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DISSERTATION ABSTRACT 
 
Jessica H. Stone 
 
Doctor of Philosophy 
 
Department of Anthropology 
 
June 2020 
 
Title: The Bioarchaeology of Initial Human Settlement in Palau, Western Micronesia 
 
 

The initial settlement of Remote Oceania represents the world’s last major wave of 

human dispersal. While transdisciplinary models involving linguistic, archaeological, and 

biological data have been utilized in the Pacific to develop basic chronologies and 

trajectories of initial human settlement, a number of elusive gaps remain in our 

understanding of the region’s colonization history. This is especially true in Micronesia, 

where a paucity of human skeletal material dating to the earliest periods of settlement have 

hindered biological contributions to colonization models. The Chelechol ra Orrak site in 

Palau, western Micronesia, contains the largest and oldest human skeletal assemblage in 

the region, and is one of only two known sites that represent some of the earliest settlers in 

the Pacific. As such, Chelechol ra Orrak provides an excellent opportunity for direct study 

of population dispersals into Micronesia. 

This dissertation draws on bioarchaeological data from Chelechol ra Orrak to 

address research questions related to the initial human settlement and subsequent 

adaptation of small island environments in Palau, and more broadly, Remote Oceania. The 

results of ancient DNA and radiocarbon dates are used to test hypotheses related to a 

potential place of origin for early Palauan people. I also present a case study from 

Ucheliungs, a mortuary and small-scale habitation site located in Palau that is 
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contemporary with Chelechol ra Orrak, to assess claims of insular dwarfing following 

initial settlement. The second half of the dissertation focuses on aspects of behavioral 

adaptation to Palau. Results of stable isotope analysis from Chelechol ra Orrak are used to 

reconstruct early human diet, while the role of habitual chewing of betel nut is explored 

within the context of temporomandibular joint osteoarthritis. Together, these case studies 

provide fundamental baselines for understanding initial human settlement and small island 

adaptation in Palau from a bioarchaeological perspective. 

This dissertation includes previously published and unpublished co-authored 

material.  
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CHAPTER I 
 

INTRODUCTION 
 

 

          Widespread population dispersals have been a hallmark of modern humans 

throughout their evolutionary history (Cabana and Clark 2011, Campbell and Crawford 

2012). These movements into new landscapes are not only driven by aspects of our 

ecology and culture, but the same factors are also impacted upon arrival in a new 

location. In turn, various related facets of human life, including political and economic 

systems, language, subsistence, settlement patterns, and resource abundance, among 

others, are affected by dispersal events. Population dispersals also have a genetic impact, 

affecting population structure through the process of gene flow, and, in the case of initial 

arrival into previously uninhabited areas, genetic bottlenecks (Fix 1999, O’Rourke 2012). 

As such, anthropological studies of the causes, processes, and results of dispersal events 

in the past are valuable contributions to addressing questions of what makes us human 

(Cabana and Clark 2011). An important step in understanding the underlying reasons and 

impacts of population dispersals is to identify potential motivations for movement, often 

referred to as push (negative) or pull (positive) factors. To help identify such factors, 

especially within archaeological contexts, information related to the context and structure 

of a migration event, including the point of origin, is critical (Anthony 1990, Beekman 

and Christensen 2015, Tsuda et al. 2015).  

An inherent challenge in reconstructing past dispersals by humans is the ability to 

distinguish between these and other cultural events that result in the introduction of new 

ideas or technologies without the physical movement of people. For example, the 

appearance of sudden changes in material culture, such as new artifact types or stylistic 

elements, are sometimes interpreted as evidence for the arrival of new populations to an 

area or community, but could instead result from the diffusion of novel ideas or the 

exchange of objects. A bioarchaeological perspective of migration is particularly valuable 

because it emphasizes direct evidence of human movement by studying possible 

migrants, rather than the transfer of artifacts or ideas (Knudson 2015). Additionally, a 

bioarchaeological perspective can inform on the biological factors affected by human 
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movement, including biodistance and genetic studies that shed light on regional 

population relationships and points of origin or the impacts of migration on diet or health 

(e.g., Blom et al. 1998, Kinaston et al. 2013, 2014, Redfern et al. 2018, Tung and 

Knudson 2011).  

 One form of population dispersal that is of particular interest for understanding 

different aspects of biological and cultural adaptation is initial colonization, or the arrival 

of human groups into previously uninhabited areas. Islands provide ideal model systems 

within which to study human colonization because of their boundedness and relative 

isolation compared to continental areas (DiNapoli and Leppard 2018, Fitzpatrick and 

Erlandson 2018, Kirch 2007, Vitousek 2002). Additionally, the initial settlement of 

islands is especially interesting because of the unique suite of skills and behaviors 

necessary for successful arrival and settlement of new areas. These skill sets include the 

use of watercraft and navigation (wayfinding), the translocation of (non)domesticated 

plants and animals, and development of long-distance exchange networks. The 

contribution of a bioarchaeological perspective dedicated to understanding the lifeways 

and challenges of the first people arriving on these new small and relatively remote 

landmasses can also provide a valuable perspective for understanding the processes by 

which humans adapted to small islands.  

Remote Oceania, which spans much of the Pacific Basin, is a particularly 

interesting island setting in which to study this process given the rapid pace at which 

people crossed vast expanses of open ocean. In the Pacific, a transdisciplinary approach 

combining archaeology, historical linguistics, and various biological data—including 

biodistance studies and population genetics—has been successful in reconstructing basic 

chronologies and trajectories associated with initial settlement of the region (e.g., 

Bedford and Spriggs 2019, Carson 2013, Kirch 2010, Matisoo-Smith 2015). However, 

some major gaps remain, particularly in Micronesia, where comparatively little work has 

been done. Although archaeological research in the region has increased in recent years, 

particularly in western Micronesia, the comparatively small amount of biological work 

conducted has largely been attributed to a lack of available skeletal remains, particularly 

for individuals dating to the period immediately following initial colonization. In Palau, 

western Micronesia, however, the Chelechol ra Orrak archaeological site has yielded 
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evidence of skeletal remains belonging to more than 55 individuals dating to the earliest 

phases of settlement (Fitzpatrick 2003a, Nelson et al. 2015). This collection thus provides 

an ideal opportunity for bioarchaeological work to contribute significantly to our 

understanding of Palauan and western Micronesian settlement and how it relates to the 

greater Pacific Islands region.  

In this dissertation, I aim to demonstrate that the application of a 

bioarchaeological perspective in Micronesia not only provides a critical component to 

studying island colonization processes, but also sheds important light on the past lifeways 

of the earliest inhabitants of this region, specifically in Palau. By applying a suite of 

bioarchaeological methods, including ancient DNA (aDNA), stable isotopes, and 

osteological analyses to the Chelechol ra Orrak skeletal assemblage, I address questions 

related to where these peoples may have originated from, regional population 

relationships, resource use, and adaptations that first settlers would have had in Palau—

and more broadly—western Micronesia. In doing so, I have generated preliminary 

baseline data that provides a foundation for future research in Micronesia aimed at 

addressing more specific aspects of colonization and the settlement process vis-à-vis this 

multidisciplinary approach.  

 

Background 

Settlement of the Pacific 

Historically, the Pacific Islands have been subdivided into three major subregions: 

Melanesia, Micronesia, and Polynesia. These categories were largely based on 

phenotypic differences observed among living populations such as skin color, but only 

Polynesia has remained a meaningful category when linguistic and biological data are 

taken into account (D’Urville et al 2003, Green 1991). In response to the racist 

connotations and lack of significance associated with the original subregions, Green 

(1991) instead proposed dividing Oceania into two subregions—Near and Remote—with 

the latter originating just east of the Solomon Islands and spanning the Pacific Ocean as 

far east as Rapa Nui (Figure 1.1). While both D’Urville and Green’s classifications are 

used interchangeably today for geographic reference, Green’s divisions of Near and 

Remote Oceania also draw on the region’s settlement history and geography, as Near 
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Oceania represents the limit of both Pleistocene settlement and increased intervisibility 

between islands, which has been argued to facilitate early seafaring (Green 1991).  

 

 

Figure 1.1. Map of the Pacific Islands depicting the subregions discussed above. The 
dotted line indicates the Near/Remote Oceania boundary, and Palau’s location is marked 
by the dot (Image modified from Wikipedia.org).  
 

 

As a result of lower sea levels during the Pleistocene, many of today’s islands 

were joined, reducing the depth and number of water gaps that needed to be crossed for 

human settlement. Migration to the Pleistocene landmass of Sahul, the remnants of which 

include Australia and New Guinea, is particularly significant in human history as it 

represents the first ocean crossings by anatomically modern Homo sapiens, ca. 65-45,000 

BP, though recent research in Australia is pushing this timing back to at least 65,000 BP 

(Clarkson et al. 2017, O’Connell et al. 2018). The route taken to these areas, the 
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watercraft used, and whether or not the crossings were intentional are still debated topics 

(Allen and O’Connell 2008, 2020, Bird et al. 2019, Kealy et al. 2016, O’Connor and 

Chappell 2003).  

From Sahul, groups reached the Bismarck Archipelago, situated off the 

northeastern coast of New Guinea, by 40,000 BP (Leavesley 2006). Early sites were 

located in close proximity to the coast and reflect periodic use by small, mobile foraging 

groups that took advantage of marine shellfish and terrestrial fauna, and utilized 

unmodified chert (Allen and Gosden 1996, Leavesley 2006, O’Connor and Veth 2005, 

O’Connor et al. 2011). Subsequent settlement of the northern Solomon Islands by 32,000 

BP involved seafaring in open ocean with no land visibility. This period is also associated 

with evidence for inter-island contact and the development of a regional exchange system 

between New Guinea, the Bismarcks, and the Solomons, which involved the movement 

of obsidian and translocation of terrestrial mammals, including the cuscus (Phalanger 

orientalis). These also overlap with the development of agriculture in the New Guinea 

highlands (Allen 1996, Ambrose and Green 1972, Anderson et al. 2009, Spriggs 1997, 

Wickler 1990). 

Coastal and inland habitation sites, a regional system of obsidian exchange, and 

the domestication of major tree and tuber crops in the New Guinea highlands continued 

in Near Oceania until around 5000-4000 BP, when a second major wave of migration 

into Island Southeast Asia (ISEA) introduced Austronesian-speaking horticulturalists that 

likely originated from Taiwan, although recent genetic evidence has also suggested 

interaction with Mainland Southeast Asia (MSEA) during this time (Allen 1996, Allen 

and Gosden 1996, Ambrose and Green 1972, Bellwood 1995, 2013b, et al. 1995, Bulbeck 

2008, Denham 2004, Shutler and Marck 1975, Soares et al. 2016). These horticulturalists, 

often referred to as Austronesian groups based on their linguistic associations, expanded 

rapidly through Near Oceania, eastward into Remote Oceania, and westward to 

Madagascar over the next two to three millennia (Blust 1995, Crowther et al. 2016, Gray 

et al. 2009). 

By far the most significant event in Remote Oceania was the appearance of the 

first humans known as the Lapita Cultural Complex. Archaeological evidence of Lapita 

first appears in the Bismarck Archipelago around 3300 BP, at which point they moved 
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rapidly eastward through Melanesia and into West Polynesia, reaching Tonga and Samoa 

by 2800 BP, though apparently bypassing the Solomon Islands for reasons that are still 

not clearly understood (Bedford et al. 2019, Green 1979, Sheppard et al. 2015). Lapita 

material culture is marked by a suite of characteristics, including dentate-stamped 

ceramics, worked shell and stone artifacts, settlements located in coastal areas, and the 

translocation of both domesticated and non-domesticated plants and animals (pigs, dogs, 

chickens, and rats) (Bedford et al. 2019, Kirch 1997, Larson et al. 2005, 2007, Matisoo-

Smith 1994, Matisoo-Smith and Robins 2004, Spriggs 1984). Over time, later Lapita sites 

demonstrate increased localization of material culture and a decrease in regional 

exchange (Green 1991b, 1992, Spriggs 2003). At the same time, islands in western 

Micronesia, including those in Palau and the Marianas, were also being settled by people 

likely originating from ISEA that do not share the archaeological characteristics 

associated with Lapita, suggesting that at least two contemporaneous migrations from 

ISEA to Remote Oceania were occurring between ca. 3500-3000 BP (see discussion 

below).  

The first settlement of Polynesia occurred ca. 2850-2800 BP in Samoa and Tonga 

by Lapita groups, after which voyaging appears to have ceased for almost 2000 years, a 

period referred to as the “long pause”. Explanations for this hiatus in movement vary 

from changing climatic conditions and sea levels (e.g., increased El Niño/Southern 

Oscillation events during the Late Holocene) to a need for first improving canoe 

technology and wayfinding skills to be able to venture to the farthest reaches of the 

Pacific (Anderson et al. 2006, Irwin 2008, Montenegro et al. 2014, 2016, Sear et al. 

2020). The same sea level stabilization around 2000 BP also resulted in the emergence of 

atolls across central and eastern Micronesia that were settled almost immediately 

thereafter (Dickinson 2003, 2004, Weisler 2001, Weisler et al. 2012). The timing of the 

onset of Polynesian voyaging eastward is somewhat contentious, but conservative 

estimates place settlement of the Central Eastern Polynesian archipelagos, including the 

Society, Cook, Austral, Gambier, and Tuamotu Islands to between ~925-830 BP 

(Wilmshurst et al. 2011). The islands of East and South Polynesia, including Hawai’i, 

Rapa Nui, and New Zealand, appear to have been settled from the Marquesas and Society 

Islands ca. 800-700 BP (Hunt and Lipo 2008, Wilmshurst et al. 2011).   
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The Initial Settlement of Micronesia 

      Micronesia comprises more than 2,000 islands in the northwest tropical Pacific that 

stretch across an ocean area of over seven million square kilometers. This region reaches 

from the Near/Remote Oceania border, with its westernmost landmasses in the Palauan 

archipelago, and as far eastward as some Polynesian islands, with the easternmost 

Micronesian landmasses being located in Kiribati. Despite the large number of islands, 

the total land area is only 2700 km2, hence the name meaning “sea of little lands” (Craib 

1983, Kirch 2000: 165). To put this in perspective, Micronesia is about the size of the 

United States, but the total land area is about the same as Rhode Island.  

 Geographically, the region is divided into four major island groups: the Mariana 

Islands (Guam, Saipan, Rota, Tinian, and numerous smaller ones that stretch northward), 

the Marshall Islands, the Gilbert Islands (Kiribati), and the Caroline Islands. The latter 

are typically divided into eastern and western parts and politically includes the Republic 

of Palau and the Federated States of Micronesia (FSM; Yap, Pohnpei, Kosrae, and 

Chuuk). Originally named for the small, low-lying atolls comprising much of the central 

and eastern portions of the region, Micronesia also has a variety of island types, including 

high volcanic, continental, and raised coral limestone (Alkire 1977, D’Urville et al. 2003, 

Craib 1983). The region is tropical and varies in rainfall seasonally, with the majority of 

the area falling within the tropical typhoon zone.  

Generally, traditional subsistence is based on introduced crops such as taro, yam, 

banana, coconut, and breadfruit, while protein sources primarily include fish, shellfish, 

crustaceans, and turtle from nearby reef and lagoon environments, in addition to some 

endemic terrestrial fauna (e.g., birds, bats, land crabs). Common Pacific terrestrial 

domesticates, including pig, dog, rat, and chicken were present prehistorically, but the 

distribution of these taxa varies across Micronesia and have only been found in relatively 

small quantities, suggesting that they were not staple resources following initial 

settlement. To date, only one Micronesian island has yielded archaeological evidence for 

the presence of all four taxa: Fais, a small uplifted coral island located northeast of Yap. 

Strontium isotope evidence from pig and dog remains excavated on Fais suggests that 
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this island is a unique example within Micronesia where these animals were raised 

locally (Alkire 1977, Clark 2004, Fitzpatrick 2018, Gakuhari et al. 2013, Intoh 2008).  

Comparatively little archaeological research was conducted in Micronesia until 

the mid-1970s, and in many areas is still lacking relative to other areas in the Pacific. 

Originally, Micronesia was thought to be a region of stepping stones by which people 

reached and settled western Polynesia, but this claim was disproven as a result of the 

identification of Lapita (Buck 1938). This, coupled with the noticeable absence of Lapita 

in Micronesia led earlier researchers to reevaluate colonization models and conclude that 

Lapita had moved eastward from Melanesia into Polynesia. Reinterpretation of the 

biological similarities originally identified between Micronesian and Polynesian peoples, 

joined with linguistic and archaeological evidence, are now known to result from shared 

ancestry in Island Southeast Asia (ISEA) prior to dispersal into Remote Oceania 

(Bellwood 1979, Craib 1983, Howells 1970, Lum and Cann 2000, Pietrusewsky 1990).  

Separate settlement histories for the eastern and western portions of Micronesia 

are also apparent. Western Micronesia (Mariana Islands, Palau, and Yap) appears to have 

been settled by groups from ISEA who reached the Marianas by 3500-3000 BP (Carson 

2012, Carson and Kurashina 2012, Rieth and Athens 2019) and Palau by 3300-3000 BP 

(Clark 2004, Fitzpatrick and Jew 2018, Stone et al. 2017). The earliest archaeological 

evidence for human presence on Yap dates later than other islands in western Micronesia, 

ca. 2400 BP, but this discrepancy has largely been attributed to a lack of archaeological 

research on Yap and may shift as work expands (Napolitano et al. 2019). Although 

similarities in red slipped ceramics have been used to suggest that the Marianas were 

settled from the northern Philippines, wind and current patterns, along with experimental 

seafaring simulations, suggest a “homeland” further south for both the Marianas and 

Palau (Hung et al. 2011, Fitzpatrick and Callaghan 2008, 2013, Montenegro et al. 2016, 

Winter et al. 2012). With the exception of Palauan and Chamorro, the native language of 

the Marianas, all Micronesian languages belong to the Oceanic subgroup of 

Austronesian, which has been correlated with Lapita expansion (Pawley and Ross 1993). 

Palauan and Chamorro instead belong to the Western Malayo-Polynesian subgroup, 

which also includes languages from the Philippines and Indonesia, lending further 

support for an ISEA point of origin for the Marianas and Palau (Reid 1999). Within 
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Micronesia, the remaining languages except for Yapese and those of the Polynesian 

Outliers Nukuoro, Kapingamarangi, and Nauru, comprise an Oceanic subgroup known as 

Nuclear Micronesian that appears to have diverged early from languages in Melanesia. 

Together, this suggests that the colonization of Micronesia largely occurred from two 

major sources: the archipelagos of Western Micronesia from ISEA ca. 3300-3000 BP, 

and Nuclear Micronesian-speaking groups from Melanesia, ca. 2500-2000 BP (Athens 

2018, Bender and Wang 1985, Jackson 1986).  

  

Palau Environmental and Archaeological Context 

Palau Environmental Context 

      Palau is an archipelago composed of hundreds of geologically diverse islands located 

about 600 km east of the southern Philippines in the Western Caroline Islands (Figure 

1.2) and about the same distance north of New Guinea. The archipelago is oriented in a 

northeast to southwest direction that stretches for more than 160 km. Together, the 

islands of Palau cover a land area of about 400 km2, with nearly 83% belonging to the 

largest, mostly volcanic, island of Babeldaob. South of Babeldaob are a series of 

additional volcanic islands, including Ngerakabesang, Malakal, and Koror, which is 

partially limestone and the location of the city of Koror, where the majority of Palauans 

live today (Corwin et al. 1956). Most of Palau consists of small uplifted coral limestone 

islands located in the central portion of the archipelago that are often referred to as the 

“Rock Islands”. Weathering from freshwater exposure has created karst topography and 

caves in many of these islands, with some also containing marine lakes (Figure 1.3). The 

northernmost state of Kayangel includes the atolls of Kayangel and Ngaruangel and in 

the southern end are Peleliu and Angaur, two limestone platform islands. While 

politically part of Palau today, the Southwest Islands (Fanna, Sonsorol, Pulo Ana, Merir, 

Tobi, Helen Reef, and Transit Reef) are a series of low platform islands and atolls located 

over 300 km from the main archipelago and appear to have a separate settlement history. 

From Babeldaob to Peleliu, the archipelago is enclosed by a barrier reef that creates a 

breakwater to major ocean currents and a large lagoon habitat, with open channels north 

of Babeldaob and between the southern portion of Babeldaob and Koror. Additionally, 
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there are many fringing reef systems that surround individual islands (Corwin et al. 

1956).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Map of Palau depicting locations of Rock Island sites discussed. 

 

 

 Like other Micronesian islands, Palau has a tropical climate with some seasonal 

variation in rainfall. The archipelago is also at the crossroads of three oceanic currents 

(North Equatorial Current, South Equatorial Current, and the Equatorial Counter 
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Current). Current patterns vary significantly seasonally and annually, which also would 

have impacted navigation over the surrounding reefs upon initial arrival (Fitzpatrick 

2003a). Vegetation ranges from upland forest and jungle to savannah grassland, which 

may have been the result of anthropogenic modification (Athens and Ward 1999). 

Mangrove swamp is common around the coasts of Babeldaob and Koror, and the Rock 

Islands tend to be densely forested. Edible plants in Palau are similar to those elsewhere 

in Micronesia and includes coconut and taro, along with cassava and rice, both of which 

were introduced historically. Betel nut palms (Areca catechu) and pepper leaf (Piper 

betel) are also common, especially around domestic areas, as they are used along with 

slaked lime to prepare betel nut quids, which are chewed habitually by many people for 

their stimulant properties (Fitzpatrick et al. 2003, see Chapter V). Like many Remote 

Oceanic islands, Palau has a relatively impoverished terrestrial fauna, including bats, 

birds, frogs, crabs, and snakes. Pigs, a terrestrial domesticate that were introduced to 

other Pacific Islands upon initial human arrival, were present late in prehistory, but 

apparently never in large numbers. At European contact no pigs were observed, 

suggesting that the earlier populations were likely extirpated and reintroduced historically 

(Clark et al. 2013). Since European arrival, additional mammals have been introduced, 

including cats, dogs, and, on Angaur, a population of macaques (Macaca fasicularis) that 

were brought to the island in the early 1900s by German phosphate miners (Poirier and 

Smith 1974, Wheatley 2011). The overwhelming majority of Palau’s ecological diversity, 

however, lives in the widespread marine lagoon and coral reef habitats, including fish, 

shellfish, sea turtles, dugong, saltwater crocodile, and cetaceans. 

 

The Archaeology of Palau 

 Archaeological research on Palau began in the 1960s with initial survey work and 

test excavations by Douglas Osborne (1966, 1979) at sites throughout the archipelago, 

followed by a group of researchers from Southern Illinois University led by George 

Gumerman through the 1980s and early 1990s (Carucci 1992, Gumerman et al. 1981, 

Masse 1989, Snyder 1989). A major contribution to archaeological work on Palau was a 

series of cultural resource management projects in the 1990s following Palau’s 1994 

Independence and the implementation of a Compact of Free Association with the United 
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States, when a number of public infrastructure projects were undertaken, including the 

construction of the Compact Road on Babeldaob and relocation of the Capitol Building. 

Survey and excavations across Babeldaob for these projects yielded a tremendous amount 

of new data and radiocarbon dates that suggested initial settlement occurred by at least 

ca. 2500-2000 BP (Liston et al. 1998, Masse 1990, Welch 2002). Additional radiocarbon 

dates from multiple Rock Island sites, including Chelechol ra Orrak, Ucheliungs, and 

Ulong Island, have provided further support for an even earlier settlement date ca. 3300-

3000 BP (Clark 2004, 2005, Clark et al. 2006, Farley et al. 2018, Fitzpatrick 2002, 

Fitzpatrick et al. 2003b, Stone et al. 2017, see chapter III). Proxy evidence from 

paleoenvironmental cores around the coast of Babeldaob in the form of increased 

charcoal particulates, sedimentation, grassland conditions, and the identification of 

coconut, betel nut, and swamp taro pollen have been used to suggest a human presence in 

Palau even earlier, ca. 4500-4000 BP (Athens and Ward 1999, 2002). However, 

complementary archaeological evidence is lacking, and the identification of any possible 

archaeological material dating to this time period has been hindered by a combination of 

possible island subsidence, sea level fluctuations, erosion, and poor preservation due to 

volcanic soils and dense mangrove on the coast of Babeldaob (Clark and Wright 2003, 

Dickinson and Athens 2007).  

The origins of Palau’s earliest populations are still unknown. While ISEA is often 

cited as a homeland for initial Palauan populations, proposed points of origin vary and 

include the Philippines, Indonesia, Taiwan, and/or New Guinea. Computer simulations of 

drift voyaging suggested that the highest rates of successful landfall in Palau originated in 

the southern Philippines (Mindanao) or somewhere between here and New Guinea (e.g., 

Halmehara), with little chance of success from New Guinea, Taiwan, the Bismarcks, or 

the central/northern Philippines (Fitzpatrick and Callaghan 2008). More recently, results 

of seafaring simulations and shortest-hop trajectories demonstrated that downwind 

voyages from Taiwan, the northern and central Philippines, and the Bismarck 

Archipelago would likely be unsuccessful, while successful landfall in Palau likely 

involved voyages originating in the southern Philippines, Maluku Islands, western New 

Guinea, and/or the Mariana Islands (Montenegro et al. 2016). Ceramic similarities in the 

common use of grog temper in Type X pottery from the north coast of New Guinea and 
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Palau have also been used to suggest contact between the two areas, but this appears to 

have been later in time, ca. 1000 BP (Specht et al. 2006). Early Palauan ceramics 

decorated with red slip, incision, and lime filling, are similar to contemporaneous sherds 

in the Marianas and northern Philippines (Clark 2005, Fitzpatrick 2014). Genetic 

evidence from modern Palauan mtDNA also suggests connections to New Guinea, but 

again, may be due to later admixture (see Chapter II, Lum and Cann 2000). Together, 

these various lines of evidence continue to support an origin somewhere in ISEA, but are 

unable to point to a more specific area. 

 

 

 

Figure 1.3. Examples of island types in Palau. Clockwise from top left: Babeldaob 
(volcanic high island), Angaur (limestone platform), Omedokel (rock island), and 
Kayangel (atoll). Photographs of Babeldaob and Angaur taken by S.M. Fitzpatrick. 
 
 
 

Archaeological evidence for the earliest period of settlement appears to be 

primarily limited to mortuary practice and/or small-scale habitation in the Rock Islands. 

Archaeologically-associated radiocarbon dates from this period are found as part of the 

cemetery component of Chelechol ra Orrak (described below), Ucheliungs Cave (see 

Chapter III), and Ulong Island. Across each of the three sites are evidence for some 
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combination of mortuary activity, marine resource use, and habitation, although the latter 

is variable in scale (Clark 2004, 2006, Fitzpatrick 2002, 2003, Stone et al. 2017).  

Following this period, ca. 2500 BP, the construction of massive earthwork 

terraces, and later, associated “crown and brim” features, begins on Babeldaob and Koror 

(Liston et al. 1998). Construction on these features continued for about 1000 years in 

three phases: Early (2400-2150 BP), Middle (2150-1500 BP), when construction peaks, 

and Late (1500-1200 BP), when construction declines and the areas were eventually 

abandoned (Liston 2009). The features, which are built by cut and fill construction into 

existing hillsides, have been the focus of much discussion as their function is still 

debated. While oral histories do not describe terrace functions, possibilities raised by 

researchers include agriculture, defense, competition, or ritual use, but it is likely that 

they were multifunctional (Fitzpatrick 2008, Liston 2009, Liston and Tuggle 2006, Phear 

2004, Wickler 2002). Although a significant amount of ceramic material and occasional 

human burials have been found in the fill of terrace formations, and the remains of 

stonework suggest some form of settlement may have taken place on the terraces, 

evidence is limited due to poor preservation of organic material in the volcanic soil 

(Lucking 1984, Wickler 2002).  

Earthwork construction ceased ca. 1200 BP, at which point it appears that the 

terraces were abandoned and populations moved to coastal areas, where they constructed 

stonework villages along coastal margins and taro fields during what Liston (2009) refers 

to as a Transitional Era ca. 1200-700 BP. Evidence of defensive features, including 

placement of villages behind dense mangroves, and stone walls and platforms, suggest 

the move was motivated by population growth and competition for land or resources 

(Clark 2005, Liston 2009, Masse 1989). Occupation and construction of stonework 

villages on many of the southern Rock Islands also took place during this period, but 

these appear to have been abandoned by ~700 BP (Clark and Reepmeyer 2012). Villages 

on Babeldaob were still inhabited at European contact, which occurred in 1783 with the 

shipwreck of the British Antelope, on Ulong Island (Fitzpatrick 2014, Liston 2009).  
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Chelechol ra Orrak 

The Chelechol ra Orrak (“beach of Orrak”) archaeological site (B:IR-1:23) is 

located on Orrak Island, which is about 1.1 km long, 0.5 km at its widest, and located 

about 1 km off the southeastern coast of Babeldaob (Figure 1.4). The island was 

connected to Babeldaob prehistorically by a causeway constructed of coral rubble, but 

portions have since been washed out as a result of tidal activity over time or purposefully 

removed; the remaining areas are now covered with mangrove vegetation. Similar to 

other Rock Islands, Orrak’s coast is primarily rocky and steep, with several beach 

formations. The island’s interior contains two marine lakes and several other sites, 

including Upper Orrak (B:IR-1:27), which is a former quarry used by the Yapese to carve 

stone money (Fitzpatrick 2003a). Chelechol ra Orrak stretches across a series of small 

limestone caves and rockshelters fringed by dense vegetation that stretches for about 

about 200 m along the western shore. A modern dock and other structures built over the 

last 10 years or so, have altered wave action and sand deposition, resulting in increased 

beach erosion and sedimentation in offshore seagrass beds.  

Initially, the site was investigated for its use as a quarry for the construction of 

Yapese stone money by Blaiyok (1993). Since 2000, the largest central rockshelter has 

been the primary focus of archaeological excavation, beginning with Fitzpatrick’s 

(2003a) dissertation, which focused on the construction and exchange of stone money. 

Over the course of multiple additional field seasons in 2002, 2007, 2012, and 2015, a 

total of 15 m2 have been excavated; however, the base of the site has not yet been reached 

and excavations are planned to continue.  

Archaeological investigation has revealed multiple surface features (e.g., 

unfinished stone money, limestone and coral rock alignments and walls, and docks that 

have been attributed to Yapese or historic use of the site), while excavations show that 

there are multiple components to the site demonstrating human use that spans at least the 

last 3000 years (Fitzpatrick 2002, 2003a, 2003b, Fitzpatrick and Jew 2018). The upper 

layers (roughly, the top 50 cm of deposits) of the site reflect episodic habitation as 

evidenced by areas of repeated burning, dense faunal remains, and a wide variety of 

artifacts dating from ca. 1700 BP. The faunal assemblage is diverse, including 

crustaceans, echinoderms, elasmobranchs, bony fish representing over 20 taxa, shellfish 
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representing almost 100 taxa, and sea turtle. Analysis of a portion of the faunal 

assemblage from Chelechol ra Orrak has demonstrated that the site’s inhabitants were 

utilizing a variety of marine environments for fishing. A preponderance of parrotfishes 

(Scaridae sp.) and wrasses (Labride sp.) suggests targeting of nearshore and lagoon 

habitats, but this may also be a product of archaeological preservation (Fitzpatrick and 

Kataoka 2005, Fitzpatrick et al. 2011). There is evidence for an overall decrease in 

fishing with a concomitant increase in shellfish consumption occurs ca. 1200 BP, but this 

does not appear to be a result of overfishing (Fitzpatrick et al. 2011, Giovas et al. 2016). 

The rich artifactual record includes stone and shell adzes, pottery, bone needles, glass 

beads, and shell ornaments. Pearl shell (Pinctada margaritifera) scrapers have been 

recovered in association with human remains as a likely grave good. Most often, these 

tools are associated with grating starchy crops such as taro and coconut, which is 

traditionally a female task, and they are often included in baskets prepared for pregnant 

women as part of traditional birth ceremonies. Ethnographically, they are known to be a 

form of women’s money (chesiuch) (Fitzpatrick and Boyle 2003). At Chelechol ra Orrak, 

scrapers have been found in association with female burials and directly dated to 1925-

1635 cal. BP, demonstrating cultural continuity of the artifact’s significance for almost 

2000 years and possibly longer. 

Burial deposits are primarily found below ~1m depth and continue through the 

deepest known portions of the site in loose coral sand that becomes a hard calcrete in 

areas where repeated moisture from tidal activity has encroached (Nelson and Fitzpatrick 

2006). To date, the remains of more than 55 individuals have been excavated from the 

site that represent males and females ranging in age from fetal to older adult (e.g., over 

~50 years of age; Buikstra and Ubelaker 1994). Radiocarbon dates indicate that the 

mortuary component of the sites dates to at least 3000 BP and continued until ~1700 BP, 

making this portion of the site contemporary with the earliest archaeological sites in 

Palau, and the individuals interred here likely representatives of the first 10-12 

generations of occupation (Fitzpatrick and Jew 2018). No evidence for habitation of the 

site is present during this time, and only appears once burial activity ceased. Because 

mortuary activity was consistent over such a long time frame, existing burials were often 

disturbed as new individuals were interred, resulting in a large number of fragmentary 
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and commingled individuals (Nelson et al. 2015). Many burials remain complete and 

fully articulated; these individuals are designated by burial numbers and are collectively 

referred to as “articulated burials” throughout this dissertation. There does not appear to 

be any standard burial orientation, but individuals are typically found in an extended 

position with their hands over their hips and feet crossed at the ankles (Fitzpatrick and 

Nelson 2011). With the exception of the abovementioned pearl shell scrapers, there are 

only two other examples of grave goods: a single male excavated in 2015 was recovered 

with marine mollusks placed over the torso and one pearl shell scraper, and an isolated 

adult neurocranium containing the purposefully placed frontal of a young child 

(Fitzpatrick and Nelson 2011, Nelson et al. 2015).  

 

 

 

Figure 1.4. Map of Chelechol ra Orrak.  

 

 

Project Overview 

 This dissertation draws on bioarchaeological data from one of the most important 

archaeological sites found in Micronesia at Chelechol ra Orrak to address research 
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questions related to the initial human settlement and subsequent adaptation of small 

island environments in Palau, and more broadly, Remote Oceania. Questions regarding 

initial human settlement are addressed in Chapters Two and Three via genetic, 

archaeological, and osteological data. Chapter Two, which includes unpublished co-

authored material with Caroline Kisielinski, Justin Tackney, Dennis O’Rourke, Nelson 

Ting, and Scott M. Fitzpatrick, discusses the results of ancient DNA research at 

Chelechol ra Orrak in testing hypotheses related to a potential “homeland” from where 

the earliest Palauan people originated. Additionally, direct radiocarbon dates on the 

individuals sampled are used to provide a temporal context within which to interpret the 

genetic data. Chapter Three, which has been published previously with co-authors Scott 

M. Fitzpatrick and Matthew F. Napolitano, uses a combination of archaeological and 

osteological data from the Ucheliungs site to test the hypothesis that early inhabitants of 

Palau underwent a process of insular dwarfing following arrival in response to an 

impoverished terrestrial resource base (Berger et al. 2008).  

The next two chapters offer perspectives on early Palauan behavioral adaptations 

following initial settlement. Chapter Four, which was previously published with co-

authors Scott M. Fitzpatrick and John Krigbaum, uses stable isotope ratios of carbon 

(13C/12C) and nitrogen (15N/14N) from bone collagen and apatite to reconstruct the diet of 

individuals interred at Chelechol ra Orrak. Chapter Five, which was previously published 

with co-authors Greg C. Nelson and Scott M. Fitzpatrick, evaluates the possibility of a 

relationship between chewing betel nut, a common behavior in Palau that has been 

observed since initial human arrival, and high frequencies of osteoarthritis in the 

temporomandibular joint (TMJ) at Chelechol ra Orrak. In doing so, I begin to explore 

potential health tradeoffs with a common cultural behavior that has been continuously 

practiced in the area for more than 3000 years (Fitzpatrick et al. 2003). Taken together, 

these studies provide a fundamental baseline to understanding initial human settlement 

and small island adaptation in Palau from a bioarchaeological perspective. These data 

allow for more fine-scale resolution in understanding past lifeways in Palau and western 

Micronesia, generally, with important implications for examining dispersal processes 

within the larger context of Remote Oceania.  
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CHAPTER II 
 

ANCIENT MITOCHONDRIAL GENOMES FROM CHELECHOL RA ORRAK, 
PALAU: NEW INSIGHTS INTO THE INITIAL HUMAN SETTLEMENT OF 

REMOTE OCEANIA 
 

 

Introduction 

The contribution of biological data to transdisciplinary models of Remote Oceanic 

settlement is significant because it allows for the direct study of human dispersals, 

regional population relationships, and adaptations following arrival upon previously 

uninhabited islands (Clark et al. 2017). Within bioarchaeology, the relatively recent 

addition of molecular techniques such as ancient DNA (aDNA) are playing an 

increasingly important role in reconstructing past lifeways and dispersal patterns in the 

Pacific. In recent years, bioarchaeological and genetic research has begun to shed light on 

dispersals, settlement, and adaptation associated with Lapita groups, who originated in 

the Bismarck Archipelago and rapidly spread into Remote Oceania as far as Samoa and 

Tonga in West Polynesia ca. 3000 BP (e.g., Buckley et al. 2008, 2014, Foster et al. 2013, 

Kinaston et al. 2015, Tromp et al. 2020, Valentin et al. 2016). Yet there remains a need to 

refine and integrate biological data from western Micronesia, which was settled by 

contemporary but distinctly non-Lapita people, to better characterize early Pacific Island 

population dynamics. Recent analyses of genome-wide data from Lapita individuals on 

Vanuatu and Tonga have demonstrated that shortly after initial human arrival, subsequent 

migrations to the islands rapidly shifted genetic ancestry despite linguistic continuity 

(Lipson et al. 2018, Posth et al. 2018, Skoglund et al. 2016). Therefore, in order to 

address questions regarding the dynamics of initial human arrival, biological data from 

the time period of interest is critical. To address early population dynamics in Palau, this 

chapter presents a preliminary look at western Micronesian and more specifically, 

Palauan settlement using complete and partial mitochondrial genomes from the mortuary 

site of Chelechol ra Orrak.    
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Ancient DNA in the Pacific Islands 

Until recently, the use of aDNA in the Pacific Islands and other tropical 

environments has been limited due to issues of endogenous DNA preservation in hot and 

humid climates. With improvements to sequencing technologies and the development of 

enrichment methods, obtaining aDNA from these climes remains challenging, but is now 

feasible (Horn 2012, Knapp and Hofreiter 2010, Rizzi et al. 2012). In the Pacific, the 

majority of aDNA research has focused on using flora and fauna as proxies for human 

movement in an approach termed the “commensal model”, which relies on taxa that are 

unable to reach island environments without human intervention. As such, the appearance 

of these domesticated plants and animals at archaeological sites serves as indirect 

evidence for human presence (Matisoo-Smith 1994). Applications of this approach with 

rats (Rattus exulans), pigs (Sus scrofa), chickens (Gallus gallus), and dogs (Canis lupis 

familiaris) have been successful in providing multiple sources of evidence that support 

Southeast Asian and ISEA connections to Remote Oceania via Lapita dispersals, ISEA-

Western Micronesian connections, Lapita origins for Polynesian groups, and the possible 

introduction of chickens to the South American mainland by Polynesians (Allen et al. 

2001, Gongora et al. 2008, Grieg et al. 2018, Larson et al. 2005, 2007, Matisoo-Smith et 

al. 1998, Matisoo-Smith and Robins 2004, Oskarsson et al. 2012, Savolainen et al. 2004, 

Storey et al. 2007, 2014).  

The earliest Pacific aDNA studies directly involving human remains focused on 

identification of the “Polynesian Motif,” a series of polymorphisms that now define 

mitochondrial DNA (mtDNA) haplogroup B4a1a1a, as a means to authenticate aDNA 

and assess relationships between Lapita and East Polynesian groups (Hagelberg 1997, 

Hagelberg and Clegg 1993, Hagelberg et al. 1994, Melton et al. 1995, Redd et al. 1995). 

Subsequent studies from the Gambier Islands in East Polynesia and historic era Solomon 

Islanders demonstrated consistency between ancient and modern populations (Deguilloux 

et al. 2011, Ricaut et al. 2010). More recently, ancient mitochondrial genomes and 

genome-wide data have been obtained from human remains dating to early settlement 

periods from several Pacific Islands (Fehren-Schmitz et al. 2017, Holdaway and Jacomb 

2000, Knapp et al. 2012). Genome-wide aDNA belonging to a small number of Lapita 

individuals from Vanuatu and Tonga demonstrated that little to no Papuan ancestry was 
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present following initial Lapita dispersals, and admixture between the two linguistic 

groups occurred later than previously thought. Additional sequencing from individuals 

across a broader time period indicate that the contribution of Papuan ancestry seen in 

modern Vanuatu populations instead is the result of new Papuan migrants to the 

archipelago by the end of the Lapita period, ca. 2,400 BP and demonstrates both the 

importance of sampling individuals dating to the event of interest targeted by aDNA 

research, as well as the critical need for chronological control in aDNA studies (Lipson et 

al. 2018, Posth et al. 2018, Skoglund et al. 2016).  

 

Genetic Evidence for the Colonization of Micronesia 

Despite widespread work focused on the population genetics of the Pacific Islands 

region, Micronesia has been largely underrepresented in both global and regionally 

focused genetic studies. Research that does include the region often lumps individuals 

from islands across western, central, and eastern Micronesia into a single population even 

though these areas were settled by peoples from different points of origin (Athens 2018, 

Intoh 1997, Jackson 1986). Limited work focused specifically on Micronesian population 

relationships based on modern DNA samples has provided a foundation upon which 

hypotheses related to specific points of origin can be built. An analysis of mtDNA region 

V length polymorphisms from multiple Pacific Island and Asian populations found 

associations between linguistic and genetic groupings, and evidence for shared ISEA 

maternal ancestry for Oceanic-speaking Micronesian and Polynesian groups. Non-

Oceanic speaking Micronesian populations (i.e., Palau and the Marianas), however, 

appeared distinct, and this point has been substantiated with additional research using 

biparental short tandem repeats (STRs) (Lum and Cann 1998, Lum et al. 2002). 

Similarly, craniometric studies have demonstrated closeness between Micronesian and 

Southeast Asian groups (Pietrusewsky 1970, 1990). Subsequent mtDNA work focused 

more specifically on the relationship between Micronesian and Polynesian populations 

found clear distinctions between the western and the central-eastern Micronesian islands, 

with a settlement history tracing back directly to ISEA for the west and to Near Oceania 

for central and eastern islands, mirroring archaeological evidence (Athens 2018, Carson 

2012, Clark 2004, Fitzpatrick 2018, Intoh 1997). Among western Micronesian islands, 
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Palau was found to uniquely possess lineages shared with populations in New Guinea, 

though the timing of this admixture is unknown (Lum and Cann 2000, Lum et al. 2002). 

Together, this evidence suggests a complex colonization history consistent with 

settlement of western Micronesia directly from ISEA; however, the lack of biological 

data from individuals dating to this early period of colonization has prevented researchers 

from identifying more specific areas within ISEA as candidate source regions.  

Based on these studies and complementary linguistic, archaeological, and computer 

modeling work, some general hypotheses for regional connections can be generated. Both 

modern genetic and archaeological evidence have suggested interactions with groups in 

New Guinea, which is typically associated with Papuan-speakers and mtDNA 

haplogroups P, Q, and some branches of M (M27, M28, M29) (Friedlander et al. 2008, 

Merriwether et al. 2005, Soares et al. 2011). Computer simulations of voyaging and 

commensal genetic evidence from pigs have suggested possible origins in the southern 

Philippines, where mtDNA haplogroups B4a1a, E1a1a, and M7c3c are common, or 

eastern Indonesia where mtDNA haplogroups B4a1a1, E, and F1a4 are more common 

(Tabbada et al. 2010, Tumonggor et al. 2013, Vilar et al. 2013). However, many mtDNA 

haplogroups, including lineages within B, D, E, and M, are widespread throughout ISEA, 

but are typically associated with populations that speak Austronesian languages. 

Therefore, identification of these lineages may aid in eliminating some of the above 

candidate source regions for Palau or may result in an increased likelihood of some 

source regions over others (Duggan et al. 2014, Friedlander et al. 2007, Lum and Cann 

2000, Tabbada et al. 2010).  

 

Materials and Methods  

Sampling  

Bone samples were selected from articulated burials excavated at Chelechol ra 

Orrak to avoid inadvertent repetitive sampling of the same individuals. Because rib 

fragments are limited in their utility for osteological analysis, they were chosen as the 

preferred element for sampling. Although research has demonstrated that the petrous 

portion of the temporal bone yields high amounts of endogenous DNA, sampling this 

area can result in the destruction of bone(s) that are critical for a number of osteological 
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assessments including estimations of sex, age at death, and ancestry, among others 

(Buikstra and Ubelaker 1994, Harvati and Weaver 2006, Pinhasi et al. 2015, Ponce de 

Leon et al. 2018). While ribs may result in overall lower endogenous DNA yields, they 

have still been successfully utilized in aDNA studies, including this work. In cases where 

ribs were not available, other elements that are considered less osteologically 

informative, such as carpals or long bone fragments, were selected. Burials that were 

excavated prior to 2015 were sampled at the University of Oregon Island and Coastal 

Archaeology Laboratory. These remains had been previously washed, dried, and handled 

by researchers since their excavation. Burials excavated during the 2015 field season 

were sampled under sterile conditions in the field (Figure 2.1). During sterile sampling, 

all surrounding excavation work ceased and personnel stepped away from the excavation 

units until sampling was completed. A single individual, wearing a hair cover, sleeve 

covers, mask, and gloves, used sterilized tools to remove a bone or bone fragment, that 

was placed in a sterile 15 mL Falcon tube that remained unopened until the bone was 

used for DNA extraction in an aDNA lab facility. To account for potential contamination 

prior to aDNA work, modern DNA controls were collected prior to aDNA lab work from 

personnel that had handled samples using Oragene OG-500 saliva collection kits. 

Informed consent was obtained and procedures were approved by the University of 

Oregon Research Compliance Services.  

 

DNA Extraction 

All aDNA lab work was performed in dedicated aDNA clean lab facilities that 

follow established procedures to prevent contamination. Work conducted prior to August 

2017 was performed in the Ancient DNA Laboratory at the University of Utah, while lab 

work conducted in August 2017 and later took place in the Ancient DNA Laboratory at 

the University of Kansas. DNA was extracted from 80-120 mg of drilled bone powder 

from elements that first had the outer surface removed with a Dremel rotary tool. Bone 

powder was digested in a 1mL buffer containing 0.5M EDTA, 250 μg/ml proteinase K, 

and 40 mM DTT in two stages. First, a pre-digestion step was performed at 55°C for 1 

hour and discarded to remove non-target DNA, followed by a secondary digestion step at 

37°C for 18-24 hours (Damgaard et al. 2015). The extraction buffer was then purified 
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with an in-house silica column protocol that combines aspects of a previously published 

methodology (Gamba et al. 2016) with the commercially available GENECLEAN For 

Ancient DNA Kit (MP Biomedicals). DNA extracts were stored in Eppendorf LoBind 

tubes at -20°C. To minimize the potential for contamination during DNA extraction, no 

more than five samples were run at a time, and one water extraction blank was processed 

with each set of extractions as a negative control. Sequencing was limited to samples that 

had a corresponding non-amplifying extraction and (described below) PCR blank.  

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Comic illustrating the field sampling protocol (drawn by John Swogger).  

 

 

HVR-I Amplification and Sequencing 

Traditionally, mitochondrial DNA has been the target of aDNA studies, and it is 

the marker used for this study. Unlike nuclear DNA, which is billions of base pairs in 

length and inherited from both parents, the mitochondrial genome is comparatively 

smaller (16,569 base pairs) and maternally inherited. Critical to aDNA studies, which 

face issues of preservation, each mitochondrion can contain hundreds of copies of 
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mtDNA, and with numerous mitochondria present in each cell, the likelihood that target 

DNA is present increases substantially (Alonso et al. 2004, Hagelberg 1994, Raff et al. 

2010). Additionally, the rapid mutation rate in mtDNA allows for examination of genetic 

history within a time scale relevant to archaeological studies (Giles et al. 1980, Paijmans 

et al. 2013). Substitutions in mtDNA result in a number of single nucleotide 

polymorphisms (SNPs) that can be found across individuals with shared ancestry. These 

larger groupings, referred to as haplogroups, are designated by a single letter of the 

alphabet, followed by number and letter combinations to designate more refined 

haplogroups (e.g., B4a1a1a). 

Initially, lab work for this study focused on the amplification and sequencing of a 

portion of the mitochondrial control region known as the first hypervariable region 

(HVR-I), an area where many haplogroup-defining SNPs can be found. DNA extracts 

from 17 individuals were amplified using the polymerase chain reaction (PCR) in 50 μL 

reactions (see Raff et al. 2010 for additional details). Three primer pairs allowed for 

genotyping of fragments that provide coverage of nucleotide positions 16043-16161, 

16183-16277, 16288-16402, respectively, while a fourth primer pair (HVRI_CarP1 and 

HVRI_CarP2) provided total coverage of nucleotide positions 16043-16277 + 16288-

16402 (Table 2.1) (Tackney et al. 2019). The extraction blank and numerous water PCR 

blanks were processed at the same time as negative controls. Amplicons were visualized 

on agarose gels. After successful amplification, both the forward and reverse strands of 

the amplicon were cleaned using either QIAquick PCR Purification Kits (Qiagen) or 

UltraClean PCR Clean-Up Kits (MoBio Laboratories) and were either sequenced using 

Sanger sequencing at the DNA Sequencing Core Facility at the University of Utah using 

a 3730 DNA Analyzer or by Genewiz, using an ABI 3730xl DNA Analyzer 

(https://www.genewiz.com/en/Public/Services/Sanger-Sequencing). Sequences with 

ambiguous calls (e.g., double peaks) were either repeated with replicate PCR or 

sequencing reactions or noted in Geneious, version 7. Replicate amplifications were also 

used to confirm base calls.  
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Library Preparation, Enrichment, and Sequencing of Complete Mitogenomes 

To allow for more refined haplotype calls, seven individuals were selected based 

on the results of HVR-I work for sequencing of complete mitochondrial genomes using 

Illumina next-generation dual indexed sequencing libraries constructed from 25 μL of 

DNA extract using the blunt end NEBNext Fast DNA Library Prep Master Mix Set (New 

England BioLabs Inc.) with Illumina blunt end adapters and SPRI bead cleanup (Meyer 

and Kircher 2010). Primary amplification cycles were determined using a quantitative 

polymerase chain reaction (qPCR) of 1:500 diluted preamplified library. Primary 

amplifications were performed in 50 μL reactions, with 10 μL of unamplified library, 

Amplitaq Gold 360 Mastermix, and Illumina indexing primers (Kircher et al. 2012). 

Primary amplified libraries were visualized on an Agilent Tapestation 2200, and 

quantified with a qPCR run using a 1:20,000 diluted library aliquot. Each primary 

amplified library was pooled and diluted as appropriate and shotgun sequenced to 

determine endogenous DNA content on an Illumina NextSeq 550 at the KU Genome 

Sequencing Core facility using a mid output 150 cycle (MO-150), PE-75 flowcell.  

 
 
Table 2.1. Primer sequences used for HVR-I amplification and sequencing. All primer 
sequences previously published in Raff et al. (2010), except HVRI-Car_P1F and 
HVRI_CarP1R, which were published in Tackney et al. (2019).  
 
Primer ID Sequence (5’ – 3’) 

HVRI_P1F GTT CTT TCA TGG GGA AGC AG 
HVRI_P1Rc TTG ATG TGG ATT GGG TTT TT 
HVRI_P2Fb AAA ACC CAA TCC ACA TCA AA 
HVRI_P2R GGG TGG GTA GGT TTG TTG G 
HVRI_P3F CCC ACT AGG ATA CCA ACA AAC C 
HVRI_P3R ATT GAT TTC ACG GAG GAT GG 
HVRI_CarP1F CGG TAC CAT AAA TAC TTG AC 
HVRI_CarP1R GAT AGT TGA GGG TTG ATT G 

 

 

Based on these results, libraries with endogenous DNA content above 0.5% were 

targeted for mitogenome hybridization capture. Libraries then underwent a secondary 

amplification in four 50 μL reactions with Accuprime Pfx and 4 μL library input that was 

then pooled and SPRI purified. Custom hybridization probes for the human mitochondrial 



 

 

 

27 

genome were designed off of the rRSRS sequences in 80 base fragments at 1.5X 

coverage (Behar 2012, Malyarchuk 2013). IDT xGEN Lockdown Probes and universal 

Blocking Oligos were selected for production. IDT-suggested wash buffers were utilized 

with the provided protocol, except slight changes were made to the volume of the initial 

hybridization buffer and the hybridization time and temperature were increased to 60ºC 

for 48 hours. An additional qPCR with 1:50 diluted captured libraries was performed. 

Based on these results, captured libraries were then amplified again using Accuprime Pfx 

in 50 μL reactions with 15 μL library input and quantified as before with Tapestation 

electropherograms and qPCR. Libraries were then pooled and sequenced on a NextSeq 

550 as described above.   

 
Data Processing 

Demultiplexed reads were trimmed and adapters removed using CutAdapt v.2.4 

(Martin 2011). Paired-end reads with a minimum overlap of 11 bp were merged into a 

single fragment with AdapterRemoval v.2.2.4, and merged trimmed reads were then 

mapped to the human reference genome (revised Cambridge Reference Sequence, or 

rCRS) using Burrows Wheeler Aligner (bwa, v.0.7.17; Li and Durbin 2010, Schubert et 

al. 2016). Reads were filtered and those with a mapping quality <30 were excluded using 

samtools v.1.9. Duplicate reads were also removed using samtools v.1.9 (Li et al. 2009). 

aDNA damage patterns were assessed using mapDamage2, and the resulting rescaled 

BAM files were used for the process of variant calling and generating a consensus 

sequence using bcftools-1.9 (Danecek et al. 2011, Jónsson et al. 2013, Li 2011). 

Mitochondrial haplotypes were assigned using Haplogrep 2.0 and manually verified in 

Geneious, version 7 (Weissensteiner et al. 2016).   

 

Radiocarbon Dating 

Radiocarbon Dating Methods 

Because burial activity at Chelechol ra Orrak spans more than 1200 years, 

obtaining direct radiocarbon dates on the burials sampled for aDNA was necessary to 

provide temporal control as migration trajectories likely varied over the course of this 

period. Bone samples weighing between 2–18 g from osteologically uninformative 
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elements such as long bone, rib, or vertebral fragments were sent to Beta Analytic for 

dating. Previously published samples were dated at the Keck Accelerator Mass 

Spectrometer Laboratory at the University of California in Irvine. All dates, including 

those on articulated burials that were previously reported, were calibrated using OxCal 

v.4.3 with a 50% mixed marine/terrestrial curve to account for marine dietary 

contributions (see Chapter IV, Bronk Ramsey 2009, Fitzpatrick 2003, Fitzpatrick and Jew 

2018, Reimer et al. 2013). Multiple marine reservoir corrections (∆R) are available for 

Palau (Masse et al. 2006, Petchey and Clark 2010, Yoneda et al. 2007), but because none 

are present for the southern coast of Babeldaob or the northern Rock Islands, no ΔR was 

applied in the calibration of these dates (Table 2.2) (Fitzpatrick and Jew 2018, Petchey 

and Clark 2010). 

 
Radiocarbon Results 

With the addition of 11 new radiocarbon dates run as a part of this project, there 

are now a total of 14 direct radiocarbon dates on articulated burials. Together, these dates 

span 2765-1625 cal. BP, with the majority clustering between ~2700-2300 (Figure 2.2). 

Burial 14 is the oldest articulated burial thus far, and dates to 2765-2690 cal. BP. A 

cluster of burials (12, 20, 21, 25) overlap with the latter half of the date range for Burial 

14, beginning ca. 2700 cal. BP. Three individuals (Burials 18, 26, and 38) all date 

noticeably later, from ~2000-1600 BP. Interestingly, these individuals were also 

excavated from the same area spanning two 1×1 meter units (E2S4 and E3S4). Although 

there is too much overlap between the remaining dated individuals from across the 

excavated areas of the site, there does appear to be a rough general pattern of the dated 

burials decreasing in age as one moves from west to east across the areas excavated thus 

far. This suggests the possibility that there may be some coarse spatio-temporal clustering 

of burials across the site, though additional work is needed to assess this possibility. No 

burials dated thus far are older than 2765 cal. BP (the older end of Burial 14’s age range), 

therefore genetic results presented in this chapter may reflect additional interaction in the 

first centuries following initial settlement given that the earliest dates in Palau cluster 

around 3000 cal. BP (Clark 2004, 2005, Fitzpatrick 2003b, Fitzpatrick and Jew 2018, 

Stone et al. 2017). 
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Table 2.2. Radiocarbon results for articulated burials (*previously reported in Fitzpatrick 
and Jew 2018).  
 

Burial Lab 
Number Provenience Element 

Sampled 

Sample 
Weight 

(g) 

Radiocarbon 
Age (BP) 

13C/12C 
(‰) 

Calibrated 
Age (2 

sigma BP) 

Burial 
11 

 E3S1  Vert. arch 5.4 failed testing failed 
testing 

failed 
testing 

Burial 
12 

Beta-
521981 E3S1-E3S2 Tooth 2 2610 ±30 -15.6 2680-2365 

Burial 
13 

Beta-
497455 E1S5-W1S5 

Ulna, Rib, 
Occipital, 
Thoracic 

Vert. 

15.48 2550 ±30  2495-2340 

Burial 
14 

Beta-
541135 E1S4-W1S4  9.56 2760±30 -16.1 2765-2690 

Burial 
15* 

PL2 
(UCIAMS-

151858) 
E2S1-E2S2 

Scapula, 
Clavicle, 

Long Bone 
13.99 2475±25  2360-2300 

Burial 
16* 

PL1 
(UCIAMS-

151857) 
E1S4 Ribs 9.75 2465±25  2360-2295 

Burial 
18 

Beta-
523825 

E2S4-
E3S4/E3S5 Parietal 11.08 2100±30 -14.1 1955-1815 

Burial 
19 Beta-53840 E1S5-E1S4 Ribs, 

Humerus 12.2 2490±30 -16.1 2425-2300 

Burial 
20 

Beta-
521983 E1S4-E1S3 Sphenoid 7.13 2630±30 -15.3 2700-2415 

Burial 
21* 

PL3 
(UCIAMS-

151859) 
E1S4 L. Radius 11.91 2605±25  2675-2360 

Burial 
24 

Beta-
538337 

E1S2-W1S2-
W1S1 

R. Fibula, 
Vert. 11.49 2540±30 -15.1 2485-2335 

Burial 
25 

Beta-
538338 E1S1-SE Vert. arch, 

L. ulna 17.61 2640±30 -15.4 2705-2440 

Burial 
26 

Beta-
538339 E3S4-E2S4 Ribs 8.35 2200±30 -14.7 2100-1900 

Burial 
38 

Beta-
497456 E2S4 R. Radius 12.06 1960±30  1810-1625 

 

 

It is important to note for the genetic analyses presented here that Burial 37 was 

not directly dated. As this is the only articulated juvenile burial recovered thus far, we 

chose not to complete a second destructive analysis and directly date this individual. This 

burial is also significant because of its context: Burial 37, an infant around the age of 

birth, was found placed directly on or between the femora of Burial 24, a young adult 

female, suggesting this was a mother-infant pair. Therefore, the radiocarbon date 

presented for Burial 24 has been used to provide temporal context for Burial 37. 
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Figure 2.2. Plot of calibrated 14C ranges for each of the articulated burials.  

 
 
aDNA Results 

HVR-I 
 

Each of the 17 individuals sampled for aDNA resulted in successful amplification 

and sequencing of at least one fragment, demonstrating the feasibility of aDNA research 

at Chelechol ra Orrak despite taphonomic conditions that are not conducive to 

endogenous DNA preservation. However, amplification and sequencing of at least three 

of the four HVR-I fragments was only successful for seven individuals, and of these, only 

three could be assigned to tentative haplogroups. These results suggest that partial HVR-I 

sequences may not be sufficient for haplogroup assignment in regard to this population 
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and this level of endogenous DNA preservation. The tentative haplogroup assignments 

based on HVR-I SNPs are presented in Table 2.3. 

 
 

Table 2.3. HVR-I variants and haplogroup assignments, *indicates double peaks, these 
are tentative calls. 

Individual HVR-I SNPs (+16,000) Haplogroup 

Burial 13 223, 257  

Burial 18 185, 223, 260, 298*  
Burial 20 192, 223, 254, 271, 316, 362 D4 or M7 

Burial 21 223, 245  
Burial 25 086, 129, 297, 324 M7b1a2a 
Burial 37 189, 192, 223*, 297* Possibly M7b1a1 
Burial 38 362  

 

 

Burial 25 is the only individual that could be unequivocally assigned to a 

haplogroup, M7b1a2a. The remaining two individuals with tentative haplogroup 

assignments are Burials 20 and 37. The SNPs associated with Burial 20 are likely some 

combination of haplogroup-defining variants and mutations private to this individual, but 

at this level of resolution the distinction between the two cannot yet be determined. 

Depending on which variants are deemed private, Burial 20 can be assigned to either D4 

(based on variants at positions 16192, 16223, 16316, 16362) or M7 (based on variants at 

positions 16223, 16271, 16362). Although Burial 37 has been assigned to the M7b1a1 

haplogroup, half of the SNP calls are tentative, and the possibility remains that this 

individual could be re-assigned to a different haplogroup with increased genomic 

coverage. The remaining individuals do not exhibit sufficient sequence variation to assign 

haplogroups at this stage; sequencing of additional portions of the mtDNA genome would 

likely aid in addressing this issue.  

Although partial sequences were not informative in regard to genetic ancestry, 

some did prove useful for resolving questions related to the commingled nature of much 

of the burial assemblage. Burial 18 is represented by a cranium and cervical vertebrate 

excavated in 2012, and during the 2015 field season, postcranial remains were found in 

the same excavation area that were thought to belong to Burial 18. In order to collect an 

aDNA sample for this individual under sterile field conditions, a second postcranial 
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sample was taken in 2015. This sample was used to generate a new DNA extract for 

mitogenomic work as the original DNA extract was located in Utah. Comparison of the 

HVR-I results from both samples confirmed that instead the cranial and postcranial 

samples belong to two distinct individuals (Burials 18 and 38) despite apparent 

archaeological association.  

The low success rate of haplogroup assignment based on HVR-I may also reflect 

the need to modify primer annealing locations, as the primers used for this study were 

originally designed for Arctic North American populations. As a result, annealing 

locations for these primers covered areas of HVR-I where potentially informative SNPs 

may have been located. However, the accessibility and cost of next generation 

sequencing improved drastically over the time that this HVR-I work was performed and 

provides increased resolution by allowing for coverage of the full mitochondrial genome. 

As a result, follow-up work targeted a subset of individuals that using these methods 

rather than redesigning HVR-I primers.  

 
Mitochondrial Genomes 

Of the seven individuals sequenced for complete mitochondrial genomes, four 

yielded an average read depth > 5X and sufficient coverage to assign likely or tentative 

haplogroups. Coverage varied from 9% to almost 100%, demonstrating the wide range of 

preservation across the site (Table 2.4).  

Among these four individuals, results revealed the presence of four distinct 

mitochondrial haplogroups that are presented in Table 2.4. These results share some 

similarities with the tentative haplogroup assignments from the HVR-I data. Burial 25, 

which yielded nearly 100% mitogenomic coverage, has remained consistently assigned to 

M7b1a2a. Neither Burial 20 nor Burial 18 could be assigned to haplogroups based on 

HVR-I work, but despite relatively poor mitogenomic coverage, could be tentatively 

assigned using the next-generation sequencing data. HVR-I results assigned Burial 20 to 

either haplogroup M7 or D4, which was further resolved with next-generation sequencing 

results to D1 or D4. Of the defining mutations that define haplogroup D1, only one (at 

position 2706) is present. Given the consistency of haplogroup D4 between both data 

sets, the implications of a tentative assignment to D4 will be discussed, however the 
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possibility that Burial 20 could be reassigned to a different haplogroup if additional 

sequencing provides improved coverage must be considered.  

 
 
Table 2.4. Library and Sequencing Metrics. Haplogroup assignment based on estimate 
from Haplogrep 2.0, with HVR-I haplogroup assignments in parentheses (Weissensteiner 
et al. 2016). 

Sample 
Barcoded 

Reads 
Mapped 
Reads 

Unique 
Reads Coverage 

Bases 
Missing 

Average 
Depth 

Mapped 
Read % Haplogroup 

Burial 
12 

15,385,848 1,559,559 92 8.90% 15,094 4.46 16.55  

Burial 
16 

28,058,444 13,201,424 49 1.91% 16,252 14.93 55.01  

Burial 
18 

27,710,073 15,617,024 803 50.82% 8,148 8.14 71.86 B5b1c 

Burial 
20 

11,500,756 5,714,091 224 20.85% 13,115 6.09 69.85 
D1 or D4 

(D4 or M7) 
Burial 

21 
20,864,444 0 0 0 0 0 0.00  

Burial 
25 

23,030,639 17,265,126 4,469 99.85% 25 21.42 91.53 
M7b1a2a1 
(M7b1a2a) 

Burial 
37 

13,381,106 3,348,408 304 28.29% 11,881 5.59 32.99 
E1a1a 

(Possibly 
M7b1a1) 

 

 

Burial 18, which could not be assigned to a haplogroup based on HVR-I, can be 

tentatively assigned to haplogroup B5b1c based on this work. All five haplogroup-

defining SNPs for B5 are present with one exception that is missing due to a lack of 

coverage at that site (Table 2.5). Of the remaining variants identified, the best possible fit 

is B5b1c, however, a number of defining mutations are missing due to a lack of coverage. 

As such, this assignment must remain tentative. Similarly, analysis of Burial 37’s results 

best fit haplogroup E1a1a; but, given the number of missing haplogroup-defining 

mutations due to poor coverage, this assignment also remains tentative.  
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Table 2.5. Defining mutations for B5 haplogroups based on Burial 18. Positions in 
brackets do not exhibit the expected variant. *missing due to a lack of coverage.  
Haplogroup Defining mutations 

B5 709, 8584, 9950, 10398 [16140*] 

B5b [103*, 204, 1598*], 8829, [12361, 15223*, 15508*], 15662, [15891*], 15927, 
[16243] 

B5b1c [152*], 3480, [3819*, 5836*], 7771, [8467*, 10274*] 
 
 
Discussion 

 
Although these results are tentative and only represent a small number of individuals 

at Chelechol ra Orrak—and more broadly, prehistoric Palau—some general conclusions 

can be made. Of the four individuals that yielded sufficient genomic coverage to assign 

haplogroups or tentative haplogroups, four distinct maternal lineages are represented in 

individuals that date from 2700-1815 cal. BP, with the majority dating from 2700-2365 

cal. BP (Table 2.2). Although the radiocarbon dates indicate that genetic data has not yet 

been obtained from individuals dating to the first ~300 years following initial human 

arrival, the majority of these individuals represent those that were within the first ~10 

generations. The mtDNA diversity found among four individuals demonstrates that 

Chelechol ra Orrak was utilized as a cemetery by multiple maternally-unrelated families, 

and that bioarchaeological data from the site is more likely to be representative of a broad 

population of early Palauans rather than one family group. This information may also aid 

in future work at the site focused on kinship at the site.  

 An inherent challenge in the interpretation of these comparisons is the lack of 

aDNA research conducted in ISEA to date; as such, the overwhelming majority of 

comparisons with ISEA mtDNA data are based on modern population genetics studies. A 

single study involving early Metal Age burials from the Gua Harimau site in Sumatra 

identified M7b1a and E1a1a haplogroups, but these samples are either contemporary with 

those at Chelechol ra Orrak or date to slightly later in time (Matsumura et al. 2018). 

Although this study demonstrates mtDNA haplogroup continuity between Palau and 

ISEA from ~3000-1700 BP, samples dating to an earlier time period would better inform 

potential areas of population origin for Palau. 
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 When placed in a regional perspective, these results are generally characteristic of 

Austronesian-speaking populations that likely originated in ISEA and supports previous 

linguistic and archaeological evidence (Figure 2.3). No haplogroups that are typically 

associated with Papuan-speaking groups (P, Q, M27, M28, M29), particularly those 

identified in New Guinea, have been observed among these individuals (Friedlaender et 

al. 2008, Merriwether et al. 2005, Soares et al. 2011). Based on the absence of these 

haplogroups, the hypothesis that New Guinea may have been a point of possible origin 

for early Palauans is not supported. This conclusion mirrors findings from computer 

simulations of drift voyaging, which found that voyages from northern New Guinea had a 

minimal (<1%) chance of successful landfall in Palau (Callaghan and Fitzpatrick 2008). 

Haplogroups within B, E, and M are found throughout ISEA, but the specific 

haplogroups identified at Chelechol ra Orrak appear less frequently represented in 

population genetics studies to date. Therefore, a discussion of the frequency of each 

haplogroup identified will be discussed. 

 
 

 

Figure 2.3. mtDNA haplogroup frequencies of potential source regions compared to 
Chelechol ra Orrak. All comparative data is from modern sources with the exception of 
Vanuatu, which is represented by Lapita aDNA (Skoglund et al. 2016, Posth et al. 2016). 
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Burial 18 

 Haplogroup B5b has been interpreted as a marker of an Early to mid-Holocene 

dispersal event from MSEA into ISEA and has been observed among both Austronesian-

speaking ancient and modern MSEA populations (Brandão et al. 2016, Duong et al. 2018, 

Hill et al. 2007, Lipson et al. 2018, Soares et al. 2016). Within ISEA, B5, and more 

specifically, B5b, are widespread throughout the Philippines and Indonesia, with the 

highest frequencies of these haplogroups observed in the western islands of Indonesia, 

with slightly lower, but noticeable clusters in the northern Philippines and southern 

Sulawesi (Brandão et al. 2016, Gunnarsdottir et al. 2011). In the Philippines, B5b1c is 

found at the highest frequencies in the northern islands of the archipelago (Delfin et al. 

2014). Given the later radiocarbon date from Burial 18 (1955-1815 cal. BP), the 

possibility remains that the presence of this haplogroup could be the result of admixture 

events following initial settlement. If so, these results may serve as evidence for sustained 

interaction with ISEA. 

 

Burial 20 

  Haplogroup D4 has been found to be widespread among modern and ancient 

Austronesian-speaking populations in MSEA (Duong et al. 2018, Peng et al. 2010, 

Lipson et al. 2018, Summerer et al. 2014). A study of mtDNA diversity among 

indigenous Taiwanese groups also identified low frequencies of haplogroup D4 among 

tribes in the northern and central regions of Taiwan (Trejaut et al. 2005). However, 

haplogroup D4 is noticeably rare in ISEA. Given that the coverage for Burial 20 is low, it 

is important to note that this haplogroup assignment could change with additional data. 

However, if an assignment of D4 were to remain consistent, this assignment may be 

indicative of earlier mtDNA regional diversity in ISEA that has been lost.  

 

Burial 25 

Haplogroups within M7 are common and widespread across ISEA. Haplogroup 

M7b1 is also found outside of ISEA, in Southwest China, Taiwan, and both ancient and 

modern individuals from MSEA, suggesting that this haplogroup is a marker of long-term 

mainland and island SE Asian interaction among Austronesian-speaking populations 
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(Delfin et al. 2014, Gunnarsdottir et al. 2011, Tumonggor et al. 2013, Tabbada et al. 

2010). The haplogroup is present at low frequencies in both the northern and central 

Philippines but is slightly more common in the central portion of the archipelago 

(Tabbada et al. 2010). Within Indonesia, M7b1 is more common in the central and 

western islands, including Java and Bali, which researchers have suggested is the result 

of dispersals from MSEA or interaction during the Pleistocene (Tumonggor et al. 2013). 

Together, these results can confirm a Palauan connection to ISEA, but given the 

widespread distribution of the M7b1 haplogroup, are generally uninformative regarding a 

more specific location in the location. One possible exception that warrants further 

comparisons is the observation of M7b1a2a1, the same haplogroup assigned to Burial 25, 

in modern samples from the northern Philippines, suggesting a possible connection to the 

area near and around Luzon (Tabbada et al. 2010) 

 

Burial 37  

Haplogroup E appears to have evolved entirely within ISEA during the Late 

Pleistocene. Lineages belonging to E1 and E2 also found in Taiwan, which has been 

interpreted as a later introduction to the island from ISEA (Brandao et al. 2016, Hill et al. 

2007, Soares et al. 2008, 2016). A recent aDNA study of a single individual dating to 

~8000 BP from Liang Island, located between mainland China and Taiwan, was found to 

belong to this mitochondrial haplogroup E and likely E1, demonstrating its presence in 

Taiwan prior to Austronesian dispersal to ISEA (Ko et al. 2014). Within ISEA, 

haplogroup E is relatively common across the Philippines, Sulawesi, the Maluku Islands, 

and eastern Indonesia, with the overwhelming majority of individuals within haplogroup 

E belonging to E1a1a (Tabbada et al. 2010). This distribution has been attributed to the 

long-term presence of the haplogroup within the region and interaction between these 

islands (Friedlaender et al. 2008, Gunnarsdottir et al. 2011, Hill et al. 2007, Tumonggor 

et al. 2013). Interestingly, this haplogroup is noticeably rare in the Pacific Islands with 

the exception of the Mariana Islands, where a study of 105 modern Chamorro individuals 

from Guam, Rota, and Saipan found that 92% of the individuals sampled belonged to 

haplogroup E, with 28% belonging to E1. Chamorro-specific mutations were also found, 
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which were attributed to a founder effect following initial arrival in the Marianas from 

ISEA (Vilar et al. 2013).  

 

Comparisons with Lapita and modern Palauans 

Although tentative, the results presented in this chapter appear drastically different 

when compared to aDNA results from three studies on Lapita remains. The first, which 

included three individuals from the Teouma mortuary site on Vanuatu and one individual 

from Talasiu, Tonga, found all four individuals shared the haplogroup assignment of 

B4a1a1a (Skoglund et al. 2016). Two separate follow-up studies, including additional 

Lapita individuals from Vanuatu across a broader time span, found the addition of 

mtDNA haplogroups commonly associated with Papuan-speaking populations (e.g., P, Q) 

(Lipson et al. 2018, Posth et al 2018). The haplogroup B4a1a1a, originally described as 

the “Polynesian Motif,” is often described as a marker of Austronesian dispersal into 

Remote Oceania, and even among modern groups, is found at increasingly high 

frequencies as one moves eastward across the region. The identification of B4a1a1a in 

ISEA has also been used to link Austronesian speakers from the region to the Pacific 

(Duggan et al. 2014). Therefore, the absence of this haplogroup among early Palauans 

thus far is notable, and this haplogroup may instead be indicative of Lapita dispersal, 

rather than Austronesian dispersal into Remote Oceania.  

B4a1a1a has been identified among modern Chamorro and Palauan people, but 

currently, these results suggest the presence of this haplogroup could be the result of later 

admixture events (Lum and Cann 2000, Vilar et al. 2013). Modern Palauan samples have 

also demonstrated Papuan-associated haplogroups that have been attributed to New 

Guinea. Given the absence of Papuan haplogroups in these results, the appearance of 

haplogroups such as P and Q similarly appear to be the result of later admixture events. 

The similarities between Type X pottery from New Guinea and grog-tempered ceramics 

from Palau has been used to suggest possible interaction between the two areas ca. 1000 

BP that could be the source of this admixture, but genetic data from this period of time is 

needed to test that hypothesis (Specht et al. 2006). The identification of haplogroup 

E1a1a in Palau is also noteworthy, as this haplogroup is rarely found in Remote Oceania 

with the exception of the Mariana Islands. The presence of E1a1a in modern Chamorro 
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people has been interpreted as evidence for a direct population dispersal from ISEA to the 

Marianas. The addition of an ancient Palauan presence of E1a1a not only lends more 

direct support for ISEA as a place of origin for western Micronesian people, but also 

raises questions about the potential connections between early groups in the Marianas and 

Palau. 

 

Conclusion 

Although a significant amount of archaeological and linguistic evidence has 

suggested that western Micronesia, and more specifically, Palau, were likely settled from 

somewhere in ISEA, there has been a paucity of direct biological evidence to support this 

claim. The results of aDNA work presented in this chapter involving partial and complete 

mitochondrial genomes from Chelechol ra Orrak provide the first biological data from 

Palau focused on the population origins of the archipelago’s earliest inhabitants. Taken 

together, these data lend the first direct biological support for the hypothesis that Palau 

was directly settled from somewhere in ISEA by Austronesian-speaking people. Based on 

the absence of Papuan-associated haplogroups, the hypothesis that initial populations 

arrived in Palau from New Guinea is not supported; however, the presence of these 

haplogroups in modern Palauans suggests a later or even modern admixture event. That 

completely different haplogroups are represented in this study compared to Lapita aDNA 

research is also notable, as shared ancestry between Lapita and western Micronesian 

groups in ISEA prior to dispersal to Remote Oceania has been suggested. Instead, these 

results raise the possibility that two, or possibly three, distinct population dispersals from 

potentially different areas within ISEA reached Remote Oceania ca. 3300-3000 BP.  

In the next chapter, I assess archaeological evidence for possible adaptive 

challenges that would have been faced by some of the first Palauans. Previous research at 

the site of Ucheliungs Cave claims that following initial arrival, a process of insular 

dwarfing occurred among early Palauan populations utilizing the Rock Islands. However, 

biological evidence has refuted this claim. In Chapter III, I test whether the conditions 

that are conducive to insular dwarfing are present at Ucheliungs, including isolation and a 

reduced resource base.   
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CHAPTER III 
 

DISPROVING CLAIMS FOR INSULAR DWARFISM AT THE 
UCHELIUNGS SITE 

 
 

From: Stone, J.H., Fitzpatrick, S.M., and Napolitano, M.F. (2017). Disproving claims for 
small-bodied humans in the Palauan Archipelago. Antiquity, 91(360), 1546-1560. 
 

 

Introduction 

The use of caves and rockshelters for disposing of the dead is the oldest form of 

mortuary behavior in the Palauan archipelago (Fitzpatrick & Nelson 2008). Numerous 

sites throughout the Rock Islands have been identified as locations where human skeletal 

remains were buried or deposited, all of which date back to as early as ca. 3000-2500 cal. 

BP. However, two sites in particular, Omedokel and Ucheliungs, have received 

considerable attention because researchers had earlier interpreted human skeletal 

fragments found here as being ‘small-bodied’, arguing that they “exhibit a number of 

characteristics normally associated with more primitive species of the genus Homo” and 

“exemplify the regularity with which small body size—physiological dwarfing—emerges 

in island contexts” (Berger et al. 2008: 9). The authors also suggested that the Rock 

Islands provided an environment that was conducive to insular dwarfism where, over the 

course of a few generations, an isolated population developed a series of unique 

morphological characteristics, including small body size. Fitzpatrick et al. (2008) 

disputed these results, but at the time, there had been no subsequent field research at 

these sites to clarify and examine the archaeological evidence for insular dwarfism in 

Palau. 

 In this chapter, I report on additional fieldwork undertaken in 2015 at the 

Ucheliungs site (B:OR-14:8), including surface examination and excavation of a 1×1 m 

unit adjacent to one excavated by Berger et al. (2008). The primary goal of this work was 

to provide additional archaeological context and radiocarbon dates for the site to assess 

whether the conditions were present at Ucheliungs to support a hypothesis of insular 

dwarfism. Generally, the results are contrary to previous findings that suggested the site 



 

 

 

41 

was exclusively used for mortuary activity, with no evidence for associated fauna and 

few artifacts. Instead, thousands of faunal specimens and an assemblage of artifacts, 

including pottery and a bone implement, having been found during our recent 

investigation. Four new radiocarbon assays on marine shell provide additional early dates 

for Palau, supported by the recovery of volcanic sand tempered pottery that has also been 

recovered from contemporaneous sites in the Rock Islands. Both lines of evidence hint at 

long-term use of the site that seem to both precede and come after the deposition of 

human remains and refute previous findings and interpretations. 

 

Background 

The Island Rule 

 The “Island Rule” is an ecogeographical principle related to the pattern of shifting 

body size in response to the availability of resources in island environments (Foster 1964, 

Lomolino 2005, Van Valen 1973). Although the Island Rule is not universally followed 

in island species, the general principle states that in areas of resource scarcity, dwarfing is 

expected to occur, while in areas of resource abundance, increased body size, or insular 

gigantism, is expected to occur. Foster, who first described the Island Rule, also 

suggested that relaxed predation pressures further contributed to the process of larger 

body size in small-bodied animals (Foster 1964). Evaluation of the Island Rule has also 

demonstrated that larger-bodied species tend towards dwarfism, such as the pygmy 

mammoths found in the Channel Islands off the coast of California, while smaller-bodied 

species tend to evolve towards a larger body size, such as the giant rats and marabou 

storks found on the island of Flores in Indonesia (Agenbroad et al. 1999, Locatelli et al. 

2012, Meijer and Due 2010). While there are many examples of shifts in body size in 

insular species of reptiles, birds, and mammals, there are also many exceptions (Boback 

and Guyer 2003, Clegg and Owens 2002, Itescu et al. 2014, Meiri et al. 2004, 2006, 

2008, van der Geer et al. 2018). These cases have largely been attributed to variation in 

the primary determinants of the island rule: resource availability, absence of predators 

and intra- and interspecific competition, and genetic isolation (Case 1978, Lomolino 

1985, et al. 2013). At Ucheliungs, the hypothesized cause of insular dwarfing in humans 
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proposed by Berger et al. (2008) was attributed to isolation and a reduced resource base 

in the Rock Islands. 

 

Environmental Context 

Ucheliungs is a burial cave located in the northern Rock Islands, southwest of 

Babeldaob and east of Koror. The roof of the main cavern has collapsed due to 

dissolution of the limestone that comprises the island. This has allowed for the growth of 

vegetation over the collapsed rubble and has given Ucheliungs the nickname “Tarzan 

Cave” due to the vines that extend through the roof to the cavern floor (Figure 3.1). This 

unique morphology, and close proximity to Koror, has also led to the site becoming a 

popular stop on local kayaking tours. Two smaller caverns are located in the north-west 

and south-west corners of the main cave, the latter of which is covered in a bright white 

limestone. A small beach provides relatively easy access to the main entrance. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. a. The entrance to Ucheliungs Cave. b. Facing north inside Ucheliungs. TU1 
is to the left, and the location of TU2 is outlined to the right. c. Interior of Ucheliungs, 
facing east and showing the cave roof collapse.  
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Archaeological Context 

Ucheliungs was first excavated by Berger and colleagues in 2006, who conducted 

surface collection of human remains from the cave interior and excavated a 1×1 m test 

unit (hereafter referred to as Test Unit 1), that together yielded a number of identified 

specimens (NISP) of more than 1000 human bone or bone fragments (Berger et al. 2008). 

Results suggested that the area was used exclusively for mortuary practice and contained 

little, if any, associated fauna or cultural material, but that the site likely contained large 

numbers of additional human remains. Radiocarbon dates on human bone were reported 

as ranging from 2890-1420 BP (Berger et al. 2008). As Fitzpatrick et al. (2008) noted, 

these dates were calibrated as if they were from terrestrial material; yet given the 

likelihood of a major marine dietary component for human inhabitants, which adds 

inbuilt age from marine carbon, recalibration to account for a mixed (50/50) marine and 

terrestrial diet shifts these dates by hundreds of years. 

 

Methods 

Test Unit 1 was placed in the western portion of the cave, and appeared not to 

have been backfilled after completion. The unit’s location was compared to the site map 

published in Berger et al. (2008) to verify its position. A 1×1 m test unit (Test Unit 2) 

was placed east and directly adjacent to Test Unit 1 (Figure 3.1b). Test Unit 2 (TU2) was 

excavated by trowel in arbitrary 10 cm levels from the ground surface to a depth of 

approximately 50 cm, at which point a layer of dense flowstone was encountered. 

Arbitrary levels were chosen based on Berger et al.’s (2008) observation that the first 50 

cm of sediment comprised a single stratigraphic layer. As excavation proceeded, this was 

found not to be the case. Our 10 cm levels closely followed a stratigraphic change 

observed at approximately 10 cm depth (Figure 3.2). Soil in the first 10 cm (Layer I) was 

a fine grained, pale brown sand (10YR 7/6). From approximately 10-20 cm, patches of 

finer, loosely packed yellowish sand (10YR 8/4) were encountered and continued to 

expand with depth to comprise a second stratigraphic layer (Layer II) by 20 cm that 

reached the flowstone deposit (Figure 3.2). 
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Figure 3.2. Stratigraphic profile of TU2. 

 

 

All soil was dry-screened through 1/8 inch mesh. Human skeletal material and 

artifacts were also collected when encountered in surface contexts. All cultural material, 

including faunal remains, artifacts, charcoal, and human skeletal fragments were 

collected, sorted into basic categories, and entered into the InTerris Registries database 

management software, which utilizes a barcode label system to link all material and 

results of subsequent analyses to the original provenience. Further sorting and analysis 

was undertaken at the University of Oregon Island and Coastal Archaeology Lab. 

Skeletal remains were identified to element, and when possible, standard 

osteological methods were used to estimate sex (e.g., morphology of the greater sciatic 

notch, supraorbital tori prominence and margin thickness) and age (e.g., epiphyseal 

fusion, dental development) (Buikstra & Ubelaker 1994; Scheuer et al. 2000). Pathology, 

trauma, and anomalies were also recorded when present (Buikstra & Ubelaker 1994; 

Scheuer et al. 2000). Faunal remains were sorted to the lowest possible taxonomic level 

and quantified using number of identified specimens (NISP), minimum number of 

individuals (MNI) based on non-repetitive elements, and weight (g) using standard 

procedures (Reitz & Wing 2008). Pottery sherds were weighed and preliminarily 

analyzed to identify temper, form, and any surface treatments. A representative sample 
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from each level (n=8), was selected for thin-section analysis based on stratigraphic 

location. A coarse analysis of temper constituents was conducted by Kathleen Marsaglia 

in the Department of Geological Sciences at California State University, Northridge. 

 

Radiocarbon Dates 

Seven samples of marine shell (n=4) and human bone (n=3) were submitted for 

radiocarbon dating. Marine shell samples were pretreated at the University of Oregon 

Island and Coastal Archaeology Laboratory with a 10% hydrochloric acid (HCl) solution 

“leach”, dried, and drilled to obtain a powdered sample for submission. Bone samples 

were sent to two different laboratories; however, neither was able to obtain separable 

collagen following pretreatment procedures and dating of these specimens was 

unsuccessful. This is likely attributed to the mineralized nature of the human remains 

recovered, with results similar to those presented by Berger et al. (2008), who selected 25 

samples for AMS dating and only reported six. All radiocarbon dates, including those 

previously reported, were calibrated using OxCal v.4.2 with a 50% mixed 

marine/terrestrial curve for bone samples and the Marine13 curve for shell (Bronk 

Ramsey 2009; Reimer et al. 2013) (Table 3.1). Given the wide range of marine reservoir 

corrections (∆R) available for Palau, 14C dates from Ucheliungs are presented with all 

ΔRs averaged for the archipelago (Table 3.2).  

Although marine shell is sometimes viewed as a problematic material for 

radiocarbon dating due to a variety of issues, including inbuilt age from both global and 

localized oceanic carbon reservoirs, the “old shell” effect, and the possibility that natural 

deposits are being dated and interpreted as cultural events (e.g. Rick et al. 2005), the 

marine shell excavated at Ucheliungs is unlikely to be naturally deposited. Given the 

distance (approximately 20 m) and upward slope from the cave entrance and beach to 

TU2, and a lack of shell observed on the cave floor during excavations, it is unlikely that 

tidal activity or storm surges washed in beach material or that marine shell reached the 

cave interior via other natural mechanisms. As can be seen in Table 3.1, the new marine 

shell dates from Ucheliungs—which were taken from larger specimens of taxa known to 

have been used for subsistence and found at other Rock Island archaeological sites—span 

4060-2710 cal. BP and are in stratigraphic order. 
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Table 3.1. Radiocarbon dates from Ucheliungs. Sample numbers beginning with “B:OR-
14:8” are dates from Berger et al. (2008) and have been recalibrated for this study. 
 

Lab/Sample 
Number Sample Type Provenience Radiocarbon 

Age 

13C/12C 
ratio 

Calibrated 
Date (2 

sigma BP) 
B:OR-14:8-1200 Human Bone not reported 2550±50 -15.1 2670-2320  
B:OR-14:8-1201 Human Bone not reported 2530±50 -15.3 2670-2300  
B:OR-14:8-1202 Human Bone not reported 2280±50 -15 2300-1950 
B:OR-14:8-1203 Human Bone not reported 2260±50 -14.7 2290-1930 
B:OR-14:8-1204 Human Bone not reported 2190±50 -15.9 2120-1880 
B:OR-14:8-1205 Human Bone not reported 2400±40 -14.4 2340-2130 
B:OR-14:8-1206 Human Bone not reported 1520±40 -17 1320-1180 
B:OR-14:8-1207 Human Bone not reported 1570±40 -14 1380-1250 

D-AMS 017432 Marine shell  
(Cypraea tigris) 

TU2, Level 3 
(20-30cm depth) 3000±30 not 

reported 2850-2710 

D-AMS 016831 
Marine shell  
(Bivalve, pr. 

Cardiidae sp.) 

TU2, Level 4 
(30-40cm depth) 3450±30 -17.6 3410-3230 

D-AMS 017433 Marine shell  
(Fimbria sp.) 

TU2, Level 4 
(30-40cm depth) 

3370±30 not 
reported 

3330-3150 

D-AMS 017434 
Marine shell  
(Bivalve, pr. 

Cardiidae sp.) 

TU2, Level 5 
(40-50cm depth) 3960±30 not 

reported 4060-3850 

BOR-TU2-BOH Human Bone  
(long bone shaft) 

TU2, Level 4 
(30-40cm depth) 

No separable 
collagen N/A N/A 

BOR-TU2-BOH1 
Human Bone  
(Femur shaft) 

TU2, Level 4 
(30-40cm depth) 

No separable 
collagen N/A N/A 

BOR-TU2-BOH2 Human Bone  
(rib shaft) 

TU2, Level 4 
(30-40cm depth) 

No separable 
collagen N/A N/A 

 
 

 The latter end of the date range overlaps with two of the human bone samples 

reported by Berger et al. (2008). The two marine shell dates from Level 4 (D-AMS 

016831, D-AMS 017433) calibrate to the earliest known acceptable range of Palauan 

colonization and are generally coeval with those from Ulong and Chelechol ra Orrak, 

providing further support to the presence of Palauans in the Rock Islands just prior to and 

after 3000 BP. The sample from the lowest level (D-AMS 017434), which calibrates to 

4060-3850 BP, extends beyond the earliest accepted archaeological dates in the 

archipelago. It is possible that the sample was subfossil shell or brought in as part of 

incidental debris, but this needs to be confirmed with additional dates. Regardless, the 

association of human bone with these dates implies that burial activity may have taken 

place at Ucheliungs earlier than Berger et al. (2008) suggested. This revised chronology 
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reduces the amount of time between initial colonization of Palau and use of the site, 

which does not allow adequate time for insular dwarfism to occur within the population 

following arrival in the archipelago. 

 
 
Table 3.2. Calibrated marine radiocarbon dates (2 sigma BP) with various ΔR for Palau. 

Lab 
Number 

Radiocarbo
n age 

ΔR  
-250±501 

ΔR 
-

52±222 

ΔR  
0 

ΔR 
34±443 

ΔR 
75±684 

ΔR 
168±435 

D-AMS 
016831 

3450±30 
3800- 
3460  

3490-
3270  

3410-
3230  

3420-
3140  

3420-
3020  

3270-
2940  

D-AMS 
017432 

3000±30 
3250- 
2880  

2930-
2730  

2850-
2710  

4830-
4560  

2870-
2460  

2730-
2410  

D-AMS 
017433 

3370±30 
3670- 
3370  

3390-
3180  

3330-
3150  

3340-
3030  

3340-
2920  

3160-
2850 

D-AMS 
017434 

3960±30 
4450- 
4110  

4140-
3900  

4060-
3850  

4070-
3750  

4060-
3640 

3870-
3580 

1Fitzpatrick 2002, Masse et al. 2006; 2Petchey and Clark 2010; 3Yoneda et al. 2007; 4Petchey and Clark 
2010; 5Yoneda et al. 2007  
 
 
Bioarchaeology 

Human remains from TU2 consisted of almost 200 identifiable elements, 

including a small cache of isolates that had been collected from the surface by kayak tour 

guides and placed in a rock crevice to prevent looting by tourists. The remains are 

mineralized and highly fragmented, as evidenced by the recovery of numerous additional 

small fragments (n=987) that could not be identified beyond broader general categories 

(e.g. cranial, long bone, rib, etc.). With the exception of a single femur shaft located in 

Level 2 (10-20 cm) of TU2, the remains primarily consist of small, isolated elements that 

were recovered from each level of the test unit. The bulk of the remains were found in the 

upper levels, suggesting that individuals may have been originally placed on the surface 

of the cave floor or in shallow subsurface graves. This is also consistent with early 

mortuary contexts at other Rock Island burial caves and rockshelters, where both 

subsurface burial in beach sand and placement on cave floors are common practices 

(Fitzpatrick & Nelson 2008).  

Because the assemblage consisted solely of isolated elements, no discrete 

individuals or articulated burials could be identified. However, a rough estimate of the 
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minimum number of individuals (MNI) present based on non-repetitive elements 

suggests that at least six individuals are represented, including three adults and three 

juveniles, ranging in age from infancy to adulthood. Unfortunately, no elements that can 

be used to accurately determine sex were recovered, but the presence of individuals 

across such a broad age range suggests that there were no age or sex-related interment 

restrictions in place at Ucheliungs. This is also consistent with the demographic 

composition of the Chelechol ra Orrak and Koror Quarry sites, which contain 

assemblages representing both sexes and a wide age range (Nelson et al. 2015, Rieth & 

Liston 2001, Stone et al. 2014). Pathological conditions were identified in 18 elements 

(1.5% of total skeletal assemblage), and are limited to degenerative changes, such as 

pitting and marginal growth along articular surfaces, and can likely be attributed to age or 

activity-related factors. No traumatic injuries were identified with the exception of a 

possible healed fracture on a proximal manual phalanx. A single instance of pedal 

symphalangism, or the fusion of the intermediate and distal foot phalanges, was the only 

skeletal anomaly identified. There is no evidence for pathological conditions that would 

contribute to dwarfism, nor are there any indications of small body size from the 

elements recovered. Although this is an extremely limited sample, the pattern observed at 

Ucheliungs appears similar to both Chelechol ra Orrak and Koror Quarry, where trauma 

and pathology are only minimally present (Nelson & Fitzpatrick 2006, Nelson et al. 2015, 

Rieth & Liston 2001).  

Isolated teeth (n = 29) were also recovered, as well as a single mandibular 

fragment containing three teeth that was included in the surface cache collected 

previously by kayaking guides. Pathological conditions are comparable to other 

prehistoric Palauan assemblages, and include light occlusal wear, a lack of caries, and 

slight calculus formation, primarily located along the cementoenamel junction. Similar to 

Chelechol ra Orrak, a number of the teeth from Ucheliungs are also stained from habitual 

chewing of betel nut (Areca catechu), a common practice throughout Palau (Fitzpatrick et 

al. 2003a). Dental studies have suggested that chewing betel nut creates cariostatic 

conditions, possibly as a result of tannins in the drupe that possess antimicrobial 

properties or increased saliva production, which may explain the noticeable absence of 

carious lesions in this assemblage and others from Palau (de Miranda et al. 1996, 
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Howden 1984, Trivedy et al. 2002). However, unlike Chelechol ra Orrak where all but 

two burials exhibit staining, betel staining occurs in less than half of the teeth recovered 

(n = 12), though this may be a reflection of a small sample size. Deciduous teeth also 

exhibited a dark staining, but this appears to be taphonomic.  

 

Zooarchaeology 

 Fauna recovered from TU2 consist almost exclusively of marine mollusks (88% 

of the total faunal weight), and were present in each level, with the bulk of the 

assemblage belonging to the upper three levels (Figure 3.3). The majority of the shell and 

all of the faunal bone recovered are bleached and mineralized in a manner similar to the 

human bone. This complicated identification of many taxa; as such, few are identified 

below the family level.  

Bivalves and gastropods are represented relatively equally with a total of 55 taxa. 

While no single taxon dominated the assemblage, Arcidae sp., Conus sp., Nerita sp., and 

Videna sp. were all found in relatively high quantities (Table 3.3). Additionally, three 

species of land snail, including Videna sp., are found throughout all levels and represent a 

substantial portion of the gastropod assemblage (4% of the total gastropod weight and 

1.4% of the overall shell weight; 49% of the total gastropod MNI, 31.5% of the total shell 

MNI). The shellfish assemblage at Ucheliungs is similar to what has been observed at 

other Rock Island sites, including stone money quarries and village sites, where taxa from 

intertidal and shallow reef environments are common, including those from the Arcidae, 

Conidae, and Cypraeidae families (Carucci 1992, Fitzpatrick 2003c).  

In addition to shell, a small amount of vertebrate material was also identified, 

including two shark teeth, a single centrum of a fish vertebra, and a bird coracoid. Also 

present are a species of barnacle (Cirripedia sp.) found throughout all levels, small 

quantities of sea urchin (Echinoidea sp.), chiton, and crab (Brachyura sp.), which is the 

most abundant taxon apart from marine shell, comprising 9% of the overall weight. 

Together, the combined faunal assemblage from TU2 weighs 1530.52 g and represents 66 

taxa, including many that are endemic to shallow reef environments, much like those 

immediately surrounding the area where Ucheliungs is located. Therefore, it appears that 

while terrestrial resources may have been scarce, marine resources were in fact abundant 
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and in no way suggest that a reduced resource base, one of the contributing factors to 

insular dwarfing, was present at Ucheliungs.  

 

 

 

 

 

Figure 3.3. Relative contributions of faunal remains, human remains, and ceramics to the 
overall archaeological assemblage. 
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Table 3.3. Faunal remains recovered from Ucheliungs. 

Taxon Weight (g) MNI NISP 

GASTROPODA 
Cantharus sp. 6.53 5 8 
Cerithium sp. 1.9 1 1 
Cerithidae sp. 0.98 1 1 
Cerithoidea sp. 1 3 3 

Conomurex luhuanus 0.11 1 1 
Conus arenatus 0.3 1 2 

Conus sp. 43.51 13 16 
Cypraea sp. 23.26 14 14 

Cypraea tigris 16.65 1 1 
Erosaria helvola 6.08 1 1 

Gibberulus gibberulus 12.71 6 9 
Lambis lambis 14.16 1 1 

Lambis sp. 0.56 1 1 
Latirolagena smaragdulus 1 2 2 

Monoplex nicobaricus 12.29 11 14 
Nassarius sp. 0.64 1 1 
Nerita polita 7.16 2 2 

Nerita sp. 33.7 58 81 
Oliva sp. 0.01 1 1 

Patellidae sp. 1.71 4 4 
Peristernia sp. 0.21 3 3 

Pupuradusta microdon 0.7 1 1 
Pythia scarabaeus 8.62 15 15 
Rhinoclavis aspera 0.29 1 1 

Strombidae sp. 13.84 5 10 
Strombus sp. 4.99 2 3 

Tectus niloticus 2.88 5 8 
Terebralia sulcata 6.34 2 2 

Thais sp. 2.08 3 3 
Trochus sp. 52.13 15 38 

Turitellidae sp. 0.05 1 1 
Videna sp. 9.62 59 67 

Land Snail A 1.47 20 41 
Land Snail B 8.33 107 134 

Turbo Opercula 6.44 1 1 
Miscellaneous Opercula 5.82 8 8 

Miscellaneous Gastropods 118.72  262 
Total Gastropod 461.77 377 763 

BIVALVIA 
Anadara sp. 17.89 7 7 

Arca sp. 6.51 1 1 
Arca ventricosa 48.97 13 16 

Arcidae sp. 33.59 126 224 
Bivalve, pr. Cardiidae sp. 11.72 2 2 

Cardita variegata 0.5 2 2 
Cardita sp. 0.05 1 1 
Chama sp. 139.42 14 15 
Codakia sp. 0.28 1 1 
Fimbria sp. 2.68 1 1 

Hippopus hippopus 42.43 1 1 
Isognomon isognomon 5.18 1 8 

Isognomon sp. 0.83 2 6 
Limidae sp. 0.6 4 4 

Lucinidae sp. 6.96 9 13 
Spondylus sp. 71.2 20 21 

Tapes litteratus 0.96 1 3 
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Table 3.3, continued. 

 

 

Artifacts 

A total of 30 pottery sherds weighing 759.73 g were recovered from TU2 and the 

surface of the northwest cavern of the cave (Table 3.4). Sherds from TU2 were only 

recovered from the first three levels and all are small, undecorated body fragments. 

Multiple sherds appeared to be weathered and lacked an interior or exterior, which may 

be due to taphonomic processes that are known to contribute to post-depositional wear on 

sherd surfaces (Clark 2005). Body sherd thickness ranged from 3.96-10.18 mm, but the 

small sample size is not sufficient to address possible changes in manufacture across 

levels. Preliminary temper analysis indicates that sherds were produced with volcanic 

sand as temper, which is significant for the fact most Palauan pottery was made with grog 

temper (Fitzpatrick et al. 2003a, Osborne 1979). The total absence of grog temper, 

coupled with the AMS dates, supports earlier findings by Fitzpatrick et al. (2003a) in 

which volcanic sand temper pottery was associated with the earliest occupation of the 

Rock Islands (see also Clark 2005).  

The only other artifact recovered in excavation was a single piece of carved bone 

recovered from the southeastern corner of TU2 at ca. 10 centimeters below surface. The 

artifact is of particular interest because it is decorated with linear and triangular carving 

Taxon Weight (g) MNI NISP 
Tellina sp. 0.13 2 2 

Tellinidae sp. 0.02 1 1 
Venericardia sp. 0.8 2 2 

Veneridae sp. 0.37 3 3 
Miscellaneous Bivalves 191.13  405 

Total Bivalve 582.22 214 739 
Miscellaneous Shell 305.09  1084 

Total Shell 1349.08 591 2586 
POLYPLACOPHORA 

Chiton 0.55 3 4 
ARTHROPODA 

Crustacea 140.87  971 
Cirripedia sp. 37.41  69 

Total Arthropod 178.28  1040 
Sea Urchin (Echinoidea) 0.24  6 

VERTEBRATA 
Shark 0.76 1 2 
Bird 0.57 1 1 
Fish 1.04 1 1 

Total Vertebrate 2.37 4 4 
TOTAL 1530.52 623 3640 
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and may be a fragment of a harpoon tip used for fishing, but comparable artifacts have 

not been found at other Palauan archaeological sites. (Figure 3.4). Given the artifact’s 

uniqueness, a follow-up project utilizing Zooarchaeology by Mass Spectrometry 

(ZooMS) to taxonomically identify the bone, is ongoing. ZooMS relies on the species-

level variability in the dominant bone protein of Type I collagen to identify 

archaeological bone taxonomically through a process of non-destructive collagen 

fingerprinting, and has emerged as a particularly useful approach for distinguishing 

between taxa that are morphologically similar or bone fragments that do not display 

distinguishing features, such as this artifact (Buckley et al. 2009, 2011, 2014).  

 

Table 3.4. Ceramics recovered from Ucheliungs. 

Level Catalog 
Number Temper Form Thickness Count Weight Comment 

1 7 Volcanic sand Body 5.1 1 7.58   

1 8 Volcanic sand Body 7.55 1 7.6   
1 9 Volcanic sand Body 7.32 1 6.54   
1 10 Volcanic sand Body 9.63 1 5.58   

2 4 Volcanic sand Body ― 1 2.94   
2 5 Volcanic sand UID ― 2 1.97 refit 
2 6 Volcanic sand Body 3.96 1 1.58   

3 1 Volcanic sand Body 10.07 1 5.5   
3 2 Volcanic sand Body 5.31 1 3.67   
3 3 Volcanic sand Body 10.18 1 13.81   

surface 11 Volcanic sand Body 9.06 1 2.73   
surface 12 Volcanic sand Body 8.78 2 42.85 refit 
surface 13 Volcanic sand Rim 6.24 1 6.51   

surface 14 Volcanic sand Body 6.99 1 75.32   
surface 15 Volcanic sand Body 6.05 1 44.64   
surface 16 Volcanic sand Body 7.28 1 27.31   

surface 17 Volcanic sand Body 7.21 1 51.08   
surface 18 Volcanic sand Body 5.3 1 34.42   
surface 19 Volcanic sand Body 8.82 2 20.19 refit 

surface 20 Volcanic sand Body 6.69 1 15.56   
surface 21 Volcanic sand Body 6.47 1 23.6   
surface 22 Volcanic sand Body 7.09 1 39.34   

surface 23 Volcanic sand Body 6.79 1 30.64   
surface 24 Volcanic sand Rim 8.57 3 185.64 refit 
surface 25 Volcanic sand Base, rounded 10.25 1 103.13   
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Preliminary results suggest that this bone may be from a non-human primate, 

likely one belonging to the Hylobatidae family, but confirmation is still needed. Non-

human primates were not present on Palau prehistorically, but tools made from non-

human primate bones have been recovered from archaeological contexts throughout 

Island and Mainland Southeast Asia dating as early as the Pleistocene (Ignicco et al. 

2020, Rabett and Piper 2012, Wedage et al. 2019). If confirmed, this artifact represents 

the only example of a prehistoric translocated non-human primate or primate material to 

Remote Oceania. Identification of the species is especially important, as it may help 

identify the source location and provide direct evidence for dispersal or early exchange 

routes.  

 
 

 

 
 
 
 
 
 
 
 
 
Figure 3.4. Carved bone artifact from southeastern wall of TU2.  
 
 
Discussion 

 Analysis of archaeological and skeletal material recovered from recent excavation 

at the Ucheliungs site is significant for it presents a drastically different picture of 

prehistoric use when compared to previous research that claimed the site was used 

exclusively for mortuary practice by small-bodied humans (Berger et al. 2008). Our new 

results indicate that Ucheliungs was actually more diverse and used for a longer period of 

time than previously reported. The presence of faunal remains, artifacts, and dates on 

marine shell suggest that instead, use of the site occurred centuries earlier, ca. 3300 BP. 

Previous research argued that insular dwarfing occurs in tropical environments due to a 
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combination of factors that were also assumed to be present at Ucheliungs, including 

“relative genetic isolation, a reduced resource base, hot and humid climates, hilly 

topography, thick undergrowth of vegetation, and (in certain island contexts) an absence 

of terrestrial predators” (Berger et al. 2008:1). However, the presence of a diverse and 

abundant marine taxa assemblage as well as artifacts that were transported to the site 

(which are also commonly found on many other Rock Islands), suggest that genetic 

isolation and a reduced resource base were not factors affecting peoples that may have 

lived at Ucheliungs. Furthermore, the overall assemblage recovered from TU2 is similar 

what has been observed at other prehistoric Rock Island sites and does not indicate use of 

Ucheliungs by a population that would have been culturally or biologically distinct from 

other early Palauan groups. 

Although the sample size is small, it appears that broad patterns in demography 

and pathology from other prehistoric Palauan skeletal assemblages are comparable to 

what has been observed at Ucheliungs. Given the early radiocarbon dates from TU2 that 

are associated with human remains, additional analysis of the existing skeletal 

assemblage and continued work at Ucheliungs has great potential to provide information 

related to the health of early Palauans and contribute to a more comprehensive collection 

of skeletal samples of the Rock Islands when combined with burials from Chelechol ra 

Orrak (Nelson & Fitzpatrick 2006, Nelson et al. 2015).  

   

Conclusion 

 Berger et al. (2008: 3) argued that the Ucheliungs site contained the remains of 

smaller humans for which “the most parsimonious, and most reasonable, interpretation of 

the human fossil assemblage…..is that they derive from a small-bodied population of H. 

sapiens (representing either rapid insular dwarfism or a small-bodied colonizing 

population). A response by Fitzpatrick et al. (2008) demonstrated many fallacies inherent 

in previous interpretations, in part due to the presence of Palau’s rich marine environment 

that would have provided excellent habitats for prehistoric populations to exploit (and as 

such, the inverse of conditions needed to induce insular dwarfism or a biological 

tendency for smaller bodies). Archaeological research at numerous sites throughout the 

archipelago also clearly demonstrate that interaction between islands through time was 
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frequent and intense as evidenced by the transport of pottery and other artifacts to the 

limestone Rock Islands, which lacked clay or tool-quality stone. This makes the notion of 

a population residing at Ucheliungs in isolation for hundreds or thousands of years 

unthinkable.  

The material recovered in TU2—a unit the same size adjacent to TU1—includes 

the very evidence (marine taxa, non-local artifacts) that was used to support isolation for 

the cave’s inhabitants, a key component to their interpretation that small-bodied 

individuals were present here. That so many indicators of human use or occupation were 

either ignored, dismissed, or unidentified demonstrates a failure to recover and analyze 

various site constituents that are commonly found in Palau’s Rock Islands and other sites 

in the Pacific by previous researchers. While continued work at Chelechol ra Orrak is 

providing new and important data on Palau’s prehistoric inhabitants from both 

archaeological and biological perspectives, Ucheliungs, which to date only contains very 

fragmented and widely dispersed skeletal remains, is significant for its potentially early 

dates and associated cave activities, but not for its contribution to human evolutionary 

processes that involved isolated populations or small-bodied individuals.  

Future fieldwork at Ucheliungs will involve excavations with increased spatial 

coverage to provide a more representative picture of site use. Associated fauna will be 

particularly important for providing dietary resource information dating to the earliest 

period of settlement. These data will also complement other sources of dietary 

information from this time period such as the results of stable isotope analysis from 

human bone discussed in Chapter IV, which are the first direct dietary isotope data for 

Palau. 
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CHAPTER IV 
 

STABLE ISOTOPE ANALYSIS OF HUMAN DIET AT CHELECHOL RA 
ORRAK 

 
 

From: J.H. Stone, S.M. Fitzpatrick, and J. Krigbaum. 2019. Stable Isotope Analysis of Human  
           Diet at Chelechol ra Orrak, Palau. Bioarchaeology International, 3(2), 142-156. 
 

 

Introduction 
 

In Remote Oceania, initial arrival upon previously uninhabited, relatively small, 

and remote islands would have presented early populations with a unique suite of 

challenges for survival, particularly those related to subsistence. Previous archaeological 

and isotopic research in Remote Oceania has largely focused on the subsistence strategies 

of Lapita colonizers with comparatively little research on prehistoric Micronesian 

subsistence following initial settlement (e.g., Beavan-Athfield et al. 2008, Green 1979, 

Groube 1971, Kinaston et al. 2014a, 2014b, 2015a, 2015b, Kinaston and Buckley 2013, 

Leach et al. 2003, Valentin et al. 2010). The subsistence strategies of early Lapita 

populations have long been debated based on faunal and botanical remains from various 

sites. Early studies proposed a “strandlooper” tactic focused on reef and nearshore marine 

resources, but the presence of plant and animal domesticates have led researchers to 

argue that the introduction of a “transported landscape,” a term coined to describe the 

suite of plants, animals, that are both intentionally and unintentionally introduced to a 

new area alongside horticultural or agricultural human groups, was paramount to the 

successful settlement of Remote Oceania (Green 1979, Groube 1971, Kirch 1997). More 

recent isotopic analyses of Lapita-associated skeletal samples instead suggest that initial 

settlers utilized native resources from both inshore marine and terrestrial environments 

supplemented by terrestrial domesticates. However, it remains unclear to what extent 

these early Lapita groups relied on introduced taxa (Kinaston et al. 2013a, Kinaston and 

Buckley 2013, Valentin et al. 2010). 

 Unlike Lapita, early populations in western Micronesia are not associated with 

faunal evidence for a “transported landscape,” raising numerous questions regarding the 
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extent to which these groups might have relied on endemic resources. Stable isotope 

paleodietary studies for western Micronesia are limited to the Mariana Islands, where 

samples have primarily been analyzed from Latte Period (post 1000 BP) sites. These 

studies suggest that prehistoric groups living on different islands were consuming varying 

amounts of marine protein and plants with C4 photosynthetic pathways (Ambrose et al. 

1997, McGovern-Wilson and Quinn 1996, Pate et al. 2001). However, the Latte Period is 

also characterized by increased social complexity, population growth, and agricultural 

intensification, and comparisons between Latte and Pre-Latte individuals demonstrate 

some dietary shifts over time (Carson 2012, Pate et al. 2001). Therefore, the results of 

these studies, however tentative, are unlikely to be informative regarding subsistence 

strategies following initial settlement of western Micronesia. 

 This chapter presents the first results of stable isotope analysis from human bone 

samples obtained from Palau, including Chelechol ra Orrak (ca. 3000-1700 BP). As the 

first isotopic paleodietary study in Palau, results are important for helping us understand 

early prehistoric subsistence here while also providing a much-needed comparison with 

other coeval sites in Remote Oceania. 

 
Stable Isotope Analysis and Paleodietary Reconstruction 

Stable isotope analysis of carbon (δ13C) and nitrogen (δ15N) from human skeletal 

remains has become a common method in bioarchaeology for evaluating diet and 

subsistence, and is becoming an increasingly popular approach in the Pacific Islands 

(Commendador et al. 2013, Kinaston et al. 2013a, 2014a, 2015a, 2015b, Larsen 2015, 

Stantis et al. 2015a, 2015b). Because bone tissue incorporates multiple aspects of diet, 

δ13C and δ15N values of bone will reflect a long-term average isotopic composition of the 

foods that someone has consumed, thus allowing for a direct method of dietary 

reconstruction at the individual level. These values are measured in ratios (13C/12C and 
15N/14N) relative to an international standard (Vienna Pee Dee Belemnite, or VPDB, for 

carbon and atmospheric nitrogen, or AIR, for nitrogen) that are expressed in parts per 

thousand, or per mil (‰) using delta notation (δ) (DeNiro and Epstein 1978,  Katzenberg 

2008, Pate 1994, Schwarcz and Schoeninger 1991). 
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 Carbon stable isotope ratios (δ13C) can be used to differentiate between marine 

and terrestrial proteins, and consumption of C3 and C4 terrestrial plants. Carbon in marine 

organisms is 13C-enriched due to the presence of dissolved carbonate (~0‰) in marine 

ecosystems compared to atmospheric carbon (~-7‰) that is reflected in terrestrial 

species. These differences in source carbon are reflected in isotope partitioning between 

marine and terrestrial organisms observed in baseline data from Pacific Island taxa. For 

example, a sample of archaeological fruit bats from Vanuatu, used as a proxy for 100% 

terrestrial diets, yielded an average δ13C value of -19.8‰, compared to samples of 

modern marine shellfish, parrotfish, or marine turtles, which average δ13C values of -

10.1‰, -9.7‰, and ~-9.1‰, respectively (Kinaston et al. 2014a). 

 Plants also vary in the ways that they incorporate CO2 during photosynthesis, 

resulting in isotopically distinct pathways (Katzenberg 2008, Schwarcz and Schoeninger 

1991). C3 plants include temperate and tropical shrubs, trees, and tubers that are depleted 

in 13C with more negative δ13C values when compared to 13C-enriched C4 plants, which 

includes arid tropical grasses that display higher δ13C values, typically averaging around -

14‰. CAM plants, including cacti and succulents, reflect δ13C values that are 

intermediate to C3 and C4 (Kohn 2010). In the Pacific, the majority of endemic plant 

resources utilize a C3 pathway, with the exception of sugarcane, sea grapes, and some 

seaweeds (Kinaston and Buckley 2013). For example, δ13C values of modern C3 plants 

from Vanuatu average -26.2‰, while modern seagrasses average -9.3‰ (Kinaston et al. 

2014a). As mentioned above, due to the presence of marine source carbon, both marine 

plants and animals are 13C-enriched and exhibit higher δ13C values than typical C3 

terrestrial resources, while freshwater resources display more depleted values 

(Schoeninger and DeNiro 1984, Schoeninger et al. 1983). 

 Nitrogen stable isotope ratios (δ15N) vary as a result of stepwise 15N enrichment in 

bone collagen of approximately 2-4‰ with each trophic level, as well as between 

terrestrial and marine resources (Hedges and Reynard 2007, Minagawa and Wada 1984, 

Schoeninger et al. 1983). This 15N enrichment is more complex in marine systems, due to 

the variation in N2-fixation in primary producers. Additionally, marine ecosystems tend 

to have higher δ15N values due to longer trophic systems compared to terrestrial 

environments (Schoeninger and DeNiro 1984). This trophic effect allows for δ15N values 
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to be used to assess the relative contributions of marine and terrestrial foods to an 

individual’s diet. However, coral reef and seagrass communities tend to have lower δ15N 

than other marine areas due to N2-fixation in shallow corals. The resulting effect is lower 

δ15N values in organisms at higher trophic levels within coral reef environments when 

compared to pelagic ecosystems (Keegan and DeNiro 1988). For example, modern 

marine taxa collected from Vanuatu yielded δ15N values of 5.4‰, 5.5‰, 7.3‰, and 

9.2‰ for parrotfish, marine shellfish, tuna, and marine turtle, respectively (Kinaston et al. 

2014a). 

 Because bone differs in how it assimilates dietary elements into its tissues, the 

bone fraction analyzed will reflect different dietary components. Bone collagen, which is 

principally composed of amino acids, primarily reflects dietary proteins consumed, while 

bone apatite reflects the “total” diet consumed, including protein, carbohydrates, and 

lipids (Ambrose and Norr 1993, Froehle et al. 2010, Krueger and Sullivan 1984, Tieszen 

and Fagre 1993). A meta-analysis of controlled feeding studies data has demonstrated 

that when protein sources are controlled for, significant relationships are apparent 

between δ13C bone collagen and δ13C of bone apatite (“total” diet) regardless of body size 

or the amount of protein consumed. The offset of δ13C for bone apatite from consumed 

diet is debated but for humans is ~12‰, while the offset for bone collagen is ~5.2‰ 

(Froehle et al. 2010, Hedges 2003, Kellner and Schoeninger 2007). The combination of 

δ13C values from both bone collagen and bone apatite provides a more comprehensive 

view of prehistoric diet (e.g., Froehle et al. 2012, Krueger and Sullivan 1984). 

Additionally, the difference in δ13C between these two fractions allows for 

characterization of the carbohydrate sources by investigating the spacing (∆13Cap-co) 

between collagen and apatite δ13C values. Low ∆13Cap-co spacing will reflect a diet of 
13C-enriched marine protein and terrestrial C3 resources, while high spacing will reflect 
13C-enriched C4 resources. Intermediate spacing for ∆13Cap-co typically reflects a 

monoisotopic diet (Ambrose and Norr 1993, Kellner and Schoeninger 2007, Lee-Thorp et 

al. 1989).  

 
Methods 

Adult long bones and ribs from non-pathological elements were selected from 20 

individuals from Chelechol ra Orrak. Additionally, samples from the Koror Quarry site (n 
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= 4) and Peleliu Island (n = 1) were included for comparison and to assess potential 

variation in diet across the archipelago. Koror Quarry, located in the northeastern portion 

of Koror, contains the remains of more than 30 individuals dating to between ca. 2500-

1250 BP and was excavated as part of a salvage contract project (Rieth and Liston 2001). 

The single individual included from Peleliu, located at the southern tip of the archipelago, 

is of unknown age and provenience, but was interpreted as prehistoric by the original 

excavators, though it could possibly be historic. In order to assess potential demographic 

dietary differences, age and sex of each individual were estimated using standard 

morphological methods when possible (Buikstra and Ubelaker 1994). 

 For each sample, debris was removed mechanically with a scalpel followed by 

sonication in deionized distilled water and air-dried. Samples were then ground with a 

ceramic mortar and pestle and sieved into 0.25-0.5 mm and < 0.25 mm fractions for bone 

collagen and apatite analysis, respectively. Critical assessment of bone preservation of 

these prehistoric samples and their antiquity precluded lipid extraction procedures. About 

500 mg of the larger (0.25-0.5 mm) bone collagen fraction was weighed and loaded into a 

15 mL tube and demineralized with 0.1 M hydrochloric acid (HCl) for about seven days, 

with HCl refreshed every 24 hours. Once samples were completely demineralized and 

rinsed to neutral pH with DI-H20, 0.125 M sodium hydroxide (NaOH) was added for ~16 

hours to remove exogenous contaminants and humic acids. Samples were then 

solubilized in 10-3M HCl at 95°C for ~5 hours, spiked with 10 μL of 1.0 M HCl, and 

returned to the 95°C oven for another ~5 hours. After solubilization was complete, 

samples were removed and centrifuged, and the solute was placed in a 20 mL glass 

scintillation vial and reduced at 60°C to approximately 2 ml. Purified samples were then 

freeze-dried for 72 hours. 

 A number of quality-control measures can be undertaken to assess diagenesis in 

archaeological paleodietary studies. Because various factors, including alteration as a 

result of the surrounding depositional environment, can contribute to collagen 

preservation and potentially alter isotopic values in archaeological samples, C:N ratios 

are a consistent means to assess whether diagenesis may have contributed to the observed 

values. In this study, samples with a C:N ratio between 2.9 and 3.6 were considered 

acceptable (DeNiro 1985) in concert with evaluation of %C and %N. Diagenetic 
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contamination in the hydroxyapatite portion of archaeological bone can be especially 

problematic, and crystallinity indices based on Fourier-transform infrared spectrometry 

(FTIR) are often utilized to assess the extent of diagenetic change (Shemesh 1990). 

However, a number of studies have demonstrated that this approach can have limited and 

variable utility, and as such, FTIR was not applied in this study (e.g., Stuart-Williams et 

al. 1996, Trueman et al. 2008). Δ13Cap data can potentially be precarious due to 

compromised biogenic preservation, especially with samples with low collagen yields 

and this must be considered as a caveat when interpreting these data. 

 Bone collagen samples were weighed and loaded in tin capsules and assessed for 

atomic C:N using a Carlo Erba NA 1500 Elemental Analyzer and and δ13Cco and δ15N 

using a Finnigan MAT DeltaPlus isotope ratio mass spectrometer (IRMS) in the 

Department of Geological Sciences, University of Florida. δ13Cco and δ15N were 

measured against Vienna PDB and Vienna AIR standards. Analytical precision for USGS 

40 (n = 14) was 0.05 for δ13C and 0.07 for δ15N. 

 The finer bone fraction, which comprised bone apatite samples, were weighed and 

chemically oxidized in a 50:50 solution of DI-H20 and sodium hypochlorite (NaOCl) and 

refreshed 2X until reaction was completed. Samples were then rinsed with DI-H20 to 

neutral pH, and 0.1 M acetic acid (CH3COOH) was added to removed secondary 

carbonates. Samples were again rinsed to neutral pH with DI-H20, freeze-dried for at 

least 72 hours, and loaded into a Kiel carbonate preparation device connected to a 

Finnigan 252 mass spectrometer in the Department of Geological Sciences at the 

University of Florida for δ13Cap, which was measured against Vienna PDB standard. 

Analytical precision for NBS 19 (n = 17) was 0.05 for δ13C. 

 

Results 

Individual isotopic results are presented in Table 4.1. Of the 25 samples, 19 from 

Chelechol ra Orrak, three from Koror Quarry, and the individual from Peleliu all yielded 

C:N ratios that were considered acceptable for analysis (total N = 23). Bone collagen 

(δ13Cco) values for Chelechol ra Orrak averaged -15.9‰ (±0.83), ranging from -17.2‰ to 

-14.9‰, while δ15N values averaged 11.0‰ (±0.89), ranging from 9.0‰ to 12.6‰. Bone 

apatite (δ13Cap) values averaged -8.7‰ (±0.82), ranging from -9.9‰ to -6.9‰. When all 
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23 samples are pooled, δ13C bone collagen values averaged -14.8‰ (±0.28), ranging 

from -17.2‰ to -14.5‰; δ15N values averaged 11.4‰ (±0.16), ranging from 9.0‰ to 

12.6‰; and bone apatite δ13C values averaged -7.3‰ (±1.83), ranging from -12.9‰ to -

5.2‰. δ13Cap-co spacing averaged 7.2‰ (±0.94), ranging from 5.8‰ to 9.2‰ for the 

Chelechol ra Orrak individuals, and 7.5‰ (±1.77), ranging from 5.8‰ to 9.5‰ for the 

pooled sample.  

 Sex could only be determined for nine Chelechol ra Orrak individuals, who 

represent five females and four males. One of the males yielded a poor C:N ratio and was 

excluded from analysis. Summary statistics for the remaining eight samples are presented 

in Table 4.2. Females yielded slightly higher δ13C values, with an average δ13C bone 

collagen value of -16.24‰ (±0.93) compared to -16.7‰ (±0.92) for males, and bone 

apatite δ13C values averaged -9.9‰ (±0.26) for females and -8.9‰ (±0.55) for males. 

∆13Cap-co spacing averaged 7.5 (±0.53) and 7.95 (±0.07) for females and males, 

respectively. Males yielded slightly higher δ15N values, averaging 11.4‰ (±0.32) 

compared to a female average of 11.1‰ (±0.91).  

 Similarly, only seven samples could be assigned to specific age categories 

(adolescent, young adult, middle adult, and old adult, after Buikstra and Ubelaker 1994), 

one of which was excluded from analysis due to low collagen yield and an unacceptable 

C:N ratio. The remaining Chelechol ra Orrak samples belonged to adult individuals but 

could not be assigned to more specific categories. When all Chelechol ra Orrak adults are 

pooled into one category, δ13Cco and δ15N bone collagen values averaged -15.8‰ (±0.76) 

and 11.1‰ (±0.92), respectively, while δ13Cap bone apatite and ∆13Cap-co spacing average 

-9.25 (±0.07) and 7.95 (±0.07), respectively (Table 4.3). The two adolescents averaged 

slightly lower δ13Cco and δ15N values, -17.0‰ (±0.28) and 10.65 (±0.49), respectively, 

and bone apatite δ13Cap values of -9.0 (±0.28), and ∆13Cap-co spacing averaging 8.0‰ 

(±0). When the samples that can be further subdivided to age categories, including young, 

middle, and old adult, are compared, there is some slight variation across groups (Table 

4.3). However, the middle and old adult categories are each represented by one person, 

and two females are present in the young adult category. As such, some of the variation 

that may appear to be due to age-related differences may instead be biased by sex or 

small sample size. 
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Table 4.1.  Isotopic values for individuals sampled from Chelechol ra Orrak, Peleliu, and Koror Quarry. Italicized samples 
were not used because of unacceptable C:N ratios and low collagen yields. (Note: each sample represents a single individual.) 

Sample Provenience UF BCL# 
(collagen) 

UF BCL# 
(apatite) Element Sex Age at 

Death 
14C Date 
(cal BP) 

d13Ccol     
(‰, 

VPDB) 

d15Ncol   
(‰, 
AIR) 

%C %N C:N 
d13Cap     
(‰, 

VPDB) 
D13Cap-col 

Chelechol ra Orrak 

1 
Test Unit 4, 

Layer 10 1205 242 os coxa Male Adult 
2845-
2340  -15.6 11.5 17.42 6.32 3.2 -8.3 7.3 

2 
Test Unit 1, 

Layer 9 1206 243 tibia Female Adult 
2760-
1420 -14.9 12.6 12.57 4.27 3.4 -8.8 6.1 

3 
Test Unit 1, 

Layer 9 1207 244 long bone unknown Adult 
2760-
1420 -15.0 12.3 12.68 4.45 3.3 -6.9 8.1 

4 
Test Unit 1, 

Layer 8 1208 245 long bone unknown Adult 
2950-
2010 -15.6 11.8 11.63 4.00 3.4 -6.9 8.6 

5 
Test Unit 1, 

Layer 8 1209 246 metatarsal unknown Adult 
2950-
2010 -16.6 11.4 7.74 2.69 3.4 -7.4 9.2 

1A E1S5 2242 1176 humerus unknown Adult N/A -15.0 9.0 25.49 9.07 3.3 -8.9 6.1 

2A E1S5 2243 1177 humerus unknown Adult N/A -15.7 11.8 34.26 11.87 3.4 -9.9 5.8 

3A E1S5 2244 1178 humerus unknown Adult N/A -15.0 11.2 34.89 12.15 3.4 -8.5 6.5 

4A E1S5 2245 1179 humerus unknown Adult N/A -15.6 10.0 30.85 10.85 3.3 -9.1 6.5 

5A E1S5 2246 1180 humerus unknown Adult N/A -16.0 9.7 27.81 10.07 3.2 -9.3 6.7 

6A E1S5 2247 1181 humerus unknown Adult N/A -14.9 11.5 35.26 12.09 3.4 -8.5 6.4 

7A E1S5 2248 1182 humerus unknown Adult N/A -15.9 11.2 34.49 12.06 3.3 -9.2 6.8 

8A E1S5 2249 1183 humerus unknown Adult N/A -15.2 10.6 N/A N/A N/A -8.4 6.8 

11 
E3S1-E3S2, 

Layer 10 3046 3046 rib Female 
Young 
Adult failed -15.7 10.5 29.30 10.02 3.4 -9.0 6.8 

13 
E1S5-W1S5, 
Layer 10 3047 3047 rib Female 

Young 
Adult 

2495-
2340* -17.2 11.1 29.37 10.13 3.4 -9.4 7.8 

14 
E1S4-W1S4, 

Layer 10 3048 3048 rib Female Old Adult 
2765-
2690* -16.6 10.9 36.82 13.18 3.3 -9.2 7.4 

15 
E2S2-E2S1, 

Layer 10 3049 3049 rib Male Adolescent 
2480-
2325* -17.2 11.0 21.37 6.85 3.6 -9.2 8.0 

16 

E1S5/E2S5-
E1S4, Layer 

10 3050 3050 rib Male 
Middle 
Adult 

2465-
2315*  11.6 28.82 10.14 3.3 -9.3 7.9 
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Table 4.1, continued.  
Sample Provenience UF BCL# 

(collagen) 
UF BCL# 
(apatite) Element Sex Age at 

Death 
14C Date 
(cal BP) 

d13Ccol     
(‰, 

VPDB) 

d15Ncol   
(‰, 
AIR) 

%C %N C:N 
d13Cap     
(‰, 

VPDB) 
D13Cap-col 

Chelechol ra Orrak 

19 
E1S5-E1S4, 

Layer 10 3051 3051 rib Male 
Young 
Adult 

2425-
2300* -20.8 2.2 9.14 2.89 3.7 -9.3 11.5 

21 
E1S5-E1S4, 

Layer 10 3052 3052 rib Female Adolescent 
2715-
2465* -16.8 10.3 4.37 12.96 3.5 -8.8 8.0 

mean        -15.9 11.0    -8.7 7.2 

std.dev.        0.83 0.89    0.82 0.94 
               

Peleliu 

6 
Trench 1, 
Unit 15 1210 247 long bone unknown Adult  -14.8 10.8 23.09 8.07 3.3 -12.9 1.9 

Koror Quarry 

7 

Site 30, 
Chamber 10, 

Fea. 1 1211 248 long bone unknown Adult    2.76 0.28 ### -2.8  

8 
Chamber 7, 

Fea. 1 1212 249 long bone unknown Adult  -15.1 11.5 16.60 5.77 3.4 -8.6 6.4 

9 

Site 30, 
Chamber 1, 

Fea. 1 1213 250 long bone unknown Adult 
1180-
980 -14.7 11.2 27.73 10.02 3.4 -5.2 9.5 

10 Chamber 3 1214 251 long bone unknown Adult  -14.5 11.4 24.41 8.76 3.4 -8.1 6.5 

mean        -14.8 11.4    -7.3 7.5 

std.dev.               0.28 0.16       1.83 1.77 

UF BCL = Bone Chemistry Lab, Department of Anthropology, University of Florida 
All radiocarbon dates were calibrated using OxCal 4.2 and are presented with 95% probability (2). A 50% Marine13 calibration curve was 
applied to bone dates to account for marine dietary contributions. 
Dates marked with an * are direct burial dates. All others presented are associated date ranges from the same provenience as individual sampled, 
when available.  
Adult age was assigned to the following categories following Buikstra and Ubelaker (1994): Adolescent (12-20 yrs.), Young Adult (20-35 yrs.), 
Middle Adult (35-50 yrs.), and Older Adult (50+ yrs.).  
Provenience crossing multiple units is listed from head to foot.  
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Table 4.2. Descriptive statistics for isotopic values from Chelechol ra Orrak by sex. 

Sex n 
Mean !13Ccol 

(±1 SD) 
(‰, VPDB) 

Mean !15Ncol      
(±1 SD) 

(‰, AIR) 

Mean !13Cap         
(±1 SD) 

(‰, VPDB) 

Mean "13Cap-col     
(±1 SD) 

(‰, VPDB) 

Females 4 -16.24 (±0.93) 11.1 (±0.91) -9.0 (±0.26) 7.2 (±0.78) 

Males 3 -16.7 (±0.92) 11.4 (±0.32) -8.9 (±0.55) 7.73 (±0.38) 

Unsexed 12 -15.5 (±0.54) 10.95 (±1.01) -8.45 (±1.00) 7.05 (±1.09) 

 

 

Table 4.3. Descriptive statistics for isotopic values from Chelechol ra Orrak by age. 

Age n 
Mean !13Ccol       

(±1 SD) 
(‰, VPDB) 

Mean !15Ncol       
(±1 SD) 

(‰, AIR) 

Mean !13Cap          
(±1 SD)    

(‰, VPDB) 

Mean "13Cap-col     
(±1 SD) 

(‰, VPDB) 

Adolescents 2 -16.6 (±0.63) 10.7 (±0.37) -9.1 (±0.26) 7.5 (±0.53) 
Young 
Adults 2 -16.45  (±1.06)  10.8 (±0.42) -9.2 (±0.28) 7.3 (±0.71) 

Middle 
Adults 1 -17.2 11.6 -9.3 7.9 

Older 
Adults 1 -16.6 10.9 -9.2 7.4 

Adults 17 -17.2 (±0) 11.3 (±0.42) -9.25 (±0.07) 7.95 (±0.07) 

 
 
 When all three sites are compared, the individual from Peleliu exhibits lower 

δ13Cap and δ15N values and lower ∆13Cap-co spacing in contrast to the Chelechol ra Orrak 

and Koror Quarry samples (Figure 4.1). Typically, low ∆13Cap-co spacing suggests a 13C-

enriched diet of enriched marine protein supplemented with terrestrial C3 carbohydrates, 

while more intermediate spacing is indicative of monoisotopic diets.  

 
Discussion 

Generally, the results are consistent with a diet that is primarily marine based with 

a variety of terrestrial plants, as evidenced by elevated δ13Cco and δ15N values from bone 

collagen (Figure 4.2) (Kellner and Schoeninger 2007). Although site-specific baseline 

data are not yet available for Chelechol ra Orrak, dietary baselines have been published 

for both modern and prehistoric plants and animals from the western Pacific (Kinaston et 

al. 2013a, 2014a).  
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Figure 4.1. Top to bottom: δ13C collagen versus apatite values; δ13C collagen versus δ15N 
collagen values; δ13C collagen-apatite spacing versus δ15N collagen values. 
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Figure 4.2. δ13C collagen and δ13C apatite data plotted against regression model 
developed by Kellner and Schoeninger (2007).  
 
 
 

Additionally, Ambrose et al. (1997) generated modern baseline data from a 

number of faunal and botanical taxa from Guam and Yap (Figure 4.3). When compared 

to δ13C values for fruit bats (-19.8‰), a proxy for a 100% terrestrial diet, δ13Cco values 

for individuals from all three Palauan sites are significantly less negative, suggesting a 

major contribution of marine protein. Instead, diets are more in line with baseline data 

that include modern marine shellfish, such as scallops, oysters, and cowries reported for 

Vanuatu (Kinaston et al. 2014a). When δ13Cco values are combined with δ15N values, 

these results support a diet that includes taxa from reef and inshore environments. 

Elevated δ13Cap values for bone apatite suggest some 13C-enriched source of 

carbohydrate, which may be due to consumption of marine plants, such as kelp or 

seaweed, or perhaps sugarcane. Although Kinaston et al. (2013a) considered sugarcane 

consumption unlikely as a dietary staple for Vanuatu, Froehle et al. (2012) reanalyzed 

data from Ambrose et al. (1997) and argued that the sample from Saipan is more 

consistent with consumption of sugarcane rather than seaweed.  
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Figure 4.3. Mean δ13C collagen versus mean δ15N collagen values for Chelechol ra Orrak 
and common Pacific Island dietary resources. Values taken from modern samples 
analyzed in Kinaston et al. 2014a. 

 
 
A diet focused on marine protein, however, is consistent with what has been 

observed in the faunal record, where assemblages tend to be dominated by mollusks and 

finfish remains (Clark 2004, Clark et al. 2006, Fitzpatrick 2003c, Fitzpatrick et al. 2011, 

Ono and Clark 2012). Shellfish assemblages at Rock Island sites, including stone money 

quarries and stonework villages, contain taxa commonly found in intertidal and shallow 

reef environments, demonstrating their importance for long-term survival (Carucci 1992, 

Fitzpatrick 2003b). At Chelechol ra Orrak the vertebrate faunal assemblage is dominated 

by fish from primarily nearshore reef and lagoon environments, including parrotfish 

(Scaridae), wrasses (Labridae), and surgeonfishes (Acanthuridae); however, these 

remains are associated with occupation of the site after burial activity had ceased and 

their ubiquity may be in part due to preservation bias (Fitzpatrick et al. 2011, Fitzpatrick 

and Kataoka 2005). The faunal assemblage from Ulong Island, which is contemporary 
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with burial activity at Chelechol ra Orrak, also consists of inshore taxa during the earliest 

phases of occupation that include parrotfish (Scaridae), surgeonfishes (Acanthuridae), 

triggerfish (Balistidae), sea bass (Serranidae), emperorfish (Lethrinidae), and eel 

(Muraenidae). Additionally, large bivalves such as Tridacna gigas and Hippopus 

hippopus were targeted during the early phases of occupation (Ono and Clark 2012). 

Together, these suggest that early foraging likely would have focused primarily on 

inshore fish and mollusk taxa. 

 The dental health of individuals from Chelechol ra Orrak is also suggestive of a 

diet based on marine protein with relatively low contributions of carbohydrates. 

Preliminary analysis of dental pathology found low caries rates, light tooth wear, and low 

rates of antemortem tooth loss. Enamel chipping is also frequent, particularly in the 

posterior teeth (Nelson et al. 2015). While low caries rates are typically associated with 

groups that consume low levels of cariogenic foods, such as starchy carbohydrates, the 

majority of the burials excavated from Chelechol ra Orrak to date exhibit staining from 

the habitual chewing of betel nut (Areca catechu). This practice has been shown to create 

cariostatic conditions in the mouth, possibly due to antimicrobial properties in tannins 

found in the plant or as a result of increased saliva production while chewing (de Miranda 

et al. 1996, Fitzpatrick et al. 2003, Howden 1984, Trivedy et al. 2002). Therefore, it is 

likely that low caries rates can be attributed to some combination of habitual betel nut 

chewing and a diet low in cariogenic foods. 

 The slight increases in mean δ13Cco bone collagen and δ13Cap apatite values for 

females and δ15N bone collagen values for males suggest that females may have 

consumed fewer marine protein resources from slightly lower trophic levels (Table 4.2). 

There is also a broader range in all values for females, which might suggest that females 

ate a more varied diet. However, the female ranges of values overlaps with males (e.g., 

Chelechol ra Orrak Burial 13), suggesting these differences may instead be a result of the 

small sample size of individuals of known sex rather than sex-based dietary distinctions. 

Sex- or age-based differences in diet may become more apparent as further individuals 

are analyzed, but the lack of observable differentiation in mortuary practice between 

individuals buried at Chelechol ra Orrak also suggests that demographic differences in 

status are unlikely or that access to specific food resources is dictated by other factors. 
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The only distinguishing grave goods found thus far at Chelechol ra Orrak are pearl shell 

scrapers associated with some females, and a single male individual that was found with 

mollusk shells and a single pearl shell scraper. There does not appear to be any apparent 

relationship between individuals with associated grave goods and an isotopic signature 

that is distinct from the rest of the assemblage, but this is also likely due to the fact that 

only one individual with associated grave goods has been sampled thus far. This is in 

contrast to what has been observed at the Lapita sites of Teouma, Vanuatu, where males 

displayed a higher range of δ13C and δ15N values and higher δ15N values compared to 

females, and at Watom, where females display higher δ15N values (Kinaston et al. 

2015a). A number of possibilities have been presented to explain this trend at Watom, 

including gendered patterns of food acquisition or distribution, whereby males were 

consuming more varied foods and higher-trophic-level protein sources; maternal stress 

and poor health; the presence of female migrants from areas with distinct diet; or 

temporal changes in diet between the Middle and Late Lapita periods (Kinaston et al. 

2014a, 2015a). Due to the broad time frame that encompasses mortuary activity at 

Chelechol ra Orrak, the possibility that temporal variation is present at the site is an 

important consideration. However, at this point in time, direct radiocarbon dates are only 

available for six of the individuals sampled, and when associated dates from the same 

provenience are included (available for an additional five individuals), too much temporal 

overlap is present to satisfactorily explore this possibility (Table 4.1). 

When compared to the Chelechol ra Orrak samples, the individuals from Koror 

Quarry display slightly higher δ13C values for both the bone collagen and apatite fractions 

(Figure 4.2). This could be attributed to consumption of fewer marine protein resources, 

or possibly increased consumption of C3 plants, but is more likely due to the small 

sample size representing Koror Quarry. The individual from Peleliu displays noticeably 

lower δ13Cap apatite in comparison to both the Koror Quarry and Chelechol ra Orrak 

individuals, though given the lack of provenience information associated with this 

individual, the variation in δ13C values could be explained by temporal differences that 

reflect a historic period diet. 
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Table 4.4. Mean bone collagen δ13C and δ15N values from other prehistoric Pacific Island 
sites (based on Kinaston and Buckley 2013); n reflects the number of bone samples that 
were considered acceptable for analysis based on C:N ratios. 

Site/Location n 
Radiocarbon 
Dates 
(cal. BP) 

Mean 
δ13Ccol 
(‰, 
VPDB) 

Mean 
δ15Ncol 
(‰, 
VAIR) 

References 

Chelechol ra Orrak, Palau 19 3000-1800 -15.9 11.0 This chapter 
Koror Quarry, Palau 3 2500 -14.8 11.4 This chapter 
Ureia and Moturakau, 
Aitutaki, Cook Islands 18 740-100 -15.8 11.5 Allen and Craig 2009 

Watom, Bismarck 
Archipelago 13 2800-2350 -18.1 11.2 Kinaston et al. 2015; Leach 

et al. 2003 
Bourewa, Fiji 21 750-150 -15.1 8.6 Stantis et al. 2015a 
Cikobia Island, Fiji 9 150-100 -17.2 9.5 Valentin et al. 2006 
Lau Group, Fiji 9 2760-280 -16.3 9.4 Jones and Quinn 2009 
Olo and Naitabale Waya 
Island, Fiji 13 2700-2300 -15.0 9.5 Field et al. 2009; Nunn et al. 

2007 
Nokonoko and Bukusia, 
Sigatoka Valley, Fiji 5 1300-280 -19.5 8.7 Field et al. 2009 

Sigatoka Sand Dunes, Fiji 22 1435-1300 -16.3 9.3 Phaff et al. 2016 
Kapingamarangi Atoll 2 post 700 -15.7 20.1 Leach et al. 2003 
various sites, Rota, 
Mariana Islands 10 1000- -18.1 9.0 Ambrose et al. 1997 

various sites, Rota, 
Mariana Islands 12 2000-250 -18.1 9.0 Pate et al. 2001 

Agana, Guam, Mariana 
Islands 5 1000-600 -17.4 9.5 Ambrose et al. 1997 

Afetna, Saipan, Mariana 
Islands 10 1500-1300 -18.7 9.5 McGovern-Wilson and 

Quinn 1996 
Duty Free, Saipan, 
Mariana Islands 4 700-600 -18.7 7.5 Ambrose et al. 1997 

MacHomes and Nansay, 
Saipan, Mariana Islands 5 1000- -18.1 8.4 Ambrose et al. 1997 

Hanamiai, Marquesas 
Islands 4 925-100 -16.4 18.8 Richards et al. 2009 

Kone, New Caledonia 1 2110-1990 -12.2 11.1 Pietrusewsky et al. 1998 
Tina, New Caledonia 2 850 -15.1 9.8 Leach et al. 2003 
Nebira, Papua New Guinea 28 800-300 -16.7 9.5 Kinaston et al. 2013 
various sites, New Zealand 10 500 - -17.8 13.0 Leach et al. 2003 

Wairau Bar, New Zealand 28 650- -17.5 15.9 Kinaston et al. 2013; Leach 
et al. 2003 

various sites, Rapa Nui 41 800- -18.5 13.4 Commendador et al. 2013 
various sites, Rapa Nui 107 800- -18.4 13.4 Polet and Bocherens 2016 
Anakena and Ahu Tepeu, 
Rapa Nui 10 550 - -18.6 14.5 Jarman et al. 2017 

Fatu-ma-Futi, Tutuila, 
American Samoa 7 440-110 -18.0 11.3 Valentin et al. 2011 

Lauli-i, Tutuila, American 
Samoa 6 535-380 -18.2 11.2 Valentin et al. 2011 

Namu, Taumako, Solomon 
Islands 142 675-295 -16.5 11.6 Kinaston and Buckley 2017; 

Kinaston et al. 2013 
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Table 4.4, continued. 

Site/Location n 
Radiocarbon 
Dates 
(cal. BP) 

Mean 
δ13Ccol 
(‰, 
VPDB) 

Mean 
δ15Ncol 
(‰, 
VAIR) 

References 

Atele, Tonga 41 1000-280 -17.6 9.3 Stantis et al. 2015b 
Talasiu, Tonga 16 2700-2600 -15.7 10.7 Herrscher et al. 2018 
Teouma, Vanuatu 49 3000-2800 -15.7 12.1 Kinaston et al. 2014a 
Uripiv, Vanuatu 27 2800-150 -17.6 8.3 Kinaston et al. 2014b 
Vao, Vanuatu 4 2300-1900 -17.9 8.7 Kinaston et al. 2015b 

 

 

 In contrast to other Micronesian paleodietary studies conducted in the Mariana 

Islands, the Palau signature observed in these data reflects a diet predominantly of 13C- 

and 15N-enriched foods that lead to elevated δ13C and δ15N values, suggesting a greater 

reliance on marine resources among Palauans (Figure 4.4). Ambrose et al. (1997) also 

analyzed δ13Cap and ∆13Cap-co and demonstrated some inter-island variability in the 

Marianas archipelago. δ13Cap values from bone apatite from Saipan are most similar to 

those from Palau, though other sites sampled from Guam and Rota are also broadly 

similar to results reported here, but with lower δ15N values. However, this may be due to 

a temporal difference, as the majority of the individuals sampled from the Marianas date 

to the Latte Period, which postdates 1000 BP and, as previously mentioned, is typically 

associated with archaeological evidence for agricultural intensification and a shift to 

more targeted fishing of coastal reef and lagoon habitats (Carson 2012, Pate et al. 2001).  

When compared to contemporary Lapita groups, the individuals at Chelechol ra 

Orrak exhibit broadly similar δ13Cco values to what has been observed at Teouma in 

Vanuatu, where individuals also reflect a marine-based diet consisting primarily of reef 

fish and nearshore shellfish, and Talasiu in Tonga (Figure 4.5, Table 4.4) (Herrscher et al. 

2018, Kinaston et al. 2014a, 2015b, Valentin et al. 2010). At Teouma, however, the 

presence of terrestrial faunal remains such as pig and chicken suggest that marine foods 

were likely supplemented by translocated resources (Kinaston et al. 2014a, Valentin et al. 

2010). Conversely, on Watom Island in the Bismarck Archipelago, Lapita individuals 

instead reflect a diet based in terrestrial protein and C3 plants supplemented by some 

marine foods. This has largely been attributed to the differences in Near and Remote 

Oceanic ecology and biogeography, as Near Oceania contains a wider variety of edible 
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terrestrial resources as well as islands larger in area that would have had available land 

for horticulture and animal husbandry (Kinaston et al. 2015a, Kinaston and Buckley 

2013).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Mean δ13C collagen versus δ15N collagen values for human bone samples 
from western Micronesia, including Chelechol ra Orrak, other sites in Palau (Koror 
Quarry), and the Marianas Islands. Values from Table 4.4. 
 
 

The reliance on marine protein resources seen at Chelechol ra Orrak and Teouma 

is broadly similar to what has been observed among other groups in Remote Oceania, 

including later and post-Lapita sites on Vanuatu, Fiji, Tonga, the Cook Islands, and the 

Marquesas Islands (Allen and Craig 2009, Field et al. 2009, Jones and Quinn 2009, 

Richards et al. 2009, Stantis et al. 2015a). However, there does appear to be a temporal 

trend toward increasing amounts of terrestrial plant and animal foods over time, 

especially among later and post-Lapita groups, which may be explained by a delay in 

establishing crops following settlement (Kinaston et al. 2015b).  
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Figure 4.5. Mean δ13C collagen versus δ15N collagen values for human bone samples that 
are contemporary with Chelechol ra Orrak. Micronesia samples include Koror Quarry 
from Palau and Afetna, Saipan. Lapita sites include Teouma and Vao, Vanuatu, Kone, 
New Caledonia, Talasiu, Tonga, Watom, Bismarck Archipelago, and Olo and Naitabale, 
Waya Island, Fiji. Values from Table 4.4. 
 
 
Conclusion 

Although baseline faunal data are needed, these preliminary results suggest that 

early inhabitants of Palau took advantage of readily available and diverse marine 

resources, including inshore marine protein and possibly seaweeds. Protein consumption 

appears to be relatively similar to what has been observed among Lapita populations, 

suggesting that both groups primarily relied on endemic resources following initial 

settlement in Remote Oceania despite the presence of translocated terrestrial fauna at 

Lapita sites (Kinaston et al. 2013a, Kinaston and Buckley 2013, Valentin et al. 2010). 

However, demographic patterning that has been observed at Teouma is not present 

among the Palauan samples, which currently lack any dietary distinctions based on sex 

and age (Kinaston et al. 2014a, 2015a). While this could be the result of differences in 

gendered patterns of resource distribution or health between Lapita and non-Lapita 
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groups, larger sample sizes of individuals of known sex and age, as well as a better 

understanding of how gender was represented in early Palauan groups, are needed to 

more fully investigate this possibility.  

 While it appears that endemic marine resources played a significant role in early 

Palauan diets, plants such as the areca palm (Areca catechu) were also important and led 

to habitual cultural behaviors that are still practiced today. In the next chapter, I look at 

possible impacts of habitual betel nut chewing on skeletal and dental health, including its 

role as a possible cause of osteoarthritis in the temporomandibular joint (TMJ).   
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CHAPTER V 
 

TEMPOROMANDIBULAR JOINT OSTEOARTHRITIS AT 
CHELECHOL RA ORRAK 

 
 

From: J.H. Stone, G.C. Nelson, and S.M. Fitzpatrick. 2020. Temporomandibular Joint 
Osteoarthritis at Chelechol ra Orrak, Palau. International Journal of Paleopathology 28: 20-31. 
 
 

Introduction 
Paleopathological studies of joint use and degeneration can provide a biocultural 

perspective on habitual activities practiced in the past (Jurmain 1991, Roberts and 

Manchester 2007). For example, processing fibrous plant materials using the dentition 

would have required substantial involvement of the jaw and associated 

temporomandibular joints (TMJ). In the case of colonization studies in the Pacific, where 

a number of habitual fibrous chewing activities are well known, such information has the 

potential to shed light on the consequences of cultural practices following initial 

settlement. In this chapter, I investigate the potential relationship between osteoarthritis 

of the TMJ (TMJ-OA) and the chewing of betel nut (Areca catechu), a common practice 

in Palau, at Chelechol ra Orrak.  

The TMJ is essential to the human body because of its necessity in accomplishing a 

wide range of important functions, ranging from chewing to swallowing and speech 

(Levangie and Norkin 2001, Piette 1993). As a result of the joint’s frequent use, disorders 

affecting the TMJ are widespread and have been the subject of much clinical research. 

The antiquity of TMJ disorders, such as osteoarthritis (OA), have also been demonstrated 

in archaeological populations (e.g., Fujita 2014, Griffin et al. 1979, Lovell 2014, 

Richards and Brown 1981, Tanaka et al. 2004). As such, the paleopathological record is 

uniquely situated to contribute to our understanding of TMJ osteoarthritis (TMJ-OA) by 

adding a deep time perspective to fluctuations in the frequency of bony changes across 

populations. However, paleopathologists also face an inherent challenge in diagnosing 

and assessing the impact of pathological conditions when compared to their clinical 

research counterparts. Critical information, such as the presence of additional soft tissue 

that comprises portions of the joint, patient history, or symptoms experienced, is rarely, if 
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ever, available. Studies of OA commonly cite activity and general joint use as playing a 

major role in the etiology of these disorders, but our understanding of activity in the 

archaeological record is challenging given the extremely limited preservation of soft 

tissue. Furthermore, both clinical and paleopathological research has demonstrated that 

the factors contributing to OA are diverse and can include sex, age, genetics, and trauma, 

among others (Sandell 2012, Waldron 2008, Weiss and Jurmain 2007).  

In the case of the TMJ, frequent activities such as chewing, tool use, and speech can 

all impact the joint. However, in the archaeological record, the extent to which 

specialized parafunctional activities impacted a joint can be difficult to identify. One 

example of an activity that leaves an observable signature is betel nut (Areca catechu) 

chewing, which is a substance used throughout parts of Southeast Asia and the Pacific 

Islands for its stimulant properties. Habitual betel nut chewing requires substantial TMJ 

involvement and leaves characteristic staining on the dentition that typically preserves 

well in archaeological contexts. 

Among some Pacific Island populations, the processing and consumption of 

psychoactive substances, such as betel nut and kava (Piper methysticum), is an activity 

with demonstrated antiquity, but little archaeological or epidemiological research has 

focused on the potential impact on the TMJ. While the relationship between kava 

processing and TMJ-OA has been evaluated in a prehistoric Fijian population (Visser 

1994), the anatomical effects of betel nut have primarily focused on dental health in 

modern populations (e.g., Trivedy et al. 2002). At Chelechol ra Orrak, both a high 

frequency of TMJ-OA related bony changes and evidence for habitual chewing of betel 

nut in the form of tooth staining have been observed, thus providing a unique opportunity 

to explore this potential relationship. Because betel nut use is widespread throughout 

Southeast Asia and parts of the Pacific (Fitzpatrick et al. 2003; Zumbroich 2008), a better 

understanding of the substance’s impact on TMJ health may influence clinical 

approaches to TMJ-OA treatment in living populations (Trivedy et al. 2002). 

Additionally, because OA is known to be multifactorial, other potential contributing 

factors, including tooth wear, antemortem tooth loss (AMTL), joint surface morphology, 

and demography are also evaluated.  
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Anatomy of the Temporomandibular Joint 
 The TMJ is a synovial joint comprised of three elements: the mandibular condyle, 

the articular eminence of the temporal bone, and an articular disc of dense fibrous tissue 

that subdivides each joint into two synovial cavities (Figure 5.1). The articular eminence, 

which forms the posterior surface of the zygomatic arch and the anterior surface of the 

mandibular fossa, is the non-moveable component of the joint and typically forms a 

concave sloping shape in profile. The mandibular condyle, or the moveable portion of the 

joint, can vary between individuals in size, shape, and angulation, but is typically 

elliptical in form when viewed superiorly (Herring 2003, Kreutziger and Mahan 1975, 

Piette 1993). The joint is unique in a number of ways. First, while the body contains two 

distinct TMJs (on the right and left side of the body), unlike most other joints, the 

individual sides cannot move independently. Second, movement of the joint is inherently 

associated with use of the dentition, resulting in greater repetitive use compared to other 

joints (Kreutziger and Mahan 1975, Piette 1993). Lastly, the joint surfaces are covered in 

fibrocartilage rather than the hyaline cartilage that is characteristic of synovial joints. 

Because fibrocartilage can remodel, joints with this tissue are more capable of 

withstanding repetitive high stress (Herring 2003, Levangie and Norkin 2001).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Illustration of temporomandibular joint, showing the elements discussed in 
the text.  
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TMJ disorders and factors 

 TMJ disorders comprise a group of musculoskeletal issues that together are the 

second most commonly reported category of musculoskeletal pain (Shahidi et al. 2018). 

The disorders can vary significantly in prevalence across populations, and symptoms 

present in a wide variety of forms, ranging from myofacial pain to disc displacement, or 

OA, which is the most common pathological condition affecting the joint (Tanaka et al. 

2008). Osteoarthritis of the TMJ (TMJ-OA) can trigger bony changes to the joint in 

response to a breakdown of cartilage. There are several factors contributing to the 

development of TMJ disorders, including demography, genetics, joint morphology, and 

activity. Clinical research suggests that adult women most frequently experience TMJ-

related inflammation and pain, and that TMJ-OA increases in frequency and severity with 

age due, in part, to hormonal changes and age-related degeneration of articular disc 

cartilage and osseous tissue (Shi et al. 2017, Takano et al. 1999, Warren and Fried 2001, 

Yadav et al. 2018). Hormonal variation, especially of estrogen levels, has also been 

linked to sex differences in TMJ-OA prevalence (Magnusson et al. 2010, Mazzetto et al. 

2014, Ribeiro-Dasilva et al. 2009, Wang et al. 2008, Yadav et al. 2018).  

 The role of joint morphology in TMJ disorder prevalence is complex. Clinical 

studies have evaluated potential correlations between mandibular condyle morphology 

and TMJ-related disorders using both computer tomography (CT) and magnetic 

resonance imaging (MRI). While some associations have been observed, no significant 

correlations have been found (Cruz et al. 2017). Similar studies, focusing on articular 

eminence shape, indicate that despite a slight tendency for disc displacement to occur 

more frequently in joints with steep slopes, there does not appear to be a significant 

relationship (Hirata et al. 2007, Kurita et al. 2000, Rabelo et al. 2017, Shahidi et al. 

2013). However, both MRI and experimental studies have identified a relationship 

between disc displacement and degenerative changes, but whether bony changes are a 

predisposing factor for disc displacement or vice versa, is unclear (Kurita et al. 2000, 

Yamada et al. 2004, Yasa and Akgul 2017).  

 Due to TMJ involvement in use of the dentition, various tooth-related factors, 

including AMTL and tooth wear, appear to contribute to the prevalence of TMJ 

disorders. The loss of posterior support through antemortem molar loss has been 
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associated with increased OA severity, but longitudinal clinical and autopsy studies have 

not found significant correlations (Magnusson et al. 2010, Wang et al. 2009). Instead, 

there appears to be an indirect relationship, whereby AMTL can lead to drifting of the 

remaining teeth that results in changes in occlusion and the direction of mechanical 

loading on the mandibular condyle. This can lead to increases in temporomandibular 

disorders, including TMJ-OA (Kamelchuk and Major 1995, Wang et al. 2007, 2009, 

Whittaker et al. 1985). A study analyzing mandibular shape using three dimensional 

geometric morphometrics found that the combination of age and AMTL together have an 

effect on mandibular ramus shape, and the effect may further increase under high 

biomechanical stress (Jung et al. 2019). Similarly, studies of the association between 

tooth wear and the presence and severity of TMJ-OA remain inconclusive. This may be 

due to indirect consequences of varying dental attrition, such as changes in occlusion, and 

the effects of age and activity-related factors (Eversole et al. 1985, Griffin et al. 1979, 

Magnusson et al. 2008, Richards and Brown 1981). Therefore, it appears that changes in 

occlusion, as a result of tooth loss, wear, or mandibular shape change, may play a role in 

the etiology of TMJ-OA (Kamelchuk and Major 1995, Marklund and Wanman 2010, 

Solberg et al. 1986).  

 Lastly, mechanical factors, including trauma and parafunctional activities, have 

been associated with the presence of TMJ-OA. Trauma to the TMJ and surrounding 

tissues can result in inflammation and mechanical alteration to the disc, which can later 

lead to joint alteration and other arthritic changes. Additionally, excessive stress and joint 

loading has been shown to contribute to disc degeneration (Chisnoiu et al. 2015, Tanaka 

et al. 2008, Yun and Kim 2005). Parafunctional activities, such as repetitive chewing or 

grinding, can result in hyperactivity of the lateral pterygoid muscle, which inserts directly 

at the TMJ and has been found associated with TMJ-OA (Israel et al. 1999, Tanaka et al. 

2008). Together, these results suggest a complex relationship between age, sex, dental 

occlusion, and activity that contribute to both the incidence and severity of TMJ-OA.  

 

 TMJ-OA in the Archaeological Record 

 Bioarchaeological studies focused on TMJ-OA are limited, but reflect clinical and 

epidemiological results; that is, reported frequency rates vary considerably, and the 
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relationship between parafunctional activities, dental traits, and the presence of TMJ-

related osseous changes yield mixed results. For example, Lovell (2014) and Eversole et 

al. (1985) report no significant association between AMTL and TMJ-OA at Naqada in 

Egypt and in a modern American skeletal collection, respectively. In a British sample 

derived from multiple archaeological sites ranging from the Neolithic through the Late 

Medieval periods, AMTL and biological sex were not found to be associated with TMJ-

OA, but significant associations with tooth wear were identified (Hodges 1991). Griffin 

et al. (1979) examined more than 300 crania across time and from different geographical 

locations, including Bronze Age, Iron Age Romano-British, and Anglo-Saxon remains 

from England; Christian Norse from the Orkney Islands; Medieval Germany; and 

indigenous eastern Australian individuals. Results demonstrated that individuals 

exhibiting substantial tooth wear displayed an increased propensity for TMJ-OA (Griffin 

et al. 1979). The authors suggest that antemortem molar loss or malocclusion that results 

in asymmetrical tooth wear may play a role in the presence of TMJ-OA and could 

possibly be attributed to preferential chewing on one side of the mouth. Similarly, 

prolonged retention of deciduous second molars likely contributed to TMJ-OA in a Late 

Edo (late 17th to the 19th century) period individual from the Suhgen temple site in Japan 

(Fujita 2014). Most recently, a study focusing on Late Holocene hunter-gatherers from 

southern Patagonia found that age, dietary patterns, and tooth wear were not statistically 

related to the frequency of TMJ-OA, but AMTL played a role (Suby and Giberto 2019). 

Additionally, masticatory and occlusal stress resulting from terrestrial food processing 

may have contributed to TMJ-OA in these populations  

 In Oceania, research focusing TMJ-OA has been limited to populations from 

Australia and Fiji (e.g., Griffin et al. 1979, Richards and Brown 1981, Visser 1994). 

Among indigenous populations from Australia, a relationship appears was noted between 

tooth wear and TMJ-OA frequency (Richards and Brown 1981, Richards 1990, Webb 

1995). At the Sigatoka site in Fiji, high incidences of TMJ-OA in males were attributed 

to repetitive and forceful chewing behaviors, such as those associated with fibrous plant 

processing. Historic accounts of males processing kava with their teeth led the author to 

attribute the frequency of TMJ-OA to this activity, which simultaneously would have 

reduced TMJ pain due to the narcotic properties of the plant (Visser 1994).  
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The impact of parafunctional activities associated with processing and 

consumption of psychoactive substances has not been examined in detail, but habitual 

consumption of khat (Catha edulis), a small evergreen plant that is chewed for its 

stimulant effects, has been linked to TMJ-OA in habitual chewers (Almashraqi et al. 

2018, Al-Maweri et al. 2018, Alshahidi and Moaleem 2017, Hill and Gibson 1987). In 

the Andean highlands, leaves of the coca plant (Erythroxylum coca) are chewed for a 

variety of purposes, including their stimulant properties and ability to treat symptoms of 

altitude sickness (Plowman 1986). The most common skeletal evidence for coca use is 

the presence of dental conditions such as high rates of dental calculus, dark brown or 

green staining on tooth crowns, antemortem posterior tooth loss, buccal alveolar bone 

changes, and carious lesions on the cervical segments of teeth (Indriati and Buikstra 

2001). However, many of these conditions are general indicators of poor dental health 

caused by a multitude of factors. The relationship between coca and TMJ disorders has 

not been directly studied, but coca chewing was implicated as a possible etiological factor 

in the prevalence of TMJ disorders among Ecuadorian Quechua (Jagger et al. 2004).  

In the Pacific, kava is commonly consumed in Polynesia, but not in Micronesia 

except on two islands (Pohnpei and Kosrae) in the Eastern Carolines that lie more than 

1600 km east of Palau and more than 2000 km from Vanuatu, where kava is thought to 

originate. Instead, betel nut is found across the three island groups in the Western 

Caroline Islands: Palau, Yap, and the Mariana Islands, where archaeological (Carucci and 

Mitchell 1990, Douglas et al. 1997, Fitzpatrick et al. 2003b, Hocart and Fankhauser 

1996), historical (Levesque 1993, Rooney 1993), and ethnographic (Paulino et al. 2011, 

Ysaol et al. 1996) evidence attest to its widespread use for millennia.  

 

Betel Nut 
Betel nut—sometimes referred to as the areca nut—is technically a drupe produced 

by the areca palm (Areca catechu) that grows throughout Southeast Asia, East Africa, 

and parts of the Pacific. The substance is combined with slaked lime (calcium hydroxide) 

from the burning of marine shell or limestone and wrapped in pepper leaf (Piper betel) to 

create a bundle, or quid, that is then chewed for its stimulant properties (Norton 1998). 

The effects of habitual consumption on oral health vary and have been associated with 
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elevated risk of mouth and esophageal cancers, increased dental wear, and tooth loss 

(Trivedy et al. 2002). However, dental research has also suggested that tannins present in 

the plant may have antimicrobial properties, which, when combined with the increased 

saliva production associated with mastication, contribute to a cariostatic oral environment 

(de Miranda et al. 1996, Howden 1984). Betel nut also possesses antihypertensive 

properties and is used in a variety of medicinal preparations (Inokuchi et al. 1986, Perry 

1980).  

The antiquity of betel nut consumption has been demonstrated through both 

palynological and osteological evidence. While chewing betel nut does not damage the 

tooth surface, staining does occur and preserves in archaeological record (Figure 5.2). 

Dental remains with a characteristic reddish-brown stain from habitual betel nut 

consumption have been recovered from sites across Southeast Asia, Island Southeast 

Asia, and the Pacific Islands, including Vietnam, the Mariana Islands, and Palau (e.g., 

Fitzpatrick et al. 2003b, Hocart and Fankhauser 1996, Oxenham et al. 2002, Zumbroich 

2008). Paleoenvironmental evidence for betel nut in the form of Areca pollen on Palau 

have been found in soil cores dating to as early as 4250 BP (Athens and Ward 1999), 

though smaller particles are known to move within contexts and no archaeological sites 

in the archipelago predate ca. 3300 BP. As such, these earlier dates for betel nut are 

equivocal. More direct archaeological evidence for the use of betel nut in Palau is based 

on human dental remains that are characteristically stained and derived from both 

Chelechol ra Orrak and Ucheliungs (Fitzpatrick et al. 2003b, Stone et al. 2017).  
 
Methods 

Sampling 

 In order to assess the overall frequency of TMJ-OA, both the articular eminence 

of the temporal bone and the mandibular condyle were scored for each of the articulated 

burials for whom the joint surfaces were present. Additionally, temporals from isolated 

crania and isolated mandibles for whom mandibular condyles were present were also 

scored. In order to be included in this analysis, at least 50% of the articulating surface of 

the bone had to be intact. Only adult specimens were used for two reasons. First, juvenile 

remains were not expected to show arthritic changes, and second, no juvenile dental 
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remains from the Chelechol ra Orrak assemblage demonstrate the characteristic staining 

of habitual betel chewing, mirroring historical and modern restrictions of this activity for 

sub-adults. Given that the primary focus of this research is on the relationship between 

betel nut and TMJ-OA, juvenile remains were expected to be uninformative. Adults were 

primarily defined as individuals with erupted third molars, but because third molar 

agenesis has been observed with some regularity in this assemblage, if third molars were 

not present, additional osteological characteristics were used to estimate age at death (see 

below). In these instances, any individual aged to at least ~20 years old was included in 

the analysis. In order for isolated material to be included in this sample (crania and 

mandibles), each mandible required the presence of a non-repeatable element to avoid 

repetitive sampling: a right mandibular condyle. Additionally, the provenience of all 

isolated mandibles and crania of similar age and sex were recovered from different 

excavation units, rendering association of mandibles and crania with a single individual 

unlikely.  

 

Demography 

For articulated burials containing associated postcrania, sex was estimated 

through assessment of dimorphic features of the os coxa (e.g., greater sciatic notch 

morphology, presence of a ventral arc) and skull (e.g., mastoid process, nuchal crest and 

supraorbital ridge development) (Buikstra and Ubelaker 1994). Age at death was 

estimated using a combination of epiphyseal fusion, dental eruption, cranial suture 

closure, and age-related changes of the auricular surface and pubic symphysis (Buikstra 

and Ubelaker 1994). Adult remains were then assigned to age categories of Young (20-

35), Middle (35-50), and Older Adult (>50). In some cases, age at death estimates 

spanned two categories or could not be assigned to a specific age category; in these 

instances, they were labeled as “Adult” (Buikstra and Ubelaker 1994). For isolated 

mandibles, sex was estimated, when possible, using morphological characteristics (e.g., 

mental eminence, gonial eversion), while age was estimated using dental development 

and tooth wear (Scott 1979).  
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Figure 5.2. Archaeological and modern examples of the tooth staining associated with 
habitual betel nut chewing. The archaeological examples (2a-2e) are of individuals from 
Chelechol ra Orrak, while figure 2f depicts the dentition of Mr. Ngirngemengnged Hayes 
Malsol, Chief of Ngerubesang, Melekeok State, in the Republic of Palau (photo by Scott 
M. Fitzpatrick, Feb. 22, 2019). It is important to note that modern dental hygiene 
practices have impacted the degree of staining that is observable on many people that 
habitually chew betel nut today. In regard to the scoring scheme used for betel nut 
staining, Figures 2a and 2b represent a score of 5 (“very heavy”), Figures 2c and 2d 
represent a score of 4 (“heavy”), and Figure 2e represents a score of 3 (“moderate”). 
 
 
Osteoarthritis Diagnosis  

Osteoarthritis was diagnosed using the methods outlined in Rando and Waldron 

(2012), which draw on a proposed methodology by Rogers and Waldron (1995), together 
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with an additional severity scale. This approach utilizes the presence or absence of five 

morphological characteristics: eburnation, marginal osteophytes, new bone growth on the 

joint surface, porosity, and alteration to the joint contour. If eburnation is present, the 

joint is diagnosed as osteoarthritic without the need for other criteria to be present. In 

cases where eburnation is not present, two of the four remaining criteria must be 

identified in order to confirm diagnosis. When positively identified, a diagnosis of TMJ-

OA is indicated as ‘yes’; if not present, TMJ-OA is indicated as ‘no’. When diagnosed, 

severity was classified as light, moderate, or florid (severe) as illustrated in Rando and 

Waldron (2012).  

 

Joint Surface Morphology 

 Both mandibular condyle and articular eminence morphology were also scored in 

order to assess whether joint morphology might correlate with arthritic changes (Figure 

5.3). Morphology of the mandibular condyle was assigned to one of four types in the 

posterior view after Yale et al. (1966): concave, convex, flat, or rounded. Morphology of 

the articular eminence was classified by slope after Kurita et al. (2000), in which 

morphology was classified into one of four types: box, sigmoid, flattened, and deformed. 

While Kurita et al. (2000) assigned individuals to type using MRI, in this study we 

assigned types based on visual inspection of the joint profile. A box-type was defined as 

exhibiting a steep posterior slope, while gentler sloping was defined as a sigmoid-type. 

Flattened eminences displayed a fairly shallow fossa and overall flattened appearance, 

and any individual that failed to fit the three categories was defined as deformed.  

 

Dental subset and activity-related factors  

A subset of the sample comprised of individuals with associated dentition 

(hereafter referred to as the dental subset), representing 17 individuals, was selected to 

explore potential relationships between TMJ-OA and activity-related use of the dentition 

via scoring of tooth wear and betel nut staining of the tooth enamel. Tooth wear was used 

as a means for evaluating joint use and was scored using Scott (1979) on both the first 

and combined first and second molars. Any of the 17 individuals possessing associated 

first and second molars was included in this analysis. These scores were then averaged 
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for each individual and assigned to a category for statistical analysis (Table 5.1). Because 

habitual betel chewing results in staining of the tooth enamel, the degree of betel staining 

present was used as a proxy for habitual use. Staining was noted as present or absent, and 

graded on a 5–point scale based on the color and shade of stain on the enamel, as well the 

distribution across the dentition (Table 5.1). Any of the 17 individuals possessing 

associated anterior dentition was eligible to be included in this analysis. Although a 

threshold was not implemented for the number of teeth required to be included in the 

betel staining analysis, all individuals represented in this dental subset possessed at least 

10 total teeth. Instances of AMTL were also noted and have been recorded with the 

results. Because this is an exploratory analysis, Pearson correlations and Spearman’s rank 

order correlations were chosen to evaluate the potential relationships between TMJ-OA, 

age, betel nut chewing, and tooth wear on the dental subset. To test the Pearson 

correlations for significance (p = .05), a Bonferroni correction was applied. All statistical 

analyses were performed in Systat 13.  

 
 
Table 5.1. Scoring criteria for each of the variables statistically analyzed. 
 

Trait/Level 1 2 3 4 5 

TMJ-OA 
Severity* 

No 
expression Light Moderate Florid  

Betel nut 
staining 

No 
staining 
observed 

Light 
(light reddish orange 
in color; somewhat 

translucent stain 
limited to anterior 

teeth) 

Moderate 
(darker red in 
color; stain is 
opaque and 
extends to 

molars) 

Heavy 
(stain is red 
and opaque; 

affects most or 
all posterior 

teeth) 

Very Heavy 
(dark reddish 
brown, almost 
black in color; 
stain extends 
across molars) 

Tooth 
Wear** <10 10-17.99 18-25.99 ≥26  

*Scores based on figures in Rando and Waldron (2012).  
** Based on average Scott (1979) wear score for all molars for each individual. Minimum of one set of 
contiguous M1 and M2s. 
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Figure 5.3a. Categories of articular eminence morphology after Kurita et al. (2000), 
including box (A), sigmoid (B), flattened (C), and deformed (D).  Figure 5.3b. 
Categories of mandibular condyle morphology after Yale et al. (1966). The top image 
depicts the condyle from a superior view, with both anterior and posterior condyle shape 
shown as follows: concave (1), convex (2), and flat (3). The lower image depicts the 
condyle shape from a posterior view as follows: flat (1), convex (2), angled (3), and 
round (4).  
 
 
Results 
 A total of 50 individual joint surfaces comprising 23 mandibular condyles and 27 

articular eminences that represent a minimum of 22 adult individuals fit the criteria for 

analysis. Of the 23 mandibular condyles evaluated, seven (30.4%) present lesions 

diagnostic of TMJ-OA, while nine of the 27 temporals (33.3%) present lesions diagnostic 

of TMJ-OA. These results correspond to nine individuals (40.1%) from Chelechol ra 

Orrak with TMJ-OA on at least one joint surface (Table 5.2). Almost all cases were 

classified as light in severity with the exception of two individuals that presented florid 

cases: Burial 12, an adult male (Figure 5.4), and an isolated adult male cranium (#100). 

Of the nine individuals with the condition, only two are female (Burial 14 and isolated 

mandible #2056), while six are male, with another belonging to an isolated cranium of 

indeterminate sex (#103). Individuals with the condition represent all age categories, with 

the majority (n=4) belonging to the Middle Adult category, followed by Young Adult 

(n=3); however, these are also the two largest groups in the assemblage (Table 5.3). 
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Figure 5.4. Photographs of the articular eminences (top) and mandibular condyles 
(bottom) of Burial 12, an adult male diagnosed with a florid case of TMJ-OA. 
 
 
The Relationship of Joint Morphology to TMJ-OA 

A total of 48 individual joint surfaces comprising 21 mandibular condyles and 27 

articular eminences, representing a minimum of 21 individuals, could be scored for 

morphology. The majority of the mandibular condyles were convex in shape, and 25% of 

convex shaped condyles were diagnosed with TMJ-OA (Table 5.4). Of the remaining 

condyles that fell into alternative morphological categories, two of the three flat and two 

of the six angled condyles displayed lesions diagnostic of TMJ-OA. However, all of the 

condyles with any instance of non-convex morphology displayed some type of osseous 

change (e.g., osteophytes, porosity), with the exception of one, which belongs to Burial 

25, a young female. Articular eminence morphology is more varied, and the majority of 

temporals scored were classified as either box-shaped or sigmoid-shaped. Although only 

four temporals could be assigned to the flat shape category, half of those displayed 

lesions diagnostic of TMJ-OA. 
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Provenience crossing multiple units is listed from head to foot. All burials and elements recovered from Layer 10 unless otherwise noted. 
^Diagnosed as TMJ-OA with light severity but appears to have remodeling that may be indicative of healing. 
*Condyle is broken in a way to prevent morphology scoring but allows for full scoring of joint for TMJ-OA. 

Table 5.2. Demography and scored results. “N/A” indicates joint surfaces that are absent or not scoreable due to breakage 
(<50% of surface present). 
    Mandibular Condyle Articular Eminence  Tooth Wear 

Individual Provenience Age at Death Sex 
Joint 

Morphology 
(right/left) 

TMJ-OA 
Diagnosis 
(right/left) 

Joint Morphology 
(right/left) 

TMJ-OA 
Diagnosis 
(right/left) 

Betel 
Nut 

Score 
M1  M1 and 

M2 

Burial 11 E3S1-E3S2 Young Adult Female Angled/Broken* No/No Sigmoid/Sigmoid No/No 4 2 2 
Burial 12 E1S5-W1S5 Young Adult Male Convex/Flat Yes/Yes Irregular/Irregular No/Yes 4 4 3 
Burial 13 E1S5-W1S5 Young Adult Female N/A/Convex N/A/No N/A N/A 3 2 1 
Burial 14 E1S4-W1S4 Old Adult Female N/A/Convex N/A/No Flattened/N/A Yes^/N/A 3 AMTL AMTL 

Burial 16 E1S5/E2S5-
E1S4 Middle Adult Male Convex/Flat Yes/Yes Sigmoid/Sigmoid No/Yes 1 2 2 

Burial 18 E2S4-
E3S4/E3S5 Middle Adult Male Angled/N/A Yes/N/A N/A N/A 5 2 2 

Burial 20 E1S4-E1S3 Middle Adult Male Angled/Angled No/Yes Flattened/Sigmoid Yes/Yes 3 3 3 

Burial 24 E1S2-W1S2-
W1S1 Young Adult Female Convex/Convex No/No Box/Sigmoid No/No 3 1 1 

Burial 25 E1S1-SE Young Adult Female Convex/Angled No/No Flattened/Flattened No/No 3 1 1 
Burial 26 E3S4-E2S4 Adult Male N/A N/A Box/Box No/No 4 3 3 
Burial 27 E3S5-(E3S6) Old Adult Male Broken*/N/A No/N/A Box/Box No/No 5 3 2 

Isolated Cranium 
#20 W1S4/W1S5 Young Adult Male N/A/Convex N/A/No Box/Sigmoid No/No 2 2 1 

Isolated Cranium 
#23 E3S1 Young Adult Unknown N/A N/A Box/N/A No/N/A 2 1 1 

Isolated Cranium 
#24 E3S1 Young Adult Prob. Male N/A/Convex N/A/No Box/Box Yes/Yes 3 2 2 

Isolated Cranium 
#100 E2S2 Middle Adult Male N/A N/A Sigmoid/Sigmoid No/Yes 4 4 4 

Isolated Cranium 
#101 E3S1 Middle Adult Male N/A N/A Sigmoid/N/A No/N/A N/A N/A N/A 

Isolated Cranium 
#103 

W1S4/W1S5 
L. 9 Young Adult Unknown N/A N/A Box/Box No/Yes N/A N/A N/A 

Isolated Mandible 
#2 E1S5 Young Adult Prob. Female N/A/Convex N/A/No N/A N/A 3 2 2 

Isolated Mandible 
#237 E1S1 Young Adult Unknown Flat/N/A No/N/A N/A N/A PMTL PMTL PMTL 

Isolated Mandible  
#857 E1S2 Adult Prob. Male Convex/N/A No/N/A N/A N/A PMTL PMTL PMTL 

Isolated Mandible 
#859 E1S2 Young Adult Prob. Male Angled/N/A No/N/A N/A N/A 3 2 2 

Isolated Mandible 
#2056 E1S4 Adult Prob. Female Convex/N/A Yes/N/A N/A N/A PMTL PMTL PMTL 



 
 

  
 

Table 5.3. Sample sizes for age and sex categories.  
 

Age Female (n) Male (n) Indeterminate 
Sex (n) Total 

Young Adult 5 4 3 12 
Middle Adult 0 5 0 5 

Old Adult 1 1 0 2 
Adult 1 2 0 3 
Total 7 12 3 22 

 
 
 
Table 5.4. Morphology scores for all joint surfaces evaluated for TMJ-OA.  
 

Morphological 
Category 

Mandibular 
Condyles (n) 

Articular 
Eminences (n) Total 

Flat 3 N/A 3 (14.3%) 
Convex 12 N/A 12 (57.1%) 
Angled 6 N/A 6 (28.6%) 

Rounded 0 N/A 0 
Box N/A 11 11 (40.7%) 

Sigmoid N/A 10 10 (37%) 
Flattened N/A 4 4 (14.8%) 
Irregular N/A 2 2 (7.5%) 

Total 21 27 48 
 Note: The discrepancy in mandibular condyle sample size is due to two condyles that were 
broken in a way to prevent morphology scoring but allowed for TMJ-OA evaluation. 
 
 

The Relationship of Betel Nut Chewing, Age, and Tooth Wear to TMJ-OA 

The dental subset, comprised of 17 individuals for whom associated teeth were 

present, were also evaluated for age, betel staining, and tooth wear in order to assess the 

potential relationships between chewing betel nut, tooth wear, and TMJ-OA. In this 

sample, seven of the 17 individuals displayed lesions diagnostic of TMJ-OA (41.2%), but 

14 (82.4%) exhibited some form of bony change, meaning one of the two morphological 

characteristics required for TMJ-OA diagnosis could be observed. Both Pearson’s 

correlation coefficients and Spearman’s rank order correlation were calculated for 

relationships between TMJ-OA and each of the following variables: TMJ-OA severity, 
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degree of betel staining, tooth wear from the first molar and combined first and second 

molars, and estimated age. Interestingly, Pearson’s correlation coefficients demonstrate a 

moderate to strong positive linear relationship between TMJ-OA severity and each of the 

variables evaluated except for betel staining, with the strongest relationships appearing 

between tooth wear and TMJ-OA (r =.815 and .849 for M1 and combined M1 and M2, 

respectively) (Table 5.5). Similarly, moderately positive relationships are observed 

between tooth wear and age, as well as between betel staining and age. When a 

Bonferroni correction is applied to explore significance, only the relationship between 

M1 tooth wear and TMJ-OA is significant (p=.001). 

 
 
Table 5.5. Results of Pearson’s correlations, with Bonferroni probabilities in parentheses. 

 
 

Similarly, results of the Spearman’s rank order correlation reveal the strongest 

relationship between combined M1 and M2 dental wear with TMJ-OA severity (rs 

=.842), followed by M1 wear, age, and betel nut staining (Table 5.6). The weakest 

relationship appears between betel staining and TMJ-OA (rs =.231), with moderate 

relationships observed between betel staining and age (rs =.592), as well as between tooth 

wear and age (rs =.613 and .568 for M1 and combined M1 and M2). 

 TMJ-OA 
Severity 

Betel 
Staining 

M1 
Wear 

Combined M1 
and M2 Wear 

Age 

TMJ-OA 
Severity 1.000     

Betel Staining 0.160 
(1.000) 1.000    

M1 Wear 0.815 
(0.001) 

0.471 
(0.656) 1.000   

Combined M1 
and M2 Wear 

0.849 
(0.000) 

0.420 
(1.000) 

0.881 
(0.000) 1.000  

Age 0.391 
(1.000) 

0.622 
(0.077) 

0.520 
(0.387) 

0.482 
(0.589) 

1.000 
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Table 5.6. Results of Spearman’s rank order correlations.  

 TMJ-OA 
Severity 

Betel 
Staining 

M1 
Wear 

Combined M1 
and M2 Wear 

Age 

TMJ-OA 
Severity 1.000     

Betel 
Staining 0.231 1.000   

 

M1 Wear 0.780 0.553 1.000   

Combined 
M1 and M2 

Wear 
0.842 0.526 0.869 1.000 

 

Age 0.500 0.592 0.613 0.568 1.000 

 
 
Discussion 

 A strikingly large number of adults (35/50, or 70% of joint surfaces examined in 

this study) exhibit some form of bony response indicative of impact on the TMJ. 

However, the overall frequency of lesions diagnostic of TMJ-OA is within the range of 

what has been observed in other archaeological studies (Hodges 1991, Richards and 

Brown 1981). The Chelechol ra Orrak assemblage reflects a relatively young population, 

with the majority of adults assigned to the Young Adult (20-35) category, suggesting that 

these responses begin relatively early. The two males that displayed florid cases of TMJ-

OA were assigned to the Young (Burial 12) and Middle (Isolated cranium #100) Adult 

categories. However, among the two oldest individuals in this sample (Burials 14 and 27) 

assigned to the Old Adult (50+) category, only one displayed lesions diagnostic of TMJ-

OA. Therefore, it does not appear that TMJ-OA increases with age despite the fact that a 

significant correlation between TMJ-OA and age was observed. Similarly, only a 

moderate correlation was observed between age and degree of betel staining. This is 

likely due to several factors, including variation in the individual frequency of regular 

betel chewing, and potentially the loss of posterior teeth over time, which could lead to 

the reduction and eventual cessation of betel chewing. Burial 14, a partially edentulous 
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female placed into the Old Adult category who exhibits antemortem loss of molars and 

betel staining on the remaining anterior teeth, is one such example of these confounding 

factors. 

 Age does appear to be a factor in the onset of betel chewing practice. While not 

included in the samples scored here, a number of juvenile individuals possessing 

deciduous and mixed dentitions are present in the Chelechol ra Orrak assemblage. None 

of these individuals possess evidence for betel staining. Among individuals with fully 

adult dentitions, only one (Burial 16) has been found with no evidence of staining. 

Although the time needed for betel staining to appear has not been formally investigated 

and likely varies due to a number of factors, including preparation of the betel quid and 

dental hygiene practices, it appears that juveniles do not chew betel, nor did the 

abovementioned adult individual. While there is no known rite of passage associated with 

the onset of betel chewing, the distribution across the Chelechol ra Orrak assemblage 

suggests that the behavior initiated in the late teenage years or older, similar to the pattern 

found today. In the case of Burial 16, there are no apparent osteological factors or aspects 

of the burial context to suggest that this individual was unique; instead this may be due to 

personal preference.  

There also appears to be a greater number of males affected by TMJ-OA than 

females, which is contrary to findings in clinical studies, but similar to observations 

among prehistoric Fijians, where sex differences in TMJ-OA frequency were attributed to 

gendered behavior, specifically the processing of fibrous plants, including kava 

(Magnusson et al. 2008, Warren and Fried 2001, Visser 1994). Historic records detailing 

the processing and consumption of kava also describe these activities as being undertaken 

“overwhelmingly by males” (Visser 1994: 313). Nearly every adult individual at 

Chelechol ra Orrak demonstrates evidence of betel chewing regardless of sex, with the 

exception of Burial 16 described above. This suggests that sex-related differences in 

frequency of TMJ-OA are due to activities other than chewing betel that involve the 

dentition or TMJ. A preliminary analysis of paleodiet based on light stable isotopes at 

Chelechol ra Orrak suggests possible minor differences in access to dietary resources, 

whereby females may have consumed less marine protein from lower trophic level 

resources and had a more varied diet overall (Stone et al. 2019, or see Chapter IV). 



 

96 

 

Alternatively, these differences may instead be capturing individual dietary variation due 

to personal preference. Dietary differences may contribute to sex-based differences in 

TMJ involvement as well, but due to the small number of individuals for whom sex could 

be estimated, these suggestions are merely exploratory and must be reconsidered at a later 

date. 

Clinical research focused on variation in joint surface morphology as a potential 

etiological factor for TMJ-related disorders has shown mixed and often contradictory 

results (Cruz et al. 2017, Hirata et al. 2007, Kurita et al. 2000, Rabelo et al. 2017, 

Yamada et al. 2004, Yasa and Akgul 2017). Similarly, TMJ-OA appears to affect joint 

surfaces of each morphological category of the mandibular condyle and articular 

eminence in this study, suggesting that morphology does not result in TMJ-OA 

susceptibility. There is a high frequency of flat-shaped articular eminences displaying 

lesions diagnostic of TMJ-OA (50%), but this may be a result of the small sample size. 

However, these results could suggest that flatter or shallower articular eminences 

contributes to TMJ-OA development. This is contrary to clinical studies where articular 

eminences with steeper slopes were more often associated with TMJ-related issues 

(Hirata et al. 2007, Kurita et al. 2000, Rabelo et al. 2017, Shahidi et al. 2013). 

Interestingly, there is a noticeable difference between the number of mandibular condyles 

and temporals affected; a pattern that was also noted in a study involving skeletal remains 

of prehistoric hunter-gatherers from southern Patagonia, suggesting that the articular 

eminence may exhibit bony responses earlier than the corresponding mandibular condyle 

(Suby and Giberto 2019).  

Of the remaining etiological factors potentially associated with TMJ-OA, tooth 

wear is the most strongly correlated, and while the degree of betel staining is positively 

correlated, the relationship is much weaker. Together these support the suggestion that 

activities other than, or alongside, betel chewing played a role in TMJ-OA development 

at Chelechol ra Orrak. Activities creating patterns of tooth wear observed in our sample 

include using the dentition as a tool for processing fibrous plants, or the inclusion of 

abrasive material in the diet. In coastal areas, the presence of sand in marine foods like 

shellfish is a common source of dental abrasion and may be a factor contributing to the 

tooth wear observed here (e.g., Littleton and Frohlich 1993). Additionally, older age is 
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correlated with higher rates of tooth wear, which may serve as another indirect factor 

contributing to TMJ-OA. Previous paleopathological research has explored the role of 

AMTL in the development of TMJ-OA (Hodges 1991, Lovell 2014). At Chelechol ra 

Orrak, the occurrence of AMTL is low, with only four of the 17 individuals in the dental 

subset used for this study affected. Of these individuals, two (Burials 12 and 14) display 

lesions diagnostic of TMJ-OA. Burial 12 is missing a single tooth (maxillary left canine), 

while Burial 14 is edentulous in the posterior dentition. Therefore, it appears that AMTL 

may be one factor alongside tooth wear contributing to shifts in occlusion that indirectly 

affect the joint (Griffin et al. 1979). However, given the low frequency of individuals 

exhibiting AMTL in the posterior dentition at Chelechol ra Orrak, this possibility will 

require further exploration with a larger sample. 

 

Conclusion 
 This chapter provides important insight into the potential etiology of TMJ-OA in 

prehistoric populations by focusing on a highly specialized parafunctional activity, betel 

chewing. Over the course of millennia, the behavior has grown to become common 

practice throughout the Pacific Islands and Southeast Asia. Today, as many as 600 

million people consume betel nut. Understanding the potential relationship between this 

behavior and the development of TMJ-OA could impact treatment of TMJ-related 

disorders (Gupta and Warnakulasuriya 2002). Results show that tooth wear has the 

strongest correlation with TMJ-OA, and while chewing betel nut might be an indirect 

contribution to this relationship, it is not the sole etiological factor contributing to the 

high TMJ-OA frequency observed in this assemblage.  
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CHAPTER VI 
 

CONCLUSION 
 
 

The initial settlement of Remote Oceania represents one of the most rapid and 

widespread dispersal events in human history. Despite this being the last major 

geographical region to be colonized by humans, information regarding the timing, 

trajectory, and origins of settlement in many respects remains unclear (Bedford and 

Spriggs 2019, Carson 2013, Kirch 2010, Matisoo-Smith 2015). The majority of 

archaeological and bioarchaeological work conducted in the region has focused on the 

dispersal of Lapita groups from the Bismarck Archipelago across much of Remote 

Oceania, but western Micronesia, which appears to have been settled by contemporary 

yet separate groups, has been noticeably absent from broader regional discussions of 

Remote Oceanic settlement history (Clark 2004, Clark et al. 2017, Fitzpatrick 2018, Lum 

and Cann 1998, Lum et al. 2002). In order to generate a comprehensive picture of the 

lifeways of early inhabitants, including adaptations to these small and remote landmasses, 

a transdisciplinary understanding of the initial colonization of Remote Oceania that 

includes these apparent non-Lapita dispersals is critical.   

The Chelechol ra Orrak site in the northern Rock Islands of Palau contains one of 

the largest human skeletal assemblages in Remote Oceania and is one of two mortuary 

sites in the region that dates to ~3000 BP, and the only one located in Micronesia 

(Fitzpatrick 2002, 2003a, 2003b, Nelson and Fitzpatrick 2006, Nelson et al. 2015). 

Therefore, analysis of the Chelechol ra Orrak skeletal assemblage is ideal for filling in 

gaps regarding the population origins and adaptations of early Remote Oceanic 

inhabitants. In this dissertation, I use a bioarchaeological approach that integrates aDNA, 

stable isotopes, and osteological analyses at Chelechol ra Orrak to address questions 

related to the initial human settlement and subsequent adaptation of small island 

environments in Palau, and more broadly, Remote Oceania. I also include results from 

archaeological fieldwork at Ucheliungs, a second Rock Islands site that is contemporary 

with Chelechol ra Orrak, to assess claims of insular dwarfism following initial settlement 

(Berger et al. 2008). Although some of the results presented in this work are preliminary, 

this dissertation is the first research to apply stable isotope and aDNA methods to human 
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skeletal remains in Palau; as such, it makes a significant contribution to our 

understanding of the initial colonization of Palau and provides a foundation upon which 

ongoing and future work at both Chelechol ra Orrak and Ucheliungs will continue to 

build.  

The results of aDNA from Chelechol ra Orrak presented in Chapter II have 

provided complete or partial mitochondrial genomes for four individuals in addition to 11 

new radiocarbon dates directly from articulated burials. Four distinct maternal lineages 

are represented in these individuals, who date from 2700-1815 cal. BP, with the majority 

dating to an earlier portion of that timespan, from 2700-2365 cal. BP. The distribution of 

radiocarbon dates across the burial assemblage suggests the possibility of coarse spatio-

temporal clustering across the site, but a wider distribution of dates across the excavation 

area is needed to assess this possibility. The genetic results are characteristic of 

Austronesian-speaking ISEA groups, supporting previous linguistic and archaeological 

evidence, while a lack of Papuan-associated haplogroups suggests a lack of support for 

population origins in New Guinea (Callaghan and Fitzpatrick 2008, Lum and Cann 2000, 

Pietrusewsky 1990). Additionally, the lack of shared haplogroups with Lapita individuals 

suggests that multiple separate population dispersals from ISEA to Remote Oceania took 

place ca. 3300-3000 BP. Although the mtDNA presented in Chapter II is informative, 

results only reflect maternal inheritance. Future research will assess the feasibility of 

whole-genome work, and work to expand the number of available mitochondrial 

genomes as aDNA methods continue to improve. Additionally, the genetic data will be 

complemented by results of a biodistance study utilizing three-dimensional geometric 

morphometrics of crania from Chelechol ra Orrak that is in progress.  

Based on archaeological excavation at Ucheliungs, I generated archaeological, 

zooarchaeological, and bioarchaeological data to disprove suggestions of insular 

dwarfism. Previous work at the site claimed that Ucheliungs was used exclusively for 

mortuary activity, and the small, isolated nature of landmasses within the Rock Islands 

region led to small body size among individuals interred at this site and others. My results 

instead indicate that Ucheliungs was more diverse and utilized for both mortuary activity 

and small-scale temporary habitation for a longer time period than initially thought. The 

presence of a diverse and abundant marine invertebrate assemblage and artifacts 
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transported from other islands suggest that isolation and an impoverished resource base, 

both critical factors for the process of insular dwarfism, would not have affected 

inhabitants of Ucheliungs. Additionally, radiocarbon dates from this site provided further 

evidence for the presence of Palauans in the Rock Islands just prior to and after 3000 BP. 

Future work involving taxonomic identification of a bone implement may shed light on 

early ISEA-Micronesian connections, while expansion of excavations beyond a single 

test unit will provide a more comprehensive picture of site use.  

The results of stable isotope analysis on human bone from Chelechol ra Orrak, 

Koror Quarry, and Peleliu presented in Chapter IV are providing a first look at paleodiet 

in Palau from a bioarchaeological perspective. Generally, elevated δ13Cco and δ15N values 

are consistent with a marine-based diet supplemented by a variety of terrestrial plants. 

Compared to baseline data from other islands, early Palauans consumed marine shellfish 

and other taxa from reef and inshore environments, which is consistent with what has 

been observed in the faunal record at other Rock Island sites and is reflected in the dental 

health of burials from Chelechol ra Orrak (Carucci 1992, Fitzpatrick 2003c, Fitzpatrick et 

al. 2011, Masse 1989, Nelson et al. 2015, Ono and Clark 2012). Elevated δ13Cap values 

for bone apatite suggest some 13C-enriched source of carbohydrate, which may be due to 

consumption of marine plants, such as kelp or seaweed, or perhaps sugarcane. Protein 

consumption appears largely similar to Lapita populations, suggesting that both groups 

relied upon endemic resources following initial settlement, with the addition of some 

terrestrial translocated fauna found at Lapita sites. The addition of future baseline dietary 

resources from samples will allow for further refinement of these results, while new 

analyses involving strontium and lead isotopes from tooth enamel will provide 

information on the mobility of these individuals, and where people resided prior to burial 

at Chelechol ra Orrak. By identifying trajectories of early Palauan mobility throughout 

the archipelago, we may also be able to further understand how groups utilized different 

island types and ecosystems for subsistence. 

 Lastly, an examination of temporomandibular joint osteoarthritis (TMJ-OA) at 

Chelechol ra Orrak found that osteoarthritis affected a large number (40.1%) of adults, 

with bony responses to impact on the TMJ beginning relatively early. While the focus of 

this research was on the potential relationship between TMJ-OA and habitual chewing of 
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betel nut, a number of potential etiological factors were investigated, including tooth 

wear, antemortem tooth loss, joint surface morphology, and demography. Despite 

evidence for widespread habitual chewing of betel nut, only moderate correlations 

between TMJ-OA and dental staining indicative of betel nut chewing were found. The 

strongest associations were found between tooth wear and TMJ-OA, suggesting that 

indirect effects of parafunctional dental activity are a factor in TMJ-OA frequency. While 

betel nut may be one such example, it is more likely one of a suite of activities that 

contribute to tooth wear, including processing fibrous plants or the presence of abrasive 

materials in the diet. Because patterns of occlusion could play a role in TMJ 

development, future work focused on dental conditions resulting in occlusal variation, 

including third molar agenesis, antemortem loss of the posterior dentition, malocclusion, 

or variation in tooth wear by side, may help clarify etiological factors associated with use 

of the dentition and the development of TMJ-OA.  

 Taken together, this research not only contributes new lines of evidence to 

complement existing archaeological and linguistic data related to the colonization of 

western Micronesia and Palau, but it also begins to characterize the lifeways of early 

inhabitants of the archipelago, who successfully adapted to a wide array of island types 

and ecosystems. Additionally, it illustrates the importance of looking beyond Lapita 

when describing initial settlement of Remote Oceania. As excavations continue at both 

Chelechol ra Orrak and Ucheliungs, I hope to build upon these data to better characterize 

and refine our knowledge of regional- and archipelagic-scale mobility and small island 

adaptation. 
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