fertility when they are about 

seven years old (Muller-Schwarze and Sun, 2003). 

Beaver population growth in a given area is typically slow and primarily limited 

by the availability of optimal habitat, which can influence how many offspring are 

produced and their survival rate (Muller-Schwarze and Sun, 2003). Using the habitat 

classification model developed by Suzuki and McComb (1998), much of the lower 

Wasson Creek valley appears to fit within prime beaver habitat parameters-with stream 

gradient falling well below the ideal limit of3% slope, average channel width in both the 

main (4.86m ± 0.90 SE) and secondary channels (3.46m ± 0.78 SE) within or close to the 

optimal range of 3-4m, and all valley floor widths> 25m (Suzuki and McComb, 1998). 

In addition, salmonberry (Rubus spectabilis) and red alder (A/nus rubra), which are a 

preferred food for beaver in the Oregon Coast range (Suzuki and McComb, 1998), are 

abundant in the immediate vicinity of the main and secondary channels-with slightly 

more alders on the north side of the floodplain. 

Ecological Implications of a Continued Beaver Presence at Wasson 

Given the suitable beaver habitat at Wasson Creek and the current level of beaver 

activity in the study area, beaver presence should continue in the watershed. As a result 
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of their activities, we should expect the maintenance of an open-canopy zones on the 

floodplain due to beaver foraging and some vegetation killed by a raised water table 

(personal observation; Figllre 22), further retention of debris, sediments, and water across 

the floodplain, a higher incidence of floodplain wetlands, and an increase in anaerobic 

conditions in some of the soil on the floodplain (Naiman et al., 1986). In the main 

Wasson channel, a pool-drop character (Hillman, 1998), which we can already begin to 

see in the current longitudinal profile (Appendix C), should continue to develop. 

Fauna on site should continue to benefit from the creation of diverse habitat 

patches and the edges 0n the floodplain. Beaver ponds and standing water on the 

floodplain are already occupied by species such as rough-skinned newts (Taricha 

granulosa), red-legged frogs (Rana aurora), Pacific treefrogs (Hyla regitla), garter 

snakes (Thamnophis spp.), marsh wrens, song sparrows, and mallard ducks (personal 

observation). In addition, there is ample evidence of elk, raccoon, and deer at the site. 

Vegetation patterns on site should continue to be altered along with changes in the 

water table, soils, and level of disturbance around the site. Given that beavers typically 

forage within 20m of pond edges, we can expect the vegetation along the margins of most 

of the lower Wasson Creek floodplain (average width= 71.8m ± 3.32SE) to be affected 

by their presence-especiaily since they now occupy both the main and secondary 

channels (Barnes and Mallik, 2001). In a study by Barnes and Mallik (2001), all alder 

stems that were cut by beaver were within 20m of pond edges. Beaver foraging may 

provide a setback for the establishment of additional trees and shrubs on the floodplain, 

but species like alder and willow (which is not currently present on the floodplain) are 



typically able to re-establish the~r initial densities a11er being cut back (Barnes and 

Mallik, 2001). 
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Since beaver populations and activity centers are dynamic, there is a possibi'.ity of 

beavers re-locating within and cutside the watershed ifresources such as preferred food 

plants are limited, or if somt~ of their ponds fill with sediment over time---facilitated by 

darns impounding 5edi,r.e!1'; and by the low gradient of the Wasson Creek valley. In 

additi(,n, young beavers typically leave home al two years of age (,)r three years in the 

case of high populatior: clt:11::,i!ies) tc estab;ish (JT join another colo.!ly (Muller-Schwarze 

and Sun, 2003). Such dispersal is typically accomplished by swimming J::iwnstream 

from a parent colony (Muller-Schwa,ze and Sun, 2003). 

Once established, a beaver colcny may remain iri the same location for several 

years or more, unless .it is forced to relocate by major floods or other disturbances 

(Muller-Schwarze and Sun, 20o:3). Though 'NC :c11!!ot predict. the location of beaver 

activity centers on the flocriplain in the long run , ponds and rne,.dows created by beavers 

may still persist for mon: than fifty years as thc-y are altered and re- flooded by successive 

colonies of beaver(, .. •lms, -, ri anri :\;~,iman, ! 990>. 

\Vherc beaver ponds are abandonc:d or water ievels arr; draw:1 down, the plani 

community will n10st li!~d/ succeed to a gr1"s~ and sedge community (Johnston and 

Naiman, 1990). At Wasson Creek, species like slough sedge (Carex obnupta) and small­

fruited bulrush (Sc.i1p,.1s mic.·orn1;1i!sl, •~'hich ,:re u1r•~ady present on site, are likely to 

colonize beaver meadows. Invasive reed canary grass (Phalaris arundinacea) 1ri.ust be 

monitored, as new shoots twve alrea'.ly begun to colonize some of the disturhed p~tches 

on the floodplain dominated by native plants. 



46 
In addition to sedges, rushes and grasses growing in beaver meadows, we may 

see an increase in the extent oftrees and shrub cover along the margins of the floodplain. 

Barnes and Mallik (2001) found that after twelve years, there was an increase in the 

growth of conifers along the edges of abandoned beaver ponds. Typically, beavers avoid 

cutting conifers in favor of softwood trees like alders and aspens that are less than 10cm 

in diameter (Noiel, , )97). /.t Wasson Creek, we may see a response in the growth of 

species like Sitka spruce (Picea sitchensb) and Douglas-fir (Pseudotsuga menziesii). 

Also, as observed at Wasson Creek, red elderberry (Sambucus racemosa) will most likely 

continue to increase in number, as it is selectively avoided by beaver (Suzuki and 

McComb, 1998). 

Recommendations for Human Intervention 

Even if beavers remain the primary agents in restoring Wasson Creek, invasive 

species like reed canary grass and Himalayan blackberry are still a major concern on 

site-particularly in Lhe lo :Vest sections of the floodplain. Invasive species like reed 

canary grass may be removed through a combination of hand-pulling, repeated cut-backs, 

discing or plowing, and eventual seeding or plugging in of native plants to increase native 

diversity and competition (Lyons, 1998). Though herbicides are often effective in 

controlling reed canary grass, they should be avoided due to the close proximity of all 

areas on the Wasson floodplain to the stream and wetlands (Lyons, 1998). 

Beavers may have a neutral effect on some of the invasive species at Wasson 

Creek, as their dams often provide bare sediment for invasive species to colonize, but 

also inundate large ai. eas of soil, which can damage seed stocks of species like reed 

canary grass (Lyons, 1998). Still, many of the processes that have already been re-
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instated by beavers at Was son Creek, like flooding and seasonal inundation of the 

floodplain, may favor some of the native grasses, rushes and sedges already on-site and 

help keep reed canary grass populations under control (Stromberg and Chew, 2002). In 

either case, the best strntegyis to use natural forms of control rather than introduce more 

disturbances or chemicals into the Wasson Creek watershed. 

Future Questions 

In the future, a number of questions may provide further insight into a restoration 

strategy for Wasson Creek-especially if a passive restoration approach is considered. 

First of all, plant diversity on the floodplain should be addressed-particularly with 

respect to how much of the vegetative cover is native and how much is composed of 

invasive species like reed canary grass. From this type of analysis, managers can assess 

whether significant control of species like reed canary grass and Himalayan blackberry is 

necessary. 

Secondly, sediment transport at Wasson Creek needs further investigation, and 

may help us understand how long it could take for the main Wasson ditch to naturally fill 

in with sediment assuming a continued high level of beaver activity and dam 

maintenance. Also, knowing how much sediment will be required to fill the ponds to the 

extent that water could be more permanently diverted onto the floodplain would be 

useful. 

Another important c:omponent in assessing sediment transport, stream power, and 

what changes we can continue to expect in the main channel is stream dis;;harge 

(typically expressed in cubic feet or meters per second). Though stream stage assisted in 



monitoring flooding, beaver activity, and how Wasson Creek responds to a range of 

precipitation events, knowing the discharge regime of a stream is useful in determining 

its overall capacity to alter the channel bed and floodplain over time. 
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GUIDE TO FIGURES, TABLES, AND APPENDICES 

Figure 1. Regional Map showing the South Slough National Estuarine Research 
Reserve. 

Figure 2. Wasson Creek Map. Shows study area, Winchester Creek, beaver darns, 
water level loggers, path, and other landmarks. 
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Figure 3. Change on the Wasson Creek Floodplain through time, as seen in the 1939 
and 2003 Wasson Creek aerial photos. 

Figure 4. Active Restoration at Anderson Creek. Shows large woody debris and 
new, sinuous channel in 2003 , compared with the old, straightened channel in 1991. 

Figure 5. Beaver plunge hole diagram. Illustrates how beavers excavate tunnels 
between their foraging areas and the main channel or pond. 

Figure 6. Deton Creek aerial photo series. Shows how beavers have transformed the 
floodplain from pasture used for cattle grazing to a marsh. 

Figure 7. Cross-section of a water level logger set-up in the stream channel. 

Figure 8. lrn upstream depth profiles, looking upstream. 
a. BD7: left side of graph is at the southern edge of the floodplain ; original channel is 
to the far left, followed by the newer channel(s) forming on the floodplain heading 
out along the darn. 
b. BDH: right side of the graph marks the northern edge of the floodplain . Shows 
how variable the depth profile can be upstream of a beaver darn, though the darn had 
only been in existence for - 1-2 months when measurements were taken. 

Figure 9. OIMB Precipitation vs . Wasson Creek Stage at W.L.L. l , December 11-18, 
2003 (storm event graph). Shows hourly rainfall at the OIMB gauge and the change 
in Wasson Creek stream level at W.L.L. l. Between 10:11 December 13 and 1:41 
December 14, 2003, W.L.L. 1 recorded stream stage above bank full level. 

Figure 10. Flooding evidence at the W.L.L.2 site, January 9, 2004. Matted grass, 
sediment, and debris deposited during the December 13 , 2003 flood event at the 
eventual W.L.L.2 site mark where flooding occurred. 

Figure 11 . Relative main channel stage vs. time. Graph of stream stage at both water 
level loggers, calibrated to W.L.L. l to show relative change between loggers. 

Figure 12. a. Precipitation (at the OIMB gauge) and stream level at W.L.L. l vs. time 
between November 14, 2003 and July 2, 2004. 
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b. Precipitation (at the 01MB guage) and Stream level at W.L.L.2 between January 
9, 2004 and July 2, 2004. Installation ofW.L.L.2 was delayed by technical problems 
with the logger. 

Figure 13 . Precipitation vs . recurrence interval graph. Aids in predicting the 
frequency of a given rainfall event (n-year event) . The event that led to extensive 
flooding at Wasson Creek was a 6-10 year event. 

Figure 14. Cross-sections used to measure channel dimensions in the main and 
secondary channels, taken where sufficient data was available to estimate bank full 
width, bank full depth, and floodplain width. 

Figure 15 . Entrenchment ratio vs. width/depth ratio in the main and secondary 
channels. As width/depth ratios increase, entrenchment ratios rapidly decrease­
making flooding of the stream channel during a high-rainfall event more likely. 

Figure 16. Channel paths on the lower Wasson Creek floodplain, including the 
historic (1939) and current (2004) ditches and potential future channels. Darker lines 
indicate the primary channels; lighter blue lines show where new channels are already 
forming/may develop in the future. All lines based upon a topographic map of the 
site and field observations. 

Figure 17. 1955-1991 Wasson Creek aerial photo series. Changes in floodplain 
vegetation highlighted in yellow, where mottled vegetation patterns indicate likely 
seasonally flooded sites. 

Figure 18. BDl photo series, beginning in November, 2003 and ending in August, 
2004 . Shows the original dam, the channel after the dam was blown out in 
December, 2003 , and construction of the new dam. 

Figure 19. Overland flow between BD6 and BD7, terminating in a beaver plunge 
hole. Water flowing through the plunge hole then entered the main channel 
immediately above W.L.L. l 

Figure 20. November 7, 2004 photo ofa beaver-excavated channel on the upper 
Wasson Creek floodplain. 

Figure 21. Changes on the floodplain upstream ofBD7 during the study. Shows 
original dam in November, 2003 , the main breach point in January, 2004, and the 
transformation between a drained floodplain (May, 2004) and a marsh (July, 2004). 

Figure 22 . Large woody debris in the upper Wasson Creek channel and in the study 
area, upstream ofBDA. The trees, which are mostly alders, were probably killed by a 
raised water table. 



Table la. Correlation between mean daily stream stage and Oll\1B daily 
precipitation. 
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Table lb. Comparison (using two-tailed t tests) between North Bend FAA and Oll\1B 
precipitation gauge data sets. 

Table 2a. Wasson Creek channel and floodplain patterns Includes channel length, 
sinuosity calculations, channel slopes, and floodplain gradient. 

Table 2b. Channel dimensions and calculations for the main and secondary Wasson 
Creek stream channels. Includes mean bank-full widths and depths, floodplain 
widths, channel width/depth ratios, and entrenchment ratios. 

Table 3. Beaver dam measurements and composition notes. Covers all dams located 
in the Wasson Creek study area between November, 2003 and August, 2004. 

Appendix A Wasson Creek base map- includes beaver dams, survey transects, 
groundwater monitoring transects from a forthcoming study, W.L.L. locations, a 2003 
air photo of the site, cross-section numbers, and longitudinal profiles for the main 
channel, secondary channel, and floodplain. 

Appendix B. Cross-sections corresponding with transects marked on the base map. 
Cross sections are given at Sx vertical exaggeration to best illustrate subtle surface 
concavity and convexity across the floodplain. 

Appendix C. Longitudinal profiles across the study area. Shows a vertically 
exaggerated profile of the deepest part of the main and secondary channels, in 
addition to the profile for the approximate center of the floodplain. 
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Figure 2. Wasson Creek Map 

Upper Wasson 
Gravel Road 

Seal 

,Anderson Creek 
Floodplain 

Key 

!II'• Forest Edge 

◄ " Water Level Logger 

• - Study Area Division 

11. = Beaver Darn 

......... . ·Path 

To south 
end of the 
South 
Slough 



Figure 3. Change on the Wasson Creek floodplain 
through time. 
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2003 Aerial photo 
showing the new, 
sinuous channel and 
large woody debris at 
Anderson Creek 

1991 Aerial photo 
with the straigtened 
and ditched Anderson 
Creek 

Figure 4. Active Restoration at Anderson Creek V, 
V, 



Figure 5. Plunge holes allow beavers to escape predators-­
providing safe underground routes between foraging sites on land 

and beaver ponds (above). In the case of the bank-dwelling 
beavers at Wasson Creek, similar passages are created between 

bank burrows and the stream channel (below). 
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Figure 6. Deton 
Creek Aerial Photo 
Series 

Scale: 1 "~1300' 
(Source: Bureau of Land Management) 
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Figure 7. Cross-section of a water level logger set-up in 
the stream channel ( not to scale). 
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Figure 8. lm Upstream Depth Profiles, Looking Upstream 
a. BD7 
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Figure 9. 01MB Precipitation vs. Wasson Creek Stage at W.L.L.1, 

December 11-18, 2003 
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Figure 10. Flooding Evidence 
at the W.L.L.2 Site, 1/9/04 

Future W.L.L.2 Site 

Edge of stream bank 

Sediment and Debris 
Deposits 

2:: 



140 

120 

a 
~ 
""l 100 

~ 
.s 

80 

1 = :;' 
< 
' 60 j 
e 
! 40 
rJJ 

20 

Figure 11. Relative Main Channel Stage vs. Time 

December 13 Storm Event 

- W.L.L.1 1 
- W.L.L.2 

January 9 W.L.L.2 Launch 

~March 13-15 BD 1 Reconstruction 

Date O'I 
N 



(m:>) f3A3'J mu3.1:JS 

§HHl: a6 ~ ~ ?:l 
t00Z/0£/9 

00Z/0Z/9 

t00Z/6/9 

t00Z/0£/~ 

t00Z/0Z/~ 

t00Z/66 

t00Z/6Z/t 

t00Z/81/t 

(m;J) f3A3'] mB3J.JS 63 

g~~o~H 

= j l>OOlll>l/9 

<IS ~ 

L~ l>00l/£1/9 

I I 
l>00l/£/9 

-~ l>00l/6/1 
--n~r<"lN-O 

(m;J) DBJU!Bll 



20 

18 

16 

14 

e 
.-':;;, 12 
§ 
·3 10 

t 8 
Po': 

6 

4 

2 

0 

Figure 13. Precipitation vs. Recurrence Interval 
y = 2.7907Ln(x) + 5.2089 

-·•~ ---
'====== ·-~·~ 

~ 

l 10 

RI (years) 
r 100 

50-year event 

6-year event 

0\ 
~ 



Secondary Channel 
High beaver activity area Low beaver activity area 

Main Channel 
High beaver activity area Low beaver activity area 

Figure 14. Cross-sections used to measure channel dimensions in the main and 
secondary channels. Bi 



Figure 15. Ent re nchme nt Ratio vs. Width/Depth Ratio 
Wasson Creek Secondary Channel 
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BD7 Channel Complex Secondary Channel 
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Figure 16. Channel paths on the lower Wasson Creek floodplain, including the 
historic (1939) and current (2004) ditches and potential future channels. 
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Figure 17. 1955-1991 Wasson Creek aerial photo series, 
( changes in floodplain vegetation highlighted in yellow). 
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Figure 18. BDl Photo Series 

November 10, 2003 

January 30, 2004 

March 26, 2004 
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Figure 20. 
Beaver-excavated 

channel, upper Wasson 

Creek floodplain. 

November 7, 2003 

70 

Overland flow between 

BD6 and BD7 (left), 

terminating in a beaver 

plunge hole (below). 
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Figure 22. Large woody debris in the upper Wasson Creek channel ( above; March 

26, 2004 photo) and in the study area, upstream ofBDA (below; April 23, 2004 photo). Trees 
in beaver-influenced systems are often felled by beavers or killed by raised water tables. 
Regardless of how they enter a stream, logs often increase habitat and structural diversity 
in the channel and on the floodplain as they dissipate a stream's energy, create shelter for 

aquatic species, add nutrients to the system, and provide surfaces for plant growth. 
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Table la. Correlation between Mean Daily Stream Stage 
and 01MB Daily Precipitation 

Correlation 
df Coefficient ( r) p 

W.L.L.1 and W.L.L.2 

January 9, 2004 to July 2, 2004 8124 -0.459 < 0.001 

January 9, 200-l to March 10, 2004 2947 0.919 0.000 
March 15, 2004 to July 2, 2004 4985 0.537 0.000 

W.L.L.1 and 01MB Precipitation 
November 15 , 2003 to July 1, 200-l 225 0.522 < 0.001 

November 15, 2003 to March 10, 200-l 116 0.581 < 0.001 
March 15, 200-l to July 1, 200-l 10-l 0.201 < 0.001 

W.L.L.2 and 01MB Precipitation 
January 10, 2004 to July 1, 2004 173 -0.022 < 0.001 

January 10, 2004 to March 10, 2004 60 0.427 < 0.001 
March 15. 200-l to July I, 2004 108 0.185 <0.001 

Storm E,·ent Bracket (December 11-18, 2003) 

Daily OIMB precipitation and W.L.L. l stage 7 0.839 0.001 

Hourly 01MB precipitation and W.L.L. l stage 190 0.673 < 0.001 

13:00 December 12 to 23:00 Dec. 13 , 2003 34 0.586 <0.001 



Table lb. Comparison (using two-tailed t tests) between North Bend FAA and 01MB 
precipitation gauge data sets. 

North Bend FAA Gauge 01MB Gauge 
Month Mean SE Mean SE df Correlation t Stat t Critical 

November-03 0.83 0.37 0.80 0.32 29 0.961 -0.328 2.045 
December-03 1.34 0.62 1.31 0.69 30 0.985 -0.208 2.042 
January-04 0.91 0.30 0.93 0.31 30 0.939 -1.177 2.042 
February-04 0.87 0.34 0.90 0.36 28 0.936 -1.020 2.048 
March-04 0.31 0.19 0.32 0.20 30 0.983 -2.507 2.042 
April-04 0.40 0.33 0.41 0.27 29 0.945 -0.895 2.045 
May-04 0.17 0.09 0.15 0.09 30 0.867 -0.867 2.042 
June-04 0.15 0.1 I 0.11 0.08 29 0.568 -0.174 2.045 

Nov.-June 0.62 0.35 0.61 0.36 242 0.962 -2.048 1.970 

P(T<=t) 

0.745 
0.836 
0.248 
0.316 
0.018 
0.378 
0.393 
0.863 

0.042 

--.J _.,. 



Table 2a. Wasson Creek Channel and Floodplain Patterns 

Straight Line Total Channel Channel Adjacent Floodplain 
Channel Length Length Sinuosity Slope(%) Slope(%) 

Main Channel 

Total Channel 660.33 714.76 1.08 0.69 0.76 

Low Beaver Activity (0+00-12+00) 385 .13 410.66 1.07 0.57 0.64 

High Beaver Activity (12+00-21+50) 285 .89 304.10 1.06 0.86 0.92 

Secondary Channel 

Total Channel 651.10 728.31 1.12 0.80 0.74 

Low Beaver Act (o+00-7+60) 217.39 229.38 1.06 0.81 0.53 

High Beaver Act (7+60-18+00) 345.20 361.17 1.05 0.80 0.89 

~ 



Table 2b. Channel Dimensions and Calculations in 
the Wasson Creek Main and Secondary Channels 

Main Channel Secondary Channel 

Mean SE N Mean SE 

Bank Full Width 
Total Set 4.65 0.88 37 3.46 0.78 
Low Beaver Activity 4 06 0.85 20 3.11 0.51 
High Beaver Activity 5.34 0.88 17 3.71 0.93 

Bank Full Depth 
Total Set 1.17 0.09 37 0.47 0.05 
Low Beaver Activity 109 0.06 20 0.53 0.05 
High Beaver Activity 126 0.09 17 0.43 0.04 

Floodplain Width 
Total Set 73.25 3.72 37 73.46 3.19 
Low Beaver Activity 79.67 3.14 20 80.18 3 01 
High Beaver Activity 63.45 167 17 68.48 2.30 

Channel W/D Ratio 
Total Set 4 02 0.76 37 7.94 2.20 
Low Beaver Activity 3.77 0.83 20 6.72 2.05 
High Beaver Activity 4.32 0.65 17 8.85 2.31 

Entrenchment Ratio 
Total Set 22.39 5.21 37 27.56 4.17 
Low Beaver Activity 26.60 5.16 20 32 01 4.97 
High Beaver Activity 17.42 4.97 17 24.28 3.20 

76 
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Wasson Creek Cross-sections 0+00-3+60, Sx Vertical Exaggeration 
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Appendix B 80 

Wasson Creek Cross-sections 4+00-7+60, SxVertical Exaggeration 
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Wasson Creek Cross-sections 8+00-10+40, Sx Vertical Exaggeration 
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Wasson Creek Cross-sections 10+80-13+60, Sx Vertical Exaggeration 
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Wasson Creek Cross-sections 14+00-16+80, Sx Vertical Exaggeration 
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Wasson Creek Cross-sections 17+20-19+60, Sx Vertical Exaggeration 
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Wasson Creek Cross-sections 20+00-23+30, Sx Vertical Exaggeration 
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Appendix C: Longitudinal Profiles 
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GLOSSARY 

Aggradation: The deposition and accumulation of sediments in a stream channel or on a 
floodplain that have been eroded from another location in the watershed. 

Bank Full: Generally the point of intersection between the stream channel and the 
floodplain. 

Detritus: Dead or decaying organic matter and the associated microbial and fungal 
communities that reside upon it. Detritus in a stream may be composed of sticks, 
leaves, and other material input from both outside and inside the channel. 

Plunge Hole (Beaver): A beaver-created tunnel that provides an escape route between a 
foraging area and a stream channel or pond. Beavers are better suited for 
escaping predators when they are in the water. 

Reach: A section of stream between two selected points. 

Riparian: The intermediate wetland zone between a stream and its surrounding uplands, 
generally associated with a unique plant community. 

Sinuosity: Degree (amplitude) of channel diversion from a straight path in plan-view. 

Stream Orders: Based upon a system developed by Strahler (1957) that classifies a 
stream by the number of tributaries that contribute to its flow. Headwater 
tributaries with no branches are first order, and two first order streams must merge 
to become a second order stream. Two second order streams have to combine if a 
third order stream is to form, and so on. 

Thalweg: The part of any given stream cross-section having the deepest and strongest 
flow. 

Watershed: The complete drainage basin that feeds surface and below-ground water 
into a stream or other body of water. 
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