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DISSERTATION ABSTRACT 
 
Brett A. Israels 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
May 2020 
 
Title: Single Molecule Studies of ssDNA Dynamics Near a DNA (p/t) Junction and Their 
Role in Protein Nucleic Acid Interactions of the T4 Bacteriophage. 
 

 

Thermally induced conformational fluctuations of deoxyribonucleic acid (DNA) 

play an important role in the regulation of DNA replication, recombination and repair, 

which depends on the ability of protein machinery to recognize and bind to selected 

conformations of DNA lattices. Obtaining information about the nature of these 

functionally relevant DNA conformations, in addition to the time scales of their inter-

conversion, is critical to understanding the detailed molecular mechanisms of protein-DNA 

interactions. An important component to DNA replication in all organisms is the single-

stranded (ss) DNA binding protein (ssb), which binds to ssDNA, protecting and priming 

it for interaction with other proteins. We used the T4 Bacteriophage as a model organism 

to study the process of DNA replication, with a focus on the T4 ssb, gene-product32. 

I investigated fundamental questions: 1. How does the molecular structure of 

ssDNA affect its conformational fluctuations? 2. How do gp32 proteins assemble onto 

ssDNA to form functional microscopic machines? And, 3. How is the gp32 assembly 

mechanism affected by ssDNA polarity and length? To answer these questions, I used a 

combination of spectroscopic techniques including sub-millisecond single-molecule 

Förster Resonance Energy Transfer (FRET) measurements. We analyzed our data by 

performing numerical optimizations of a transport master equation to simulate multi-order 

time correlation functions (TCFs) and the equilibrium distribution of conformational 

macrostates. 

We discovered that the pathway for gp32 dimer assembly onto short 

oligonucleotides near ss—double-stranded (ds) DNA junctions proceeds through a 
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transiently bound monomer, which does not slide along ssDNA. I developed methods to 

analyze the single-molecule signal at sub-millisecond resolution, which led to new 

insights into the nature of ssDNA fluctuations as well as the gp32 dimer assembly 

mechanism. I found that the ssDNA backbone fluctuates between various conformational 

states on a sub-millisecond timescale, only some of which are available for binding by 

gp32. By examining different lengths and polarities of ssDNA p/t constructs, I show that 

gp32 dimer sliding occurs on the timescale of a millisecond and that it is sensitive to the 

polarity of the ssDNA to which it is bound. 

This dissertation includes both previously published and unpublished co-authored 

materials.  
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CHAPTER I 
 

You can know the name of a bird in all the languages of the world, but when you’re 

finished you’ll know absolutely nothing whatever about the bird. So, let’s look at the bird 

and see what it’s doing – that’s what counts. 

- Richard P. Feynman 

 

Chapter I serves as the introduction to the rest of the thesis. It outlines several of 

the major topics covered in subsequent chapters and is designed to give a non-expert the 

sufficient background to understand the rest of the material. Chapter II was published in 

the Journal of Physical Chemistry B in December 2016 with co-authors Carey Phelps, 

Morgan C. Marsh, Peter H. von Hippel, and Andrew H. Marcus. In this chapter we first 

outline the theory of Markov chains applied to a time correlation analysis of single-

molecule data. Chapter III was published in Proceedings of National Academy of 

Sciences in April 2017 with co-authors Carey Phelps, Davis Jose, Morgan C. Marsh, 

Peter H. von Hippel, and Andrew H. Marcus. It describes the investigation into the 

assembly mechanism of a dimer of the T4 bacteriophage single-stranded DNA binding 

protein gp32 onto a 3′-p(dT)15 ssDNA segment near a DNA p/t junction. Chapter IV is an 

unpublished collaboration with Claire Albrecht, Anson Dang, Megan Barney, Peter H. 

von Hippel, and Andrew H. Marcus. In this chapter we investigate the sub-millisecond 

kinetics of various DNA constructs that differ in length and polarity. Chapter V is an 

unpublished collaboration with Claire Albrecht, Anson Dang, Megan Barney, Peter H. 

von Hippel, and Andrew H. Marcus. It examines the polarity dependent binding 

mechanisms of gp32 using new insights from modeling ssDNA near a p/t junction, 

discussed in the previous chapter. Chapter VI is a concluding summary that puts all the 

work into context and ponders the next logical steps in the project for future 

investigators. 

Molecular Biology of DNA 

Deoxyribose nucleic acid (DNA) is a polymer like no other. The specific 

sequence and number of its monomers determine not only the dynamic conformational 
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behavior of the polymer, but also the macroscopic physical makeup of its vehicle, 

roughly 6-8 orders of magnitude larger than itself. The full complement of DNA in an 

organism is known as the genome and is responsible for heredity, and the diversity of life 

on Earth. To further differentiate DNA from other polymers, we note that a single-strand 

(ss) of DNA in general doesn’t exist as a lone polymer, but rather it is paired with another 

ssDNA to form the full double-strand (ds) DNA double-helix that is the heart of every 

living cell. 

The monomer of ssDNA is a nucleotide, which consists of a sugar bound to a 

phosphate and nucleobase: adenine (A), guanine (G), thymine (T), or cytosine (C).1 The 

nucleobases on one ssDNA of the double helix are bound to nucleobases on the other 

strand in a specific manner:  the purine A binds to pyrimidine T with two hydrogen 

bonds, and the purine G binds to pyrimidine C with three hydrogen bonds. Pyrimidines 

are smaller than purines and participate in weaker 𝜋 − 𝜋 stacking interactions between 

adjacent bases on the same ssDNA strand. All of the studies presented in this dissertation 

feature a ssDNA polymer composed of thymine nucleotides, abbreviated as p(dT)N, 

where N is the number of thymine monomers.  

DNA is a dynamic molecule, with motions on a vast range of length- and time-

scales. One type of conformational fluctuation, ‘dsDNA breathing’, involves the 

complementary ssDNA strands transiently separated from one another.2 DNA doesn’t 

work alone: proteins take advantage of these transient fluctuations in order to interact 

with specific regions of DNA and carry out the myriad of biological functions it is 

essential to. The evolutionary history of an organism determines the array of proteins that 

are available to interact with the genetic code.  

Single-Stranded DNA Binding Proteins 

One class of protein  that interacts with DNA is the single-stranded DNA binding 

protein (ssb). As the name suggest, ssbs bind to ssDNA, generally to the phosphate 

backbone. Long segments of single-stranded DNA are exposed during DNA replication, 

and shorter segments during DNA recombination, and repair. Ssbs bind to ssDNA and 

protect it from forming unfavorable secondary structures and from being attacked by 

nucleases. The ssb proteins often bind cooperatively to DNA, such that long segments of 

ssDNA can be coated. 
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The molecular version of Darwin’s theory of natural selection goes as follows: if 

the sequence of the genetic code influences the success of the organism, and the success 

of the organism affects the proliferation of the genetic code, then it comes to reason that 

sequences of nucleotides which benefit the organism’s survival will increase in frequency 

in the population relative to sequences that do not. If this is true macroscopically, it is 

certainly true within the cell too. Single-stranded DNA binding proteins protect the DNA 

that codes for it, skipping the middle man of the organism entirely. It is no wonder that 

such an interesting class of protein has evolved across virtually all domains of life.   

The T4 bacteriophage is an excellent model organism in the field of molecular 

biology.3 It’s a particularly useful system to investigate DNA replication, owing in part to 

its well understood genome and similarities to eukaryotic DNA replication.4 Only a 

handful of the 289 protein coding genes are necessary to form the multiprotein DNA 

replication machine known as the T4 replisome.5 The  replisome has the same basic 

replication components as humans including a helicase, a polymerase, a primase, and a 

ssb protein, gene-product 32 (gp32).  

The T4 ssb gp32 will be the focus of much of this dissertation. Through studying 

the assembly mechanism of gp32, we not only learn specifics about an important 

component of the DNA replication system of a model organism, but also general 

principles about protein-nucleic acid interactions, how cooperativity between ligands 

affects higher-order assembly, and the role that conformational fluctuations play in 

complex biomolecular mechanisms. 

Single Molecule FRET Spectroscopy 

The word single in single-molecule spectroscopy means that the technique 

focuses on one individual molecule at a time. Because the signal from one molecule is 

not mixed with others as it is in traditional spectroscopic techniques, single-molecule 

spectroscopy is optimally sensitive to the moment-to-moment state of a molecule instead 

of an ensemble average value. The trade off one gets for more information content is a 

reduction in signal strength.  

The FRET efficiency, 𝐸&'() , is proportional to the distance, 𝑟, between two 

molecules called the donor (D) and acceptor (A) chromophore as described by Eq. (1.1). 
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𝐸&'() = ,1 + / 0
'1
2
3
4
56

,     (1.1) 

where 𝑅8 is the donor-acceptor specific distance that the 𝐸&'() = 0.5.6 The relative 

orientation of the chromophores also affects the FRET efficiency, so the relationship 

between 𝐸&'()  and 𝑟 is not exact. In smFRET, the donor molecule is excited by an 

external electric field (a narrowband laser tuned to a specific wavelength that corresponds 

to the donors S0-S1 transition). The excited-state Donor can either fluoresce or non-

radiatively excite a nearby acceptor molecule, which can fluoresce in its stead. The closer 

the molecules are to one another, the more often the acceptor is excited. In fact, the 

relative fluorescence from the donor and acceptor molecules can be used to calculate 

𝐸&'()  using Eq. (1.2), 

𝐸&'() =
<=

<=><?
,     (1.2) 

where 𝐼A and 𝐼B are the intensity per unit time of the acceptor and donor, respectively. 

 The experiments and analysis reported in this dissertation are about uncovering 

the details of how nature unwittingly coordinates complex molecular interactions. The 

specific sequence of biomolecular events that transpire from one initial state to a final 

state is called a mechanism. To understand biology, is to understand mechanisms. 

Bridge to Chapter II 

In the next chapter we introduce a generalized approach of using time-correlation 

functions (TCFs) to obtain kinetic information from single-molecule fluorescence 

measurements. The approach is illustrated in the context of two possible reaction 

mechanisms that each describe the assembly of gp32 monomers into cooperatively bound 

gp32 dimers on a ssDNA region near a DNA replication fork. DNA replication occurs at 

the rate of about a ms per nucleotide, and involves the coordination of many polymers 

(nucleic- and amino-acids) each with unique secondary structures and conformational 

dynamics. The TCF approach can yield information on timescales faster than concurrent 

hidden Markov modeling (HMM) methods, so is especially useful in microsecond-

resolved spectroscopy to uncover information about biological mechanisms.  
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CHAPTER II 
USING MULTI-ORDER TIME CORRELATION FUNCTIONS (TCFS) TO 

ELUCIDATE BIOMOLECULAR REACTION PATHWAYS FROM 

MICROSECOND SINGLE-MOLECULE FLUORESCENCE  

EXPERIMENTS 

This work was published in The Journal of Physical Chemistry B (JPCB) in 

December 2016. I performed calculations featured in the manuscript and made some of 

the figures. I was involved in the drafting and editing of the paper along with coauthors 

Carey Phelps, Morgan Marsh, Andrew H. Marcus and Peter H. von Hippel. This work 

was supported by grants from the National Science Foundation (Chemistry of Life 

Processes Program grant CHE-1608915 to A.H.M.) and the National Institutes of Health 

(NIGMS Grant GM-15792 to P. H.v.H. and A.H.M.). Andrew H. Marcus was the 

principal investigator for this work. 

Introduction 

During the past several years, significant advances have been made in the use of 

single-molecule fluorescence methods to monitor conformational changes in the structure 

and dynamics of fluorescently labeled macromolecular systems. Such studies can provide 

detailed information about the assembly and function of protein-DNA complexes1-9. The 

recent development of sub-millisecond (tens-of-microseconds) single-molecule Förster 

resonance energy transfer (smFRET) experiments has opened the possibility to study 

relatively fast macromolecular processes, such as DNA ‘breathing’ and its role in the 

regulation of biochemical reactions,2,10-11 which cannot be resolved on the time scales of 

most current single-molecule methods (~100 milliseconds). DNA breathing involves the 

thermal activation of segments of duplex DNA to form short-lived local ‘bubble-like’ 

states. Such locally disordered regions of DNA are thought to function as transient, 

secondary-structural motifs that can be bound by regulatory proteins as intermediate steps 

in the assembly and function of DNA-protein complexes. Microsecond-resolved smFRET 

experiments have the potential to reveal the mechanisms by which DNA-associated 

proteins can ‘harvest’ such specific thermally populated states in the course of carrying 

out reactions involved in the processes of genome expression. 
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Fast detection techniques, such as phase-synchronous single-photon-counting 

methods, can provide time-resolved data with tens-of-microsecond resolution.2 Such 

experiments rapidly detect individual fluorescence photons from a single molecule, and 

store information about the intervening time intervals and optical phase conditions 

associated with each detection event. Even under optimal conditions, microsecond-

resolved single-molecule fluorescence experiments produce ‘sparse’ data sets, because 

the average interval between successively detected signal photons can greatly exceed the 

experimental time resolution. In order to extract sub-millisecond kinetic information from 

sparse data sets, certain experimental challenges must be overcome. For example, 

transient intermediates may be difficult to detect due to the limited signal integration 

period. Under such low-signal conditions, the signal-to-noise (S/N) ratio is often too 

small to construct single-molecule trajectories in which transitions between distinct 

‘states’ can be unambiguously identified and state-to-state transition ‘pathways’ can be 

visualized. Thus, the analysis of sparse trajectories must be carried out in non-standard 

ways.  

In this paper, we show how mechanistic information can be obtained from 

microsecond single-molecule fluorescence experiments by applying generalized concepts 

of time correlation functions (TCFs).12-21 TCFs provide a statistically meaningful way to 

characterize the time scales of stochastically fluctuating biochemical systems. Moreover, 

the time resolution of single molecule experiments can be maximized using TCFs, as 

demonstrated by Scherer and co-workers.22 By correlating the fluctuations of individual 

molecules as a function of time, one can learn about the pathways connecting the 

conformational states that are accessible to the system at equilibrium. A commonly used 

approach to analyze single-molecule trajectories is to directly visualize the transition 

steps within a finite data set by fitting to a so-called hidden Markov model (HMM).23 

When utilized to their full advantage, TCFs constructed as a function of multiple time 

intervals can, in principle, provide more accurate and detailed information than HMM 

analyses.  

In optimal situations, one can obtain several pieces of information from the 

analysis of single-molecule trajectories: (i) the number of conformational states reported 

by an experimental observation (such as a FRET measurement); (ii) the values of the 



 

 

7 

observables associated with each state; and (iii) kinetic parameters associated with the 

inter-conversion between the states. When the experimental signal is especially noisy, as 

is the case for microsecond-resolved smFRET experiments, the application of HMM 

methods is inadequate to determine the above information. In contrast, TCFs provide an 

excellent approach to analyze the microsecond kinetics of macromolecular 

conformational transitions. 

The situation can be described using the theory of Markov chains.24 We assume 

that the instantaneous state of the system is mapped onto an experimentally accessible 

stochastic variable 𝐴(𝑡) that can be measured at discrete times. The distribution of 𝐴 is 

characterized by its moments, and the time-dependent moments are the TCFs. In general, 

the nth-order TCF, 𝐶(H)(𝜏6, 𝜏K,… , 𝜏H56), can be written as the average product of n 

successive observations 〈𝐴(𝑡6)𝐴(𝑡K)…𝐴(𝑡H)〉, which depends on the n – 1 time intervals 

𝜏6 = 𝑡K − 𝑡6, 𝜏K = 𝑡O − 𝑡K, …, 𝜏H56 = 𝑡H − 𝑡H56. The complexity of information that is 

potentially available from a TCF depends on its order. For example, the 2nd-order (two-

point) TCF, 𝐶(K)(𝜏) = 	 〈𝐴(𝑡6)𝐴(𝑡K)〉, is the average product of two successive 

observations written as a function of the time interval 𝜏 = 𝑡K − 𝑡6. The 2nd-order TCF 

thus describes the average loss (or gain) in correlation of 𝐴 over time, which can be used 

to obtain the average time scales of the fluctuations of the system. Nevertheless, 2nd-order 

TCFs do not provide information about ‘transition pathways’ – that is, whether a 

particular state-to-state transition must follow or precede another, or whether two such 

transitions occur independently. Such information is available through a higher-order 

TCF analysis. In the analysis that follows, we skip over 3rd-order TCFs and focus on the 

4th-order (four-point) TCFs 𝐶(Q)(𝜏6, 𝜏K, 𝜏O), because the latter contain more information 

and can handle reaction pathways that include a larger number of elementary steps. In 

principle, even higher-order TCFs (e.g., 5th-, 6th-order, etc.) could be employed, although 

this would require increasingly complex analyses that become more difficult due to the 

S/N limitations of finite data sets. We show, by performing a global analysis that includes 

4th-order TCFs, that it is possible to characterize fundamental time scales of the system, 

including intervening (exchange) times that might be associated with short-lived 

chemical intermediates. 
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In addition, 4th-order TCFs are widely applied in molecular spectroscopy, such as 

two-dimensional (2D) NMR, 2D infra-red and 2D electronic spectroscopy.25-26 For 

example, the nonlinear optical response of a molecule can be formulated in terms of the 

4th-order TCFs of the appropriately defined transition dipole moment operator.25 4th-order 

TCFs have also been applied to study the stochastic microscopic fluctuations of complex 

chemical systems,20-21 including protein reaction dynamics,14 protein diffusion in 

solution,15-16 liquid polymer diffusion,17, 27 and protein conformation fluctuations in 

Molecular Dynamics (MD) simulations.18  

In spite of their advantages, higher-order TCFs have not been previously used to 

study conformational transition pathways of biological macromolecules. This may be 

because the underlying concepts of TCFs are relatively abstract, and there are few 

sources on this topic that are accessible to a general scientific audience. Here we seek to 

demonstrate the utility of TCFs to extract mechanistic information from single-molecule 

fluorescence experiments. We show that by using TCFs of sufficiently high order, it is 

possible to distinguish between macromolecular binding pathways of varying levels of 

complexity. 

In a recent study from our laboratory,8 smFRET experiments were employed to 

analyze the cooperative binding of the single-stranded (ss) DNA binding protein of the 

T4 bacteriophage DNA replication complex (gp32) to single-stranded segments of 

primer-template (p/t) DNA constructs of varying lengths and polarities. These constructs 

can serve as models of DNA replication forks. Throughout this paper, we use a particular 

model experiment based on this study as an explicit molecular illustration of the 

principles and approaches developed in our analysis. As background, we note that gp32 

protein molecules bind cooperatively and preferentially to ssDNA, with a binding site 

size of 7 nucleotide residues (nts, or DNA lattice positions) per gp32 molecule.28 We 

have shown8 that p/t DNA substrates with a ssDNA ‘tail’ region of 15 nts in length, 

which can cooperatively bind up to two gp32 proteins, can undergo stochastic 

fluctuations between 0-, 1- and 2-bound states (see Fig. 2.1A). In these experiments the 

ssDNA tail region was labeled on opposite ends with a FRET donor-acceptor 

chromophore pair that moves to longer inter-dye distances as gp32 molecules bind 

between them and thus increase the rigidity of the intervening ssDNA sequence. As a 
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consequence, the sequential binding of gp32 molecules to the ssDNA tail can be 

monitored by tracking the changes in the FRET signal, as discussed further below.  

While such experiments could detect the presence of distinct conformational sub-

states of the ssDNA involved in association / dissociation events, the time-resolution of 

the experiments described in Lee et al.8 (~100 ms) was not sufficient to determine either 

the lifetimes of the short-lived singly-bound intermediates, or to directly observe their 

conversions to longer-lived end-states. Nevertheless, this model system can serve as a 

concrete illustration of the potential uses of the theoretical approaches developed here. 

We are currently applying these TCF methods to analyze new microsecond-resolved 

single-molecule experiments on this gp32 binding system.  

Conformational Transition Pathways and the Role of Intermediates 

We consider an equilibrium system composed of N discrete microscopic states. At 

any instant, the system can undergo a transition from state-𝑖 to state-𝑗 where 𝑖, 𝑗 ∈

{0,1, … ,𝑁 − 1}. We assume that there exists an experimentally accessible stochastic 

variable 𝐴(𝑡)	that is coupled to the conformation of the system. For example, 𝐴 might be 

a fluorescence signal from a single fluorophore or a collective signal from a FRET donor-

acceptor pair that site-specifically labels a biological macromolecular complex and is 

sensitive to its local conformation or to a similar reaction coordinate. When the system 

occupies state-𝑖, the variable 𝐴 assumes a corresponding value 𝐴X.  

As indicated above, we illustrate our approach using the macromolecular system 

studied by Lee et al.,8 in which a ssDNA template interacts with the T4 bacteriophage 

gp32 binding protein (see Fig. 2.1A, in Appendix A with all tables). The N = 3 reaction 

scheme (shown in Fig. 2.1B) is the simplest possible to describe the p(dT)15-(gp32)n 

system (with n = 0, 1, or 2), which involves 0-, 1- and 2-bound gp32 molecule states. 

Since the gp32 protein occludes 7 nts on the ssDNA template, there are nine possible 

binding conformations available to the 1-bound state (e.g., at positions 1 – 7, 2 – 8, …, 

and 9 – 15). This simplest model treats all 1-bound states as experimentally 

indistinguishable species that may lie on the accessible pathway connecting the reactant 

0-bound state to the product 2-bound state. In this reaction scheme, we do not indicate 



 

 

10 

direct transitions between 0- and 2-bound states, since it is known that gp32 does not 

directly bind to ssDNA as a dimer.29 

Despite the appealing simplicity of the N = 3 scheme (Fig. 1B) for the p(dT)15-

(gp32)n system, further consideration suggests that this mechanism cannot provide an 

adequate description of this gp32-binding model system because all of the 1-bound states 

on the 15 nts ssDNA ‘tail’ lattice cannot be treated as identical. Rather there are a number 

of ways in which a gp32 monomer might initially bind to the ssDNA template that would 

partially occlude the second binding site of 7 contiguous unoccupied nts, which is 

required to allow a second gp32 monomer to bind to the ssDNA tail of the p/t construct.30 

Such 1-bound states that ‘overlap’ the potential second binding site represent 

‘unproductive’ intermediates, and thus inhibit transitions between the 0-bound and 2-

bound states. Clearly, the first gp32 protein can bind productively only at the four 

possible positions (1 – 7, 2 – 8, 8 – 14 or 9 – 15) to allow the ssDNA ‘tail’ sequence to 

retain a contiguous (7 nts) binding site that can accommodate a second gp32 monomer.31 

These latter 1-bound states would function as ‘productive’ intermediates through which 

the 0-bound state can undergo transitions to the 2-bound states. The kinetics of a model 

of this type can be diagramed using the N = 4 scheme shown in Fig. 2.1C, in which we 

have labeled the ‘unproductive’ and ‘productive’ intermediates as state-1 and state-1’, 

respectively. 

As pointed out above, the binding states of the ssDNA-(gp32)n system and their 

inter-conversion pathways can be studied using smFRET techniques.8 In the experiments 

by Lee et al.,8 which were performed using 100-ms time resolution, only two states – a 0-

bound state and a 2-bound state – could be unambiguously observed, although indirect 

evidence for the existence of short-lived 1-bound states was also obtained. These results 

suggested that 1-bound states are present, but are too short-lived to be resolved in 

experiments conducted at 100-ms resolution. Because gp32 binding to ssDNA is known 

to be highly cooperative, 1-bound states are expected to be unstable in comparison to 2-

bound states. A reasonable model for the assembly mechanism of the system might 

involve an initial singly bound gp32 molecule that either rapidly recruits a second gp32 

protein to the ssDNA lattice to form a high affinity (cooperatively bound) dimer of gp32 

molecules, or that rapidly dissociates from the ssDNA lattice. The relative probabilities of 
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these competing scenarios should depend in part on the location of the initially bound 

gp32 protein, as described by the four-state scheme of Fig. 2.1C. Indeed, a common 

situation for many single-molecule experiments is that intermediates can be very short-

lived, and their observed signals might be degenerate. An idealized stochastic smFRET 

trajectory for the N = 3 scheme is shown in Fig. 2.1D, in which case 𝐴8, 𝐴6 and 𝐴K are 

the values of the observable 𝐴(𝑡) when the system is in states 0, 1 or 2, respectively. 

To fully appreciate the kinetics of the ssDNA-(gp32)n system, one must properly 

account for the short-lived 1-bound intermediates, which may well give rise to 

indistinguishable signals. Experimentally, this requires making measurements at a higher 

time resolution than that used in the Lee et al. study.8 As the time resolution of a single-

molecule fluorescence measurement approaches a few milliseconds, the signal will 

necessarily become too noisy to extract the state of the system through direct 

visualization of single-molecule trajectory data (e.g., by HMM analysis). Rather, we 

show below how equivalent information may be obtained through the application of the 

generalized concepts of TCFs. 

Definitions of 2nd- and 4th-Order Time Correlation Functions 

The 2nd-order TCF of 𝐴 is the average product of two successive measurements, 

made at times 𝑡6 and 𝑡K, which are separated by the interval 𝜏 = 𝑡K − 𝑡6  

𝐶(K)(𝜏) = 〈𝐴(0)𝐴(𝜏)〉. (2.1) 

In Eq. (2.1), the angle brackets denote that the average has been performed over all 

possible starting times, according to 𝐶(K)(𝜏) = 	∫ 𝐴(𝑡)𝐴(𝑡 + 𝜏)𝑑𝑡\
5\ . If the longest 

relaxation time of the system exceeds the duration of an individual data set, then the 

average two-point product is additionally integrated over a large number of single-

molecule data sets. For a stochastic chemical system, 𝐶(K)(𝜏) decays from its maximum 

value 〈𝐴K〉 at 𝜏 = 0 to its asymptotic minimum 〈𝐴〉K in the limit 𝜏 → ∞. For this reason, 

we define the fluctuation 𝛿𝐴(𝑡) = 𝐴(𝑡) − 〈𝐴〉, and its TCF: 

𝐶̅(K)(𝜏) = 〈𝛿𝐴(0)𝛿𝐴(𝜏)〉 = 〈𝐴(0)𝐴(𝜏)〉 − 〈𝐴〉K (2.2) 

The TCF 𝐶̅(K)(𝜏) defined by Eq. (2.2) decays from its maximum 〈𝛿𝐴K〉 to zero over the 

characteristic time scales of the system.  
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One can predict the form of 𝐶̅(K)(𝜏) for a given model using the theory of Markov 

chains, which assumes that the time interval between successive observations is long in 

comparison to ‘internal relaxation times,’ and that the probability that the system 

undergoes a transition from state-𝑖 to state-𝑗 depends only on its occupancy of state-𝑖.24 

This assumption ignores the possibility of memory effects, which become important if 

internal barriers associated with state-𝑖 influence the transition probability. The Markov 

chain expression for the 2nd-order TCF is: 

𝐶̅(K)(𝜏) = a 𝛿𝐴b𝑝bX(𝜏)𝛿𝐴X𝑝X
de

f56

X,bg8

 
(2.3) 

In Eq. (2.3), 𝑝X
de  is the equilibrium (time-independent) probability to observe the system 

in state-𝑖, 𝛿𝐴X is the value of the fluctuation observable associated with that state, and 

𝑝bX(𝜏) is the conditional probability that the system will be in state-𝑗 at a time 𝜏 after it 

was initially observed to be in state-𝑖. Equation (3) shows that the 2nd-order TCF is the 

second moment of the time-dependent stochastic variable 𝛿𝐴(𝑡), which is the weighted 

average of all possible two-point products 𝛿𝐴b𝛿𝐴X occurring within the time interval 𝜏. It 

is instructive to note that when 𝜏 is short in comparison to the shortest transition time of 

the system, the two-point product is dominated by terms 𝛿𝐴X𝛿𝐴X, such that 

𝐶̅(K)(𝜏 → 0) = ∑ 𝛿𝐴XK𝑝X
def56

Xg8 = 〈𝛿𝐴K〉. In contrast, for 𝜏 longer than the longest transition 

time, the two-point product is dominated by uncorrelated successive observations, such 

that 𝐶̅(K)(𝜏 → ∞) = i∑ 𝛿𝐴b𝑝b
def56

bg8 j × i∑ 𝛿𝐴X𝑝X
def56

Xg8 j = 0. When the time interval 𝜏 is 

comparable to the time scale of a particular transition from state-𝑖 to state-𝑗, the two-point 

product is dominated by terms 𝛿𝐴b𝛿𝐴X, which reflect the weighted contributions of these 

particular transitions.  

The information provided by the 2nd-order TCF alone cannot be used to determine 

whether the states visited during a single-molecule trajectory occur independently, or are 

connected through a ‘pathway’ of correlated sequential events. One can imagine that a 

particular fluctuation must occur first in order for a subsequent fluctuation to follow. For 

example, the N = 3 and N = 4 schemes depicted in Fig. 2.1B and Fig. 2.1C, respectively, 

illustrates the ssDNA-(gp32)n assembly pathways as a system of coupled elementary 

chemical steps in which the 0-bound and 2-bound states are inter-connected through 
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‘productive’ (and sometimes ‘unproductive’) intermediates. The 2nd-order TCF does not 

contain information, for example, about how a transition between any particular 1-bound 

and 2-bound state might be correlated to a preceding transition between the 0-bound and 

a 1-bound state. As we shall see, information about the preferred sequences of transitions 

that occur at equilibrium is contained in ‘higher-order’ TCFs.  

To distinguish between different mechanisms of coupled chemical 

transformations, we consider the information contained within 4th-order TCFs. The 4th-

order TCF of 𝛿𝐴 is the average product of four sequential observations, separated by the 

three time intervals 𝜏6 = 𝑡K − 𝑡6, 𝜏K = 𝑡O − 𝑡K, and 𝜏O = 𝑡Q − 𝑡O (see Fig. 2.1D) 

𝐶(Q)(𝜏6, 𝜏K, 𝜏O) = 〈𝛿𝐴(0)𝛿𝐴(𝜏6)𝛿𝐴(𝜏K)𝛿𝐴(𝜏O)〉 (2.4) 

In Eq. (2.4), the angle brackets have the same meaning as those in Eqs. (2.1) and (2.2). 

The 4th-order TCF 𝐶(Q)(𝜏6, 𝜏K, 𝜏O) depends on the probability of sampling each possible 

time-ordered sequence of 𝛿𝐴. For the N = 4 scheme of Fig. 2.1C, for example, we might 

observe the sequence 𝛿𝐴8𝛿𝐴8𝛿𝐴6l𝛿𝐴K at the four times sampled. If, for a particular set of 

time intervals, we were to observe this sequence with greater frequency than sequences 

that contain sequential occurrences of 𝛿𝐴8 followed by 𝛿𝐴K, then we might conclude that 

direct transitions between state-0 and state-2 are unlikely, and must proceed through an 

intermediate state-1’. Because the timescales of transitions between the various states 

have definite values, certain sequences will be more prevalent for short time intervals, 

while others will occur with greater frequency for long time intervals. Thus, the 

information encoded in 𝐶(Q)(𝜏6, 𝜏K, 𝜏O) provides direct insight into the kinetic scheme that 

defines the time-ordered fluctuations of a single-molecule trajectory.  

It is helpful to visualize 𝐶(Q)(𝜏6, 𝜏K, 𝜏O) as a series of two-dimensional (2D) 

contour plots, with horizontal and vertical axes given by the intervals 𝜏6 and 𝜏O. We 

present model calculations of 𝐶(Q)(𝜏6, 𝜏K, 𝜏O) in the next section. Such plots are presented 

as a parametric function of the interval 𝜏K, which is referred to as the waiting time. As 

mentioned above, the 4th-order TCF contains information about the presence of ‘higher-

order temporal correlations’ between successive transitions, with the first transition 

occurring during 𝜏6 and the second during 𝜏O. By examining a series of 4th-order TCFs as 

a function of 𝜏K, we can determine the average timescales over which successive 
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transitions are correlated. In the absence of higher-order correlations, upstream and 

downstream transitions occur independently. In the limit that the waiting time 𝜏K 

becomes very long, or that higher-order correlations are short-lived, we see from Eq. 

(2.4) that lim
pq→\

𝐶(Q)(𝜏6, 𝜏K, 𝜏O) = 〈𝛿𝐴(0)𝛿𝐴(𝜏6)〉〈𝛿𝐴(0)𝛿𝐴(𝜏O)〉 = 𝐶̅(K)(𝜏6)𝐶̅(K)(𝜏O). In 

this limit, the 4th-order TCF is equal to the square product of the 2nd-order TCF defined in 

Eq. (2.2). To isolate the effects of higher order correlations from those due to 2nd-order 

‘background’ correlations, it is useful to define the 4th-order difference TCF 

𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) = 〈𝛿𝐴(0)𝛿𝐴(𝜏6)𝛿𝐴(𝜏K)𝛿𝐴(𝜏O)〉 − 𝐶̅(K)(𝜏6)𝐶̅(K)(𝜏O) (2.5) 

The 4th-order difference TCF 𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) defined by Eq. (2.5) decays as a function of 

𝜏K from its maximum value 〈𝛿𝐴(0)[𝛿𝐴(𝜏6)]K𝛿𝐴(𝜏O)〉 to zero over the characteristic time 

scales for which higher-order correlations exist.  

The Markov chain expression for the 4th-order TCF can be written 

〈𝛿𝐴(0)𝛿𝐴(𝜏6)𝛿𝐴(𝜏K)𝛿𝐴(𝜏O)〉 

= a 𝛿𝐴t𝑝tu(𝜏O)𝛿𝐴u𝑝ub(𝜏K)𝛿𝐴b𝑝bX(𝜏6)𝛿𝐴X𝑝X
de

f56

X,b,u,tg8

 

(2.6) 

where the conditional probability 𝑝bX(𝜏) is defined similarly as in Eq. (2.3). Since the 

system may only occupy discrete states, the 4th-order TCF is the weighted sum of a finite 

number of four-point products 𝛿𝐴t𝛿𝐴u𝛿𝐴b𝛿𝐴X. For the N = 3 example of Fig. 2.1B, each 

observation can take only one of three possible values: 𝛿𝐴8, 𝛿𝐴6 or 𝛿𝐴K. Thus for N = 3, 

the four-point product can acquire (3)(3)(3)(3) = 81 possible outcomes (or pathways). In 

general, the number of possible outcomes for an N-state system is N4, and the 4th-order 

TCF is composed of the weighted average of these outcomes as described by Eq. (2.6). In 

order to apply Eqs. (2.3) and (2.6) to a specific N-state system, one must solve for the 

conditional probabilities 𝑝bX(𝜏). In the following sections, we show how the conditional 

probabilities may be obtained as the formal solution to a master equation for a system of 

N coupled differential equations that characterize the reaction pathway.  

Calculation of TCFs using Markov Chains 

We apply the theory of Markov chains to relate the 2nd- and 4th-order TCFs 

defined in the previous sections to specific N-state models.24,32 Such analyses are 
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generally useful for the interpretation of single-molecule trajectories in which stochastic 

transitions occur between a few discrete states. We write the memory-less master 

equation for an N-state system 

𝒑̇(𝑡) = 𝑲𝒑(𝑡) ≡ z

𝑝̇8
𝑝̇6
⋮

𝑝̇f56

| 

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−a 𝑘8,X

f56

Xg8

𝑘6,8 … 𝑘f56,8

𝑘8,6 −a 𝑘6,X

f56

Xg8

⋱ ⋮

⋮ ⋱ ⋱ 𝑘f56,f5K

𝑘8,f56 … 𝑘f5K,f56 −a 𝑘f56,X

f56

Xg8 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

z

𝑝8
𝑝6
⋮

𝑝f56

| 

 

(2.7) 

In Eq. (2.7), 𝒑(𝑡) is an N-dimensional vector containing the probabilities to find the 

system in each of its N states at time t, and 𝑲 is the N×N rate matrix, with elements 𝑘Xb 

associated with the transitions from state-𝑖 to state-𝑗. We constrain the diagonal elements 

of the rate matrix 𝑘XX = −∑ 𝑘Xbf56
b�X  to enforce the mass action law, and we set the sum of 

the instantaneous state probabilities ∑ 𝑝Xf56
Xg8 (𝑡) = 1.  

When constructing the rate matrix 𝑲, the elements 𝑘Xb must be chosen to satisfy 

the detailed balance condition, 𝑝X
de𝑘Xb = 𝑝b

de𝑘bX where 𝑝X
de = 𝑙𝑖𝑚�→\𝑝X(𝑡) is the 

stationary (equilibrium) occupancy of state-𝑖. The detailed balance condition requires that 

in the long-time limit, the flow of probability from state-𝑖 to state-𝑗 is equal to the flow of 

probability from state-𝑗 to state-𝑖. For coupled reactions that involve cyclical pathways, 

the requirements of the detailed balance condition lead to additional inter-dependencies 

of the rate constant matrix elements. In Fig. 2.2, we depict three reaction schemes as 

examples to illustrate this point. For a system that contains a single cyclical pathway (Fig. 

2.2A), the product of rate constants moving along the clockwise path must equal the 

product of rate constants moving along the counter-clockwise path; i.e. 𝑘8O𝑘OK𝑘K6𝑘68 =

𝑘O8𝑘86𝑘6K𝑘KO. Thus, a system that contains a single cyclical pathway leads to the 



 

 

16 

constraint that one rate constant must depend on all others. This relationship ensures that 

the flow of probability in the clockwise direction is precisely balanced by the flow of 

occupancies in the counter-clockwise direction, as must be the case for an equilibrium 

system. In the absence of a cyclical pathway, the detailed balance condition can be 

satisfied locally for each successive step of the coupled chemical reaction (see Fig. 2.2B), 

so that the rate constants may be chosen independently of each other. When the system 

contains multiple cyclical pathways, such as the situation depicted in Fig. 2.2C, more 

complicated interrelationships between rate constants exist. The relationship between 

cyclical pathways in this instance leads to the requirement that two rate constants must be 

dependent on all others. An excellent description of enforcing detailed balance can be 

found in reference 33.  

Provided that a rate matrix 𝑲 can be found to satisfy the detailed balance 

condition, a general solution of Eq. (2.7) can be obtained using the spectral 

decomposition method24 

𝒑(𝑡) ≡ a 𝑐X𝒗X𝑒5���
f56

Xg8

= 𝑐8𝒗8𝑒5�1� + 𝑐6𝒗6𝑒5��� + ⋯+ 𝑐f56𝒗f56𝑒5����� 
(2.8) 

In Eq. (2.8), 𝜆X and 𝒗X are, respectively, the eigenvalues and the corresponding 

eigenvectors of the rate matrix of Eq. (2.7). We set the first eigenvalue 𝜆8 = 0 to allow 

the time-dependent populations to decay to the constant equilibrium distribution 𝑐8𝒗8 =

𝒑de . We may thus rewrite Eq. (2.8) explicitly in terms of the equilibrium distribution  

𝒑(𝑡) = 𝒑de + 𝑐6𝒗6𝑒5��� + ⋯+ 𝑐f56𝒗f56𝑒5����� (2.9) 

The conditional probabilities 𝑝bX(𝜏) needed for the evaluation of 2nd-order and 4th-

order TCFs described by Eqs. (2.3) and (2.6) respectively, can be obtained using Eq. 

(2.9), with proper enforcement of the boundary conditions. For example, 𝑝K6(𝜏) is the 

conditional probability that the system resides in state-2 at time 𝜏, given that it was in 

state-1 at time zero. In this case, the initial condition is 𝑝6(0) = 1	and 𝑝X�6(0) = 0. We 

may thus solve Eq. (2.9) for the set of expansion coefficients {𝑐6, 𝑐K, ⋯ , 𝑐f56}, and for 

the conditional probability 𝑝K6(𝜏). We carry out a similar procedure for each conditional 

probability 𝑝bX(𝜏) with 𝑖, 𝑗 ∈ {0,1,⋯ , 𝑁 − 1}. 
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Analytical expressions for the 2nd- and 4th-order TCFs for N = 2 and N = 3. 

We next consider analytical expressions for the 2nd and 4th-order TCFs that follow 

from Eq. (2.9) for common situations with N = 2 and N = 3. Although the expressions for 

N = 2 systems are trivial, we include them for completeness before examining the more 

complex situations with N = 3. 

Two-state system. For an N = 2 scheme, the 2nd-order TCF described by Eq. (2.2) is a 

weighted average of 4 possible two-point product pathways, as shown schematically in 

Fig. 2.3A.  

The master equation solution [Eq. (2.9)] specified for N = 2 yields the time-

dependent conditional probabilities  

𝑝bX(𝜏) = 𝑝b
de + i𝑝b(0) − 𝑝b

dej𝑒5��p,      N = 2 (2.10) 

where 𝜆6 = 𝑘6K + 𝑘K6 is the only non-zero eigenvalue. An analytical expression for the 

2nd-order TCF follows from substitution of Eq. (2.10) into Eq. (2.3). 

𝐶̅(K)(𝜏) = 〈𝛿𝐴K〉𝑒5��p,       N = 2   (2.11) 

Equation (11) shows that the 2nd-order TCF for a two-state system decays exponentially 

with rate constant 𝜆6 = 𝑘6K + 𝑘K6.  

 For the N = 2 scheme, the 4th-order TCF described by Eq. (2.4) is a weighted 

average of 16 possible four-point product pathways, as shown schematically in Fig. 2.3B. 

Upon substitution of Eq. (2.10) into Eq. (2.6), it is straightforward to show that the 4th-

order TCF for a two-state system has the form  

〈𝛿𝐴(0)𝛿𝐴(𝜏6)𝛿𝐴(𝜏K)𝛿𝐴(𝜏O)〉 = 𝒜66𝑒5��(p�>p�),     N = 2 (2.12) 

where the constant 𝒜66 = 〈𝛿𝐴K〉K. Equation (12) shows that the 4th-order TCF for an N = 

2 system is simply the product of the 2nd-order TCFs 𝐶̅(K)(𝜏6)𝐶̅(K)(𝜏O) for all values of 

𝜏K. This follows since there are no intermediates in an N = 2 scheme, and therefore no 

‘higher-order’ transition pathways can exist. In this case, the 4th-order difference TCF 

𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O), defined by Eq. (2.5), is equal to zero for all values of 𝜏K.  

Three-state system. We next consider the three-state scheme (N = 3) introduced in Fig. 

2.1B, and redrawn for the following discussion in Fig. 2.4. In the redrawn scheme, we 

have allowed for the hypothetical transition between the 0-bound (reactant) state and the 
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2-bound (product) state, so that these might (or might not) be bridged by a 1-bound 

(intermediate) state. The 0 ⇄ 2 reaction pathway would require the binding of an 

appropriately pre-formed gp32 dimer directly from solution. This does not happen in the 

real system, but we include the possibility here to provide generality. Such schemes are 

the simplest that may exhibit higher-order temporal correlations, as reflected by the 

behavior of the 4th-order TCF. The derivations of the corresponding analytical 

expressions are straightforward, yet somewhat involved. We present the derivation here 

to illustrate how higher-order correlations emerge.  

The master equation for an N = 3 system is specified, using Eq. (2.7), according 

to: 

�
𝑝̇8
𝑝̇6
𝑝̇K
� = �

−𝑘86 − 𝑘8K 𝑘68 𝑘K8
𝑘86 −𝑘68 − 𝑘6K 𝑘K6
𝑘8K 𝑘6K −𝑘K8 − 𝑘K6

� �
𝑝8
𝑝6
𝑝K
� 

(2.13) 

The general solution to Eq. (2.13) is  

𝒑(𝑡) = 𝒑de + 𝑐6𝒗6𝑒5��� + 𝑐K𝒗K𝑒5�q�,      N = 3 (2.14) 

where the eigenvalues 𝜆6 and 𝜆K and the eigenvectors 𝒗6 = [𝑣68, 𝑣66, 𝑣6K] and 𝒗K =

[𝑣K8, 𝑣K6, 𝑣KK] are functions of the rate constants (derivation given in Appendix C, Chapter 

III). To satisfy detailed balance, one rate constant must depend on the others, such that 

𝑘K8 = 𝑘8K𝑘K6𝑘68 𝑘6K𝑘86⁄ . The equilibrium populations 𝒑de = i𝑝8
de, 𝑝6

de, 𝑝K
dej are found 

by solving Eq. (2.13) with the boundary condition 𝒑̇(𝑡) = 0. These solutions must also 

satisfy completeness: ∑ 𝑝XK
Xg8 (𝑡) = 1. The above conditions lead to explicit forms for the 

component equilibrium populations 𝑝8
de, 𝑝6

de  and 𝑝K
de , which are explicit functions of the 

rate constants (see Appendix C, Chapter III).  

To determine the nine conditional probabilities 𝑝bX(𝜏) with 𝑖, 𝑗 ∈ {0,1,2}, we solve 

Eq. (2.14) for the expansion coefficients 𝑐6 and 𝑐K, while assuming the appropriate 

boundary conditions. We label each expansion coefficient with a superscript to indicate 

the boundary condition. For example, the expansion coefficient 𝑐68 corresponds to the 

case when all population resides in state-0 at time zero, i.e. 𝑝8(0) = 1 and 𝑝6(0) =

𝑝K(0) = 0. This leads to closed form expressions for the six expansion coefficients:	𝑐K8, 

𝑐K6, 𝑐KK, 𝑐68, 𝑐66 and 𝑐6K (see Appendix C, Chapter III). Upon substitution of these into Eq. 

(2.14), we obtain the conditional probabilities  
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𝑝bX(𝜏) = 𝑝b
de + 𝑐6X𝑣6

b𝑒5��p + 𝑐KX𝑣K
b𝑒5�qp,     N = 3 (2.15) 

Substitution of Eq. (2.15) into Eqs. (2.3) and (2.6) provides analytical expressions 

for the 2nd- and 4th-order TCFs, respectively. Although these expressions are unwieldy to 

write in extended form, their solutions are readily obtained using a desktop computer. 

The 2nd-order TCF can be written succinctly  

𝐶̅(K)(𝜏) = 𝒜6𝑒5��p +𝒜K𝑒5�qp,      N = 3 (2.16) 

Equation (16) is composed of two exponentially decaying terms, with decay rates 

𝜆6 and 𝜆K and amplitudes 𝒜6 and 𝒜K, respectively. The constants 𝜆6, 𝜆K, 𝒜6 and 𝒜K are 

polynomial functions of the six rate constants 𝑘Xb, with 𝑖, 𝑗 ∈ {0,1,2} and 𝑖 ≠ 𝑗.  

It is straightforward to show that the difference 4th-order TCF, which is given by 

Eq. (2.5), has the succinct form  

𝐶̅(Q)(𝜏6, 𝜏O)⌉pq	����� = 𝒜66(𝜏K)𝑒5��(p�>p�) +𝒜6K(𝜏K)𝑒5��p�5�qp� 

+𝒜K6(𝜏K)𝑒5�qp�5��p� + 𝒜KK(𝜏K)𝑒5�q(p�>p�), 𝑁 = 3 

(2.17) 

Equation (17) is composed of four terms, each with an amplitude 𝒜 H [𝑛,𝑚 ∈ {1,2}] 

that depends on the waiting time 𝜏K. Similar to the 2nd-order TCF, the 4th-order TCF 

decays exponentially. For a fixed waiting time 𝜏K, the decay of the 4th-order TCF occurs 

in two dimensions, corresponding to the time intervals 𝜏6 and 𝜏O. The characteristic decay 

rates of the 4th-order TCF are the same as those of the 2nd-order TCF. In Eq. (2.17), the 

two terms with amplitudes 𝒜66 and 𝒜KK designate global relaxation self-terms (i.e. terms 

that each depend on a single eigenvalue, 𝜆6 or 𝜆K, respectively), while the terms with 

amplitudes 𝒜6K and 𝒜K6 designate inter-dependent cross-terms, which each depend on 

both decay constants, 𝜆6 and 𝜆K. For an equilibrium system, the detailed balance 

condition requires that 𝒜6K = 𝒜K6.19 As we discuss further below, the self-term 

amplitudes, 𝒜66 and 𝒜KK, indicate the relative weights of the global relaxation processes, 

while the sign and magnitude of the cross-term amplitudes, 𝒜6K and 𝒜K6, indicate 

positive or negative 4th-order correlations that effectively couple these processes. 

We now return to the example of the ssDNA-(gp32)2 assembly reaction, as 

depicted in Fig. 2.4. To illustrate how the local connectivity between states can affect the 

collective dynamics characterized by the 4th-order TCF, we present in Fig. 2.5A – 2.5D 

calculations for a specific case in which the rate constants 𝑘6K and 𝑘K6 are varied while 



 

 

20 

the remaining parameters are held fixed. For the purpose of this discussion, we have set 

the waiting time interval 𝜏K = 1 ms, and we have chosen plausible values for the rate 

constants 𝑘86 =	10 s-1, 𝑘68 = 20 s-1, 𝑘8K = 2 s-1, and 𝑘K8 = 4 s-1 with signal observables 𝐴8 

= 0.9, 𝐴6 = 0.3, and 𝐴K = 0.1. This particular choice of parameters assumes that the time 

scales of exchange between reactant state-0 and intermediate state-1 are much faster than 

those between reactant and product state-2. It is worth noting that for time intervals in 

which four-point pathways are dominated by recurring observations of the end state-0 or 

state-2 (e.g., 𝛿𝐴8𝛿𝐴8𝛿𝐴8𝛿𝐴8), the 4th-order TCF will tend to be high-valued. 

Alternatively, for intervals in which the majority of four-point pathways include 

observations of the intermediate state-1 (e.g., 𝛿𝐴8𝛿𝐴6𝛿𝐴6𝛿𝐴K), the 4th-order TCF will 

tend to be low-valued. For this particular example with the given rates under the detailed 

balance condition, the symmetry of the system dictates that for all values of the rate 

constants 𝑘6K = 𝑘K6, the equilibrium distribution of populations are given by 𝑝8
de  = 0.5, 

𝑝6
de  = 0.25, and 𝑝K

de  = 0.25. 

We initially consider the case in which transitions between state-1 and state-2 are 

prohibitively slow (i.e., 𝑘6K = 0). The time scales of the local elementary chemical 

reaction steps 0 ⇄ 1 and 0 ⇄ 2 can be estimated by assuming that these transitions occur 

independently of one another. We thus estimate the time scale of ‘fast’ transitions 

between state-0 and state-1 as (𝑘86 + 𝑘68)56 = 33 ms, and that of ‘slow’ transitions 

between state-0 and state-2 as (𝑘8K + 𝑘K8)56 = 167 ms. By solving the master equation 

for the coupled system [Eq. (2.13)], we determine the time scales of the global 

relaxations (eigenvalues) λ6 = 31 s-1 and λK = 5.2 s-1, which correspond to the times λ656 = 

32 ms and λK56 = 193 ms, respectively. Because in this example there is a clear separation 

between fast and slow elementary chemical steps (i.e. 0 ⇄ 1 and 0 ⇄ 2), these time scales 

closely approximate those of the eigenvalues of the coupled system (1 ⇄ 0 ⇄ 2). In Fig. 

2.5A, we plot the 4th-order TCF corresponding to these conditions. We note that this 

function slowly rises to a peak value close to the point 𝜏6 = 𝜏O ~ 33 ms and then gradually 

decays to zero with increasing values of 𝜏6 and 𝜏O. This behavior reflects the fact that 

multi-step transitions occur only rarely on time scales shorter than the fastest exchange 

process of the system. For values of 𝜏6 and 𝜏O that match the time scale of the fast 0 ⇄ 1 
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exchange process, the 4th-order TCF is heavily weighted by terms that involve successive 

observations of the reactant and intermediate states (e.g., 𝛿𝐴8𝛿𝐴6𝛿𝐴6𝛿𝐴8). For values of 

𝜏6 and 𝜏O in which one or the other of these intervals approaches time scales comparable 

to the slow 0 ⇄ 2 exchange process, the 4th-order TCF is composed mostly of terms that 

include successive observations of all three states involved in both fast and slow local 

reactions (e.g., 𝛿𝐴6𝛿𝐴8𝛿𝐴8𝛿𝐴K), which in turn cause the function to decay. The self- and 

cross-term amplitudes corresponding to these conditions are 𝒜66 = 1.08, 𝒜KK = 6.73, and 

𝒜6K = 𝒜K6 = -2.68, which indicates that the slow eigen-mode is dominant. We note that 

the negative sign of the cross-term amplitudes are responsible for the concave downward 

shape of the three-dimensional surface, and for its convex contours for values of 𝜏6, 𝜏O > 

32 ms. From the above analysis, we conclude that for this model, the 32 ms time scale 

serves as an experimental demarcation point. For short time intervals (𝜏6, 𝜏O ≈ 32 ms), 

the system primarily undergoes ‘fast’ exchange of population between state-0 and state-1, 

and for longer time intervals (𝜏6, 𝜏O > 32 ms), the system undergoes a combination of 

‘fast’ and ‘slow’ processes that exchanges population between all three states. 

We next examine the possibility that state-1 shown in Fig. 2.4 can function as an 

intermediate, so that the exchange reactions 1 ⇄ 2  (shown in red) can bridge the 0 ⇄ 1 

and the 0 ⇄ 2 reactions (shown in black). We first outline our expectations based on 

qualitative arguments before examining the theoretical results of the model. Suppose, for 

example, that when a gp32 monomer binds to the ssDNA template to form state-1, that it 

might rapidly slide to a ‘productive’ site allowing for a second gp32 monomer to bind 

cooperatively, and thus to form a stable dimer. Were this the prevalent mechanism, it 

would be reflected by the occurrence of four-point pathways at short time intervals that 

lead to the assembly of the ssDNA-(gp32)2 product (e.g., 𝛿𝐴8𝛿𝐴6𝛿𝐴6𝛿𝐴K). The resulting 

4th-order TCF would then decay rapidly with increasing values of 𝜏6, 𝜏O, and exhibit a 

pattern of positive correlation between successive elementary steps 0 ⇄ 1 and 1 ⇄ 2, 

which collectively lead to the formation of product. In contrast, if the gp32 monomer 

state-1 were unstable (due to its presumably slow exchange with state-2), its rapid 

dissociation would block its ability to act as a ‘gateway’ intermediate along the assembly 

pathway. In this latter situation, the intermediate state-1 behaves as a competitive 

inhibitor to the direct formation of state-2, so that the 4th-order TCF would decay slowly 
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and exhibit a pattern of negative correlation between the successive elementary steps 0 ⇄ 

1 and 1 ⇄ 2 (or 0 ⇄ 2). Therefore, depending on whether the 1 ⇄ 2 exchange time scale 

is fast, slow or intermediate in comparison to the fastest local relaxation time of the 

system (in the current example, ~ 32 ms), the global rate of population exchange can 

either be sped up, slowed down, or left unaffected by the presence of the intermediate 

state-1. These three scenarios correspond to positive, negative, and zero 4th-order 

correlation, respectively, between successive elementary chemical steps. The signs and 

magnitudes of the cross-term amplitudes, 𝒜6K and 𝒜K6 serve to characterize whether 4th-

order correlation is positive, negative or zero. 

We now consider the case in which the exchange rate constants between state-1 

and state-2 are assigned to an intermediate value 𝑘6K = 17 s-1 (𝑘6K56 = 60 ms) in 

comparison to the ‘fast’ and ‘slow’ local exchange processes (30 s-1 and 6 s-1, 

respectively) described for the case of 𝑘6K = 0. These conditions are expected to mimic 

the scenario of competitive inhibition described above. In Fig. 2.5B, we plot the 4th-order 

TCF using these parameters, which decays for all non-zero values of 𝜏6 and 𝜏O with 

collective relaxation rates λ6 = 50 s-1 and λK = 19 s-1 (𝜆656 = 20 ms and 𝜆K56 = 53 ms). The 

introduction of the 1 ⇄ 2 step permits a new pathway for population exchange to occur 

between all three states, which leads to a dramatic speedup of the slow collective 

relaxation (i.e. the second eigenvalue λK: 5.2 → 19 s-1). Under these conditions, the self-

term amplitudes are determined to be 𝒜66 = 0.472, 𝒜KK = 4.94, and the cross-term 

amplitudes 𝒜6K = 𝒜K6 = -1.52. As in the previous case, the convex contour lines 

exhibited by the 4th-order TCF are due to the negative cross-term amplitudes, which 

indicate the presence of kinetic ‘bottleneck’ states within the four-point pathways that 

lead to the exchange of population between all three states. Under these conditions, the 

reactant state-0 is much more likely to form the intermediate state-1 than to directly form 

the product state-2. However, once formed, the intermediate is much more likely to 

undergo the reverse dissociation reaction than to proceed to form product. Thus, for short 

intervals 𝜏6 and 𝜏O (< 32 ms), the 4th-order TCF is most heavily weighted by the ‘fast’ 

exchange between state-0 and state-1. Only at longer time intervals does the 4th-order 

TCF decay due to the contributions of slower processes such as the coupling step from 

state-1 to state-2.  
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In Fig. 2.5C, we plot the 4th-order TCF for the case 𝑘6K = 33 s-1 (𝑘6K56 = 30 ms). 

Under these conditions the rate constants for the 1 ⇄ 2 exchange reactions closely match 

those of the 0 ⇄ 1 process discussed above for the 𝑘6K = 0 ms-1 case. The 4th-order TCF 

decays for all values of 𝜏6 and 𝜏O with collective relaxation rates λ6 = 81 s-1 and λK = 22 

s-1 (𝜆656 = 12 ms and 𝜆K56 = 45 ms), and with self- and cross-term amplitudes 𝒜66 = 

0.0001, 𝒜KK = 2.26, and 𝒜6K = 𝒜K6 = 0.017, respectively. Under these conditions, only 

the slower of the two collective relaxation processes carries significant amplitude, and the 

curvature of the 4th-order TCF is neither convex nor concave. From Eq. (2.17), we see 

that in the absence of cross-term amplitude (i.e., for 𝒜6K = 𝒜K6 ≈ 0), a cross-section of 

the 4th-order TCF along a vertical slice (with respect to 𝜏O and, for example, setting 𝜏6 = 

0) decays at precisely half the rate as does the decay along the diagonal line (with respect 

to 𝜏6 + 𝜏O, and setting 𝜏6 = 𝜏O), so that the contours of the 2D surfaces are straight anti-

diagonal lines. The absence of 4th-order correlation can be understood as a consequence 

of the close matching of time scales between the 1 ⇄ 2 and 0 ⇄ 1 exchange processes. 

Because population can readily exchange between all three states via the intermediate 

state-1, successive elementary reaction steps may occur in an uncorrelated manner.  

By further increasing the 1 ⇄ 2 exchange rate constants to the value 𝑘6K = 67 s-1 

(𝑘6K56 = 15 ms), we model the situation of enhanced kinetic exchange between the 

intermediate and product states, as described above. In Fig. 2.5D, we plot the 4th-order 

TCF for these conditions, which decays for all non-zero values of 𝜏6 and 𝜏O with 

characteristic relaxation rates λ6 = 146 s-1 and λK = 23 s-1 (𝜆656 = 6.8 ms and 𝜆K56 = 43 

ms), and with self- and cross-term amplitudes 𝒜66 = 0.155, 𝒜KK = 1.16, and 𝒜6K = 𝒜K6 

= 0.419, respectively. In this case, the 1 ⇄ 2 exchange rate constants are much faster than 

those of the 32 ms 0 ⇄ 1 process. This leads the 4th-order TCF to decay much more 

rapidly than in any of the previous situations, and to exhibit concave surface contours as a 

consequence of the positive-valued cross-term amplitudes. The concave surface curvature 

indicates that under these conditions, the intermediate state-1 functions as a ‘gateway’ 

species whose presence enhances the formation of the product state.  

It is often useful to represent Eq. (2.17) as a two-dimensional (2D) rate domain 

spectrum through the inverse Laplace transform (ILT) – i.e., 𝐶̅(Q)(𝜏6, 𝜏O)⌉pq	�����
¤¥¦,p�,p�§⎯⎯⎯⎯© 
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𝐶ª(Q)(𝑘6, 𝑘O)⌉pq	����� = 

𝒜66(𝜏K)𝛿(𝑘6 − 𝜆6)𝛿(𝑘O − 𝜆6) + 𝒜6K(𝜏K)𝛿(𝑘6 − 𝜆6)𝛿(𝑘O − 𝜆K) 

+𝒜K6(𝜏K)𝛿(𝑘6 − 𝜆6)𝛿(𝑘O − 𝜆K) +𝒜KK(𝜏K)𝛿(𝑘6 − 𝜆K)𝛿(𝑘O − 𝜆K). 

 

(2.18) 

The 2D rate spectrum is a sum of four delta functions, which are defined in the 𝑘6, 𝑘O-

plane. Comparison between Eq. (2.17) and Eq. (2.18) shows that exponentially decaying 

terms in the 4th-order TCF are represented as delta functions centered at values 

corresponding to the collective relaxation rates, 𝜆6 and 𝜆K (see Figs. 2.5E – 2.5H). The 

two terms positioned along the ‘diagonal’ line (𝑘6 = 𝑘O), which occur at the positions 

(𝑘6, 𝑘O) = (𝜆6, 𝜆6) and (𝜆K, 𝜆K), respectively, correspond to the self-terms with 

amplitudes 𝒜66 and 𝒜KK. The cross-terms with amplitudes 𝒜6K and 𝒜K6 occur above 

and below the diagonal, at the positions (𝑘6, 𝑘O) = (𝜆6, 𝜆K) and (𝜆K, 𝜆6), respectively. 

These self- and cross-term features of the 2D rate spectrum represent the same 

amplitudes discussed above for the 4th-order TCF, and thus serve as an equivalent 

representation of the collective dynamics of the coupled cyclical N = 3 system.  

Such 2D rate spectra are made in analogy to the often-used frequency domain 

spectra of 2D Fourier transform spectroscopy.17, 25-27 The diagonal and off-diagonal terms 

generally decay as a function of the waiting time 𝜏K. Cross-term amplitudes indicate the 

‘exchange’ of populations between states involved in collective relaxation processes, and 

these terms decay on time scales that match the exchange dynamics. For situations in 

which the cross-term amplitudes are zero, the collective relaxation processes (defined by 

the eigenvectors 𝒗6 and 𝒗K) are independent as depicted in Fig. 2.5G. Negative or 

positive cross-term amplitudes (as depicted in Figs. 2.5F and 2.5H, respectively) indicate 

that such processes are negatively or positively correlated, which is possible for pathways 

with N ≥ 3. As discussed in the context of our model calculations, the N = 3 scheme 

shown in Fig. 2.4, in which the intermediate state-1 functions as a rate-limiting 

‘bottleneck’ (i.e., with 𝑘86, 𝑘68 ≫ 𝑘6K ≈ 𝑘K6 ≫ 𝑘8K, 𝑘K8), exhibits negative 4th-order 

correlation. In contrast, the same scheme in which the intermediate functions as a 

‘gateway’ species (i.e., with 𝑘86, 𝑘68 ≪ 𝑘6K ≈ 𝑘K6 ≫ 𝑘8K, 𝑘K8) exhibits positive 4th-order 

correlation. For display purposes, we have artificially broadened the diagonal and off-
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diagonal features in our 2D rate spectra in Figs. 2.5E – 2.5H using a Gaussian 

convolution.   

As previously mentioned, both TCF and HMM analyses can, in principle, provide 

similar information about the states and kinetics of a stochastically fluctuating chemical 

system. To illustrate this point, we plot in Fig. 2.6 the so-called ‘transition density plot’ 

(TDP) alongside the corresponding 4th-order TCFs and 2D rate spectra. A TDP is a useful 

way to present the information about transition pathways that is potentially available 

from an HMM analysis.23 The TDP describes the time-integrated joint distribution 

𝑝bX®𝐴b, 𝜏; 𝐴X, 0° of molecules that are initially in state-𝑖 with observable value 𝐴X, and 

which at a later time 𝜏 undergo a transition directly to state-𝑗 with observable value 𝐴b. 

The weights of the TDP are given by the expression  

𝑝Xb®𝐴b, 𝜏; 𝐴X, 0° = 𝑘Xb	𝑝X
de(1 − 𝑒5u±�p)   (2.19) 

(see Appendix C, Chapter III for derivation). Thus, a time-dependent TDP contains 

information about the direct state-to-state transitions that occur within the time interval 𝜏, 

and such information could be useful, in principle, to infer assignments to the various 

states involved within a transition pathway. We note that in the long-time limit, the joint 

distribution must be a symmetric function, i.e., 𝑝bX
de®𝐴b, 𝐴X° = 𝑘Xb	𝑝b

de ∙ 𝑘bX	𝑝X
de with 

𝑝b
de = 𝑝X

de, which is necessary to satisfy detailed balance. Nevertheless, this symmetry 

need not be valid at short or intermediate times, since the various state-to-state transitions 

may occur on entirely different time scales. Only in the limit of very long time intervals 

(i.e., longer than the slowest relaxation of the system) are the forward and backward flow 

of state occupancies along all inter-connected transition paths expected to be equal.  

In Fig. 2.6, we present model calculations for the linear N = 3 scheme (shown in 

Fig. 2.1B) of the 4th-order TCFs, the 2D rate spectra, and the TDPs as a function of the 

waiting period 𝜏K. For these calculations, we have chosen the rate constants 𝑘86 = 𝑘K6 = 

10 s-1 and 𝑘68 = 𝑘6K = 20 s-1, with signal observables 𝐴8 = 0.9, 𝐴6 = 0.3, and 𝐴K = 0.1 

(see Fig. 2.1B). The collective relaxation rates of the system are λ6 = 50 s-1 and λK = 10 s-

1 (𝜆656 = 20 ms and 𝜆K56 = 100 ms), and the equilibrium distribution of populations is 

given by 𝑝8
de  = 0.4, 𝑝6

de  = 0.2, and 𝑝K
de  = 0.4. This system has the interesting property that 

it crosses over from a regime of negative 4th-order correlation at short waiting intervals 
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(𝜏K < 27 ms) to one of positive 4th-order correlation at long waiting intervals (𝜏K > 27 

ms). The time-dependent crossover is evident from the shapes of the contour lines of the 

4th-order TCFs (Fig. 2.6A) and the signs of the cross-term amplitudes of the 2D rate 

spectra (Fig. 2.6B). This is due to the fact that for waiting periods less than 27 ms, the 

four-point pathways are heavily weighted by transitions leading away from the 

intermediate state-1, either in the backward direction toward the reactant state-0, or in the 

forward direction toward the product state-2. An initial step in either direction will tend 

to inhibit the successive step in the opposite direction, thereby inhibiting the global 

exchange of population between all three states. An example four-point pathway for a 

short waiting time is 𝛿𝐴6𝛿𝐴8 ∙ 𝜏K,µ¶·¸¹ ∙ 𝛿𝐴8𝛿𝐴6. In contrast, for waiting time intervals 

greater than 27 ms, the four-point pathways will tend to be dominated by sequences in 

which an initial fast step in the direction away from the intermediate state-1 (towards 

state-0 or state-2) will, after an intervening waiting time that exceeds the fast process, be 

positively correlated to a subsequent fast step in the opposite direction. An example four-

point pathway such a waiting time is 𝛿𝐴6𝛿𝐴8⋯𝜏K,º·»¼ ⋯𝛿𝐴6𝛿𝐴K. This example 

illustrates that the time-dependences of the 4th-order TCFs, 2D rate spectra, and the TDPs 

can provide information about the connectivity of a chemical network, its rate constants, 

and the observable values 𝐴8, 𝐴6 and 𝐴K. 

Optimization of N-State Kinetic Models to Sub-Millisecond Single-Molecule 

Fluorescence Data 

 In the preceding discussion, we have shown that analytical expressions for the 

TCFs of discrete stochastic systems with N = 2 or 3 can be readily obtained. For systems 

of higher complexity (N ≥ 4), it is often practical to solve Eq. (2.8) numerically. These 

solutions can be used to rapidly generate: (i) the 2nd-order TCF 𝐶̅(K)(𝜏); (ii) the 4th-order 

TCF 𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) and its corresponding 2D rate spectrum; (iii) the equilibrium 

distribution of states 𝑝X
de(𝐴X); and (iv) the time-dependent joint distribution of states (i.e. 

the time-dependent transition density plot, TDP) 𝑝bX®𝐴b, 𝜏; 𝐴X, 0°. By applying the 

algorithms discussed in Section IV to calculate quantities (i) – (iv), we may implement a 

multi-parameter optimization strategy to obtain the simplest kinetic scheme that can 

accurately represent the experimental behavior of single-molecule fluorescence data.  
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As indicated above, conventional single-molecule fluorescence experiments 

performed on discrete-state systems often employ 100-ms time resolution. Such 

measurements can provide useful kinetic information on this time scale through direct 

visual inspection, or by using hidden Markov model (HMM) analyses to obtain idealized 

single-molecule trajectories.23 Single-molecule experiments with sub-millisecond time 

resolution provide only sparse trajectory data2 that are not strictly amenable to direct 

visual inspection or HMM analyses. This is mostly due to the influence of stochastic 

noise – i.e., when a fixed number (n) of data points is measured over a short period of 

time, the signal-to-noise ratio (S/N) during this interval has a lower bound of √𝑛. We 

therefore turn to the analysis described in this work, which is based on the use of TCFs 

and state distribution functions to extract detailed and useful kinetic information about 

multi-step transition pathways.  

 Here we prescribe a step-by-step protocol to analyze sparse single-molecule 

trajectory data. This approach is based on multi-parameter optimization algorithms that 

have been widely applied in numerous experimental contexts.34-36 We must first consider 

the 2nd-order TCF, which is constructed from individual single-molecule trajectories as 

described by Eq. (2.2). Each TCF may vary from trajectory-to-trajectory, depending on 

system heterogeneity, the experimental S/N, and on the number of data-points included in 

the calculation. The characteristic relaxation times are reflected by the decay of the 2nd-

order TCF. These are limited in range by the time-resolution of the measurement and by 

the maximum duration of a single-molecule trajectory. To reduce the effects of stochastic 

noise, the TCFs constructed from many individual trajectories should be averaged 

together.17 By fitting this decay to a model multi-exponential function, one determines 

the minimum number (N – 1) of relaxation components necessary to represent the system. 

The value of N so determined represents the minimum number of states, since the 

presence of additional relaxation components might be difficult to detect due to relatively 

small contributing amplitudes, or to the presence of eigen-mode degeneracy – i.e. the 

possibility that multiple relaxation components share the same (or nearly the same) 

relaxation time (eigenvalue).  
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 Information about forward and backward rate constants associated with individual 

steps along the reaction pathway is contained within the 4th-order TCF. The 4th-order 

TCF is constructed from experimental trajectories using Eq. (2.5). The time intervals 𝜏6 

and 	𝜏O must be varied over a range that spans the individual decay components present in 

the 2nd-order TCF, while the waiting time interval 	𝜏K must be varied over a range that 

spans slow exchange time dynamics of the system.  

Simulated expressions for the 2nd- and 4th-order TCFs, and the equilibrium 

distribution of states, are calculated using the N-state master equation that is described by 

Eq. (2.7). An optimized solution can be determined by minimizing the difference 

between the experimentally derived functions, and the simulated functions while varying 

the input parameters specified by the rate constants 𝑘Xb and the observable values 𝐴X. We 

thus achieve a globally optimized solution to the kinetic problem of the N-state system. 

Conclusions 

We have shown how the analysis of 2nd- and 4th-order TCFs of single-molecule 

trajectories can be used to learn about the roles of short-lived intermediates in 

biochemical reactions. In principle, 6th-order and higher TCFs could be used to study the 

details of even more complex biochemical reactions than the relatively simple N = 3 and 

N = 4 schemes examined here. The implementation of higher dimensionality TCFs is, of 

course, limited by S/N and data availability. Nevertheless, with the steady improvements 

that are currently underway to single-molecule methodology and detector technologies, 

such applications of generalized TCFs to elucidate complex biochemical pathways are 

now feasible. 

The implementation of a generalized TCF analysis to microsecond-resolved 

single-molecule fluorescence measurements can be a powerful way to extract detailed 

information when the signal is too noisy to warrant analysis by direct visualization 

methods (e.g., HMM). However, unlike HMM, generalized TCFs are rarely utilized for 

such experiments. This is likely because the theory surrounding this analysis is relatively 

abstract and not easily approached by a general biophysical audience. In this manuscript, 

we have outlined the theoretical foundations to apply a generalized TCF approach to 
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analyze single-molecule data, and we illustrated these ideas in the context of the ssDNA-

(gp32)n binding system shown in Fig. 2.1A.  

While the generalized concepts of TCF have not yet been widely applied to the 

analysis of single-molecule fluorescence measurements, they hold great promise for 

future microsecond kinetic studies, and for experiments carried out under low signal 

conditions. Since many important bio-molecular interactions occur on sub-millisecond 

timescales, we anticipate that the application of TCF methodology can help to provide 

new insights to understand these dynamics, which have thus far proven difficult to access 

experimentally. 

Bridge to Chapter III 

This work first establishes the theory behind using Markov models to simulate 

time correlation functions and FRET probability distributions. The methodology we 

presented is general, though this chapter used examples corresponding to single-molecule 

experiments.  The next chapter takes the analytical methods established here and applies 

them to microsecond-resolved experimental single-molecule FRET measurements to 

elucidate possible models for gp32 dimer assembly. 

  



 

 

30 

CHAPTER III 
USING MICROSECOND SINGLE-MOLECULE FRET TO DETERMINE THE 

ASSEMBLY PATHWAYS OF T4 SSDNA BINDING PROTEIN ONTO MODEL 

DNA REPLICATION FORKS 

This manuscript was published in the Proceedings of the National Academy of 

Sciences of the united states of America (PNAS) in April 2017. I prepared DNA samples 

for the experiment, as well as constructed the microscopy chambers along with Carey 

Phelps. I took ensemble and single-molecule data for the experiment along with Carey 

Phelps and Morgan Marsh. I was involved in the drafting and editing of the paper along 

with coauthors Carey Phelps, Davis Jose, Morgan Marsh, Andrew H. Marcus and Peter 

H. von Hippel. This work was supported by grants from the National Science Foundation 

(Chemistry of Life Processes Program grant CHE-1608915 to A.H.M.) and the National 

Institutes of Health (NIGMS Grant GM-15792 to P.H.v. H. and A.H.M.). Andrew H. 

Marcus was the principal investigator for this work. 

Introduction 

The DNA replication complex of the T4 bacteriophage is an excellent model to 

understand the mechanistic details of DNA synthesis, since it employs the same three 

protein sub-assemblies as found in higher organisms, albeit without the many additional 

layers of regulatory complexity1-5. These are: (i) the helicase / primase (primosome) 

complex that unwinds the double-stranded (ds) DNA genome and synthesizes pentameric 

RNA primer strands while exposing the leading and lagging single-stranded (ss) DNA 

templates; (ii) the DNA polymerases that use the exposed templates to synthesize 

complementary DNA daughter strands; and (iii) the replication clamp-clamp loader 

complexes that load and unload the sliding clamps from the functioning polymerases and 

thereby control the processivity of DNA synthesis.  

 An integral component of DNA replication is the ssDNA binding protein (ssb)6-7. 

The ssbs bind to the exposed ssDNA templates during the critical period after the helicase 

has unwound these sequences, and before the DNA polymerases have incorporated 

complementary paired nucleotides into the newly formed daughter strands. The ssbs are 

thought to protect ssDNA from nuclease activity, and to remove unfavorable secondary 
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structures that would otherwise hinder the efficiency of the replication process. The T4 

ssb is referred to as the gene product 32-protein (or gp32), and it is known to form 

association complexes with ssDNA through a cooperative binding mechanism. The 

cooperative binding mode of gp32 is thought to be important to achieve complete 

coverage of the exposed ssDNA templates at the precisely regulated concentration of 

protein that needs to be maintained in the infected E. coli cell (8, 9). The gp32 protein has 

an N-terminal domain, a C-terminal domain, and a core domain.  

The N-terminal domain is necessary for the cooperative binding of the gp32 

protein through its interactions with the core domain of an adjacent gp32 protein. To bind 

to ssDNA, the C-terminal domain of the gp32 protein must undergo a conformational 

change that exposes the positively charged region of its core domain, which in turn 

interacts with the negatively charged ssDNA backbone. The binding site size of the gp32 

protein is 7 nucleotide residues (nts)10. While many of the ssbs of higher organisms have 

larger binding footprints, the functional role of binding cooperativity in these systems is 

less straightforward. Thus, oligomers of E. coli ssb can bind to ssDNA in more than one 

binding mode 11 while mammalian RPAs may bind and function as monomers12. Both E. 

coli ssb and human RPA have been shown to diffuse on ssDNA, and this may be 

important in discharging their functions 13-14. Although sliding of the gp32 protein along 

the template strand is expected to be important to its biological function, there is 

currently little direct information available about the role of sliding in the process of gp32 

cluster assembly on ssDNA template sequences during replication. 

In this work we use microsecond-resolved single-molecule Förster resonance 

energy transfer (smFRET) experiments to study the kinetics and mechanism of gp32 

dimer assembly on a short 15-nt ssDNA template. Such ssDNA-(gp32)2 complexes can 

serve as simple model systems to examine the basic biochemical steps involved in ssb 

filament assembly and sliding. Our experiments employed fluorescently labeled primer-

template (p/t) DNA constructs in which a Cy3 donor chromophore was attached to the 3’-

end of the template strand, and a Cy5 acceptor chromophore was attached to the 5’-end of 

the primer strand near the p/t junction (see Fig. 3.1A, see Appendix A for all figures). 

The template strand contains a 15-nt poly(deoxythymidine) [p(dT)15] sequence that can 

form an association complex with up to two cooperatively bound gp32 protein monomers 
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at one time. Recently, Lee et al. showed that smFRET signals observed from this same 

p/t DNA construct in the presence of gp32 undergoes intermittent protein-induced 

fluctuations, which reflect changes in the end-to-end distance of the ssDNA template due 

to binding and dissociation of gp32 proteins15. 

The experiments performed by Lee et al. were sensitive to changes in ssDNA 

template conformation, which could be observed using the tens-of-milliseconds time 

resolution of standard smFRET experiments. While these studies could distinguish 

between unbound template conformations and those with two cooperatively bound gp32 

proteins, they could not clearly resolve short-lived singly-bound intermediate states. In 

previous work we used microsecond resolved smFRET and single-molecule linear 

dichroism (smLD) to study DNA breathing fluctuations at model replication forks, and 

the influence of these fluctuations on helicase binding16. These measurements detected 

individual fluorescence photo-counts from a single molecule, and stored the ensuing 

information about the intervening time intervals and optical phase conditions associated 

with each detection event. The method is technically similar to those implemented by 

others to study fast activated-barrier-crossing in protein folding17, and photon anti-

bunching in quantum dot nanocrystals18. Here we show how microsecond-resolved 

smFRET experiments can be used to probe short-lived, singly-bound intermediate states 

and their influence on the assembly pathways of gp32-(ssDNA)2 complexes. These 

studies thus permit us to examine the detailed mechanisms of non-cooperative and 

cooperative protein binding to the p(dT)15 lattice, and the potential involvement of 

‘sliding’ of the various bound species along the ssDNA strand.  

A challenge to the interpretation of microsecond smFRET experiments lies in the 

difficulties involved in resolving short-lived intermediates. This problem is further 

complicated by the necessity to partition the finite signal intensity into very short 

(microsecond) sampling intervals, which leads to smFRET trajectories that appear 

‘sparse’ and dominated by stochastic noise when viewed with high temporal resolution. 

Such trajectories are not amenable to analysis by ‘direct visualization methods,’ which 

attempt to assign discrete smFRET efficiency values to corresponding conformational 

states and thus to observe and resolve sequences of state-to-state transitions that make up 

a biochemical reaction pathway. For example, hidden Markov model (HMM) analysis is 
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a particularly useful method to evaluate smFRET trajectories that use tens-of-

milliseconds resolution19, yet this approach becomes less accurate for microsecond 

resolved experiments. 

In this work, we apply generalized concepts of time-correlation functions (TCFs) 

to study the ssDNA-(gp32)2 assembly pathways20-30. We assume that our single-molecule 

experiments probe the instantaneous conformational state of the system at equilibrium, 

and that the stochastically fluctuating smFRET efficiency, 𝐸&'() , can be directly mapped 

onto this state. A TCF is a time-dependent moment of the variable 𝐸&'()(𝑡) that, when 

utilized to its full potential, can provide a statistically meaningful way to characterize the 

dynamics of the interconverting species lying along the reaction pathway. In general, the 

nth-order TCF, 𝐶(H)(𝜏6, 𝜏K, … , 𝜏H56), can be written as the average product of n 

successive observations 〈𝐸&'()(𝑡6), 𝐸&'()(𝑡K),… , 𝐸&'()(𝑡H)〉, which depends on the n – 

1 time intervals 𝜏6 = 𝑡K − 𝑡6, 𝜏K = 𝑡O − 𝑡K, …, 𝜏H56 = 𝑡H − 𝑡H56. The complexity of 

information available from a TCF depends on its order. For example, the 2nd-order TCF, 

𝐶(K)(𝜏), which is often referred to as the ‘time-autocorrelation function,’ contains 

information about the average time scales of the fluctuations of the system. However, the 

2nd-order TCF cannot be used to determine information about the role of intermediates 

that may lie along a reaction pathway. Such information is available through the 4th-order 

TCF, 𝐶(Q)(𝜏6, 𝜏K, 𝜏O), which is sensitive to whether the system, on average, undergoes a 

particular state-to-state transition that typically follows or precedes another, or whether 

two such transitions occur independently.  

In the analysis that follows, we implemented 2nd- and 4th-order TCFs to study the 

role of intermediates along the gp32-ssDNA assembly pathway. An overview of the 

theoretical method that we implemented for this purpose is given in20. We note that 4th-

order TCFs are important in the analysis of nonlinear spectroscopies, including two-

dimensional (2D) NMR, 2D infra-red, and 2D electronic spectroscopy31. High-order 

TCFs have also been used to characterize the dynamics of a number of stochastic 

chemical systems24,25 including protein reaction dynamics23, molecular and protein 

diffusion in solution26, 27, 32, polymer diffusion in the liquid phase28, and protein 

conformation fluctuations in molecular dynamics (MD) simulations29.  
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Materials and Methods 

Instrumentation for Microsecond-Resolved smFRET.  

We performed smFRET experiments at both 30-msec- and 1-µsec-resolution 

using custom instrumentation and procedures previously developed in our laboratory. 

The instrument applies a 1-MHz modulation to the optical phase of the 532 nm 

continuous wave excitation, and records each single photon detection event with an 

associated 64-bin phase and microsecond-resolved time ‘stamp.’ Instrumental details and 

theoretical considerations to perform these measurements are provided elsewhere16. 

Sample Preparation and Model DNA Replication Fork Constructs.  

Model p/t DNA constructs that were labeled with the Cy3/Cy5 donor-acceptor 

FRET pairs were purchased from Integrated DNA Technologies. Strand sequences of 

these substrates are shown in Table S3.1 of in Appendix B Chapter III Supporting 

Information. Microfluidic sample chambers were constructed from microscope slides and 

coverslips. Details of the sample chamber construction, cleaning procedures, and sample 

preparation are the same as those reported by Lee et al.15.  

Results 

gp32 binding to 3’-Cy3/Cy5-p(dT)15-p/t DNA induces stochastic transitions between 

conformational states of the p(dT)15 template strand.  

We initially performed 30 msec resolved smFRET experiments on the donor 

(Cy3) – acceptor (Cy5) labeled p/t DNA construct, as shown schematically in Fig. 3.1A. 

The nucleic acid base sequences used for the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct, as 

well as our nomenclature conventions for these p/t DNA constructs, is shown in Table 

S3.1 and are the same as those used in related studies15. As mentioned previously, the 

p(dT)15 segment of the template strand can support binding of up to two gp32 proteins, 

each of which possess a binding site size of 7 nucleotide residues10. Binding of the gp32 

protein to ssDNA is known to stiffen the p(dT)15 segment of the p/t DNA substrate 15,33. 

This interaction increases the average separation between the Cy3 and Cy5 labels, which 

leads to a decreased smFRET efficiency, 𝐸&'()  (defined below).  
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Because the ssDNA segment of the 3’-Cy3/Cy5-p(dT)15-p/t DNA can bind up to a 

maximum of two gp32 monomer proteins, we anticipate the presence of numerous 

ssDNA-(gp32)n assembly complexes, corresponding to n = 0-, 1-, or 2-bound gp32 

proteins. The interfacial free energy between two cooperatively bound gp32 monomers 

on a ssDNA template leads to a thousand-fold increase in binding affinity per monomer34. 

Thus, the cooperative binding mode of gp32 to ssDNA likely plays an important role in 

the transformation between 1-bound intermediates and 2-bound end-states. Because each 

gp32 protein occludes 7 nts, there are nine (= 15 – 7 + 1) possible 1-bound gp32-p(dT)15 

conformations (e.g., bound at positions 1 – 7, 2 – 8, …, 9 – 15), and there are two 

cooperative 2-bound conformations (at positions 1 – 14, and 2 – 15). In Fig.  3.1A, we 

depict a simplified three-state reaction scheme in which the various sub-states of 0-, 1- 

and 2-bound conformations are assumed to be experimentally indistinguishable, and the 

ssDNA-(gp32)2 assembly pathway occurs via a single 1-bound intermediate. We have 

neglected in this scheme the possibility that the 0- and 2-bound states can interconvert 

directly, since it is known that gp32 dimers formed in solution cannot bind to ssDNA, but 

rather must dissociate and bind initially as monomers prior to forming cooperatively-

bound dimer clusters35. 

The three-state scheme would be an adequate description of the assembly process 

if all nine possible singly-bound conformations (and the two possible doubly-bound 

conformations) could to rapidly interconvert on time scales faster than the ~ 10 µs 

instrument resolution. For example, a 1-bound intermediate might rapidly ‘slide’ along 

the ssDNA template from one to another of the nine possible template positions, some of 

which are better (or worse) suited to accommodate the binding of a second gp32 

monomer for the creation of a 2-bound conformation. On the other hand, if the 

dissociation of gp32 monomers from the ssDNA template was significantly faster than 

monomer sliding, the latter process would not occur and it might be possible to 

distinguish between ‘unproductive’ and ‘productive’ intermediates that lie along the 

reaction pathway. We depict such a four-state scheme in Fig. 3.1B, where we have 

identified the ‘unproductive’ intermediate as state-1 and the ‘productive’ intermediate as 

state-1’. There are five possible ‘unproductive’ 1-bound conformations for which the 

initially bound protein (at positions 3 – 9, 4 – 10, …, 7 – 13) occludes the 7 nt binding 
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site of the second protein, and there are four ‘productive’ 1’-bound conformations (at 

positions 1 – 7, 2 – 8, 8 – 14, and 10 – 15). Of course, even more complex schemes 

would need to be considered if the interconversion time scales of various sub-states could 

be resolved by the experiment. 

In Fig. 3.1C, we present the results of bulk FRET experiments, in which the p/t 

DNA construct was titrated against gp32 protein in buffer consisting of 10 mM Tris at pH 

8, 100 mM NaCl, and 6 mM MgCl2. In the absence of gp32, the emission intensity 

corresponding to Cy5 (peaked at 663 nm) was much larger than that corresponding to 

Cy3 (peaked at 561 nm). This is due to the relatively short average distance between the 

3’ end-labeled Cy3 chromophore and the p/t junction-labeled Cy5 chromophore in this 

rapidly fluctuating random coil ssDNA sequence. Comparison of the relative Cy3/Cy5 

peak intensities (𝐼¾¿O 𝐼¾¿À⁄ ) lead us to estimate the average bulk FRET efficiency of the 

p/t DNA substrate in the absence of gp32 to be 𝐸&'() = 𝐼¾¿À ®𝐼¾¿O + 𝐼¾¿À°⁄ ≈ 0.81. 

Upon titration of gp32 into the solution, the ratio 𝐼¾¿O 𝐼¾¿À⁄  increased sensitively with 

increasing gp32 concentration. These observations are consistent with those of previous 

studies15, which show that binding of gp32 to the ssDNA region of the p/t DNA construct 

leads to chain stiffening and thus a decrease in the 𝐸&'()  value.  

We next carried out smFRET experiments on the p/t DNA construct using a split-

screen electron multiplied (em) CCD camera, which was capable of 30-msec time 

resolution. In Fig. 3.2A, we show representative single-molecule trajectories, which were 

taken from the 3’-Cy3/Cy5-p(dT)15-p/t DNA samples incubated in the presence of 0 µM 

gp32, 0.1 µM gp32 and 1.0 µM gp32, respectively. Here, the values of 𝐸&'()  were 

calculated from Cy3 and Cy5 intensities according to the same formula as for our bulk 

experiments. In the absence of protein (Fig. 3.2A, top panel), the 𝐸&'()  values were 

typically constant over the course of an ~ 30 sec trajectory, although the precise value of 

𝐸&'()  varied somewhat from molecule to molecule over a range of Δ𝐸&'() = ±0.5. We 

characterized the distribution of state occupancies by constructing histograms of 𝐸&'()  

values, each of which were made up of several thousand data point entries (see Fig. 

3.2B). In the absence of the gp32 protein, there is a single feature centered at 𝐸&'()  ~0.81 
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(Fig. 3.2B, top panel). We note this peak value of 𝐸&'()  is very similar to that we 

obtained from our bulk measurements (see Fig. 3.1C).  

For the experiments with p/t DNA constructs and gp32 concentrations of 0.1 µM 

and 1.0 µM, we observed smFRET trajectories that typically exhibited continuous 

stochastic transitions between relatively high and low 𝐸&'()  values (see middle and 

bottom panels of Fig. 3.2A, respectively, for representative trajectories). For samples 

incubated with 0.1 µM gp32, the system occupied primarily a state with a relatively high 

𝐸&'()  value, and for brief periods of time a state with relatively low 𝐸&'()  values. 

Histograms constructed from smFRET trajectories recorded under these conditions 

exhibited a dominant feature centered at 𝐸&'()  ~0.81, and a minor feature centered at 

𝐸&'()  ~0.56 (see Fig. 3.2B, middle panel). We assigned the state with 𝐸&'()  values of 

~0.81 to the 0-bound conformation, and the state with 𝐸&'()  values near ~0.56 to the 2-

bound conformation, consistent with previous studies15. For samples incubated with 1.0 

µM gp32, we found that the equilibrium occupancies of the 0- and 2-bound 

conformations were reversed relative to those seen in the 0.1 µM gp32 experiments (see 

Fig 3.2B, bottom panel). At the elevated protein concentration, the system occupied 

primarily a 2-bound state, and for relatively brief periods also a 0-bound state. 

While the single-molecule experiments described above allowed us to directly 

observe individual gp32-ssDNA association and dissociation events, it was not possible 

to detect intermediates that persisted for times shorter than the 30 msec instrument 

resolution, or to distinguish between different types of bound ssDNA-(gp32)n states. 

Because the ssDNA segment of the p/t DNA construct could accommodate the binding of 

up to two gp32 monomers, it is reasonable to expect to detect up to three or more 

conformations with discrete 𝐸&'()  values, provided there is sufficient instrument time 

resolution. Our observation of only two conformations with well-separated 𝐸&'()  values 

suggested the presence of one or more short-lived intermediates, which might themselves 

have exhibited 𝐸&'()  values that would be difficult to distinguish from those of the 0- 

and 2-bound end-states. In the next section, we describe smFRET experiments on the 

same p/t DNA constructs using an apparatus capable of ~10 µs resolution.16 
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gp32-p(dT)15 binding involves template conformation dynamics that occur at two 

well separated time scales. 

 The 2nd-order TCF of the time varying signal 𝐸&'()(𝑡) is the average product of 

two successive measurements made at times 𝑡6 and 𝑡K, which are separated by the 

interval 𝜏 = 𝑡K − 𝑡6 

𝐶(K)(𝜏) = 	 〈𝐸&'()(0)𝐸&'()(𝜏)〉    (3.1) 

In Eq. (3.1), the angle brackets denote the average ‘two-point product’ that has been 

performed over all possible starting times, given by 𝐶(K)(𝜏) = 	∫ 𝐸&'()(𝑡)𝐸&'()(𝑡 +
\
5\

𝜏)𝑑𝑡. If the longest relaxation time of the system exceeds the duration of an individual 

single-molecule trajectory, then Eq. (3.1) must be additionally averaged over a large 

number of data sets.  

We performed microsecond smFRET experiments on the 3’-Cy3/Cy5-p(dT)15-p/t 

DNA construct in the absence of the gp32 protein. For these samples, we found that the 

2nd-order TCF did not exhibit a decay that could be distinguished from instrument noise 

(see Fig. S3.1A). This observation suggests that conformational fluctuations of the p/t 

DNA substrate might occur much faster than the ~10 µs instrument resolution, and/or 

much slower than the 30 sec duration of a typical smFRET trajectory.  

We next performed microsecond-resolved smFRET experiments on the 3’-

Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM gp32. When viewed on a 

linear-log scale, the 2nd-order TCF exhibited an estimated 1/𝑒 decay correlation constant 

𝜏Ä ~ 160 msec (see Fig. S3.1B). The same data plotted using a log-linear scale could be 

well fit to a bi-exponential decay, with decay constants 𝜏ÅÆÇ� = 18.4 and 𝜏ÇtÈÉ = 157.8 

msec, with corresponding amplitudes 𝐴ÅÆÇ� = 0.146 and 𝐴ÇtÈÉ = 0.854 (see Fig. 3.3A and 

Table S3.2). When we performed experiments on the p/t DNA substrate in the presence 

of 1.0 µM gp32, we found that the decay of the 2nd-order TCF occurred more rapidly than 

at the lower (0.1 µM) protein concentration, with an average decay constant 𝜏Ä  ~ 40 

msec (see Fig. S3.1C). At this elevated protein concentration, the decay was similarly 

well described as bi-exponential, with decay constants 𝜏ÅÆÇ� = 13.9 msec and 𝜏ÇtÈÉ = 
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94.23 msec, and corresponding amplitudes 𝐴ÅÆÇ� = 0.531 and 𝐴ÇtÈÉ = 0.469 (see Fig. 

3.3B, and Table S3.2).  

The significance of the number of decay components of the 2nd-order TCF can be 

understood in the context of the theory of Markov chains, which describes the kinetics of 

an equilibrium chemical system that may undergo stochastic transitions between N 

discrete state.36 Markov chain theory predicts that the 2nd-order TCF contains N – 1 decay 

components.20 Thus, the bi-exponential decay we have observed for 𝐶(K)(𝜏) implies that 

N ≥ 3. Based on the magnitudes of the fast relaxation components we have measured at 

0.1 and 1.0 µM gp32 (~ 10 msec), we concluded that there is at least one short-lived 

intermediate species that fluctuates on this time scale. Likely candidates for such species 

are the various singly-bound ssDNA-gp32 conformational states. As discussed in 

previous sections, depending on the loading position of a singly-bound gp32 molecule on 

the p(dT)15 lattice, this state might (or might not) be highly reactive, due to its potential 

(or lack of potential) for cooperative interactions with a second gp32 molecule that could 

(or could not) subsequently bind to the lattice. To test this hypothesis, we introduced a 

short hexameric oligopeptide that inhibits the cooperative gp32 binding modality by 

competing with the binding interaction of the N-terminus of an adjacent (and potentially 

cooperatively bound) gp32 molecule.37 

Disruption of the cooperative modality blocks the formation of doubly-bound states.  

The peptide sequence KRKSTA, which is referred to as the ‘LAST’ sequence, 

was shown by Karpel and co-workers to disrupt the cooperative assembly mechanism of 

ssDNA-(gp32)n complexes by competitive binding to the core domain within the region 

responsible for binding to the N-terminus of an adjacent gp32 protein.37 To confirm that 

the LAST peptide does indeed bind to the gp32 protein, we performed tryptophan-

quenching studies in which solutions of gp32 were titrated against LAST. Intrinsic 

tryptophan residues on the gp32 protein were excited using 288 nm light, and the peak 

fluorescence was detected at 342 nm. When the LAST peptide was introduced into a 

solution containing 0.1 µM gp32, we observed that tryptophan fluorescence decreased 

rapidly, indicating a direct interaction between the LAST peptide and gp32 (see Fig. 

S3.2A). This interaction appeared to saturate near a 5:1 ratio of LAST peptide to gp32 
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protein. When we repeated these experiments using a solution containing 1.0 µM gp32, 

the saturation ratio increased to 10:1 (see Fig. S3.2B), which suggests that the LAST 

peptide is in competition with other gp32 proteins for its binding site. We performed 

similar bulk titration measurements on solutions containing 100 nM concentrations of the 

3’-Cy3/Cy5-p(dT)15-p/t DNA construct and either 0.1 µM (Figs. S3.3A and S3.3B) or 1.0 

µM gp32 (Fig. S3.3C and S3.3D). We found that in the presence of gp32, the FRET 

efficiency of the p/t DNA construct was enhanced when the LAST peptide was titrated 

into the solution. These results demonstrate that the presence of the LAST peptide affects 

gp32 filament assembly, presumably by disrupting the cooperative gp32 binding 

mechanism.  

In Fig. 3.4A, we show a representative smFRET trajectory (taken with 30 msec 

time resolution) of our 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM 

gp32 and 0.5 µM LAST (a saturating quantity). We see that the influence of the LAST 

peptide is to suppress stochastic transitions between conformational states with high- and 

low-𝐸&'()  values. The effect of the LAST peptide on the smFRET trajectories is striking 

when compared with those obtained using the same 0.1 µM gp32 concentration in the 

absence of LAST peptide (see Fig. 3.2A, middle panel). We used the HMM method19 to 

determine the dwell times associated with the high-𝐸&'()  (0-bound) state and the low- 

𝐸&'()  (2-bound) state (see Fig. S3.4). We note that the dwell time of the 2-bound state 

appears to be insensitive to the presence of the LAST peptide (Fig. S3.4B), suggesting 

that the presence of the LAST peptide does not perturb the dissociation from the p(dT)15 

template strand of gp32 dimers that have been successfully cooperatively bound.  

In Fig. 3.4B, we show the histogram of 𝐸&'()  values of the p/t DNA substrate in 

the presence of 0.1 µM gp32 and 0.5 µM LAST. For samples incubated in the presence 

of LAST, the relative intensity of the low-𝐸&'()  feature at ~0.56 is reduced in 

comparison to the case when LAST is absent (compare to Fig. 3.2B, middle panel). In 

Fig. S3.2C, we plot the relative intensities of the low-𝐸&'()  (~0.56) to high-𝐸&'()  

(~0.81) histogram features versus LAST concentration. This ratio decays with increasing 

concentration of LAST, with a similar trend to that of our bulk tryptophan quenching 

experiments (see Fig. S3.2A). As shown with our bulk measurements (Fig. 3.1C), we 
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found that saturation at this gp32 concentration occurred at values near a 5:1 ratio of 

LAST to gp32. 

Our finding that the effect of the LAST peptide was to increase the dwell time of 

the high-𝐸&'()  state (with an 𝐸&'()  value of ~0.81) provides us with a key insight into 

the mechanism of p(dT)15-(gp32)n filament assembly. The activity of the LAST peptide is 

known to disrupt the cooperative interaction between adjacently bound gp32 proteins.37 

We thus conclude that the low-𝐸&'()  state (with an 𝐸&'()  value of ~0.56) must 

correspond to a doubly-bound ssDNA-(gp32)2 complex, since its formation is blocked by 

the activity of the LAST peptide. Because the LAST peptide only affects the cooperative 

binding mode of the gp32 protein, we further anticipate that the formation of the singly-

bound ssDNA-(gp32)1 complex should be unaffected by the presence of LAST. Our 

results suggest that the value of 𝐸&'()  for the singly-bound species is either 

indistinguishable from that of the zero-bound species (with 𝐸&'()  ~ 0.81), or that the 

persistence time of the singly-bound complex is shorter than the 30 msec resolution of 

our split-screen emCCD smFRET instrument.  

 We next examined our microsecond resolved smFRET experiments on the 3’-

Cy3/Cy5-p(dT)15-p/t DNA construct in which we used the LAST peptide to disrupt the 

cooperative binding mechanism of the gp32 protein. In Fig. 3.3C, we show the 2nd-order 

TCF that was constructed from samples incubated in the presence of 0.1 µM gp32 and 

1.0 µM LAST. This function was constructed from an average of 21 individual smFRET 

trajectories. Although the dwell time of the high-𝐸&'()  (~ 0.81) state is enhanced by the 

presence of the LAST peptide, the 2nd-order TCF is represented by a bi-exponential decay 

with time constants 𝜏ÅÆÇ� = 24.3 msec and 𝜏ÇtÈÉ = 184 msec, and amplitudes 𝐴ÅÆÇ� = 

0.646 and 𝐴ÇtÈÉ = 0.354, respectively. We note that the two decay constants are 

strikingly similar to those found in the absence of LAST, further supporting our 

conjecture that the experimental system consists of a network of three or more 

microstates in dynamic equilibrium.  

The results we have presented thus far suggest a mechanism for the ssDNA + 2 

gp32 ⇄ ssDNA-(gp32)2 assembly reaction in which a 2-bound state is rapidly formed 

following the initial creation of a short-lived, 1-bound intermediate. Nevertheless, the 
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above results are not sufficient to distinguish between different models in which various 

(productive and unproductive) 1-bound states might (or might not) interconvert. In the 

remainder of this paper, we consider the effects of higher-order correlations on smFRET 

trajectories to ask if different types of short-lived intermediates are important in the 

assembly mechanism. 

Analysis of smFRET trajectories using 4th-order TCFs. Our TCF analysis 

described above indicated that the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct, in the 

presence of the gp32 protein, supports two fundamental relaxation processes, one of 

which occurs on a tens-of-milliseconds timescale, and the other on a hundreds-of-

milliseconds timescale. These relaxations partially characterize the dynamics of the p/t 

DNA construct as it undergoes stochastic transitions between its various 0-, 1- and 2-

bound states. Nevertheless, information provided by the 2nd-order TCFs cannot by itself 

determine whether the states visited during a single-molecule trajectory occur 

independently, or if they are connected through a ‘pathway’ of correlated sequential 

events. One can imagine that a particular fluctuation must occur initially in order for a 

subsequent fluctuation to be possible. For example, the reaction scheme depicted in Fig. 

3.1A illustrates a system of three coupled chemical species, in which the 0-bound state is 

connected to the 2-bound state through a single 1-bound intermediate. If the system is 

initially in the 0-bound state, one cannot observe a transition from the 1-bound to the 2-

bound state without previously observing a transition from the 0-bound to the 1-bound 

state.  

 To distinguish between different chemical reaction schemes that describe the 

p(dT)15-(gp32)2 assembly process, we implemented a combined analysis based on 2nd- 

and 4th-order TCFs of microsecond smFRET trajectories. This analysis can, in principle, 

distinguish between models of varying levels of complexity. We define the 4th-order TCF 

according to 

𝐶(Q)(𝜏6, 𝜏K, 𝜏O) = 	 〈𝐸&'()(0)𝐸&'()(𝜏6)𝐸&'()(𝜏K)𝐸&'()(𝜏O)〉  (3.2) 

The 4th-order TCF is the product of four sequentially sampled data points from a 

smFRET trajectory, which are separated in time by the intervals 𝜏6,	𝜏K and 𝜏O. The angle 

brackets in Eq. (3.2) have the same meaning as those in Eq. (3.1).  
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The 4th-order TCF contains information about the statistical weights of time-

ordered events that occur within an individual smFRET trajectory. To illustrate this, we 

consider the three-state system of 0-, 1- and 2-bound states (see Fig. 3.1A), and assign to 

these the observable 𝐸&'()  values 𝐸8, 𝐸6 and 𝐸K, respectively. The 4th-order TCF depends 

on the weighted observations of each possible time-ordered sequence of 𝐸&'()  values for 

a particular set of intervals. For example, we might observe the sequence 𝐸8𝐸6𝐸6𝐸K at the 

four times sampled. If we were to observe this sequence with greater statistical weight 

than ascribed to sequences containing 𝐸8 followed by 𝐸K, we might conclude that direct 

transitions between the 0-bound and 2-bound states are unlikely, and that the reaction 

must proceed through an intermediate 1-bound state. Because the timescales of 

transitions between states have well-defined values, certain sequences will be more likely 

to occur at short time intervals, while other sequences will become more prevalent at long 

time intervals. Thus, the information encoded in the 4th-order TCF provides direct insight 

into the reaction scheme that governs the time-ordered fluctuations of the system.  

It is convenient to visualize the 4th-order TCF as a two-dimensional (2D) contour 

plot, with horizontal and vertical axes given by the variables 𝜏6 and 𝜏O, while the second 

time interval 𝜏K	(referred to as the waiting time) is held fixed. The 4th-order TCF 

describes the presence of correlation between transitions that occur during the interval 𝜏6 

and those that occur during the interval 𝜏O. In the absence of 4th-order correlation, such 

temporally separated transitions are statistically independent. Examination of a series of 

4th-order TCFs as a function of the waiting time 𝜏K makes it possible to determine the 

average timescale over which pairs of successive transitions are correlated. In the limit 

that the waiting time 𝜏K becomes very long, or that 4th-order correlations are short lived, 

we see from Eq. (3.2) that lim
pq→\

〈𝐸&'()(0)𝐸&'()(𝜏6)𝐸&'()(𝜏K)𝐸&'()(𝜏O)〉  =

〈𝐸&'()(0)𝐸&'()(𝜏)〉K. In this limit, the 4th-order TCF is equal to the square product of the 

2nd-order TCF defined by Eq. (3.1).  

Even for relatively short waiting periods, the presence of 4th-order correlation 

must be detected above the level of 2nd-order ‘background’ correlation. It is useful to 

consider the 4th-order TCF in terms of the smFRET signal fluctuation: 𝛿𝐸&'()(𝑡) =
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𝐸&'()(𝑡) −	 〈𝐸&'()〉. We therefore reframe Eq. (3.2) in terms of the signal fluctuations 

𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) =																																																																																																															
〈𝛿𝐸&'()(0)𝛿𝐸&'()(𝜏6)𝛿𝐸&'()(𝜏K)𝛿𝐸&'()(𝜏O)〉 − 𝐶̅(K)(𝜏6)𝐶̅(K)(𝜏O)

      (3.3) 

where we have similarly reframed the 2nd-order TCF, in terms of signal fluctuations, 

according to 𝐶̅(K)(𝜏) = 〈𝛿𝐸&'()(0)𝛿𝐸&'()(𝜏)〉 = 〈𝐸&'()(0)𝐸&'()(𝜏)〉 − 〈𝐸&'()〉K. Eq. 

(3.3) decays with 𝜏K from its maximum value 〈𝛿𝐸&'()(0)[𝛿𝐸&'()(𝜏6)]K𝛿𝐸&'()(𝜏O)〉 to 

zero, over the time scales for which 4th-order correlation exists. We note that subtraction 

of the asymptotic (𝜏K → ∞) value 𝐶̅(K)(𝜏6)𝐶̅(K)(𝜏O) from the 4th-order TCF serves to 

isolate 4th-order correlations from 2nd-order ‘background’ correlation.  

Both 2nd- and 4th-order TCFs can be modeled using the theory of Markov chains 
20,36. This approach assumes a kinetic scheme in which N states are interconnected by 

elementary chemical steps, as depicted in Figs. 3.1A and 3.1B. The input parameters of 

the Markov model are the observed fluctuation values 𝛿𝐸X assigned to state-i, and the rate 

constants 𝑘Xb associated with forward and backward transitions between state-𝑖 and state-

𝑗. The values of 𝑘Xb must satisfy the principles of detailed balance20. Expressions for 

calculated 2nd- and 4th-order TCFs are derived in the SI section. These expressions 

depend on: i) the equilibrium (time-independent) probability 𝑝X
de  to observe the system in 

the ith state; and ii) the conditional probability 𝑝Xb(𝜏) that the system will be in the jth state 

at a time interval 𝜏 after it was initially observed in the ith state.  

The 2nd-order TCF [see Eq. (S3.4)] is composed of N – 1 exponentially decaying 

terms, each with characteristic decay rates 𝜆6, 𝜆K, …, 𝜆f56, and amplitudes 𝒜6, 𝒜K, 

…,𝒜f56. The Markov chain model expresses these parameters in terms of the rate 

constants 𝑘Xb.20 The 4th-order TCF is composed of (𝑁 − 1)K terms [see Eq. (S3.5)], each 

with an amplitude 𝒜H,  [𝑛,𝑚 ∈ {1,2,… , 𝑁 − 1}] that depends on the rate constants and 

the waiting time 𝜏K. For a fixed waiting time, the decay of the 4th-order TCF occurs in 

two dimensions, corresponding to the time intervals 𝜏6 and 𝜏O. The characteristic decay 

rates of the 4th-order TCF are the same as those of the 2nd-order TCF. The N – 1 terms 

with amplitudes 𝒜H,H are ‘diagonal’ terms, which each depend on a single decay constant 

𝜆H. The terms with amplitudes 𝒜H,  (with 𝑛 ≠ 𝑚) designate ‘off-diagonal’ coupling 



 

 

45 

terms, which each depends on two decay constants, 𝜆H and 𝜆 . For an equilibrium 

system, the principles of detailed balance require that 𝒜H,  = 𝒜 ,H.20 

 For situations in which relaxations that occur during the upstream interval 𝜏6 are 

uncorrelated to those that occur during the downstream interval 𝜏O, the coupling terms 

𝒜H,  = 𝒜 ,H vanish. Under such circumstances, the functional form of the 4th-order TCF 

is simply related to that of the 2nd-order TCF. 20 This scenario is expected if intermediate 

1-bound states were to dissociate, or to interconvert with other 1-bound states on a faster 

time scale than the experimental sampling resolution. If on the other hand the dynamics 

of 1-bound intermediates were experimentally resolved, the aforementioned dissociation 

and / or sliding processes can lead to negative or positive correlations between upstream 

and downstream signal fluctuations on these rapid time scales. The latter situation is 

expected to lead to either positive or negative 4th-order correlation between successive 

transitions, which is reflected by non-zero cross-term amplitudes, 𝒜H,  and 𝒜 ,H. For 

negative (or positive) off-diagonal amplitudes, the 2D surface of the 4th-order TCF can 

exhibit contours with convex (or concave) curvature.20 Due to the presence of noise in 

experimental data, this curvature might be difficult to detect by visual inspection alone. 

Furthermore, the off-diagonal amplitudes may be small in comparison to those of the 

diagonal terms. Nevertheless, we find that a sufficiently large data set can, in principle, 

provide the information needed to extract these values numerically from the experimental 

data. 

The information contained within 4th-order TCFs can be intuitively understood by 

representing these functions in the rate domain through an inverse Laplace transformation 

(ILT): 𝐶̅(Q)(𝜏6, 𝜏O)⌉pq	�����
¤¥¦,p�,p�§⎯⎯⎯⎯© 𝐶ª(Q)(𝑘6, 𝑘O)⌉pq	����� . In the rate domain, diagonal and 

off-diagonal terms that decay exponentially in time are represented as delta functions 

centered at values corresponding to the decay constants. These rate domain 

representations of the 4th-order TCFs are made in analogy to the frequency domain 

representations often used in 2D Fourier transform spectroscopies.28,30 In our 2D rate 

domain spectra, diagonal features represent the characteristic relaxation rates, while the 

cross-peaks represent the presence of couplings between these relaxations.  
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To perform the ILT, we carried out an algorithm based on the Tikhonov 

regularization method.38-40 We verified that our algorithm produced accurate results for 

the noise level of our data [see SI and Fig. S3.5]. In Fig. 3.5, we present 4th-order TCFs 

and the associated 2D rate spectra constructed from our experimental smFRET 

trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA in the presence of 0.1 µM gp32. These 

and additional data for the 1.0 µM gp32 and 0.1 µM gp32 + 1 µM LAST peptide 

conditions are plotted for several values of the interval 𝜏K in Fig. S3.6. We note that the 

decays of the 4th-order TCFs with respect to the intervals 𝜏6 and 𝜏O occur on the same 

characteristic time scales as the 2nd-order TCFs (see Fig. 3.3 and Table S3.2). Additional 

information about the coupling between characteristic modes can be obtained from the 

associated 2D rate spectra. We performed the ILT of the 4th-order TCFs by using the 

information provided by the 2nd-order TCFs. Since the 2nd-order TCFs exhibited only two 

characteristic decay components (𝜆ÇtÈÉ = 𝜏ÇtÈÉ56 , and 𝜆ÅÆÇ� = 𝜏ÅÆÇ�56 ), we assumed a 

minimal model using an N = 3 scheme. We thus obtained the 2D rate spectra, as shown in 

Fig. 3.5 and Fig. S3.6. Each 2D rate spectrum exhibited two diagonal features, one 

centered at (𝑘6, 𝑘O) = (𝜆ÇtÈÉ, 𝜆ÇtÈÉ) and the other at (𝑘6, 𝑘O) = ®𝜆ÅÆÇ�, 𝜆ÅÆÇ�°. Off 

diagonal coupling features appeared at (𝑘6, 𝑘O) = ®𝜆ÇtÈÉ, 𝜆ÅÆÇ�° and (𝑘6, 𝑘O) =

®𝜆ÅÆÇ�, 𝜆ÇtÈÉ°. The amplitudes of these components 𝐴ÇtÈÉ,ÇtÈÉ , 𝐴ÅÆÇ�,ÅÆÇ� and 

𝐴ÇtÈÉ,ÅÆÇ� = 𝐴ÅÆÇ�,ÇtÈÉ varied as a function of the waiting time interval 𝜏K. 

In Fig. 3.6, we plot the amplitudes of the rate domain peaks and cross-peaks as a 

function of the interval 𝜏K. We note that for all three sets of conditions, the amplitude of 

the faster characteristic rate constant 𝐴ÅÆÇ�,ÅÆÇ� decreased more rapidly with increasing 𝜏K 

than the amplitude of the slower characteristic rate 𝐴ÇtÈÉ,ÇtÈÉ . The fast and slow diagonal 

components exhibit very similar amplitudes and 𝜏K-dependent behaviors for the 0.1 µM 

gp32 data sets, both in the presence and absence of the LAST peptide (Figs. 3.6A and 

3.6B). While the amplitudes of off-diagonal coupling features for our 0.1 µM gp32 data 

were negligibly small (see Fig. 3.6A), the amplitudes of these same features for both the 

0.1 µM gp32 + 1.0 µM LAST and 1.0 µM gp32 samples decayed from finite positive 

values to zero on the characteristic time scales (see Fig. 3.6B and 3.6C, respectively).  
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The above results show that the fast and slow fluctuating modes we have 

observed in the p(dT)15-(gp32)n system are interdependent processes. Moreover, the 

presence of the LAST peptide influences the degree of coupling between these processes, 

as we might expect due to its interference with the cooperative binding mechanism of the 

gp32 protein. In the remainder of this work, we devise a simple Markov chain model that 

accounts for our observations of the kinetic and thermodynamic behaviors of the system 

under the experimental conditions we studied.  

Optimization of N = 4 Kinetic Scheme to Microsecond smFRET Data.  

To take greater advantage of the information contained within our microsecond 

smFRET data, we considered kinetic schemes from which we could calculate histograms 

of 𝐸&'()  values, 2nd-order TCFs, and 4th-order TCFs. Through a direct comparison 

between these theoretical and experimental approaches we implemented a multi-

parameter optimization to determine the model most consistent with our data. The N = 3 

scheme discussed above (see Fig. 3.1A) is the simplest that can account for the known 

cooperative binding mechanism of the gp32 protein.8,9,15,20 We deduced the existence of 

at least three states from our observation of two decay components in the 2nd-order TCFs. 

These three states likely represent the 0-,1- and 2-bound ssDNA-(gp32)n conformations. 

Nevertheless, as we show below, this basic N = 3 model could not adequately account for 

all aspects of our experimental results.  

We therefore considered the N = 4 scheme shown in Fig. 3.1B, which represents 

an incrementally elevated level of complexity. As discussed above, the N = 4 scheme 

allows for two different categories of 1-bound intermediates, an unproductive 

intermediate (labeled state-1) and a productive intermediate (labeled state-1’). To 

simplify our model as much as possible, we assumed that the five 1-bound conformations 

corresponding to unproductive intermediates could be treated as experimentally 

indistinguishable. Likewise, we made this same assumption for the four 1-bound 

conformations that function as productive intermediates. Finally, we made the 

approximation that the 𝐸&'()  values corresponding to all 1-bound intermediates 

(productive and unproductive) were identically equal. 
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To compare specific kinetic schemes to our experimental data, we input ‘fit 

parameters’ – i.e., the forward and backward rate constants 𝑘Xb, 𝑘bX [𝑖 ≠ 𝑗 ∈ {0,1,1Ê, 2}] 

and 𝐸&'()  values 𝐸6 = 𝐸6l  – into Eq. (S3.3), whose solution provides the conditional 

probabilities 𝑝bX(𝜏) and the equilibrium distribution of states, 𝑝X
de . Substitution of these 

solutions into Eqs. (S3.1) and (S3.2) allowed us to calculate the 2nd- and 4th-order TCFs, 

respectively, in addition to the 𝐸&'()  histograms. We constrained our solutions to ensure 

consistency with our previous findings, such that the observable values of the 0- and 2-

bound states were 𝐸8 = 0.81 and 𝐸K = 0.56, respectively. As described below, we 

generated initial values for the rate constants 𝑘Xb and the observable values 𝐸6 = 𝐸6l  to 

calculate the experimentally derived quantities. We then iteratively refined these values 

until we obtained optimal agreement with the experimentally derived functions. Further 

details of our multi-dimensional optimization procedure are given in the Appendix A 

Chapter III Supporting Information. 

 As mentioned previously, we initially attempted to fit our data to the N = 3 

scheme depicted in Fig. 3.1A. For completeness, we considered the possibility that direct 

transitions between the unbound and doubly bound states are accounted for, although 

independent studies suggest that the gp32 protein cannot bind to the lattice directly as a 

dimer.35 In Table S3.3, we list the optimized parameter values corresponding to the best 

fits we obtained using the N = 3 scheme. Although the 0.1 µM gp32 data could be 

reasonably well fit to the N = 3 model, the data collected under the 1.0 µM gp32 and 0.1 

µM gp32 + 1.0 µM LAST conditions could not be similarly explained.  

 We understand the failure of the N = 3 model to describe our data as an indication 

that rapid interconversion between the nine possible singly bound conformations does not 

occur on time scales faster than the ~ 10 µs instrument resolution. This implies that singly 

bound intermediates must dissociate from the ssDNA lattice on a time scale much faster 

than it may ‘slide’ between different lattice positions. If all singly-bound sites are 

thermodynamically equivalent, a gp32 protein has a 5 9⁄  chance to initially bind to the 

ssDNA lattice at a nonproductive position, which precludes the cooperative binding of a 

second gp32 protein to the lattice. In this case, the time to undergo a transition from a 

singly-to-doubly bound state will be prohibitively long. Alternatively, a singly bound 
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gp32 protein has a 4 9⁄  chance to initially bind at a productive position, which would 

provide room on the lattice for a second gp32 monomer to bind. The cooperative mode of 

binding would then result in a very rapid transition from the productive singly bound 

state to the doubly bound state. Because the N = 3 scheme does not allow for the 

simultaneously fast and slow association / dissociation pathways expected to occur in the 

presence of both productive and unproductive singly bound intermediates, this model 

cannot capture the analytical behavior of the experimentally derived functions under the 

various solution conditions.  

The N = 4 scheme, on the other hand, can account for the presence of an assembly 

pathway that involves both productive and unproductive singly-bound intermediates (see 

Fig. 3.1B). In the N = 4 model, the unbound state can undergo a transition to the 

unproductive state-1, from which a direct transition to state-2 is not possible. 

Alternatively, the unbound state can also undergo a transition to the productive state-1’, 

which may subsequently undergo a direct transition to state-2. For completeness, we 

allow for transitions between state-1 and state-1’, which would account for sliding of the 

gp32 monomer along the ssDNA lattice.  

Following the algorithm described above, we performed a search of the parameter 

space for the N = 4 scheme from which we obtained global solutions. For each of the 

experimental conditions we investigated, the solution is an optimized set of eight rate 

constants and a single (degenerate) FRET efficiency value for the two singly bound 

states. In Fig. 3.7, we present a comparison between the experimentally derived functions 

and their corresponding theoretical fits for the 0.1 µM gp32 conditions. In the SI section, 

we present full comparisons for the 0.1 µM gp32 condition (see Figs. S3.7 and S3.8), the 

1.0 µM gp32 condition (see Figs. S3.9 and S3.10) and to the 0.1 µM gp32 + 1.0 µM 

LAST condition (see Figs. S3.11 and S3.12). The optimized values of the parameters 

used for these fits are given in Table 3.1. We note that for each of the three independently 

run optimizations, all resulted in very similar values of the FRET efficiencies, 𝐸6 = 𝐸6l ≈ 

0.68, for the singly bound states. For each set of conditions, we confirmed that the 

optimized values so obtained do indeed correspond to a global minimum of the multi-

dimensional parameter surface (see SI section, Fig. S3.13). 
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To more closely examine the reasons that singly-bound intermediates are difficult 

to detect by inspection of smFRET trajectories that use the 30 msec time resolution of 

standard experiments, we performed computer simulations on these time scales. The 

simulations used as input the optimized rate constants and 𝐸&'()  values obtained from 

our N = 4 optimizations (listed in Table 3.1). We present the details of these calculations 

in the SI section. These trajectories were calculated using 1 msec time increments, and 

subsequently averaged to simulate single-molecule time traces with 30 msec resolution.  

In Fig. S3.14, we present examples of our calculations for the three different 

experimental conditions investigated. For each case, the simulated trajectories appear to 

qualitatively reproduce the characteristic behavior of the experimental trajectories 

(compare Figs. S3.14A and S3.14B to Figs. 3.2A middle and bottom panels, respectively; 

and compare Fig. S3.14C to Fig. 3.4A, bottom panel). These favorable comparisons 

between simulated and experimental trajectories suggests that the four-state model can 

describe the dynamics of the ssDNA-(gp32)n system remarkably well. Nevertheless, the 

presence of the short-lived intermediates is not obvious by direct inspection of the 

trajectories alone. This comparison clearly shows that singly-bound intermediates are too 

short-lived to produce a distinguishable signal for experiments that use the standard 30 

msec resolution. Thus, the sub-millisecond methods that we have demonstrated, in 

combination with our generalized TCF analysis, are necessary to detect and assign the 

roles of these short-lived intermediates. 

Discussion 

 The results of our analysis permit us to derive some understanding of the basic 

assembly mechanism of the cooperatively bound T4 bacteriophage 3’-p(dT)15-(gp32)2–p/t 

DNA complex, while also providing new general insights into the ways that replication 

cofactors of the ssb type may function in replication, recombination and repair. As shown 

above, our experiments demonstrate that the system is well described by an N = 4 

reaction scheme involving at least two categories of short-lived, singly-bound 

intermediates. These are the ‘non-productive’ and ‘productive’ states that we refer to as 

state-1 and state-1’, respectively (see Fig. 3.1B). Moreover, these two types of singly-

bound intermediates do not rapidly interconvert – i.e. a singly-bound gp32 monomer does 
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not ‘slide’ between non-productive and productive binding sites. If this were not true, the 

two species in our experiments would be indistinguishable and, as a consequence, the 

system would have been well described by an N = 3 kinetic scheme. The lifetimes of 

singly-bound states are on the order of ~20 msec, and they decay either by dissociation to 

the unbound state-0 or react by the cooperative binding of a second gp32 protein to form 

a stable doubly-bound dimeric gp32 cluster (state-2). This finding is further corroborated 

by the prohibitively long exchange times that we find for the ‘sliding’ between non-

productive and productive intermediates (𝑘66l
56 and 𝑘6l6

56 ~ many seconds). While the very 

long times determined from our analysis (i.e., those greater than ~ 1 sec) are not 

quantitatively meaningful, we interpret these results to indicate that monomer sliding 

rates are at least several orders of magnitude slower than the dissociation rate.  

The inverse rate constants (i.e. time constants) we determined for each of the 

three different solution conditions investigated are listed in Table 3.1. We compare the 

assembly dynamics seen at a relatively low protein concentration (0.1 µM gp32) to those 

observed at a relatively high protein concentration condition (1.0 µM gp32). We also 

compare the 0.1 µM gp32 concentration condition to the same gp32 concentration in the 

presence of 1.0 µM LAST peptide, which we have confirmed functions to inhibit the 

cooperative binding mode of the gp32 protein37. We see that the loading times 𝑘8656 and 

𝑘86l
56  of the non-productive and productive singly-bound states scale inversely with 

concentration, as expected for a diffusion-limited reaction. On the other hand, the 

transition time 𝑘6lK
56 associated with the elementary dimerization step (state-1’ → state-2) 

is independent of concentration, and is on the order of ~20 msec. Once the singly-bound 

protein is situated at a productive binding site, the cooperative binding of a second gp32 

to form a dimeric gp32 cluster appears to dominate the rate at which the dimerization step 

proceeds, consistent with the conclusions of prior bulk spectroscopic studies.9 

We note that the value of 𝑘6lK
56 is slightly increased in the presence of the LAST 

peptide, as expected given that the peptide appears to function by interfering with the 

cooperative gp32-gp32 subunit binding mechanism. However, the presence of LAST has 

the most pronounced effect on the loading times of the non-productive and productive 

intermediates, 𝑘8656 and 𝑘86l
56 , respectively. In the presence of LAST, we see that the 
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loading time of the non-productive intermediate is decreased, while that of the productive 

intermediate is increased. We may understand this effect in the following way. Proteins 

bound to the competitive inhibitor will have their cooperative binding modality 

suppressed, while those proteins that are not bound to the LAST peptide will still 

participate in the cooperative binding step to form the doubly bound state-2. The overall 

effect is to reduce the population of proteins that can participate in the ‘productive 

assembly pathway,’ while increasing the population of proteins that can participate in the 

‘non-productive assembly pathway.’ Because these loading steps are diffusion-limited, 

the transition time scale with these changes in the effective population of ‘functional’ 

gp32 proteins.  

Although both productive and non-productive singly-bound states exhibit 

indistinguishable FRET efficiency values (the sole observable in our experiments), our 

generalized TCF analysis has allowed us to determine the dynamics of these states and to 

observe their presence individually. In all cases, the loading transition of the non-

productive state occurred more rapidly than that of the productive state, which is 

consistent with the notion that there are more ways that the protein may bind to the 

p(dT)15 lattice in a non-productive manner than in a manner leading to cooperative gp32 

cluster formation.  

 In summary, our results allow us to deduce the mechanism by which the fully 

assembled 3’-p(dT)15-(gp32)2–p/t DNA complex is formed. When a gp32 protein initially 

binds to a nonproductive ssDNA lattice site, it will dissociate rapidly (within ~20 msec). 

This permits the same (or a different) gp32 protein to undergo multiple binding events at 

various positions until a productive state is achieved that will allow for the adjacent 

binding of a second gp32 protein within the binding lifetime of the ‘productive singly-

bound’ state. The cooperative binding modality of the protein leads to the relatively fast 

dimerization step, which also occurs on an ~20 msec time scale. The alternative 

mechanism considered, in which an initially bound gp32 protein binds at any position and 

then rapidly ‘slides’ along the ssDNA by means of a one-dimensional random walk 

process until it reaches a productive lattice site and there ‘trapped’ by a second gp32 

monomer, is inconsistent with our analysis. Thus, the rate of sliding is too slow to 
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compete with the unbinding-rebinding mechanism of singly-bound proteins under the 

conditions we examined in this study.  

Conclusions 

In this work, we have applied a novel analysis of microsecond smFRET 

experiments using a generalized TCF approach. These experiments have allowed us to 

extract detailed kinetic information about the assembly pathway of the T4 ssDNA 

binding protein gp32 with a 15-nt ssDNA template. We find that short-lived 

intermediates, which are otherwise difficult to detect using standard smFRET techniques 

(with ~30 msec resolution), can be clearly identified and studied. Indeed, the application 

of HMM analyses to the same system studied using standard smFRET methods could not 

be used to measure the kinetics of short-lived singly-bound intermediates, although their 

presence could be inferred indirectly.15 The observation of singly-bound states requires 

the ability to detect signal fluctuations on microsecond time scales. Yet, such rapidly 

sampled smFRET experiments lead to sparse and noisy signal trajectories, which cannot 

be analyzed using HMM techniques. We anticipate that future microsecond-resolved 

experiments might be treated in similar ways to study individual steps within the 

biochemical reaction pathways of other complex biochemical networks. 

It was recently confirmed by bulk solution studies using base analogue probes that 

‘clusters’ of cooperatively bound gp32 proteins can slide along a ssDNA lattice9 as 

inferred in earlier studies by Kowalczykowski and Lohman and their co-workers.41,42 

However, it was unknown whether this might also be the case for a singly-bound gp32 

protein on a ssDNA template. The current study indicates that gp32 monomers do not 

slide along ssDNA, but instead dissociate within ~20 msec. Nucleation of the formation 

of cooperatively-bound clusters of gp32 proteins must therefore require that an initially 

bound gp32 monomer occupy a position that can accommodate the binding of a second 

gp32 protein. This difference in behavior between a singly-bound gp32 protein and a 

cluster of cooperatively bound proteins likely reflects the weak binding constant of gp32 

in its non-cooperative binding mode. Upon the initial binding of a gp32 protein, a second 

gp32 monomer must immediately bind in order for the ternary complex to become stable. 

Otherwise, the initial singly-bound protein will rapidly dissociate. It is anticipated that 
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multiple cooperatively-bound gp32 proteins must bind a ssDNA lattice with significantly 

higher affinity, so that the dissociation time constant of the assembled cluster increases, 

and sliding becomes a much more likely mechanism for cluster translocation to a new 

position on the ssDNA lattice. Other approaches will be needed to determine the limits of 

the lengths of gp32 clusters that can effectively translocate along ssDNA by sliding 

mechanisms.  

Bridge to Chapter IV 

 We have established a binding mechanism that describes gp32 dimer assembly 

onto ssDNA templates near ss duplex junctions. Although this work used microsecond 

resolution smFRET measurements, the single-molecule fluorescence did not have enough 

signal-to-noise to facilitate sub-millisecond analysis. After various improvements to the 

optical geometry, we managed to dramatically increase the signal-to-noise of the single-

molecule experiment which ultimately led to a series of microsecond-resolution 

measurements that could be analyzed at sub-millisecond timescales. In the subsequent 

chapter, we report on an analysis of four ssDNA p/t junction constructs that differ in 

length and polarity. We show that ssDNA has conformational fluctuations that occur on 

time scales spanning tens-of-microseconds to hundreds-of-milliseconds. Our results 

suggest that the ssDNA backbone of the p/t junction fluctuates between compact and 

extended conformations. These thermally driven fluctuations may play a role in the initial 

nucleation of gp32 monomers onto the ssDNA lattice. 
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CHAPTER IV 
SUB-MILLISECOND CONFORMATION FLUCTUATIONS OF SINGLE-

STRANDED DNA NEAR PRIMER-TEMPLATE (P/T) DNA JUNCTIONS 

BY MICROSECOND-RESOLVED SINGLE-MOLECULE FRET 

The studies described in this chapter were performed by a number of lab members 

including myself, Claire Albrecht, Anson Dang, and Megan Barney. Claire Albrecht 

contributed substantially to this work by participating in the development of mathematics 

used to model the data. Anson Dang and Megan Barney contributed by assisting me in 

making samples and helping take single-molecule data. I was the primary author for this 

manuscript with Claire Albrecht being highly involved. Myself, Claire Albrecht, and 

Professors Andrew H. Marcus and Peter H. von Hippel have been involved in the drafting 

of the manuscript.  This was work was supported by grants from the National Institutes of 

Health (molecular biology and biophysics training grant), the National Science 

Foundation (Chemistry of Life Processes Program grant CHE-1608915 to A.H.M.), and 

the National Institutes of Health (NIGMS Grant GM-15792 to P. H. v. H. and A.H.M.). 

Andrew H. Marcus was the principal investigator for this work. 

Introduction 

 It is well known that the thermodynamically stable form of double-stranded (ds) 

DNA is the right-handed double-helix, which was famously deduced from the analysis of 

x-ray crystallographic studies.1 In living cells, the genetic information is encoded as 

single-stranded (ss) DNA base sequences, which is often in complexation with proteins 

that serve to package and protect the information in the form of chromatin.2 In order for 

gene sequences to be utilized by proteins that carry out biological functions, DNA must 

be able to transform to more accessible, albeit less stable, ‘open’ conformations. For 

example, when the two complementary strands of DNA separate enough to permit access 

to replication polymerases and helicases, the complex chemistry of DNA replication can 

occur. Duplex DNA fluctuates into such open states due to thermally-induced 

fluctuations of solvent molecules 3,4 a process termed DNA “breathing.” The open DNA 

conformations exhibit contiguous sections of nucleotides, which are unconstrained by 
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Watson-Crick (W-C) hydrogen bonding. Such transiently exposed single-stranded (ss) 

DNA segments may undergo rapid conformational rearrangements between various 

conformational macrostates, which may themselves represent potential binding sites for 

DNA associating proteins.  

Each macrostate contains many microstates, which account for all possible 

orientations in space and small perturbations to the structure. The free energy barriers 

between microstates are small relative to the barriers between macrostates, so the system 

can explore many microstates within a macrostate without significant change to the 

measured value of the observable. Note that the term macrostate and state are used 

interchangeably henceforth. 

The direct interaction between proteins and ssDNA is a fundamental part of many 

biological processes. Besides being sites of DNA replication, ssDNA may also serve as 

templates for DNA polymerases.5 The ssDNA molecule is a dynamic molecule with 

many degrees of freedom, in which thermal fluctuations cause it to sample various 

conformational states.6 The exploration of conformational states is an essential part of 

what allows ssDNA to be available for protein binding.7 

The T4 bacteriophage is a model system for DNA replication.8 When 

transcription factors, necessary for cellular differentiation, or replication proteins, 

essential for genome duplication, approach a nucleic acid lattice, they will not bind unless 

the ssDNA is prepared to accommodate them. In order for the T4 bacteriophage ssb 

protein gp32 to bind to ssDNA, a contiguous sequence of seven nucleotide residues needs 

to be available9 in a conformational macrostate that is suitable for binding. Before 

proceeding to investigate the dynamics of such protein binding events, it will be 

necessary to understand the subtleties of ssDNA alone. 

To address this problem, we use the inverse problem approach to estimate 1) the 

number of conformational macrostates, and 2) the rates of interconversion for ssDNA 

between those states. An inverse problem is where you start with the measurement and 

apply a model to estimate the underlying parameters that must exist in order to produce 

the measurement.10 Our goal is to construct a model that is the best approximation of the 

underlying polymer physics which the experimental single molecule data is derived from. 
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 Here we report on a series of microsecond-resolved single-molecule Förster 

Resonance Energy Transfer (smFRET) studies of the backbone fluctuations of short 

single-stranded (ss) oligo- deoxythymidine [o(dT)n] templates of varying length (n = 14 

and 15) and polarity (3’ versus 5’) near ss—double-stranded (ds) DNA primer-template 

(p/t) DNA junctions. We analyzed our single-molecule data by calculating the 2nd- and 

4th-order time correlation functions (TCFs) as well as the equilibrium distribution of 

conformational macrostates.  

Our findings suggest a cyclical three-state model can be used to adequately 

describe these systems. We obtain quantitative agreement with our data by performing 

numerical optimizations of the transport master equation, from which we determine the 

rates of interconversion between conformational macrostates. Obtaining information 

about the nature of these functionally relevant DNA conformations, in addition to the 

time scales of their inter-conversion, is critical to understanding the detailed molecular 

mechanisms of protein-DNA interactions 

The chapter is organized as follows: 1) the materials and single-molecule methods 

used to complete the experiment; 2) we review the theory of multi-order TCF analysis of 

smFRET data 11; 3) an explanation of how to analyze the single molecule data; 4) we 

present our numerical results; 5) a discussion; and 6) and our conclusions and 

implications for the biophysics of protein-nucleic acid interactions; 7) lastly is the bridge 

to the next chapter.  

Materials and Methods 

DNA Primer-Template Constructs 

We performed a series of phase sensitive, microsecond resolution single-molecule 

FRET experiments on four primer-template (p/t) DNA constructs that vary in length and 

polarity (Figure 4.1, found in Appendix A Chapter IV). 

The p/t DNA constructs are labeled by the cyanine dyes Cy3 and Cy5, which act 

as the donor and acceptor of a FRET pair. The Förster length of the pair is 60 Å.12 The 

average distance between base-pairs on ssDNA is 0.63 nm 13, giving the 14-nucleotide 

constructs a maximum contour-length of  8.8 nm, and the 15-nucleotide constructs a 

maximum end-to-end length of 9.5 nm. 
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The DNA constructs were purchased as dehydrated solids composed of 

nanomoles of individual single-strands (Integrated DNA Technologies IDT, Coralville, 

IA, USA), Table 4.1. The ssDNA solids are each rehydrated to reach 100 µM in a buffer 

which consists of a similar ion concentration found in living cells: 100 mM NaCl and 6 

mM MgCl2. The buffer also contains 10 mM Tris buffer (pH 8.0) to reduce changes in 

pH. 

The 100 µM ssDNA are annealed in house to form the DNA (p/t) junctions used 

in the experiment. To anneal the ssDNA, the 100 µM Cy3-containing strand is added to 

buffer to reach 150 nM concentration, and the complementary 100 µM Biotin/Cy5-

containing strand is added to the same buffer to reach 100 nM concentration. The 1:1.5 

molar ratio is such to ensure that each strand that is bound to the slide likely has a 

partner. The ssDNA strands are annealed together by heating the DNA constructs in the 

same vial together well above the constructs melting temperature (~60°C) at 94°C for 2 

minutes, followed by gradual cooling to room temperature (22℃). The annealed p/t DNA 

constructs are stored at 4℃ until ready to use, or frozen at -4°C for extended periods of 

time. 

Before the annealed DNA solution is added to the modified microscope slide 

(Figure 4.2), it is diluted 1000-fold to 100 pM in whatever condition solvent the 

experimenter is interested in. In this study all samples were prepared in the same buffer 

used for resuspension of the oligonucleotides. 

The Microfluidic Sample Chamber 

The microscope slide (Figure 4.2) has been chemically modified by a procedure 

described in Chandaross et. al.14. In short, the sample chambers have been thoroughly 

cleaned of contaminants with acetone, KOH, piranha-solutions (Nitric Acid + 

Hydrochloric Acid), and methanol. The piranha solution serves to both clean the surface 

of the slide, as well as to reduce the silicon-oxide to Si-OH. The reduced quartz-silica is 

treated with a methanol solution of 3-aminopropyl-trimethoxy silane + acetic acid, and 

subsequently pegylated (in a 0.1 M sodium-bicarbonate solution) to become less reactive 

to proteins. A small fraction of the PEG polymers are labeled with a biotin moiety. 

Neutravidin (Thermos Fisher) is a tetramer with a very strong affinity to biotin.15 It can 
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bind to the biotin attached to the slide as well as to the biotin-covalently attached to the 

ends of the p/t DNA constructs. 

Oxygen Scavenging Buffer 

An oxygen scavenging solution consisting of glucose oxidase, catalase and 

glucose are used to react with free oxygen in the solution. This solution is flowed into the 

sample cell before single-molecule data is taken. A series of chemical reactions result in 

the net loss of oxygen from the buffer.16 Left unchecked, the dissolved oxygen in the 

system will rapidly react with the excited-state fluorophores and create a non-fluorescent 

molecule. When this occurs, the molecule is said to have photobleached.  

The triplet state quencher Trolox (Sigma Aldrich) is also used to prevent 

photoblinking, the process where a chromophore reversibly enters the triplet state, for 

many milliseconds at a time.17 Return to the ground state from the triplet is a spin-

forbidden process, so fluorescence from this state is very slow. Keeping the molecule out 

of the triplet state avoids the molecule wasting time in states where it cannot absorb 

photons. The Trolox oxygen scavenging system  (Trolox, oxidase, catalase, and glucose) 

is an efficient method to reduce the frequency of photobleaching. 

Sub-Millisecond Single-Molecule FRET Spectroscopy 

 Single molecules have a fundamental limit to how much fluorescence they can 

emit in a given time. To perform microsecond-resolved single-molecule FRET 

microscopy, much care needs to be taken to ensure that this limited signal is captured in 

its entirely. Figure 4.3 shows the instrument set up we used to perform single-molecule 

FRET measurements.  

Data was collected over a thirty-second interval for each molecule. We used total 

internal reflection fluorescence (TIRF) to excite molecules bound to a quartz slide. The 

microscope slide containing the sample chamber was attached a nanometer-precision 

computer-controlled stage (NPS-XY-100A with NPS3330 controller; Queensgate UK) 

mounted an inverted microscope (Nikon 2000 TE Eclipse). Using a prism-based TIRF 

geometry, a laser centered at 532-nm was focused with a 100 mm plano-convex lens onto 

a small portion of the sample centered over a 100x oil-based immersion objective. The 

size of the excitation is kept small to reduce the extent of photobleaching. The 

fluorescence from single molecules was sent though a 100 𝜇𝑚 pinhole (Thor Labs, USA) 
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mounted at the imaging plane directly downstream of the 200 mm tube lens. Next the 

fluorescence is collimated using a 75 mm biconvex lens placed its focal length away from 

the pinhole. The fluorescence is spectrally filtered into a donor and acceptor channel 

using a 635 nm dichroic beam splitter (Semrock, USA). The separated two-channel 

fluorescence is focused onto two avalanche photodiodes (APDs, SPCM AQR-13, Perkin-

Elmer) using 60x Plano objectives (Olympus). 

Single-molecule fluorescence data was acquired at a resolution of 1 µs and 

converted into 100 ns resolution post-acquisition by a phase-tagging procedure. We used 

a deconvolution procedure18,19 to remove the instrument response function from our data 

at sub-microsecond resolution. The deconvolution procedure removed any artifacts that 

occur faster than two µs.  

To ensure the molecules being imaged are not in too crowded of an environment 

and that the sample-chamber is scratch-free, we use an electron multiplying (em) CCD 

(iXon, Andor) to take wide-field images at 30 ms resolution. Figure 4.4 shows a typical 

image visible when the slide is viewed through an EMCCD. Each of the spots on the 

split-screen image is an individual DNA construct 

Theory 

Stochastic Model of a Fluctuating System 

smFRET was used to measure the stochastic fluctuations between discrete 

conformational states of the single-stranded region of a p/t DNA construct. We apply a 

memory-less master equation, where the subsequent fluctuations between states only 

depends on the current state, as required for Markov state models.  The ssDNA molecule 

can occupy a vast number of states, which are grouped into macrostates based on a 

common observable, in this case the FRET value.  

The conformational disorder within each macrostate is reflected in the number of 

microstates it contains. In general, the more disorder that is within a state, the broader the 

distribution of observable values that will be associated with that state. The distribution 

of observable values reflects the probability of the system occupying that state. From this, 

we find the relative Boltzmann weight of each of our states is given by 
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where 𝑃X is the integrated probability density of macrostate-𝑖, 𝐺X is the free energy of 

macrostatestate-𝑖, 𝑘Ó is Boltzmann’s constant and 𝑇 is the temperature.20 The Boltzmann 

weight allows us to find the relative free energy of each macrostate sampled by single-

stranded DNA molecules, using  

Δ𝐺Xb = −𝑘Ó𝑇 lnÖ
𝑃X
𝑃b
× . (4.2) 

Thus, this analysis is sensitive to the relative free energy between macrostates Δ𝐺Xb. 

The activation barrier between states 𝑖 and 𝑗 is related to the observed rate of 

conformational transition between states,	𝑘Xb. By analyzing the dynamics of the system, 

we estimate transition rates between each state, giving us a sense of the relative height of 

the barriers that separate each pairs of states. These results provide an approximation of 

the energy landscapes that are explored within this set of ssDNA molecules. 

Determination of the Probability Distribution of FRET States  

 The histogram 𝐻(𝐸) contains information about the distribution of FRET states 𝐸 

explored by the system. The experimentally measured distribution of FRET states is one 

of the three surfaces which we fit our model to. To construct 𝐻(𝐸) from smFRET data, 

the frequency of occurrence of each FRET state is plotted against the FRET value, as 

demonstrated in Figure 4.5. 

To simulate the FRET distribution from a Markov model, we use equation 4.3 to 

calculate 𝐻(𝐸) as a sum of gaussian, one for each of the 𝑁 conformational macrostates. 

Each state is centered at its FRET value, with an amplitude proportional to the probability 

of observing the system in that state given by 

𝐻(𝐸) = 	a
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6
KÚ
(5(�
Û�

Ü
q

(4.3) 

where 𝜎X is the standard deviation of the FRET values of state-𝑖, E is the array of FRET 

values that the single-molecule data is binned into, and 𝐸X is the expected FRET value of 

state-𝑖. The equilibrium probability distribution, 𝑃de , is found by solving the transport 

master equation, explained in subsequent sections. The agreement between the simulated 



 

 

62 

and measured 𝐻(𝐸) is a good indicator of the overall goodness-of-fit between our models 

and the experimental conditions. 

2nd Order and 4th Order Time Correlation Functions (TCFs) 

We analyze the time correlation functions of single molecule FRET trajectories to 

determine the number of macrostates, and the characteristic timescales of the system. 

Analysis of the TCFs ultimately yield the average rates of fluctuations between each of 

the 𝑁 conformational macrostates. Experimental time correlation functions are calculated 

directly from single molecule FRET trajectories as described below. These 

experimentally derived correlation functions are compared to simulated correlation 

functions calculated with solutions to a transport master equation using a Markov model.  

The two-point time correlation function contains information about the number of 

states, their connectivity, and the timescales of interconversion between each pair of 

states. It addresses the question: if a system is in state-𝑖, what is the average likelihood 

that it will transition to any other state-𝑗 in time 𝜏? Using angled brackets to imply an 

average over all combinations of points, we can write the experimental two-point time 

correlation function as 

𝐶̅(K)(𝜏) = 	 〈	𝛿𝐸(0)	𝛿𝐸(𝜏)	〉    (4.4) 

Where 𝛿𝐸(𝜏) = 𝐸(𝜏) − 〈𝐸〉. Statistical correlation functions are calculated for each 

molecule separately and averaged into a single correlation function which describes the 

ensemble of molecules for each data set. If the time series FRET data, 𝐸(𝑡), is 

continuous, one may use fast numerical algorithms to compute autocorrelation functions 

based on the Wiener-Khintchine theorem,  

𝐶(̅
(K)(𝜏) =

&��/&®((�)°×&®((�)°∗2

Þq ,     (4.5) 

where 𝑀 is the number of measurements in 𝐸(𝑡), 𝐹®𝐸(𝑡)° denotes the fast-Fourier-

transform of 𝐸(𝑡), 𝐹56 denotes the inverse-fast-Fourier-transform, and 𝐹®𝐸(𝑡)°
∗
 is the 

complex-conjugate of 𝐹®𝐸(𝑡)°. 

However, if the data series is not continuous, to calculate the autocorrelation 

function one must resort to a brute-force algorithm which steps through the data one 

measurement at a time. This is normally the case when the sampling frequency is much 
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faster than the rate of fluorescence.  Given sufficient signal-to-noise ratio reduction and 

high-resolution measurements, researchers will inevitably encounter such situations.  

To calculate the time correlation function from sparse data, we account for the 

pseudorandom distribution of measurements in time, 𝑁áÆX0Ç(𝜏). Let 𝑡0dÇ be the resolution 

of the trajectory in seconds and let 𝜏 Æâ be the maximum domain of the time correlation 

function. Starting at time 𝑡 = 0 , we calculate the product of all FRET pairs separated by 

a set of lag-times that span 𝜏 = 0 to 𝜏 = 𝜏 Æâ. We write the experimental 2nd order time 

correlation function as 

𝐶(̅
(K)(𝜏) = 6

fãä�åæ(p)
∏ {𝛿𝐸(𝑡)𝛿𝐸(𝑡 + 𝜏)}Þ56
�g8 ,   (4.6) 

where 𝑁áÆX0Ç(𝜏) is the exact number of measurements separated by 𝜏. A consequence of 

the sparse sampling is that  𝑁áÆX0Ç(𝜏) is non-uniform across the domain. We normalize 

𝐶(̅
(K)(𝜏) by explicitly accounting for this distribution of measurements. This procedure 

gives the same result as Eq. 4.5 in the limit of continuous measurement.  

Given solutions to the master equation, we can write the analytical form of the 2nd 

order TCF as 

𝐶̅(K)(𝜏) = 	∑ 	𝛿𝐸b	𝑝bX(𝜏)		𝛿𝐸Xf
X,bg6 𝑝X

de      (4.7) 

Where 𝑝X
de  is the equilibrium probability of state-𝑖. 𝛿𝐸 is the fluctuation of the FRET 

observable given by 𝛿𝐸X = 𝐸X − ∑𝑝X
de𝐸X, 𝜏 is the lag-time between measurements, 𝑝bX(𝜏) 

is the conditional probability that the system transitions to state-𝑗 from state-𝑖 in the time 

interval 𝜏. 

While two-point correlation functions tell us about the average fluctuation 

timescale between any two states in the trajectory, higher order time correlation functions 

reveal additional information. We use the higher order time correlation functions to 

determine the pathways the system uses to go from one state to another, and the relative 

probabilities with which each pathway is used. Here, we use four-point time correlation 

functions to probe the question: on average, if we observe a transition from state-𝑖 to 

state-𝑗 how likely are we to observe a transition from state-𝑘	to state-𝑙 after an interval 𝜏K, 

for all possible combination of states? The experimental four-point time correlation 

function reveals the timescales of fluctuations across four measurements and can be 

written as  
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𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) = 	 〈𝛿𝐸(𝜏O)	𝛿𝐸(𝜏K)	𝛿𝐸(𝜏6)	𝛿𝐸(0)〉                    (4.8) 

where 𝜏6 = 𝑡K − 𝑡6,  𝜏K = 𝑡O − 𝑡K, and  𝜏O = 𝑡Q − 𝑡O. 

 Like the 2nd order TCF, this product needs to account for the random distribution 

of measurements using the following formula 

𝐶(̅
(Q)(𝜏6, 𝜏K, 𝜏O) =

6
fãä�åæ(p�,pq,p�)

∏ {𝛿𝐸(𝑡)𝛿𝐸(𝑡 + 𝜏6)𝛿𝐸(𝑡 + 𝜏6 + 𝜏K)𝛿𝐸(𝑡 + 𝜏6 +Þ56
�g8

𝜏K + 𝜏O)}          (4.9) 

where 𝑁áÆX0Ç(𝜏6, 𝜏K, 𝜏O)is the exact number of measurements separated by 𝜏6, 𝜏K, and 𝜏O. 

Again, once we have solutions to the transport master equation we can simulate the 4th 

order time correlation function with  

𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) 	= ∑ 𝛿𝐸t	𝑝tu(𝜏O)	𝛿𝐸u	𝑝ub(𝜏K)	𝛿𝐸b	𝑝bX(𝜏6)f
X,b,u,tg6 𝛿𝐸X𝑝X

de (4.10) 

where 𝜏6 = 𝑡K − 𝑡6,  𝜏K = 𝑡O − 𝑡K, and  𝜏O = 𝑡Q − 𝑡O. 

The experimental 2-point and 4-point TCFs do not fully decay to zero, but rather 

asymptotically approach it. To account for this in our model, we add an experimentally 

determined y- and z- offset to the simulated 𝐶(K) and 𝐶(Q), respectively. The value used 

for the y- and z-offsets are the absolute value of the mean of the last 3 measurements of 

each surface, when the decay is essentially complete. 

To calculate the theoretical conditional probabilities for our system, 𝑝bX(𝜏), we 

borrow a well-known tool from chemical kinetics: the transport master equation.  

Transport Master Equation 

The transport master equation describes how the population in each state, 𝑝X(𝑡),  

changes with time based on the connectivity and relative populations of the states. We 

write this expression as 

𝐩̇(t) = K	𝐩(𝐭)       (4.11) 

where 𝐾 is the rate matrix (Eq. 4.12), and 𝒑̇(𝑡) is the time-derivative of the population 

state vector. The solutions to this equation are the state-to-state conditional probabilities 

and equilibrium probabilities that are required to simulate the time correlation functions. 

For a system with 𝑁-states, we write an 𝑁 × 	𝑁 rate matrix, 𝐾, containing the rate 

constants 𝑘Xb	 (Eq. 4.12). The rate constants are inversely proportional to the time 

required for interconversion between macrostates, e.g. 𝑘Xb is the rate constant between 
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state-𝑖 and state-	𝑗. 𝐾Xb = 𝑘bX if a transition between states-𝑖 and-𝑗 exist. If the model has 

no connection between states 𝑖 and 𝑗,  𝑘Xb	is set to zero. The diagonal elements 

correspond to the rate of population leaving each state, and the off diagonal elements 

describe population entering each state. Ultimately, determining the values of the rate 

constants will provide information about the energy landscape of the molecule. 

𝐾 =

⎝

⎜
⎛
−∑ 𝑘6,Xf

Xg6 𝑘K,6 ⋯ 𝑘f,6
𝑘6,K −∑ 𝑘K,Xf

Xg6 ⋱ ⋮
⋮ ⋱ ⋱ 𝑘f,f56

𝑘6,f ⋯ 𝑘f56,f −∑ 𝑘f,Xf
Xg6 ⎠

⎟
⎞
	    (4.12) 

After building the K matrix for a chosen model, we find the set of scalar 

eigenvalues {𝜆}	and corresponding eigenvectors {𝝂} by solving the eigenvalue equation 

𝐾𝝂 = 𝜆𝝂. The eigenvalues of 𝐾 are the characteristic timescales of the system and the 

eigenvectors describe the normal modes of the dynamics. For an 𝑁-dimensional matrix, 

there are 𝑁 non-trivial eigenvectors, each with a corresponding eigenvalue. Since the sum 

of each column of the rate matrix is zero, one eigenvalue is always zero and the rest are 

negative 21. 

We use the following general solution for a set of coupled, first-order, linear, 

ordinary differential equations  

𝒑𝒊(𝑡) = 	 𝑐6X𝒗6𝑒��� + 𝑐KX𝒗K𝑒�q� + ⋯+ 𝑐fX 𝒗f𝑒���     (4.13) 

where 𝒑𝒊(𝑡) is the solution to the rate equation for each initial condition and 𝑐HX  are the 

expansion coefficients, indexed by 𝑖 corresponding to the initial condition 22. 

The equilibrium population of state-𝑖, 𝒑X
de, is given by 𝑐6X𝒗6X , where 𝒗6X  is the 

eigenvector associated with the eigenvalue 𝜆6 = 0, so we can rewrite Eq. 4.13  as 

𝒑𝒊(𝑡) = 𝒑de + 𝑐KX𝒗K𝑒�q� + ⋯+ 𝑐fX 𝒗f𝑒���.    (4.14) 

Using the initial conditions, we solve the system of equations to calculate the expansion 

coefficients. This gives the conditional probabilities 𝒑bX(𝑡) that describe the probability 

of transitioning from state-𝑖 to state-𝑗 in time 𝑡.  

𝑝bX(𝑡) = 𝑝b
de + 𝑐KX𝑣K

b𝑒�q� + ⋯+ 𝑐fX 𝑣f
b 𝑒���    (4.15) 
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Here, we see that the expansion coefficient, 𝑐, depends on the initial condition and 

the eigenvector component, 𝜈, depends on the final condition, indexed by 𝑖 and 𝑗, 

respectively. Given that all 𝜆H ≤ 0, note that as 𝑡 → ∞, or 𝑡 ≫ 𝑡 Æâ where 𝑡 Æâ is the 

longest relaxation time in the system, the conditional probability 𝑝bX(𝑡) evaluates to 𝑝b
de . 

In other words, if you wait long enough, the probability of going from state-𝑖 to state-𝑗 is 

simply the equilibrium population of state-𝑗. 

If the system is relatively simple, 𝑝bX(𝑡) can be solved as a set of linear, coupled 

equations for the expansion coefficients; however, as the system grows increasingly 

complex, it becomes infeasible to solve these equations analytically. For large models, 

using numerical techniques decreases computation time. Instead of solving a large system 

of coupled equations, we can transform the rate matrix to its eigen-basis and solve for the 

conditional probabilities directly. Appendix C, Chapter IV contains the derivation of 

solving the master equation with numerical methods. In short, we can write 

𝑃(𝑡) = 𝑈	𝑒ø	�	𝑈56	𝑃8     (4.16) 

Where 𝑈 is the modal matrix composed of the eigenvectors of 𝐾,  𝑒ø	�	is the exponential 

of the spectral decomposition of 𝐾 (i.e. the diagonal elements are functions of the 𝑁 

eigenvalues, 𝑒�ù�), and 𝑃8 the 𝑁 ×𝑁 identity matrix.  

At this point, the framework for simulating time correlation functions of a chosen 

model is complete. We now discuss the specifics of the ssDNA system in the context of 

this framework. 

Results 

Fits to the 2nd Order Time Correlation Functions 

The 2nd order time correlation function of each construct exhibited a decay on the 

order of several microseconds as shown in Figure 4.6.  We expect this relaxation 

timescale is photophysical in nature related to the timescale of cis/trans isomerization of 

the fluorophores23,24 and transfer to the triplet state25. We set out to learn about the nature 

of conformational fluctuations, not photophysics. Therefore, we started fitting the 

autocorrelation function beginning at 20 microseconds, past the time of photophysics.  

Analysis of the 2nd order time correlation functions beyond 20 µs revealed the 

presence of at least two eigenmodes (Figure 4.7) in each construct. This implies that there 
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are at least three states that the DNA is interconverting between on those timescales. See 

Appendix C, Chapter IV part 2: Exponential form of the TCFs, for an explanation of why 

this is true. Therefore, we assumed the simplest model that could explain our data 

consists of three interconverting states. 

In addition to the time correlation function indicating three conformational 

macrostates, the distribution of FRET states (Figure 4.5) also suggest that a single mode 

will be unable to capture the full range of polymer conformations. 

Model for conformation fluctuations of single-stranded DNA 

For this experiment, we have built a model with three macrostates: a compact 

state, an extended state and an intermediate (Figure 4.8). The compact macrostate 

features the ssDNA tightly coiled or folded, allowing the dye molecules to be close 

together, yielding a high FRET efficiency. The extended macrostate features the ssDNA 

stretched out, yielding a lower FRET efficiency. And the intermediate state is a partially 

compact structure, giving a FRET value between the extended and compact states.  

We propose that each state can interconvert with the other two states, resulting in 

six rate constants in the model (Figure 4.9). However, since the system features a closed 

loop, it must obey detailed balance, which requires that one rate depends on all the 

others; this leaves five free rate parameters 26. 

𝑘OK =
u��	u�q	uq�
uq�		u��

      (4.18) 

In addition to the unknown rates, we also need to determine the FRET value 𝐸X for each 

macrostate; giving a total of eight free parameters in our model. 

Now that we have built a model, we construct the corresponding rate matrix, 𝐾 

𝐾 = 	ú
−(𝑘6K + 𝑘6O) 𝑘K6 𝑘O6

𝑘6K −(𝑘K6 + 𝑘KO) 𝑘OK
𝑘6O 𝑘KO −(𝑘O6 + 𝑘OK)

û    (4.19) 

according to Eq. 4.12. 

The magnitudes of the eigenvalues of 𝐾 are the timescales of the normal modes of 

the rate matrix. These timescales directly related to the systems dynamics. The 

eigenvalues and eigenvectors of 𝐾 are used in Eq. 4.15 to solve for the state-to-state 

conditional probabilities, 𝑃bX(𝑡). With the 𝑃bX(𝑡) vector solved for, we simulate the two-

point and four-point time correlation functions making use of Eq. 4.7 and Eq. 4.10, 
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respectively. Figure 4.10a shows a set of simulated two-point correlation functions for 

randomly chosen sets of rate constants for the three-state model. Simulated examples of 

the four-point correlation function for different inputs are shown in Figure 4.10b. These 

plots show that the correlation functions are sensitive to the input parameters.   

The sensitivity of the simulated two-point and four-point correlation functions is 

essential to our analysis of the rate constants between our macrostates. To proceed, we 

solve a version of the inverse problem. First, we construct simulated correlation functions 

based on a guessed set of input rate constants. Then we vary the set of input rates until we 

have minimized the difference between the simulated and experimental correlation 

functions using Eq. 4.20. The set of rates that create correlation functions that most 

resemble the data are our estimates for the rate constants of interconversion between 

macrostates. 

How to Determine Model Parameters 

To find the optimal set of model parameters, we performed a multi-dimensional 

optimization procedure, similar to the one outlined by Phelps et al.11,27. The purpose of 

the optimization is to find the set of input parameters that best reproduce the 

experimentally measured FRET probability distributions and time correlation functions.  

We introduce the weighted error function 𝜒K as a metric to assess the degree to 

which our models can reproduce statistics from experimentally measured data. The error 

function is defined to be the cumulative squared-difference between the measured 

quantities 𝑦	and the predicted ones 𝑔, 

𝜒K 	= 	∑ 𝑤e ∑ ®𝑦X − 𝑔X({𝑘t , 𝐴t})°
K

X
O
eg6    (4.20) 

where 𝑞 enumerates the histogram, 2nd order TCF and the 4th order, and 𝑖 is the domain 

index for each function. The weighting coefficients, 𝑤H, are chosen such that the 

histogram, and time correlation functions contribute approximately equal amounts to the 

error function. Additionally, 𝑤H is a function of lag times 𝜏, such that more weight is 

given to the early times of the time correlation function. 

The parameters of the model are: (1) the elements of the rate matrix, i.e. the set of 

rates {kij} that describe the inverse transfer-time between states i and j, and (2) the values 

of the FRET states {Ai}. A genetic algorithm (GA) was used to search for an 
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approximate solution to the least-squares fitting problem by finding a set of parameters 

that produced a low value of 𝜒K. A schematic demonstrating how the GA optimization 

procedure works is shown in Figure 4.11. Next, a constrained nonlinear multivariable 

problem solver, patternsearch from MATLAB (The MathWorks, USA), is used to 

minimize the error function Eq. (4.20) in order to find the global solutions reported in 

Table 4.3.  

Best Fits to the Data 

The simulations in Figure 4.12 show the best fit to the FRET histograms. The simulated 

lines were calculated with Eq. (4.7). Figure 4.13 and Figure 4.14 are the best fits to 2nd- 

and 4th- order time correlation functions, calculated with Eq. (4.7) and Eq. (4.11), 

respectively. An error analysis was conducted on each of the free model parameters 

(Figure 4.15). From the error analysis we see that if any of the optimized parameters are 

increased or decreased from their nominal values, the overall error function will increase. 

Conditional Probabilities 

The conditional probability 𝑝bX(𝑡), given by Eq. (4.15), contains the underlying 

time dependence of the time correlation functions. These functions describe the average 

survival time of each macrostate as well as the relative likelihood of possible transitions. 

The survival probability of state-i is the probability of remaining in state-𝑖 at time 𝑡 

assuming the system was in state-𝑖 at time 𝑡 = 0. Figure 4.16 shows the 𝑁K conditional 

probabilities for the 3′-p(dT)15 p/t DNA construct. 

Despite the ssDNA being composed of poly-pyrimidines, which have minimal 

stacking interactions28, we speculate that when the ssDNA backbone is in the extended 

conformation, the nucleotide bases are more stacked than they are in the other 

conformational states. The relatively long survival time of this conformational macrostate 

may be related to the enthalpic cost of unstacking the bases.  

The partially- and fully-extended macrostates may be important intermediate 

states in protein binding mechanisms. Proteins can bind to these transiently exposed 

conformations which have enough room to accommodate one or more protein-monomers. 

Once a protein has bound to the ssDNA lattice, the overall free energy of the system has 
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changed. In the absence of a binding event, we can describe the energetics of a system 

using a free energy surface. 

Free Energy Surface 

The free energy surface (FES) is a multidimensional representation the energy 

versus the various conformations of a molecule. The shape of the surface determines the 

rate of transfer between various conformational states, which are themselves determined 

by the minimal values of the FES. Measurements sensitive to the molecular conformation 

inform on what this surface looks like. A deep understanding of the FES enables the 

creation of detailed mechanistic models. 

To illustrate the free energy landscape of ssDNA near a p/t junction (Figure 4.17), 

we calculated 𝐺X, the free energy of each macrostate-𝑖, using 

𝐺X = −𝑘Ó𝑇𝑙𝑛®𝑃X
de°,     (4.21) 

Where 𝑘Ó is Boltzmann’s constant, 𝑇 is the temperature, and 𝑃X
de  is the equilibrium 

population of state-𝑖. The most stable state is the compact-macrostate, followed by the 

intermediate-conformation and lastly the extended conformation state. All of the states in 

the FES are accessible by stochastic fluctuations at room temperature. 

Principal Component Analysis 

 To quantify the variability between the data sets, we performed a principle 

component analysis (PCA) on the results presented in Table 4.3. A PCA illustrates the 

correlation between datasets by reducing their dimensionality. MATLAB’s (MathWorks 

USA) PCA function we arrived at Figure 4.18, a visual representation of where each of 

the four constructs lie along the first two principal components. 

The results of the PCA indicate that there is not much variability between the data 

sets. The principal component that explains by far most of the variability is the first 

principal component, Component 1. All the data sets lie on the same side of Component 

1, with the biggest outlier being the 5Ê − 𝑝(𝑑𝑇)6À construct, as one might expect by 

examining the results in Table 4.3.  

Discussion 

Our results suggest that ssDNA near a primer-template junction is a dynamic 

system with several distinct modes whose time-scales span four orders of magnitude, 
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from tens of microseconds to hundreds of milliseconds. This is in opposition with our 

previous assumptions of this system, where we had assigned a single conformational state 

to ssDNA.27  

Using a three state Markov chain model, we simulated correlation functions and 

FRET probability distributions. Then we minimized the difference between the simulated 

and experimental surfaces to obtain a set of model parameters that represent the system. 

Our error calculations (Figure 4.15) demonstrate that our optimization has found a local 

minimum. 

The optimized parameters averaged across the constructs contain a high FRET 

value (〈𝐸6〉 = 	0.73 ± 0.08), a low value (〈𝐸O〉 = 	0.18 ± 0.07), and an intermediate 

value (〈𝐸K〉 = 	0.42 ± 0.09) (Table 4.3), which correspond to the compact, extended and 

intermediate states, respectively. The time for interconversion between states, i.e. the 

inverse of the rate constants, span several orders of magnitude (table 1). The fastest 

process (~20 µs) is the interconversion from the intermediate state to the compact state. 

This rapid rate suggests a low energy barrier separates these macrostates. The longest 

conversion times (hundreds of milliseconds) are the transitions from the compact state to 

the extended state, suggesting a relatively large concerted rearrangement of the ssDNA.  

Overall, our results suggest ssDNA near a (p/t) junction tends to exist in the 

compact form and interchange frequently with the intermediate state. To reach the 

extended conformation, it typically proceeds through the intermediate state.  

We found that the average rate of fluctuation from the partially-extended state to the 

compact state across the four DNA constructs was 23 µs, commensurate with the values 

found for ssDNA loop closure in the formation of a DNA hairpin composed of a p(dT)16 

oligo- deoxythymidine loop 29,30.  

The conditional probabilities reflect the timescales over which one state transfers 

to another state (Figure 4.16). The conditional probabilities suggest if the system is in the 

extended state its lifetime is hundreds of microseconds, whereas the system is likely to 

have left the intermediate state within tens of microseconds. Generally, the lifetime of the 

survival probability is dominated by the fastest rate out of that state. 

Using Eq. (4.21) we calculated the relative free energy for each state using the 

equilibrium probability values 𝑃X
de(Figure 4.17). These calculations are consistent with 
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our analysis of the rates: the rate constants to jump downhill in energy are higher than to 

jump uphill. The transfers between states close together in free energy are more rapid 

than transitions between states with a larger energy difference.  

From the principle component analysis (Figure 4.18) we see that the constructs 

with the same polarity are more similar than those with the same length. Overall, the 

PCA analysis suggests that there is very little variation between constructs. 

Conclusion 

We have determined that ssDNA templates near DNA (p/t) junctions exist in 

primarily three conformational macrostates: compact, intermediate-extension, and fully-

extended. Fluctuations of the ssDNA backbone among these conformational macrostates 

occur on a range of time scales from tens-of-microseconds to hundreds-of-milliseconds. 

Our findings indicate that the polarity of the ssDNA strand near a (p/t) junction makes 

little difference in the timescales of conformational changes between ssDNA 

conformational macrostates. 

The ssDNA is most likely to be in the compact state, which is reflected in our 

calculation of the compact state having the lowest free energy. The partially- and fully-

extended conformational macrostates are likely the principle partners for protein-DNA 

binding interactions. Our results indicate that single-stranded polynucleotides in the 

vicinity of dsDNA can exist in a conformation amenable to protein binding upwards of a 

millisecond at a time. 

Bridge to Chapter V 

The T4 Bacteriophage ssb, gp32, has a binding site of seven contiguous 

nucleotides.31,32 In order for ssb gp32 to bind, the ssDNA needs to be in a conformation 

with a sequence of seven exposed nucleotide residues. The next chapter explores 

modeling the gp32 dimer assembly mechanism with new insights from this study. Our 

results indicate that the ssDNA templates exist primarily as three distinct macrostate 

conformations: i) a majority-component ‘compact’ macrostate, ii) an intermediate-

component ‘partially-extended’ macrostate, and iii) a minority-component ‘fully-

extended’ macrostate. These macrostates can function as preferential binding sites for 

DNA associating proteins, such as the single-stranded DNA binding proteins (ssb). When 
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the ssDNA fluctuates into a state that is amenable to binding by a protein, the protein can 

‘trap’ the ssDNA into this configuration for extended periods of time 27. We expect the 

partially- and extended-conformations are able to accommodate the initial binding of 

gp32, while the compact form of ssDNA will not be on path. Therefore, the models of 

gp32 dimer assembly presented in Chapter III can be revised to include multiple DNA 

states and become a more accurate depiction of mechanism of gp32 dimer assembly. 
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CHAPTER V 
THE EFFECTS OF LENGTH AND POLARITY OF SSDNA ON THE 

ASSEMBLY MECHANISM OF DIMERS OF T4 BACTERIOPHAGE SSB GP32 

ONTO SSDNA NEAR PRIMER-TEMPLATE DNA JUNCTIONS  

The work described in this chapter was performed by myself, Claire Albrecht, 

Anson Dang, and Megan Barney. Anson Dang and Megan Barney contributed by 

assisting me in making samples and helping take single-molecule data. Claire Albrecht 

assisted with the modeling of the data. I was the primary author for this chapter. Claire 

Albrecht, Andrew H. Marcus and Peter H. von Hippel and I are involved in the drafting 

of the manuscript based on this work. These studies were supported by grants from the 

National Institutes of Health (molecular biology and biophysics training grant), the 

National Science Foundation (Chemistry of Life Processes Program grant CHE-1608915 

to A.H.M.), and the National Institutes of Health (NIGMS Grant GM-15792 to P.H.v.H. 

and A.H.M.). Andrew H. Marcus was the principal investigator for this work. 

Introduction 

 Single-stranded (ss) DNA binding proteins (ssb) bind to the ssDNA phosphate 

backbone in order to protect it from nucleases, melt unfavorable secondary structure, and 

configure it for interaction with other proteins1. The T4 bacteriophage ssb is the gene-

protein 32 (gp32). It has a binding site footprint equal to a size of seven nucleotides 2. 

Gp32 is made of three basic domains: the core of the protein which binds to ssDNA3,4;  

the C-terminal region, a negatively charged intrinsically disordered domain that binds to 

the gp32 core and protects it5; and the N-terminal domain of gp32 that is responsible for 

gp32 cooperativity6,7. To study the assembly mechanism of a dimer of gp32 onto ssDNA 

near a ssDNA-dsDNA junction we performed sub-millisecond single molecule FRET 

spectroscopy using four different DNA constructs differing in length and polarity (Figure 

5.1). 

The gp32 protein is an important component of DNA replication in T4 

bacteriophage1, and as such must bind to and unbind from the DNA as the replication 

fork advances, in addition to forming cooperatively bound assemblies that may slide 

along the ssDNA intermediates as the replisome advances.8 The 15-nucleotide constructs 
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are long enough to investigate some aspects of mechanisms and rates at which dimer 

clusters can slide. By studying different ssDNA polarities, we can learn about intrinsic 

differences in binding kinetics on the leading- versus the lagging-DNA strand, as well as 

probing the assembly and disassembly mechanism of dimers at the ss-dsDNA junction. 

Materials and Methods 

DNA Primer-Template Constructs  

The four DNA (p/t) constructs were purchased as ssDNA from Integrated DNA 

Technologies (IDT, Coralville, IA, USA). First, the solid ssDNA pellets are each 

resuspended in a buffer (100 mM NaCl, 6 mM MgCl2, 10 mM Tris-HCl pH 8.0) to reach 

a relatively high concentration of 100 µM. Next, complementary ssDNA oligonucleotides 

are hybridized to form the DNA constructs shown in Figure 5.1 (see Appendix A Chapter 

V for figures). The oligomers are not mixed at added at equal molar amounts: the Cy3-

donor labeled oligo is added in excess at 150 nM concentration and the acceptor-labeled, 

biotin-tagged oligo is added at 100 nM concentration. As only the biotin-labeled ssDNA 

can bind to the microscope-slide, mixing the ssDNA strands with excess non-biotinylated 

strand will ensure that each construct bound to the slide is a dsDNA construct. The dilute 

(100 nM) ssDNA mixture is heated to 94° C for 2 minutes, and then allowed to slowly 

come to room temperature. The sequences of the strands are shown in Table 5.1 (see 

Appendix B Chapter IV for tables).  

Details of the Sample Cell Chamber and Preparation 

Single-molecule FRET spectroscopic measurements were taken on the p/t DNA 

constructs using microfluidic sample chambers (Figure 5.2). The structural elements of 

the chambers include a chemically modified quartz slide, a glass coverslip, binding 

epoxy, plastic tubing, and pipette tips. Once the chamber is constructed, the DNA 

constructs are immobilized on the slide using biotin-neutravidin chemistry. Finally, the 

Trolox oxygen scavenging solution is flowed into the chamber (see Chapter IV Materials 

and Methods for details). Control measurements are taken on the constructs before 

protein is added to the chamber. The solution is allowed to equilibrate for at least 10 

minutes before further measurements are performed.  
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Microsecond-Resolved Single-Molecule FRET Spectroscopy 

 Figure 5.3 shows the instrument set up we used to perform single-molecule FRET 

measurements. Care was taken to ensure a minimum of environmental noise was present 

so that the signal at the detectors is as optimal as possible. This entails using all means 

possible to block background light and optimizing all the optics in the path length. 

An Eclipse TE2000 inverted microscope (Nikon) was used to image individual 

molecules attached to a quartz slide using prism-based TIRF microscopy. The 

microscope slide containing the sample chamber was attached a nanometer-precision 

computer-controlled stage (NPS-XY-100A with NPS3330 controller; Queensgate UK) 

controlled by a custom program written in LabVIEW. A 50 mW continuous-wave laser 

centered at 532-nm (Coherent, Compass model no 215M) with approximately 10 mW 

power at the prism was focused onto our sample using a 100 mm plano-convex lens. The 

illuminated area is kept to a minimum to avoid photobleaching of nearby molecules not 

being immediately imaged.  

Before the incident light hits the sample-chamber containing the DNA samples, it 

passes through a Pellin-Broca prism which changes the angle of the light at the air-quartz 

interface according to Snell’s law, 𝑛6𝜃6 = 𝑛K𝜃K where 𝑛 is the index of refraction of 

refraction of the transmissive medium, and 𝜃 is the angle between the incident light and a 

line normal to the surface. Care must be made to ensure the angle of the prism is 

accounted for in determining the final angle at the quartz-aqueous solution interface to 

achieve total internal reflection. The angle of incidence between the excitation beam at 

the quartz-water interface is set just beyond the critical angle, 𝜃Ä = 65.8°, such that the 

incident light is totally internally reflected and an evanescent field is produced. This 

electric field penetrates the sample chamber enough to excite the molecules of interest 

attached near the quartz surface, but does not extend far enough into the solution to 

generate significant background from out of focus molecules scattering the excitation 

beam. 

A 100x infinity-corrected Plan Apo oil immersion objective (Nikon) with a 

numerical aperture of 1.40 was used to capture the fluorescence from the DNA 

constructs. The infinity-corrected objective sends a collimated image to the 200 mm tube 

lens of the inverted microscope, which further magnifies the molecule by a factor of 1.5 
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and forms a focused image at the image plane. That image contains the focused 

fluorescence of many molecules (~50-100 constructs) that are widely enough separated 

so that the point-spread-functions of individual constructs do not overlap. The diffraction 

limit dictates that the molecules will appear no smaller than 𝜆/(2 × 𝑁𝐴), where 𝜆 is the 

wavelength of emission and NA is the numerical aperture.9 Using the emission maximum 

of Cy5, 𝜆 = 650	𝑛𝑚, this makes the minimum size of the molecules in our system 

approximately 232 nm. After the 150x magnification, the size is about 35 microns at the 

image plane. A 100 µm pinhole (Thor Labs) placed at the image plane is used to block 

out the fluorescence from all molecules except the one in the center of the field-of-view. 

The size of the pinhole was chosen to maximize signal-to-noise (S/N) by maximizing the 

transmission from one central molecule, but minimizing chances of capturing 

fluorescence from non-interacting, neighboring molecules. 

 The surviving fluorescence after the pinhole is collimated using a 75 mm 

biconvex lens placed its focal length from the pinhole. It is important to collimate the 

emission to avoid loss of signal on the way to the detectors. A longpass Di03-R635 

dichroic beamsplitter (Semrock) was used to separate the fluorescence from the Cy3/Cy5 

chromophores at 635 nm to minimize the bleed-through of the donor into the acceptor 

channel. The longer wavelength acceptor emission passes though the dichroic while the 

shorter wavelength donor emission is reflected. Finally, the spectrally separated 

fluorescence from the DNA constructs is focused by two 60x objectives (Olympus) onto 

nanosecond-resolution photon-counting avalanche photo diodes (APDs, SPCM-AQR-16, 

Perkin-Elmer). The APDs relay the signal to a data acquisition (DAQ) board (National 

Instruments, NI PCIe-6535) that records the arrival time of the photon and passes this 

information on to our data storage computer for later analysis. Single molecule 

trajectories are recorded for each molecule for 30 seconds. 

Results 

 The experimental 2nd-order time correlation functions, 𝐶(K), of the single-

molecule FRET data of the (ss) oligo- deoxythymidine [o(dT)n] templates (n = 14 and 15) 

and polarity (3’ versus 5’) near ss—dsDNA junctions are shown in Figure 5.4. 
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Fitting the 2nd order time correlation function of each construct to a sum of 

exponentials suggested the presence of multiple exponential decays not present in the 

DNA-only data (Figure 5.5).  See Appendix C, Chapter IV for a review of the exponential 

form of time correlation functions 

An initial exponential decay on the order of a few microseconds was discovered, 

but it likely corresponds to chromophore photophysics so was not included in this 

analysis. The same decay was observed in control experiments without the protein 

present (see Chapter IV). 

Simulating Time Correlation Functions and Equilibrium Probability Distributions 

 A knowledge of the timescales of the decays of the experimental time-correlation 

function tells you approximately the minimal number of states that are needed to simulate 

a time-correlation function using a Markov-state model. In a Markov model, one 

describes a set of states with an associated observable value (in our case, FRET), and 

then a probability to go from one state to another in a given time (i.e. a state-to-state rate). 

Markov models are useful in making predictions and understanding the most likely 

pathways from one state to another. 

The entire process can be summed up in an equation known as the transport 

master equation 

𝒑̇(𝑡) = 𝐾	𝒑(𝒕),     (5.1) 

where 𝒑(𝑡) is the 𝑁 × 1 population state vector for 𝑁 states (Eq 5.1), and 𝐾 is the rate 

matrix, shown in Eq. (5.4). 

𝒑(𝒕) = 〈𝒑𝟏(𝒕), 𝒑𝟏(𝒕),⋯ , 𝒑𝑵(𝒕)〉,   (5.2)  

The sum of 𝒑(𝑡) is always 1. Even if the system starts out far from equilibrium, 

given enough time the population state vector will approach the probability distribution, 

𝒑de . The form of 𝒑(𝑡) is equivalent to the equilibrium FRET probability distribution that 

can be measured experimentally.  

𝒑de = 	∑ 𝑝X
def

Xg6 𝑒
5Ú

*�*�
+�

Ü
q

,    (5.3) 

where 𝜎X is the standard deviation of state-𝑖, E is the array of FRET values 0-1, and 𝐸X is 

the FRET value of state-𝑖. Each FRET state-𝑖 is a macrostate, containing many microstates. 
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A macrostate is all molecular conformations (the individual microstates) with low 

internal barriers between them. In contrast, relatively high barriers separate one macrostate 

from another. As such, the system will fluctuate from one macrostate to another at a rate 

proportional to the heights of the relevant state-to-state barriers. The rate matrix 

encapsulates these barriers, which are defined by rate constants. The rate matrix has off-

diagonal elements 𝑘Xb that are the rate constants with which system transfers from state-𝑖 

to state-𝑗. The diagonal elements of 𝐾 are such that the sum of each column of the rate 

matrix is equal to zero. 

𝐾 =

⎝

⎜
⎛
−∑ 𝑘6,Xf

Xg6 𝑘K,6 ⋯ 𝑘f,6
𝑘6,K −∑ 𝑘K,Xf

Xg6 ⋱ ⋮
⋮ ⋱ ⋱ 𝑘f,f56

𝑘6,f ⋯ 𝑘f56,f −∑ 𝑘f,Xf
Xg6 ⎠

⎟
⎞
	   (5.4) 

Using numerical methods from linear algebra, commercial software such as MATLAB 

can quickly solve for the eigenvalues and eigenvectors of 𝐾, and we can write the 

solutions to the master equation as 

𝑃(𝑡) = 𝑈	𝑒ø	�	𝑈56	𝑃8.      (5.5) 

In this equation,  𝑃(𝑡) is the conditional probability tensor, with 𝑁K elements being 

the conditional probability vectors 𝑝bX(𝑡). 𝑈 is the modal matrix formed by combining each 

eigenvectors of 𝐾 into a matrix of column vectors 

𝑈 = (	𝒗,,⃗ 𝟏|	𝒗,,⃗ 𝟐|	… 	|	𝒗,,⃗ 𝑵) = 	

⎝

⎛
𝑣66 𝑣K6

𝑣6K 𝑣KK
⋯ 𝑣f6

𝑣fK
⋮ ⋱ ⋮

𝑣6f 𝑣Kf ⋯ 𝑣ff⎠

⎞.  (5.7) 

Note that the paired eigenvectors and eigenvalues should be sorted in decreasing order 

starting with the highest value at 𝜆6 = 0. 𝑈 is by construction an invertible matrix, so 

	𝑈56 is real-valued. 𝑒ø	� is a sparse matrix of exponentiated eigenvalues of 𝐾, i.e. 

𝑒ø	�X,X = 𝑒���, and 𝑒ø	�X,b = 0,∀	𝑖 ≠ 𝑗. 𝑃8 is the identity matrix of dimension 𝑁. The term 

𝑈56	𝑃8 gives the expansion coefficients in the solution for 𝑃(𝑡) in Eq. 5.1 
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Finally, once we have 𝑃(𝑡), and 𝐸, the array of FRET values for each state we 

can write the form of the 2nd and 4th order time correlation functions as  

   𝐶̅(K)(𝜏) = 	∑ 	𝛿𝐸b	𝑝bX(𝜏)		𝛿𝐸Xf
X,bg6 𝑝X

de    (5.8) 

and  

𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O) = ∑ 𝛿𝐸t	𝑝tu(𝜏O)	𝛿𝐸u	𝑝ub(𝜏K)	𝛿𝐸b	𝑝bX(𝜏6)f
X,b,u,tg6 𝛿𝐸X𝑝X

de, (5.9) 

where 𝛿𝐸X = 𝐸X − 〈𝐸〉, 𝐸X is the FRET value of state-𝑖, and 𝑝X
de  is the equilibrium 

probability of being in state-𝑖. In Eq.5.8, 𝜏 is the time between the two measurements; 

likewise, in Eq. 5.9, 𝜏O,	𝜏K, and 𝜏6 are the time intervals between all four measurements. 

Therefore, the 2nd and 4th order TCFs are expressions of all 2- and 4- step pathways 

among the different states. 

Calculating Time Correlation Functions from Single-Molecule FRET Data 

 We calculate the 2nd order TCFs from experiments using MATLAB to step 

through the array of FRET values and compute 

𝐶(̅
(K)(𝜏) = 6

fãä�åæ(p)
∏ {𝛿𝐸(𝑡)𝛿𝐸(𝑡 + 𝜏)}Þ56
�g8 ,   (5.10) 

where 𝑁áÆX0Ç(𝜏) is the exact number of measurements separated by 𝜏, and 𝑀 is the total 

number of measurements taken in the duration of the scan. A consequence of the sparse 

sampling is that  𝑁áÆX0Ç(𝜏) is non-uniform across the domain. We normalize 𝐶(̅
(K)(𝜏) by 

explicitly accounting for this distribution of measurements. 

Similarly, we calculate the 4th order TCF as follows, 

𝐶(̅
(Q)(𝜏6, 𝜏K, 𝜏O) =

6
fãä�åæ(p�,pq,p�)

∏ {𝛿𝐸(𝑡)𝛿𝐸(𝑡 + 𝜏6)𝛿𝐸(𝑡 + 𝜏6 + 𝜏K)𝛿𝐸(𝑡 + 𝜏6 +Þ56
�g8

𝜏K + 𝜏O)} (5.11) 

Multidimensional Parameter Optimization 

To find a set of rate constants and FRET states that are able to simulate FRET probability 

distributions, and time correlation functions that resemble experiments, we used a 

combination of a non-deterministic genetic algorithm and a deterministic constrained 

nonlinear multivariable function optimizer, MATLAB’s ga and fmincon functions, 
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respectively. The procedure was to use the genetic algorithm many times to find a family 

of solutions that are near the global minimum. From there, fmincon was used to further 

refine each guess to the local minimum.  

We introduce the weighted error function 𝜒K as a metric to assess the degree to 

which our models can reproduce statistics from experimentally measured data. The error 

function is defined to be the cumulative squared-difference between the measured 

quantities 𝑦	and the predicted quantities 𝑔, 

𝜒K = ∑ 𝑤X
e ∑ /𝑦X

e − 𝑔X
e({𝑘t , 𝐴t})2

K
X

O
eg6    (5.12) 

where 𝑞 enumerates the histogram, 2- and 4-point time correlation functions, 𝑖 is the 

domain index for each function and 𝑤X
e are the weighting functions of each of the 𝑞 

surfaces. 𝑤X
e are chosen such that the histogram, and time correlation functions contribute 

approximately equal errors to the difference function. Additionally, 𝑤X
e is a function of 

lag times 𝜏, such that more weight is given to the early times of the time correlation 

function. 

The set of parameters with the overall best agreement to the data was chosen to be 

the best fit for that construct using the particular model. We used a heuristic to determine 

which model was best for a given construct: if the 𝜒K measure of fitness is lowest on the 

simplest model (lower is better) we choose that model. If the  𝜒K is only marginally 

higher with a simple model, we choose the simpler model. If the  𝜒K	value is sufficiently 

lower with a more complex model, we choose the more complex model. The AIC and 

BIC criteria can also be used to select the best model for gp32 dimer assembly. Both 

information criteria reward accuracy of the goodness of fit but penalize for the entropic 

reduction by using more states, and as such can be thought of as maximum entropy 

methods.  

Modeling the gp32 dimer assembly pathways 

To properly simulate the time correlation functions for gp32 binding to the 14- 

and 15-nucleotide ssDNA constructs, we used the five- and six-state models shown in 

Figure 5.6. Each state of the model has a FRET value associated with it.  

We tried several networks (mechanistic pathways) to model the dimer assembly 

process, but ultimately the two that proved to be most fruitful were the five- and six- state 
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versions. Appendix C shows the best network out of all attempts to fit each construct with 

every model. The best results of fitting the models are shown in Figures 5.7 – 5.10, and 

the values are recorded in Table 5.2. 

Motivated by studies of the single-molecule FRET results obtained with the DNA 

constructs in the absence of added gp32 (see Chapter IV for more details), we modeled 

the free DNA constructs as two-state systems. We decided to combine the intermediate 

and extended DNA only conformation for simplicity. State-1 is a macrostate that contains 

all conformations of ssDNA that were not appropriate for binding gp32 monomers, and 

state-2 is a macrostate that includes all the conformations of ssDNA that are suitable for 

gp32 monomer binding. The nucleotide binding-footprint of gp32 is seven nucleotide 

residues in length2, so presumably state-2 features conformations of ssDNA with seven 

contiguous nucleotides in secondary structure conformations that do not preclude gp32-

nucleic acid interactions. When the ssDNA fluctuates into a binding-possible state from a 

binding-impossible state, a nearby ssb protein can capture the ssDNA backbone and bind. 

Most of the ways the initial gp32 monomer can bind are not on-path for a second 

monomer to bind: these conformations are collectively designated as state-3. However, if 

a ‘nucleating-monomer’ binds right next to the ssDNA-dsDNA junction or at the terminal 

end of the ssDNA region, then (depending on orientation and proximity) a second 

monomer can also bind to the ssDNA backbone to form a gp32 dimer: these on-path 

monomer-bound states are conduits to forming a protein dimer, and are designated as 

state-4. Stated in another way, state-3 is unproductive for dimer formation while state-4 is 

productive for this process. 

Lastly, our models feature a states for the gp32 dimers. We found that a single 

dimer state was sufficient to model the 14-mer constructs (state-5), while two non-

degenerate states were necessary to model the dimer state in the 15-nucleotide constructs 

(states-5 and -6). Modeling the 14-mers with the six-state model as opposed to the five-

state model resulted in poorer agreement between the simulated correlation functions and 

FRET distributions when compared to experimentally derived correlation functions and 

FRET distributions. In the 5′-construct, the 𝜒K measure of fitness was lower for a simpler 

model and only barely better for the 3′-construct, such that an analysis with Bayesian 

information criterion (BIC) still yields a higher value. For the 15-nucleotide constructs 
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the increase in agreement between simulations and experiment using a 6-state model was 

sufficient to account for the entropic cost of using a more complex model. 

We fit to three surfaces in this study, the FRET probability distribution, the 2nd 

order TCF and the 4th order TCF. The fits to the FRET histogram, 𝐶(K)(𝜏), and 

𝐶(Q)(𝜏6, 𝜏K, 𝜏O), are shown in Figures 5.8, 5.9, and 5.10. The values used to simulate all 

the surfaces are shown in Table 5.1 and again in network-form in Figure 5.7. 

The fastest processes were unsurprisingly the interconversion between ssDNA 

states, which occur in tens-of-microseconds timescale. State-1 is the thermodynamically 

most stable DNA-only state, as reflected by the relative values of 𝑡6K and 𝑡K6. The 

slowest processes are typically the 𝑡KQ monomer association rate, where one gp32 

monomer has to bind to a particular stretch of ssDNA such that there is room for another 

neighbor to bind. 

Figure 5.7 shows the best fit from each construct. As mentioned, the overall best 

fits for the 14-nucleotide constructs were accomplished with a 5-state model, and the best 

fits for the 15-nucleotide constructs were achieved with a 6-state model. 

The probability FRET distributions reflect the equilibrium conformational states, shown 

in Figure 5.8. 

Discussion 

Informatively, in the two 14-nucleotide ssDNA constructs, the FRET states 

corresponding to the gp32-dimer were different: the 3′-construct had an even lower 

FRET efficiency state (E = 0.10) than its 5′ counterpart (E = 0.33). Since the 14-mer 

constructs can only hold one gp32 dimer, in register with nucleotide residues 1-14, we 

can interpret the difference in FRET values caused by polarity-driven asymmetries in the 

protein-nucleic acid interactions on the ssDNA portion of the construct. The fact that both 

constructs have a dimer in nucleotide positions 1-14, limit the likelihood that the FRET 

change is due to a conformational change of the ssDNA lattice, and suggest that maybe 

the change in FRET is, at least in part, dependent on the presence of the chromophores.  

The ssDNA has a Cy-3 donor chromophore at the terminal-end which can be 

affected by PIFE, protein induced fluorescence enhancement10,11. Since the gp32 protein 

binds to ssDNA in an oriented manner, it is possible that the end of the protein facing the 
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5′-portion of ssDNA has a different interaction with the ssDNA than the end of the 

protein facing the 3′-portion.12 So when the Cy3 chromophore is located at the 3′-end of 

ssDNA, there may be an interaction with gp32 that is not present when the Cy3 

chromophore is at the 5′ end.12 The resolution of the available crystal structure of gp32 

with ssDNA was too low to determine which end of the protein faces which end of the 

ssDNA3. Nonetheless, our data suggest that there are distinct FRET states between the 

two polar constructs.  

One end of the gp32 dimer has an intrinsically disordered, negatively charged C-

terminal region13,14, and the other end has a shorter, and also intrinsically disordered, N-

terminal region responsible for gp32-gp32 cooperativity15. It is possible the C-terminal 

region of gp32 interacts with the Cy3 probe and causes the resulting fluorescence 

enhancement event. If this were true, it would suggest the polarity of the free N-terminal 

to free C-terminal axis of the gp32 dimer cluster aligns with the 5′ to 3′ axis of the 

ssDNA strand. This would explain why the PIFE-caused low-FRET dimer state is 

observed with the 3′ constructs, but not with the 5′ constructs. Conversely, if it were the 

free N-terminal domain of the dimeric gp32 cluster that causes the PIFE event, we would 

expect the free N-terminal to C-terminal gp32 cluster axis to align with the ssDNA 5′ to 

3′ axis of the ssDNA lattice. 

Further evidence for the 3′ PIFE effect is shown in the fits to the 15-nucleotide 

constructs. The best fits using the 6-state model also show a low FRET state for the 3′ 

constructs that is not present for the 5′ constructs. 

Taking a closer look at the FRET values associated with the on-path monomer 

state (state-4), we see that it usually has a relatively higher FRET value, and so is 

probably not associated with monomer-binding to the end of the ssDNA tail where the 

Cy3 chromophore is attached, as we do not see a markedly lower value. Therefore, we 

hypothesize that state-4 usually involves the initial monomer binding contiguously to the 

ss-dsDNA fork junction. 

Note that state-4 is not well defined because it encapsulates two very different 

monomer initiation sites: one near the fork and the other as far away from it as possible. 

Nonetheless, both states are potential targets for another monomer to bind to form a gp32 
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dimer. The rate at which a monomer binds to the ssDNA is typically measured in tens of 

milliseconds, and the rate of dissociation is usually faster than association (Table 5.2).  

Once a dimer is bound to ssDNA, our fitting suggest it stays bound to the 5′ 

constructs longer than the 3′ constructs, possibly suggesting that the polarity of the gp32 

binding interaction destabilizes some positions of the dimer cluster on the ssDNA lattice 

more than others. The rate of sliding appears to be faster toward the relatively high-FRET 

dimer state for both 15-nucleotide constructs, suggesting that gp32 dimer cluster sliding 

toward the ss-dsDNA junction is favored over sliding in the opposite direction.  

Conclusion 

 We have shown that both the length and polarity of the ssDNA template effect the 

assembly mechanism of gp32 dimers. Our modeling suggests that dimer sliding occurs at 

the rate of about 1 nucleotide per ms towards the ss-dsDNA junction and much more 

slowly in the opposite direction. Our fits are also consistent with the fact that the gp32 

dimer binds to ssDNA in a polar fashion, as reflected by the different FRET states of the 

3′ and 5′ constructs that are likely caused by protein induced fluorescence enhancement 

when the donor is on the 3′ end of ssDNA. 
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CHAPTER VI 

CONCLUDING SUMMARY 

 In this dissertation I have investigated the dynamics of DNA and of protein-DNA 

interactions primarily through single-molecule FRET spectroscopy. Single molecule 

experiments are windows into unfamiliar worlds, and the results are often difficult to 

interpret. In Chapter II I first present the methodology of modeling the dynamics of a 

complex chemical system using a relatively simple Markov state model. The work 

presented in this chapter was a collaboration with Carey Phelps. We show that using 

solutions of the transport master equation, one can simulate time correlation functions 

(TCFs) and probability distribution functions. These statistical functions can also be 

calculated from single-molecule experiments and compared to the simulations in order to 

identify the number of conformational states, the value of the observable associated with 

each state, and a set of kinetic parameters that describe the state-to-state interconversion. 

We hope that the biophysics field will adopt these powerful analytical techniques, which 

I and other lab members have continued to develop and make more accessible. 

 In Chapter III I demonstrated the TCF-analysis method on a single-molecule 

experiment. In this work, also with lab members Carey Phelps, Davis Jose, and Morgan 

Marsh, we examine the mechanism of gp32 dimer assembly onto a ssDNA lattice next to 

a ss-dsDNA junction. We found that a four-state model could describe the gp32 

concentration-dependent effects on the kinetics of gp32 dimer assembly on timescales of 

a millisecond and beyond. The four-state model features a lone DNA conformational 

state, two mutually exclusive states corresponding to the DNA-gp32 monomer complex, 

and one state for the DNA-(gp32)2 dimer complex. We found that a single-monomer of 

gp32 was more likely to unbind from ssDNA than to slide to another position along the 

lattice. The mechanism of gp32 dimer assembly involves a nucleation step with gp32 

monomer randomly binding in a ‘productive’ position such that another gp32 monomer 

has room to bind cooperatively to it on an adjacent ssDNA site before the first gp32 has 

time to unbind. This finding reinforces the notion that DNA replication is stochastic and 

proceeds through a series of  thermally driven molecular collisions without the need for a 

master coordinator. 
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 In Chapter IV I present the results of a microsecond-resolution study of ssDNA 

conformational dynamics. Significant improvements to the single-molecule instrument, 

driven by an optical geometry not used in prior experiments, led to sub-millisecond 

experiments on variations the same constructs examined in Chapter III. Working with 

Anson Dang, and Megan Barney, we took single molecule FRET data on four different 

DNA constructs that differed in ssDNA length and polarity. I developed a novel method 

to calculate time-correlation functions that enables the calculation of experimental TCFs 

even if the FRET signal was not continuous. Claire Albrecht and I further refined the 

method to quickly calculate solutions to the transport master equation for arbitrarily 

complex networks using numerical methods. 

We found that a cyclical three-state Markov model of ssDNA conformations was 

the minimal model that could reproduce experimental TCFs and FRET probability 

distributions. The three-state model features three ssDNA macrostates: a compact ssDNA 

conformation, an intermediate-extension conformation, and a maximally extended state. 

The timescale of interconversion between conformational states was on the order of tens 

of microseconds to milliseconds. Even with relatively unstructured oligo-

deoxythymidine, we found that the extended state was stable for several milliseconds at a 

time. Our analysis thus suggests that large conformational fluctuations in ssDNA near ss-

dsDNA junctions occur and are likely important states in protein binding mechanisms. 

Chapter V examines the polarity-dependent binding mechanism of gp32 onto 

ssDNA regions near ss-dsDNA junctions. This work was also completed working in 

collaboration with Claire Albrecht, Anson Dang, and Megan Barney. We took 

microsecond-resolution single-molecule FRET measurements on the four p/t DNA 

constructs introduced in the last chapter. Motivated by the results of the studies of ssDNA 

conformational fluctuations presented in Chapter IV (and exponential fits to the 2nd order 

TCFs of the DNA + gp32 samples), I proposed a new model for gp32 dimer assembly 

onto ssDNA near ss-dsDNA junctions. This model extends the mechanism proposed in 

Chapter III by adding a non-productive DNA only state, and an extra state for the 

DNA:gp32 dimer complex. The new states added are key transition states in the assembly 

mechanism. They are very short short-lived, often lasting less than a millisecond, which 

is why the earlier study presented in Chapter III was not able to resolve them. 
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We found that the gp32 dimer can slide on the order of one nucleotide per ms. To 

our knowledge this is the first measurement of the kinetics of gp32 dimer sliding. Our 

results suggest the dimer slides more quickly toward the ss-dsDNA junction than away 

from it regardless of ssDNA polarity. Furthermore, based on our analysis of the 14-

nucleotide constructs (which can only fit the dimer in one position) we concluded that the 

gp32 dimer causes a polarity-dependent PIFE effect with the Cy3 chromophore on the 3′ 

construct but not in the 5′ construct. We believe this is a very local effect, because in the 

3′-p(dT)15 construct (which can accommodate the dimer in two different positions) we 

see the presence of both low- and relatively high-FRET dimer states. This observation 

will be useful in future studies, and can even be used as a tool to further inform on the 

location of ssb protein on ssDNA lattices. 

 The gp32 dimer-sliding rates could be influenced by end-effects (i.e. the 

interaction of the gp32 dimer with end of the ssDNA and by interactions at the ss-dsDNA 

junction). If one were to repeat these studies on longer ssDNA constructs, it may be 

possible to extract kinetic parameters of sliding with fewer complicating interactions. Of 

course, the ss-dsDNA junction is the nexus at which much of fundamental biology occurs 

including DNA replication and repair, so learning more about how proteins interact with 

it is a valuable exercise.  

 Altogether, the findings presented in this dissertation suggest that single-molecule 

FRET spectroscopy is a formidable tool for the molecular biologist. Future studies will 

benefit from an increased understanding of the connections between a Markov state 

model and time correlation functions. DNA is a remarkable polymer. It may be the single 

most important molecule on the planet: if DNA didn’t exist, no one would be around to 

notice. 
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APPENDIX A 

FIGURES 

Figures for Chapter II 

 

Figure 2.1. Models of Dimer Assembly and a single-molecule Trajectory 
(A) A hypothetical 3-state reaction scheme for the ssDNA binding protein gp32, which 
can bind up to two proteins to the p(dT)15 ‘tail’ region of a p/t DNA construct. FRET 
donor and acceptor chromophores (depicted as green and red circles) label the 3’ end of 
the ssDNA region and the p/t junction, respectively. The gp32 protein is shown in yellow. 
(B) The 0-, 1- and 2-bound states of the N = 3 system shown in Panel (A) are depicted as 
a linear reaction scheme, in which the reactant (state-0) and product (state-2) are coupled 
by a single intermediate (state-1). (C) The reaction is depicted as an N = 4 system, in 
which the conformational end-states are inter-connected by a ‘non-productive’ 
intermediate (state-1) and a ‘productive’ intermediate (state-1’). Stochastic transitions 
from state-𝑖 to state-𝑗 occur with probabilities determined by the rate constants 𝑘Xb, where 
𝑖, 𝑗 ∈ {0,1,… , 𝑁 − 1}. (D) A simulated trajectory of the stochastic variable 𝐴(𝑡) is shown 
for the N = 3 system. Here we have assigned the three states to the resolvable values 𝐴8 = 
0.8, 𝐴6 = 0.5, and 𝐴K = 0.2, and we have used the transition rates 𝑘86 = 𝑘K6 = 5 s-1, and 
𝑘68 = 𝑘6K = 10 s-1. An example of a four-point sequence of data points are shown 
corresponding to the time intervals 𝜏6, 𝜏K, and 𝜏O. Figure partially adapted from chapter II 
reference 28. 
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Figure 2.2. Example Kinetic Schemes 
Example kinetic schemes for which the detailed balance condition requires different 
constraints to be applied to the rate constant relationships due to the presence or absence 
of cyclical pathways. (A) Single cyclical pathway. (B) Linear pathway. (C) Linked 
cyclical pathways.  
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Figure 2.3. Transition pathway contributions to 2nd- and 4th-order TCFs for two-
state (N = 2) system. 
(A) There are N2 = 22 = 4 possible outcomes of a time-ordered two-point product of the 
observable A(t), which are used to construct the 2nd-order TCF 𝐶̅(K)(𝜏). (B) There are N4 

= 24 = 16 such sequences for the four-point product that is used to construct the 4th-order 
TCF 𝐶̅(Q)(𝜏6, 𝜏K, 𝜏O). The conditional probability 𝑝bX(𝜏) that a stochastic transition will 
occur from state-𝑖 to state-𝑗 within the time interval 𝜏 is given by Eq. (10). 
 

 

Figure 2.4. Three-State Model for gp32 Dimer Assembly 
The N = 3 reaction redrawn from Fig 2.1 as a cyclical scheme. This allows for the 
product state-2 to form either directly from the reactant state-0, or through the 
intermediate state-1. The ‘coupling step’ is indicated in red. 
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Figure 2.5. Simulations of N=3 4th-order TCFs and 2D rate spectra 
Calculated 4th-order TCFs (panels A – D) and associated two-dimensional (2D) rate 
spectra (panels E – H) for the cyclical N = 3 system shown in Fig. 2.4. Here we have 
taken the waiting time interval 𝜏K = 1 ms, and the rate constants 𝑘86 =	10 s-1, 𝑘68 = 20 s-1, 
𝑘8K = 2 s-1, and 𝑘K8 = 4 s-1. The TCFs are described by Eq. (2.17) and the 2D rate spectra 
by Eq. (2.18). The rate constants of the ‘coupling step,’ 𝑘6K = 𝑘K6 are adjusted over the 
range (A and E) 0, (B and F) 16.7 s-1, (C and G) 33.3 s-1, and (D and H) 66.7 s-1. For each 
of these conditions, values of the self- and cross-term amplitudes 𝒜66, 𝒜KK, 𝒜6K = 𝒜K6, 
respectively, are given in the text. 
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Figure 2.6. Simulations of N=3 4th-order TCFs, 2D rate spectra and TDPs 
Model calculations for (A) the 4th-order TCFs, (B) the 2D rate spectra, and (C) the 
transition density plots (TDPs) as a function of time. For these calculations, we have used 
the linear N = 3 kinetic scheme diagrammed in Fig 2.1B, with values 𝐴8 = 0.9, 𝐴6 = 0.3, 
and 𝐴K = 0.1, and the rate constants 𝑘86 = 𝑘K6 = 10 s-1, and 𝑘68 = 𝑘6K = 20 s-1.  
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Figures for Chapter III 

 

 

 

Figure 3.1. Models of Dimer Formation and Ensemble Fluorescence gp32 Titration 
(A) Schematic of the unbound and bound states of binding for the ssDNA-(gp32)2 system. 
The p(dT)15 ‘tail’ of a p/t DNA construct can bind up to two ssb proteins (gp32, in 
yellow).  FRET donor Cy3 and acceptor Cy5 chromophores (green and red circles) label 
the ends of the ssDNA region. (B) Reaction scheme indicating ‘non-productive’ (1-
bound) and ‘productive’ (1’-bound) intermediate states. (C) Bulk fluorescence 
measurements at 100 nM p/t DNA concentrations exhibited changes in the FRET 
efficiency upon titration with gp32. The inset shows the values of EFRET determined from 
peak Cy3/Cy5 fluorescence intensities. 
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Figure 3.2. Representative Single-Molecule Trajectories and smFRET Distributions 
(A) Representative single-molecule donor Cy3 (green), acceptor Cy5 (red) and smFRET 
trajectories (blue) taken from the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence 
of 0, 0.1, and 1.0 µM gp32, respectively. The smFRET efficiency is calculated according 
to 𝐸&'() = 𝐼¾¿À ®𝐼¾¿O + 𝐼¾¿À°⁄ . (B) Histograms of the EFRET efficiency were obtained 
from several hundred smFRET trajectories in the presence of 0, 0.1, and 1.0 µM gp32, 
respectively. 
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Figure 3.3 Normalized 2nd-order TCFs of microsecond-resolved smFRET trajectories 
Normalized 2nd-order TCFs of microsecond-resolved smFRET trajectories of the 3’-
Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of (A) 0.1 µM gp32, (B) 1.0 µM 
gp32 and (C) 0.1 µM gp32 + 1.0 µM LAST peptide. Green curves are linear regression 
best fits to the data. Solid and dashed red lines indicate the fast and slow decay 
components, respectively. The above decays were constructed from hundreds-of-
thousands of data points. The results of the fitting analysis are reported in Table S3.2, in 
Appendix C, Chapter III. 
 
 
 

 

Figure 3.4. Single-Molecule Trajectory and FRET Distribution with LAST Peptide 
(A) Representative single-molecule donor Cy3 (green), acceptor Cy5 (red) and smFRET 
trajectories (blue) taken from the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence 
of 0.1 µM gp32 and 0.5 µM LAST. The smFRET efficiency is calculated according to 
𝐸&'() = 𝐼¾¿À ®𝐼¾¿O + 𝐼¾¿À°⁄ . (B) Histogram of the EFRET efficiency obtained from several 
hundred smFRET trajectories in the presence of 0.1 µM gp32 and 1.0 µM LAST. 
 



 

 

97 

 

Figure 3.5. 4th-order TCFs and associated two-dimensional (2D) rate spectra 
4th-order TCFs (left columns) and associated two-dimensional (2D) rate spectra (right 
columns) calculated from smFRET trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA 
construct in the presence of 0.1 µM gp32. The 2D rate spectra were calculated assuming a 
three-state (N = 3) scheme, and the characteristic rate constants determined from the 
corresponding 2nd-order TCFs (see Table S3.2). Each data set was computed from 
hundreds-of-thousands of points.  
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Figure 3.6. Diagonal and off-diagonal amplitudes of the 2D rate spectra 
Diagonal and off-diagonal amplitudes of the 2D rate spectra determined from smFRET 
trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct as a function of the interval τ2, 
and in the presence of (A) 0.1 µM gp32, (B) 0.1 µM gp32 + 1.0 µM LAST peptide and 
(C) 1.0 µM gp32. Fast and slow diagonal amplitudes are shown in red and blue, 
respectively, and the cross-peak amplitude is shown in green. The corresponding 
eigenvalues obtained in each case are: (A) λslow = 6.34 s-1, λfast = 54.3 s-1; (B) λslow = 6.45 s-

1, λfast = 80.0 s-1; and (C) λslow = 10.6 s-1, λfast = 71.9 s-1.  
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Figure 3.7. Optimized fits of the N = 4 scheme 
Optimized fits of the N = 4 scheme to experimental functions calculated from smFRET 
trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM 
gp32. (A) Top panel: experimental equilibrium distribution of states. Bottom panel: 
Optimized fits show the component populations of the 0-bound state (black curve), the 2-
bound state (red curve), and the 1- and 1’-bound intermediates (purple and green curves, 
respectively). (B) The experimental 2nd-order TCF (blue) is shown overlaid with the 
optimized fit (red). (C) Experimental 4th-order TCFs for various waiting times (colored 
circles) are shown in comparison to the corresponding optimized theoretical fits (solid 
black curves). The cumulative fitness of the optimized solutions for the N = 3 and N = 4 
schemes were determined using Eq. (S3.9) and are reported in Table S3.4. 
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Figures for Chapter III Supporting Information 

 
Figure S3.1. Fits to 2nd order TCFs 
2nd-order TCFs of microsecond-resolved smFRET trajectories obtained from the 3’-
Cy3/Cy5-p(dT)15-p/t DNA construct (at 100 nM) in the presence of (A) 0, (B) 0.1 and (C) 
1.0 µM gp32. The decays are plotted using a linear-log axes scale. All decays were 
constructed from hundreds-of-thousands of data points. Note that for the p/t DNA 
construct alone, the decay of the TCF is dominated by stochastic noise. 
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Figure S3.2. Intrinsic Tryptophan Fluorescence Vs. Concentration of LAST Peptide 
Intrinsic tryptophan fluorescence of (A) 0.1 µM gp32 and (B) 1.0 µM gp32 protein is 
plotted versus LAST concentration. (C) The relative intensity of the low-𝐸&'()  histogram 
feature (at ~0.56) for the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM 
gp32 (see Fig. 3.4B), is plotted versus LAST concentration. Individual data points represent 
the results of separate experiments. The binding affinity of the LAST peptide for gp32 
molecules is too strong to determine an accurate estimate of the binding constant. However, 
under these conditions the 1:1 LAST:gp32 binding interaction must be tighter than ~ 0.1 
µM. 
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Figure S3.3. Ensemble FRET efficiency vs. Concentration Last Peptide 
Bulk FRET efficiency, 𝐸&'() , obtained from the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct 
(at 100 nM) in the presence of 0.1 µM gp32 (panels A and B) and 1.0 µM gp32 (panels C 
and D), and as a function of LAST concentration. The bulk FRET efficiency is calculated 
from the peak Cy3 and Cy5 intensities according to 𝐸&'() = 𝐼¾¿À ®𝐼¾¿O + 𝐼¾¿À°⁄ .  
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Figure S3.4. Dwell Time Distributions from HMM Analysis 
Dwell time histograms of the 3’-Cy3/Cy5-p(dT)15-p/t DNA and 0.1 µM gp32 in the 
presence (blue) and absence (red) of 0.5 µM LAST. (A) Dwell times of high-𝐸&'()  (0-
bound) state, and (B) low-𝐸&'()  (2-bound) state. Histograms were constructed from the 
results of HMM analysis of smFRET trajectories, as described in the text. The number N 
of state-to-state transitions in each case are indicated. 
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Figure S3.5. Simulated 4th-Order TCFs and Its Inverse Laplace Transform 
Simulated 4th-order TCFs (left column) and associated spectral peak amplitudes (right 
column) obtained from our inverse Laplace transform (ILT) algorithm for an N = 3 
system, as described in the SI text. The 4th-order TCF is given by Eq. (S3.7), and its ILT 
by Eq. (S3.8). The effect of noise on the precision of peak amplitude determination is 
shown for various levels of noise (0 – 100% error). Robust determination of the peak 
amplitudes was possible for 4th-order TCFs with noise levels up to 50%, which we found 
to be sufficient for the analysis of our smFRET data.  
 



 

 

105 

 
Figure S3.6. Experimental 4th Order TCFs And Associated Rate Spectra 
(A) and (B) 4th-order TCFs (left columns) and associated two-dimensional (2D) rate 
spectra (right columns) calculated from smFRET trajectories of the 3’-Cy3/Cy5-p(dT)15-
p/t DNA construct in the presence of (A) 0.1 µM gp32; (B) 0.1 µM gp32 and 1.0 µM 
LAST; and (C) 1.0 µM gp32. The 2D rate spectra were calculated assuming a three-state 
(N = 3) scheme, and the characteristic rate constants were determined from the 
corresponding 2nd-order TCFs (see Table S3.2). Each data set was computed from 
hundreds-of-thousands of points.  
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Figure S3.7. Optimized fits of the N = 4 scheme (0.1 µM gp32) 
Optimized fits of the N = 4 scheme to experimental functions calculated from smFRET trajectories of the 3’-
Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM gp32. The data and fits are the same as shown 
in Fig. 3.7, except that the 4th-order TCFs are presented as contour diagrams. (A) Top panel: experimental 
equilibrium distribution of states. Bottom panel: Optimized fits show the component populations of the 0-
bound state (black curve), the 2-bound state (green curve), and the 1-bound intermediate (red curve). (B) The 
experimental 2nd-order TCF (blue) is shown overlaid with the optimized fit (red). (C) Experimental 4th-order 
TCFs (left column) for various waiting times are shown in comparison to the corresponding optimized 
theoretical fits (right column). The cumulative fitness of optimized solutions for the N = 3 and 4 schemes 
were determined using Eq. (S3.9) and are given in Table S3.4 in Appendix C: Chapter III.  
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Figure S3.8. Cross-sections Of 4th Order TCF Fits N = 4 (0.1 µM gp32) 
Direct comparison between optimized fits of the N = 4 scheme to experimental 4th-order TCFs calculated 
from smFRET trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM gp32, re-
plotted from panel C of Fig. S3.7. Each plot shows a set of horizontal slices of the 4th-order TCFs for various 
values of τ3, and as a function of τ1. The value of the waiting time interval τ2 is varied for each plot: (A) 1 
msec, (B) 5 msec, (C) 20 msec, and (D) 100 msec. The cumulative fitness of optimized solutions for the N = 
3 and 4 schemes are were determined using Eq. (S3.9) and are given in Table S3.4 in Appendix C: Chapter 
III.  
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Figure S3.9. Optimized fits of the N = 4 scheme (1.0 µM gp32) 
Optimized fits of the N = 4 scheme to experimental functions calculated from smFRET trajectories of the 
3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 1.0 µM gp32. (A) Top panel: experimental 
equilibrium distribution of states. Bottom panel: Optimized fits show the component populations of the 0-
bound state (black curve), the 2-bound state (green curve), and the 1-bound intermediate (red curve). (B) 
The experimental 2nd-order TCF (blue) is shown overlaid with the optimized fit (red). (C) Experimental 4th-
order TCFs (left column) for various waiting times are shown in comparison to the corresponding 
optimized theoretical fits (right column). The cumulative fitness of optimized solutions for the N = 3 and 4 
schemes were determined using Eq. (S3.9) and are given in Table S3.4 in Appendix C: Chapter III. 
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Figure S3.10. Cross-sections Of 4th Order TCF Fits N = 4 (1.0 µM gp32) 
Direct comparison between optimized fits of the N = 3 scheme to experimental 4th-order 
TCFs calculated from smFRET trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct 
in the presence of 1.0 µM gp32, re-plotted from panel C of Fig. S3.9. Each plot shows a 
set of horizontal slices of the 4th-order TCFs for various values of τ3, and as a function of 
τ1. The value of the waiting time interval τ2 is varied for each plot: (A) 1 msec, (B) 5 
msec, (C) 20 msec, and (D) 100 msec. The cumulative fitness of optimized solutions for 
the N = 3 and 4 schemes were determined using Eq. (S3.9) and are given in Table S3.4.  
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Figure S3.11. Optimized fits of the N = 4 scheme (With LAST) 
Optimized fits of the N = 4 scheme to experimental functions calculated from smFRET trajectories of the 3’-
Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM gp32 plus 1.0 µM LAST. (A) Top panel: 
experimental equilibrium distribution of states. Bottom panel: Optimized fits show the component 
populations of the 0-bound state (black curve), the 2-bound state (green curve), and the 1-bound intermediate 
(red curve). (B) The experimental 2nd-order TCF (blue) is shown overlaid with the optimized fit (red). (C) 
Experimental 4th-order TCFs (left column) for various waiting times are shown in comparison to the 
corresponding optimized theoretical fits (right column). The cumulative fitness of optimized solutions for the 
N = 3 and 4 schemes were determined using Eq. (S3.9) and are given in Table S3.4.  
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Figure S3.12. Cross Sections Of 4th Order TCF Fits N = 4 
Direct comparison between optimized fits of the N = 4 scheme to experimental 4th-order TCFs calculated 
from smFRET trajectories of the 3’-Cy3/Cy5-p(dT)15-p/t DNA construct in the presence of 0.1 µM gp32 plus 
1.0 µM LAST, re-plotted from panel C of Fig. S3.11. Each plot shows a set of horizontal slices of the 4th-
order TCFs for various values of τ3, and as a function of τ1. The value of the waiting time interval τ2 is varied 
for each plot: (A) 1 msec, (B) 5 msec, (C) 20 msec, and (D) 100 msec. The cumulative fitness of optimized 
solutions for the N = 3 and 4 schemes were determined using Eq. (S3.9) and are given in Table S3.4.  
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Figure S3.13. Error Analysis 
Relative deviation of the target function, Δ𝐺�È�/𝐺�È� , from the optimized value, 𝐺�È�,0dÅ, as a function of the 
rate constant and FRET efficiency parameter uncertainties. Cross-sections of the target function given by Eq. 
(S3.9) are shown for the optimization to the N = 4 scheme under the 0.1 µM gp32 condition, and for the 
uncertainties (A) Δ𝑘8,656, (B) Δ𝑘6,6l

56 , (C) Δ𝑘6l,8
56 , (D) Δ𝑘6l,K

56 , (E) Δ𝑘K,6l
56 , and (F) Δ𝐸6. Here Δ𝑥 = 𝑥 − 𝑥0dÅ, and 

𝑥0dÅ is the value corresponding to the optimized set of parameters, which corresponds to a minimum of the 
multi-dimensional parameter surface. The red-shaded rectangles indicate the ‘trust-interval’ based on a 1% 
relative deviation, which we associate with the experimental data quality. A similar analysis was performed 
for the other experimental conditions, and the cross sections are similar to those shown above. The associated 
error bars reported in Table 3.1 are rounded up to two significant figures. We note that the rate constants 
associated with Panels (A) – (C) are related by the detailed balance condition, and the error bars of forward 
and backward elementary steps were determined accordingly.  
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Figures for Chapter IV 

 

Figure 4.1 Primer/Template DNA Constructs  
The four p/t DNA constructs feature an 18-nucleotide dsDNA region attached to a single-
stranded (ss) DNA overhang that differs in length and polarity. Prior to the FRET donor 
chromophore Cy3, two of the constructs terminate in a 5`-phosphate group, and the other 
two terminate in a 3`-hydroxyl group. The complementary strand is labeled by the FRET 
acceptor Cy5 at the ss-dsDNA junction (shown in red), and a biotin residue at the 
opposite end (shown in blue), where the construct attaches to the slide. For both 3′ and 5′ 
polarities, there is a construct which consist of a ssDNA region of 14-thymine nucleotides 
and a construct with slightly longer stretch of 15-thymine nucleotides... 
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Figure 4.2. Microfluidic Sample Chamber 
The sample chamber is a combination of a quartz slide epoxied to a 0.2 mm thick glass 
coverslip. The quartz slide has plastic tubing inserted into drilled holes that enable the 
experimenter to flow in solutions. The quartz slide has been chemically modified to have 
a layer of mPEG and Biotin-mPEG, supporting the DNA constructs to bind. The figure 
shows three DNA molecules at various distances and conformations. 
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Figure 4.3 Single-Molecule Instrumentation 
The collection geometry used to perform microsecond-resolved single-molecule FRET. 
Starting at the top-right of the figure is the excitation geometry with the sample. The 
fluorescence is magnified by the inverted microscope and focused to the image plane. At 
the image plane, we block the fluorescence of all but one molecule with a 100 µM 
pinhole. The collimating-lens is placed its focal length from the image plane such that the 
collimated fluorescence is translated without loss to a covered box with the 
instrumentation necessary for microsecond-resolved smFRET. A longpass dichroic 
beamsplitter separates the donor-acceptor fluorescence at 635 nm to 60x objectives that 
focus the collimated fluorescence into two Avalanche Photo Diodes (APDs). From there, 
the signal is digitalized by the Data Acquisition Board (DAQ) where it is relayed to the 
computer for analysis. 
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Figure 4.4 EMCCD Image of Single-Molecule DNA Constructs 
(a) EMCCD Image: 512 × 512 pixel, 8-bit tiff image taken with 30 ms exposure. The 
left-hand side of panel a) is the fluorescence from the donor channel and the right-hand 
side is the fluorescence of the acceptor channel. The colored circles mark two groups of 
molecules for illustrative purposes. In the top, the two pairs of molecules both 
coincidentally have a high FRET state (donor dimmer, acceptor brighter); the trio at the 
bottom feature two molecules in a low FRET state (donor brighter, acceptor dim) and one 
in a high FRET state. (b) Example single-molecule trajectory binned to 10 ms resolution. 
The trajectory ends at 18 seconds because of an irreversible photobleaching event. 
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Figure 4.5: Probability Distribution of Conformational Macrostates  
The normalized probability distribution of FRET states suggests that the distribution is 
described by a single feature, but rather by a combination of underlying states. This 
distribution is often called a FRET histogram. Each histogram is composed of hundreds 
of thousands of FRET values that were visited by dozens of single-molecules during the 
30 second scans. This histogram is the result of binning the microsecond-detected 
fluorescence into 1000 µs chunks before calculating the FRET with the formula 𝐹 =
<=

<=><?
, where 𝐼Bis the intensity of the donor chromophore and 𝐼A is the intensity of the 

acceptor chromophore. 
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Figure 4.6 Fits to the first 20 µs of the Experimental 2nd Order TCF 
The first 20 µs of the autocorrelation function for each construct was fit to a single 
exponential using the equation 𝐶(K) = 𝐴𝑒5u� + 𝑦ÈÅÅÇd� . The blue dots are the 
experimentally derived 2nd order TCF calculated using Eq. 4.7, and the red line is the best 
fit to the 2nd order TCF data, calculated with MATLAB’s fmincon, a least-square 
minimization function. The value reported is the inverse rate 𝜏 = 𝑘56. Each DNA 
construct exhibited a single exponential decay around 𝜏 = 3 µs.  We believe this initial 
decay to be a result of photophysical processes of the chromophores.  
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Figure 4.7: Exponential Fits to 2nd Order TCF 
The autocorrelation function of single-molecule FRET data from DNA primer-template 
junctions past 20 µs has at least two non-trivial eigenmodes. A bi-exponential fit was able 
to capture the majority of the information present in the 2nd order TCFs; using an extra 
exponential only improves the fit marginally. This implies that our single-molecule 
measurements are sensitive to at least three interconverting conformational states in the 
ssDNA constructs.  
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Figure 4.8 ssDNA Conformational Macrostates 
The three conformational macrostates our analysis suggests are present in the ssDNA 
backbones near a p/t DNA junction. The light grey lines are other possible microstates 
within each macrostate. The compact macrostate gives rise to the common high-FRET 
values, the extended conformation is responsible for the low FRET values, and the 
intermediate-state yields FRET values in between. 
 
 

 
(a) 

 
(b) 

Figure 4.9. Cyclical Three-State Model 
(a) The three-state model of ssDNA conformational fluctuations with representative 
structures for each macrostate. State-1 is the compact macrostate, state-2 is the 
intermediate macrostate, and State-3 is the extended conformation. (b) A schematic 
model with rate constants 𝑘Xb between states-𝑖 and -𝑗. 
 

 

1

2 3

Biotin

Cy5

Cy3

1

2 3

k31

k13

k32

k12

k23

k21

Compact 

FRET = 

Intermediate 

FRET = 

Extended 

FRET = 



 

 

121 

 

 

Figure 4.10: Simulations of 2nd and 4th Order Time Correlation Functions 
(A) The two-point correlation functions simulated with randomly selected input 
parameters for the rate constants and FRET values using Eq. (4.7). The starred and 
dashed line represents the TCF which best fits the data. Note that the various 
autocorrelation functions have different initial values and decay rates. (B)  Corresponding 
simulated 4th order TCFs using Eq. (4.10). The surface which best simulates the data is 
again marked with a star. Both panels (A) and (B) demonstrate the dependence of the 
correlation functions on the values of the input parameters. 
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Figure 4.11 Genetic Algorithm 
This schematic explains the various steps of the genetic algorithm (GA), which is an 
optimization strategy analogous to evolution by natural selection. The GA consists of 
four basic parts which occur each generation: initialization, selection, mutation, and 
evaluation. 1) initialization: The first generation of the optimization consist of a randomly 
generated population of guesses with mixed levels of fitness. The unsorted guesses are 
represented by the first column. The “guesses” are the numerical arrays containing the 
values of the model parameters (FRET values and state-to-state rates). 2) selection: the 
population is sorted by fitness. The fittest individuals are those which yield the lowest 
valued difference function using Eq. (4.20). The best guesses are carried on to the next 
stage of the GA unmolested, the top tiers of guesses are allowed to mix (reproduce), and 
the bottom tier of guesses are removed from the population. 3) mutation: all but the best 
guess is randomly mutated to varying degrees as a means to ensure continued genetic 
diversity. 4) evaluation: the final population (each generation) is evaluated and the “best 
guess” is selected as the current optimization solution. The population is unsorted due to 
the random mutagenesis in step-3. The entire population goes though the GA again 
starting at step-1, as if it were the newly initialized population. However, the new 
population at generation 𝑁 has the worst guesses from generation 𝑁 − 1 removed and 
new guesses that are formed from the better of the random guesses. The result is that the 
overall fitness of the population has increased. If the “best guess” from the current 
generation is less than 𝜂% improved over the previous generation, the algorithm is 
terminated and the current best guess is chosen as the optimization solution. 
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Figure 4.12 Optimized Fits of the FRET Probability Distribution Functions  
Plots of the FRET Histograms for the four constructs 3`-p(dT)15, 3`-p(dT)14, 5`-p(dT)15, 
and 5`-p(dT)14. The blue lines represent values taken from the single molecule 
experiment. The thinner lines in the histogram are the individual contributions from each 
macrostate that sum to the cumulative simulated histogram (red): the compact macrostate 
(cyan), the intermediate macrostate (magenta), and the extended conformation (green). 
The cumulative simulated FRET distribution was calculated using Eq. (4.3). 
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Figure 4.13 Optimized Fits of the 2nd Order TCFs 
Plots of the two-point TCF for the four constructs 3`-p(dT)15, 3`-p(dT)14, 5`-p(dT)15, and 
5`-p(dT)14. The blue data points represent values derived from the single molecule 
experiments calculated using Eq. (4.6). The red lines are the simulated 2nd order time 
correlation functions calculated using Eq. (4.7). 
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Figure 4.14 Optimized Fits of the 4th Order TCFs 
Plots of the simulated 4th order TCF fit overlaid with the experimental 4th order TCF 
(column 1), the experimental 4th order TCF (column 2), and the simulated 4th order TCF 
(column 3) corresponding to the four p/t DNA constructs 3`-p(dT)15, 3`-p(dT)14, 5`-
p(dT)15, and 5`-p(dT)14 (rows 1-4, respectively). The experimental 4th order TCF was 
calculated using Eq. (4.9), and the simulated 4th order TCF was calculated using Eq. 
(4.10). 
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Figure 4.15 Error Analysis 
In order to calculate the uncertainty of each parameter in the model, we vary the value of 
the parameter by small amounts until the fitness function Eq. (2.20) changes in a 1% 
change. The x-axis is the deviation from the optimized value, and the y-axis is the % 
change in 𝜒K.  
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Figure 4.16 Conditional Probabilities: Solutions of the Transport Master Equation 
The y-axis is the probability that the transition occurs, and the x-axis is the time in 
seconds. The domain is shown logarithmically, so the probability at time 𝑡 = 0 cannot be 
shown on this plot. The three conformational states (compact, intermediate, and 
extended) are numbered states 1-3, in that order. The color of the line indicates the final 
state (solid = compact, dotted = intermediate, dashed = extended). 
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Figure 4.17 ssDNA Free Energy Surface  
A parabolic free energy surface is shown corresponding to the 3`-p(dT)15 construct 
results. The three macrostates are centered over their expected FRET values. The 
minimum of free energy for each macrostate was calculated using Eq. (4.21). 
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Figure 4.18 Principal Component Analysis  
A principal component analysis of the parameters, including FRET values and rate 
constants, revealed that there is no clear pattern differentiating the constructs from one 
another as a function of length or polarity. The first principal component explains 
99.9925 percent of the variability between data sets. 
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Figures for Chapter V 

 

Figure 5.1: Primer/Template DNA Constructs 
The four ssDNA-dsDNA junction constructs differ in length and polarity. Prior to the 
fluorescent label, two of the constructs terminate in a 5`-phosphate group, and the other 
two terminate in a 3`-hydroxyl group. For each polarity, one of the constructs consist of a 
shorter sequence of 14-thymine nucleotides and a longer sequence of 15-nucleotides. The 
acceptor-containing strand is labeled with a biotin molecule to attach to the microscope 
slide. 
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Figure 5.2. Microfluidic Sample Chamber 
The ~50 µL microfluidic chamber with two access ports for adding and flushing solution 
through the imaging chamber. (b) Quartz slides are coated with a biotin-mPEG layer 
using amino-silane chemistry. The Neutravidin is a tetramer which binds both to the 
biotin-mPEG on the slide as well as the biotin-labeled DNA constructs. The evanescent 
field created by total internal reflection at the quartz-water interface will excite the 
fluorescent molecules but not penetrate through the glass coverslip. 
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Figure 5.3 Single-Molecule Instrumentation  
The microsecond resolved smFRET optical set up can be thought of as four basic parts: 
1) the excitation source, 2) the interaction at the sample, 3) the redirection of fluorescence 
from the molecules to the detectors, and 4) the transfer of a stream of photons into an 
electronic representation of the signal versus time. Each part has several underlying 
components shown in this figure. 
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Figure 5.4 Experimental 2nd Order Time Correlation Functions 
The time correlation functions are constructed from experimental single molecule FRET 
data. The y-axis is the normalized 2nd-order TCF, and the x-axis is the time between 
measurements. The plot is calculated using equation 5.10. Each point is the average of 
hundreds of thousands of measurements. 
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Figure 5.5 Exponential fits to 2nd Oder Time Correlation Function 
An exponential fit to the 𝐶(K) revealed that there were processes that effected the 
conformational fluctuations over several orders of magnitude in time. The red line is the 
2nd order time correlation function fit to a sum of five-exponential functions with inverse 
rate constants indicated also in red on the figure. An example fit is shown for the 5'- 
p(dT)15-p/t DNA construct. 
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(B)  

Figure 5.6 Five- and Six-State Models of ssb gp32 Dimer Assembly 
All six states are shown. (A) A network schematic showing rates 𝑘Xb between states 
including a symbol indicating that there is a loop relationship between states-4, -5, and -6 
which fixes one of the rates relative to the others. State-1 and state-2 are the DNA only 
conformations. States-3 and -4 are the 1:1 DNA:gp32 associations (monomer binding), 
and states-5 and -6 are the 1:2 DNA:gp32 interactions (dimer binding). (B) Possible 
microstates within each macrostates. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.7 Optimized Markov Models for each Construct 
Proposed mechanism of gp32 dimer assembly onto a DNA p/t junction for each of the 
four constructs. Each model produced the best cumulative fit to the FRET probability 
distribution, and the 2nd- and 4th order TCFs of the microsecond resolved FRET 
trajectories.  Each state (blue) has a FRET value (red) is reported underneath. All inverse 
rates (black) are given in ms. Panel (a) features the 3'- p(dT)14-p/t DNA construct, (b) the 
5'- p(dT)14-p/t DNA construct, (c) the 3'- p(dT)15-p/t DNA construct, and (d) the 5'- 
p(dT)15-p/t DNA construct. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.8 Optimized Fits to the FRET Probability Distributions 
The equilibrium probability distribution is calculated using Eq. (5.3). (a) features the 3'- 
p(dT)14-p/t DNA construct, (b) the 5'- p(dT)14-p/t DNA construct, (c) the 3'- p(dT)15-p/t 
DNA construct, and (d) the 5'- p(dT)15-p/t DNA construct. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.9 Optimized Fits to the 2nd Order Time Correlation Functions 
The red line is the simulated 2nd order TCF calculated using Eq. (5.8) with the values 
from Table 5.2. Panel (a) features the 3'- p(dT)14-p/t DNA construct, (b) the 5'- p(dT)14-
p/t DNA construct, (c) the 3'- p(dT)15-p/t DNA construct, and (d) the 5'- p(dT)14-p/t DNA 
construct. 
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Figure 5.10 Optimized Fits to 4th Oder Time Correlation Functions  
Rows (a-d) feature the 3'- p(dT)14-p/t DNA construct, the 5'- p(dT)14-p/t DNA construct, 
the 3'- p(dT)15-p/t DNA construct, and the 5'- p(dT)14-p/t DNA construct. Column 1 is the 
overlay of the simulated 𝐶(Q)(𝜏6, 𝜏K, 𝜏O) plotted on top of the 𝐶(Q) constructed from 
measured data. Column-3 is the simulated 𝐶(Q). 
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Figures for Chapter V Supplemental Material 

(a) (b) 

(c) 
 

(d) 

Figure S5.1 Second Best Fits to Each DNA Construct 
As shown the 14-nucleotide constructs had poor agreement with the 6-state loop models, 
and the 15-nucleotide constructs had 2nd best agreement with the 6-state linear models.  
(a) features the 3'- p(dT)14-p/t DNA construct, (b) the 5'- p(dT)14-p/t DNA construct, (c) 
contains the 3'- p(dT)15-p/t DNA construct, and (d) the 5'- p(dT)15-p/t DNA construct. 
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(a) 

 
(b) 

(c) 
 

(d) 

Figure S5.2 Third Best Fits to Each DNA Construct 
As shown, the worst of the best fits for the 15-nucleotide constructs were the 5-state 
models. The 6-state linear model was the worst of the best model for the 14-nucleotide 
constructs. (a) the 3'- p(dT)14-p/t DNA construct, (b) the 5'- p(dT)14-p/t DNA construct, 
(c) the 3'- p(dT)15-p/t DNA construct, and (d) the 5'- p(dT)15-p/t DNA construct. 
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APPENDIX B 

TABLES 

Tables for Chapter III 

Table 3.1. Optimized inverse rate constants for the N = 4 scheme depicted in Fig. 3.1B 
for the 3’-Cy3/Cy5-p(dT)15-p/t DNA under various solution conditions.  
All samples contained 100 mM NaCl, 6 mM MgCl2, and 10 mM Tris at pH 8.0. Fits are 
visualized in Fig. 3.7 of the main text, and Figs. S3.8 – S3.13 of the SI section. All 
inverse rate constants are given in milliseconds. Error bars are based on a 1% deviation 
from the optimized target function, as described in the SI section (see Fig. S3.14).  
 
Sample 
condition 

𝑘8656  𝑘6856 𝑘86l
56  𝑘6l8

56 𝑘66l
56 𝑘6l6

56 𝑘6lK
56 𝑘K6l

56  𝐸6
= 𝐸6l 

0.1 µM 
gp32 

264  
± 13 

19.9 ± 
1.0 

459 ± 
3.0 

66.1 ± 
0.3 

> 
5,500 

> 
5,500 

19.5 ± 
0.2 

36.7 
± 
0.2 

0.67 
± 
0.01 

1.0 µM 
gp32 

30.3 
± 
1.5 

26.8 ± 
1.4 

47.7 ± 
0.4 

111 ± 
1.0 

> 
1,000 

> 
1,000 

16.7 ± 
0.6 

36.0 
± 
0.5 

0.68 
± 
0.01 

0.1 µM 
gp32 + 
1.0 µM 
LAST 

160 
± 
7.0 

14.0 ± 
0.7 

1,200 
± 14 

92.3 ± 
1.0 

> 
1,000 

> 
1,000 

26.6 ± 
0.4 

23.2 
± 
0.3 

0.69 
± 
0.01 

 
Tables for Chapter III Supporting Information 

Table S3.1. Nucleotide base sequence and nomenclature for the p/t DNA construct 
used in these studies. 

DNA 
construct 

Nucleotide base sequence 

3'-Cy3/Cy5-
p(dT)15-p/t 
DNA 

             
             5'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTTT/Cy3/-3’ 
3’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-5’ 
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Table S3.2. Time constants and amplitudes from bi-exponential fits to experimental 
2nd-order TCFs for 3’-Cy3/Cy5-p(dT)15-p/t DNA under various solution conditions.  
All samples contained 100 mM NaCl, 6 mM MgCl2, and 10 mM Tris at pH 8.0. Fits are 
visualized in Fig. 3.3. Time constants are accurate to within ± 0.1 msec. 

Sample 
condition 

𝜏ÅÆÇ� (msec) 𝜏ÇtÈÉ (msec) 𝐴ÅÆÇ� 𝐴ÇtÈÉ 𝑅K 

0.1 µM gp32 
 

18.4 
 

158 
 

0.146 
             

0.854 

 

 
0.999 

1.0 µM gp32 

 

13.9 
 

 

94.2 

 

0.531 0.469 

 

0.998 

µM gp32 

+ 1.0 µM LAST 

 

24.3 
 

 

184 

 

0.646 0.354 

 

0.995 

 
Table S3.3. Optimized inverse rate constants for the N = 3 scheme depicted in Fig. 
3.1A for the 3’-Cy3/Cy5-p(dT)15-p/t DNA under various solution conditions. All 
samples contained 100 mM NaCl, 6 mM MgCl2, and 10 mM Tris at pH 8.0. All inverse 
rate constants are given in milliseconds.  

Sample 
conditio

n 

𝑘8656 𝑘6856 𝑘6K56 𝑘K656 𝑘8K56 𝑘K856 𝐸6 

0.1 µM 
gp32 

 

479 

 

49.1 

 

80.4 

             

95.6 
 

 

10,000 

 

10,000 

 

0.56 

1.0 µM 
gp32 

 
635 

 

 
10,000 

 
22.4 

 
206 

 
97.6 

 
1,414 

 
0.80 

0.1 µM 
gp32 

+ 1.0 µM 
LAST 

 
10,000 

 

 
267 

 
254 

85.9  
1,500 

 
13.5 

 
0.59 
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Table S3.4. Minimized target function values corresponding to the N = 3 and N = 4 fit 
results reported in Table S3.3 and Table 3.1 (main text), respectively. G2 is the first 
term in Eq. (S3.9), G4 is the second term, Geq is the third term, and Gtotal is the sum value. 
The fits are uniformly better for the N = 4 model than for the N = 3 model. 

Sample condition Scheme 𝐺K 𝐺Q 𝐺de  𝐺�È�Æt 

0.1 µM gp32  
N = 3 

N = 4 

 
6.1 

0.3 

 
71.1 

18.3 

 
4.1 

0.1 

 
81.3 

18.7 

1.0 µM gp32  

N = 3 
N = 4 

 

49 
1.5 

 

328 
125 

 

30 
7.8 

 

407 
134 

 

Tables for Chapter IV 

Table 4.1. Nucleotide Base Sequence for the p/t DNA Constructs 
 
DNA 
construct 

Nucleotide base sequence 

3'-Cy3/Cy5-
p(dT)15-p/t 
DNA 

             
            5'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTTT/Cy3/-3’ 
3’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-5’ 
 
 

3'-Cy3/Cy5-
p(dT)14-p/t 
DNA 

             
             5'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTT/Cy3/-3’ 
3’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-5’ 
 

5'-Cy3/Cy5-
p(dT)15-p/t 
DNA 

             
              3'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTTT/Cy3/-5’ 
5’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-3’ 
 

5'-Cy3/Cy5-
p(dT)14-p/t 
DNA 

             
             3'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTT/Cy3/-5’ 
5’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-3’ 
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Table 4.2 Time Constants of Photophysical Decays in 2nd Order TCF 
The first 20 µs of the autocorrelation function for each construct exhibited a single 
exponential decay all around 3 µs which we interpret to be a result of photophysical 
processes of the chromophores. The blue dots are the data points calculated with Eq. 4.9, 
and the fit is calculated with 𝐶̅(K)(𝜏) = ∑ 𝐴X𝑒5𝝀𝒊p�X . 
 

Construct t6 (µs) 

3Êp(dT)6À 2.9	 ± 	0.45 

3Êp(dT)6Q 2.7	 ± 	0.35 

5Êp(dT)6À 3.2	 ± 	0.51 

5Êp(dT)6Q 3.0	 ± 	0.50 

 
Table 4.3 Optimized Inverse Rate Constants and FRET values  
The first four rows are the values of the best-fit parameters from the four constructs using 
the cyclical model. The values in the last two rows are the mean and standard deviation 
of the values across all four constructs. The values displayed in columns 2-7 are the 
inverse rate constants 𝑡Xb = 𝑘Xb56, i.e. the time to go from state-𝑖 to state-𝑗. The values in 
the final three columns, 𝐸X, are the FRET value associated with state-𝑖.  
DNA 

Sample 

𝒕𝟏𝟐	 

(ms) 

𝒕𝟐𝟏	 

(ms) 

𝒕𝟐𝟑	 

(ms) 

𝒕𝟑𝟐	 

(ms) 

𝒕𝟏𝟑  

(ms) 

𝒕𝟑𝟏 

(ms) 

𝑬𝟏 𝑬𝟐 𝑬𝟑 

3Ê𝑝(𝑑𝑇)6À 0.113 0.025 4.826 0.358 113.816 1.851 0.752 0.495 0.203 

3Ê𝑝(𝑑𝑇)6Q 0.264 0.020 4.973 0.609 167.516 1.552 0.718 0.312 0.199 

5Ê𝑝(𝑑𝑇)6À 0.154 0.020 6.807 0.289 326.802 1.798 0.696 0.377 0.088 

5Ê𝑝(𝑑𝑇)6Q 0.097 0.027 7.231 0.310 169.599 2.000 0.764 0.490 0.246 

Mean 0.157 0.023 5.959 0.391 194.433 1.800 0.733 0.418 0.184 

𝜎 0.075 0.003 1.237 0.148 91.945 0.186 0.031 0.090 0.067 
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Tables for Chapter V 

Table 5.1. Nucleotide Base Sequence of The Four DNA Constructs 
DNA 

construct 
Nucleotide base sequence 

3'-Cy3/Cy5-
p(dT)15-p/t 
DNA 

             
             5'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTTT/Cy3/-3’ 
3’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-5’ 
 

3'-Cy3/Cy5-
p(dT)14-p/t 
DNA 

             
             5'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTT/Cy3/-3’ 
3’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-5’ 
 

5'-Cy3/Cy5-
p(dT)15-p/t 
DNA 

             
             3'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTTT/Cy3/-5’ 
5’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-3’ 
 

5'-Cy3/Cy5-
p(dT)14-p/t 
DNA 

             
             3'-GTCGCCAGCCTCGCAGCCTTTTTTTTTTTTTT/Cy3/-5’ 
5’-/biotin/CAGCGGTCGGAGCGTCGG-Cy5/-3’ 
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Table 5.2 Optimized inverse rate constants for the N = 5 and N= 6 scheme depicted in 
Fig. 5.4 and Fig. 5.5 for the 4 p/t DNA constructs. 
All samples contained 100 mM NaCl, 6 mM MgCl2, and 10 mM Tris at pH 8.0. Fits are 
visualized in Figure 5.6 – 5.10. All inverse rate constants are given in milliseconds.  
 
Sample 

Condition 

3’-p(dT)15-p/t 

DNA + 

0.5 µM gp32 

5’-p(dT)15-p/t 

DNA + 

0.5 µM gp32 

3’-p(dT)14-p/t 

DNA + 

0.5 µM gp32 

5’-p(dT)14-p/t 

DNA + 

0.5 µM gp32 

𝜏6K 0.121 0.047 0.061 0.185 

𝜏K6 0.054 0.045 0.037 0.058 

𝜏KO 13.107 4.952 114.908 2.821 

𝜏KQ 73.257 205.761 47.616 57.396 

𝜏OK 23.798 0.281 68.716 0.956 

𝜏QK 29.900 10.294 74.918 58.269 

𝜏QÀ 14.773 29.573 6.095 59.321 

𝜏Q3 20.810 29.570 — — 

𝜏ÀQ 31.036 96.728 0.550 19.334 

𝜏À3 2.268 74.153 — — 

𝜏3Q 7.816 1.674 — — 

𝜏3À 0.405 1.284 — — 

A1 0.632 0.739 0.657 0.682 

A2 0.362 0.469 0.353 0.364 

A3 0.513 0.234 0.349 0.430 

A4 0.403 0.610 0.507 0.503 

A5 0.402 0.303 0.101 0.330 

A6 0.075 0.192 — — 
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APPENDIX C 

Supplemental Material 

Chapter II 

Appendix 2.1 Analytical Expression for N = 3 System 

The general solution to Eq. (13) is  

𝒑(𝑡) = 𝒑de + 𝑐6𝒗6𝑒5��� + 𝑐K𝒗K𝑒5�q�,      N = 3 (A2.1) 

where the eigenvalues are given by 𝜆6 = 𝑎 + 𝑏 and 𝜆K = 𝑎 − 𝑏 with 𝑎 = 6
K
(𝑘86 + 𝑘68 +

𝑘6K + 𝑘K6 + 𝑘8K + 𝑘K8) and 𝑏 = 6
K
[(𝑘86−𝑘6K)K + (𝑘8K − 𝑘K6)K + (𝑘68 − 𝑘K8)K +

2𝑘86(𝑘8K + 𝑘68 − 𝑘K8 − 𝑘K6) + 2𝑘8K(𝑘K8 − 𝑘68 − 𝑘6K) + 2𝑘6K(𝑘68 − 𝑘K8 + 𝑘K6) −

2𝑘68𝑘K6 + 2𝑘K8𝑘K6]
�
q, and the eigenvectors are given by 𝒗6 = [𝑣68, 𝑣66, 𝑣6K] and 𝒗K =

[𝑣K8, 𝑣K6, 𝑣KK] with 𝑣68 = (𝑘6K + 𝑘K8 + 𝑘K6 − 𝑎 − 𝑏) (𝑘8K − 𝑘6K)⁄ , 𝑣66 =

(𝑎 + 𝑏 − 𝑘8K − 𝑘K8 − 𝑘K6) (𝑘8K − 𝑘6K)⁄ , 𝑣K8 = (𝑘6K + 𝑘K8 + 𝑘K6 − 𝑎 + 𝑏) (𝑘8K − 𝑘6K)⁄ , 

𝑣K6 = (𝑎 − 𝑏 − 𝑘8K − 𝑘K8 − 𝑘K6) (𝑘8K − 𝑘6K)⁄ , and 𝑣6K = 𝑣KK = 1.  

To satisfy detailed balance, one rate constant must depend on the others, such that 

𝑘K8 = 𝑘8K𝑘K6𝑘68 𝑘6K𝑘86⁄ . The equilibrium populations 𝒑de = i𝑝8
de, 𝑝6

de, 𝑝K
dej are found by 

solving Eq. (13) with the boundary condition 𝒑̇(𝑡) = 0. These solutions must also satisfy 

completeness: ∑ 𝑝XK
Xg8 (𝑡) = 1. This gives 𝑝8

de = {1 + [(𝑘86 + 𝑘8K) 𝑘68⁄ ] +

[(1 − 𝑘K8) 𝑘68⁄ ] ∙ (𝑘68 + 𝑘6K)(𝑘86 + 𝑘8K)−𝑘86𝑘68 [(𝑘68 + 𝑘6K)𝑘K8 + 𝑘K6𝑘68]⁄ }56, 

𝑝K
de = 𝑝8

de ∙ [(𝑘68 + 𝑘6K)(𝑘86 + 𝑘8K) − 𝑘86𝑘68] ∙ [(𝑘68 + 𝑘6K)𝑘K8 + 𝑘K6𝑘68]56, and 

𝑝6
de = 𝑘6856 ∙ i𝑝8

de(𝑘86 + 𝑘8K) − 𝑝K
de𝑘K8j. 

To determine the nine conditional probabilities 𝑝bX(𝜏) with 𝑖, 𝑗 ∈ {0,1,2}, we solve 

Eq. (A2.1) for the expansion coefficients 𝑐6 and 𝑐K, while assuming the appropriate 

boundary conditions. We label each expansion coefficient with a superscript to indicate the 

boundary condition. For example, the expansion coefficient 𝑐68 corresponds to the case 

when all population resides in state-0 at time zero, i.e. 𝑝8(0) = 1 and 𝑝6(0) = 𝑝K(0) = 0. 

This leads to the following expressions for the expansion coefficients:	𝑐K8 = (𝑣68𝑣K6 −

𝑣66𝑣K8)56i𝑣66𝑝8
de − 𝑣68𝑝6

de − 𝑣66j, 	𝑐K6 = (𝑣68𝑣K6 − 𝑣66𝑣K8)56i𝑣68 − 𝑣68𝑝6
de + 𝑣66𝑝8

dej, 𝑐KK =



 

 

149 

(𝑣68𝑣K6 − 𝑣66𝑣K8)56i𝑣66𝑝8
de − 𝑣68𝑝6

dej,  𝑐68 = (𝑣68)56i1 − 𝑝8
de − 𝑐K8𝑣K8j, 𝑐66 = (𝑣68)56i−𝑝8

de −

𝑐K6𝑣K8j, and 𝑐6K = (𝑣68)56i−𝑝8
de − 𝑐KK𝑣K8j. Upon substitution of these into Eq (A2.1), we 

obtain the conditional probabilities described by Eq. (15) of the text.  

 

Appendix 2.2 Analytical Description of Time-Dependent Transition Density Plots 

(TDPs) 

Consider an N-state Markov system at equilibrium for which stochastic transitions may 

occur from state-𝑖 to state-𝑗. At any instant in time, the probability to observe the system 

in state-𝑖 is given by the rate expression 

𝑝̇X = −𝑘Xb𝑝X,       (A2.2) 

which decays according to the general solution 

𝑝X(𝑡) = 𝐴𝑒5u�±�,      (A2.3) 

where A is an integration constant. The elements of the time-dependent TDP are described 

by the probabilities that a transition occurs from state-𝑖 to state-𝑗 within a time interval 𝜏. 

By integrating Eq. (A3) over this time interval, we obtain: 

𝑝Xb(𝜏) = 𝐴 ∫ 𝑒5u�±�𝑑𝑡p
8 = A

u�±
®1 − 𝑒5u�±p°.      (A2.4) 

In the limit of very long times (𝜏 → ∞), we expect the transition probability 𝑝Xb(𝜏 → ∞) to 

depend on the equilibrium probability that the system resides in state-𝑖, according to 

𝑝Xb(𝜏 → ∞) = 𝑘Xb	𝑝X
de . Taking the long-time limit of Eq. (A2.4), we obtain 𝑝Xb(𝜏 → ∞) =

𝐴 𝑘Xb⁄ . Solving for 𝐴, and substitution into Eq. (A2.4) gives the expression for the elements 

of the time-dependent TDP: 

𝑝Xb(𝜏) = 𝑘Xb	𝑝X
de®1 − 𝑒5u�±p°.      (A2.5) 

Chapter III 

I. Calculation of 2nd- and 4th-order TCFs using the Theory of Markov Chains 

Both 2nd- and 4th-order TCFs can be modeled using the theory of Markov chains1. 

These expressions are given by  
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𝐶̅(K)(𝜏) = a 𝛿𝐸b𝑝bX(𝜏)𝛿𝐸X𝑝X
de

f56

X,bg8

 
(S3.1) 

and  

〈𝛿𝐸&'()(0)𝛿𝐸&'()(𝜏6)𝛿𝐸&'()(𝜏K)𝛿𝐸&'()(𝜏O)〉 

= a 𝛿𝐸t𝑝tu(𝜏O)𝛿𝐸u𝑝ub(𝜏K)𝛿𝐸b𝑝bX(𝜏6)𝛿𝐸X𝑝X
de

f56

X,b,u,tg8

 

(S3.2) 

In Eqs. (S3.1) and (S3.2), 𝑝X
de  is the equilibrium (time-independent) probability to 

observe the system in the ith state, 𝛿𝐸X is the value of the fluctuation observable associated 

with that state, and 𝑝bX(𝜏) is the conditional probability that the system will be in the jth 

state at a time interval 𝜏 after it was initially observed to be in the ith state. The conditional 

probabilities are the solutions to the memory-less Master equation that governs the kinetics 

of a network of N chemical species, which are interconnected by elementary reactions 

according to a well-defined scheme, such as those depicted in Figs. 3.1A and 3.1B of the 

main text.  

𝒑̇(𝑡) = 𝑲𝒑(𝑡) ≡ z

𝑝̇8
𝑝̇6
⋮

𝑝̇f56

| 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−a 𝑘8,X

f56

Xg8

𝑘6,8 … 𝑘f56,8

𝑘8,6 −a 𝑘6,X

f56

Xg8

⋱ ⋮

⋮ ⋱ ⋱ 𝑘f56,f5K

𝑘8,f56 … 𝑘f5K,f56 −a 𝑘f56,X

f56

Xg8 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

z

𝑝8
𝑝6
⋮

𝑝f56

| 

 

 

(S3.3) 

In Eq. (S3.3), 𝒑(𝑡) is an N-dimensional vector containing the probabilities to find the 

system in each of its N states at time t, and 𝑲 is the N×N rate matrix, with elements 𝑘Xb 

associated with the transitions from state-𝑖 to state-𝑗. The choice of the rate constants 𝑘Xb 

used in Eq. (S3.3) must satisfy continuity and detailed balance conditions, as discussed in2. 
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 For our calculations based on the N = 3 scheme depicted in Fig. 3.1A, Eq. (S3.3) 

has the form 

�
𝑝̇8
𝑝̇6
𝑝̇K
� = >

−𝑘8,6 − 𝑘8,K 𝑘6,8 𝑘K,8
𝑘8,6 −𝑘6,8 − 𝑘6,K 𝑘K,6
𝑘8,K 𝑘6,K −𝑘K,8 − 𝑘K,6

? �
𝑝8
𝑝6
𝑝K
� 

(S3.4) 

 

In Eq. (S3.4), we have allowed for the hypothetical transition between state-0 and state-2, 

which would require the binding of appropriately preformed gp32 dimers directly from 

solution. Although this does not occur in the real system, we have included the possibility 

in our modeling to provide generality.  

 For our calculations based on the N = 4 scheme shown in Fig. 3.1B, Eq. (S3.3) has 

the form 

z

𝑝̇8
𝑝̇6
𝑝̇6’
𝑝̇K

| =

⎣
⎢
⎢
⎡
−𝑘8,6 − 𝑘8,6’ 𝑘6,8 𝑘6’,8 0

𝑘8,6 −𝑘6,8 − 𝑘6,6’ 𝑘6’,6 0
𝑘8,6’ 𝑘6,6’ −𝑘6’,8 − 𝑘6’,6 − 𝑘6’,K 𝑘K,6’
0 0 𝑘6’,K −𝑘K,6’⎦

⎥
⎥
⎤
z

𝑝8
𝑝6
𝑝6’
𝑝K

| 

(S3.5) 

We note that the structure of the rate matrix in Eq. (S3.5) satisfies continuity and detailed 

balance conditions as required by the connectivity of the states depicted in Fig. 3.1B.  

Using Eqs. (S3.1) – (S3.2), it is straightforward to show that the 2nd- and 4th-order 

TCFs have functional forms given by, respectively 

𝐶̅(K)(𝜏) = 𝒜6𝑒5��p + 𝒜K𝑒5�qp + …+𝒜f56𝑒5����p  (S3.6) 

and  

𝐶̅(Q)(𝜏6, 𝜏O)⌉pq	����� = 

𝒜6,6(𝜏K)𝑒5��(p�>p�) +𝒜6,K(𝜏K)𝑒5��p�5�qp� +⋯+𝒜6,f56(𝜏K)𝑒5��p�5����p� + 

𝒜K,6(𝜏K)𝑒5�qp�5��p� +𝒜K,K(𝜏K)𝑒5�q(p�>p�) + ⋯+𝒜K,f56(𝜏K)𝑒5�qp�5����p� + 

⋮ 

𝒜f56,6(𝜏K)𝑒5����p�5��p� +𝒜f56,K(𝜏K)𝑒5����p�5�qp� + ⋯+𝒜f56,f56(𝜏K)𝑒5����(p�>p�) 

 

(S3.7) 

As discussed in the text, the 2nd-order TCF given by Eq. (S3.6) is composed of N – 1 

exponentially decaying terms, each with characteristic decay rates 𝜆6, 𝜆K, …, 𝜆f56, and 
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amplitudes 𝒜6, 𝒜K, …,𝒜f56. The decay rates and amplitudes are polynomial functions 

of the rate constants 𝑘Xb that connect the elementary chemical steps of the N-state reaction 

scheme.2 The 4th-order TCF given by Eq. (S3.7) is composed of (𝑁 − 1)K terms, each with 

an amplitude 𝒜H,  [𝑛,𝑚 ∈ {1,2, … ,𝑁 − 1}] that depends on the waiting time 𝜏K. For a 

fixed waiting time, the decay of the 4th-order TCF occurs in two dimensions, corresponding 

to the time intervals 𝜏6 and 𝜏O. The characteristic decay rates of the 4th-order TCF are the 

same as those of the 2nd-order TCF. The N – 1 terms with amplitudes 𝒜H,H are ‘diagonal’ 

terms, which each depends on a single decay constant 𝜆H. The terms with amplitudes 𝒜H,  

(with 𝑛 ≠ 𝑚) designate ‘off-diagonal’ coupling terms, which each depends on two decay 

constants, 𝜆H and 𝜆 . For an equilibrium system, the principles of detailed balance require 

that 𝒜H,  = 𝒜 ,H
2. 

II. Calculation of the 2D Rate Spectrum by Inverse Laplace Transform of the 4th-

Order TCF. 

To perform the ILT, we carried out the following algorithm based on the Tikhonov 

regularization method3-5: (i) We created a rate domain test function corresponding to the 

ILT of Eq. (S3.7), which was composed of (N – 1)2 delta functions with fit parameter 

amplitudes 𝒜H,  [𝑛,𝑚 ∈ {1,2,… , 𝑁 − 1}].  

𝐶̅(Q)(𝑘6, 𝑘O)⌉pq	����� = 

𝒜6,6(𝜏K)(𝑘6 − 𝜆6)𝛿(𝑘O − 𝜆6) + 𝒜6,K(𝜏K)𝛿(𝑘6 − 𝜆6)𝛿(𝑘O − 𝜆K) + ⋯

+𝒜6,f56(𝜏K)𝛿(𝑘6 − 𝜆6)𝛿(𝑘O − 𝜆f56) + 

𝒜K,6(𝜏K)𝛿(𝑘6 − 𝜆K)𝛿(𝑘O − 𝜆6) +𝒜K,K(𝜏K)𝛿(𝑘6 − 𝜆K)𝛿(𝑘O − 𝜆K) +⋯

+𝒜K,f56(𝜏K)𝛿(𝑘6 − 𝜆K)𝛿(𝑘O − 𝜆f56) + 

⋮ 

𝒜f56,6(𝜏K)𝛿(𝑘6 − 𝜆f56)𝛿(𝑘O − 𝜆6) +𝒜f56,K(𝜏K)𝛿(𝑘6 − 𝜆f56)𝛿(𝑘O − 𝜆K)

+⋯+𝒜f56,f56(𝜏K)𝛿(𝑘6 − 𝜆f56)𝛿(𝑘O − 𝜆f56) 

(S3.8) 

We fixed the characteristic rates 𝜆6, 𝜆K, …, 𝜆f56, by enforcing the values obtained from 

our fits to the 2nd-order TCFs of the corresponding data sets. (ii) We converted this test 

function to the time domain by multiplying the trial amplitudes by the corresponding 

exponential factors given by Eq. (S3.7). (iii) We computed 𝜒K-difference function between 
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the experimental data and the test function using MATLAB’s optimization routine 

“fmincon.” By re-iterating the above procedure to minimize the 𝜒K-difference function, we 

obtained a set of optimized fit parameters 𝒜H, . 

Of course, the ILT is an ill-conditioned problem when applied to noisy single-

molecule data.3 To ascertain the reliability of our ILT algorithm, we performed a series of 

optimizations to a simulated test function that incorporated various levels of noise (see Fig. 

S3.5). From these control simulations, we concluded that it was possible to achieve robust 

results for noise levels consistent with our data following the procedure described above. 

III. Comment About Single-Molecule FRET Efficiency Values 

In a recent paper (6), our group used single-molecule FRET techniques with 100-ms time 

resolution to investigate gp32 binding to the same 3’-Cy3/Cy5-p(dT)15-p/t DNA substrate 

as that used in the current work. Although the general pattern of high and low 𝐸&'()  values 

corresponding, respectively, to unbound, singly-bound, and doubly-bound states are the 

same for both studies, the specific numerical values of 𝐸&'()  for the two studies are shifted 

by ~0.2. The data reported in reference (6) was measured using a different instrument than 

those reported in the current work. Because the FRET signal 𝐸&'() = 𝐼¾¿À ®𝐼¾¿O + 𝐼¾¿À°⁄  

is based on the ratio of donor and acceptor chromophore fluorescence intensities, 

differences in the donor and acceptor detection efficiencies will result in different 𝐸&'()  

values between the two instruments. In the current work, the acceptor Cy5 detection 

efficiency is significantly higher than that of the instrument used in reference (6), such that 

the 𝐸&'()  values are shifted.  

IV. Multi-Dimensional Parameter Optimization Procedure 

To efficiently explore the space of input parameters used to calculate histograms of 

𝐸&'()  values, 2nd-order TCFs, and 4th-order TCFs, we implemented an automated 

computer optimization procedure. This procedure used a genetic algorithm to search for 

global solutions (7), and commercial software (KNITRO) (8, 9) to refine those solutions. 

The genetic algorithm implemented a series of random guesses for the input parameters, 

which were subsequently refined by mixing the parameters from a family of the most 

successful trials. We repeated the above process until further refinements did not improve 
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the results. We then entered the results of the genetic algorithm into the KNITRO software, 

which made additional adjustments to the fit parameters to achieve a globally optimized 

solution. We implemented several hundred genetic algorithm searches to produce ~1,000 

initial parameter guesses, which were each optimized using the KNITRO software to obtain 

the best-fit solutions to the specific model. 

To quantify the goodness-of-fit of a given trial, we defined a ‘target function’ Gtotal 

as the weighted sum of chi-square differences, 𝜒KK and 𝜒QK, between experimentally- and 

theoretically-derived 2nd- and 4th-order TCFs, respectively.  

𝐺�È�Æt =a𝑤K(𝜏X)𝜒KK(𝜏X)
 

Xg6

+aAa𝑤Q	®𝜏6,X, 𝜏O,b, 𝜏K,u°𝜒QK®𝜏6,X, 𝜏O,b°i𝜏K,uj
 , 

X,b

B
á

u

+ 𝑤dea𝐸X	𝑝X
de

f

Xg6

 

(S3.9) 

The optimization described above corresponds to the minimization of Gtotal with respect to 

the input parameters. The first term of Eq. (S3.9) is a weighted sum, with weighting 

function 𝑤K(𝜏X), of the chi-squared differences 𝜒KK(𝜏X) over the 𝑚 incrementally sampled 

time intervals 𝜏X (𝑖 = 1,2, … ,𝑚). Similarly, the second term of Eq. (S3.9) is a two-

dimensional weighted sum of the chi-square differences 𝜒QK®𝜏6,X , 𝜏O,b° over the 𝑚 ×𝑚 

incrementally sampled intervals 𝜏6,X and 𝜏O,b , with weighting function 𝑤Q	®𝜏6,X , 𝜏O,b, 𝜏K,u°. 

An additional weighted sum of 𝜒QK®𝜏6,X, 𝜏O,b°i𝜏K,uj was carried out over the 𝑝 sampled time 

intervals 𝜏K,u . Finally, the third term of Eq. (S3.9) is the weighted contribution, with 

weighting factor 𝑤de , due to the equilibrium distribution of states. We found that consistent 

and robust results could be achieved using weighting functions 𝑤K and 𝑤Q inversely 

proportional to time such that the short timescale components of the TCFs received nearly 

equal weight as the longer timescale components. The scaling factor was adjusted so that 

each contributing function influenced the fitting algorithm to a similar extent. For the 

calculations presented in this work, we therefore used the weighting functions 𝑤K(𝜏X) =

30,000/𝜏X, 𝑤Q	®𝜏6,X , 𝜏O,b, 𝜏K,u° = 1,000/®𝜏6,X ∙ 𝜏K,u°, and 𝑤de = 10. 
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Chapter IV 

1. Derivation of the Solution to the Transport Master Equation 

To solve the transport master equation (Eq. 4.11) we first construct a square, invertible 

matrix, which we call the modal matrix, 𝑈, by combining the 𝑁, 𝑁 × 1 eigenvector of 𝐾 

into a 𝑁 × 𝑁 matrix of column vectors 

𝑈 = (	𝒗,,⃗ 𝟏|	𝒗,,⃗ 𝟐|	… 	|	𝒗,,⃗ 𝑵) 

=	

⎝

⎛
𝑣66 𝑣K6

𝑣6K 𝑣KK
⋯ 𝑣f6

𝑣fK
⋮ ⋱ ⋮

𝑣6f 𝑣Kf ⋯ 𝑣ff⎠

⎞	.     (A4.1) 

The modal matrix is the similarity transform that diagonalizes the rate matrix,  

Λ = 𝑈56	𝐾	𝑈        (A4.2) 

where Λ is the diagonal matrix of the eigenvalues of 𝐾.  

Λ = D

𝜆6 0
0 𝜆K

⋯ 0
0

⋮ ⋱ ⋮
0 0 ⋯ 𝜆E

F    (A4.3) 

The opposite similarity transform allows us to write the rate matrix in the eigen-basis. To 

show this is true, we left-multiply both sides of Eq. A4.2 by 𝑈, then right-multiply both 

sides by 𝑈56, giving 𝑈Λ𝑈56 = 𝑈𝑈56	𝐾	𝑈𝑈56 . Using the identity   

𝑈56	𝑈	 = 𝑈	𝑈56 = 1     (A4.4) 

we arrive at Eq. A4.5 

𝐾 = 𝑈		Λ	𝑈56.       (A4.5) 

Since we are solving a first order ordinary differential equation, the solution to the 

transport master equation should have exponential time dependence, as shown in Eq. 

4.15. Next, we will build a matrix with the proper time dependence using similarity 

transforms. Note that the relations to transform between 𝐾 and Λ, would be unchanged by 

multiplication by a variable t, giving 

𝛬	𝑡 = 𝑈56	(	𝐾	𝑡	)	𝑈			     (A4.6a) 

𝐾	𝑡 = 𝑈56	(	𝛬	𝑡	)	𝑈			     (A.6b) 

Using the identity  𝑈56	𝑈	 = 𝑈	𝑈56 = 1 and Eq. A4.2 we also find the following relation 

for transforming powers of these matrices 
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ΛH = 	𝑈		𝐾H	𝑈56.      (A4.7) 

Then if we take the exponential of the 𝐾-matrix multiplied by 𝑡, we get 𝑒H	�. Now we 

calculate the similarity transform of this expression by expanding the exponential as a 

sum. 

𝑈	𝑒H	�	𝑈56 = 𝑈	∑ (H	�)ù

H!
\
Hg8 	𝑈56    (A4.8a) 

=	∑ 	J	(H	�)ù	J��

H!
\
Hg8 	     (A4.8b) 

Using Eqs. A.6 and A.7, we simplify this similarity transform, giving 

= a
(Λ	𝑡)H

𝑛!

\

Hg8

= 	 𝑒ø	¹ 

which is the diagonal matrix of exponential time dependence containing all the 

eigenvalues of our rate matrix 

𝑒	ø	� = D
𝑒��� 0
0 𝑒�q�

⋯ 0
0

⋮ ⋱ ⋮
0 0 ⋯ 𝑒���

F.     (A4.9) 

Now, we use this expression to calculate the matrix of conditional probabilities by  

𝑃(𝑡) = 𝑈	𝑒ø	�	𝑈56	𝑃8       (A4.10) 

where 𝑃8 is the identity matrix accounting for all possible initial conditions, and 𝑈 is the 

modal matrix. When expanded this becomes 

𝑃(𝑡) = 	

⎝

⎛
𝑣66 𝑣K6

𝑣6K 𝑣KK
⋯ 𝑣f6

𝑣fK
⋮ ⋱ ⋮

𝑣6f 𝑣Kf ⋯ 𝑣ff⎠

⎞	D
𝑒��� 0
0 𝑒�q�

⋯ 0
0

⋮ ⋱ ⋮
0 0 ⋯ 𝑒���

F

⎝

⎛
𝑣66 𝑣K6

𝑣6K 𝑣KK
⋯ 𝑣f6

𝑣fK
⋮ ⋱ ⋮

𝑣6f 𝑣Kf ⋯ 𝑣ff⎠

⎞

56

ú
1 0
0 1 ⋯ 0

0
⋮ ⋱ ⋮

0 0 ⋯ 1

û 

. (A4.11) 

This product (Eq. A4.10) gives a matrix of conditional probabilities, 𝑃(𝑡), in which of the 

corresponds to a conditional probability, 𝑝bX(𝜏) (Eq. 4.15): 𝑝bX(𝑡) = 𝑝b
de + 𝑐KX𝑣K

b𝑒�q� +

⋯+ 𝑐fX 𝑣f
b 𝑒���. The expansion coefficients, 𝑐bX, are equal to the product 𝑈56	𝑃8. They are 

the terms which correspond to the boundary conditions of the transport master equation, 

Eq. 4.11. In Markov state formalism, the matrix of conditional probabilities evaluated at a 

certain time lag is often referred to as the stochastic matrix or transition matrix. 
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2. Exponential Form of the Time Correlation Function  

For our three-state system, we can use the 𝑃(𝑡) solution to Eq. 4.15 to write the two-

point correlation function in a form equivalent to Eq. 4.2 but grouping terms by common 

exponential factors, giving 

𝐶̅(K)(𝜏) = 𝒜6𝑒��p + 𝒜K𝑒�qp,     (A.12) 

or expanded more generally for 𝑁 states, as 

𝐶̅(K)(𝜏) = ∑ 𝒜H𝑒�ùpf56
Hg6 .     (A.13) 

where 𝒜H = ∑ 𝛿𝐸b𝑣H
b𝑐HX 𝛿𝐸X𝑝X

def56
X,bg6 . This form explicitly shows that the structure of 𝐶̅(K) 

is a sum of exponentials. A similar analysis can be done for the four-point time 

correlation functions. Since we are using the difference time correlation functions, 

subtracting off the average value of the observable cancels with the overall constant term 

that results from one eigenvalue being zero. Thus leaving 𝑁 − 1 exponential decays for a 

system with 𝑁 states. From this, we expect the two-point correlation function to have two 

exponential decays for a three-state model.  
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