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DISSERTATION ABSTRACT 
 

Precious Alexandria de Verteuil 

Doctor of Philosophy 

Department of Biology 

June 2020 
 

Title: The Impacts of Environmental Perturbations on Life-History Trajectories in 
Caenorhabditis elegans. 

 
 

Environmental fluctuations are ubiquitous in nature and can serve to drive 

phenotypic differences among individuals in an environment-specific manner, a 

phenomenon known as phenotypic plasticity. Phenotypic plasticity can have implications 

for an organism’s fitness. Here, I address how two distinct environmental perturbations 

(acute nutrient deprivation and treatment with a compound known to extend lifespan) 

impact individual life-history traits within and across generations using the 

Caenorhabditis elegans nematode model system. 

To quantitively assess the impacts of acute maternal starvation, I engineered a 

novel microfluidic device to starve adults and simultaneously collect progeny with fine- 

scale temporal resolution. I found no evidence for changes in maternal provisioning of 

embryos (egg size) laid under acute maternal starvation, highlighting that, even in the 

face of limited nutrient availability, equal investment is provided to embryos in-utero. 

This consistency in provisioning is further evidenced by the fact that I also found no 

significant changes to life history traits such as lifespan and reproductive output in 

offspring produced by starved parents. 

To quantitively assess the role that timing of application of a compound 
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previously identified lifespan extension (Thioflavin T) might play in shifting longevity 

responses, I contrasted early intervention responses from treatment early in development 

to those observed after treatment as adults. Here, I identify a novel, recoverable, 

developmental delay state induced by Thioflavin T treatment in a dose-dependent manner 

after larval treatment. These effects include disruption of normal development and 

increased early life mortality while on the compound, as well as decreased reproductive 

output and, importantly, increased longevity, after recovery following removal from the 

compound. Using mutants in known stress response pathways to assess specificity of 

response, it appears that developmental exposure results in a general hormetic stress 

response acting across multiple stress response systems. 

Overall my dissertation explores the way environmental perturbations affect life 

history trajectories within and across generations. Using a combination of novel 

experimental approaches and high throughput techniques, I find that the major drivers of 

phenotypic plasticity in my experiments to be the type of environmental stressor and the 

age of treatment onset. 

This work includes unpublished coauthored material. 
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CHAPTER I 

INTRODUCTION 

 
Scientists have grappled to understand life history theory and aging since the early 

20th century. While we have come a long way since the works of theorist August 

Weismann (Weismann et al. 1904) and naturalist Alfred Russel Wallace (Bulmer 2005), 

known most for their contributions to the theory of natural selection, in 2020 we are still 

discovering new paradigms and empirical evidence to better understand the biological 

foundations and ecological context of senescence (Gladyshev 2016). Historically, 

senescence has presented itself as an evolutionary paradox because it is assumed that 

under favorable conditions evolution should prevent aging so as to maximize survival and 

reproductive success over the lifetime of an individual. This led to the assumption that 

natural selection favors a “death mechanism” that allows room for younger and more 

reproductively prolific individuals to enter the population, thereby ensuring the long-term 

survival of the species (Moorad 2016). While this assumption seems plausible, it has 

been proven incorrect. J.B.S. Haldane and Peter B Medawar demonstrated that under 

equivalent reproductive output, longer lived individuals produce more offspring than 

short lived individuals and that the cost of death exceeds the benefit of the group species. 

The force or strength of natural selection (a measure of how strongly selection acts on 

survival and/or reproduction) declines as a function of age is a major theoretical insight 

that was later mathematically formalized by William D. Hamilton (Akazawa 2016; Flatt 

& Partridge 2018). In his proof Hamilton describes what is known as the “Selection 

Shadow” that represents the part of the lifespan post birth and reproductive maturity in 
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which the force of natural selection declines rapidly with age prior to death. The selection 

shadow prevents natural selection from acting on deleterious mutations that are 

constrained to late life stages(Kirkwood & Austad 2000). In addition, there is the 

potential for various mutations to have pleiotropic effects such as being early life 

beneficial and late life deleterious for the same trait(WELLS 2003). It is likely that such 

mutations will be passed on to offspring of the individuals bearing it and that selection 

will thus be inefficient at eliminating such mutations from the population. This concept of 

the declining force of selection is the fundamental basis for the evolutionary theories of 

aging we study today. 

Even in this new era of scientific research with advanced genomics and CRISPR- 

Cas-9 gene editing technologies(Doudna 2017) there is still some debate about the 

evolutionary theory of aging and weather numerous small-effect genes, or few large- 

effect genes are responsible for the biological aging process (Flatt & Partridge 2018). The 

notion of mutation accumulation was first proposed by Medawar in 1952, suggesting that 

deleterious late life constrained mutations can rise in population frequency due to 

weakening selection. Huntington’s Disease is one classical example of said phenomena, 

in addition to Alzheimer's and Parkinson’s Disease. There is also empirical evidence in 

support of manipulations that result in biological fitness tradeoffs among various life 

history traits (Gladyshev 2016). Significant environmental perturbations experienced 

early in life can shift the allocation of resources between somatic maintenance and 

reproduction, this can drive adverse fitness consequences to occur later. Nutrient 

deprivation (caloric restriction) in-utero is the most consistent non-genetic mechanism 
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that can extend lifespan; however, it comes at a cost to growth rates, obesity, diabetes, 

cardiovascular disease and schizophrenia. 

These and other types of biological fitness tradeoffs have been studied by 

scientists for centuries, in fact some of the first empirical evidence to support biological 

fitness tradeoffs was gathered during the Dutch Famine of 1944. Multiple longitudinal 

studies have examined the relationship between nutrient deficiency and progeny fitness 

(Lumey et al. 2012; Stein et al. 2009). However, even using cohort sizes of 900+ 

individuals it is hard to uncouple correlation and causation with respect to fitness 

tradeoffs. Furthermore, the results of most studies do not account for any genetic 

predisposition to adverse fitness consequences which we now know to be a potential 

mitigating factor in population fitness trajectories (Kogenaru et al. 2009; Orr 2009). 

Alternative animal models for understanding the role of genetic variation and how it 

results in alternative fitness trajectories include but are not limited to Saccharomyces 

Cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans (C. elegans). 

In comparison to Saccharomyces Cerevisiae and Drosophila melanogaster, C. 

elegans has a well annotated stress response network and its insulin signaling pathway is 

homologous to the FOXO pathway in humans. Thanks to Sydney Brenner establishing C. 

elegans as a model, the scientific community has been using C. elegans to examine the 

effects of nutrient deprivation and environmental perturbations for centuries (Lee et al. 

2013; Baugh 2013) Experimental findings within the last decade highlight alternative 

gene expression profiles associated with L1 arrest (Maxwell et al. 2012). Furthermore, 

empirical evidence has shown that nutrient deprivation can lead to a maximal lifespan 

extension in C. elegans through the induction of daf-16 (Ching & Hsu 2011). Additional 
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studies have also demonstrated that alternative developmentally programmed arrest states 

like dauer can also impact life history traits (Ludewig et al. 2013). 

Apart from nutrient deprivation, compound interventions and genetic mutations 

can also affect population lifespan trajectories. Within the last few years, studies 

supported through the National Institute of Aging have uncovered various compounds 

that under sustained treatment have the potential to reverse the aging process (Phillips et 

al. 2018). Screening various compounds for their effects on aging has advanced our 

understanding about genes and fundamental pathways involved in the aging process that 

are conserved across species. While there are various model systems that are applicable 

to understanding senescence of aging, few allow for rapid high throughput population- 

based screening coupled with advanced genomics. 

C. elegans is a great model system to explore biological fitness tradeoffs, and 

population wide lifespan extension fitness trajectories (Tissenbaum 2014). In addition to 

its robust life cycle (embryo – adult within 4 days), C. elegans also has well characterized 

stress response pathways and an insulin signaling pathway homologous to humans (Kim 

et al. 2014). In addition to all the genomic resources, C. elegans also has an average 

lifespan of 25-30 days, making it an ideal candidate for understand the aging process 

within and across generations. 

One outstanding question that is now starting to be addressed in the study of 

senescence is how epigenetic changes via nutrient deprivation or compound intervention 

can impact fitness trajectories within and across multiple generations of offspring. C. 

elegans is the best aging model system to screen for multigenerational effects in a rapid, 

high throughput manner. However, recapitulating some specific senescence paradigms, 
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such as maternal starvation, are more of a challenge than others due to physiological and 

biological constraints of the organism. 

Dissertation Outline 
 

For my dissertation I strengthen our understanding of how environmental 

perturbations impact life history trajectories in within two distinct paradigms (nutrient 

deprivation and compound intervention): through the development of a novel 

microfluidic device (which allows for high throughput population based starvation and 

progeny collection simultaneously), and through developmental exposure to a lifespan 

extension compound Thioflavin T (ThT). 

In Chapter I, I describe how I used microfluidic technology to engineer a novel 

maternal starvation chip to measure the impact of maternal starvation on progeny fitness 

trajectories. In this chapter, I highlight how, unlike mammalian systems, C. elegans under 

acute adult starvation do not alter their allocation of resources but rather appear to invest 

equally in embryos laid. This results in no overall changes to progeny lifespan trajectories 

or fecundity as adults, despite their parent experiencing acute starvation as adults. 

In Chapter II, I describe how early life exposure to the compound ThT induces a 

novel, recoverable, population wide, larval stage three developmental delay. Coupled 

with a high early life mortality and late life extension in adulthood. Furthermore, based 

on the novelty of my early life treatment paradigm, I am also able to measure the impact 

of lifespan extension on reproduction, and I find that it significantly reduces fecundity in 

adults post exposure. Lastly, I describe how early life compound exposure acts through a 

generalized hormetic stress response system, as opposed to the previously described 

HSF-1 and SKN-1 pathway in adulthood treatment. 
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Together, both chapters of my dissertation enhance our fundamental 

understanding of senescence by uncovering novelties that have the potential to constrain 

C. elegans ability to significantly restructure the allocation of resources post specific 

developmental timepoints, as well as discovering a novel developmental delay state 

induced through compound intervention that has the power to bypass previously 

characterized arrest response states. 
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CHAPTER II 
 

THE IMPACT OF MATERNAL STARVATION ON PROGENY FITNESS IN 
CAENORHABDITIS ELEGANS 

 
 

The microfluidic device described in this chapter was developed with this 

assistance of lab member Stephen Banse. My undergraduate mentee Juliana Rantisi 

contributed substantially to this work by participating in the experimental approach. 

Patrick C. Phillips and I developed the approaches. I wrote the manuscript and I am the 

primary investigator for this work. 

 
INTRODUCTION 

 
Encountering environmental perturbations are a universal feature of the life for all 

organisms. During periods of high nutrient availability (boom) there remains a positive 

association among life-history traits such as mating efficiency, lifetime reproductive 

success, and overall lifespan trajectories. During periods of low nutrient availability 

(bust) this association can turn negative, generating a trade-off of overall energy 

investment [1]. For example, in humans low nutrient availability in-utero is associated 

with health-related impacts later in life, including an increased risk of type-two diabetes, 

obesity, cardiovascular disease and cancer [2]. This mismatch between early-life and late 

life environments can result in a “thrifty phenotype” [3], leading to long-term fitness 

impacts in progeny even after later shifts to high nutrient availability and beneficial 

environmental conditions. The thrifty phenotype hypothesis postulates that this 

environmental mismatch is a result of epigenetic inheritance of adverse early-life 

conditions resulting in increased fat storage and nutrient rationing in subsequent 

generations [4]. Some early evidence regarding the long-term consequences of starvation 
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and nutrient deprivation on progeny fitness was gathered during the Dutch Famine of 

1944-45. During WWII, limited food rationing had significant implications for pregnant 

mothers, resulting in major health implications for children such as stunted growth, 

increased rates of obesity, diabetes, cardiovascular disease and schizophrenia [5]. Today, 

we still find that malnutrition and caloric restriction in-utero is linked to adverse health 

conditions, however, we also find caloric restriction to be the most consistent non-genetic 

mechanism that can extend lifespan in mammals [6]. 

Indeed, dietary restriction in the absence of malnutrition can extend the median 

and maximal lifespan across a wide variety of organisms, including yeast, worms and 

flies [6]. The Insulin Signaling Pathway (IIS) is conserved across these species, and its 

activation in known to accelerate aging [7]. For example, the conserved Forkhead box O 

(FOXO) pathway within the IIS from animals as diverse as humans and Caenorhabditis 

elegans (C. elegans) roundworms has been shown to mediate these caloric restriction 

lifespan extension effects [8]. While the mechanisms for the role that this pathway may 

play in regulating lifespan in humans is still poorly understood, understanding the impact 

of caloric restriction in the C. elegans is likely to point the way towards understanding 

the underlying mechanisms of life-span effects in general [9]. 

Multiple studies have demonstrated that the strength of caloric restriction, 

starvation, or malnutrition, as well as the temporal pattern of the onset of nutrient 

limitation, are linked to the severity of downstream consequences [10]. Furthermore, 

there is evidence that epigenetic changes in gene expression profiles persist for multiple 

generations following the initial environmental perturbation [11]. These changes are 

independent of the current environmental conditions experienced by the individual. 
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Here, we sought to examine if the effects observed during nutrient deprivation 

early in an individual’s life are also observed when that individual’s parent is starved, 

rather than the individual itself (i.e., intergenerational embryonic effects). Within the C. 

elegans model system, traditional methods used to evaluate adult starvation are highly 

problematic because of the high loss of hermaphrodites from desiccation, burrowing, and 

facultative vivipary. Facultative vivipary is somewhat unique to nematodes, in which 

unlaid embryos hatch, grow and develop within the gonad of the hermaphrodite, killing 

the parent/mother [12]. In order to maintain normal reproductive patterns while achieving 

complete, acute adult starvation, we developed a novel microfluidic device (“chip”), the 

Embryo Gathering Gadget (EGG), to induce adult starvation in C. elegans while 

simultaneously collecting progeny in the form of laid eggs. Our new device allows for 

the separation of brood at specific time intervals, giving us temporal resolution of egg 

laying behavior under starvation conditions in real time. Overall, we find that eggs 

produced from starved parents display few ill effects of the treatment, indicating that 

parents are apparently able to compensate for shifting nutrient availability (likely via 

changes in total reproductive output) to compensate for this deprivation. Beyond dietary 

responses, our new microfluidic design provides the basis for addressing questions that 

depend on the clean separation of embryos from adults under tightly controlled 

environmental conditions. 
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Methods 
 

Nematode strains and maintenance 
 
 

Caenorhabditis elegans strain N2-PD1073 [25] was obtained from the 

Caenorhabditis Genetics Center CGC, and maintained using standard culture protocols 

[26]) unless otherwise noted. All worm cultures were maintained at 20°C in a biological 

incubator on NGM. Live streptomycin resistant E. coli strain OP50-1 was used as the 

nematode food source. Every 2 days, a subset of animals from the growing population is 

transferred to a new plate by excising out a portion of the agar and placing it onto a 

freshly seeded plate. Approximately 75 animals (at various stages) are transferred to start 

each new population. Once a week, when gravid hermaphrodites are present, animals are 

aspirated off the plate and dispensed into a 15 ml conical tube. At this time, a 5% solution 

of 4M NaOH and bleach is added to extract embryos from gravid adults. The surviving 

embryos are immediately placed onto freshly seeded plates to mature. Progeny 

synchronization is independent of L1 arrest, as embryos hatch in the presence of food. 

Microfluidic device fabrication 
 

Microfluidic devices were designed and fabricated using standard soft 

photolithography techniques[27,28]. In brief, the chip design was drafted in Vectorworks 

2013 Fundamentals (Nemetschek SE, Munich, DE) and photomask transparencies were 

printed at 20k resolution (CAD/Art Services Inc, Bandon OR, United States). The 

corresponding CAD file is available as Supporting Information (S1). To manufacture the 

chips, SU-8 (MicroChem Corp.) photoresist masters were made and treated with 

(Tridecafluoro-1,1,2,2-Tetrahydrooctyl) Trichlorosilane (Gelest Inc., Product # 

SIT8174.0). These masters served as molds into which polydimethylsiloxane (PDMS) 
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(Sylgard 184, Dow Corning) mixed at a PDMS:developer ratio of 1:10 was poured and 

cured at 60 °C. Cured PDMS chips were cut out and appropriate holes were punched 

using 1.5 mm biopsy punches. The cut and punched PDMS chips were then exposed to 

air plasma (PDC-32G Plasma Cleaner, Harrick Plasma Inc.) and bonded to 50x75 mm 

glass slides. 

Microfluidic perfusate 
 

The EGG-platform uses a flow through system to maintain environmental 

consistency and to provide a constant food level when food is provided. The perfusate 

was driven at ~2 psi. Under constant pressure of 2 psi, total volume of liquid in the chip 

is replaced every 30 seconds. A second microfluidic chip with narrow channels was used 

upstream in serial to provide additional resistance. This enables the system to be run a 

higher PSI while minimizing the variability in the flow rate as previously described [13]. 

The perfusate used in this study was either S-basal or S-basal supplemented with 
 

E. coli OP50-1. To prepare the E. coli for feeding, 1 Liter of Terrific Broth is autoclaved 

in a wide-bottom 2-liter flask, pre inoculation of one OP50-1 CFU. OP50-1 is incubated 

at 37°C while rotating at 180RPM. Post 24H of incubation, OP50-1 is pelleted (6,000 

RPM for 5 mins) and re-suspended into a 50 mls total volume S-basal Solution. For each 

μ-flux run, the final volume of OP50-1 must be at a minimum concentration of 108 CFU 

per ml to ensure a positive control. Aliquots of OP50-1 in S-basal Complete can last in 

4°C for several weeks and maintain a 108 CFU per ml concentration. 
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Loading the microfluidic device 
 

To ensure proper animal synchronization without L1 arrest, three days prior to 

loading in the EGG-Chip, populations are bleached. At 48H post bleaching, animals at 

larval stages four (L4) are picked to a freshly seeded plate for the duration of 

development. After 24H, this results in a synchronized population of day 1 adults, ready 

for microfluidic set-up 700 Day 1 adult hermaphrodites are aspirated off each plate and 

suspended into a 1.7 ml microcentrifuge tube. A 5 ml syringe pump is used to load 

animals through the top port, down the worm loading and distribution network, and into 

the Arena portion of each EGG-chip (Fig 1). 

C. elegans husbandry in the microfluidic device 
 

Adult hermaphrodites remain within the arena portion (Fig 1A, region ii) of the 

microfluidic chip for the duration of the experiment. Under starvation conditions, the left 

port and bottom port are closed, forcing liquid to exit the chip through the right port. As 

adult hermaphrodites in the arena portion of the chip experience starvation, all progeny 

laid pass through the egg capture chamber and exit the chip through the right port due to 

the laminar flow of buffer through the chip (Fig 1). Under fed conditions the procedure is 

the same with one exception: OP50-1 is added to the buffer of fed hermaphrodites at a 

density of 108 CFUs/ml. A magnetic stir bar and stir plate is used to ensure that OP50-1 is 

continuously evenly distributed within the buffer. 
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Progeny collection 
 

Post the 24H adult starvation, a 5 ml syringe is used to flush buffer through the 

left port, clearing the egg capture chamber. Post flush, the left and right ports are closed 

and the bottom port is open. This changes in the direction of laminar flow, allowing fluid 

to travel in from the top port and out through the bottom port (Fig 1). 

Once the left and right ports are closed, all laid progeny are collected in the egg 

capture chamber. The bottom micron filter prevents them from traveling through the 

waste channels and exiting the chip (Fig 1). Progeny are collected at the 2.5H interval 

post starvation. A 5 ml syringe is used to collect all eggs from the egg capture chamber 

into a 1.7 ml microcentrifuge tube. 

Progeny maintenance post microfluidic capture 
 

Following collection in the EGG-chip, embryos were plated onto large, seeded 

agar plates and left to develop at 20°C (normal developmental conditions). All animals 

remained under normal developmental conditions until adulthood. Once progeny reached 

adulthood, a subset of the population was evaluated for lifespan and fecundity. 

Lifespan Measurements 
 

Lifespan was evaluated using Automated Lifespan Machine technology [29]. 
 

Plate preparation and worm handling for the Lifespan Machine assays were performed as 

previously described [30]. Survivorship curves and statistical analyses were all generated 

using JMP PRO 13 software package [31]. 
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Reproduction measurements 
 

Brood size was quantified by isolating 30 adult hermaphrodites at L4 stage to 

individual plates and transferring daily per treatment. Assays were performed at 20°C and 

using OP50-1 as a nematode food source using standard agar. The total brood size was 

measured as hatched larvae for each individual over 4 days or until a 24H period with <5 

embryos. Embryos that did not hatch were not included in brood size measures for that 

individual. 

Embryo size measurements 
 

To determine embryo size, collected embryos were mounted on 2% agar pads and imaged 

on an inverted microscope (Olympus IX73P1F) at 60X (PLAN APO 60X - NA 1.42). 

Collected images were analyzed using ImageJ software [32]. Calibration of the pixel/size 

ratio was performed using images collected with a micrometer and the ImageJ measure 

function was used to measure the circumference of ten embryos per treatment to generate 

size measurements. 

Results 
 

Design of the Embryo Gathering Gadget 
 

To determine the effects of maternal starvation on offspring life-history traits we 

developed a microfluidic device (Fig 1 and S1) that enables (1) experimental control of 

food levels, (2) retention of animals in low-food environments, and (3) collection of 

embryos with complete temporal flexibility. Our new device, the Embryo Gathering 

Gadget (EGG) consists of four features. The first is a worm loading and distribution 

network (Fig 1A, region i) that enables introduction of animals at the start of the 

experiment and the delivery of perfusate during normal operation. The second is a large 
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arena (Fig 1A, region ii), which houses the adult animals during the experiment. The 

inside of the arena is patterned with a series of pillars to form an “artificial dirt” 

environment (see Fig 1B) that elicits normal crawling motion and plate-like behavior [13] 

(see S2). The pillars are 200 microns in diameter and spaced 300 microns on center, an 

arrangement that has been published as optimal for normal crawling behavior in C. 

elegans adults [14]. The animals that reside in the arena experience a constant flow of 

perfusate that maintains environmental consistency, as well as food levels under feeding 

conditions, while removing eggs from the arena. Eggs that leave the arena pass through a 

filter made up of 40-micron wide channels (see Fig 1B) that are sized to allow passage of 

eggs while retaining adults. Following this, they enter the third chip feature, the embryo 

capture chamber (Fig 1A, region iii), which sits between the upstream 40-micron filter 

that separates it from the arena and a downstream 20-micron filter that is sized to retain 

eggs within the chamber. The chamber also has an independent inlet and outlet that 

enables extraction of captured eggs from the device at will. The fourth feature of the 

device is a series of waste removal channels (Fig 1A, region iv) downstream from the 20- 

micron egg retention filter, which allows for exit of the perfusate during normal 

operation. 
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Fig 1. The Egg Gathering Gadget (EGG) platform (A) The EGG-chip is a custom microfluidic 
device consisting of four regions; i - a worm loading and distribution network, ii- a large worm 
husbandry arena, iii – an egg capture chamber, and iv – a waste removal network. (B) Zoom of 
the arena and egg capture chamber. The pillars in the arena are 200 microns in diameter (i) and 
spaced 300 microns apart on center (ii). The egg capture arena sits between an upstream filter 
made up of 40-micron wide channels (iii) and a downstream 20-micron wide filter (iv). (C) 
Perfusion of buffer (+/- food) is driven by pressurized air. The egg-flush inlet is connected to a 
syringe with buffer for removal of eggs. (D) Under normal operation the EGG-platform cycles 
through four states. Under normal growth the egg flush inlet and the profusion exit are blocked 
which causes flow from the profusion to travel through the arena which collects the eggs, passes 
through the 40-micron filter, then exits the egg flush exit into waste. To start a timed egg 
collection the air pressure that drives the perfusate is turned off and the perfusion exit is blocked. 
Egg clearance is then accomplished by driving buffer through the egg collection chamber from a 
syringe attached to the egg flush inlet. After egg clearance the egg flush inlet and exit are 
blocked, the perfusion exit is opened, and pressure driven flow through the perfusion inlet is 
resumed to begin egg capture. At the end of the timed egg capture eggs are collected by again 
turning off the pressure, blocked the perfusion exit, unblocking the egg flush inlet and exit. 
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Starvation in the EGG-Chip alters egg laying 
 

To ensure that egg laying behavior was maintained in the EGG-Chip, embryos 

were collected and quantified from each chip at various timepoints (1H, 3H, 5H, 24H, 

31H, and 48H) (Fig 2). The 1H timepoint shows the largest number of embryos laid per 

treatment group (mean of 684 for fed and 698.55 for starved). This is not surprising as 

previous literature suggests that the sudden change in environment elicits a “dumping” 

response in which adults immediately lay all fertilized embryos, presumably to enhance 

survival under changing conditions [15]. Samples at 3, 5 and 24 hours all trended toward 

fewer embryos laid (means of 529.5 [fed], 314.55 [starved], 484.5 [fed], 394.05 [starved], 

334.05 [fed], 244.05 [starved], respectively) compared to the 1H timepoint. These slight 

differences are not statistically significant, and the decrease is consistent among starved 

and fed environments. Furthermore, this confirms that at least within the first 24H starved 

adult hermaphrodites will continue to lay embryos despite poor environmental 

conditions. At 31H post starvation, there is a significant decrease in the number of 

embryos laid from adults in starved versus fed conditions (mean of 293.55 versus 134.55, 

p=0.0423). Lastly at 48H there is another significant decrease in the number of laid 

embryos, with starved adults laying no embryos (mean of 0 versus 64.05, p=0.0457). In 

both starved and fed environmental conditions one major contributing factor for 

decreased embryo production is the increasing percentage of adults who experience 

facultative vivipary. 
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Fig 2. Egg Laying Behavior of Adults in EGG C. elegans embryos are captured and counted 
from each EGG chip under fed and starved conditions respectively. For each time interval per 
treatment condition we collected embryos and calculated the total number of embryos per adult 
per hour through liquid density calculations. Bars represent the mean per treatment and error bars 
represent +/- 1 SEM. Fig 2. shows that for the first 24 hours, both starved and fed animals 
continue to lay progeny in EGG. Only at hours 31 and 48 is there a significant difference between 
the number of embryos laid under fed versus starved treatment conditions. 

 
 

Maternal starvation in the EGG-chip does not alter progeny lifespan 

To assesses the effects of the maternal environment on progeny fitness trajectories 

in the following generation (maternal effects), we isolated embryos laid after 24H of 

adult starvation and examined their lifespan (Fig 3). To control for environmental 

changes, we also isolated embryos laid in an EGG-Chip at the same time period from 

adults who were continuously exposed to food. Our findings show that the maternal 

environment has no significant effects on progeny lifespan (mean lifespan 19.721[Fed] vs 
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19.76 [Starved]). Embryos laid from fed or starved mothers experienced no changes to 

overall lifespan expectancy. 

 

Fig 3. C. elegans Adult Lifespan Post Being Laid in EGG We examined the lifespan of C. 
elegans adults post being laid in EGG under each treatment condition respectively. We observe 
no significant difference in adult lifespan (log-rank p value = 0.8964, n=69 [fed], n=96 [starved], 
combined 2 experimental replicates) trajectories in progeny post maternal environment under fed 
nor starved conditions. 
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significant differences in reproduction (p=0.8614). 

Maternal starvation in the EGG-chip does not alter progeny fecundity 
 

To further evaluate the effects of maternal starvation on progeny fitness we 

examined the fecundity of 30 individuals from each microfluidic treatment group 

respectively in addition to the adult hermaphrodites who never experienced a 

microfluidic environment. Among all three treatment groups our results show no 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4. Fecundity of Adults Post Being Laid in EGG Animals were isolated as L4’s and 
transferred each day for 4 days or until the total number of embryos laid was </= 5. To control for 
EGG environment, the fecundity for fed individuals was also assayed on plates. We observed no 
significant difference in the number of progeny laid by adults for each treatment condition 
respectively (n=30 per treatment, Fed_Plate mean 222.667 SEM +/- 14.7702, Fed_EGG mean 
260.3 SEM +/- 13.6872, Starved_EGG mean 264.133 SEM +/- 17.692. Starved_EGG vs Fed_EGG 
P=0.8614. 
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Embryo size is not influenced by parental adult starvation 
 

Lastly, we assessed if any changes in embryo size were observed following 

maternal starvation. To do this we imaged embryos collected within 24 and 31 hours of 

adults in microfluidic chips under starved and fed conditions. Using a micrometer and 

Image J we measured the circumference of ten embryos from each treatment group to 

determine if there was a significant variation in size (Fig 5). Our results show that there is 

no significant difference in progeny embryo size based on maternal environmental 

conditions (mean size 4.2 microns [fed] versus 4.3 [starved], p=0.7817). 

 
 

 
 

Fig 5. Embryo Circumference To examine changes to embryo size under EGG treatment 
conditions we measured the circumference of ten embryos collected per treatment group. We 
found no significant difference in the size of embryos from starved versus fed treatment 
conditions respectively (Mean = 4.1613 SEM +/- 0.4132647 [Fed], mean = 4.3253 SEM +/- 
0.4182128 [Starved], P= 0.7817. 
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Discussion 
 

Previous findings from multiple sources examining starvation during C. elegans 

development have demonstrated major consequences for progeny both within and across 

multiple generations [15–17]. Starvation during development has a variety of effects, 

including but not limited to, significant changes in RNA expression levels [18], extended 

time in various developmental stages, decreased fecundity, and even changes in feeding 

behavior [19]. These effects have also been linked to transgenerational effects in progeny, 

such as changes in embryo size and quantity [20]. 

The aim of our study was to examine the impact of maternal starvation post larval 

development and determine if it had the same consequences to progeny fitness. Unlike 

starvation during development, the effects of maternal starvation in C. elegans is poorly 

understood and the multigenerational effects of adverse environmental conditions post 

development is unknown. Furthermore, because adult starvation does not induce 

developmental arrest, we are able to decouple correlation and causation of the impact of 

starvation within a generation and examine its effects in a subsequent generation. We 

sought to examine if acute adult starvation resulted in previously identified embryonic 

yolk provisioning [21- 22]. 

Our findings show that individuals that have experienced less than 30H of 

starvation to produce progeny at the same rate as un-starved control populations. 

However, we observe an increased incidence of facultative vivipary when starvation 

conditions exceed 35H, which itself results in a decrease in embryo production. Upon 

examination of embryo size from starved and un-starved adults, we see no changes in 

embryo circumference under starvation conditions. 
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Our findings, along with additional published work, demonstrate that the temporal 

changes in the onset of starvation is responsible for transgenerational consequences in 

fitness effects [23] [24]. Our study highlights the implications for temporal variation of 

stressors and their impacts on progeny fitness. Under our C. elegans maternal starvation 

paradigm we do not observe a “thrifty phenotype” in progeny with respect to embryo 

size, lifespan, or overall fecundity, although we do observe a decrease in total embryo 

production over time during maternal starvation. We interpret this to mean that C. 

elegans compensate for reduced nutrient availability by producing fewer offspring of 

equivalent quality. Unlike previous studies, under our maternal starvation paradigm 

starved mothers are not mated post starvation, nor are they starved for a period of time 

and then given food to stimulate egg laying. Thus, what we observe in our study 

represents how maternal starvation directly effects progeny fitness in the absence of 

external stimuli such as late life mating and nutrient availability. 

Furthermore, we have developed a novel experimental approach for the starvation 

of adult C. elegans hermaphrodite populations, with the potential to segment broods 

based on precise discrete changes to environmental inputs. This approach can be used to 

evolve populations over multiple generations to a specific environmental stressor. It can 

also be applied to high throughput studies to generate quantitative data on the efficiency 

and onset of phenotypic consequences for various environmental perturbations. The EGG 

is valuable a C. elegans resource as it makes it possible to design high throughput 

quantitative studies in a consistent and reliable way, previously inaccessible. 
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Bridge 
 

In Chapter II I address the influence of maternal starvation and subsequent 

changes in resource allocation during embryogenesis on reproduction and longevity using 

the nematode C. elegans as a model. I found that starved parents produce far fewer 

offspring, but that those offspring did not suffer from decreased longevity or reproductive 

success in the next generation, suggesting that C. elegans maintains the level of per-egg 

investment in each offspring as overall resources decline. In Chapter III I will address the 

influence of a different stressor (Thioflavin T) during development and examine its 

effects on life history trajectories using C. elegans as a model. 
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CHAPTER III 
 

LARVAL EXPOSURE TO LIFESPAN EXTENDING COMPOUND THIOFLAVINT 
DELAYS DEVELOPMENT AND ALTERS ADULT LIFESPAN IN 

CAENORHABDITIS ELEGANS 
 
 
 

The experimental design for this chapter was developed by me with input from 

my advisor Patrick C. Phillips. Co-author Christine Sedore contributed substantially to 

this work by participating in the experimental approach and figure design. I wrote the 

manuscript and co-author Stephen A. Banse contributed substantially to the edits. I am 

the primary investigator for this work. 

 
 

Introduction 
 

Biological aging results in decreased cellular ability to maintain protein structure, 

function and overall integrity (Gladyshev 2016). The maintenance of these protein and 

homeostatic networks (proteostasisis) late in life has been shown to benefit normal aging 

and slow the progression of some types of late life of neurodegenerative disorders such as 

Alzheimer’s and Parkinson’s disease (Roux et al. 2016) (Li & Casanueva 2016). In 

neurons, the ubiquitin–proteasome system and the autophagy–lysosomal system control 

proteostasis and both decline with respect to age (Baptista et al. 2012). 

Screening compounds for their effects on aging has advanced our understanding 

about genes and fundamental pathways involved in the aging process that are conserved 

across species. While there are various model systems that are applicable to the study of 

aging, few allow for rapid high throughput screening coupled with advanced genetic 

analysis of the Caenorhabditis elegans model system (Tissenbaum 2015). Within C. 
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elegans, while many compounds have been identified as potential lifespan extending 

interventions using the canonical wildtype strain N2, few have been shown to be robust 

in their ability to extend lifespan across genetic backgrounds (Lucanic et al. 2017). One 

of the most reliable extenders of lifespan is Thioflavin T (ThT). ThT also been shown to 

induce a 60% lifespan extension effect when C. elegans are when treatment is initiated 

and continuously applied during adulthood (Alavez et al. 2011; Lucanic et al. 2017; 

Banse, Lucanic, Sedore, Coleman-Hulbert, Plummer, et al. 2019). ThT is a widely used 

amyloid binding dye known for its green fluorescence upon binding to amyloid proteins, 

insoluble protein aggregates, DNA and RNA (Biancalana & Koide 2010). ThT has a 

wide variety of applications and has most recently has been used in studies examining 

neurodegeneration in models for Alzheimer’s and Parkinson’s disease (Gamir-Morralla et 

al. 2019) (Sciacca et al. 2017). While current studies to date do not explore the lifespan 

extending effects of ThT in other organisms, they do examine ThT’s ability to maintain 

protein homeostasis in vivo and in vitro (Jagota & Rajadas 2012)(Xue et al. 2017). 

Although the mechanism for ThT induced lifespan extension is not fully 

understood, it is known to require two stress-related transcription factors, HSF-1 and 

SKN-1(Alavez et al. 2011). Consistent with the dependency on HSF-1 to extend life, 

ThT treatment induces an upregulation of several molecular chaperones, with HSP-16.2 

particularly notable among them (Alavez et al. 2011). Previous work on HSP-16.2 

demonstrates that populations of genetically identical animals can be divided into short- 

lived and long-lived subpopulations after a stress application based on hsp-16.2 reporter 

levels in young adulthood (Rea et al. 2005). In essence, hsp-16.2 can be used as a post- 

stress lifespan biomarker, “a parameter that, at a young age, predicts viability at some 
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later age: a biomarker of life span” (Mendenhall et al. 2012). Given that hsp-16.2 

promoter activity can be used as a proxy for biological states that are predictive of 

lifespan, ThT’s induction of hsp-16.2 may suggest that exposure to ThT elicits a change 

in lifespan by a similar stress-inducing change in biological state, and chronic exposure is 

unnecessary for lifespan extension. 

Here, we sought to examine the effects of initiating ThT exposure early in 

development. In particular, we were interested in whether developmental exposure to 

ThT early in life would generate a similar, if not more profound effect on lifespan than 

that seen via treatment in adults. Instead, we discovered that ThT has rather profound 

effects on the developmental trajectories of treated individuals. First, we show that early 

life exposure to ThT results in a population wide developmental delay. Second, we show 

that larval exposure to 100 µM ThT recapitulate the WT N2 adult lifespan extension to a 

lesser degree (early life mortality, coupled with a late life extension). Finally, we show 

that unlike the adulthood lifespan extension, developmental exposure to ThT likely 

results in a widespread hormetic effect, as opposed to operating solely through the SKN-1 

and HSF-1 pathways. Overall, our findings demonstrate that application of longevity- 

promoting compounds can have a dramatically different effects depending on age of 

treatment. 

Methods 
 

Caenorhabditis elegans strains and culture 
 

Caenorhabditis elegans strains N2-PD1073 (Yoshimura et al. 2019), GR1307 

daf-16(mgDf50) I, CB1370 daf-2(e1370) III, MY16, JU775, and CB4856, were obtained 

from the Caenorhabditis Genetics Center CGC, and maintained using standard culture 
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protocols (Stiernagle 2006) unless otherwise noted. All worm cultures were maintained at 

20 °C in a biological incubator. Live streptomycin resistant E. coli strain OP50-1 was 

used as the nematode food source. 

ThioflavinT (ThT) 
 

NGM plates were treated as previously published (Coleman-Hulbert et al. 2019; 

Lucanic et al. 2017; Plummer et al. 2017). In brief, ThioflavinT powder (Sigma-Aldrich, 

Product T3516) was dissolved in deionized water to generate working stocks ranging 

from 1.6 mM to 10 mM. Each stock solution was briefly vortexed, and filter sterilized 

through a 0.2 micron filter syringe. Caution was taken at all times to mitigate ThT 

exposure to light. Working stock concentrations were selected such that treatment of 3 

mL assay plates with 125 µl, and 25 mL assay plates with 1 mL, of working stock 

solution would generate the desired final ThT exposure concentrations. For example, for 

a final concentration of 50 µM on a 4 mL plate, the working solution was 1.6 mM 

Aqueous ThT solutions were added to NGM plates previously seeded with OP50-1. ThT 

was distributed evenly across the surface of each plate and left to dry under aluminum 

foil for 24H prior to experimental use. Plates not used immediately were stored at 4°C in 

a light protective box for up to three weeks. To minimize contamination and maintain 

reproducibility, aqueous solutions of ThT were made fresh prior to treating plates. 

Larval Exposure to ThT 
 

Populations of embryos were obtained by bleaching gravid day 1 adult 

hermaphrodites (Stiernagle 2006). Larvae were exposed to ThT on plates at a density of 

50-100 eggs per small plate and 300-500 eggs per large plate and left to develop at 20°C 
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in the dark for three days. The same assay has been done using L1 synchronized 

populations. 

Larval Recovery from ThT 
 

Following three days of ThT treatment for each plate, animals were screened for 

developmental delays by light microscopy. “Leaky” animals that develop past the L3 

stage are excluded (incomplete penetrance). All L3 developmentally delayed progeny are 

then gently aspirated off the treated plate into 200 - 500 µl of S-basal and liquid 

transferred to a fresh NGM plate with no ThT. Animals are then left to develop at 20°C 

unless otherwise noted. 

Length Measurements 
 

Length measurements were calculated for individual worms using light 

microscopy images and Image J software. Developmentally synchronized populations 

were staggered at treatment intervals to observe developmental delays between working 

hours. Larvae on plates were imaged using a stereo microscope and a Dino-light eyepiece 

camera at 40x magnification. The Image J freehand line tool was used to annotate the 

length of the worm, from nose to tail, for individual replicates across treatments. The 

pixel length of the line drawn was converted, to microns to determine the true size 

measurements for each worm individually. The conversion from pixels to microns was 

done using a micrometer imaged in the same felid of view as the worm under the 

microscope. Statistical significance between treatment groups was done using MANOVA 

in JMP PRO 13 software. Logistic regression curves were made using RStudio. 
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Lifespan Analysis 
 

For all ThT treated individuals, lifespan was measured post recovery from larval 

ThT exposure. To control for developmental delay for all lifespan measurements, 

timepoint 0 represents day 1 of adulthood. For ThT treated and untreated individuals at 

day 1 of adulthood, nematodes are transferred to 50 µM FUdR treated NGM plates for 

two days to inhibit reproduction. Lifespan assays were conducted using the 

Caenorhabditis elegans Lifespan Machine (Stroustrup et al. 2013) using our previously 

published protocol (Banse, Lucanic, Sedore, Coleman-Hulbert, Plummer, et al. 2019). 

Each condition maintained a minimum of four biological replicates with a minimum of 

100 nematodes per treatment and two experimental replicates per lifespan assay. 

Survivorship curves and statistical significance (Wilcox Rank Statistic) were generated 

using JMP PRO 13 software package. (Lucanic et al. 2017) 

Pharyngeal Pump Rate 
 

Pharyngeal pump rate of animals on ThT was measured by visual inspection 

under light microscopy. Per treatment, we tracked individual larvae on ThT and counted 

pharyngeal pumps for 60 seconds as animals were moving. 10 individuals were chosen at 

random per treatment group. There was a minimum of two experimental replicates and 

ten biological replicates per treatment group. Each biological replicate was an individual 

worm. Statistical differences between groups was done in Excel using a t-test. 

Fecundity 
 

Post ThT recovery, at day 1 of adulthood 20 - 30 L4s were isolated individually 

across treatments per experimental replicate. Individual hermaphrodites were transferred 

every 24H for four days or until the number of embryos laid on the plate was 5 or less. 
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Progeny plates were scored 48H later to count the number of L4’s. Statistical differences 

between groups was done in Excel using a t-test. 

 
 

RNAi 
 

RNAi bacterial strains that express double stranded RNA to inactivate SKN-1 were 

cultured and used as previously described in (Timmons et al. 2001) Succinctly, SKN-1 

and empty vector HT115 strains were received from the Ahringer library (Kamath & 

Ahringer 2003). Prior to use in treatment, a single colony was sequenced to confirm 

double stranded RNA and plasmid identification. Post sequence confirmation, an 

individual colony was isolated and grown up in an overnight (16 hours) LB broth with 

carbenicillin at 37°C. The following day a 1:100 dilution of the overnight culture with the 

addition of 0.01mM IPTG was added and the new culture was inoculated at 37°C for 6 

hours. Following the 6-hour inoculation, the bacteria was plated onto RNAi plates and 

left to grow overnight at room temperature before use. RNAi plates were made using 

standard NGM lite agar with the addition of 100µg per mL of carbenicillin and 0.01mM 

IPTG at room temperature overnight (or at 4°C post 24H) in the dark. RNAi plates were 

stored at 4°C in the dark for a maximum of 3 weeks. 
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Results 
 

Larval Exposure to ThT Delays Development 
 

Chronic exposure to ThT during adulthood increases lifespan (Alavez et al. 2011; 

Plummer et al. 2017; Banse, Lucanic, Sedore, Coleman-Hulbert, Plummer, et al. 2019), 

but the effect of larval exposure to ThT is unknown. We therefore sought to determine if 

ThT exposure during development could similarly prolong lifespan. Somewhat 

surprisingly, we were unable to test this effect directly because ThT disrupted larval 

development. To quantify this disruption, the developmental progression of synchronized 

populations exposed to 0, 50 and 100 µM ThT was measured. The developmental rate of 

C. elegans at 20°C is well characterized and C. elegans are expected to reach day 1 of 

adulthood approximately 56 hours post hatching (Byerly et al. 1976). Using size and 

developmental features to classify larval stages (Woodruff et al. 2019; Byerly et al. 

1976). We determined the developmental stage of WT animals four days after placing 

embryos on ThT containing plates (~96 hours of exposure in total). As expected, animals 

hatching on control plates progressed through larval development normally, with 100% 

of the population reaching adulthood by day four (Fig 2.1A). In contrast, when raised on 

50 µM of ThT, only ~20% of the population matured to adulthood, with the remaining 

80% remaining in an L4-like stage (Fig 2.1A). In the presence of 100 µM ThT the 

developmental disruption is even stronger, with 100% of the population remaining at an 

L3-like stage three days after the embryos were plated (Fig 2.1A). This ThT induced 

developmental delay is not unique to the laboratory adapted N2 strain and was replicated 

in three additional wild isolates, although with some degree of dose-dependent 

differences. 
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Control 
100 µM ThT 

To further characterize development under ThT exposure we observed 

synchronized L1 populations of wildtype animals over six days of treatment (Figure 

2.1B). Specifically, we imaged animals at six different time points during the first 48 

hours of exposure and then continued to image animals once every 24 hours afterward 

until the end of the 6 days of treatment. As expected, wildtype L1 animals plated on 0 

µM ThT plates reach adulthood within 48 hours (Figure 2.1B). In contrast, wildtype L1 

animals exposed to 100 µM ThT develop more slowly until they reach an L3-like stage, 

after which growth appears to stop (Figure 2.1B). Furthermore, if left on 100 µM ThT 

roughly 75% of the population animals will eventually die within 3 weeks (data not 

shown). 
A. B. 
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Figure 2.1 Larval Exposure to ThT Delays Development Panel A shows the developmental 
delay in N2 WT as a factor or [ThT] 4 days post embryonic exposure. Each dot, square and 
diamond represent a single individual. n=50 per replicate. Total of three replicates for ThT 
exposure and 2 replicates for control. Panel B shows the ThT population length trajectories over 
6 consecutive days with and without ThT exposure. Each icon represents a single individual at a 
specific point in time. n=10 individuals per timepoint. 
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ThT Exposure Reduces Larval Pharyngeal Pump Rates 
 

One possible explanation for the observed developmental delay is ThT 

modulation of feeding rates. C. elegans developmental rate is affected by food 

concentration, and at low enough concentrations development is expected to slow to the 

point where it appears to stop altogether (Uppaluri & Brangwynne 2015). If larval ThT 

exposure effects pharyngeal pump rate it could reduce the amount of food ingested by the 

animal, effectively phenocopying the slow growth caused by low food concentrations. To 

test this hypothesis, we measured the pharyngeal pump rates of N2 WT animals 

following 3 days of treatment on 50 and 100 µM of ThT.  For ThT induced L3-like 

larvae, pharyngeal pump rates were significantly decreased (mean = 36.87 and 16.95 for 

50 µM and 100 µM ThT respectively) relative to the control group (mean = 203.48) 

(Figure 2.2). When comparing the 50 µM and 100 µM ThT exposed groups there were no 

statistically significant differences in pharyngeal pump rates (One way ANOVA Lower 

CL [0,50] = 160.220, Upper CL [0,50] 270.1491, Lower CL [0,100] 142.855, Upper CL 

[0,100] 263.1446 p=0.7183). 
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Figure 2.2 ThT Exposure Reduces Larval Pharyngeal Pump Rates L3 pharyngeal pumping 
declines in response to [ThT] exposure. Each diamond represents 1 individual per treatment. 
n=15 individuals per biological replicate, total of 2 experimental replicates. Bar represents the 
mean and +/- is the standard error of the mean. Violin plots represent the distribution of the points 
with respect to the mean. 

 
 

ThT Exposed Larvae are Sensitive to 1% SDS Exposure 
 

Following our observation that larval ThT exposure leads to a significant 

reduction in pharyngeal pump rates, we sought to determine if ThT might be inducing 

dauer formation. While C. elegans progresses through the four larval stages with 

reproducible timing under favorable experimental conditions, when conditions are 

stressful it can enter an alternative stage, the dauer, following the L2 stage (Kenyon et al. 

203.48 +/- 9.40 Control (0 µM Tht) 
50 µM ThT 
100 µM ThT 

Mean +/- standard error 

36.87 +/- 8.25 
16.95 +/- 6.39 

P
u

m
p

s
 p

e
r 

m
in

u
te

 a
t L

3
 



36  

1993). The dauer is long-lived, exhibits no pharyngeal pumping, and is SDS resistant 

(Reape & Burnell 1991). To characterize the development of WT N2 in the presence of 

ThT as described above, we used size measurements over time to distinguish among the 

larval stages. While size measurements are a reliable proxy for classic C. elegans 

developmental milestones, it is not a reliable proxy to distinguish dauer (Androwski et al. 

2017). We therefore tested C. elegans larvae on ThT for sensitivity to SDS, as survival 

following 1% SDS exposure is indicative of a buccal plug, expected in C. elegans 

dauers(Mörck & Pilon 2006). To test for the presence of a functioning buccal plug in ThT 

treated larvae, we maintained synchronized populations of WT N2 on 100 µM ThT for 

three days and then exposed them to 1% SDS solution for 30 minutes. In order to 

generate positive dauer controls, one group of populations were subject to 10-days of 

starvation 20°C, while a second group was generated using a strain possessing the 

temperature sensitive daf-2(e1370) allele. In contrast to both of these dauer controls, the 

L3-like animals generated by growth on 100 µM ThT, remain sensitive to 1% SDS 

(Figure 2.3), indicating that they are indeed not dauers. 
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Figure 2.3 ThT Exposed Larvae are Sensitive to 1% SDS Exposure ThT induced L3s are 
sensitive to SDS. Following ThT exposure N2 WT is sensitive to 1% SDS and does not produce 
viable dauers. n=1,500 individuals per biological replicate, 2 experimental replicates total per 
treatment. 
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Larval Recovery Rate Post ThT Exposure 
 

After we determined that larval exposure to ThT results in a major developmental 

delay, we attempted to reverse the effects by removing larvae from ThT. Upon removal 

from ThT on day 3, we found that N2 WT and daf-16 animals took 3-4 days to reach day 

1 of adulthood, while hsf-1 mutants took approximately 6-7 days to reach day 1 of 

adulthood. Removing larvae from ThT on days 4-7 post treatment resulted in higher 

population larval mortality coupled with longer than 10 days to recover to day 1 of 

adulthood. We optimized our ThT treatment to take place at L1 for 72 hours. 

 
 

Larval ThT Exposure Alters Adult Lifespan 
 

Because larval ThT exposure is reversible, this shift provides the opportunity to 

determine the potential influence of early ThT exposure on later adult lifespan. Here, we 

used the automated Lifespan Machine (LM) to measure adult lifespan following 3 days of 

larval ThT treatment. When compared to animals who underwent normal development in 

the absence of ThT, we find a significant increase in lifespan in response to larval 

exposure to 100 µM ThT (Figure 2.4 Log-Rank p = 0.00012). This lifespan extension we 

see under larval treatment recapitulates the previously published adult 100 µM ThT 

exposure paradigm (to a lesser degree) with early life mortality coupled with a late life 

extension. This response is not simply caused by slow larval development though, as 50 

µM larval ThT exposure results in population wide developmental delays but no 

observable lifespan extension. Indicating the dose dependent treatment effect. For adult 

ThT exposure, the Lithgow lab reported a 60% increase in median lifespan and a 43-73% 

increase in maximal lifespan for N2 WT adult C. elegans on 50 or 100 µM of ThT during 
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adulthood. Under our 100 µM N2 WT ThT larval treatment and recovery assay, we 

observe a 7.8 % increase in median adult lifespan, and a 22.2% increase in maximal adult 

lifespan. 

The insulin signaling pathway is involved in larval arrest in response to adverse 

conditions and can regulate adult lifespan (GIANNAKOU & PARTRIDGE 2007). The 

FOXO transcription factor, DAF-16, which is the downstream target of the insulin 

signaling pathway in C. elegans is critical for insulin-dependent regulation of lifespan 

(Murphy et al. 2003). We therefore attempted to determine the increase adult lifespan 

post larval ThT exposure is daf-16 dependent. Unlike the wildtype response, we see that 

larval exposure to 100 µM of ThT exposure in the absence of daf-16 leads to a significant 

decrease in longevity (Figure 2.4 Panel C Log-Rank P < 0.0001). Daf-16 mutants have a 

shorter lifespan than N2 WT individuals. Under our daf-16 100 µM larval ThT exposure 

and recovery assay we observe a 17.26 % decrease in adult median lifespan and no 

change in maximal adult lifespan at 20°C. The additional decrease daf-16 lifespan 

following ThT intervention, indicates that daf-16 is involved in the ThT lifespan 

extension response in WT N2 with respect to larval ThT exposure. This is notably 

different than the lifespan increase upon adult treatment with ThT which is independent 

of daf-16 (Alavez et al. 2011). 

Because the previous characterization of ThT lifespan extension under chronic 

adult ThT exposure implicated hsf-1 as a necessary mediator of the lifespan extension 

(Alavez et al. 2011), we measured hsf-1 mutant adult lifespans post 0 and 100 µM larval 

ThT exposure (Figure 2.4 Panel D). Our results indicate that developmental exposure to 

100µM of ThT in hsf-1 mutant individuals leads to a significant decrease in longevity 
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(Log-Rank p < 0.0001). Under our hsf-1 100 µM larval ThT exposure and recovery assay 

we observe a 13.01 % decrease in adult median lifespan and no change in maximal adult 

lifespan at 20°C. The decrease in lifespan among hsf-1 individuals in the presence of 

ThT indicates that hsf-1 is also involved in the ThT lifespan extension response. 

In addition to hsf-1, the skn-1 pathway is has also been implicated in the lifespan 

extension observed in adults treated with ThT (Alavez et al. 2011). To determine if skn-1 

is also necessary for the changes in adult lifespan seen in N2 adults post ThT larval 

treatment, we induced skn-1 RNAi for N2 adults after recovery from larval ThT exposure 

using the same RNAi method outlined in Alavez et al. 2011. Similar to N2 WT grown on 

the standard OP50-1 diet, N2 WT animals grown on the RNAi competent E. coli strain 

HT115 in adulthood shows some early life mortality and late life extension, although this 

result is not significant, it trends in a similar manner to N2 WT animals. N2 WT animals 

grown on the RNAi competent E. coli strain HT115 have a longer early life mortality 

period, and a shorter late life extension period under larval ThT exposure. (Log-Rank P = 

0.1815) (Figure 2.4 Panel B). For our adult skn-1 RNAi post 100 µM larval ThT 

exposure, we observe a 14.91% decrease in median adult lifespan, and no change in 

maximal adult lifespan. 
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Figure 2.4 Larval ThT Exposure Alters Adult Lifespan Shows the adulthood lifespan 
trajectories per strain in response to larval ThT exposure. Panel A shows that in the N2 WT 
background there is a significant an early life mortality and a late life extension in response to 
larval ThT Exposure (P = 0.0072). Panel B shows that N2 WT on HT115 (RNAi Empty Vector 
Control, solid line) shows the same trend as N2 WT (early life mortality and late life extension 
P=0.005). However, SKN-1 RNAi (dashed line) results in an overall decrease in lifespan (P = 
0.016). Panel C shows that with a daf-16 mutation, N2 larval ThT treatment results in a 
significant decrease to adult lifespan (P =0.011). Panel D shows that with a hsf-1 mutation N2 
larval ThT treatment results in a decrease to adult lifespan (P = 0.33). 
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Control 
100 µM ThT 

Larval ThT Exposure Reduces Adult Fecundity 
 

While treatment with ThT early in life can have a positive impact on longevity, it 

clearly can disrupt development and likely causes other challenges within developing 

worms. To examine this more closely, we measured the fecundity of N2, daf-16, hsf-1, 

skn-1(RNAi), and HT115 (empty vector) adults post recovery from 100µM of larval ThT 

exposure (Figure 2.5). In each case, larval exposure to ThT leads to a substantial decrease 

in total fecundity. ANOVA reports p = 0.0001 for N2, daf-16, hsf-1, skn-1, and HT115 

(empty vector). 
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Figure 2.5 Larval ThT Exposure Reduces Adult Fecundity Larval ThT exposure results in 
significantly decreased fecundity across all strains tested (P > 0.001) n=30 individuals per 
treatment, each dot represents an individual > L3 stage, individual hermaphrodites are isolated at 
4th larval stage to capture total reproduction 
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Discussion 
 

Here, we sought to examine if the mechanism for ThT lifespan extension found in 

adults could be activated by exposure earlier in life. In particular, we were interested in if 

short term early-life treatment would be sufficient for inducing late-life longevity 

benefits. We made the surprising discovery that early-life exposure leads to a population- 

wide developmental delay. This is especially surprising since the proposed the 

mechanism for ThT induced lifespan extension in adults is enhanced protein homeostasis 

(Alavez et al. 2011), which would seem to be potentially favorable regardless of age. 

Apart from the adult early life mortality at high concentrations, there was little evidence 

suggesting that ThT had any toxicity effects in adults. The diverse and complex effects 

that we observe following larval treatment of ThT (developmental delay, decreased 

pharyngeal pump rate, bi-phasic N2 adult lifespan and decreased fecundity) suggest the 

potential for substantially different mechanisms of action for larval and adult response to 

treatment. Overall, our findings suggest that both ThT induction of larval developmental 

delay, and recovery post exposure is complex and likely a hormetic stress response, given 

the observation that daf-16, hsf-1 and skn-1 all prevent the late life extension observed in 

N2 WT (Jones & Candido 1999). In addition, all strains show decreased fecundity post 

treatment, suggesting that developmental ThT exposure is acting through multiple stress 

response pathways and that removing them results in reduced lifespans (Kumsta & 

Hansen 2017). We were also able to show that fecundity is significantly reduced 

following larval ThT exposure, highlighting the impact of this stressor to differentially 

allocate resources between somatic maintenance and reproduction early in development. 
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Larval ThT Exposure Causes Novel Developmental Delay 

Identification of a compound resulting in a sustained severe developmental delay was a 

surprise finding. Especially, considering that C. elegans has two programmed 

developmental arrest states to survive harsh conditions (Baugh & Sternberg 

2006)(Angelo & Gilst 2009). The ability of larval ThT exposure to bypass predetermined 

developmental arrest pathways, both L1 arrest and dauer, highlights the complexity of 

ThT’s mechanism of action during development. Preliminary data on alternative adult 

lifespan extension compounds, such as green tea extract, do not result in developmental 

delay. This is suggestive that ThT is unique in its temporally restrictive response. ThT 

treatment during embryogenesis, L1, L2, and L3 development lead to a prolonged L3 

developmental delay, eventually resulting in death after 3 weeks of exposure (Figure 2.1). 

It is also associated with a significant reduction in pharyngeal pump rates. ThT treatment 

during L4 results in facultative vivipary as (opposed to L4 reproductive diapause). Lastly, 

chronic ThT treatment during adulthood results in a significant lifespan extension 

(Alavez et al. 2011; Lucanic et al. 2017; Banse, Lucanic, Sedore, Coleman-Hulbert, Todd 

Plummer, et al. 2019). Remarkably, we show that early developmental delay effects of 

ThT can be reversed upon removal from the compound with sustained effects to overall 

adult fitness. 

ThT Induced Developmental Delay Results in Adult Fitness Tradeoffs 
 

In 2011, the Lithgow lab examined that adult exposure to ThT leads to a major adult 

lifespan extension. Their studies concluded that the lifespan extension of ThT in adults 

relies on HSF-1 and SKN-1 and that ThT is potentially acting as a stress response mimic 

to promote protein homeostasis. In 2017, a Caenorhabditis Intervention Testing Program 
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longevity assay including 22 Caenorhabditis strains across three independent 

laboratories, confirmed the response to adult ThT exposure was both potent and robust 

across all strains tested (Lucanic et al. 2017). Our results on the examination of ThT adult 

lifespan post larval developmental delay recapitulate the N2 adult lifespan extension to a 

lesser degree. Furthermore, our larval treatment paradigm allows us to examine the 

effects of ThT on reproduction. The fitness tradeoff we observe among increased lifespan 

and decreased reproduction suggests changes in nutrient allocation resulting in a fitness- 

tradeoff. We interpret these findings to mean that the enhanced lifespan following larval 

ThT treatment is achieved by a reallocation of nutrient resources to somatic maintenance 

at the expense of germline resources. Taken together, our findings support that 

developmental ThT exposure results in a hormetic stress response in adulthood, 

conversely to sustained adult ThT exposure resulting in a lifespan extension 

independently of daf-16 but dependent on hsf-1 and skn-1. 

Our observations show that the effects of larval exposure to ThT are different than 

adult ThT exposure in a variety of ways, most distinctly, that it requires multiple stress 

response pathways (daf-16, skn-1, and hsf-1) to attain late adult lifespan extension. We 

characterize larval ThT exposure as hormesis due to the biphasic response of larval 

toxicity coupled with late lifespan extension and reduced fecundity in adults. 

Additionally, we observe a dose dependent toxicity effect of larval ThT exposure. Such 

that, under a moderate exposure concentration (100~150µM) for a short (~3 days) 

exposure period the toxicity effects of ThT are buffered by activation of multiple stress 

response pathways (hormesis), which remains activated throughout adulthood resulting in 

the observed adult lifespan extension. Taken together, these data suggest that the 
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consequences of larval ThT exposure on adults is complex, possibly polygenic, and 

temporally sensitive. 

Conclusion 
 

The developmental delay induced by larval ThT exposure examines an alternative 

paradigm for how C. elegans can potentially respond to environmental stress. Unlike the 

traditional L1 arrest or dauer larvae, C. elegans response to larval ThT exposure is 

bypassing the predetermined developmental stages for surviving adverse environmental 

conditions. These experiments highlight the need to examine the potential toxicity 

effects, and tradeoffs that can be associated with exposure to various compounds. It also 

highlights the various pathways that can be used to metabolize compounds, and that the 

temporal onset of stressors can result in varied pharmacodynamics and have the potential 

to lead to adverse consequences. 
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CHAPTER IV 

CONCLUSION 

 
In an effort to advance the field of senescence and address gaps in our knowledge 

concerning the biological fitness tradeoffs within the aging process, I address two 

fundamental questions using C. elegans as a model. First, I examine how nutrient 

deprivation can impact fitness trajectories within and across generations. Then I examine 

how compound intervention via Thioflavin T (ThT) can also impact fitness 

characteristics within a generation and affect various life history traits. 

In Chapter II I address the role of transgenerational changes under an acute 

maternal starvation effects paradigm. Through the development and implementation of a 

novel microfluidic device fabricated to impose maternal starvation and collect laid 

progeny simultaneously, while mitigating the adverse biological and physiological 

constraints associated with adult starvation in nematodes. My findings demonstrate that 

under acute starvation C. elegans decreases overall fecundity while maintaining equal 

investment per embryo. Progeny laid during maternal starvation display no significant 

differences in lifespan nor fecundity trajectories when raised under normal environmental 

conditions. In this study we did not evaluate the potential for increased stress resistance 

of progeny when exposed to adverse environmental conditions, but rather chose to 

examine how incongruent environments for adults and progeny shape fitness trajectories 

under ideal circumstances. We sought to examine if increasing environmental resources 

could mitigate the consequences of prior adverse conditions. Under a specific set of 

conditions, we show that C. elegans progeny laid as a result of maternal starvation does 

not exhibit the same transgenerational consequences as extended L1 arrest nor extended 
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dauer. This highlights that, in C. elegans, transgenerational epigenetic effects are tightly 

regulated dependent upon the temporal resolution stress exposure. In this system, we see 

that developmental stravation has a stronger impact on progeny fitness than adult 

starvation. However, this phenomenon is likely to be inconsistent across biological 

systems given variation in the dynamics of reproduction and diverse biological tradeoffs 

between reproduction and lifespan. 

This finding can be explained by various evolutionary life history strategies that 

organisms employ to maximize survival and reproductive success in adverse conditions. 

Senescence is accompanied by a decrease in protein and cellular homoeostasis 

irrespective of external nutrient availability. Following sexual and reproductive maturity 

there is a shift in the allocation of resources towards somatic maintenance instead of 

germline maintenance and gamete formation. This shift in resource allocation that 

happens naturally during senescence and can be induced via external manipulations that 

alter nutrient availability prior or during sexual and reproductive maturity. Reproduction 

is an energetically costly process across all systems; however, it is necessary for species 

survival. Thus, even when faced with less than ideal conditions, organisms continue to 

invest in progeny. 

In Chapter III I address the role of epigenetic changes under compound 

intervention with the use of the amyloid-binding compound ThT. To examine how a 

compound that promotes protein homeostasis can impact life history trajectories I 

developed an early exposure paradigm to treat developing animals. I found that early 

exposure to ThT results in a population wide developmental arrest that is only 

recoverable within 6 days of exposure. I also found that the long-term consequences of 
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early life exposure to ThT to be an increased early life mortality, coupled with a late life 

extension for individuals who are able to overcome the early life mortality. I found a 

significant reduction to overall fecundity post sexual maturation in hermaphrodites as a 

result of early life exposure, suggesting a shift in the allocation of resources from 

reproduction to somatic maintenance. Through the use of insulin signaling mutants and 

RNAi knockdown I was able to determine that the mechanism for ThT exposure 

impacting lifespan varies from the previously reported adult exposure treatment such that 

it causes a widespread hormetic response, as opposed to acting through specific stress 

response pathways independently of insulin signaling in adults. 

Using our developmental exposure treatment paradigm, we first show that the 

previously reported assertion of the impacts of ThT on adult lifespan is not applicable to 

a developmental exposure treatment paradigm. This further highlights that temporal 

variation in the treatment exposure is critical to downstream fitness consequences. The 

incongruent effects of ThT exposure leading to developmental delay in larvae and ThT 

exposure leading to a two-fold increase in overall lifespan in adults can be explained by a 

hormesis stress model. That is, exposure to something that is toxic can have beneficial 

effects later in life. Again, there is a shift in the allocation of resources from germline 

development to somatic maintenance as a function of age. Similar to the adult starvation 

model explored in Chapter II, we show that the total progeny output is affected due to 

adverse environmental conditions. 

Taken together, both chapters of my dissertation increase our understanding of 

senescence and highlight the necessity that temporal onset of interventions, both through 

use of compounds and caloric restriction, is essential in mitigating inheritance within and 
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across generations. We show that the impacts of such perturbations can be sustained 

within a generation, but also have the potential to impact succeeding generations through 

high mortality rates. Although, we did not examine the transgenerational responses to 

species fitness in these studies, that is a reasonable future direction for this research given 

the information. In addition to protein homeostasis regressing as a function of age, so 

does the ability of natural selection to purge deleterious mutations from the population. 

Due to population drift (induced via high mortality rates), pleiotropy, linkage 

disequilibrium, and genetic hitchhiking there are a multitude of ways for selection to 

favor alleles that are early life beneficial and late life deleterious. In the case of ThT 

exposure, we see a late life extension and an early life mortality. While this may not be 

the case for all lifespan extension compounds, our study highlights that the ability to use 

a model system to understand the pharmacodynamics of compound interventions both 

during and after development yields to better insights on senescence as a function of 

time. 

Overall, this thesis shows that the when evaluating the fitness consequences of 

environmental perturbations, it is imperative to consider temporal onset of the stressor. 

While this may not be applicable or translational to all stressors or model systems, 

altering temporal onset of environmental perturbations can yield to a better understanding 

of how biological fitness tradeoffs impact population fitness within and across 

generations. 
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