
THE SECOND LAW IN QUANTUM PURE STATE THERMODYNAMICS:

MAKING HEAT FLOW FROM COLD TO HOT

& OTHER INTERESTING THINGS

by

PHILLIP CHARLES LOTSHAW

A DISSERTATION

Presented to the Department of Chemistry and Biochemistry
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2020



DISSERTATION APPROVAL PAGE

Student: Phillip Charles Lotshaw

Title: The Second Law in Quantum Pure State Thermodynamics: Making Heat Flow
from Cold to Hot & Other Interesting Things

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Chemistry
and Biochemistry by:

Andrew Marcus Chair
Michael Kellman Advisor
Marina Guenza Core Member
Daniel Steck Institutional Representative

and

Kate Mondloch Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2020

ii



c© 2020 Phillip Charles Lotshaw
This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs (United States) License.

iii



DISSERTATION ABSTRACT

Phillip Charles Lotshaw

Doctor of Philosophy

Department of Chemistry and Biochemistry

June 2020

Title: The Second Law in Quantum Pure State Thermodynamics: Making Heat Flow
from Cold to Hot & Other Interesting Things

Recent theoretical and experimental work on the foundations of statistical

mechanics and thermodynamics has shown that quantum pure states typically evolve

to thermal equilibrium. We focus on formulating the second law of thermodynamics

for these states. The standard quantum von Neumann quantum entropy is constant

during equilibration, SvN = 0, in apparent conflict with the entropy increase of the

second law, ∆Suniv > 0. We explore a recently developed entropy SQuniv for a pure

state and test its behavior in simulations of a model system and environment evolving

in time with heat flow to equilibrium. We find that the entropy approaches the correct

classical value in a type of classical limit with weak coupling. With stronger coupling,

we find a new source of quantum “excess entropy production,” which has its origin

in the quantum spreading of the wavepacket. Are there quantum thermodynamic

effects related to this new source of entropy? To test this, we developed a model

for a small variable temperature quantum oscillator bath. We performed simulations

where two small baths are linked by a system, with unequal couplings to the baths.

The model evolves to a novel type of equilibrium state with unequal temperatures in
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the baths, with heat flow from cold to hot along the path to equilibrium. We give an

account of this behavior in terms of the second law with the quantum entropy SQuniv.

The new formulation of the second law thus appears well-founded and fruitful, with

surprising new quantum thermodynamic effects that may still be awaiting discovery,

for example in molecules or systems far from equilibrium.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Much contemporary research has focused on the idea that thermodynamics and

statistical mechanics can be understood as a result of entanglement between a system

and environment that are collectively in a quantum pure state. However, it has

not been entirely clear how to formulate the second law of thermodynamics in

this context: the quantum von Neumann entropy SvN of the pure state is zero, in

conflict with the second law ∆Suniv > 0. My work explores a recently developed

“quantum entropy of the universe” SQuniv to formulate the second law for a

system-environment pure state [1–3]. The system-environment pure state is taken as

an isolated total system or “universe” in formulating the second law, but this is not

meant as a model for the actual cosmological universe. The second law with SQuniv gives

a unified account of classical thermodynamics along with new specifically quantum

thermodynamic effects related to finite size and strong coupling, with a new source

of quantum “excess entropy production” that can be much greater than the

classical entropy production for certain states. This culminates in the discovery of a

system of two small quantum baths that evolves to a novel equilibrium state with

different temperatures in the baths, with heat flow from cold to hot along

the path to equilibrium [4, 5]. SQuniv is maximized in the asymmetric temperature

equilibrium, in accord with the second law, with excess entropy production playing a

pivotal role. The new formulation of the second law contributes to the larger field of

contemporary work on quantum thermodynamics [6–38] and points the way to future

studies of novel quantum thermodynamic effects related to excess entropy production.
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Modern research into quantum “typicality” [11–18] and the eigenstate

thermalization hypothesis [19–27] has begun to formulate a new theoretical quantum

foundation of statistical mechanics and thermodynamics that begins with a

quantum system-environment pure state which evolves in time with entanglement to

thermal equilibrium. The claim of these approaches is that pure state thermalization

behavior should be expected in “typical” situations with sufficiently complex

dynamics and that this is the fundamental reason we observe thermodynamic behavior

in the real world. To give a full account of quantum thermodynamic behavior it is

necessary to formulate the second law of thermodynamics for a pure state evolving

in time, including its relation to classical thermodynamics and potentially new types

of quantum thermodynamic behavior.

In classical thermodynamics, the second law is a very important universal

statement about what types of physical processes are possible: apart from transient

fluctuations, all real processes increase the entropy of the universe until it reaches a

maximum at equilibrium,

∆Suniv > 0. (1.1)

This poses a problem in quantum thermodynamics. The standard quantum von

Neumann entropy has the constant value of zero for a pure state of an isolated system

and environment; it cannot increase in accord with the second law. To address this

problem I will explore a recently developed [1] quantum pure state entropy SQuniv

to formulate the second law.

I am concerned with three goals in formulating the second law with SQuniv. The

first goal is to demonstrate that SQuniv obtains the correct classical limit and to

explore its behavior outside this limit. The second goal is to look for new types of

2



quantum thermodynamic effects associated with small size and strong coupling,

both of which are important aspects of quantum systems that aren’t considered

in classical statistical mechanics and thermodynamics. The third goal is to give a

second-law account of new quantum effects in terms of SQuniv.

The first step therefore is to test the behavior of SQuniv in comparison with

the classical thermodynamic entropy. SQuniv was defined in Ref. [1] and tested in

simulations with a simple but somewhat crude model. I improve on the work of Ref. [1]

by devising a much more realistic model for a pure state of a system and environment

in a heat flow process. For this process ∆SQuniv approaches the classical entropy

change in a type of classical limit with a large bath and weak coupling. Stronger

coupling gives “excess quantum entropy production” ∆Sx > 0 from quantum

spreading of the wavepacket, with ∆SQuniv greater than expected from classical heat

flow alone. Thus SQuniv obtains the correct classical limit, while outside this limit there

is excess entropy production ∆Sx in quantum time evolution. This fulfills the first

goal outlined above.

The next step is to study new types of quantum thermodynamic behavior

in pure states with quantum properties that differ from what’s assumed in classical

thermodynamics: First, small size quantum environments have a non-standard,

size-dependent temperature-energy relationship. Second, and perhaps most

interesting, finite size and strong coupling combine in a system of two asymmetrically

coupled small quantum baths that evolves in time to a classically forbidden type of

equilibrium state with different temperatures in the baths, with heat flow from cold

to hot along the path to equilibrium. Thus quantum properties are associated with

new types of quantum thermodynamic behavior, fulfilling the second goal outlined

above.
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The final step is to give a second-law account of the novel quantum

thermodynamic behavior. I find that SQuniv is maximized at the asymmetric

temperature equilibrium, very unlike the classical Suniv, with ∆Sx playing a pivotal

role. Thus the third goal is fulfilled, showing SQuniv gives a second-law account

of novel quantum thermodynamic behavior.

I briefly comment at the end on some ideas for what might come next from

SQuniv in the second law. This includes ideas for experimental studies of the

theoretical effects studied in this dissertation, ideas for different new types of

quantum thermodynamic effects, and for studies of non-thermal behavior. It

seems hopeful that there are more novel effects to discover, with significance for the

foundations of thermodynamics and potential technological applications.

This dissertation is organized as follows: Chapter II gives background

information on classical and pure state quantum thermodynamics and statistical

mechanics, leading to the definition of the quantum entropy from Ref. [1]. Chapter

III studies the quantum entropy in comparison with classical relations, adapted from

Ref. [2]. Chapter IV studies the relation between “excess entropy production,”

strong quantum coupling, and spreading of the wavepacket in quantum dynamics,

adapted from Ref. [3]. Chapter V analyzes thermodynamic behavior with a small

quantum variable temperature bath, with interesting finite-size temperature effects,

adapted from Ref. [4]. Chapter VI studies a two-bath quantum system where strong

coupling and small size combine to give a non-standard equilibrium state with an

asymmetric temperature distribution, with heat flow from cold to hot along the path

to equilibrium, adapted from Ref. [5]. Chapter VII concludes with a summary of the

results and ideas for future research.
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This dissertation includes previously published and unpublished material co-

authored by Michael E. Kellman [1–5]. Michael Kellman and I both contributed

to developing the models and theories, analyzing results, and writing the chapters

and appendices of this dissertation. I performed all computer calculations in this

dissertation.
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CHAPTER II

BACKGROUND: CLASSICAL THERMODYNAMICS AND STATISTICAL

MECHANICS, QUANTUM PURE STATE THERMODYNAMICS, AND THE

SECOND LAW

The emerging field of pure state quantum thermodynamics seeks to answer two

basic types of questions as mentioned in the introduction: What is the quantum origin

of classical thermodynamic behavior? Are new types of quantum thermodynamic

behavior possible? In this chapter, I will briefly review contemporary approaches

to understanding the first question, as background for the work in the remainder

of this dissertation and as a starting point to looking for new types of quantum

thermodynamic behavior. The chapter will begin with a condensed review of the

essential ideas from classical thermodynamics and statistical mechanics, leading into

the modern approaches to quantum pure state thermodynamics and the recently

proposed quantum formulation of the second law with the entropy SQuniv from Ref. [1].

This background will be the starting point for the new explorations with SQuniv and

the second law in the remainder of this dissertation.

The review in this chapter is intended for readers familiar with thermodynamics,

statistical mechanics, and quantum mechanics, as a way to briefly highlight

the essential features of the theory leading to the formulation of the quantum

thermodynamic entropy SQuniv. Readers may wish to skip to the definition of SQuniv in

Section 2.6, or to the new work of this dissertation starting in Chapter III, referring

to this background as needed.

The chapter is organized as follows: Section 2.1 very briefly reviews the second

law of thermodynamics. Section 2.2 and 2.3 review the classical formalism of

6



statistical mechanics as a basis for thermodynamics and the second law. Sections

2.4 and 2.5 introduce the basic ideas and rationales for quantum pure state

thermodynamics. Section 2.6 introduces the recently developed [1] entropy SQuniv

to formulate the second law in pure state quantum thermodynamics and motivates

the new research in the next chapter.

2.1. The second law in classical thermodynamics

Classical thermodynamics is founded in a few elementary laws that give universal

restrictions on the types of processes that are possible in macroscopic systems. The

second law states that all real spontaneous processes increase the entropy of the

universe until it reaches a maximum at equilibrium,

∆Suniv > 0. (2.1)

The second law has many consequences, all focused around the idea that natural

dynamics maximize the total entropy of universe. A major consequence is that

thermodynamic process are irreversible: Low entropy states evolve to high entropy

states and do not go back. For example, heat flows from hot to cold and not the other

way around. Thus it is often said that the second law defines the “arrow of time.”

This is indispensable in describing the real world.

The laws of thermodynamics were developed phenomenologically from

experimental evidence in the 19th century. In the 19th and 20th centuries, there

was a lot of interest in trying to explain the phenomenology of thermodynamics with

a more fundamental microscopic theory. This led to the development of classical

statistical mechanics, which I briefly review in the next two sections. I’ll then discuss

contemporary work developing a more fundamental theory of quantum pure state

7



thermodynamics, leading to the second law with the new quantum entropy SQuniv that

is studied throughout the remainder of this dissertation.

2.2. Classical and semi-classical statistical mechanics

Classical statistical mechanics is based on the idea that the mechanical motions

of enormous numbers of tiny molecules gives rise to the laws and relations of

thermodynamics. Thermodynamic processes involving a system S and its large

environment E are too complex to analyze directly with mechanics, so instead a

simplified statistical approach is taken. The fundamental assumption of statistical

mechanics is that a single SE in nature, which in classical theory is in a single

unknown state any instant in time, can be analyzed without knowing its true state by

using a statistical ensemble of all the possible microscopic SE states with associated

probabilities. This approach is very successful in formulating thermodynamics and

describing thermodynamic properties of real SE total systems in nature. The

next section will discuss classical theoretical rationales for why the fundamental

assumption is so successful in describing real systems, leading into the contemporary

rationales in quantum theory later in the chapter. The remainder of this section

describes the basic formalism of classical and semi-classical statistical mechanics.

I will focus on heat flow in semi-classical statistical mechanics, with quantum

energy levels but not quantum states evolving in time, although many of the same

relations hold also in classical statistical mechanics in phase space with appropriate

modifications.

The system S and environment E are taken together as constituting an isolated

total system or “universe.” This is not meant to imply that the total system is the

8



actual cosmological universe, it’s just a term to indicate that any interactions with

other exterior systems are negligible and need not be considered.

Fig. 2.1 shows a schematic energy level diagram for a standard SE universe. The

environment E is a large, effectively infinite many body system with a density ρ of

microscopic states that increases exponentially with energy EE at a rate determined

by the temperature T ,

ρ(EE) ∼ eEE/kBT , (2.2)

where kB is the Boltzmann constant; I will often adopt reduced units where kB = 1,

so that T has units of energy. The exponential scaling of ρ is an approximate generic

feature for large environments. The set of microscopic environment states will be

denoted {ε} with energies Eε. The system S in the figure has a few microscopic

states {s} with energies Es. This is characteristic of typical microscopic systems such

as the vibrational energy levels in a molecule.

FIGURE 2.1. Schematic energy level diagram for a system-environment “universe”
in statistical mechanics.
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The state of an SE universe is described by the microcanonical ensemble,

beginning with a total energy E and sometimes other constraints for the specific SE

in consideration. To formulate the microcanonical ensemble, the first step is to count

the number W of microscopic system-environment states s, ε in the microcanonical

energy shell E − δE/2 ≤ Es + Eε ≤ E + δE/2 that satisfy all the constraints. The

width of the energy shell δE tends to zero in the classical limit where energy is an

exact constant of motion. In semi-classical statistical mechanics, δE is taken as small

enough that the energy ES + EE is effectively fixed but large enough that there are

many s, ε quantum energy levels in the energy shell. The final step is to assume that

all of the s, ε states in the energy shell can be treated as equally probable,

ps,ε =
1

W
. (2.3)

Properties of S and E are then taken as averages over the s, ε states, for example the

system energy is taken as the average

ES = 〈Es〉 =
∑
s,ε

Esps,ε. (2.4)

It’s important to note that in classical and semi-classical theory a true SE is always

in a single state s, ε, which is much different than the microcanonical ensemble of

all s, ε states described above. There are different rationales for why it is reasonable

to use the microcanonical probabilities of Eq. 2.3 for describing real SE universes in

nature, these are described in the next section. The remainder of this section will

focus on showing how the microcanonical ensemble is used in a practical example of

heat flow, as is fundamental to the later work in this dissertation.

10



The left of Fig. 2.2 shows an example of an SE microcanonical ensemble before S

and E have interacted, where they each have individually fixed energies as a constraint.

In this example there are W0 states s, ε where S is in its ground state s = 0 shown

in red and E has equal probabilities for all the states ε under the red bar, with the

microcanonical shell width δE.

The right of Fig. 2.2 shows S and E after they’ve interacted, exchanged energy,

and gone to thermal equilibrium. The equilibrium microcanonical ensemble contains

Weq different s, ε state pairs at the same total SE energy E, shown by the matching

colors of S levels and bands of E states in the microcanonical energy shell. Now all the

S levels are accessible thanks to heat flow from E . The colors in the figure show how

to match the SE states s, ε at the same total energy E but are otherwise arbitrary.

FIGURE 2.2. Thermalization in the microcanonical ensemble. The initial
microcanonical ensemble on the left describes the system S and environment E before
they’ve interacted, where S and E have separate fixed energies in the energy shell of
width δE, shown by the red system level and the red band of environment levels. The
equilibrium microcanonical ensemble on the right describes S and E after they’ve
interacted and exchanged heat. All the SE states at the same total energy are
accessible, shown by matching the similarly colored S levels and bands of E levels.
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The second law for this equilibration process is formulated beginning with the

Boltzmann entropy for the microcanonical ensemble

Suniv = −
∑
s,ε

ps,ε ln ps,ε = lnW, (2.5)

where the sum runs over all s, ε in the microcanonical ensemble with probabilities

from Eq. 2.3. For the example process in Fig. 2.2

∆Suniv = ln
Weq

W0

> 0, (2.6)

since more states are accessible at equilibrium Weq > W0. Thus the microcanonical

Boltzmann entropy increases in accord with the second law. In general,

thermodynamic processes always include the removal of a constraint, such as the

initial constraint on the S and E energies in Fig. 2.2, and this always gives access to

more microcanonical states with ∆Suniv > 0. The second law reflects the tendency

for SE universes to explore greater numbers of microscopic states during spontaneous

thermodynamic processes.

A final note is that it is very often desirable to describe the system S alone,

without needing to go into detail about E . To do this, probabilities ps for the S

states s can be calculated by summing ps,ε over all the E states ε,

ps =
∑
ε

ps,ε. (2.7)

For a standard equilibrium state as in the right of Fig. 2.2, the S probabilities are

given by the canonical ensemble or Boltzmann distribution

ps =
e−Es/kT

Z
, (2.8)
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where Z =
∑

s e
−Es/kT is a normalizing factor called the partition function. The

canonical ensemble Eq. 2.8 can be derived using the density of environment states

from Eq. 2.2; in essence, there are exponentially more E states at high energy that

pair with the low energy S states as seen in Fig. 2.2, and since all the SE states s, ε

are equally likely, this makes the low-energy S states exponentially more likely in the

canonical ensemble Eq. 2.8.

This concludes the basic mathematical approach to statistical mechanics, which

has proven very successful in describing thermodynamic properties of natural systems.

The approach is based on assuming equal probabilities for all the microscopic states

s, ε of the SE universe in Eq. 2.3. To streamline the presentation so far, the equal

probability assumption has not yet been justified. The next section considers the basic

approaches to justifying this assumption in classical statistical mechanics, leading to

the contemporary approaches in quantum theory described in the remaining sections.

2.3. Theoretical motivations for the microcanonical ensemble

Statistical mechanics is based on the fundamental assumption that real systems

can be modeled with the equiprobable microcanonical ensemble distribution over all

possible s, ε states as in Eq. 2.3. This works well in practice for modeling states at

thermal equilibrium. However, it’s not so obvious why it should work so well—in

classical and semi-classical theory, real systems are in single microscopic s, ε states,

which are conceptually much different than the microcanonical ensemble distribution

over all s, ε. In this section, I’ll briefly discuss some of the main approaches to

rationalizing the success of the microcanonical ensemble in classical and semi-classical

statistical mechanics. The approaches differ in how they relate true system properties

to the probabilities in the microcanonical ensemble. The approaches here will be
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related later to contemporary approaches in quantum pure state statistical mechanics

in Section 2.5, where there will be more to say about the fundamental nature of the

probabilities.

The most common approach to rationalizing the microcanonical ensemble is the

ergodic hypothesis [20], which conjectures that a real SE total system in a single s, ε

at any point in time will wander through all the s, ε equally over time. Then the equal

probabilities ps,ε of Eq. 2.3 can be viewed as time averages over the dynamics. In this

view real systems evolve to equilibrium when they are ergodic or “close enough” to

ergodic to justify the approximate use of Eq. 2.3. However, it’s been difficult to prove

ergodicity generally; only a few very simple systems such as billiards in a box are

known to give exact ergodic behavior. Furthermore, the ergodic hypothesis is usually

studied in the context of an infinite time average, while the time intervals over which

we observe real systems are finite and may be much less than the time intervals

needed for approximate ergodic behavior. In total the ergodic hypothesis gives a

sensible connection between SE dynamics and the microcanonical probabilities, but

there doesn’t seem to be a general proof of exactly which systems and circumstances

it applies to.

Another approach is based on the notion of typicality [39, 40], that the

overwhelming majority of microscopic s, ε states have many of the same properties

as the microcanonical average. An example is seen in the microscopic states of

a gas in a box—almost all the microscopic states of the gas molecules have an

approximately uniform total density in the box. The uniform density is also given

as the average property in the microcanonical ensemble, since the microcanonical

ensemble average is an average almost entirely over typical states with uniform

density. Furthermore, a small collection of gas molecules will be distributed according
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to the Boltzmann distribution, since this is the typical distribution for a subsystem

within the microcanonical ensemble. In this view the microcanonical probabilities

of Eq. 2.3 are a convenient way to calculate the properties of typical states, rather

than a statement about time-averaged dynamics, as with the ergodic hypothesis. To

relate the typicality idea to real systems, one needs to assume that real systems are in

typical states, perhaps with small fluctuations in accord with the fluctuations within

the microcanonical ensemble. It is certainly true that many real systems are in typical

states, but real systems can also be in highly atypical (non-equilibrium) states, so not

every state can be assumed typical. Thus the typicality approach gives some useful

insight into why statistical mechanics works when states are typical or undergo small

fluctuations about typical states, but it introduces a new question of how and when

states actually become typical.

A better approach seems to come from combining the statistical idea of typicality

with the dynamical idea of the ergodic hypothesis: States thermalize because their

dynamics cause them to evolve into the relatively large set of typical states, where

their properties can be calculated from the microcanonical ensemble. This certainly

seems to be true in experience, where dynamics of real systems do cause them to

evolve to equilibrium states with typical properties, but this lacks a general proof.

A final approach is based in information theory [41], which views the equal

probabilities of Eq. 2.3 as a best-guess result of statistical inference given a limited

amount of subjective information about the energy E and other constraints on SE .

This gives a statistical rationale for using equal probabilities in the microcanonical

ensemble based on our subjective knowledge, but it doesn’t directly consider how

the SE dynamics actually gives this result, which is independent of our subjective

knowledge.
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In total, the above considerations give some evidence for why a real system

can be modeled using equal probabilities for all the states in the microcanonical

ensemble, but still there is controversy over the foundations as represented in the

variety of different types of approaches discussed above. Much of the controversy

is over the meaning of the probabilities—whether they reflect true dynamical time-

averaged properties, or a convenient way of getting at typical state properties, or

subjective guesses based on limited information. One of the goals of contemporary

work in quantum pure state thermodynamics is to show that the probabilities in

statistical mechanics can instead be understood as a consequence of the basic quantum

description of nature. The next section introduces the basic setup, followed by the

theoretical motivations in Section 2.5.

2.4. Quantum pure state statistical mechanics

Quantum pure state thermodynamics considers a pure state |ΨSE〉 to describe

the system-environment SE universe, with an aim of showing that much of statistical

mechanics can be understood as a consequence of the quantum properties of the state,

without any need to assume the microcanonical ensemble. Instead, the Boltzmann

distribution for the system in Eq. 2.8 and related results can be understood to arise

from system-environment entanglement in |ΨSE〉. In this sense the quantum pure state

mimics the microcanonical ensemble, since both give the same statistical mechanics

for the system S. This is the basis for formulating statistical mechanics solely in

terms of a quantum pure state |ΨSE〉. This section will sketch how to understand this

thermal behavior with a pure state |ΨSE〉; the next section will discuss the theoretical

motivations for this behavior.

The setup begins with a quantum pure state for the SE universe
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|ΨSE〉 =
∑
s,ε

cs,ε|s〉|ε〉, (2.9)

expressed in the Hilbert space spanned by basis vectors {|s〉|ε〉} from the tensor

product basis of zero-order system energy eigenstates states {|s〉} and zero-order

environment energy eigenstates states {|ε〉}. The pure state Eq. 2.9 is the most

basic type of quantum state for an isolated “universe,” when there aren’t any

significant interactions with further exterior systems, in essence the same type of

situation considered in classical microcanonical statistical mechanics. There are other

mixed-state approaches to quantum thermodynamics that are appropriate in other

situations, I’ll comment on these briefly at the end of the section.

The connection to statistical mechanical ensembles is made through the

fundamental probabilistic properties of the quantum state. The probability of

measuring any system-environment basis state |s〉|ε〉 is given by the wavefunction

as

ps,ε = |〈s|〈ε|ΨSE〉|2 = |cs,ε|2, (2.10)

with cs,ε the expansion coefficients of |ΨSE〉 in the {|s〉|ε〉} basis in Eq. 2.9. The

quantum ps,ε will generally not be equal for different s, ε, as they are in the

microcanonical ensemble with Eq. 2.3. Nonetheless, the quantum ps,ε can give the

same predictions as the microcanonical ensemble for many properties of interest that

depend on averages over many ps,ε, for example in determining the average system

energy, etc.
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Fig. 2.3 shows a very simple schematic example of thermalization envisioned with

a pure state, analogous to the microcanonical thermalization of Fig. 2.2. The pure

state begins in a separable superposition

|ΨSE(t = 0)〉 = |ψS〉|ϕE〉 (2.11)

where |ψS〉 and |ϕE〉 are system and environment states respectively. In the example

state on the left of Fig. 2.3, the system is in the ground state |ψS〉 = |0〉 shown in

red. The environment is in a superposition state |ϕE〉 =
∑

ε cε|ε〉 with probabilities

pε = |cε|2 that are focused around a central energy, shown in a simple way by the red

bump (a state could naturally have a much more complex probability distribution

than in this simple example). This is a quantum analog of the initial microcanonical

state on the left of Fig. 2.2.

FIGURE 2.3. Schematic thermalization process with a quantum pure state |ΨSE〉.

The initial state of Eq. 2.11 is expected to have thermodynamic behavior where

it evolves in time to thermal equilibrium. The time-dependent behavior follows the

Schrödinger equation
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|ΨSE(t)〉 = e−iĤt/~|ΨSE(0)〉, (2.12)

where ~ is the reduced Planck’s constant and Ĥ is the Hamiltonian energy operator

Ĥ = ĤS + ĤE + ĤSE , (2.13)

with ĤS and ĤE the Hamiltonians of the isolated system and environment and ĤSE

their interaction. The time-evolved state |ΨSE(t)〉 has the generic form of Eq. 2.9,

where generally all the cs,ε 6= 0, so that all the |s〉|ε〉 basis states have non-zero

probability in Eq. 2.10.

The right of Fig. 2.3 shows a very simple schematic example of the initial state

after time evolution to thermal equilibrium (the theoretical motivations for this type of

time-evolution behavior will be presented in the next section). At equilibrium, all the

system levels |s〉 are accessed and paired with corresponding entangled environment

superpositions |ϕ(s)
E 〉 that are shifted in energy based on the energy transfer to the

system. The pairs of entangled |s〉 and |ϕ(s)
E 〉 are shown with matching colors in the

figure. The total state can be expressed as

|ΨSE(t)〉 =
∑
s

cs|s〉|ϕ(s)
E 〉, (2.14)

where in comparison with Eq. 2.9 this has |ϕ(s)
E 〉 =

∑
ε(cs,ε/cs)|ε〉 as the state of the

environment that goes with the system state |s〉. The equilibrium quantum state is

analogous to the equilibrium microcanonical ensemble on the right of Fig. 2.2.

The state in Eq. 2.14 is said to be entangled when the |ϕ(s)
E 〉 are different for

different |s〉 states, as seen in the example of Fig. 2.3. An entangled state cannot be

separated into separate system and environment states as in Eq. 2.11, instead it can
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only be expressed as a sum of entangled system-environment pairs such as |s〉|ϕ(s)
E 〉.

For the thermalization process, we expect the different interactions among the |s〉|ε〉

basis states will cause entanglement where the environment states are approximately

distinct from one another for s 6= s′,

〈ϕ(s)
E |ϕ

(s′)
E 〉 ≈ 0. (2.15)

The entanglement describes quantum correlations between S and E that are very

interesting in their own right [42, 43], and will be important here in formulating

thermal behavior.

The thermal behavior of |ΨSE(t)〉 is formulated in terms of the system behavior

in comparison with the standard thermal Boltzmann distribution of Eq. 2.8. When

the system behavior is given by the Boltzmann distribution, then all the standard

relations from statistical mechanics apply to the system.

The system behavior is given by the system reduced density operator ρ̂S(t), as

follows. First, the total state |ΨSE〉 is represented in terms of the density operator for

the universe state ρ̂SE(t) = |ΨSE(t)〉〈ΨSE(t)|. This is an alternate way of describing

the total state that encodes all the same physical information as |ΨSE(t)〉. The

system reduced density operator is then calculated by taking the partial trace over

the environment of ρ̂SE(t),

ρ̂S(t) = TrE ρ̂SE(t) =
∑
ε

〈ε|ΨSE(t)〉〈ΨSE(t)|ε〉. (2.16)

In essence, this is summing contributions from all the different environment states |ε〉

to get the average behavior of the system. With some algebra and using the identity

on the environment Hilbert space 1̂E =
∑

ε |ε〉〈ε| this gives
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ρ̂S(t) =
∑
s,s′

csc
∗
s′〈ϕ

(s′)
E |ϕ

(s)
E 〉|s〉〈s

′| ≈
∑
s

|cs|2|s〉〈s|, (2.17)

where the last approximate equality uses the entanglement relation between the

environment states Eq. 2.15.

The system is said to be in a mixed state on the right of Eq. 2.17, since it cannot

be expressed in terms of a pure state density operator ρ̂S(t) 6= |ψS(t)〉〈ψS(t)|. This is

due to entanglement with E , with 〈ϕ(s)
E |ϕ

(s′)
E 〉 ≈ 0. Instead, the system behaves like

a probabilistic mixture or ensemble of pure state
∑

s ps|s〉〈s|, with probabilities ps =

|cs|2 and without quantum coherence between the different |s〉. It is very important to

note that these ensemble-like predictions for S are deduced entirely from the quantum

state |ΨSE〉 rather than from ensemble assumptions as in classical and semi-classical

microcanonical statistical mechanics. When the quantum system predictions agree

with the classical Boltzmann distribution we will have a sensible way to understand

statistical mechanics from |ΨSE〉 without the microcanonical ensemble.

Thermalization of the system is assessed by comparing ρ̂S(t) with the system

density operator for the thermal Boltzmann distribution

ρ̂Boltzmann
S =

e−ĤS/kBT

Z
=
∑
s

e−Es/kBT

Z
|s〉〈s|, (2.18)

where Z =
∑

s e
−Es/kBT is the partition function. The Boltzmann distribution

operator ρ̂Boltzmann
S gives the same Boltzmann probabilities as the classical Boltzmann

distribution of Eq. 2.8, with ps = 〈s|ρ̂Boltzmann
S |s〉 = exp(−Es/kBT )/Z. The system is

said to have evolved to thermal equilibrium when it evolves to a state

ρ̂S(t) ≈ ρ̂Boltzmann
S (2.19)
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and stays close to ρ̂Boltzmann
S for most subsequent times t. Then all of the system

relations from the standard Boltzmann distribution apply to the system S in the

total state |ΨSE(t)〉, where they appear as a result of quantum state dynamics with

entanglement of S and E .

In this section I have sketched how thermodynamics and statistical mechanics

can be formulated solely in terms of quantum pure states evolving in time, without

the microcanonical ensemble. This relies on time evolution with system-environment

entanglement such that the system alone is described by a reduced density operator

in accord with the standard Boltzmann distribution, as in Eq. 2.18 and 2.19. This

time-evolution behavior has not yet been justified theoretically; the next section will

discuss the two contemporary theoretical arguments for why this type of behavior

should be expected. But first, to close this section I will briefly comment on alternate

approaches to formulating quantum thermodynamics that begin with mixed states,

as is appropriate in alternate situations.

It’s notable that a different type of approach in contemporary work on quantum

thermodynamics begins with a mixed state [28, 32, 44, 45] instead of a pure state

as was the starting point here in Eq. 2.9. In these studies, the environment is often

treated as a mixed state Boltzmann distribution, representing a local component E

of a total larger environment E ′ at temperature T . The larger E ′ gives entanglement

with E leading to the Boltzmann mixed state for E , then usually E ′ is ignored in the

subsequent analysis of SE thermodynamic behavior. This is the same starting point

one would get by assuming a microcanonical ensemble type description for the total

SEE ′ system, so that E begins in the Boltzmann distribution. Thus these approaches

can give a useful way to analyze thermodynamic behavior of S interacting with a

local E in a thermal distribution, but they cannot give a new foundation for how
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to understand statistical mechanics as a result of quantum dynamics without the

microcanonical ensemble.

By comparison, the approach here with pure states focuses on deducing statistical

mechanics directly from quantum mechanics, without any initial assumption of

standard statistical mechanical behavior in the microcanonical ensemble. This

approach is suited to formulating a new foundation for quantum statistical mechanics,

where the classical assumption of the microcanonical ensemble is replaced by a more

basic quantum state description. This also gives a way forward to analyzing non-

microcanonical types of behavior in quantum pure states, with potential for new types

of quantum thermodynamic effects that deviate from microcanonical predictions (see

Chapter VI).

Having sketched the quantum pure state approach to formulating statistical

mechanics with |ΨSE〉 evolving in time to equilibrium, I’ll now discuss contemporary

theoretical approaches to motivating this equilibration behavior.

2.5. Theoretical motivations for quantum pure state thermodynamics

Two basic theories have been given as potential explanations for why quantum

pure states |ΨSE(t)〉 should evolve to equilibrium states with the system in the

Boltzmann distribution as in Eq. 2.18, as discussed in the previous section. In both

of these theories, the important conceptual difference compared to classical theory is

that the system Boltzmann distribution is deduced from the fundamental quantum

probabilities associated with the state |ΨSE〉 instead of by assuming probabilities

in the classical microcanonical ensemble. One of these theories is called “quantum

typicality” [11–18]. It is based on statistical arguments about the types of states

that are possible in the Hilbert space, essentially a quantum version of the classical
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typicality argument of Section 2.3. The other theory is called the “eigenstate

thermalization hypothesis” or ETH [19–27], it gives a dynamical argument for

thermalization, essentially a quantum version of the classical ergodic hypothesis of

Section 2.3. I’ll briefly review these two approaches here, beginning with typicality.

The quantum typicality approach gives a statistical argument for why to expect

system thermalization, based on the observation that thermalization is a property of

almost all states |Ψrandom
SE 〉 chosen at random from the system-environment Hilbert

space [12, 14]. For the purposes of this dissertation, this can be viewed as the

statement that for a system S weakly interacting with a temperature bath E , almost

all randomly selected states |Ψrandom
SE 〉 in the Hilbert space are such that the system

reduced density operator follows the Boltzmann distribution,

ρ̂random
S = TrE |Ψrandom

SE 〉〈Ψrandom
SE | ≈ e−ĤS/kT

Z
, (2.20)

in accord with Eq. 2.18. The majority of randomly selected states have the thermal

property of Eq. 2.20 so it is said that these states are “typical.” Precise mathematical

statements of typicality and related results can be found in Refs. [11–18].

The quantum typicality approach follows the same type of reasoning as the

classical typicality approach discussed in Section 2.3: since most possible states are

thermal, it seems plausible that real states will also be thermal. If a state isn’t

initially thermal, it’s plausible that it will evolve to spend most of its later times in

thermal states, since there are many more thermal states than non-thermal states.

However, apart from plausibility based on the relative abundance of typical thermal

states, it isn’t clear when or why atypical non-thermal states should evolve into

typical thermal states. An acute counterexample can be found in integrable systems

with non-trivial constants of motion that never evolve to thermal equilibrium [20].
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Although integrability is not expected in complex systems, it is still unclear whether

and when complex pure state universes will evolve from atypical states to spend most

later time in typical states. What initial conditions, Hamiltonians, and timescales are

needed for an atypical non-equilibrium state to evolve to equilibrium? Some partial

answers to how quantum time evolution can take an initial non-equilibrium atypical

state to spend most later time in typical thermal equilibrium states can be found in

Refs. [10, 11, 13, 16–18], but this remains a very important and open question in the

quantum formulation of statistical mechanics through typicality.

A second approach to quantum pure state thermodynamics is called the

“eigenstate thermalization hypothesis” or ETH, which is based on a dynamical

argument about ergodic-like quantum behavior that is embedded into eigenstates

of complex SE total systems [19–27]. The approach is often based on reasoning

about the quantum dynamics of classically chaotic systems, where couplings can be

modeled as random matrices [20] that couple all the |s〉|ε〉 states, somewhat similar

to the classical ergodic hypothesis where a real system explores all the s, ε states

over time as discussed in Section 2.3. With these effectively random couplings the

eigenstates |ξ〉 mix many nearby |s〉|ε〉 zero-order states, so that thermalization is

embedded into each eigenstate. For the purposes of this dissertation, this can be seen

as the statement that for each eigenstate |ξ〉 of a system S weakly interacting with a

temperature bath E , tracing over the environment to get the system reduced density

matrix ρ̂
(ξ)
S gives the thermal Boltzmann distribution

ρ̂
(ξ)
S = TrE |ξ〉〈ξ| ≈

e−ĤS/kT

Z
. (2.21)
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The ETH condition on thermalization in the eigenstates Eq. 2.21 guarantees that if

an SE universe reaches a steady state, this state will be thermal, as can be shown

following a similar argument to Deutsch [21, 22].

The main merit of the ETH approach is that it shows explicitly how a non-

thermal initial state can evolve into a thermal state and stay thermal for most time,

based on the structure of the eigenstates. The main weakness of ETH is that it

is unclear which Hamiltonians have the hypothesized thermal eigenstate structure

of Eq. 2.21. To address this question, a number of studies have examined the

behavior of eigenstates in different types of models with random [20–22, 25–27]

or structured [19, 23] interaction Hamiltonians. These studies have shown some

compelling evidence for ETH in certain types of models, but it’s desirable to have a

more general formulation that doesn’t need to be checked with each new model on a

case-by-case basis. It’s also unclear whether there can be ETH-like situations where

the eigenstates encode unexpected types of non-standard quantum thermodynamic

behavior that differ from the standard thermal behavior of Eq. 2.21. If so, this could

be an important component in the foundations of quantum thermodynamics.

Both the quantum typicality and ETH approaches to quantum thermodynamics

provide some evidence for why to expect the approach to thermal equilibrium

for quantum pure states, as sketched in Section 2.4. However, both of these

approaches are still in development, with important unanswered questions that need

to be addressed before either or both can be viewed as the general foundation

for thermodynamics and statistical mechanics. Thus thermalization appears to be

plausible but cannot be assumed; it must be tested for each type of SE state and

Hamiltonian. In this dissertation I will therefore assess the thermodynamic behavior

in each type of model I use. It’s also unclear if or when there can be new types
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of quantum thermodynamic behavior. Chapter VI and Ref. [5] show an example

where this is the case, with implications for the future development of the theoretical

foundations of quantum thermodynamics.

2.6. The second law and the entropy SQuniv in quantum pure state

thermodynamics

So far this chapter has developed the basic ideas of quantum pure state

thermodynamics, based on a quantum pure state evolving in time with entanglement

to equilibrium, with the system in the thermal Boltzmann distribution. However,

there is an important gap in the description so far when compared with standard

thermodynamics. There has not been a formulation of the second law of

thermodynamics for a quantum pure state evolving to equilibrium. This section

recapitulates the recent idea of Ref. [1] to formulate the second law in quantum

thermodynamics using a quantum entropy definition SQuniv for a pure state |ΨSE〉.

This will be the starting point for the new work in this dissertation, beginning in

the next chapter, which expands on the work of Ref. [1] to explore the behavior of

SQuniv in relation to classical thermodynamics and new types of specifically quantum

thermodynamic behavior.

The second law as described in Section 2.1 is based on an entropy for an

isolated system or universe that increases during a spontaneous process. In classical

thermodynamics, this is formulated with the Boltzmann entropy S = kB lnW of

Eq. 2.5, based on the assumption of the microcanonical ensemble. The approach with

quantum pure states replaces the microcanonical ensemble with a more basic quantum

state |ΨSE〉 as described in Sections 2.4-2.5. Thus a new approach to formulating

the second law is needed. There are definitions for entropy in quantum mechanics,
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however the notion of an entropy for an isolated state that increases in a spontaneous

process is problematic. In quantum mechanics, entropy is usually defined as the

von Neumann entropy SvN . For a state described by a density operator ρ̂, the von

Neumann entropy is defined as

SvN = −Trρ̂ ln ρ̂, (2.22)

where Tr is the trace. To evaluate Eq. 2.22, the density operator is expressed in

diagonal form in terms of its eigenvectors |ψi〉 and eigenvalues λi

ρ̂ =
∑
i

λi|ψi〉〈ψi|, (2.23)

where λi is the probability that a measurement in the eigen basis will yield the

state |ψi〉. The von Neumann entropy SvN of Eq. 2.22 is then given in terms of the

probabilities λi as

SvN = −
∑
i

λi lnλi, (2.24)

where the sum runs over all i with λi 6= 0.

The von Neumann entropy is problematic for defining a thermodynamic entropy

for a pure state such as |ΨSE〉. For a pure quantum state |Ψ(t)〉, the density operator

can always be expressed in diagonal form as

ρ̂pure(t) = |Ψ(t)〉〈Ψ(t)|. (2.25)

There is one non-zero eigenvalue λ = 1 and the von Neumann entropy is
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SvN,pure = 1 ln 1 = 0. (2.26)

Thus the von Neumann entropy of a pure state cannot increase past zero. In terms

of the system-environment thermalization of the pure state |ΨSE(t)〉 of Section 2.4,

SvN(t) does not increase during the approach to thermal equilibrium, so it cannot

be used to express the second law in the standard form of Eq. 2.1. There are

some situations where it is entirely appropriate to use the von Neumann entropy,

as described in the next paragraph, but ultimately a new method of formulating the

second law is needed, as described soon after.

It should be noted that the von Neumann entropy is very useful in certain other

situations in thermodynamics and for characterizing entanglement. In pure state

thermodynamics, the system S becomes entangled with the environment E , so that

the system alone is described by the thermal Boltzmann distribution of Eq. 2.18. For

the S thermal state, the von Neumann entropy takes the classical value based on the

Boltzmann factors λs = exp(−Es/kBT )/Z,

SvNS = SBoltzmann
S . (2.27)

Thus SvNS gives the standard entropy for the system S at thermal equilibrium.

However, this does not help with formulating the second law, which depends on the

entropy of the total SE universe. This varying behavior of SvN for S and SE is related

to the role of SvN as a measure of entanglement. The pure state is not entangled with

anything, so it has a single non-zero eigenvalue λ = 1 and SvN = 0. Entangled states

have more than one non-zero eigenvalue, with SvN > 0. SvN increases with more

entanglement, reaching its maximum value for a maximally entangled state where all
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the λi are equal. Thus SvN gives a useful way of characterizing entanglement and

it gives the standard thermodynamic entropy for an entangled quantum system in

the Boltzmann distribution, but it can’t formulate the second law as in Eq. 2.1 for a

pure state |ΨSE〉. How should the second law be formulated in quantum pure state

thermodynamics?

Ref. [1] argued that a new definition of quantum thermodynamic entropy should

be used to formulate the second law for a quantum pure state |ΨSE〉. To define the

entropy, first the state was expressed in a reference basis {|α〉} of the total SE Hilbert

space,

|ΨSE〉 =
∑
α

cα|α〉. (2.28)

The entropy was then defined with a standard Shannon entropy expression using the

probabilities pα in the reference basis

pα = |cα|2 (2.29)

to give the quantum entropy

SQuniv = −
∑
α

pα ln pα. (2.30)

The quantum entropy differs from the von Neumann entropy SvN in the choice of basis

to evaluate the probabilities, for SvN it is the basis of eigenstates {|ψi〉} of the density

operator with probabilities λi, whereas with SQuniv it is the as yet unspecified reference

basis {|α〉} with probabilities pα. The entropy takes different values depending on

the choice of the reference basis {|α〉}. One of the main goals of Ref. [1] was to
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provide a rationale for a choice of reference basis to give a thermodynamic entropy

SQuniv consistent with the second law.

Ref. [1] developed the reference basis in the context of modeling heat flow between

a system and environment, with the idea that the reference basis should correspond to

the physical process. In this process, the average S zero-order energy 〈ĤS〉 is changing

with heat flow from E . The change in 〈ĤS〉 is due to changes in the probabilities of

measuring different system zero-order energy levels |s〉 as the system evolves from a

non-equilibrium state to the equilibrium Boltzmann thermal state of Eq. 2.18. Thus

it was argued that the reference basis reflecting the physical process should contain

the system basis of zero-order energy eigenstates |s〉 of the isolated system. After

specifying the system basis, it is necessary to specify a basis for the environment. The

probabilities for the environment zero-order energy levels |ε〉 change along with the |s〉

during heat flow, such that in the standard situation with weak coupling 〈ĤSE〉 ≈ 0

the total zero-order energy is approximately constant 〈ĤS〉+ 〈ĤE〉 ≈ E. Thus it was

argued that the environment basis representing the physical process should be the

basis of zero-order environment energy eigenstates |ε〉. With this choice the total SE

reference basis is

{|α〉} = {|s〉|ε〉}, (2.31)

so that the quantum entropy is defined as

SQuniv = −
∑
s,ε

ps,ε ln ps,ε. (2.32)

Note the expression for SQuniv in Eq. 2.32 is the same expression used in classical

statistical mechanics for the Boltzmann microcanonical entropy in Eq. 2.5, except
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that in SQuniv the probabilities ps,ε are taken directly from the wavefunction instead

of being assumed equal as they were with the microcanonical ensemble. Thus the

quantum entropy SQuniv can be thought of as generalizing the Boltzmann entropy by

replacing the assumed probabilities of the microcanonical ensemble with the true

probabilities ps,ε from the quantum state, very much in the spirit of the quantum

approach to formulating all of statistical mechanics in terms of fundamental quantum

probabilities. There will be more to say about the theoretical justification for the |s〉|ε〉

reference basis in Chapter IV, where it will be shown that this choice uniquely leads

to a natural separation of SQuniv into system and environment parts Ssys and Senv that

each agree with their standard values from thermodynamics, giving further support

for SQuniv as an appropriate generalization of Suniv in quantum thermodynamics.

Ref. [1] computationally tested the behavior of SQuniv in Eq. 2.32 in a very simple

model of SE heat flow between a system S of a few evenly spaced levels and an

environment E with similarly-spaced highly-degenerate levels, with a degeneracy

pattern designed to give it a temperature T . ∆SQuniv was compared with the

free energy change of the system −∆Fsys in terms of the very important classical

microcanonical relationship ∆Suniv = −∆Fsys/T . The observed ∆SQuniv was close to

but slightly larger than−∆Fsys/T , so that ∆SQuniv was in good approximate agreement

with this important standard thermodynamic relation.

Several other authors have defined similar types of quantum pure state entropies

in different approaches to formulating the second law in quantum pure state

thermodynamics [10, 29, 30] and also to characterize the information content of a

pure state [31, 46]; for a more thorough discussion of these entropies see Ref. [1].

However, none of these approaches had the virtue of Ref. [1] in testing the behavior

of the pure state entropy in comparison with the very important relationship to the
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system free energy change in −∆Fsys/T . The approximate agreement between these

quantities in Ref. [1] motivates this dissertation research to further explore SQuniv of

Eq. 2.32 as a meaningful thermodynamic entropy for formulating the second law in

quantum pure state thermodynamics.

Despite the success of Ref. [1] in demonstrating approximate agreement between

∆SQuniv and the classically related −∆Fsys/T , the model of Ref. [1] had some

unrealistic features compared to what’s expected in the real world, and the small

discrepancy between ∆SQuniv and −∆Fsys/T was unexplored. The goal of the next

chapter is to remedy these shortcomings of Ref. [1], to give a more realistic and

systematic account of SQuniv in comparison with classical microcanonical behavior in

the free energy relation. After arriving at a good quantum account of classical second

law behavior, later chapters will then develop a route to exploring and understanding

new types of specifically quantum thermodynamic behavior.
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CHAPTER III

QUANTUM MICROCANONICAL ENTROPY, BOLTZMANN’S EQUATION,

AND THE SECOND LAW

This chapter includes previously published material co-authored by Michael E.

Kellman [2]. Michael Kellman and I both contributed to developing the model

and theory, analyzing the results, and writing the manuscript. I performed the

computations.

Adapted with permission from Ref. [2]. Copyright 2019 American Chemical

Society.

3.1. Introduction

Classical statistical mechanics is perhaps most often founded on the idea of the

microcanonical ensemble and a suitable notion of entropy, such that the second law

can be stated in the classic formulation of Clausius that the entropy increases in

a spontaneous process: ∆Suniv > 0. In quantum thermodynamics and statistical

mechanics, this raises a fundamental question. If the “universe” (defined as any

closed interacting and entangling system-environment composite entity) is taken to

be in a pure state, by that fact the quantum von Neumann entropy is identically equal

to zero. Then what, if anything, fills the role of Suniv? We have explored an approach

to this question in a recent paper [1] in which we defined and computationally tested

in a system-environment universe a new quantum entropy SQuniv that is distinctly

different from the von Neumann entropy. This new entropy is briefly recapitulated

here in Section 3.5 before the presentation of computational results; for a deeper

discussion, the reader should see Ref. [1]. We regard our focus on a new approach to

34



quantum entropy to be part of a broad examination of the foundations of quantum

thermodynamics and statistical mechanics; a partial listing of contributions can be

found in Refs. [6–8, 10–19, 28–32, 36, 37].

We were able to recover reasonable thermodynamic behavior, with ∆SQuniv > 0

and a notion of a quantum microcanonical ensemble, with SQuniv related to the classical

Boltzmann relation

S = k lnW. (3.1)

In classical thermodynamics and statistical mechanics, there is also the very important

relationship between the free energy change of the system at fixed T, V and the

entropy change of the universe:

− 1

T
∆Fsys = ∆Suniv (3.2)

This equality holds when the free energy change of the system is a surrogate for

the entropy change of the universe in the second law, specifically, at fixed T and V .

This is the meaning of the use of the free energy F as a thermodynamic potential.

In Ref. [1] we tested the relationship corresponding to Eq. 3.2 for SQuniv and found

approximate equality:

− 1

T
∆Fsys ≈ ∆SQuniv. (3.3)

Despite the apparent success indicated by the numerical result expressed in

Eq. 3.3 in reproducing classical thermodynamic relations, with the approach in Ref. [1]

we are left with some real questions. First of all, Eq. 3.3 does not hold exactly.

Generally, in Ref. [1] we found excess entropy production, i.e. ∆SQuniv greater than
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would be expected from the system free energy change ∆Fsys. It is not clear that

the classical expression Eq. 3.2, which is based on the microcanonical ensemble, will

hold generally in our quantum approach, even as an approximation. The newly

defined SQuniv also has a much different formal basis than the Boltzmann equation

Eq. 3.1 and the conceptual constructs that go with the microcanonical ensemble.

These considerations raise the question of whether a microcanonical limit inheres

in the quantum approach and simulations. Furthermore, Ref. [1] was built for

purposes of computational simplicity on some not totally satisfactory properties

of the system, the bath, and the initial state. Ref. [1] used as an environment

a rather artificial temperature bath consisting of harmonically spaced levels with

high degeneracy, chosen to match the evenly spaced levels of a restricted harmonic

system. This artificial “non-continuous harmonic bath” limits the system to a similar

harmonic structure, clearly a very serious limitation. A further consequence is that

this basis automatically leads to an exact microcanonical zero-order energy. In

contrast, classical statistical mechanics is usually based on an idea of a microcanonical

energy shell of finite width. In time-dependent quantum dynamics, the notion of a

fixed energy shell becomes especially problematic. On the other hand, there are

other special assumptions in Ref. [1] that could bias our computations toward the

microcanonical limit Eq. 3.2. In particular, the initial bath states in the simulations of

Ref. [1] were chosen in a way that in retrospect could artificially bias the results toward

microcanonical behavior. Thus, both system and bath were artificially restricted by

comparison with what one would like to model in the real world.

In this chapter we seek to remedy these features, devising a bath that allows for an

approximation to a true continuum of levels, and adopting a more general procedure

for picking the initial state. We investigate this in numerical quantum simulations,
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and find that in the limit of small coupling, we are able to successfully recover sensible

microcanonical behavior. As an interesting counterpoint, we find away from the

microcanonical limit that the excess entropy production is a ubiquitous feature of

time-dependent quantum states that may be a fruitful subject for future exploration

of quantum thermodynamics and statistical mechanics of entangled system and

environment.

The outline of the chapter is as follows. In Section 3.2 we describe the system-

environment “universe” including the interaction of the system with environment

heat bath. Section 3.3 concerns thermalization and the development of a “thermal

basis set.” Section 3.4 presents our initial state selection. Section 3.5 presents the key

notion of the new quantum entropy SQuniv and its relation to free energy and “excess

entropy production.” The final sections present results of simulations, the approach

to microcanonical behavior and the phenomenon of excess entropy production, and a

final discussion.

3.2. Model quantum universe

In this section we describe a model system-environment universe, the

Hamiltonian of the system, of the environment functioning as a realistic temperature

bath, and the interaction between them. The setup is similar to Refs. [1, 6] except

that we make significant modifications to the environment temperature bath used in

those papers, seeking to make it considerably more realistic.

We model a quantum system and quantum environment, taken together as a

pure state “quantum universe” |Ψ〉. The total Hamiltonian of the universe Ĥ is the

sum of the Hamiltonians of the isolated system ĤS and environment ĤE along with

an interaction ĤSE ,
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Ĥ = ĤS + ĤE + ĤSE . (3.4)

We choose to work in the zero-order energy eigenbasis of the system and environment

so that ĤS and ĤE are given in diagonal form. The system zero-order eigenstates will

be denoted by Roman letters |n〉 and the environment states by Greek letters |ε〉.

3.2.1. Model system

For the system we choose a degenerate pair of linearly coupled harmonic

oscillators, a simple model of vibrational motion in ABA triatomic molecules. In

the system energy basis the Hamiltonian is

ĤS = Nω0 + κn, (3.5)

For a given total number of oscillator quanta N for the two-oscillator system, the

quantum number n takes values 0, .., N . We choose various N in the simulations

of this paper. We work in reduced units so that En = n. Details on the system

Hamiltonian are available in Refs. [1, 6] and references therein.

3.2.2. Model environment temperature bath

In Refs. [1, 6], following the work of Gemmer et al. [37], we defined an

environment in such a way that it had properties appropriate to a temperature bath,

in accord with standard relations between thermodynamic temperature and quantum

level patterns in statistical mechanics. While the environment defined in Refs. [1, 6]

behaves properly as a temperature bath, it nonetheless has serious limitations of

physical realism. It consists of a set of harmonically spaced discrete energy levels,
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with high degeneracy of each level. This “harmonic bath” degeneracy pattern was

designed to match the energy levels of the system, which was a set of discrete

harmonic oscillator levels. This was done for reasons of computational simplicity

and tractability, but it means that we were ignoring bath levels not in resonance

with the system levels, unlike a realistic physical temperature bath. Moreover, the

harmonic bath is inadequate in dealing with anything other than a harmonic system,

since its structure makes it unable to simulate anharmonic systems interacting with

an environment. In this paper we seek to rectify these shortcomings by constructing

a more realistic, “continuous bath” environment.

We model the quantum environment in analogy to a classical statistical

description of an environment. In classical statistical mechanics, the entropy S of

an isolated system is given by Boltzmann’s equation

S = kB lnW (E), (3.6)

with W (E) the volume of phase space in the energy shell [E,E + δE], or in the case

of quantized energy levels the number of states within the shell. The temperature is

then determined by the definition

T ≡
(
∂S

∂E

)−1

. (3.7)

For conditions in which other thermodynamic variables besides E are held fixed, and

assuming that the isolated system is large so that its temperature can be treated as

constant under small changes in energy, the solution to Eqs. 3.6 and 3.7 is

W (E) ∼ eE/kBT , (3.8)
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i.e. the number of states grows exponentially with energy. One can then partition

out a small subsystem of the total isolated system and assume that the remainder,

called “the environment,” has practically the same density of states as the total

system because of its relatively large size. Based on the postulate of equal a priori

probabilities of all states of the isolated system, this leads to the classical canonical

ensemble for the subsystem, with Boltzmann probability pn ∼ e−En/kBT . See for

example a nicely intuitive presentation of Einstein [47].

The exponential scaling of W (E) in Eq. 3.8 is an important universal feature of

large environment heat baths [47–49] that is directly connected to the universality

of the Boltzmann distribution for a subsystem interacting with a heat bath, as

shown in Fig. 2.2 and Eq. 2.8. The exponential scaling is valid in limited energy

ranges of approximately constant temperature, e.g. in limited energy ranges accessed

under heat flow to a small subsystem. A detailed discussion of how Eq. 3.8 can

be derived from explicit environment models, including examples with gas and spin

environments, can be found in Ref. [50]; note however that the exponential scaling

is much more general than these gas and spin examples, it must apply just as well

for other explicit environment heat baths such as the oscillator baths often used in

modeling open quantum systems. Here we will simply use the exponential scaling in

W (E) to define a generic type of model environment that has this essential feature

of any true environment heat bath, without going into explicit detail about structure

within the environment.

We will now devise our model quantum environment based on the scaling

W ∼ eE/kBT derived above. We consider environment states in a total energy range

[Emin
env , E

max
env ] that is large relative to the system energy range. The scaling of Wenv

with energy gives the relation
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Wenv =

∫ Emax
env

Emin
env

dWenv

dE
dE = A

(
eE

max
env /kBT − eEmin

env/kBT
)
, (3.9)

where A is a parameter. To set the energies of the individual quantum states, we

begin by inverting the left and right sides of Eq. 3.9 to get

Emax
env = ln

(
Wenv

A
+ eE

min
env/kBT

)
kBT. (3.10)

Using Eq. 3.10 we can now calculate the maximum energy of the environment Emax
env

for any number of states Wenv. For example, if Wenv = 1 then the maximum energy

is

E1 ≡ Emax(Wenv=1)
env = ln

(
1

A
+ eE

min
env/kBT

)
kBT, (3.11)

which is consistent with an environment containing a single quantum state of energy

E1 in the interval [Emin
env , E1]. Considering two environment states Wenv = 2 gives a

maximum energy E2, which is consistent with an environment containing two states

of energies E1 and E2 in the interval [Emin
env , E2]. Continuing in this way, the energy

Eε of the εth environment state is

Eε = ln
( ε
A

+ eE
min
env/kBT

)
kBT, (3.12)

with all of the ε states of energies E1, ..., Eε being contained in the interval [Emin
env , Eε].

The total set of environment energy levels is calculated by setting ε = 1, 2, ...,Wenv in

Eq. 3.12 with fixed parameters Wenv, T, E
min
env , and Emax

env , and with A given in terms of

these parameters by rearranging the left and right sides of the integrated total number

of states in Eq. 3.9. The individual quantum energy levels Eε become logarithmically
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closer together as the quantum number ε increases, leading to a total number of states

that increases exponentially with energy according to Eqs. 3.8 and 3.9. An example

of the resulting environment level pattern is shown schematically in Fig. 3.1.
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FIGURE 3.1. Model fixed temperature environment level density increases
exponentially with energy. This example hasWenv =14 085 states, Emin

env = −2, Emax
env =

10, and T = 6.22 energy units (See Section 3.2.2.)

Throughout this paper we work in units where the Boltzmann constant is kB = 1,

and choose T = 6.22 energy units of the system. Smaller values of T lead to faster

relative increases in the number of states with energy, since T is in the denominator

of the exponential in Eq. 3.8, and larger T give a smaller relative increase in density.

This intermediate value of T (in our basis) is convenient for computations because it

produces a level density that increases only modestly from the top to the bottom of

the basis. Other parameters are indicated in the figure captions.

A similar model quantum temperature bath has recently been presented in

Ref. [35]. We note that we are able to achieve good thermal behavior with a

significantly smaller bath energy range and a generic system-environment coupling, in

contrast to Ref. [35] with a coupling dependent on the bath energy. These advantages
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stem from important considerations of modeling the total universe, namely the further

modification of the system and environment to an appropriate “thermal” basis set,

described in Section 3.3, and the method of varying the initial bath state together

with the initial system state, described in Section 3.4.

3.2.3. System-environment coupling

The interaction between a real quantum system and environment is generally

very complicated, and we do not wish to presume any particular structure to such an

interaction in our model. Following previous work [1, 6, 37], we therefore model the

interaction Hamiltonian ĤSE as a random matrix with off-diagonal elements chosen

from a Gaussian distribution of mean 0 and standard deviation k. We have also tried

a different type of uniformly distributed random coupling with matrix elements ±k of

equal magnitude but random signs, finding very similar results to those we report here

with the Gaussian random coupling, so our results don’t seem to depend strongly on

the random magnitudes in the coupling (later in Chapter V we will also study a more

structured type of coupling for a different type of environment). The specific values

of k used in this paper can be found in the figures and their captions, and a rationale

for varying k will be introduced later in Section 3.6.2.2. In all cases we choose k to

be much less than the system level spacing, corresponding to weak coupling. Larger

values of k beyond the weak coupling limit could be an interesting subject of future

research, but are beyond our scope here.

3.2.4. Time evolution and simulations

To determine the time-dependent behavior of the universe pure state |Ψ〉, we

first numerically diagonalize the universe Hamiltonian Ĥ and then transform the
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initial state into the energy eigenbasis. A series of time steps are calculated from the

initial state using |Ψ(t)〉 = e−iĤt/~|Ψ(0)〉, and at each time step the state |Ψ(t)〉 is

transformed back into the zero-order basis to examine the dynamical behavior. There

is no compounding numerical error over time since each subsequent time step does

not depend on the previous step.

At each time step, the statistics of the system are determined by calculating the

reduced density operator of the system ρ̂S , obtained by taking the partial trace over

the environment of the universe density operator ρ̂ = |Ψ〉〈Ψ|,

ρ̂S = TrE ρ̂ =
∑
ε

〈ε|Ψ〉〈Ψ|ε〉. (3.13)

3.3. Thermalization and “thermal basis set”

The obvious universe basis set to use would seem to be the system-environment

tensor product basis {|n〉}⊗{|ε〉} with zero-order energy levels given by Euniv = En+

Eε. However, we have found that it is very useful to truncate this basis to a smaller

subset, called the “thermal basis set,” for the following reasons. At equilibrium, we

expect the system embedded in the bath to be described by a Boltzmann distribution

at the designed temperature T . We will use this as an important check that our model

displays reasonable thermodynamic behavior. Initially we did simulations (details of

the method in Sections 3.2.4 and 3.4) using the tensor product basis, a schematic of

which is shown in Fig. 3.2. However, we found when using the tensor product basis

that the system would not thermalize to a proper Boltzmann distribution, indicating

unrealistic thermodynamic behavior. We now explain the reasons for this, and the

remedy that we have devised.
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Fig. 3.2 shows the tensor product basis, as well as the truncated “thermal” basis

that we eventually adopted. In the figure, the basis is visually separated into sub-basis

set “columns” |n〉⊗{|ε〉} for each state n = 0, 1, 2 of a three level system paired with

all the environment states ε = 1, ...,Wenv as shown in Fig. 3.1. It can be seen that the

tensor product basis contains two qualitatively distinct types of regions. In the central

region of states with 0 ≤ Euniv ≤ 10, tensor product states are present containing

each of the system states, so the system can transition between all of its energy levels

by exchanging heat with the environment. The exchange of heat providing access to

all of the system states is what produces the Boltzmann distribution in statistical

mechanics. In general, this “thermal” part of the basis occupies the energy range

Emax
sys + Emin

env ≤ Euniv ≤ Emin
sys + Emax

env . (3.14)

Consider now the outer regions Euniv < 0 and Euniv > 10 (respectively Euniv <

Emax
sys + Emin

env and Euniv > Emin
sys + Emax

env ). Above Euniv = 10 the system cannot

transition to its n = 0 state in the n = 0 column of Fig. 3.2 since there are no

universe states with energy greater than 10 in that column. This means that the

environment has so much energy that it cannot absorb heat from the system, which

does not make sense for a large environment at finite temperature like we are trying

to model. The result is that in the computations, system probabilities get stuck in

high energy system states and are unable to thermalize to a Boltzmann distribution.

Similarly, in the region below Euniv = 0 the system cannot transition to its n = 2

state in the n = 2 column of Fig. 3.2 since there are no universe states with energy less

than 0 in that column. To allow thermalization, we therefore delete these physically

unsuitable regions Euniv < 0 and Euniv > 10 from all columns of the basis, leaving

45



,

-2

 0

 2

 4

 6

 8

 10

 12

 0  2500

Universe Energy

n=0

 0  2500

n=1

Level Density

 0  2500

n=2

Simulation

Basis:

Thermal

Region

Non-Thermal

Non-Thermal

 0  2500

FIGURE 3.2. Energy level density diagram for the full tensor product universe basis,
visually separated into components by the system level n. We use only the “thermal”
region of the SE tensor basis, as described in the text.

the region 0 ≤ Euniv ≤ 10 in our calculations, as indicated by the horizontal lines in

Fig. 3.2. We call this truncated basis the “thermal basis set.”

The claim that the thermal basis leads to proper thermalization in our

calculations, while the full tensor product basis does not, leads to an interesting

question. Presumably, nature “uses” the full tensor product basis, not the truncated

thermal basis. How then does nature avoid the problem with thermalization that

we have encountered in our calculations? A reasonable answer seems to be that

in the real natural environment, the range of Eenv is so large compared to that of

Esys that the considerations presented here do not have any practical effect, i.e.

thermalization is not a problem. In fact, we have seen in simulations that using a

46



larger environment energy range does alleviate the thermalization problem. However,

making the environment bigger also entails additional computational time, which can

make it impractical for our purposes. Another factor may be that in thermodynamic

systems in nature, the coupling between system and environment is weak compared

with what we consider in this paper. In our calculations, the thermal basis truncation

is necessary for thermalization, but also an advantage computationally. This may be

useful for future simulations of larger systems.

3.4. Initial state fabrication, measurement, and time evolution

We want to perform simulations that could relate to experiments that might

actually be carried out in the laboratory on a small system-environment universe.

We will be working in the thermal basis of Section 3.3. We imagine preparation

in a laboratory environment of an unentangled system state whose subsequent time

evolution we want to observe. Consider an SE universe that is already at equilibrium

in an entangled state |Ψeq〉. To prepare a desired system state, suppose we then

perform a measurement of the energy of the system, obtaining one of the zero-order

system energy eigenvalues. In a conventional description of measurement, we have a

new SE state |Ψ(t = 0)〉 that is the normalized projection of |Ψeq〉 onto the system

state |n〉 that was the result of the measurement,

|Ψeq〉 → N |n〉〈n|Ψeq〉 ≡ |Ψ(0)〉, (3.15)

where N is a normalizing constant. We can now time-evolve this state and watch its

evolution, by hypothesis to a new equilibrium state, with associated quantum entropy

production ∆SQuniv.
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This process of measurement, time evolution, and re-equilibration is what we

will model in our simulations. The procedure we use is illustrated with a particular

example in Fig. 3.3. To begin, we need the initial equilibrium state |Ψeq〉 that will be

measured as in the scheme above. However, a priori we do not know how to write

down such a complex entangled state. We therefore “synthesize” this state as follows.

We start with an “artificial” pre-equilibrated state, an example is shown in the top

left of Fig. 3.3, and let this time evolve to equilibrium. The artificial state is chosen

to be a separable pure state of the system and environment, |Ψartificial〉 = |sys〉|env〉.

We choose the system to be in a zero-order eigenstate |sys〉 = |n′〉. After choosing

|n′〉, we give probability amplitudes with random phases to all the environment states

|ε〉 that are paired with |n′〉 in the thermal basis, described previously in Section 3.3.

The probability amplitude magnitudes are chosen so that the environment state |env〉

has a Gaussian probability distribution centered at an energy Eenv = Euniv−En′ that

depends on the system level n′ and the system + environment energy Euniv. We

choose Euniv = 5 so that the peak of the universe state |Ψartificial〉 is in the center of

the thermal basis energy range 0 ≤ Euniv ≤ 10 from Section 3.3.

The state |Ψartificial〉 is then time evolved, again in the thermal basis following

the method of Section 3.2.4 until it reaches an equilibrium state |Ψeq
artificial〉 with

steady Fsys, S
Q
univ, and zero-order system probabilities ρn,nS that fluctuate about a

Boltzmann distribution. The state |Ψeq
artificial〉 is then what we take as our starting

equilibrated SE state. The subscript “artificial” is meant not to diminish the quality

of this equilibrated state, but simply to indicate its origin. An example of the state

|Ψeq
artificial〉 is shown in the top right of Fig. 3.3, where the probability contributions for

the state are separated into three components for the three system levels n = 0, 1, 2.
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FIGURE 3.3. Schematic of the model measurement procedure used to generate the
initial states |Ψ(0)〉 used in the computations. Details are in the text.

To mimic a measurement of the zero-order energy state of the system with a

definite outcome, we then project the equilibrated state |Ψeq
artificial(t)〉 onto one of the

system zero-order eigenstates |n〉 following Eq. 3.15, “collapsing the wave function”

to get our initial state |Ψ(0)〉. In Fig. 3.3 an example of a projective measurement

to the n = 0 level is shown. The projection takes the n = 0 component of the

state |Ψeq
artificial〉, circled with a red dashed line; multiplies the state coefficients by a

normalizing constant N ; then uses this normalized state as the initial state for the

simulations |Ψ(0)〉 as shown in the bottom left corner of Fig. 3.3.

The initial states |Ψ(0)〉 “synthesized” through this model of quantum

measurement have qualitative properties that are suitable for studying quantum state

thermalization. First, the majority of the state probability is concentrated in a small

range around the central energy Euniv = 5, somewhat similar to a microcanonical
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energy shell that contains all of the classical state probability. Thus, we might expect

microcanonical-like thermodynamic behavior from the state. At the same time, the

state also has decaying tails with some small probability at high and low energies,

as expected for realistic quantum states with energy uncertainty. In sum, we believe

that the state probabilities are distributed over different energies in a reasonable way.

Second, the state has significant variations in probability between basis states, with

the exact distribution being determined by dynamics within the SE universe leading

up to the measurement. These variations would be expected in real states, as opposed

for example to the highly ordered probability distribution of the artificial state. We

conclude that the initial state |Ψ(0)〉 has reasonable properties for a quantum state

that could be made in a lab and that might be expected to behave in a microcanonical-

like way.

We will time evolve these states and present results in Section 3.6 on

thermodynamic behavior of the system and of the entropy SQuniv. But first, we will

recapitulate the theoretical foundation for SQuniv in Section 3.5.

3.5. Quantum entropy of the universe, free energy, and excess entropy

production

In this Section, we briefly recapitulate the idea of the quantum entropy of the

universe SQuniv developed in Ref. [1]. Then, we introduce the idea of excess entropy

production beyond the microcanonical entropy, from comparison of the behavior of

SQuniv to classical results for the behavior of the system free energy and microcanonical

entropy.

The basic idea is to define a type of entropy for a pure quantum state that

will increase suitably during spontaneous processes. This will necessarily be different
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from the standard von Neumann entropy. In Ref. [1] we defined an entropy SQuniv

and conventional system properties Esys, Ssys, and free energy Fsys and computed

their dynamical behavior for a model system-environment universe. In particular, we

tested the behavior of these entities against the fundamental thermodynamic relation

Eq. 3.2. Briefly, as developed in detail in Ref. [1], we define the quantum entropy

SQuniv for a pure SE state as the standard Shannon entropy defined with respect to

the zero-order energy basis {|α〉} = {|s〉|ε〉} of the SE complex:

|ΨSE(t)〉 =
∑
α

cα(t)|α〉. (3.16)

Taking

pα(t) = |cα(t)|2 (3.17)

we define the “entropy of the universe” as

SQuniv = −
∑
α

pα ln pα (3.18)

Our procedure in the following is to calculate −T∆SQuniv, and compare this with a

separate calculation of ∆Fsys. To the extent that these two quantities are equal, we

will obtain a recovery of standard thermodynamics ideas and results. The general

method gives ∆Ssys for various initial states as the change in the von Neumann

entropy ∆SvNS = −∆Trρ̂S ln ρ̂S calculated from the reduced density matrix of the

system, and the temperature T . Accordingly, for the thermalization process, we

calculate the free energy change

∆Fsys = ∆〈ES〉 − T∆SvNS . (3.19)
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The ∆Fsys thus defined takes its standard value, i.e. Fsys(0) = En for an initial

system level n and Fsys = −kT lnZ at equilibrium, since at equilibrium the system

density operator is well described as small fluctuations about a dephased Boltzmann

distribution ρ̂S = exp(−ĤS/T )/Z. Thus, ∆Fsys is equivalent to the microcanonical

entropy change expected classically in Eq. 3.2, and is used as a measure of classical

behavior for the new entropy SQuniv.

Entropies with varying similarity to Eq. 3.18 have been considered in different

contexts by von Neumann [9, 10] and recently by Han and Wu [30] in connection

with a “quantum H-theorem”; and also by Kak [31] and Stotland et al. [46] in the

context of quantum information theory. Closest to our approach are Refs. [30, 31];

note should also be made of the work of Esposito et al. [28] and Reeb and Wolf [32]

on irreversible entropy production by a system in a heat bath. The definition of SQuniv

in Eq. 3.18 is proposed in a frankly empirical spirit, with its justification and validity

meant to be judged by its fruitfulness in describing physical phenomena. This seems

to be in keeping with the historical line of development of the idea of entropy in

thermodynamics, and later in statistical mechanics.

In Ref. [1] we tested ∆SQuniv against the equality Eq. 3.2 by computing the

relevant system property ∆Fsys using the reduced density operator of the system.

We found that the two sides of Eq. 3.2 were nearly, but not exactly equal in the

simulations. The computation of ∆Fsys gave results generally in accord with the

microcanonical expectation Eq. 3.2. However, the computed ∆Suniv was slightly

greater than what would be expected from the microcanonical ensemble—there was

excess entropy production. In this paper, in accord with the discussion following

Eq. 3.19, this will be defined as
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∆Sx ≡ ∆SQuniv +
1

T
∆Fsys (3.20)

keeping in mind that it is expected that ∆Fsys < 0. Then excess entropy production

corresponds to the observation that

∆SQuniv > −
1

T
∆Fsys (3.21)

The excess entropy production can then be entirely ascribed to the environment, as

follows. The entropy change ∆SQuniv can be decomposed according to the discussion

of Nielsen and Chuang [51], such that on average the fluctuating ∆SQuniv is equal to

the system von Neumann entropy change ∆SvNsys plus a suitably defined environment

entropy change contribution ∆Senv. Putting this into Eq. 3.20 and using the

inequality from Eq. 3.21 gives

∆Sx = ∆Senv +
∆〈ES〉
T

> 0. (3.22)

The entropy change of the environment is then greater than the amount predicted

by heat flow, ∆Senv > −∆〈ES〉/T, and this environment contribution is the entire

source of the excess entropy production. The excess entropy production was ascribed

in Ref. [1] to energy uncertainty in the time-dependent state of the evolving system-

environment entangled universe state. We will have occasion here to sharpen this

perspective considerably in Section 3.6. For now, it is enough to say that in the

microcanonical limit, ∆SQuniv gives the classical result − 1
T

∆Fsys = ∆Suniv with excess

entropy production zero, while the interesting deviations ∆Sx > 0 related to energy

uncertainty are observed outside of this limit.
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3.6. Results

In this section we evaluate the quantitative results of our simulations with respect

to obtaining proper thermalization, and then evaluate the central results on behavior

of the entropy production ∆SQuniv with respect to the free energy of the system,

microcanonical behavior, and excess entropy production.

3.6.1. Boltzmann thermal equilibration in the thermal basis set.

In Section 3.3 we discussed the necessity to define the “thermal basis set”

to get proper Boltzmann thermal equilibration. Here we describe our actual

computational success with the thermal basis in finding good numerical agreement

between the equilibrium system distribution and the Boltzmann distribution expected

at our designed temperature T . Fig. 3.4 shows three-level and eight-level systems

as examples of the system equilibrium behavior. For reasons of computational

tractability, we later use primarily the two and three level systems in the results

described later in Section 3.6.2, but here also show the eight level system that

extends to higher energies in order to verify the expected curvature of the Boltzmann

distribution.

For the eight level system with energy range 0 ≤ Esys ≤ 7, we expanded the

environment energy range to −7 ≤ Eenv ≤ 10. This gives a tensor product basis with

−7 ≤ Euniv ≤ 17 which we then truncate above and below (following Eq. 3.14) to a

thermal basis set of states in the energy range 0 ≤ Euniv ≤ 10. The resulting thermal

basis covers the same total universe energy range as in Fig. 3.2 but has eight total

system levels instead of three. Using the thermal basis, both the eight and three level
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systems have equilibrium probability distributions ρn,nS in Fig. 3.4 that are very close

to the expected Boltzmann distribution, indicating good thermalization.
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FIGURE 3.4. Mean system probabilities ρn,nS at equilibrium are well fit by a
Boltzmann distribution with Tfit approximately the designed temperature T = 6.22
energy units. (See Section 3.2.2.) The reported error in Tfit is the asymptotic
standard error of the nonlinear least squares fit.

We now describe how we found the probabilities of Fig. 3.4 numerically. Since

even at equilibrium the system undergoes significant fluctuations over time in a

finite model of both system and bath, we time average the diagonal elements of

the reduced density operator ρn,nS (t) in Eq. 3.13 to determine a mean equilibrium

distribution 〈ρn,nS 〉 and then fit with a normalized exponential distribution 〈ρn,nS 〉 ∼
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exp(−En/kBTfit) to determine a best fit temperature. The system reduced density

operator was averaged over 100 time steps at equilibrium that were spread over a

time range significantly longer than the system relaxation time in order to average

out short-lived fluctuations at equilibrium.

The time averaged system-level probabilities 〈ρn,nS 〉 were always within one

standard deviation from the expected Boltzmann probability at the designed

temperature T , consistent with the idea of the system fluctuating about the

Boltzmann distribution at equilibrium. However, despite this success we have noticed

that there usually appears to be a very small remnant of the initial system state in

the final equilibrium distribution, in that its average probability (not including the

standard deviation) is often ∼ 10−3 higher than expected. For example, this can

be seen in the top panel of Fig. 3.4, where the initial state n = 0 probability is

slightly above the red, dotted Boltzmann curve at the designed temperature T = 6.22.

This very small effect appears to be due to the finite size of our model and can

be minimized by increasing the number of states in the calculation at the cost of

additional computational resources. Overall we found good fitted temperatures for

the three level system calculations reported here, with Tfit good to within 5% of the

analytical temperature in 9 out of 10 time windows we examined. For the two-level

system, the Tfit were good to within 11% of T in 7 out of 8 time windows, with the

inferior agreement reflecting the extreme sensitivity of Tfit to the level probabilities

when there are only two system levels. Even so, the average system probabilities

were always within one standard deviation from the expected Boltzmann probability,

consistent with expected Boltzmann behavior. We conclude that the model universe

with the thermal basis set is giving good thermalization behavior. This is certainly

reflected in the visual appearance of the figures.
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3.6.2. Free energy, excess entropy production, and microcanonical

behavior.

3.6.2.1. Free energy and excess entropy production

Having established that thermalization is obtained with the thermal basis set, we

test the fundamental relation −∆Fsys/T = ∆Suniv of Eq. 3.2, now with the quantum

entropy ∆SQuniv on the right hand side. The top panel of Fig. 3.5 shows ∆Fsys and

∆SQuniv for each initial state n of a three level system that is strongly coupled with

a small environment (size and coupling are specified in the figure). The changes in

entropy are significantly larger than the changes in free energy, with the difference

indicating excess entropy production ∆Sx > 0 as defined in Eq. 3.20. For every initial

state we have tested in which the system thermalized to a canonical distribution

at equilibrium, there is some excess entropy production ∆Sx > 0. This evidently

stands somewhat at odds with the standard relation Eq. 3.2 for macroscopic systems

in the microcanonical ensemble. The phenomenon of excess entropy production is

understandable in a small quantum system, for reasons that we will discuss briefly

below. But it raises the question of whether a microcanonical limit holds in the

quantum thermodynamic modeling, and how such a limit is approached in a real

system. We therefore investigate numerically the existence of this microcanonical

limit, when finite quantum effects become negligible. If the quantum SQuniv is found

to agree in this limit, then excess quantum entropy production may be seen as both

a new aspect of thermodynamics at the finite, quantum scale, as well as intelligible

departure from classical microcanonical behavior.
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FIGURE 3.5. Top row : Strong SE coupling k = 3.6× 10−3 to a small Wenv = 9 390
environment generates significant excess entropy production ∆SQuniv > −∆Fsys/T for
all initial states n of a three level system. Bottom row: The coupling k and number of
states Wenv have been decreased and increased respectively by a factor of nine, greatly
reducing ∆Sx as the calculations head toward the macroscopic limit ρ→∞, k → 0.
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3.6.2.2. Approach to microcanonical behavior

Standard thermodynamics generally assumes an infinitely large environment and

small or negligible system-environment interaction, which in our model corresponds

to the limit ρ → ∞, k → 0, where ρ is the number of universe states per unit

energy. Here we ask whether the standard thermodynamic relation Eq. 3.2 between

entropy and free energy will hold in this limit. In the bottom row of Fig. 3.5 we

show the behavior of ∆Sx with a significantly increased ρ and decreased k relative to

the top row. We find a much smaller ∆Sx, i.e. a ∆SQuniv that is much closer to the

microcanonical entropy change.

To more thoroughly investigate the macroscopic limit ρ → ∞, k → 0, we show

the behavior of ∆Sx in Fig. 3.6 for two sets of calculations as the macroscopic limit

ρ → ∞, k → 0 is approached. In each set of calculations we fix the product kρ =

const. because numerically we find that this allows us to approach the desired limit

while maintaining a canonical thermal distribution in the system density operator

ρ̂S at equilibrium. In the figure each of the 〈∆Sx〉 is averaged over 22-100 different

projected initial states to account for variations in the initial environment state,

with each state averaged over 20-50 time steps at equilibrium to account for time-

dependent fluctuations (fewer initial states and time steps were used in the averages

for the largest universes to minimize computational time, however these also show

the smallest error bars towards the lower left of the figure, indicating that they don’t

vary much.) The numerical data points in the plot are suggestive of approach to the

microcanonical limit, but not conclusive, given the lack of data near the origin. We

therefore adopt the strategy of fitting the results with an empirical curve, chosen to

have a conceptual connection to excess entropy production, the better to probe the

k → 0, ρ → ∞ limit. We will first give the form for this empirical curve, and note
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its excellent performance; then discuss the physical grounds for adopting this curve;

and finally discuss the implications for the idea of the microcanonical ensemble.
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FIGURE 3.6. Excess entropy production 〈∆Sx/kB〉 varying k with a fixed product
kρ, at equilibrium, averaged over different initial states and time steps to smooth
fluctuations, details in the text. Extrapolating the fitting function Eq. 3.24 to the
macroscopic limit k → 0, ρ → ∞ gives the classical result 〈∆Sx〉 = 0 to within the
asymptotic standard error of the fit parameter c, see Table 3.1.

The empirical formula has three fitting parameters a, b, c:

∆Sx/kB ≈ a ln (1 + k/b) + c. (3.23)

The log function gives the overall form of the curve, and goes to zero (as the data

should) in the supposed microcanonical limit where the scaled coupling strength

k/b → 0. The parameter a is an overall empirical scale factor for the curve. The

parameter c gives any residual deviation from microcanonical behavior in the limit of
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a b c
3 Level System (1.1 ±0.2)× 10−1 (1.4± 0.5)× 10−3 (−3± 4)× 10−3

2 Level System (3 ±1)× 10−2 (7± 5)× 10−4 (−4± 4)× 10−3

TABLE 3.1. Non-linear least squares fit parameters and asymptotic standard errors
for the empirical excess entropy production curves of the two model systems in
Fig. 3.6. The y-intercept parameter c is zero to within one standard error, indicating
that extrapolating the fit to the macroscopic limit k → 0, ρ→∞ gives the standard
microcanonical result ∆Sx = 0.

zero coupling k → 0. The meaning and justification of the empirical formula (3.24)

will be considered further below. We here note that this simple relation gives a very

good fit to the numerical results in Fig. 3.6. The fit parameters a, b, c and other

results concerning the fit are shown in Table 3.1. The parameter c determines the

best fit estimate of ∆Sx in the macroscopic limit k → 0, ρ → ∞, and as seen in

Table 3.1 it is zero to within the error of the fit. This indicates that empirically

the best fit curve indeed shows approach to a numerical microcanonical limit where

∆SQuniv = −∆Fsys/T , with no excess entropy production.

The black fitting curve for the three level system in Fig. 3.6 is suggestive of

what may happen in the limit k → 0, but due to the computational demands of

diagonalizing the Hamiltonian for an increasing number of states as ρ increases, our

calculations remain fairly far from the k → 0, ρ→∞ limit. We therefore would like

to be able to show that the same curve holds at smaller k in calculations we can

complete with a smaller system (and correspondingly larger ρ and hence environment

size). Fig. 3.6 shows in blue a series of calculations using a two level system, with

fixed kρ = const. as before. The simulation results are well fit by a function of the

same form throughout the region of smaller k accessible in these calculations, again

with an intercept parameter c = 0 to within the error of the fit. In sum, both lines

of computational evidence support the idea that the empirical formula of Eq. 3.24
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approaches the desired microcanonical behavior Eq. 3.2 in the limit of small k, large

ρ.

3.7. The empirical formula and sources of excess entropy production

Having established the success of the simulation data and the analysis with the

fitting curve Eq. 3.24 in achieving the hoped-for microcanonical limit, we turn to a

consideration of where the empirical curve comes from and why it is reasonable.

Excess entropy production can be understood as resulting from two significant

differences that arise in considering the evolution of time-dependent quantum states

and the assumptions of the classical microcanonical ensemble: (1) the absence of a

strict quantum microcanonical energy shell, with the presence of quantum mechanical

spreading of the time-dependent state; and (2) non-microcanonical variations in

probability among states in the quantum probability distribution. We consider these

differences and their effect on the quantum entropy in turn. The first consideration

will give rise to the parameter 1/b that determines the shape of the log function in

the fitting curve; the second to the parameter a that acts as a scale factor. Then c

reflects any residual deviation from microcanonical behavior in the empirical fit.

First, the classical microcanonical ensemble is based on a fixed energy shell

[E,E + δE] containing a total number of states W = ρδE, where ρ is the density

of states. The entropy change is independent of the energy width δE since the

latter is fixed in ∆Suniv = kB lnWeq/W0 = kB ln ρeq/ρ0. On the other hand, a time-

dependent quantum state can spread out across basis states of varying energy due

to interactions among non-resonant zero-order energy levels. In our calculations the

SE interaction causes the environment to access off-resonant levels in the dynamics,

similar to how an atom in a definite excited state will emit photons with a variable-
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energy Lorentzian lineshape into the environment. The quantum state can be thought

of as having an “effective energy width” δEeff that can change, generally increasing

during the equilibration process. This spreading in the energy width is for practical

purposes irreversible in our model, since recurrences in the dynamics happen only on

extremely long timescales. As a simple model for this effect, we suppose the effective

energy shell width to increase in proportion to the system-environment coupling

k, δEeq = δE0(1 + k/b), where b is an unknown parameter. This effect by itself

entails excess entropy production ∆Sx ∼ ln(1 + k/b) beyond the microcanonical

value, accounting for part of the form of the empirical formula.

A second consideration is crucial as well, and gives rise to the scale factor a, which

empirically is much less than 1.0 in the fit. The microcanonical ensemble assumes

equal probabilities pα = 1/W for all states in the ensemble, which is essential in

going strictly from an entropy in terms of the probabilities of the microscopic states

to Boltzmann’s relation of proportionality ∼ lnW . On the other hand, the quantum

spreading to basis states outside the initial energy interval results in probabilities that

are much less than those within the bulk of the distribution. This is seen clearly in the

projected initial state in Fig. 3.3, where the rapidly decaying tails of the distribution

have much lower probability than states near the center of the distribution. As

this initial projected state evolves in time, the tails spread and grow a bit as some

probability shifts away from the bulk of the distribution at E ∼ 5 to higher and lower

E for the equilibrium time evolved state in Fig. 3.3, increasing the effective width of

the quantum energy shell and generating excess entropy production. But since the

probabilities associated with the spreading are smaller than those in the bulk of the

distribution, their entropy contribution will be smaller as well. This can be modeled
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through the inclusion of the additional prefactor a � 1 that reflects the discounted

excess entropy production from these states, so that ∆Sx ∼ a ln(1 + k/b).

Finally, as indicated above, the additive constant c reflects any residual deviation

of the excess entropy production from zero in the supposed microcanonical limit, so

that our complete empirical formula is

∆Sx/kB ≈ a ln (1 + k/b) + c. (3.24)

3.8. Discussion and conclusions

In Ref. [1] we began to explore a quantum “entropy of the universe” SQuniv of a

pure system-environment quantum state, devised to extend the classical statement of

the second law ∆Suniv ≥ 0 to quantum entangled systems. The theoretical rationale

for SQuniv was carefully developed in Ref. [1], and approximate agreement with the

standard classical thermodynamic relation of Eq. 3.2 was obtained, but the procedure

there was limited by severe assumptions about the temperature bath and system

state preparation. In the present paper, we have developed innovations that make

for a much more realistic model. We have used these refinements to investigate in

systematic computations the idea of microcanonical behavior in the quantum system,

and point the way to future developments beyond the microcanonical paradigm.

Specifically, we have introduced three innovations. First, in Ref. [1] the

environment temperature bath consisted of states with harmonic spacing equal to

those of a likewise harmonic system of levels. Thus, the bath of Ref. [1] did not

resemble a near-continuous spectrum of a realistic bath, nor was the whole approach

capable of dealing with anything other than a harmonic system, obviously a severe

limitation. In the present work, we have devised a discrete level approach to a model
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for a near-continuous bath, eliminating the previous limitations. Second, we have

amended the system-environment basis set to a “thermal basis” from the obvious

choice of the tensor product basis. The motivation for this was the finding that the

tensor product basis has trouble achieving thermal equilibrium in the simulations,

for reasons closely connected to the structure of that basis. Truncating the tensor

product basis in a rational way to give the “thermal basis” gives far superior results

for thermalization. In addition, since the thermal basis is a truncation of the tensor

product basis, it also sets a path to a much more efficient basis for larger quantum

thermodynamic systems. Third, we have devised a more realistic initial state than

that of Ref. [1]. We have done this by modeling a process of measurement of a given

system-environment state, which then serves as the starting point for the numerical

simulation of the approach to equilibrium.

Within this formal and computational setting, we have shown that when a

system-environment pure state |ΨSE〉 evolves to give a thermal distribution, it

is possible to get behavior of SQuniv in agreement with its classical free energy

correspondent according to the equation ∆Fsys = −T∆SQuniv in the microcanonical

limit, involving both the system-environment coupling and the environment density of

states. On the other hand, away from that limit, there is excess entropy production, a

phenomenon that may be of future interest in the quantum thermodynamics of small

systems away from the classical limit. The excess entropy production fits an empirical

formula with a basis in time-energy uncertainty, with unequal spreading among basis

states, especially outside the energy shell.

In summary, the present paper builds on the earlier Ref. [1], which proposed a

new quantum entropy SQuniv of a system-environment universe. Here, we introduced

developments of the basic idea of Ref. [1] that give a much more careful assessment
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of the question of quantum microcanonicality, including the entropy-free energy

relationship of Eq. 3.2. Our work is in concordance with and extends the line of

work on evolution of quantum pure states to a condition of thermal equilibrium.

One feature brought out here is the phenomenon of excess entropy production

away from the microcanonical limit. This could be an interesting phenomenon in

future exploration of quantum thermalization. On the other hand, the entropy SQuniv

might be of even more interest when there is non-thermalizing behavior in far-from

equilibrium systems.

3.9. Connection to later work

This chapter has demonstrated that SQuniv can serve as a quantum generalization

of the classical entropy Suniv in the second law, since SQuniv follows the standard

thermodynamic microcanonical result ∆SQuniv = −∆Fsys/T with a realistic model

of a system-environment quantum pure state |ΨSE〉. To obtain this result, it was

necessary to take the model to a type of classical “microcanonical” or “macroscopic”

limit of a large bath and weak coupling, where standard thermodynamic behavior

prevails. “Excess entropy production” ∆Sx was observed outside of this limit, with

SQuniv > −∆Fsys/T , but this was left largely unexplored apart from an empirical fit

curve analysis. From this analysis it is unclear how to analytically formulate ∆Sx and

whether it is related to novel types of quantum thermodynamic effects. The remainder

of this dissertation will be focused largely on addressing these questions. The next

chapter will give a much more systematic account of excess entropy production,

corroborating and extending the ideas of this chapter to analyze situations of extreme

∆Sx and give an analytical account of the behavior for a specific class of states. The
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remaining chapters will then develop a model to look for new types of quantum

thermodynamic behavior, with ∆Sx playing a critical role.
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CHAPTER IV

SYSTEMATIC ANALYSIS OF EXCESS ENTROPY PRODUCTION

This chapter includes previously unpublished material co-authored by Michael

E. Kellman [3]. Michael Kellman and I both contributed to developing the model

and theory, analyzing the results, and writing the manuscript. I performed the

computations.

4.1. Introduction

Recent years have seen a renewal of interest in the foundations of quantum

statistical mechanics, for both theoretical reasons and practical interests in new

technologies. A prominent line of research has investigated thermodynamic

behavior in pure state systems. Arguments based on the “eigenstate thermalization

hypothesis” [20] and “typicality” [12] in entangled systems stake a persuasive

claim that thermalization is a property of entanglement in pure states of complex

systems. Nonetheless, we have called attention to an apparent gap in the quantum

thermodynamics of pure states. The classical second law states that the “entropy of

the universe” is always increasing

∆Suniv > 0 (4.1)

and that the following relation between free energy and entropy change holds:

− 1

T
∆Fsys = ∆Suniv. (4.2)
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However, these relations seem to be missing in quantum thermodynamics of a pure

state, because the standard von Neumann quantum entropy is zero for such a state.

In Chapter III and Ref. [2] we defined a Suniv for a pure system-environment (SE)

state, compared with ∆Fsys, and found that we could recover the microcanonical limit

Eq. 4.2 for equilibration and thermalization. This followed an earlier presentation [1]

of similar ideas which involved a heat bath with less realistic features. Others have

introduced somewhat related definitions of the entropy of a pure state, both for

analyzing pure state thermodynamics [10, 29, 30] and characterizing the information

content of pure states [31, 46]. Cosmologists and black hole physicists speak of a

“thermodynamic entropy” of a quantum system that is different from the standard

entanglement or von Neumann entropy.

Our Suniv is a realization of a quantum thermodynamic entropy explicitly suited

for a system-environment or SE total system or “universe.” The focus in this chapter is

excess entropy production, i.e. thermodynamic entropy ∆Sx beyond what is implied

in the classical relation (4.2). This is a quantum phenomenon that was noted in

Chapter III and Refs. [1, 2], in the course of exploring the attainment of the classical

microcanonical limit in which Eq. 4.2 holds. In the present chapter, the goal is a

deeper systematic account of the excess entropy production. A unified understanding

is obtained of the quantitative behavior of ∆Sx between extreme limits of zero (i.e.

classical) and maximal, massive excess entropy. We anticipate that this understanding

will be useful for analysis of highly unusual, nonclassical situations in quantum

thermodynamics of complex systems.
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4.2. Basis set and quantum thermodynamic entropy

We consider the formal definition of the quantum entropy of the pure state

and consider its rationale. The definition of SQ will depend on a choice of basis

set. Our choice is the zero-order (ZO) SE energy basis. In this and the following

sections we argue that this choice, and only this choice, will allow recovery of classical

microcanonical results, including the Boltzmann distribution, the canonical ensemble,

the identity in Eq. 4.2 in the limit of weak coupling, and the standard microcanonical

relation ∆Senv = Q/T between entropy change of the environment and heat flow.

To define the entropy we need to choose a “reference basis” {|α〉}. In this basis

a pure state is expressed as

|ΨSE(t)〉 =
∑
α

cα(t)|α〉. (4.3)

Then taking

pα(t) = |cα(t)|2 (4.4)

we define the quantum entropy

SQuniv = S
{α}
univ = −

∑
α

pα ln pα (4.5)

with respect to the reference basis {|α〉}. This expression for the entropy has an

evident relation to the Shannon information entropy. In the quantum context it has

been discussed as the “conditional information entropy” by Stotland et al. [46].

This entropy depends on the choice of reference basis. We choose the zero-order

energy basis
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{|α〉} = {|s〉|ε〉} (4.6)

of the SE complex. Let the state of the universe be expanded in terms of the zero-

order system-environment bases {|s〉} and {|ε〉}:

|Ψ〉 =
∑
s,ε

cs,ε|s〉|ε〉 (4.7)

with {|s〉} and {|ε〉} the ZO basis sets of system and environment. Eqs. 4.3-4.7

comprise the essence of our quantum entropy.

What is the rationale for this? We will be simulating a quantum total system

SE in which energy flows between a system S and an environment E—a process of

heat flow. In statistical mechanics we typically have in mind the measurement of

an S energy level, e.g. the energy of a Brownian particle in a gravitational field.

This justifies the choice of the zero-order system basis. Then, if we are concerned

with thermalizing energy flow, the most natural further observation would be of the

zero-order energy of E to give a total zero order energy of SE . This naturally leads

to the basis of ZO energy states {|α〉} = {|s〉|ε〉}. However, we might not be so

interested in measuring the E energy—that would be the usual case in the analogy

to the Brownian particle. There are further grounds to favor the SE ZO basis. We

are naturally interested in constructs that relate to the microcanonical ensemble for

a fixed total energy. Since we are interested in observing the S zero-order energy, the

only way of getting a total energy would then seem to be as the sum E = ES+EE , i.e.

the sum of zero order energies. Having singled out the S states and the energy sum

E, the obvious basis is then the ZO SE basis. This justification seems compelling,

71



but we will introduce further arguments based on the idea of a division of the entropy

SQ into system and environment components, to which we turn next.

4.3. SQuniv as a sum of system and environment terms

In this section we show how the quantum entropy can be divided into a sum of

system and environment components. The system component comes from the reduced

density matrix; the environment component is an averaged sum of contributions,

weighted by system probabilities. We begin with the general expression for the

Shannon entropy of a bipartite system

S = −
∑
i,λ

pi,λ ln pi,λ. (4.8)

We will split this into separate parts for i and λ, following Neilson and Chuang [51].

To begin, define the total probability for i as

pi =
∑
λ

pi,λ. (4.9)

Define the conditional probability for λ when the first index is i as

pλ|i =
pi,λ
pi
. (4.10)

Using the newly defined probabilities and the normalization
∑

λ pλ|i = 1 the entropy

becomes [51]

S = −
∑
i,λ

pipλ|i ln pipλ|i = −
∑
i

pi ln pi +
∑
i

pi

(
−
∑
λ

pλ|i ln pλ|i

)
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= Si + 〈Sλ〉{i}. (4.11)

Eq. 4.11 gives the general decomposition of the Shannon entropy of a bipartite system

into separate parts for the two systems. The entropy Si is a standard Shannon entropy

for the first system. The second system has a conditional entropy 〈Sλ〉{i} that is

averaged with respect to the probabilities pi for the first system.

Now consider the quantum entropy Eq. 4.5 with {|α〉} = {|s〉|ε〉} as the reference

basis of system-environment zero-order states and pα = ps,ε = |cs,ε|2. The entropy

can be separated into system and environment parts, in parallel with Eq. 4.11

SQuniv = SQsys + 〈SQenv〉{s}. (4.12)

The system entropy

SQsys = −
∑
s

ps ln ps (4.13)

uses system probabilities that can be calculated from the reduced density matrix with

diagonal elements ps =
∑

ε ps,ε = 〈s|ρ̂S |s〉. SQsys agrees with the standard quantum

von Neumann entropy of the system when ρ̂S is dephased in the system zero-order

energy basis {|s〉}, as in the Boltzmann thermal state and our initial states. The

environment entropy is then

〈SQenv〉{s} =
∑
s

ps

(
−
∑
ε

pε|s ln pε|s

)
. (4.14)

with pε|s = ps,ε/ps. The subscript {s} in Eq. 4.14 denotes that the system probabilities

ps are calculated in the {|s〉} basis in defining the conditional entropy 〈SQenv〉{s}.
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Eqs. 4.12-4.14 give our method for calculating the total entropy SQuniv in terms of

system SQsys and environment 〈SQenv〉{s} parts that is used throughout this paper.

4.4. Excess entropy production in the environment

We have shown how to decompose the total entropy change ∆SQuniv into separate

parts ∆SQsys and ∆〈SQenv〉{s} for the system and environment. Now we give a heuristic

argument for how to relate these to their classical microcanonical counterparts

∆Smicrosys and ∆〈Smicroenv 〉sys. We will find that excess entropy production is a component

of the environment entropy change beyond the classical Q/T. We will find later in

Section 4.6 that this correlates to analytical results with the Lorentzian superposition

states in our numerical simulations.

First consider the classical entropy change during system-environment

thermalization. The system and environment begin in isolation, corresponding to

a microcanonical ensemble of W0 = ρ0δE states with entropy Smicrouniv,0 = lnW0, where

ρ0 is the initial density of states and δE is the width of the microcanonical energy

shell. The system and environment then exchange heat, evolving to fill a larger set

of Wf = ρfδE states. The microcanonical entropy change is

ln
ρf
ρ0

= ∆Smicrouniv = ∆Smicrosys + ∆〈Smicroenv 〉sys (4.15)

where the last equality uses Eq. 4.11. The environment entropy change in Eq. 4.15 is

given by the standard relation between the heat Q and temperature T ,

∆〈Smicroenv 〉sys = Q/T, (4.16)
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as shown in detail in Appendix A. We now show how these quantities can be related

to their quantum counterparts.

As anticipated in our previous work [2], and developed analytically for time-

dependent states in Section 4.6, the quantum entropy change can be analyzed in

terms of a microcanonical-like relation

SQuniv ∼ lnWeff (4.17)

with an effective number of states Weff = ρδE, and a variable effective energy width

δE (we will have a bit more to say about the relation to Ref. [2] in Section 4.6.2). The

width generally increases because of quantum state spreading during the dynamical

equilibration process. This results in a greater width for the final equilibrium state

than the initial state δEf > δE0. Then the total entropy change is

∆SQuniv ≈ ln
ρf
ρ0

+ ln
δEf
δE0

(4.18)

The term ln ρf/ρ0 is the classical system-environment entropy change from Eq. 4.15.

The second term is the excess entropy production due to the quantum spreading of

the energy shell:

∆Sx = ln
δEf
δE0

. (4.19)

We now use this system-environment decomposition of the entropy Eq. 4.12 to

show that ∆Sx is contained entirely within the environment. Note that the quantum

and classical entropy changes of the system are the same ∆SQsys = ∆Smicrosys since

in both cases the system thermalizes to a Boltzmann distribution. Then expressing
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∆SQuniv on the left of Eq. 4.18 in terms of system and environment parts we have that

the quantum entropy change of the environment is

∆〈SQenv〉{s} ≈ ∆〈Smicroenv 〉sys + ln
δEf
δE0

=
Q

T
+ ∆Sx (4.20)

with the approximation indicated because this is a heuristic argument, in keeping with

Eq. 4.18. The quantum entropy change of the environment is thus generally greater

than the classical Q/T , with excess entropy production related to the increase in the

width of the quantum energy shell.

With this analysis at hand, we return to the question of the justification for

the SE ZO reference basis in defining SQuniv in Eqs. 4.3-4.6 of Section 4.2. Our

decomposition of SQuniv into system and environment parts gives standard results in

the classical limit for a fixed microcanonical shell: ∆SQsys = ∆Smicrosys and ∆〈SQenv〉{s} =

Q/T . Other choices of basis would give different values for the entropy changes. This

strongly supports the choice of the {|s〉|ε〉} reference basis as the unique basis that

gives standard results in the classical microcanonical limit.

4.5. Time-evolving Lorentzian states

Now we relate the preceding considerations to two illuminating situations that

are both computationally transparent and analytically tractable. The model system

and environment are the same as in Chapter III and Ref. [2]. There we observed

in computations that there was excess entropy production. However, in the weak

coupling/infinite density of states limit, the excess entropy went to zero, and

classical microcanonical results were obtained: the free energy - entropy relation

Eq. 4.2. Chapter III was about time evolution of a wave packet constructed from a

superposition of many |s〉|ε〉 zero order states. The initial wave packet had a single S
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state and many E states in the product. The idea was to mimic a reasonable initial

state within a microcanonical energy shell, with the width of the shell corresponding

to the range of environment zero order energies. The classical limit was obtained as

the coupling k and density of states ρ were varied.

However, it is not so clear under what general conditions classical behavior will be

recovered, and what governs the magnitude of excess entropy production. What role

is played by the width of the microcanonical shell? Here we probe this by comparing

the time evolution of two very different types of initial state. One is a superposition of

many SE initial states, corresponding to a microcanonical shell of significant width.

The second is a single zero order SE state. Here the width of the microcanonical

shell is essentially zero. The suspicion is that nonclassical effects will be much more

pronounced with this state. Then classical behavior would be something that is

attained only by taking a superposition of many zero order SE states, corresponding

to a finite microcanonical shell width. This surmise is essentially what we will observe

in the following simulations, as described next.

4.5.1. Initial states

We investigate these questions with two kinds of simulations. One takes a random

superposition of |s〉|ε〉 zero-order states under an overall Lorentzian window. The

second takes a single |s〉|ε〉 zero-order state—an extreme case of a Lorentzian, with

zero width. The results, shown in Figs. 4.1 and 4.2, will be discussed in the following

sections.

The reason for considering Lorentzians is as follows. The energy eigenstates

are Lorentzian superpositions of zero order states, as pointed out by Deutsch in

his introduction [21] of the eigenstate thermalization hypothesis (ETH). Following
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the analysis of Appendix B, a single |s〉|ε〉 zero order state then consists of a

Lorentzian superposition of eigenstates, and evolves into a Lorentzian of zero order

states. Furthermore, an initial Lorentzian time-dependent superposition evolves into

a (wider) Lorentzian superposition. Thus, with Lorentzian initial states, down to the

limit of zero-width Lorentzian |s〉|ε〉 state, we evolve to Lorentzian final states. This

gives a unified class of states for systematic analysis. There are analytical results that

can be brought to bear on the statistics of these Lorentzians, and also the entropy

production. Furthermore, the Lorentzian width has a nice correspondence to the idea

of a microcanonical shell width. Hence, Lorentzians are ideally suited for the kind of

systematic investigation we want to undertake.

We consider initial states with the system in a single level |s〉 and the environment

described by fluctuations g̃s,ε about a Lorentzian distribution L0

|Ψ0
L〉 ∼

∑
ε

g̃s,ε
√
L0|s〉|ε〉 (4.21)

The Lorentzian distribution at time t = 0 is

L0(Es + Eε) =
1

π

γ0/ρ0

(Es + Eε − E0)2 + γ2
0

(4.22)

where ρ0 is the density of environment states that pair with the initial system level

|s〉 and E0 and γ0 are parameters that respectively describe the central energy of the

Lorentzian and the half-width at half-max. The g̃s,ε are complex random Gaussian

variates that give random deviations to the |s〉|ε〉 basis state probabilities about the

Lorentzian average. These are taken as as

g̃s,ε =
gs,ε + ig′s,ε√

2
(4.23)
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FIGURE 4.1. Average probabilities |〈s|〈ε|Ψ〉|2 for nearby |s〉|ε〉 basis states for (a) an
initial Lorentzian state from Eq. 4.21 with half-width at half-max γ0 = 0.5 and (b)
the corresponding time-evolved state of Eq. 4.26. The asymmetric error bars show the
first and third quartiles of the distribution of probabilities that go into the averages
shown by the data points. (c) Entropy production ∆SQuniv and free energy change
−∆Fsys/T during the time evolution.
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FIGURE 4.2. Average probabilities |〈s|〈ε|Ψ〉|2 for nearby |s〉|ε〉 basis states for (a)
an initial |s〉|ε〉 state from Eq. 4.25 and (b) the corresponding time-evolved state
of Eq. 4.26. The asymmetric error bars show the first and third quartiles of the
distribution of probabilities that go into the averages shown by the data points.
(c) Entropy production ∆SQuniv and free energy change −∆Fsys/T during the time
evolution.
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where gs,ε and g′s,ε are random numbers from Gaussian distributions, e.g.

p(gs,ε) =
1√
2π
e−g

2
s,ε/2 (4.24)

With this definition the average variation is 〈|g̃s,ε|2〉 = 1 so that the basis state

probabilities follow the Lorentzian on average.

Panel (a) of Fig. 4.1 shows an example of an initial random Lorentzian state as in

Eq. 4.21 with an initial width γ0 = 0.5. The data points in the figure show averaged

squared coefficients |cs,ε|2 = |〈s|ε|Ψ〉|2 and the asymmetric error bars show the first

and third quartiles of the coefficient distributions for each average. The average

squared coefficients follow the Lorentzian from Eq. 4.22. The quartiles shown for

the error bars are in good agreement with the quartiles expected from the Gaussian

random deviations g̃s,ε, as discussed in detail in Appendix B.

We are also concerned with the time-evolution of initial single |s〉|ε〉 basis states

|Ψ0
s,ε〉 = |s〉|ε〉. (4.25)

These can be viewed as the limit γ0 → 0 of the random Lorentzian initial states

in Eq. 4.21, where the Lorentzian distribution approaches a δ function. Panel (a)

of Fig. 4.2 shows an |s〉|ε〉 initial state as in Eq. 4.25, with just a single nonzero

coefficient cs,ε = 1. This is an example of a very non-classical starting state, where

the “width” of the initial microcanonical energy shell is zero.

4.5.2. Time evolution and quantum spreading

Now consider the time evolution of the random Lorentzian states of Eq. 4.21 and

of the single |s〉|ε〉 states of Eq. 4.25. We found in Appendix B that both of these
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evolve to equilibrium states that can be described statistically by random fluctuations

about a Lorentzian average,

|Ψf
L(t)〉, |Ψf

s,ε(t)〉 ∼
∑
s,ε

g̃s,ε
√
Lf |s〉|ε〉, (4.26)

with a final state Lorentzian

Lf (Es + Eε) =
1

π

γf/ρf
(Es + Eε − E0)2 + γ2

f

, (4.27)

where ρf is the total density of |s〉|ε〉 states and γf is the half-width at half-max of

the final Lorentzian, to be discussed further below.

The half-width at half-max γf was found in Appendix B to be increased by the

“spreading factor” 2πk2ρ relative to the initial state width γ0:

γf = γ0 + 2πk2ρf . (4.28)

Eqs. 4.26-4.28 apply to both the equilibrated, time-evolved Lorentzian initial states

of Eq. 4.21 and the time-evolved |s〉|ε〉 states of Eq. 4.25, where for the latter it is

understood that the value γ0 = 0 is used in the final width in Eq. 4.28, so that

γf = 2πk2ρf .

Panel (b) of Figs. 4.1 and 4.2 show the time-evolved states. Both evolve to

random fluctuations about the Lorentzians Lf from Eq. 4.27 with the appropriate

widths γf from Eq. 4.28. The variations in the coefficients are very well characterized

by the Gaussian random variations g̃s,ε in Eq. 4.26, discussed in detail in Appendix

B.
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4.5.3. Entropy production for the time-evolving |s〉|ε〉 and Lorentzian

states

We now consider the entropy production for these examples of time-evolving

states. Panel (c) of Fig. 4.1 shows the entropy production ∆SQuniv as the initial

Lorentzian superposition in panel (a) evolves to the wider final Lorentzian distribution

in panel (b). ∆SQuniv is compared with the classical entropy change −∆Fsys/T =

∆Smicrouniv . There is some excess entropy production, as expected from Chapter III

and Ref. [2], but overall it is fairly close to microcanonical. Panel (c) of Fig. 4.2

shows the entropy production for the initial single |s〉|ε〉 state that evolves to a final

random Lorentzian. Now there is a very large amount of excess entropy production.

It seems that the finite microcanonical shell width of the state that is in an initial

superposition plays an essential role in getting the approach to classical behavior,

because it limits the relative spreading of the wave packet in time, as suggested in

Eq. 4.19. In contrast, quantum spreading of the single SE state is relatively very large

or undefined. To understand this connection systematically, we will take advantage

of analytic expressions for superposition states with a Lorentzian profile, using results

from Appendix C. We will see that considerable insight is gained following this path.

4.6. Master relationships for SQuniv and ∆Sx for time-evolving Lorentzian

states

Now we want to attain a systematic and intuitive understanding of the entropies

in the simulations and how they change during equilibration, in comparison with

analytical results based on the initial and final state statistics from Section 4.5. The

basic results are seen in Figs. 4.3-4.5 and show evident regularities. The initial states

are either random Lorentzians or a single |s〉|ε〉 basis state, as in Eqs. 4.21 and 4.25.
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We will find that the entropies for these two types of initial states can be united

in the approximate “master entropy” Eq. 4.32, which accounts for the pattern of

Fig. 4.3. Both types of initial states evolve to final states that are also random

Lorentzians as in Eq. 4.26. This will lead to an analytical approximation for the

excess entropy production in Eq. 4.36 and Fig. 4.4. Finally we consider entropy

production in the approach to the microcanonical limit of Ref. [2], where classical

behavior is expected. Fig. 4.5 shows that superpositions approach classical entropy

production ∆Sx = 0 while the |s〉|ε〉 initial states do not. The results account for

the regularities in Figs. 4.3-4.5 and are in accord with our earlier heuristic arguments

about SQ and ∆Sx in Section 4.4, based on ideas about the microcanonical shell and

quantum spreading of the environment state during equilibration.

4.6.1. Entropy of the States

An analytic relationship for the entropy of the random Lorentzian states, related

below to Boltzmann’s entropy formula S = kB lnW and the idea of a microcanonical

shell width, can be obtained following the straightforward but somewhat involved

derivation of Appendix C. The derivation approximates the entropy sum Eq. 4.5 as

an integral over the random Lorentzian coefficients as in Eqs. 4.21 and 4.26. The

integral approximation should work well when the Lorentzian is wide enough to have

a quasi-continuous distribution. The result is

SL = ln(4πγρ)− g0 (4.29)

where ρ is the density of states and γ is the half-width at half-max of the Lorentzian.

These have the values ρ0 and γ0 for the initial Lorentzian states, as described below
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Eq. 4.21, and ρf and γf for the final states, as described in the discussion around

Eq. 4.28.

The first term on the right of Eq. 4.29 gives the entropy of a perfect Lorentzian

(without the random variations g̃s,ε). This has the microcanonical-like form suggested

previously in Eq. 4.17,

ln(4πγρ) = ln(ρδE) = lnWeff (4.30)

with Weff = ρδE an effective number of states in an energy shell of width δE = 4πγ.

The second term

g0 = 〈|g̃s,ε|2 ln |g̃s,ε|2〉 = 1− γEM (4.31)

gives the deviation from the Lorentzian entropy due to the random fluctuations in the

basis state probabilities g̃s,ε, with γEM = 0.577 215... the Euler-Mascheroni constant.

We thus have obtained the desired relationship between SQ, Boltzmann’s entropy

formula, and the number of states with a given shell width and density of states.

How well this works is seen in Fig. 4.3 which shows the entropies for a time-

evolved |s〉|ε〉 state, for initial random Lorentzian states with various initial widths

5 × 10−6 ≤ γ0 ≤ 0.25, and for the time-evolved Lorentzian states with final widths

γ = γf from Eq. 4.28. The simulation results are well described by the approximate

SL of Eq. 4.29 along the diagonal line of the figure, when γρ is not too small. For small

γρ on the left of the figure, the initial states approach the limit of the single |s〉|ε〉

basis state. In this limit, the integral approximation that goes into the derivation

of SL breaks down. This gives SL < 0 when γ < eg0/4πρ, whereas SQuniv ≥ 0 by

definition. A better approximate formula is obtained by setting the entropy to zero
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FIGURE 4.3. Entropies from the simulations follow the master equation Eq. 4.32.

when SL becomes negative, essentially approximating the entropy of the very narrow

states by the value for a single |s〉|ε〉 state. This gives the complete generic “master”

formula for the entropy of the time evolving random Lorentzian states, plotted as a

solid line:

SQuniv ≈

 ln(4πγρ)− g0 : γ ≥ eg0/4πρ

0 : otherwise
(4.32)

This is the same as the previous relation SL, except that it stops changing when it

reaches the minimum value zero, giving the abrupt bend in the figure. The simulation

results are in good agreement with this predicted behavior, with fluctuations around

SQuniv = 0 at small γρ, and following the curve for SL at larger γρ. In sum,

the approximate master entropy relation Eq. 4.32 is giving a good account of the

simulation results.
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4.6.2. Entropy production

We next consider entropy changes and excess entropy production during the

approach to equilibrium. The aim is to see how excess entropy relates to the

intuitive idea of spreading of the quantum wave packet, and also the width of the

microcanonical shell. First, we consider random initial Lorentzian states that are

well described by the approximate entropy SL of Eq. 4.29, when γ0 ≥ eg0/4πρ0 in

Eq. 4.32. The entropy change for these states is

∆SL = ln
ρf
ρ0

+ ln
γf
γ0

, (4.33)

with γf from Eq. 4.28. The first term ln ρf/ρ0 gives the classical entropy change from

heat flow, following the microcanonical definition Eq. 4.15. The second term gives

the quantum excess entropy production

∆SxL = ln
γf
γ0

= ln
δEf
δE0

(4.34)

due to quantum spreading of the environment state wave packet. This analytic

relation is similar to the somewhat more complex empirical curve for fitting ∆Sx in

Ref. [2] with a less structured type of SE state, which did not maintain a consistent

Lorentzian profile as we have here. For our Lorentzians we obtain the simple formula

of Eq. 4.34, in terms of only the initial and final widths γ0 and γf . This corresponds

simply to the increase in the effective width of the energy shell, as anticipated in

Eq. 4.19.

The diagonal line on the left of Fig. 4.4 shows the approximate ∆SxL of Eq. 4.34

compared with ∆Sx = ∆SQuniv + ∆Fsys/T from the simulations. Moving from left to

right in the figure, we are decreasing γ0 to increase the ratio γf/γ0. The approximate
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relation is giving a good account of the results on the left of the figure, where γf/γ0

is not too large.

Now consider the right side of Fig. 4.4. The ∆Sx are reaching close to a maximum

value for a single |s〉|ε〉 state, corresponding to the limit of small γ0 with large γf/γ0

in the figure. For small γ0, we want to approximate the initial state as a single |s〉|ε〉

state, like what we did for SQuniv in Eq. 4.32. For a single |s〉|ε〉 initial state the initial

entropy is zero. The final state has the Lorentzian entropy SL. Then ∆SQuniv =

SL. The maximum excess entropy production is then calculated by subtracting the

microcanonical ln ρf/ρ0,

∆Sx,max = ln(4πγfρf )− g0 − ln
ρf
ρ0

= ln(8π2k2ρfρ0)− g0, (4.35)

where in the last line we have used the value γf = 2πk2ρf for a single |s〉|ε〉 initial

state, when γ0 = 0 in Eq. 4.28. This gives the “master” equation for the excess

entropy production

∆Sx ≈

 ln(γf/γ0) : γ0 ≥ eg0/4πρ0

ln(8π2k2ρfρ0)− g0 : otherwise
(4.36)

This master relation for ∆Sx is shown by the black solid line in Fig. 4.4. It follows

∆SxL from Eq. 4.34 up until this reaches the maximum value for a single |s〉|ε〉 initial

state, where the master relation bends and becomes flat in the right of the figure.

This is in good agreement with our simulation results, which follow ∆SxL in the left

of the figure then fluctuate around the maximum value in the right of the figure.
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4.6.3. Excess entropy production and the microcanonical limit

We have just seen that the source of the excess entropy production is the relative

increase in the width of the environment state from quantum spreading during SE

equilibration, with larger γf/γ0 giving greater deviations from a fixed microcanonical

energy shell, with larger ∆Sx. What is less clear so far is the role of the size of the

environment and the SE coupling strength.

We have been dealing with a finite model environment with finite coupling, in

contrast to the textbook situation with an infinite environment ρf →∞ and negligible

coupling k → 0. Ref. [2] showed with superposition states that microcanonical results

∆Sx = 0 were obtained in this limit, based on the idea of an energy shell with fixed

width and negligible coupling. Do we also see the approach to the classical ∆Sx = 0

here, even for the highly non-classical |s〉|ε〉 initial states?
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Fig. 4.5 shows ∆Sx in a series of calculations heading toward the “microcanonical

limit” k → 0, ρf →∞, with kρf = const. as needed to maintain thermalization within

the simulations. First consider the Lorentzian states in the figure. These approach

classical behavior ∆Sx = 0 in Eq. 4.36 as quantum spreading in the environment

becomes negligible, with γf → γ0 in Eq. 4.28. Now consider the |s〉|ε〉 states in the

figure. They have very nearly constant ∆Sx corresponding to the maximum from

Eqs. 4.35 and 4.36. The maximum ∆Sx for an |s〉|ε〉 initial state depends only on the

products kρf and kρ0, which are both invariant in the limit, so there is no approach

to classical behavior with a relatively fixed energy shell. Instead, quantum spreading

is always a significant source of entropy production, and classical behavior is never

observed for the |s〉|ε〉 states.
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4.7. Summary and concluding remarks

We have systematically explored the phenomenon of excess entropy production

in time-dependent equilibration processes, in terms of the quantum thermodynamic

entropy proposed in Refs. [1, 2] for a system-environment pure state. Our interest

is the role of quantum spreading and the idea of the microcanonical shell width to

understand the range of excess entropy, between the classical microcanonical limit

and the limit of maximal excess entropy production with a single zero-order initial

state.

Using the Shannon information entropy, we defined the quantum entropy SQuniv in

terms of the ZO SE energy basis. The choice of the ZO basis is made on the grounds

that thermodynamically one would be interested in observation of the system ZO

state, and that straightforward definition of the energy in the microcanonical shell

then involves the sum of ZO system and environment energies. We showed that

there is an exact division of SQuniv into SQsys and SQenv. With this, we found that our

choice of basis for the definition of SQuniv uniquely gives standard thermodynamic

results in the classical limit of weak coupling and large basis, including the standard

classical relations ∆Suniv = −∆Fsys/T and ∆Senv = Q/T between the environment

entropy and heat flow. The entropy is readily understood with Boltzmann’s equation

S = kB lnW with W being given by shell width × density of states δE × ρ = 4πγρ

according to Eq. 4.29, down to the limit S = 0 as seen in Fig. 4.3.

∆Suniv can be understood according to Eq. 4.36 and as seen in Fig. 4.4 as being

due to two components. One is classical “ergodization” as the system thermalizes and

heat flows into the environment, with consequent increase in the density of states,

giving the contribution ln ρf/ρ0. The second contribution is excess entropy production

∆Sx as seen in in Fig. 4.4, due to quantum spreading of the microcanonical shell,
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represented by ln γf/γ0 in Eq. 4.36. The spreading is independent of the original

width γ0. Therefore ∆Sx is limited by the original width in ln γf/γ0. Initial states

like a microcanonical wave packet, with small spreading compared to the original

wave packet width, approach the classical limit. On the other hand, initial states that

approach the extreme limit of a single SE zero order state have maximal, massive

entropy production, very different from classical. Since the spreading is the same for

Lorentzian states, the critical factor is the microcanonical shell width of the original

Lorentzian. The excess happens in the environment, not as heat flow Q/T within the

microcanonical shell, but rather as quantum spreading of the microcanonical shell.

In sum, we have the following picture. The quantum entropy SQuniv describes

time-dependent thermodynamic evolution. The entropy can be formally divided into

system and environment contributions. In the limit of small coupling and large bath,

the classical limit with Eq. 4.2 is recovered. Away from this limit, there is excess

entropy production ∆Sx > 0. This excess entropy production takes place in the

environment and is in addition to the classical contribution Q/T . The excess entropy

is due to time-dependent quantum spreading. In general, it can be quite large, with

a single SE zero-order state being the extreme case.

4.8. Connection to later work

This chapter has developed a much deeper understanding for the source and

behavior of the excess entropy production ∆Sx associated with the quantum entropy

SQuniv in time-dependent quantum pure state thermalization. The excess entropy

production can be massive for non-classical types of states, with a direct relation

to the spreading of the wavepacket that is particularly transparent for a class of

Lorentzian states evolving in time. However, we haven’t yet seen any new types
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of quantum thermodynamic behavior associated with ∆Sx, as might be expected

from this new source of entropy in the second law. Are there new effects in

quantum thermodynamics related to maximizing the total entropy SQuniv, including

excess entropy production ∆Sx, that wouldn’t be expected from the classical entropy

change alone? We explore this question in the next two chapters. The next chapter

begins by exploring thermodynamics in finite size quantum systems, making use of

a small quantum variable temperature “bath” in place of the standard type of fixed

temperature bath explored so far. This will lead into a final examination of a very

novel type of behavior in Chapter VI, where two of these finite baths are linked

together by a system, with unequal couplings and rates of excess entropy production

in the two baths. The entropy SQuniv with excess entropy production will have an

important role to play, with implications for future developments in the foundations

of quantum thermodynamics.
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CHAPTER V

SIMULATING QUANTUM THERMODYNAMICS OF A FINITE SYSTEM AND

BATH WITH VARIABLE TEMPERATURE

This chapter includes previously published material co-authored by Michael E.

Kellman [4]. Michael Kellman and I both contributed to developing the model

and theory, analyzing the results, and writing the manuscript. I performed the

computations.

Adapted with permission from Ref. [4]. Copyright 2019 by The American

Physical Society.

5.1. Introduction

This paper considers computational simulation of a process of energy flow as

a quantum system becomes entangled with a very small temperature bath. In

the corresponding “classical” thermodynamic system, we would have an idea of

a variable temperature as energy flows into the finite bath. Here we ask, does a

simulacrum of thermodynamic behavior emerge when we make the bath very small?

Do reasonable ideas of a variable temperature hold, and is there something akin to

thermal equilibrium with a Boltzmann distribution? We will find that with a very

small “thermal” environment, as small as five oscillators, it is possible to get behavior

that is very much like thermodynamic behavior. On the other hand, anomalies are

observed related to the notion of temperature with the small bath. The work here

builds on earlier simulations with a cruder, constant temperature bath [1, 2, 6, 35–37].

Questions of variable temperature in a very small quantum thermodynamic system

and bath are of more than abstract interest. Our simulations may not be too much
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simpler than what is called for in problems of practical import. Quantum nanodevices

can be imagined whose performance may depend on considerations similar to those

here. Similar in spirit to the approach taken here, quantum thermalization behavior

of a pure quantum state has recently been observed experimentally in Bose-Einstein

condensates containing as few as six-atoms [24]. Recently [26, 27, 38], work on

molecular “quantum chaos” is being conceptualized as a venue for the exploration

of contemporary ideas about the foundations of quantum thermodynamics, to which

we turn next.

There have been a variety of simulations of quantum thermodynamic processes,

including the very basic elementary process of heat flow into a bath [1, 2, 6, 35–37].

These have been successful in recovering standard thermodynamic behavior, with

attainment of thermal equilibrium and a Boltzmann distribution for the system, with

a properly behaving temperature. However, these investigations have used rather

simple models of the temperature bath, sometimes with a grossly discrete model of

energy levels [1, 6, 37], in others with an approximation to continuous levels in the

bath [2, 35, 36], but always to our knowledge with a model of an effectively infinite

bath with fixed temperature in mind. Usually also, a very simple coupling between

system and environment is assumed, typically, a random matrix coupling without

significant structure. Paralleling (and sometimes preceding) these simulations, there

has been a great deal of work [1, 2, 7, 8, 10–21, 23, 26–34] examining theoretical

foundations of quantum thermodynamics. Generally, this has focused on the large N

limit of quantum entangled systems. In our simulations here the focus is rather on the

extent to which thermodynamic-like behavior persists as the total system becomes

very small. There have been simulations examining ergodicity and energy flow in

small total systems [19, 20, 26, 27, 52, 53], but these have not involved the type of
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variable temperature analysis that is our focus here. We construct a finite, variable

temperature bath, also making use of a structured coupling which is far more selective

than the random matrix coupling used in many earlier simulations. We will find that

we can build a simulation model with features very much like a variable temperature

and thermalization, but with significant anomalies due to the finite bath, with some

challenges to overcome having to do with the nature of the coupling.

As noted briefly above, and in more detail in the concluding section, there are

real molecular systems that could be considered as laboratories for “post-classical”

thermodynamic effects. Consideration of small size is a recent “dimension” of

quantum thermodynamics beyond that introduced long ago with the advent of

quantum levels. A third innovation might come with novel effects from combining

quantum time evolution with multiple small baths of the kind developed here for a

single bath.

5.2. Model system-environment “universe”

In this section, we detail the system and environment in our model; we treat the

system-environment interaction separately, in Sections 5.5 and 5.6.

We will deal with a total system or “universe” pure state for a coupled and

entangled system and environment, or temperature bath. The total Hamiltonian

includes system S, environment E , and interaction SE components

Ĥ = ĤS + ĤE + ĤSE (5.1)

For the basis set we will use a truncation of the full SE tensor product basis to a

subset that contains all of the SE basis states |n〉 ⊗ |ε〉 in the energy range
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0 ≤ En + Eε ≤ 13, (5.2)

similar to the “thermal basis” described in Ref. [2]. The numerical convergence with

this basis will be discussed in Section 5.6. Time evolution of the pure SE state |Ψ〉 is

carried out by numerically diagonalizing Ĥ and then calculating a series of timesteps

using the Schrödinger equation |Ψ(t)〉 = exp(−iĤt)|Ψ(0)〉 (~ = 1). In this section

we will develop the system and environment basis sets and Hamiltonians ĤS and ĤE ;

later sections develop ĤSE .

The system Hamiltonian consists of a set of five evenly spaced levels

〈n|ĤS |n〉 = ~ωSn, (5.3)

with frequency ωS = 0.5 and quantum number n = 0, 1, ..., 4. These choices of ωS and

n give a maximum system energy Emax
S = 2 that is reasonably small compared to the

initial SE state total energies we will consider in this paper 〈Ĥ〉 & 4, where Ĥ is the

total Hamiltonian of Eq. 5.1. With larger Emax
S we have found that it is more difficult

to get good system thermalization, since very few environment levels are paired with

the highest energy system levels at the total energy 〈Ĥ〉 when Emax
S ≈ 〈Ĥ〉. This

choice of ωS and n = 0, 1, ..., 4 ensures that there is always a fair amount of energy

in the environment, so that it can act properly as a heat bath to the system in our

simulations.

We want to have an environment or bath E with certain properties more general

than in earlier work [1, 2, 6, 35–37], and more similar to real physical systems. We

want the temperature to vary with energy, instead of being fixed. We would also

like for the energy and temperature to be close to proportional, T ∼ E, to the extent
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possible in a finite model, and exactly so in the limit of a large bath. Furthermore, we

may want the bath to have some significant structure, so that the couplings might also

have some structure, unlike the abstract undefined environment levels with random

couplings used earlier. To do all of these things, we will construct the bath as a

collection of oscillators.

Consider first a set of degenerate oscillators with equal frequencies and level

spacings ~ω = 1. This “Einstein heat capacity” system has the well known

degeneracy pattern and density of states

ρEin(η, ntot) =
(η − 1 + ntot)!

(η − 1)!ntot!
, (5.4)

where ρEin(η, ntot) is the number of ways to distribute ntot total energy quanta into η

oscillators. A more physically realistic model will generalize to oscillators of different

frequencies, so as to obtain something resembling a continuous distribution of levels,

while approximately maintaining the overall pattern of Eq. 5.4. To this end, we will

extend the distribution ρEin to variable frequencies and energies using a continuous

function ρE that interpolates between the discrete points in Eq. 5.4. Then, we will

devise a set of distinct harmonic oscillator frequencies {ωosc} that approximates the

continuous distribution. The total environment Hamiltonian is expressed as the sum

of oscillator Hamiltonians

ĤE =

η∑
osc=1

Ĥosc, (5.5)

where the Ĥosc have energy eigenvalues

〈nosc|Ĥosc|nosc〉 = ~ωoscnosc, (5.6)
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where nosc is the quantum number of a given oscillator. We will analyze the density

of states ρĤE
of the Hamiltonian ĤE , finding good agreement with the continuous

density ρE , and then analyze the temperature dependence of the model.

We begin by developing a continuous density function ρE in place of the highly

degenerate density of Eq. 5.4. The most straightforward way to do this is to replace

the factorials in (5.4) with Gamma functions

ρE(EE) =
Γ(η + EE)

Γ(η)Γ(EE + 1)
, (5.7)

where the discrete number of total quanta ntot has been replaced by a continuous

environment energy EE . The Γ function extends the density to non-integer values of

the energy EE , and agrees with the original density ρEin at integer EE = ntot, since

for example Γ(EE+1) = EE ! = ntot! when EE = ntot is an integer. The top of Fig. 5.1

shows how the continuous density ρE extends the degenerate oscillator density ρEin

to non-integer EE .

The next step is to devise a set of oscillator frequencies for the Hamiltonian

ĤE in Eq. 5.5 with a density ρĤE
that follows the interpolating function ρE . An

η = 5 oscillator bath will be used for the simulations. This value of η is large

enough to give a density of states with an exponential-like dependence on energy,

which will be imperative for Boltzmann thermalization of the system S, but also

small enough to make the computations tractable. The frequencies are generated as

random numbers, to make the bath generic. We first tried generating random numbers

0.5 ≤ ~ωosc ≤ 1.5 then rescaling the ~ωosc so that their average was the same as the

degenerate oscillator frequency ~ω = 1 seen in the top of Fig. 5.1. However, when

constructing the Hamiltonian ĤE in Eq. 5.5 using these frequencies, it was found that

the resulting density of states ρĤE
was always greater than the desired ρE of Eq. 5.7.
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FIGURE 5.1. (a) The continuous density ρE from Eq. 5.7 interpolates between the
degenerate oscillator densities ρEin from Eq. 5.4. (b) Oscillator density of states
histogram for the five oscillator bath with the frequencies in Table 5.1.

Instead, good agreement ρĤE
≈ ρE is consistently found by rescaling the random

~ωosc values according to their geometric mean,

η

√√√√ η∏
osc=1

~ωosc = ~ω = 1, (5.8)

as discussed in detail shortly. Eq. 5.8 sets the unit of energy in this paper and also

sets the relationship between the collection of variable frequencies {~ωosc} and the

degenerate oscillator frequency ~ω assumed in connection with Eq. 5.4. The relation
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Eq. 5.8 has previously been noted by Landau and Lifshitz [54] where it was also

found to give the necessary link between variable and fixed frequency oscillators in a

different context.

The ĤE that we use with Eq. 5.5 uses the frequencies given in Table 5.1 that

come from randomly chosen values that have been rescaled according to Eq. 5.8. The

results are robust for other choices of random and rescaled {~ωosc}. The density of

states ρĤE
for this set of frequencies is shown in the histogram boxes in the bottom

of Fig. 5.1, and is in excellent agreement with ρE of Eq. 5.7. Recall that ρE also

agrees with the fixed frequency ρEin as seen in the top of Fig. 5.1. This demonstrates

that Eq. 5.8 gives the desired correspondence between the densities of states for the

variable and identical frequency oscillators:

ρĤE
≈ ρE = ρEin (5.9)

at integer energies EE = ntot and

ρĤE
≈ ρE (5.10)

at non-integer energies (where the single-frequency ρEin is undefined in Eq. 5.4). The

correspondence between the somewhat random ρĤE
and the well-controlled, analytical

ρE will allow us to determine analytical temperature relationships for our oscillator

bath using the relatively simple function ρE . This is developed in the next section.

~ω1 ~ω2 ~ω3 ~ω4 ~ω5

0.620 246 0.735 401 1.146 315 1.316 886 1.453 415

TABLE 5.1. Oscillator frequencies in the five harmonic oscillator environment shown
to six decimal places.
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5.3. Temperature

This rather involved section addresses key questions about the “thermal”

character introduced by the small finite bath in our model. Does the standard infinite

bath relation E ∼ T hold at high energy? What is the low temperature behavior of

the finite bath? While sensible notions of temperature will emerge, we will also see

that there are anomalies in both of these aspects, related to the finite size of the bath.

We usually think of temperature in terms of a microcanonical ensemble with

a very large, effectively infinite bath, so that the temperature is constant. The

temperature comes from the standard relation

1

T
=
∂S

∂E
(5.11)

applied to the total system+environment SE as the density of states is varied with

energy. In the situation envisaged in Fig. 5.2, we start by thinking instead of a

temperature TE for the bath environment initially in isolation from the system. There

are a multiplicity of initial separate system-bath combinations, each with the same

total energy E; an example is the red SE state pair in the left of Fig. 5.2. Each

SE combination has its own initial system energy ES , bath energy EE , and bath

temperature TE . The bath temperature TE is based on a fixed EE microcanonical

energy that is defined only before the interaction with the system has begun—the

system in our simulations starts in a single zero-order state—so there is no meaningful

independent system temperature. Then, heat flows between system and bath, leading

to a finite change in a temperature that we want to be defined for the final equilibrium

state, and perhaps in between as well. The final temperature TSE after the heat flow

comes from the microcanonical ensemble for the total system SE , which consists of
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FIGURE 5.2. (a) Schematic example of an SE initial state with the system in the
lowest energy level and the environment in a high-energy Gaussian initial state as
described in Section 5.4. The temperature is TE(EE) from Eq. 5.13. (b) Schematic of
the same state after SE equilibration, where now there is an SE state pair for each
system level, all at the same total S + E energy (examples of SE state pairs are
shown by the arrows). The temperature is TSE from Eq. 5.23, which is the average of
the 1/TE across all of the SE state pairs.

the union of all the system-bath sub-ensembles, all with total SE energy E, as in the

right of Fig. 5.2. An interesting relation Eq. 5.23 will be found to hold between the

inverse temperature 1/TSE of the complete ensemble of the SE total system, and the

average of the inverse temperatures 1/TE of the baths of the sub-ensembles. In fact,

it will be possible to define a time-varying “master temperature” TSE(t) in Eq. 5.24

for the time-dependent intermediate state |Ψ(t)〉 in the equilibration process. Thus,

we will obtain a satisfying unified description of all the possible processes of the type

in Fig. 5.2.

5.3.1. Temperature for initial isolated environment

First, we develop the temperature TE for a finite environment that is thermally

isolated from the system. (This will turn out to be the initial state temperature in
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the time-dependent temperature TSE(t) to be developed in Section 5.3.3.) We will

compare this finite bath to an infinite “true” temperature bath of infinitely many

oscillators. The system is in a single zero-order initial state n0, corresponding to our

initial state in Fig. 5.2. The total energy is E, the system has energy ES = En0 ,

and the environment has energy EE = E −ES . The temperature is defined using the

standard thermodynamic relation of Eq. 5.11. This is evaluated using the Boltzmann

entropy S = kB lnW (n0, E), with W (n0, E) the number of SE states |n0, ε〉 in a

microcanonical energy shell [E− δE/2, E+ δE/2], again with the system in the level

n0. Since n0 is fixed, W (E) = ρE(EE)δE is just the number of environment states,

where ρE in Eq. 5.7 is the smoothed continuous density function describing the density

of discrete states in our Hamiltonian ρĤE
, following Eqs. 5.9 and 5.10. The initial

temperature is then related only to the environment, and we will label it TE , and

rewrite it in terms of the density ρE as

1

TE
=
dρE/dEE

ρE
. (5.12)

Using Eq. 5.7 for ρE then gives

1

TE
= ψ(EE + η)− ψ(EE + 1) =

η−1∑
m=1

1

EE +m
, (5.13)

where ψ(x) = (dΓ(x)/dx)/Γ(x) is the digamma function. The last equality comes

analytically from η− 1 applications of the recurrence relation [55] ψ(x) = ψ(x− 1) +

1/(x− 1) to the term ψ(EE + η).

It is not clear just from looking at Eq. 5.13 how our temperature TE for the finite

bath will behave in comparison to standard temperature-energy relations involving

an infinite fixed-temperature bath. In the next two subsections we will make this
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comparison, using the paradigmatic standard of an average oscillator in an infinite

oscillator bath. Section 5.3.1.1 will discuss the convergence of TE from Eq. 5.13 to

the standard temperature-energy relation as the size of the bath is increased, with

convergence to the high energy relation T ∼ E. Section 5.3.1.2 will discuss deviations

related to the finite size of the bath, including deviations from T = 0 at low energy,

and deviations in the heat capacity even at high energy.

5.3.1.1. Comparison of finite and infinite bath: energy-temperature

relation

The heat bath described above is a finite collection of oscillators. We will compare

this to a true temperature bath consisting of an infinite collection of oscillators. For

this, we use the energy-temperature relation from Einstein and Planck for a harmonic

oscillator in an infinite temperature bath:

〈nosc〉 =
1

e1/T − 1
(5.14)

(~ω = 1 and kB = 1), where 〈nosc〉 is the expected number of energy quanta in the

oscillator. (This relation was obtained by Einstein in his heat capacity model [56]

by treating a solid as a collection of identical oscillators in an exterior temperature

bath using the canonical ensemble. The result is the same regardless of the ensemble

setup, microcanonical or canonical.) We will find that our TE for the finite bath

behaves much like a standard temperature, but also has significant differences from

the Einstein relation Eq. 5.14, leading also to deviations in the heat capacity from the

Einstein model. However, we also find that TE agrees properly with Eq. 5.14 in the

limit of a large number of oscillators. The development is based on the correspondence
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ρE ≈ ρĤE
in Eqs. 5.9 and 5.10, recalling the remarks there about the analytical

function ρE .

These relationships are represented in Fig. 5.3 and later for the heat capacity in

Fig. 5.4. It will be instructive to consider the total energy of the “Einstein oscillator”

including both energy quanta and the zero-point energy, 〈E(+zp)
osc 〉 = 〈nosc〉 + 1/2.

The orange (light gray) curve in Fig. 5.3 shows the relationship between 〈E(+zp)
osc 〉 and

temperature based on Eq. 5.14. The curve begins at the zero-point energy at T = 0,

then quickly approaches the well-known quantum equipartition relation

lim
〈nosc〉→∞

T = 〈nosc〉+
1

2
= 〈E(+zp)

osc 〉, (5.15)

shown by the purple (medium gray) line in the background of the figure.

For comparison, Fig. 5.3 also shows the relationship between 〈Eosc〉 + 1/2 and

TE for finite oscillator baths with various η, again, based on the correspondence

ρE ≈ ρĤE
in Eqs. 5.9 and 5.10. The average energy per oscillator from energy quanta

〈Eosc〉 ≡ EE/η is the analog for our bath of 〈nosc〉 for the Einstein oscillator in

Eqs. 5.14 and 5.15. The quantity 1/2 then shifts this up by the Einstein oscillator

zero-point energy to allow for a direct comparison in the figure between our TE and

the temperature in the Einstein model. In general, the exact zero-point energy in

our model will not be 1/2 in our units (unlike the Einstein model), but will instead

depend on the frequencies of the oscillators. Here, the 1/2 is an arbitrary added

quantity for the finite baths, inserted for comparison to the Einstein bath.

For the η = 5 bath we use for our simulations, shown by the black solid curve,

the temperature behavior is significantly different than the orange (light gray) infinite

bath curve. As we increase the number of oscillators η we find that the curves get

closer to the standard orange curve for an infinite bath. For example, the dashed-
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FIGURE 5.3. Temperatures TE converge to the Einstein solid temperature relation
as the number of bath oscillators η → ∞. Deviations outside this limit are due to
the finite size of the bath.

dotted dark purple (dark gray) line for η = 500 oscillators rests on top of the orange

line for the infinite bath T . The convergence towards Eq. 5.14 with increasing η

confirms that our temperature gives the standard relation for an infinite bath in the

thermodynamic limit η →∞, as expected with a reasonable temperature definition.

With this in mind, we next discuss in more detail the much more interesting question

of anomalies in temperature behavior associated with small number of oscillators η

in the finite bath.

107



5.3.1.2. Anomalous temperature behavior associated with a very small

bath

The very small size of the η = 5 bath leads to anomalous temperature behavior

at both high and low energies, as seen in Fig. 5.3. First, consider the behavior

of TE at low energies. Recall that we treat this as a continuous variable that will

be related to the continuous variable EE in Eq. 5.13. The temperatures for all of

the finite η oscillator baths in Fig. 5.3 are nonzero at the minimum value of energy

1/2 in the figure (when EE = 0 in Eq. 5.13, the rationale for the 1/2 being that

given in the last subsection). The non-zero minimum temperatures seem to be an

unavoidable consequence of combining a finite bath with the standard temperature

definition Eq. 5.12. The temperature is only zero when dρE/dEE = ∞ in Eq. 5.12—

an evidently impossible condition for a finite bath with a limited number of states.

However, as seen in Fig. 5.3, the curves for increasing η converge to the standard

infinite bath relation in which T = 0 at the minimum energy 1/2.

At high energy, TE approaches the asymptotic relation

lim
EE→∞

TE =
EE + η/2

η − 1
=

(
〈Eosc〉+

1

2

)
η

η − 1
, (5.16)

where again 〈Eosc〉 = EE/η refers to the average energy per non-identical oscillator

of the finite bath, although it also applies to an infinite “Einstein bath” of identical

oscillators. Eq. 5.16 comes from the analytical limit of the right-hand side of Eq. 5.13,

which we evaluated using Mathematica. Eq. 5.16 differs from the high-energy Einstein

relation Eq. 5.15 by the factor of η/(η − 1). This difference is negligible in the

thermodynamic limit η →∞ but very significant for small η, as seen by the differing

slopes for the solid black and orange (light gray) lines in Fig. 5.3 at high energy.
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The differing slopes correspond to a difference in heat capacities

C =
d〈Eosc〉
dT

(5.17)
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FIGURE 5.4. Heat capacities for the energy-temperature curves in Fig 5.3.

between the different temperature-energy relations. The heat capacities for all of

the temperature-energy curves in Fig. 5.3 are plotted in Fig. 5.4. The heat capacity

curves are similar to the standard Einstein behavior at low temperature, but they

are systematically lower at high temperature, where they approach asymptotic values

C → (η−1)/η < 1, less than both the Einstein relation and the standard equipartition

result.

We will find in Section 5.7 that the anomalous temperature behavior seen in

Fig. 5.3 is critical in obtaining the correct thermalized Boltzmann distribution for the
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system: the anomalous scaling behavior ∼ η/(η− 1) in the figure must be taken into

account to correctly describe the equilibrium S Boltzmann distribution and the SE

thermodynamic behavior.

5.3.2. System-environment microcanonical temperature

We now consider the equilibrium SE state and the temperature TSE for the

complex entangled state |Ψ(t)〉 shown schematically in the right of Fig. 5.2; this will

be the equilibrium value of the time-dependent temperature TSE(t) to be developed

in Section 5.3.3.

TSE is defined following the same reasoning leading to Eq. 5.12, giving

1

TSE(E)
=
dρSE/dE

ρSE
. (5.18)

To evaluate the temperature we will examine ρSE as the density of zero-order states,

just as we did for the isolated bath temperature ρE . While there is some arbitrariness

in doing this now with ρSE , it is operationally simple, and seems at least as reasonable

a choice as other possibilities. It is consonant with what we have done with ρE , and

will lead to the simple result Eq. 5.23.

The total density of SE zero-order states at energy E has contributions from

all of the SE state pairs that are in the microcanonical energy shell E − δE/2 ≤

ES + EE ≤ E + δE/2, that is, each of the SE state pairs shown schematically in

Fig. 5.2. The total density of SE states is the sum of bath densities that pair with

each system level n at the total energy E = EE + En,

ρSE(E) =
∑
n

ρE(E − En). (5.19)
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The SE temperature can then be written as

1

TSE(E)
=
∑
n

dρE(E − En)/dE∑
m ρE(E − Em)

. (5.20)

The derivatives can be rewritten in terms of ρE and TE using Eq. 5.12, giving

1

TSE(E)
=
∑
n

ρE(E − En)∑
m ρE(E − Em)

1

TE(E − En)
. (5.21)

The fraction involving the densities gives the number of microcanonical states with

the system in the level En relative to the total number of microcanonical states. This

is simply the microcanonical probability of the system level En,

ρE(E − En)∑
m ρE(E − Em)

= pmicro(En). (5.22)

Putting this into Eq. 5.21 gives the simple result

1

TSE(E)
=
∑
n

pmicro(En)

TE(E − En)
=

〈
1

TE(E − En)

〉
micro

. (5.23)

Equation 5.23 says that the reciprocal temperature 1/TSE for the full SE

microcanonical ensemble is simply the average of the reciprocal environment

temperatures 1/TE for each of the SE state-pairs within the microcanonical ensemble.

It is interesting that the derivation of TSE in Eqs. 5.18-5.23 used only the standard

temperature definition in Eqs. 5.12 and 5.18 and the choice of the zero-order basis

for the densities of states ρE and ρSE , used to formulate the sum in Eq. 5.19. In this

respect the relation Eq. 5.23 is completely general, so it could also be used for other

SE thermodynamic models which could potentially be much different from the simple

oscillator model we use here.
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5.3.3. Continuously varying time-dependent temperature

The temperature relations in the previous sections were derived using the

standard expression Eq. 5.11 for the microcanonical ensemble, applied to the initial

and final equilibrium states of the SE universe. It is useful to consider a time-

dependent generalization of the microcanonical temperature that can be defined

during thermalization. This uses time-dependent system probabilities from the system

reduced density operator ρ̂S(t) in place of the microcanonical probabilities in Eq. 5.23,

giving

1

TSE(E, t)
=
∑
n

ρn,nS (t)

TE(E − En)
=

〈
1

TE(E − En)

〉
ρ̂S(t)

(5.24)

where ρn,nS is the probability of the system energy level En. Note that this time-

dependent temperature agrees with the initial temperature TE in Eq. 5.13 and with

the final temperature TSE in Eq. 5.23. TSE(t) is the “master temperature” that

describes the entire equilibration and thermalization process. Using Eq. 5.24 we

will be able to follow the time-dependent changes in temperature as S and E begin

in the initial state, exchange energy during thermalization, and eventually reach

thermal equilibrium. This TSE(t) is what we will be looking at as the “temperature”

throughout the simulation.

5.4. Initial states for the simulations

The calculations start at t = 0 with separable SE initial states

|Ψn0〉 = |n0〉|ε0〉, (5.25)
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where the initial system level is |n0〉 and the initial environment state |ε0〉 has Gaussian

distributed basis state probabilities

|ε0〉 ∼
∑
ε

exp

(
−(Eε − Eε0)2

4σ2
E

)
|ε〉, (5.26)

with σE = 0.5 (the results are similar for other 0.1 ≤ σE ≤ 1 that we have tested). In

Eq. 5.26 the environment state is centered at an energy

Eε0 = E0 − En0 (5.27)

which varies with n0, so that we are able to generate states that have the same

nominal SE central energy E0 = Eε0 + En0 but different system levels n0. This will

be useful for examining temperature equilibration, where the final state in principle

will depend on the total energy but not on n0. An example of the total probability

per unit energy for an n0 = 4 initial state |Ψn0〉 at energy E0 = 5 is shown in

the top of Fig. 5.5. Each histogram bar in the figure shows the sum of SE basis

states probabilities within the surrounding zero-order energy unit; the actual state is

naturally much more complex in the zero-order basis. Note the logarithmic scale in

the figure; the state is pretty sharply peaked around its nominal central energy. A

slight asymmetry can be observed about the central energy E0 = 5. This is because

there are more basis states per unit energy above E0 than below due to the increasing

environment density of states. The asymmetry makes the average energy of the state

slightly larger than the nominal energy E0 in a way that depends on the environment

density, which in turn depends on the environment energy Eε0 and the system level

n0. This gives a slightly different initial state energy for each n0, but the energies are

close to the same.
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We next consider the time evolution of this state, first with a random matrix

coupling which we will find leads to pathological behavior, then with a more refined

coupling that will be found to give physically satisfactory results.

10
-6

10
-4

10
-2

10
0

 0  4  8  12

(a)
P

ro
b

ab
il

it
y

Energy

 

10
-6

10
-4

10
-2

10
0

 0  4  8  12

(b)

P
ro

b
ab

il
it

y

Energy

 

FIGURE 5.5. Histogram of total quantum state probabilities per unit energy for an
initial Gaussian state (a) and corresponding time-evolved equilibrium state (b) with a
random matrix coupling with k = 0.0027. The total probability per unit energy does
not converge to zero at high energy for the equilibrium state, indicating a problem
with the coupling.

5.5. Random matrix coupling and runaway thermalization dynamics

In this section we begin developing the quantum dynamics with the coupling

Hamiltonian ĤSE of Eq. 5.1. We begin with a standard type of coupling, the
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random matrix coupling, used to model systems with classically chaotic dynamics

[20], and often invoked in accounting for the existence of thermalization in quantum

thermodynamics [20, 36, 37]. We used this in earlier simulations [1, 2, 6] with good

results. However, we find here that with the introduction of a variable temperature,

the random coupling introduces pathological behavior of runaway spreading of the

wave packet. Furthermore, the random coupling is a serious limitation in itself—

many important real systems are not well modeled by random couplings, for example

in models of coupled molecular vibrational modes [52, 53, 57, 58]. Thus, to understand

thermalization for more realistic systems, we will want to explore more discriminating

coupling forms.

The construction of ĤSE in Eq. 5.1 as a random matrix coupling begins with a

matrix R̂ filled with off-diagonal elements

〈n|〈ε|R̂|ε′〉|n′〉 = Rnε,n′ε′ . (5.28)

The Rnε,n′ε′ are random complex numbers Rnε,n′ε′ = Xnε,n′ε′ + iYnε,n′ε′ as in Ref. [37].

This is more generic than our previous work in Refs. [1, 2, 6], where we used real

Rnε,n′ε′ to minimize numerical effort. We generate the real and imaginary parts Xnε,n′ε′

and Ynε,n′ε′ each as random numbers from a Gaussian distribution with standard

deviation σ = 1 with probabilities

p(Xnε,n′ε′) ∼ e
−X2

nε,n′ε′/2σ
2

, (5.29)

and similarly for the imaginary parts Ynε,n′ε′ . We set the diagonal elements to zero

to preserve the oscillator energies in the zero-order basis, as was done previously in

Ref. [2]. The interaction Hamiltonian is then constructed by multiplying R̂ by a
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parameter k that sets the overall coupling strength, ĤSE = kR̂. This multiplication

scales the random numbers so that their standard deviation becomes σ = k, consistent

with the description in our earlier work [1, 2, 6] (e.g. in Eq. 10 of Ref. [6]). We chose

k to be the size of the average level spacing of the system-environment universe at

our initial state energy E0 = 5, since we have found that smaller k do not give proper

thermalization.

Fig. 5.5 shows time evolution with this coupling. With this coupling the initial

Gaussian state associated with the top panel evolves in time to the state of the bottom

panel. The time evolution evidently leads to runaway spreading of the wavepacket

with probability in high energy states that does not appear to be converging to zero.

This is not how a physically reasonable state should behave.

It is important to understand why this coupling causes runaway behavior here,

because it was not observed, at least so prominently, in our earlier simulations with

a fixed temperature bath. The coupling causes some spreading of the wavepacket to

basis states of all energies, with the amount of probability per basis state decreasing

rapidly as the states get farther off resonance from the initial state energy E0 =

5. This might seem to entail decreasing probabilities at the top edge of the basis.

However, the number of E basis states per unit energy increases very rapidly with

increasing energy in the variable temperature bath, as shown in Fig. 5.1, so that many

more basis states contribute to the total probability in each successive energy unit.

Taken together, the total probability per unit energy doesn’t converge to zero as it

should, as clearly seen in Fig. 5.5. This runaway coupling is a problem that needs to

be addressed next.
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5.6. Selective coupling “tames” thermalization dynamics

We will see that by defining a suitably much more selective coupling, physical

results are obtained with both thermalization and contained spreading of the time-

dependent quantum SE state. The basic idea is to “tame” the coupling to limit the

range of transitions, especially to high energy states.

As before with the random matrix coupling, we begin with a coupling constant

k and a random matrix R̂ as in Eq. 5.28. To construct ĤSE , we take each individual

matrix element of kR̂ and multiply it by an exponential “taming” factor that depends

on the quantum number differences between the coupled states:

〈n|〈ε|ĤSE |ε′〉|n′〉 = kRnε,n′ε′ exp

(
−γS |∆n| − γE

η∑
osc=1

|∆nosc|

)
(5.30)

where |∆n| = |n− n′| is the quantum number difference between the coupled system

states and
∑

osc |∆nosc| is the total quantum number difference for the individual

oscillators in the coupled environment states. The parameters γS and γE suppress the

coupling between SE states depending on how much they vary in quantum number,

for example the coupling that moves one quantum between the system and bath

is stronger than the coupling that moves two quanta. This limits the strength of

transitions to high energy states, since they typically differ significantly in their

quantum number distributions, thereby addressing the runaway problem.

A coupling scheme similar to Eq. 5.30 has been put forward by Gruebele [52, 53]

in the context of intramolecular vibrational energy transfer, where he has argued

that the exponential quantum-number dependence of the coupling is an approximate

generic feature in molecular vibrational systems. Deutsch [20] has also said that

a similar exponentially-tamed random matrix coupling can be obtained through a
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second-order perturbation theory analysis and that the exponential taming is needed

to prevent runaway behavior in large quantum thermodynamic systems.

The tamed coupling has three parameters k, γS , and γE that we choose somewhat

arbitrarily for our model, with an aim towards obtaining physical thermalization

behavior. The k sets the “baseline” coupling strength; if k is too small then

thermalization will be impossible. The γE restricts the E transitions to address the

runaway problem; it must be large enough to restrict the spreading with large energy

differences, as needed for convergence, but also small enough to allow transfer between

nearby E levels, as needed for thermalization. The γS controls how easily the system

can transition between its levels; it must be small enough that all of the system levels

can be accessed during the dynamics.

In our simulations we choose a coupling constant k = 0.15. This is much larger

than the k we used with the random matrix coupling, to balance the exponential

taming factors. We choose a relatively small system taming factor γS = 0.125

and a large environment factor γE = 1. This parameter choice gives good system

thermalization behavior while limiting the environment transitions strongly enough

to get good convergence within our basis. The effectiveness of this coupling and

parameter choice is demonstrated by the time-evolved state in Fig. 5.6. The state

corresponding to this figure began as an initial Gaussian state as seen in the top

of Fig. 5.5, then it was evolved in time to equilibrium under the full Hamiltonian

Eq. 5.1 containing the tamed coupling interaction ĤSE from Eq. 5.30. As seen in

the histogram boxes in Fig. 5.6, the total probability per unit energy is converging

to zero at the top edge of the basis. This shows that the tamed coupling has fixed

the runaway problem of the random matrix coupling that was seen in the bottom of
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Fig. 5.5. Using the tamed coupling we found good convergence with a maximum SE

energy Emax = 13 for the simulations in this paper.
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FIGURE 5.6. Time-evolved state with the “tamed” coupling Eq. 5.30 has
probabilities that converge to zero at high energy. The initial state was the same
as panel (a) of Fig. 5.5.

The tamed coupling is a physically reasonable choice needed to solve a real

problem of runaway behavior with the random matrix coupling in the oscillator bath

model. Tamed couplings similar to ours in Eq. 5.30 have a long history of successful

use in modeling molecular vibrational dynamics [52, 53] similar to our oscillator model

here. A type of tamed coupling can also be understood in Franck-Condon factors in

vibronic transitions, where couplings decrease for greater vibrational quantum number

differences between coupled vibrational modes. In sum the tame coupling of Eq. 5.30

is a physically realistic choice that overcomes a significant problem with the simpler

random matrix coupling and gives physical results in our oscillator bath model.
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5.7. Results: equilibration and thermalization in the simulations

Now we examine key aspects of the system dynamics during the approach

to equilibrium: behavior of the time-dependent temperature; and the question of

equilibrated Boltzmann distribution with thermalization. Is there thermodynamic-

like behavior? But do we also see anomalous small-size temperature effects suggested

by Fig. 5.3?

5.7.1. Variable temperature and small-size effects

First we consider the computed time evolution of a set of initial states,

constructed as described in Section 5.4 with different initial system levels n0 but the

same nominal energies E0 = 6. The total energies for the various n0 are somewhat

larger, as discussed in Section 5.4, with 6.116 ≤ 〈Ĥ〉 ≤ 6.156, where Ĥ is the

total Hamiltonian Eq. 5.1. Taking E = 〈Ĥ〉 in Eq. 5.23 we get for these states

a narrow range of equilibrium microcanonical temperatures 1.912 ≤ TSE ≤ 1.922.

Roughly speaking, we can think of all the states as sharing the common energy

E ≈ 6.14, hopefully corresponding in the simulations to a common final equilibrium

temperature TSE ≈ 1.92, where 1/TSE is the weighted average over all the initial

state 1/TE at the common energy E, as in Eq. 5.23. We therefore test in the

simulations whether the time-dependent temperature TSE(t) of Eq. 5.24 equilibrates

to the common temperature TSE ≈ 1.92.

Fig. 5.7 shows the time-dependent behavior of the temperatures TSE(t) for each

of the initial states n0. For each n0, the temperature begins in its respective value

for an isolated system and environment, TSE(t = 0) = TE (from Eqs. 5.24 and 5.13).

Time evolution takes the temperatures to equilibrium, where they do in fact fluctuate
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FIGURE 5.7. Time-dependent temperatures TSE(t) (Eq. 5.24) for a series of
calculations with approximately the same SE energy E ≈ 6.14 but different starting
S levels n0. Each temperature evolves to approximately the same final temperature
TSE ≈ 1.92 from Eq. 5.23.

around the common approximate value TSE ≈ 1.92. Thus, we are getting the common

microcanonical TSE value corresponding to energy E ≈ 6.14, as hoped for. This result

validates the path of development in Section 5.3 regarding a variable temperature.

Observed small temperature fluctuations at equilibrium are due to the time-dependent

fluctuations in the system density operator ρ̂S(t), whose behavior will be discussed

shortly in Section 5.7.2.

It is a noteworthy prediction based on the considerations of Section 5.3 that

the finite bath equilibrium temperatures in Fig. 5.7 should be considerably higher

than would be expected using the infinite bath T from Eq. 5.14 based on the average

number of quanta per degenerate oscillator 〈nosc〉 = 〈Eosc〉. To test this, we calculated

〈Eosc〉 = 〈EE〉/η as the time-averaged equilibrium value for times 30 < t ≤ 60

averaged over all of the simulations shown in Fig. 5.7, giving 〈Eosc〉 = 1.117± 0.004.
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The infinite bath limit temperature Eq. 5.14 from this 〈Eosc〉 is T = 1.564 ± 0.004,

much smaller than our temperature TSE = 1.92. This is because the finite bath

temperatures TE in Eq. 5.13 (which go into the calculation of the TSE via Eq. 5.23)

increase more rapidly with energy than the infinite bath T, as was seen in Fig. 5.3.

Thus, the anomalous temperature scaling of the small environment is demonstrably

evident from this analysis of Fig. 5.7. We will have more to say about the anomalous

temperature in the next subsection.

5.7.2. Approach to thermal equilibrium and anomalous size effects

Next, we consider the behavior of the system in the approach to thermal

equilibrium. Fig. 5.8 shows an example of the time-dependent system probabilities

ρn,nS from the reduced density operator for an initial S level n0 = 0 (the dynamics are

similar for the other n0). As the state begins to evolve in time, much of the initial

state probability is quickly lost to the other levels, followed by a much slower decay

to the equilibrium Boltzmann distribution marked by the dotted lines. The behavior

can be fit by an empirical power law

ρn0,n0

S (t) =
1√

1 + (t/τ)δ

(
1− e−En0/TSE

Z

)
+
e−En0/TSE

Z
(5.31)

where τ and δ are fit parameters and exp(−En0/TSE)/Z is the equilibrium Boltzmann

probability at the temperature TSE , as will be discussed further shortly. Power law

decays have been discussed by Gruebele [53, 59] as a generic feature in molecular

vibrational systems that can be described by couplings similar to our Eq. 5.30. The

decay describes the nearly exponential drop of the initial state n0 probability at short

times and the longer decay to equilibrium. The other levels n reach equilibrium at

different timescales depending on how far they are from the initial level n0 = 0, for
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FIGURE 5.8. System level probabilities evolve in time to the Boltzmann distribution
at temperature TSE(E = 〈Ĥ〉) from Eq. 5.23. The decay of the initial state n0 = 0 is
described by Eq. 5.31 with τ = 1.02± 0.03 and δ = 2.38± 0.06.

example, n = 1 reaches its equilibrium probability relatively quickly whereas it takes

much longer for the n = 4 level. This stands in contrast to the dynamics under the

simple random matrix coupling, where each system level evolves at approximately

the same rate [6], without any sense of “proximity” between nearby energy levels

that facilitates their energy transfer. Beyond simply being essential to converge the

calculations, as discussed in Section 5.6, it seems to us that the tamed coupling is

also giving a much more realistic dynamics.

At long times, the system level probabilities fluctuate about a Boltzmann-

appearing distribution ρn,nS ∼ exp(−En/TSE) at the temperature TSE , shown as a

black dotted line for each En. The agreement with the Boltzmann distribution

at TSE is examined in Fig. 5.9 across a range of initial state energies E = 〈Ĥ〉

and corresponding temperatures listed in Table 5.2. The time-averaged system
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FIGURE 5.9. Time-averaged equilibrium system probabilities for three initial states
(a), (b), and (c) with the energies and temperatures in Table 5.2. The Boltzmann
distributions ρn,nS ∼ exp(−En/TSE) at the analytical temperatures TSE give very good
descriptions of the system level probabilities ρn,nS , while the Boltzmann distributions
at the infinite bath T do not.

probabilities from the simulations are in very good agreement with the analytical

Boltzmann distributions at temperatures TSE from Eq. 5.23. For comparison, in

Fig. 5.9 we also show the Boltzmann distributions for the infinite bath temperatures

T calculated for the states, based on the average energy per bath oscillator observed

in the simulations, see Table 5.2 and the discussion in the last paragraph of Section

5.7.1. The resulting temperatures are systematically lower than the TSE values, and

the corresponding Boltzmann distributions do a poor job of describing the system

probabilities. Thus, the observed thermalization to TSE strongly reinforces that this

is the correct thermodynamic temperature to describe the total system SE .

At this point it is appropriate to remark on the question of “eigenstate

thermalization” in our simulations. The eigenstate thermalization hypothesis (ETH),

that eigenstates of a suitable system-environment Hamiltonian reflect thermal

properties [20, 21, 23], is widely regarded as an explanation for thermalization

phenomena. ETH is often justified through an appeal to chaotic dynamics of the
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kind that classically corresponds to a random matrix Hamiltonian. Chaotic dynamics

become less certain the more that there is a “taming” of the coupling, as used in this

paper to get convergence of the dynamics, and ETH thereby becomes less certain as

well. Nonetheless, all of our initial states thermalize to their expected temperatures,

and this is consistent with ETH. In future work, we plan to explore the breakdown

of ETH as reduced coupling strength makes questionable chaotic dynamics, ETH

behavior, and thermalization itself.

Another point worth remark is alternatives to the random matrix-based couplings

used in this paper. Simple couplings based on linear combinations of raising and

lowering operators are used in many quantum thermodynamic investigations [23].

Accordingly, we have run calculations where we adopt a linear kx̂ix̂j coupling. We find

that this gives controlled spreading with semi-quantitative thermalization. However,

in comparison the thermalization is significantly better with the random matrix

tamed coupling calculations reported above. The likely reason the random matrix

works better for our setup is that our five-oscillator bath has approximate frequency

resonances. This is typical of many physical systems, e.g. a molecule embedded in

a bath, which will almost inevitably have such “anharmonic resonances.” A random

coupling will better capture the effects of these resonances. On the other hand, there

are systems, e.g. of coupled bosons, where the x̂ix̂j type coupling is more appropriate.

Based on our calculations, we believe that variable temperature baths can be devised

appropriate to a variety of physical situations in “tailor-made” fashion.

5.8. Summary and prospects

This paper has considered a quantum description of energy flow from a system

into a very small variable temperature bath. We defined a system, consisting of a

125



State E TSE 〈Eosc〉 T (Eq. 5.14)
(a) 4.148 1.422 0.750 ± 0.005 1.180 ± 0.006
(b) 6.118 1.913 1.121 ± 0.003 1.568 ± 0.003
(c) 8.099 2.406 1.499 ± 0.002 1.957 ± 0.002

TABLE 5.2. Energy and temperature data for Fig. 5.9. The energies E = 〈Ĥ〉 are
from the full Hamiltonian in Eq. 5.1 and the TSE(E) were calculated from Eq. 5.23.
The average bath-oscillator energies 〈Eosc〉 = EE/η were averaged over the same time
window 30 < t ≤ 60 as the system probabilities in Fig. 5.9 and the infinite bath T
were calculated from Eq. 5.14 with 〈nosc〉 = 〈Eosc〉.

finite number of levels, and an environment, consisting of levels of a finite collection

of harmonic oscillators (which constitutes the bath). A set of identical oscillators

was first considered, paralleling the Einstein heat capacity model. To get something

more like a continuous state distribution, we then took a collection of non-identical

oscillators. This gives a distribution of levels that closely tracks that of the bath

of identical oscillators, but also has the desired feature of breaking the degeneracy,

giving a quasi-continuous level distribution. The level pattern of this bath has a

density of states that gives temperature-like behavior, using the standard statistical

thermodynamic microcanonical relation between temperature, energy, and density of

states. This defines the “temperature” TE for the finite bath. This temperature differs

significantly from that of the infinite oscillator bath, as seen in simulations with a

bath with only η = 5 oscillators. We compared the energy-temperature relations for

a single oscillator within the infinite bath (the well-known result of Einstein from his

famous heat capacity paper) to the corresponding relation for a finite bath. There are

systematic differences, which are pronounced for η = 5, and asymptotically approach

the infinite bath at large η. The small bath has higher temperature for a given

amount of energy per oscillator. Very unlike the infinite bath, it also terminates at a

temperature TE > 0, as seen in Fig. 5.3.
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Having devised the finite bath with temperature TE , we considered the process of

heat flow from the system into this bath. Simulations were performed of the process of

heat flow to the finite bath in quantum time evolution. First we used a random-matrix

coupling of the kind that has been employed in many contexts, including successful

quantum thermodynamic simulations [1, 2, 6, 37]. This however led to “runaway

spreading” of the quantum SE wave function. This is closely connected with the

variable temperature of the bath—a feature not present in earlier thermodynamic

simulations. The problem is that the density of states increases rapidly with increasing

temperature, and the non-discriminate random coupling overpowers the quantum

time evolution. To solve this, we switched to a more selective coupling similar to

the kind that has long been used [52, 53] in molecular simulations. This selective

coupling “tames” the spreading of the wave function, so that runaway behavior is

avoided. The tamed coupling appears to be a realistic new feature needed to solve a

real problem in the simulations.

Next came computational examination of the temperature TSE defined for the

microcanonical ensemble of the SE total system “universe,” including the time-

dependent temperature TSE(t) that varies continuously between the initial bath

temperature TE and the final SE temperature TSE . In simulations with the η = 5

oscillator bath, starting with different initial system states but the same total system-

environment energy, we tracked the temperature from its various initial values

(because the bath has different energies depending on the system state) to its

final value at equilibrium. All the simulations went to essentially the same final

temperature TSE , as desired. The simulations with the bath of η = 5 oscillators

with selective coupling show equilibration to a Boltzmann-type distribution at the

temperature TSE implied by the initial energy of the total system. As noted above,
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this temperature is markedly different from that of an infinite bath with the equivalent

energy per bath oscillator. In short, there are marked effects of the small finite bath

on thermal behavior with variable temperature in the quantum simulations.

It is interesting to consider real situations in which to explore these finite

size quantum thermodynamic effects. Experiments on very small Bose-Einstein

condensates, containing as few as six atoms [24], may point the way to size-

dependent variable temperature behavior similar to the oscillator model we have

studied here. Several investigators have proposed small molecules as laboratories

for fundamental exploration of quantum thermodynamics and statistical mechanics.

Leitner [26, 27] has reviewed a method of using the eigenstate thermalization

hypothesis to understand ergodicity and localization of energy within time-dependent

molecular systems. Pérez and Arce [38] performed simulations of dynamics on

a potential energy surface of the molecule OCS, which has a long history as an

exemplar of problems of classically chaotic molecular dynamics. They treat one

of the vibrational modes of OCS as a “system,” and the other two modes as an

“environment,” akin to what we do here, but with a two-mode bath that is much

smaller even than what has been considered here. They find a kind of thermalization

of the system when it is excited with sufficient energy to have chaotic classical

dynamics. However, they did not engage in the kind of analytic treatment of

temperature of the present paper. If we go to a four-atom molecule, for example

the important species C2H2 (acetylene) or H3O+ (hydronium ion), we could take

as system one of the modes, e.g. a C-H stretch, leaving 5 vibrational modes as the

bath, just as we do here. This ignores rotational degrees of freedom; one could do

experiments with angular momentum J = 0; or alternately, allow J excitations, which

would become increasingly important at higher J , where rotation-vibration coupling
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would become important, giving the rotational degrees of freedom as a second bath

or environment E ′. It is worth noting that molecular systems interacting with small

baths are of interest in other contexts as well, e.g. in calculations of entanglement

dynamics and spectroscopic signals [60, 61].

As an alternative to the molecular dynamics simulations of Ref. [38], one could

also use “effective Hamiltonians” of the kind that have had vast use in molecular

spectroscopy [57, 58]. It is notable that these Hamiltonians usually employ one or

more “polyad numbers” that constitute approximate constants of motion, valid on a

limited time scale. This makes these attractive systems in which to explore the effects

of approximate constants as barriers to thermalization, a topic of considerable interest

[20] in contemporary theory of quantum thermodynamics. The effective molecular

polyad Hamiltonian can then be enhanced with polyad-breaking perturbations [62–

64] that correspond to real molecular dynamical effects. These hierarchical dynamical

systems could be ideal laboratories for investigation of thermodynamic processes on

multiple time scales.

As a final comment, taking a wider perspective on the work here, it may be

worthwhile to consider that there are (at least) three dimensions of “post-classical”

effects in quantum thermodynamics. The first of course is quantization of energy

levels, introduced in the very beginnings of quantum physics by Planck in his black-

body theory and by Einstein in his famous heat capacity paper. A second is finite

size, as exemplified in this paper by the very small size (five oscillators) of the variable

temperature bath. A third involves quantum time evolution. This might come with

more complicated setups of finite size and time evolution than explored here. One

might consider a system linking two baths of different sizes; or a system linking

two finite baths where the coupling of the system to each bath is different. These
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would require far larger simulations than performed here. We can readily imagine

experimental realizations of these situations, e.g. with supramolecular arrangements

of two or more molecules weakly linked by a third.

5.9. Connection to later work

This chapter has developed a model for a quantum “temperature bath” of

a small number of oscillators. The temperature TSE depends on the size of the

bath in a novel type of way that deviates from the temperature-energy relation for

an infinite bath, but with TSE the environment behaves as a proper temperature

bath, with thermalization of an interacting system to the Boltzmann distribution

at temperature TSE . With this properly functioning variable temperature quantum

bath, we will now move onto a much more interesting situation where two of the

baths considered here interact and exchange heat along the path to temperature

equilibrium. In classical thermodynamics, this leads to equal temperatures in the

baths, associated with maximizing the entropy of the universe in the second law. In

quantum thermodynamics, the entropy SQuniv includes the non-classical component

of excess entropy production in addition to the classical component, as developed in

Chapters III-IV. Can this lead to new types of temperature equilibration behavior

in quantum pure state thermodynamics, associated with maximizing the total SQuniv

including non-classical excess entropy production? The next chapter will address this

question, with much to say about the fundamental role of SQuniv and the possibility

for novel types of quantum thermodynamic effects associated with excess entropy

production.
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CHAPTER VI

ASYMMETRIC TEMPERATURE EQUILIBRATION WITH HEAT FLOW

FROM COLD TO HOT IN A QUANTUM THERMODYNAMIC SYSTEM

This chapter includes previously unpublished material co-authored by Michael

E. Kellman [5]. Michael Kellman and I both contributed to developing the model

and theory, analyzing the results, and writing the manuscript. I performed the

computations.

6.1. Introduction

In this paper we explore a computational model of a multicomponent quantum

thermodynamic network in which surprising phenomena are manifest, due to finite-

size time-dependent quantum effects. We observe, in a straightforward manner

of speaking, that by introducing a deliberate asymmetry, heat can be made to

flow from cold to hot in a pure state system consisting of two separate variable

temperature baths, coupled through a “linker system.” We explore the description

of these phenomena in terms of a recently introduced [1, 2] quantum entropy SQ for

a pure state, and show that this gives results in accord with the standard classical

second law formulation ∆Suniv ≥ 0. In contrast, a description in terms of a von

Neumann entropy treatment, similar to that described by Landau and Lifshitz [65]

in their approach to thermodynamics for large quantum systems, fails to account for

the equilibration to the unequal temperatures. There have been other approaches

to formulating the second law in quantum thermodynamics, beginning with mixed

states [28] or pure states expressed in a “quantum phase space” basis [30], but to our

knowledge these have not been associated with new types of quantum thermodynamic
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effects as we have here with SQ in the second law. This work is part of a broad program

reexamining the foundations of statistical mechanics in the context of quantum pure

states evolving in time [1–4, 6–38], with the results here demonstrating novel aspects

of the quantum thermodynamic behavior.

An essential element of our setup is the variable temperature baths. In a recent

paper [4], we introduced a computational model for such a bath and showed that it

thermalizes with a system, while exhibiting quantum thermodynamic effects related

to the finite size of the bath. The variable temperature bath generalized earlier

work [1, 2, 6, 35–37] on quantum thermodynamic simulations that used a constant

temperature bath.

6.2. Complex model system with two baths

E1 E2S

VE1S VE2S 

FIGURE 6.1. Two bath-environments E1 and E2 are linked together by a two level
system S. The baths exchange heat through the system, with system-environment
couplings V̂E1S and V̂E2S.

Fig. 6.1 shows the setup of present interest: two variable temperature finite

baths or environments E1 and E2 that are uncoupled from each other, except for a

system S that acts as a linker. Each bath is coupled to the linker, but the baths are

coupled to each other only indirectly, through the linker. Suppose the baths start

out at different temperatures. In ordinary classical thermodynamics, the baths and

linker system would equilibrate to a common temperature. This would be true even
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if the couplings to each bath were not the same. However, we hypothesize that if we

introduce such an asymmetry into a small quantum thermodynamic system, there

might be asymmetry of temperature in the final equilibrated state. This is indeed

what we will find. In this and the following sections, we describe the setup sketched

in Fig. 6.1, present the results of the computational simulations, and give an account

in terms of the quantum entropy SQ.

We consider a linker system S with zero-order Hamiltonian ĤS that connects

together two finite temperature baths or environments E1 and E2 with Hamiltonians

ĤE1 and ĤE2 . The baths do not interact directly, but rather interact with the system

via coupling operators V̂E1S and V̂E2S . The total Hamiltonian is

Ĥ = ĤS + ĤE1 + ĤE2 + V̂E1S + V̂E2S . (6.1)

The system consists of two levels with energy spacing ~ωS = 1 and eigenstates

{|n〉} = {|0〉, |1〉}:

〈n|ĤS |n〉 = n. (6.2)

The environment (bath) Hamiltonians ĤE1 and ĤE2 are for identical collections of

η harmonic oscillators, each with frequencies {ωosc}. The zero-order eigenstates for

bath E1 are |ε1〉 = |n(ε1)
1 , n

(ε1)
2 , ..., n

(ε1)
η 〉 with Hamiltonian matrix elements

〈ε1|ĤE1 |ε1〉 =

η∑
osc=1

~ωoscn
(ε1)
osc , (6.3)

with similar expressions for bath E2 with |ε2〉 and ĤE2 . The frequencies of the bath

oscillators are taken as random numbers that are scaled to set their geometric mean

(
∏η

osc=1 ~ωosc)
1/η = 1, in accord with Ref. [4] where this finite environment model was
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developed as a small variable temperature bath in simulations of a system interacting

with a single environment. The frequencies we use are listed in Table 6.1.

η ~ω1 ~ω2 ~ω3 ~ω4 ~ω5

4 0.696 987 0.987 490 1.088 054 1.335 340
5 0.620 246 0.735 401 1.146 315 1.315 886 1.453 415

TABLE 6.1. Oscillator frequencies for the η = 4 and η = 5 oscillator environments,
shown to six decimal places.

The interactions V̂E1S and V̂E2S in Eq. 6.1 are selective random matrix couplings

used in Ref. [4], similar to those that have long been used in modeling energy transfer

between molecular vibrational modes [52, 53]. For example, V̂E1S begins with a

random matrix R̂E1 with elements 〈n|〈ε1|R̂E1|ε′1〉|n′〉 = Rnε1,ε′1n
′ generated as random

numbers from Gaussian distributions with standard deviation σ = 1. Each of these

matrix elements is then scaled by a coupling constant k1 and by “taming factors”

exp(−γS |∆n|) and exp(−γE
∑

osc |∆n
(ε1)
osc |) that will be explained shortly. The final

form of the coupling matrix elements is:

〈n|〈ε1|V̂E1S |ε′1〉|n′〉 = k1Rnε1,ε′1n
′e−γS |∆n|e−γE

∑
osc |∆n

(ε1)
osc |, (6.4)

with a similar expression for V̂E2S . We set the diagonal elements to zero to preserve

the oscillator energies in the zero-order basis, as was done previously in Ref. [4], and

use real numbers only in the coupling to minimize the numerical overhead.

The parameters γS = 0.1 and γE = 0.5 determine how the coupling scales

with quantum number differences |∆n| and
∑

osc |∆n
(ε1)
osc | of the coupled system and

environment states. The larger value for γE is needed to obtain physical results where

the environment doesn’t spread out too much in energy [4]. The smaller value of

γS gives good system thermalization in the dynamical calculations. The parameters
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γS and γE have been reduced relative to the values we used for a single system and

bath in Ref. [4], as we found this to be more successful in obtaining good energy flow

between the baths. The coupling constants k1 and k2 will vary as described in the

results to follow.

For the basis set we use a “thermal basis” [2, 4] that is a truncated version of

the full tensor product basis H = HE1 ⊗ HS ⊗ HE2 . The thermal basis contains all

basis states in the energy range

0 ≤ ES + EE1 + EE2 ≤ Emax. (6.5)

A similar truncated basis was found to give good thermodynamic behavior in Ref. [4]

with a single variable temperature bath of the type we use here. We find good

convergence with η = 4 oscillators using Emax = 16 and Emax = 17 in Sections

6.5.1 and 6.5.2 respectively, where the coupling constants k1 and k2 take different

values. For η = 5 oscillators per bath, we also use Emax = 17. With 5 oscillators

the calculations are not quite converged. We are unable to go to higher Emax due to

the computational demands of increasing the basis, but the results are qualitatively

completely consistent for different Emax.

6.3. Temperature and the baths

In this paper we will be talking about asymmetries in temperature of two

baths, with “heat flow from cold to hot.” This necessitates a careful consideration of

temperature. Implicitly, we must be talking about “temperatures” of the individual

baths. But general formulations of statistical mechanics, and certainly our prior

work defining temperature baths [1, 2, 4, 6], rely on a microcanonical ensemble

implementation of the thermodynamic temperature T = (∂S/∂E)−1 for the total
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system. In our case here, this would be the two baths + system E1, E2, and S.

We implement this same type of microcanonical temperature definition here for the

total system, and use it to define (or perhaps contrive) sensible temperatures for the

individual baths. This is a somewhat lengthy process, placed in Appendix D; a brief

sketch follows.

To define the single bath temperatures we use the standard thermodynamic

relationship between temperature, entropy, and energy applied to the baths, for

example

1

TE1
=
∂SE1
∂EE1

, (6.6)

where SE1 and EE1 are the bath entropy and average energy, with a similar expression

for second bath temperature TE2 . We evaluate TE1 in Eq. 6.6 analytically as a function

of the bath energy in Appendix D. The approach uses standard microcanonical

relations to calculate SE1 and EE1 for a given total E1SE2 energy. The temperature

TE1 is then calculated by numerically taking the derivative in Eq. 6.6. This results in a

temperature-energy relation TE1 = TE1(EE1) for the finite baths, with a similar relation

for TE2 . The temperatures increase monotonically with the bath energy, with curves

similar to the standard type of temperature-energy relationship for an oscillator in

an infinite bath. The temperatures from Eq. 6.6 are what we will use throughout our

results to compare temperatures in the baths.

6.4. Initial states and time-propagation

The initial pure E1SE2 state is a product state:

|Ψ0〉 = |ψ0
S〉|ψ0

E1〉|ψ
0
E2〉 (6.7)
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The system begins in a single level |ψ0
S〉 = |n〉. We take the environment states |ψ0

E1〉

and |ψ0
E2〉 as Gaussian superpositions following Ref. [4], for example:

|ψ0
E1〉 ∼

∑
ε1

exp(iδε1) exp(−(E0
E1 − Eε1)

2/4σ2)|ε1〉, (6.8)

where the δε1 are random phases, E0
E1 is the central energy of the Gaussian, Eε1 is the

energy of the zero-order basis state |ε1〉, and σ = 0.5 is the width of the Gaussian.

A similar expression holds for |ψ0
E2〉. We will take different values for E0

E1 and E0
E2

in different simulations, as we vary initial energies and temperatures in the baths.

A different type of initial bath state with random variations about a Gaussian gave

very similar results to those we report here, so our results do not appear to depend

significantly on our specific choice of |ψ0
E1〉 and |ψ0

E2〉 in Eq. 6.8.

The time-dependent behavior of the total state |Ψ(t)〉 is calculated using a

converged Chebyshev polynomial expansion of the time-dependent state. The

expansion is known to give a highly accurate and efficient approximation to the true

dynamics. Detailed accounts of the implementation of the method can be found in

Refs. [66, 67].

6.5. Equilibration of the system and baths

In this section we discuss results of the time propagation with equal and unequal

couplings to the two baths. In a classical system we would expect the change in

couplings to change the rate of approach to equilibrium for the baths, but not their

final temperatures, which we would expect classically to be equal for the two baths.

Does the same temperature independence hold here with the quantum baths with

variable couplings?
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FIGURE 6.2. Equilibration dynamics with two baths with equal couplings k1 = k2 =
0.085. Panel (a) shows the average zero-order energies of the baths, (b) shows the
corresponding temperatures from Eq. 6.6.

6.5.1. Energy equilibration with equal bath couplings

First we will examine the time-dependent behavior with equal coupling constants

k1 = k2 = 0.085 in Eq. 6.4. We begin with different initial energies E0
E1 and E0

E2 in

Eqs. 6.7 and 6.8. The time-dependent behavior of the bath energies is shown in panel

(a) of Fig. 6.2. The two baths approach an equilibrium state where their energies

fluctuate about approximately equal values EE1 ≈ EE2 . In panel (b), we show the

time-dependent temperature behavior, based on the single bath temperature TE(EE),

as outlined in Section 6.3 and developed in Appendix D. The temperatures behave

similarly to the energies, ending in an equilibrium state where the two baths fluctuate

about the same temperature. This is standard thermodynamic behavior, as fully

expected.
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6.5.2. Energy equilibration with unequal bath couplings

Now we consider our central result, the temperature asymmetric equilibration

when the couplings to the two baths are unequal, with k1 = 0.085 and k2 = 3k1

in Eq. 6.4. In Fig. 6.3 we show three cases where the initial state bath energies

are the same or different from one another, (a) E0
E1 > E0

E2 , (b) E0
E1 = E0

E2 , and (c)

E0
E1 > E0

E2 . All states go to the same qualitative type of final state where the energy

in the strongly coupled bath is greater than the energy in the weakly coupled bath

EE2 > EE1 . Similar statements describe the individual temperatures of the baths.

This is decidedly different from standard thermodynamic behavior! In panel (a) it

is no exaggeration to speak of heat flowing from cold to hot. In all three cases, an

asymmetric temperature equilibrium holds.

6.6. Entropy

We have seen unusual behavior in this quantum system: an equilibrium in which

two temperature baths reach different temperatures, with cases that can be described

as having heat flow from cold to hot until an asymmetric equilibrium is reached.

In thermodynamics, we are used to explaining equilibration outcomes with reference

to the second law. In terms of entropy, this is the statement that Suniv reaches a

maximum, given any constraints. Is anything like this available to us here? It might

seem not, because quantum statistical mechanics has the von Neumann entropy, and

for a pure state, the von Neumann entropy is zero, hence seems to have no relevance.

However, we have recently introduced a new quantum thermodynamic entropy SQ

which is nonzero for a pure state [1, 2]. We also sometimes call this entropy SQuniv to

designate that it is an entropy for the total system-environment “universe” pure state.

We have observed in simulations that in ordinary quantum thermodynamic situations,
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FIGURE 6.3. Baths with unequal couplings k1 = 0.085 and k2 = 3k1 evolve
to equilibrium states with unequal temperatures in the baths. The panels show
simulations with different initial bath energies (a) E0

E1 > E0
E2 , (b) E0

E1 = E0
E2 , and (c)

E0
E1 < E0

E2 .
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e.g. heat flow into a single bath, this entropy maximizes at thermal equilibrium, in

accord with the second law. The question arises whether SQ has salience for the

unusual situation of asymmetric temperature equilibration considered here. We will

also try to apply a von Neumann-type entropy analysis using subsystems of the total

system, devised with a procedure along lines discussed by Landau and Lifshitz [65].

We will see that SQ succeeds in giving a second law entropy account of the unusual

equilibration. In contrast, the procedure using the von Neumann entropy fails. We

now describe the two approaches, then compare their description of the equilibration

process.

6.6.1. Pure state quantum entropy SQ

The quantum thermodynamic entropy SQ was developed in Ref. [1] for an

isolated system-environment “universe” in a pure state |Ψ〉. It is based on an

expansion of the state in terms of the system-environment zero-order basis |Ψ〉 =∑
s,ε1,ε2

cs,ε1,ε2|s〉|ε1〉|ε2〉. The entropy is then taken along the lines of a Shannon

definition using the zero-order probabilities ps,ε1,ε2 = |cs,ε1,ε2|2 as

SQuniv = −
∑
s,ε1,ε2

ps,ε1,ε2 ln ps,ε1,ε2 (6.9)

The time evolution of SQ for our simulations, shown in Figs. 6.4 and 6.5, will be

discussed along with calculations in the von Neumann-type approach, to which we

turn next.

6.6.2. Von Neumann entropy approach

Now we consider an approach based on a von Neumann entropy construct. Of

course, the von Neumann entropy is zero for the total system pure state. Instead,
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we follow a procedure similar to that of Landau and Lifshitz [65]. We partition the

total system S + E1 + E2 to define a von Neumann entropy for each of S, E1, and E2.

Specifically, we define the sub-entropies by finding the von Neumann entanglement

entropy of each sub-system with respect to the other two sub-systems. Thus SS is

defined with respect to E1 and E2, and so forth for the other combinations. Then, we

find the total entropy as the sum of the the three sub-entropies

SvNtotal = SvNS + SvNE1 + SvNE2 . (6.10)

This procedure seems very reasonable for large total systems, and is likely to

give essentially the same, classical results no matter how we do the divisions. But

in our small quantum system, with the non-classical phenomena in Figs. 6.4 and 6.5,

the behavior of SvNtotal seems a priori not at all predictable.

6.6.3. Comparison of entropy calculations

Fig. 6.4 shows the two calculations of the entropy of the universe for the

simulation with four oscillators in the panel (a) of Fig. 6.3, with the black line

indicating the time of the temperature crossing. The entropy is calculated as the

pure state entropy SQ (top) and as the total von Neumann entropy SvNtotal (bottom).

Fig. 6.4 shows that SQ rises during the heat transfer process, and is rising still

at T1 = T2. It keeps rising (to within computational fluctuation) until it reaches a

maximum at the equilibrium state where T1 > T2. This shows that SQ is in fact

giving a very nice account of our results, consistent with a second law explanation

∆SQ ≥ 0, with ∆SQ = 0 at the nonclassical equilibrium with unequal temperatures.

In contrast, the von Neumann entropy SvNtotal maximizes close to the time of the

temperature equalization, then decreases as the equilibration proceeds to different
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FIGURE 6.4. Universe entropy production SQuniv in Eq. 6.9 and SvNtotal in Eq. 6.10 for
the calculation in the top of Fig. 6.3 with η = 4 oscillators per bath. The black line
shows the time of the temperature crossing.

temperatures. Thus the von Neumann entropy is maximized near the classical state

of equilibrium, with equal temperatures, and does not account for the asymmetric

quantum equilibrium in terms of the second law.

Fig. 6.5 shows results where we have increased the number of oscillators per

bath to η = 5. These calculations are not quite converged, as mentioned previously

at the end of Section 6.2, but the behavior in Fig. 6.5 is robust to changes in the

basis size. Here, we see an even more striking increase in SQuniv after the temperatures
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FIGURE 6.5. Temperature equilibration similar to Figs. 6.3 and 6.4 but with
η = 5 oscillators per bath. The increase in SQuniv and decrease in

∑
SvN after the

temperature separation is even more striking.

cross, along the way to the asymmetric equilibrium. On the other hand, the von

Neumann entropy is again maximized near the time of the temperature crossing,

with a significant decrease as the state approaches the asymmetric equilibrium. This

result strongly supports that SQuniv is giving a correct account of the equilibration

behavior while SvNtotal is not.
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6.7. Why the effect takes place

We have seen a sizable temperature difference attained in the baths at equilibrium

when they have asymmetric couplings, with coupling constants k2 > k1 in Eq. 6.4.

In essence, heat can flow from cold to hot, as seen in Fig. 6.3. Here we discuss the

physical origin of this effect, its relation to the asymmetric coupling, and to “excess

quantum entropy production” in attaining a maximum of SQuniv at the asymmetric

temperature equilibrium.

We argue that the basic source of these effects in the asymmetric system is

that couplings induce quantum spreading of the wavepacket within the baths during

the quantum time evolution. Interactions among non-resonant energy levels cause

the baths to spread to higher and lower zero-order energy basis states |ε1〉 and |ε2〉.

The quantum spreading accesses many more high energy basis states than low energy

states, since the density of bath states at higher energy is much larger than the density

at lower energy. This asymmetric spreading to mostly high energy basis states has

the effect of increasing the energy of each of the baths, with a compensating decrease

in the coupling energies, so that the total energy 〈Ĥ〉 of Eq. 6.1 is constant.

Fig. 6.6 shows details of the average coupling energies, bath energies, and the

system energy near the beginning of a simulation, analogous to panel (b) of Fig. 6.3,

where the baths begin at the same energy. There is a rapid decrease in each of the

coupling energies, associated with an increase in the bath energies and the system

energy. This is due to spreading of the wavepacket that predominantly accesses higher

energy bath basis states, as discussed above. However, the more strongly coupled bath

has a much greater change in its associated coupling energy 〈VE2S〉 and bath energy

EE2 = 〈ĤE2〉.
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FIGURE 6.6. Energy terms in the total Hamiltonian Ĥ of Eq. 6.1.

After the initial increase in both bath energies, there is a slower partial transfer

of energy from bath to bath via the system, but the energies never equalize. The

asymmetric spreading to high energy states remains localized primarily in the strongly

coupled bath. The energy difference from the asymmetric spreading gives a small but

significant final temperature difference between the baths. Similar initial increases in

the bath energies and decreases in coupling energy are seen for all the different initial

states in Fig. 6.3. The spreading of the wavepacket to higher energies, along with

the incomplete transfer of this energy between the baths, is the basic source of the

asymmetric temperature equilibrium.

Having discussed the physical source of the temperature separation, we now

consider its connection with in the quantum entropy and the second law. The

entropy SQuniv of Eq. 6.9 depends on the probabilities pε1,s,ε2 of the zero-order

basis states |ε1〉|s〉|ε2〉. The changes in the pε1,s,ε2 and SQuniv can be thought of

qualitatively as a sum of a classical and a quantum “excess entropy” component,
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with ∆SQuniv = ∆Sclassical + ∆Sx. The classical ∆Sclassical is related to heat flow

between the system and baths; alone this would lead to equal temperatures in the

baths. However, ∆SQuniv also depends on the quantum excess entropy production

∆Sx related to the quantum spreading of the wavepacket to non-resonant energy

levels [2]. The asymmetric spreading of the wavepacket with asymmetric couplings

leads to temperature separation in the baths as described above. Thus there is a

direct connection between ∆SQuniv,∆S
x, and the temperature separated equilibrium

state. This evidently gives a ∆SQuniv that follows the second law ∆S > 0 during the

temperature equilibration, as seen in Figs. 6.4 and 6.5.

In contrast, the total von Neumann entropy of Eq. 6.10 is more indirect than

SQuniv, in that it depends on the eigenvalues of the reduced density operators for the

E1,S, and E2 subsystems. These eigenvalues evidently do not encode information

about the temperature equilibration in such a way that the total von Neumann

entropy is maximized at equilibrium, as would be expected if the second law holds.

Thus, the von Neumann entropy fails to give a second law account of the asymmetric

temperature equilibration behavior observed in Figs. 6.4 and 6.5. In contrast, the

new quantum entropy SQuniv is successful in explaining the temperature separation in

terms of the second law.

It seems likely to us that the unequal spreading within the baths is encoded into

the eigenstates, so that eigenstates usually have temperature separations between

the baths. If so, the temperature separation is likely inevitable at equilibrium,

where the coherences between the eigenstates are effectively random and the average

behavior of the eigenstates dominates. This same line of reasoning about the average

eigenstate behavior is often cited in the eigenstate thermalization hypothesis account

of quantum thermodynamics [19, 20], but to our knowledge this hasn’t yet been
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extended to novel quantum thermal effects as we have here. Our hypothesis about

temperature separation in the eigenstates appears to us to be entirely consistent

with the temperature separation behavior of Fig. 6.3, where a variety of initial states

all reach approximately the same final temperature-separated equilibrium. It may

also be interesting to consider the role of coherences and entanglement between the

subsystems E1,S, and E2 in producing the anomalous heat flow behavior. Coherence

between subsystems has been related to a novel type of quantum thermodynamic

effect in increasing heat engine power [68] and it is possible that subsystem coherence

also plays an important role here.

6.8. Summary

In this paper we considered a quantum total system “universe” where surprising

behavior is observed with heat flow from cold to hot along the path to an asymmetric

temperature equilibrium. The total system contained two environment “baths” E1

and E2 of four or five oscillators each [4] linked together by a system S, with E1SE2

collectively in a quantum pure state. The baths exchanged heat indirectly through

the system, with system-bath couplings that we varied in strength to examine the

resulting temperature equilibration behavior.

To analyze temperature equilibration we needed a description for the

temperatures of the individual baths, as opposed to the more standard type of

temperature for the total system from the microcanonical ensemble. To develop

temperatures for the single baths, we began with the microcanonical ensemble for

the total system and from this derived the bath entropies and energies to define a

temperature using the standard thermodynamic definition T = (∂S/∂E)−1. From
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this we obtained sensible temperature-energy relationships TE1(EE1) and TE2(EE2) for

the individual baths to assess their thermodynamic behavior.

We examined two types of situations of heat flow between the baths. First,

we set equal coupling strengths to the two baths. We found that they evolved

to an equilibrium with equal temperatures, completely consistent with classical

expectations. Second, we tripled the coupling strength to one of the baths. We found

that different initial states for the baths all evolved to similar final equilibrium states

with asymmetric temperature distributions in the baths, with heat flow from cold

to hot in one of the examples. This is not standard thermodynamic behavior! The

asymmetric temperature equilibrium was attributed to asymmetric spreading of the

wavefunction in the two baths, with the strongly coupled bath accessing higher energy

states than the weakly coupled bath, giving it a higher energy and temperature.

The asymmetric temperature equilibrium we observed would not be observed

classically since it does not maximize the classical entropy Suniv in accord with the

second law ∆Suniv > 0. The observance of this equilibrium here then seems to

necessitate a different quantum account of the second law. We examined two different

approaches to defining a quantum Suniv and examined their behavior in terms of the

second law. The first formulation was based on a recently developed entropy SQuniv

for the pure state, while a more conventional second approach was based on a sum of

component von Neumann entropies for the system and baths.

We found that SQuniv was maximized in the temperature separated equilibrium,

with ∆SQuniv > 0 as heat flowed from cold to hot. This gives a thermodynamic

account of the novel asymmetric temperature equilibration where SQuniv is maximized

at equilibrium following the second law. We argued that the success of SQuniv in

describing the temperature separation was related to “excess entropy production”
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from spreading of the wavepacket [2] in the asymmetric equilibrium. The second

approach with the sum of component von Neumann entropies failed to maximize at

the observed equilibrium, instead maximizing around a point of equal temperatures

in the baths as expected classically. Thus the more conventional approach based on

von Neumann entropies failed, whereas SQuniv was entirely successful in giving a second

law account of the observed behavior.

It is possible there could be a variety of new quantum thermodynamic effects

that harness “excess entropy production” to maximize SQuniv in classically forbidden

types of states, beyond the temperature equilibration phenomena studied here. This

could be of great significance for future explorations in the foundations of quantum

thermodynamics.
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CHAPTER VII

CONCLUSIONS

This chapter contains previously unpublished material co-authored by Michael

E. Kellman. Michael Kellman and I both contributed to developing the points from

previous chapters that are summarized here, and to the ideas for the future research.

I wrote this chapter.

This dissertation has addressed three fundamental problems in formulating

thermodynamics for a quantum pure state |ΨSE〉 of a system S and environment

E in a thermodynamic process as outlined in Chapter I: demonstrating the recently

developed [1] entropy SQuniv gives a second law account of quantum thermalization

with a correct classical limit and exploring its behavior outside this limit;

discovering new types of specifically quantum thermodynamic behavior related

to finite size and strong coupling; and giving a quantum second law account of

the new quantum behavior.

Chapter II reviewed the background information related to addressing the goals:

the basic approach to quantum pure state thermodynamics, its relation to classical

thermodynamics and statistical mechanics, and the recently developed entropy SQuniv.

Chapters III-VI contributed to the three problems above, as summarized in the next

section. After summarizing the main results, the final sections of this chapter discuss

ideas for future research related to this work, concluding with some final remarks.

7.1. Summary of results

The first goal in this dissertation was to show that the recently proposed [1]

quantum thermodynamic entropy SQuniv gives a proper account of the second law of
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thermodynamics in a classical limit of quantum pure state thermodynamics and to

explore its behavior outside this limit. Chapter III and Ref. [2] assessed the behavior

of SQuniv in comparison with the classical relation between the entropy change of the

universe and the free energy change of system in Eq. 3.2, to analyze the hoped-

for approach to classical behavior with ∆SQuniv. To assess SQuniv, a model for a

thermal process in a quantum system-environment SE “universe” was developed,

with a system S of a few energy levels exchanging heat with a finite model for a

fixed temperature environment E designed to have the essential characteristics of a

true infinite temperature bath. The model made considerable improvements on the

environment, initial state, and basis set used in the previous work of Ref. [1], to give

a much more realistic account of the behavior of ∆SQuniv.

The behavior of SQuniv was analyzed in simulations of SE thermalization and

entanglement. These generally showed a phenomenon of “excess quantum entropy

production” ∆Sx beyond the classical entropy change expressed in terms of the free

energy change of the system ∆Fsys and the temperature T in Eq. 3.2. The approach

to classical behavior was formulated as the environment density of states increased

ρ→∞ and the system-environment coupling became small k → 0, in accord with the

classical thermodynamic microcanonical ensemble where the bath is assumed infinite

and the coupling negligible. The approach to this “macroscopic” “classical” limit was

examined numerically in series of calculations with varying coupling k and density

ρ. The ∆Sx monotonically approached zero throughout the numerical approach to

the limit, however, the calculations remained somewhat removed from ∆Sx = 0. To

better probe the classical limit, an empirical ∆Sx curve was developed. The best

fit curves empirical curves for ∆Sx were extrapolated to the classical macroscopic

limit of an infinite bath ρ → ∞ and weak coupling k → 0, where it was observed
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that ∆Sx → 0 to within the error of the fit. Based on this fit curve analysis, it was

concluded that ∆SQuniv approaches the correct classical entropy change with

∆Sx = 0 in the classical limit of a macroscopic environment ρ → ∞ and weak

coupling k → 0.

Chapter IV and Ref. [3] explored excess entropy production ∆Sx in relation

to strong coupling as noted in Chapter III and Refs. [1, 2]. We considered an

analytically tractable class of initial Lorentzian states, with a variable width in the

calculations, down to the limit of zero width with a single system-environment basis

state |s〉|ε〉 as the initial state. The initial Lorentzians evolved in time with spreading

of the wavepacket into wider Lorentzians, with a simple analytical relation between

the initial and final widths of the Lorentzians. We derived the Lorentzian entropy

as a microcanonical Boltzmann-like expression SQuniv ∼ lnWeff of Eqs. 4.29, 4.30 and

4.32 for an effective number of states Weff under the Lorentzian. The total entropy

production ∆SQuniv was separated into a classical component and an excess entropy

production component that is due entirely to spreading of the wavepacket in the

environment, given in terms of the increase in the width of the Lorentzian in Eqs. 4.34

and 4.36. In essence, the Lorentzian width plays the role of the microcanonical

shell width in semi-classical theory, and the relative increase in this width gives

the deviation from classical behavior. The excess entropy production can be very

large, taking a maximal value for a single |s〉|ε〉 state where the relative spreading is

maximized, with ∆Sx � 0 even in the “classical” type of limit with coupling k → 0

and density of states ρ → ∞. Thus with SQuniv there is a new quantum source of

entropy production ∆Sx associated with strong coupling and spreading of

the wavepacket in quantum thermodynamics. This new source of entropy has

significant consequences in quantum thermodynamics as explored in Chapter VI.
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In sum, Chapters III and IV fulfill the first goal, showing that SQuniv gives an

account of the second law in quantum pure state thermodynamics, with correct

behavior in a type of classical limit. Outside of this limit, there is a new source of

quantum excess entropy production ∆Sx, where quantum spreading of the wavepacket

contributes additional entropy.

The second goal in this dissertation was to explore new types of specifically

quantum thermodynamic behavior. We studied finite size and strong coupling,

both of which are important aspects of small quantum systems that are not included

in basic classical statistical mechanics, where the baths are assumed infinite and

coupling negligible.

Chapter V and Ref. [4] considered finite size in quantum temperature bath

equilibration, with a system S interacting with a bath E composed of as few as five

oscillators. The analytical E temperature had significant deviations from the standard

temperature-energy relationship for an oscillator in an infinite bath, with the finite

bath temperature converging to the standard temperature in the limit as the number

of bath oscillators η →∞. With small η the temperature was larger at a given energy

than the infinite bath temperature. The behavior of the system, finite bath, and

temperature was studied in simulations of SE heat flow and equilibration with a very

small η = 5 oscillator bath. The system S evolved to a state of thermal equilibrium

with the bath, with an equilibrium S Boltzmann thermal distribution at the finite

bath temperature, which was much different from the Boltzmann distribution at the

temperature expected for an infinite bath. Thus the finite environment E behaved

properly as a temperature bath with a new quantum thermodynamic effect of

the anomalous temperature behavior with the finite bath.
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Chapter VI considered a situation combining finite size and strong

coupling, with two small baths linked together by a system, with variable

couplings to the two baths. Simulations of dynamics with equal couplings to the

two baths showed the approach to equilibrium with equal temperatures in the

baths, as expected in classical thermodynamics. However, in simulations with a

strong coupling to one bath and a weak coupling to the other, the baths evolved

to an asymmetric temperature equilibrium state with a higher temperature

in the strongly coupled bath, with heat flow from cold to hot along the path

to equilibrium. The asymmetric temperature was closely related to asymmetric

spreading of the wavepacket in the two baths, where the strongly coupled bath

accessed higher energy states giving it a higher temperature. Thus finite size and

strong coupling combined to give a new type of quantum temperature equilibration

behavior, with significant implications for the general foundations of quantum

thermodynamics.

The final goal was to give a second-law account of new thermodynamic

behavior with the entropy SQuniv. The entropy was calculated during the asymmetric

temperature equilibration with two baths of Chapter VI, where it was found that

SQuniv reached a maximum at the temperature separated equilibrium state

in the simulations, with ∆SQuniv > 0 as heat flowed from cold to hot after a point

of temperature equalization. The asymmetric temperature equilibrium was related to

excess entropy production from asymmetric spreading of the wavepacket in the

baths. Thus SQuniv gave a second law account of this new quantum thermodynamic

effect, reaching a maximum at the asymmetric temperature equilibrium, very unlike

the classical entropy Suniv.
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The results for SQuniv were further compared with a more conventional approach

to defining a quantum total universe entropy in Eq. 6.10, taken as a sum of component

von Neumann entropies for the system and the two baths. The summed von Neumann

entropy reached a maximum near a point of equal temperatures in the simulations,

then decreased as heat flowed from cold to hot along the way to the final equilibrium.

Thus the summed component von Neumann type of more conventional approach

to defining a quantum universe entropy failed to give an account of the

simulation results in terms of the second law: SQuniv was needed to give a second

law account of the novel quantum thermodynamic behavior.

7.2. Future directions in quantum thermodynamics

These studies suggest several interesting ideas for future research in the

foundations of quantum pure state thermodynamics. Experiments that study the

theoretical effects of this dissertation may be well within reach, giving verification

and further insights into the roles of finite size, strong coupling, and excess entropy

production in quantum pure state thermodynamics. There may also be new quantum

thermodynamic effects related to SQuniv and excess entropy production, in equilibration

of systems with many thermodynamic variables or in non-thermalizing systems far

from equilibrium. In this section I’ll briefly describe these hopeful possibilities brought

to light by this work on the fundamental role of SQuniv in the second law in quantum

pure state thermodynamics.

7.2.1. Experimental studies of novel quantum thermodynamic effects

A variety of experiments may be in reach to study the new types of quantum pure

state thermodynamic effects presented in this dissertation. Experiments are already
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being performed on isolated pure state Bose-Einstein (BE) condensates to study their

thermodynamic behavior. Ref. [24] found Boltzmann thermalization of a single atom

in a BE condensates of six total atoms, with the other five atoms constituting the

bath. This is very reminiscent of Chapter V where a system approached Boltzmann

equilibrium in interaction with a five oscillator bath, with an anomalous temperature

related to the finite size of the bath. This same type of anomalous temperature may

already be present in the results of Ref. [24], who did not engage in the same type

of basic temperature analysis as we did in Chapter V and Ref. [4]. It may also be

possible in similar future experiments to introduce variable couplings between two

subsystem “baths” to study the asymmetric temperature equilibration phenomenon

of Chapter VI and Ref. [5].

Another experimental opportunity is in studies of dilute gas phase molecules

that are effectively isolated from their surroundings on a limited timescale. There has

been recent interest in using such molecules as fundamental probes of quantum pure

state thermodynamics [26, 27, 38], since a wide variety of Hamiltonians are accessible

with different molecules and pure states are relatively easy to prepare. Ref. [38]

studied the dynamics of the OCS molecule on a potential energy surface, with a kind

thermalization for one vibrational mode interacting with two other vibrational modes

constituting the bath. Similar theoretical or experimental studies on small molecules

could study the anomalous temperature-energy scaling associated with finite baths

from Chapter V and Ref. [4]. For example, four-atom molecules with six vibrational

modes can be analyzed in terms of a single vibrational mode S interacting with a

bath E of the five other vibrations, similar to the model of Chapter V. Rotational

degrees of freedom could also play a role, giving additional bath modes or serving as

a secondary exterior bath.
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The asymmetric temperature equilibration of Chapter VI could be studied in

experiments on molecules with two “bath” groups of atoms linked together by

a smaller “linker system” atom or group of atoms. These could show a variety

of different asymmetric temperature equilibria in different molecules, where the

Hamiltonian can be tuned by substituting different atoms in the baths or linker

system. It would also be interesting to study how robust the temperature separation

is to entanglement with further exterior systems, such as additional degrees of

freedom in the molecules or other exterior degrees of freedom. If the temperature

separation is robust to exterior entanglement, then it could have potential applications

in solid state devices, where it might be harnessed to give new heat transport

functionalities in interaction with other device components. Experimental studies

such as these in molecules, Bose-Einstein condensates, or other pure state systems

would give important support to the theoretical discoveries in this dissertation, with

significance for the foundations of quantum pure state thermodynamics and potential

technological applications.

7.2.2. Possibility for other new types of quantum thermodynamic effects

It’s interesting to consider other types of novel thermodynamic effects that might

be associated with the entropy SQuniv and excess entropy production ∆Sx, beyond the

simple heat flow phenomena studied here. In this work, we saw that a maximum

of SQuniv was attained at a novel type of asymmetric temperature equilibrium state,

in an isolated “universe” with two conjugate thermodynamic variables of heat and

temperature. However, in general thermodynamic processes there are additional

thermodynamic variables of pressure, volume, chemical potentials, and mole numbers.

In classical thermodynamics, all of these variables are balanced at equilibrium to
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maximize Suniv in accord with the second law. In quantum thermodynamics, the

equilibrium states that maximize SQuniv including ∆Sx could potentially have new

types of asymmetries in these other thermodynamic variables, giving new families

of equilibrium states related to excess entropy production beyond the asymmetric

temperature equilibrium studied here. If this is the case, then SQuniv with ∆Sx would

seem to introduce a great deal of flexibility into quantum pure state thermodynamics

beyond what’s allowed classically.

Another possibility for new effects lies in the study of systems away from

equilibrium or non-thermalizing systems that never reach standard Boltzmann

equilibrium. Some preliminary studies indicate that SQuniv may have much to say

about the equilibration behavior of these systems. I’ve run calculations with a similar

setup to Chapters III-IV, but with a significantly reduced coupling constant k that

does not allow the system to reach standard Boltzmann thermal equilibrium. In these

simulations there is deficit entropy production throughout the time evolution, with

∆SQuniv < −∆Fsys/T , much different than the excess entropy production phenomena

in thermalization that was studied throughout this dissertation. It’s possible that

deficit entropy production is a general feature of non-thermalizing systems in quantum

pure state thermodynamics. If so, a non-thermalizing system could be identified

early in its time evolution by comparing the entropy production with the free energy

change, with a deficit of entropy production indicating that the system will never

reach thermal equilibrium. This would seem to indicate great utility for the quantum

entropy SQuniv in connecting non-thermal, quantum, and classical thermodynamic

behaviors.
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7.3. Final remarks

This dissertation has shown that it is possible to give a unified account of

spontaneous quantum thermodynamic behavior in the second law with SQuniv, ranging

from classical relations and phenomena to a surprising new specifically quantum

thermodynamic effect of asymmetric temperature equilibration. The quantum

statement of the second law with SQuniv thus seems well founded and fruitful, with

potential applications in new types of effects that may still be awaiting discovery.
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APPENDIX A

ANALYSIS OF THE SYSTEM-ENVIRONMENT DECOMPOSITION OF THE

CLASSICAL MICROCANONICAL ENTROPY

This appendix includes unpublished material co-authored by Michael E. Kellman

[3]. Michael Kellman and I both contributed to developing the theory and writing in

this appendix.

In this appendix we show how a system-environment decomposition of the

classical microcanonical Boltzmann entropy S = kB lnW gives the standard result

for the environment ∆〈Smicroenv 〉{sys} = Q/T in Eq. 4.16.

The classical microcanonical ensemble is based on the idea of W = ρδE states

in the microcanonical energy shell of width δE with density of states ρ. The entropy

is given by Boltzmann’s relation

Smicrouniv = −
∑
s,ε

pmicros,ε ln pmicros,ε = lnW, (A.1)

where

pmicros,ε =
1

W
. (A.2)

The entropy can be decomposed into system and environment parts following Eq. 4.11

Smicrouniv = Smicrosys + 〈Smicroenv 〉{sys}. (A.3)

First consider the system component

Smicrosys = −
∑

pmicros ln pmicros . (A.4)
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analogous to Si in Eq. 4.11. The system probabilities are computed from Eq. 4.9 as

pmicros =
Ws∑
ε=1

pmicros,ε =
Ws

W
(A.5)

where Ws is the number of bath states ε that pair with s in the microcanonical

ensemble. Using Eq. A.5 to rewrite ln pmicros in Eq. A.4 gives

Smicrosys = −
∑
s

pmicros (lnWs − lnW ) = lnW −
∑
s

pmicros lnWs (A.6)

Now consider the environment term

〈Smicroenv 〉{sys} =
∑
s

pmicros

(
−
∑
ε

pmicroε|s ln pmicroε|s

)
(A.7)

analogous to 〈Sλ〉{i} in Eq. 4.11. The conditional environment probabilities are

calculated from Eq. 4.10 along with Eqs. A.2 and A.5,

pmicroε|s =
pmicros,ε

pmicros

=
1

Ws

(A.8)

Using Eq. A.8 we can simplify the rightmost sum in Eq. A.7

−
∑
ε

pmicroε|s ln pmicroε|s = lnWs, (A.9)

then putting this into Eq. A.7 gives

〈Smicroenv 〉{sys} =
∑
s

pmicros lnWs. (A.10)

The system and environment entropies Eqs. A.6 and A.10 clearly sum to the total

microcanonical entropy Smicrouniv = lnW in Eq. A.1, as needed.

162



We now consider a thermalization process where we begin with a constrained

microcanonical ensemble of W0 states for the initial state. For example, this could

correspond to a situation where the system begins in thermal isolation from the

environment. The constraint is then removed, allowing heat to flow between the

system and environment, resulting in a final state microcanonical ensemble with Wf >

W0. The total entropy change is

∆Smicrouniv = ln
Wf

W0

= ln
ρf
ρ0

(A.11)

The last equality comes from the microcanonical relation W = ρδE with ρ the density

of states in the microcanonical energy shell of width δE. The system entropy change

from Eq. A.6 is

∆Smicrosys = ln
Wf

W0

−
∑
sf

pmicrosf
lnWsf +

∑
s0

pmicros0
lnWs0 (A.12)

The system entropy change can be greatly simplified through a series of

manipulations we will perform on the final two sums of Eq. A.12. This will lead

to the final simple result for the system entropy in Eq. A.20, and will also be useful

in deriving the environment entropy change in Eq. A.22. First, the sums can be

combined by inserting the identities
∑

s0
pmicros0

=
∑

sf
pmicrosf

= 1,

−
∑
sf

pmicrosf
lnWsf +

∑
s0

pmicros0
lnWs0 = −

∑
s0,sf

pmicros0
pmicrosf

ln
Wsf

Ws0

. (A.13)
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This is simplified by noting that for a heat bath environment W ∼ eEenv/T , where

Eenv = Etotal − Es is the energy of the environment. Then the ratio Wsf/Ws0 in the

right of Eq. A.13 can be expressed as

Wsf/Ws0 = e−(Esf−Es0 )/T (A.14)

where Esf −Es0 = ∆Esys is the energy difference between the final and initial system

states sf and s0. Putting this into Eq. A.13 gives

−
∑
s0,sf

pmicros0
pmicrosf

ln
Wsf

Ws0

=
∑
s0,sf

pmicros0
pmicrosf

Esf − Es0
T

(A.15)

Now we separate again into two terms

∑
s0,sf

pmicros0
pmicrosf

Esf − Es0
T

=
1

T

∑
s0

pmicros0

∑
sf

pmicrosf
Esf −

∑
sf

pmicrosf

∑
s0

pmicros0
Es0

 (A.16)

Using the identities
∑

s p
micro
s0

=
∑

s p
micro
sf

= 1 this becomes

1

T

∑
sf

pmicrosf
Esf −

∑
s0

pmicros0
Es0

 =
〈Esys,f〉 − 〈Esys,0〉

T
=

∆〈Esys〉
T

(A.17)

Finally, we note that the system energy change is due solely to heat flow from the

environment ∆〈Esys〉 = −Q = −∆〈Eenv〉, so we can express the result in Eq. A.17

equivalently as
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∆〈Esys〉
T

=
−Q
T
. (A.18)

In total, Eqs. A.13-A.18 show that

−
∑
sf

pmicrosf
lnWsf +

∑
si

pmicros0
lnWs0 =

−Q
T

(A.19)

Putting this into Eq. A.12 the system entropy change takes the simple final form

∆Smicrosys = ln
Wf

Wi

− Q

T
. (A.20)

Now consider the entropy change of the environment. From the basic relation of

Eq. A.10 this is

〈∆Smicroenv 〉{sys} =
∑
sf

pmicrosf
lnWsf −

∑
s0

pmicros0
lnWs0 . (A.21)

Using Eq. A.19 this is simply

〈∆Smicroenv 〉{sys} =
Q

T
, (A.22)

which is the standard thermodynamic result. Note this is an exact equality for a

standard heat bath with the level density behavior of Eq. A.14. Thus we have proved

∆〈Smicroenv 〉{sys} = Q/T in Eq. 4.16.
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APPENDIX B

LORENTZIAN STATE DISTRIBUTIONS

This appendix includes previously unpublished material co-authored by Michael

E. Kellman [3]. Michael Kellman and I both contributed to developing the theory. I

wrote this appendix.

In this appendix we show how we obtain the time-evolving Lorentzian states

discussed in Section 4.5. The time-evolution of an initial state |Ψ(0)〉 follows the

Schrödinger equation, expressed in terms of the eigenstates |ξ〉 as

|Ψ(t)〉 = e−iĤt|Ψ(0)〉 =
∑
ξ

cξe
−iEξt|ξ〉. (B.1)

Our approach will be to first analyze the structure of the eigenstates |ξ〉, then use

the eigenstate structure to analyze the time-dependent behavior of the |s〉|ε〉 and

Lorentzian initial states.

Some of our important results for the average equilibrium behavior of time-

dependent states, Eqs. B.3 and B.16 below, were obtained in nearly the same form by

Deutsch in his well-known paper of 1991 [21, 22] where he developed the ideas behind

the eigenstate thermalization hypothesis approach to quantum thermodynamics [20].

Our model varies somewhat from Deutsch’s, so that our eigenstates require an

additional parameter in Eq. B.3 that was not included in Deutsch’s work. The widths

of the eigenstates in from our calculations also vary from Deutsch’s result by a factor

of two, in agreement with a recent re-evaluation of Deutsch’s work by Nation and

Porras in Ref. [25].

In addition to analyzing the average equilibrium behavior of time-dependent

states, we also extend beyond the work of Deutsch [21, 22] and Nation and Porras
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[25] to analyze the fluctuations of a time-evolving state about its average and to

develop the idea of a time-evolving initial Lorentzian state. Our advances provide the

critical relations in Eq. 4.26, appearing again in this appendix as Eqs. B.8 and B.22.

B.1. Eigenstates

We build up to an analysis of time-dependent states beginning with the

structure of the eigenstates |ξ〉. The eigenstates come from the system-environment

Hamiltonian in Chapters III-IV and Refs. [2, 3], which includes a random interaction

between a simple three-level system and an environment with a density of states that

increases exponentially with energy. In the system-environment zero-order energy

basis {|s〉|ε〉} the eigenstates are expressed as

|ξ〉 =
∑
s,ε

c(ξ)
s,ε |s〉|ε〉, (B.2)

where the coefficients c
(ξ)
s,ε are real numbers since the Hamiltonian is real.

Deutsch [21, 22] and Nation and Porras [25] derived the eigenstate coefficients

c
(ξ)
s,ε in a very similar model with a random interaction between evenly spaced system-

environment levels. We find that our eigenstates can be very well fit by their

result with the addition of a fit parameter ∆E0, which is likely related to the

exponential level density in our environment as opposed to the evenly spaced levels

they considered. With this additional fit parameter, our eigenstates coefficients can

be described statistically as

c(ξ)
s,ε ≈ g(ξ)

s,ε

√
Lξ(Es + Eε), (B.3)
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where Lξ(Es + Eε) is a Lorentzian distribution and the g
(ξ)
s,ε give random variations

about the Lorentzian average. The Lorentzian is

Lξ(Es + Eε) =
1

π

γξ/ρ(Eξ)

(Eξ − Es − Eε −∆E0)2 + γ2
ξ

, (B.4)

with half-width at half-max

γξ = πk2ρ(Eξ), (B.5)

where Eξ is the eigenstate energy, ρ(Eξ) is the total density of system-environment

zero-order states, and ∆E0 is a fit parameter that sets the center of the Lorentzian.

The small parameter ∆E0 varies slightly between eigenstates, but we will approximate

it as constant here to simplify the analysis, finding that this is entirely adequate for

describing our results.
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FIGURE B.1. Average squared coefficients 〈|c(ξ)
s,ε |2〉 for a single eigenstate follow the

Lorentzian distribution of Eq. B.4. Error bars show the first and third quartiles of the
distribution of |c(ξ)

s,ε |2 in each data point. The quartiles of the coefficient distributions
are in good agreement with the quartiles of the single degree of freedom χ2 distribution
with the Lorentzian mean, shown in blue.
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Fig. B.1 shows an example of a single eigenstate calculated by exact

diagonalization of our Hamiltonian. In the figure, we averaged squared-coefficients

|c(ξ)
s,ε |2 with nearby energies Es +Eε to get the averages 〈|c(ξ)

s,ε |2〉 shown as data points

in the figure. The averages 〈|c(ξ)
s,ε |2〉 represent the average probability of measuring an

|s〉|ε〉 state of energy Es+Eε when in the eigenstate |ξ〉 of energy Eξ. The averages are

very well described by the Lorentzian 〈|c(ξ)
s,ε |2〉 ≈ Lξ(Es + Eε), with Lξ from Eq. B.4.

The asymmetric error bars in the figure show the first and third quartiles of

the distribution of squared coefficients |c(ξ)
s,ε |2 for each data-point average 〈|c(ξ)

s,ε |2〉.

The quartiles are in good agreement with the quartiles of a single degree of freedom

χ2 distribution with mean Lξ(Es + Eε). The χ2 distribution describes a sum of

squared random Gaussian variates. This suggests that the g
(ξ)
s,ε in Eq. B.3 behave as

random standard Gaussian variates, so that the squared coefficients |c(ξ)
s,ε |2 follow the

χ2 distribution with mean Lξ. To check this, in Fig. B.2 we plot the distribution

of the g
(ξ)
s,ε = c

(ξ)
s,ε/
√
Lξ(Es + Eε), where they are indeed seen to follow a standard

Gaussian distribution

p(g(ξ)
s,ε ) = p

(
c

(ξ)
s,ε√

Lξ(Es + Eε)

)
∼ e−g

(ξ)
s,ε

2
/2. (B.6)

The Gaussian variations for g
(ξ)
s,ε in Eq. B.6 explain the χ2 distributed quartiles in

Fig. B.1, and are consistent the work of Deutsch [21, 22] and Nation and Porras

[25]. We have thus arrived at the description of the eigenstates in Eq. B.3, with the

Lorentzian Lξ of Eq. B.4 and the random variations g
(ξ)
s,ε of Eq. B.6.

The Gaussian fluctuations in the basis state probabilities of Eq. B.3 are related to

the random structure of the interaction, as discussed by Deutsch [21, 22]. They also

have a connection to the random states considered in the “typicality” approaches

to quantum statistical mechanics [11–18]. These approaches seek to rationalize
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FIGURE B.2. Histogram counts of coefficient variations for an eigenstate. The
variations g

(ξ)
s,ε = c

(ξ)
s,ε/
√
Lξ in the single eigenstate coefficients of Eq. B.3 follow the

standard Gaussian distribution of Eq. B.6.

thermalization behavior by analyzing the statistics of random states. An unbiased

sampling of random states is accomplished by taking coefficients as random Gaussian

variates [14], similar to our Eq. B.6. Here, the eigenstates can be thought of as

random or “typical” states within their Lorentzian windows, as seen in Fig. B.2.

B.2. Time evolution of an |s〉|ε〉 initial state

Our goal in this section is to understand the behavior of a very simple time-

dependent state from Eq. 4.25 that begins in single zero-order basis state

|Ψs,ε(t)〉 = e−iĤt|s〉|ε〉 =
∑
s′,ε′

cs′,ε′(t)|s′〉|ε′〉. (B.7)

Our analysis will give the Lorentzian behavior for the time-evolved state |Ψs,ε(t)〉 seen

in Fig. 4.2 and Eqs. 4.26-4.28. We now briefly describe these results, repeated here

in Eqs. B.8-B.10, before going into the mathematical details of how we obtain the

results in the remainder of the section.
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FIGURE B.3. Average squared coefficients 〈|cs′,ε′(t)|2〉 for a time-evolved |s〉|ε〉 state
of Eq. B.7 follow a Lorentzian distribution with twice the width of the eigenstates
(the state is the same as in Fig. 4.2). Error bars show the first and third quartiles of
the distribution of the individual |cs′,ε′(t)|2 in each data point. The quartiles of the
coefficient distributions are in good agreement with the quartiles of the two degree of
freedom χ2 distribution scaled by half the Lorentzian weight, shown in blue.

Fig. B.3 shows an example of average squared coefficients 〈|cs′,ε′(t)|2〉 for a time-

evolved |s〉|ε〉 state of the type in Eq. B.7, at a time t at equilibrium (the results

are similar for other choices of t). The state is the same as in Fig. 4.2. The average

squared coefficients 〈|cs,ε|2〉 for the state follow a Lorentzian distribution with twice

the width of the eigenstate seen previously in Fig. B.1; note the energy range in

Fig. B.3 is doubled relative to Fig. B.1. The equilibrated state of Eq. B.7 can be

expressed in the Lorentzian form from Eqs. 4.26-4.28,

|Ψs,ε(t)〉 ≈
∑
s′,ε′

g̃s′,ε′
√
L

(s,ε)
f |s′〉|ε′〉, (B.8)

where the g̃s′,ε′ are random complex fluctuations and L
(s,ε)
f is a Lorentzian centered

at the initial |s〉|ε〉 energy E0 = Es + Eε,
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L
(s,ε)
f (Es′ + Eε′) =

1

π

γf/ρf
(Es′ + Eε′ − E0)2 + γ2

f

, (B.9)

with half-width at half-max

γf = 2πk2ρf , (B.10)

where ρf = ρ(E0) is the total density of system-environment states at E0. The

Lorentzian is similar to the eigenstate Lorentzian in Eqs. B.4 and B.5, except that

the eigenstate energy has been replaced with the initial state energy E0 = Es + Eε,

the width is doubled to 2πk2ρf , and there is no median energy parameter ∆E0.

The error bars in Fig. B.3 show the quartiles of the distributions of squared

coefficients for each data point, they are in very good agreement with the quartiles

of a two degree of freedom χ2 distribution scaled by 1/2 the Lorentzian. This will

be related to the structure of the random deviation terms g̃s′,ε′ in Eq. B.8, which

we will find to follow statistics where their real and imaginary parts can be treated

as random Gaussian variates, as in Eq. 4.23. We now discuss how we obtain these

results mathematically.

B.2.1. Average Lorentzian Distribution Ls,ε for the time-evolved |s〉|ε〉

state

To derive the average Lorentzian behavior of Eq. B.8, we begin by calculating

the average equilibrium state distribution for the time-evolving state of Eq. B.7. The

average equilibrium behavior is given by the long-time average of the density operator
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〈ρ̂s,ε〉t→∞ =
〈
|Ψs,ε(t)〉〈Ψs,ε(t)|

〉
t→∞ =

∑
ξ,ξ′

c
(s,ε)
ξ c

(s,ε)
ξ′
∗〈
e−i(Eξ−Eξ′ )t

〉
t→∞|ξ〉〈ξ

′|, (B.11)

where the time-averages are 〈x〉t→∞ ≡ limt→∞(1/t)
∫ t

0
dτx(τ) and the coefficients are

given by Eq. B.3 with c
(s,ε)
ξ = 〈ξ|s〉|ε〉 = c

(ξ)
s,ε

∗
. The energy eigenvalues are non-

degenerate since there are no symmetries in the random matrix model, so the cross

terms average to zero and

〈ρ̂s,ε〉t→∞ =
∑
ξ

|c(s,ε)
ξ |2|ξ〉〈ξ| =

∑
ξ

|g(ξ)
s,ε |2Lξ(E0)|ξ〉〈ξ|, (B.12)

where the last equality has replaced the |c(s,ε)
ξ |2 with the expressions from Eq. B.3,

with the initial state energy E0 = Es + Eε.

We are interested in the distribution of the time-average density operator of

Eq. B.12 in the {|s〉|ε〉} basis, where the diagonal elements are 〈s′|〈ε′|〈ρ̂s,ε〉t→∞|ε′〉|s′〉.

Using the form of the eigenstates in Eqs. B.2 and B.3 the diagonal elements of the

density operator in the zero-order basis are

〈s′|〈ε′|〈ρ̂s,ε〉t→∞|ε′〉|s′〉 ≈
∑
ξ

|g(ξ)
s,ε |2|g

(ξ)
s′,ε′|

2Lξ(E0)Lξ(Es′ + Eε′). (B.13)

We assume that the Gaussian variates are statistically independent from the

Lorentzian factors so we can simply approximate them with their mean values

〈|g(ξ)
s,ε |2〉 = 〈|g(ξ)

s′,ε′|2〉 = 1 for all values of the indices ξ, s, ε, s′, ε′. With this

approximation
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〈s′|〈ε′|〈ρ̂s,ε〉t→∞|ε′〉|s′〉 ≈
∑
ξ

Lξ(E0)Lξ(Es′ + Eε′). (B.14)

We will now make two approximations to greatly simplify this sum, resulting

ultimately in a single Lorentzian factor. The first approximation uses a single density

of states ρ(Eξ) = ρ(E0) evaluated at the initial state energy E0 = Es +Eε instead of

the variable eigenstate energy Eξ. This approximation is reasonable since most of the

sum comes from eigenstates with eigenenergies Eξ ≈ E0 where the Lorentzians are

near their maxima in Eq. B.4. The second approximation is to replace the sum by an

integral over all energies, which is reasonable since the discrete energy level spacings

are small. With these approximations Eq. B.14 becomes

〈s′|〈ε′|〈ρ̂s,ε〉t→∞|ε′〉|s′〉

≈ 1

π2ρ

∫ ∞
−∞

dEξ
πk2ρ

(E0 + ∆E0 − Eξ)2 + (πk2ρ)2

πk2ρ

(Eξ − Es′ − Eε′ −∆E0)2 + (πk2ρ)2
,

(B.15)

where ρ = ρ(E0). There is an additional factor of the density of states ρ(E0) in the

integrand of Eq. B.15 in comparison to the summands in Eq. B.14 since there are

ρdEξ summands within each interval dEξ of the integration. The integral gives the

convolution of two Lorentzians. We evaluated the integral using Mathematica, the

result is a Lorentzian with twice the half-width at half-max and a central energy at

Es′ + Eε′ = E0,

〈s′|〈ε′|〈ρ̂s,ε〉t→∞|ε′〉|s′〉 ≈
1

π

2πk2

(Es + Eε′ − E0)2 + (2πk2ρ)2
. (B.16)

The relation Eq. B.16 gives the average Lorentzian in Eq. B.9 and Fig. B.3 at the

start of this section and in Eq. 4.27 and Fig. 4.2. It is a Lorentzian centered at the
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initial state energy E0 = Es + Eε, with twice the width of the eigenstates, obtained

through the convolution of Lorentzians in Eq. B.15. This result was also obtained by

Deutsch [21, 22] in a similar model. We will now consider the fluctuations about this

Lorentzian average, to determine the factors g̃s′,ε′ in Eq. B.8. This will go beyond

Deutsch’s work and is a critical component of our modeling and results, where the

factors g̃s′,ε′ play a significant role.

B.2.2. Fluctuations g̃s′,ε′ in the coefficients of the time-evolved |s〉|ε〉 state

Now we would like to consider the time-dependent state Eq. B.7 as undergoing

fluctuations about its equilibrium Lorentzian average from Eq. B.16, where the

fluctuations are given by the factors g̃s′,ε′ in Eq. B.8. We expect that the average

squared fluctuation is unity, 〈|g̃s′,ε′|2〉 = 1, so that the |cs′,ε′(t)|2 follow the Lorentzian

on average. We also expect that the real and imaginary parts of g̃s′,ε′ should contribute

equally on average. This implies that the fluctuation term can be expressed as

g̃s′,ε′ =
gs′,ε′ + ig′s′,ε′√

2
, (B.17)

where the real and imaginary components gs′,ε′ and g′s′,ε′ each have the average squared

values 〈g2
s,ε〉 = 〈g′s,ε

2〉 = 1, so that 〈|g̃s′,ε′|2〉 = 1.

We examine the real and imaginary components gs′,ε′ and g′s′,ε′ separately, in

comparison with the exact coefficients cs′,ε′(t) of Eq. B.7. By comparison of Eqs. B.7,

B.8, and B.17, we have the following relations for gs′,ε′ and g′s′,ε′ ,

gs′,ε′ = Re

(
g̃s′,ε′

1/
√

2

)
= Re

 cs′,ε′(t)√
L

(s,ε)
f (Es′ + Eε′)/2

 (B.18)

and
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g′s′,ε′ = Im

(
g̃s′,ε′

1/
√

2

)
= Im

 cs′,ε′(t)√
L

(s,ε)
f (Es′ + Eε′)/2

 . (B.19)

Fig. B.4 shows the distributions of the gs′,ε′ and g′s′,ε′ taken as the right hand

sides of Eqs. B.18 and B.19, at an instant in time t after the |s〉|ε〉 initial state has

evolved to equilibrium (the results are similar for other t). The gs,ε and g′s,ε each

follow standard Gaussian distributions, indicating that they are each distributed as

random Gaussian variates as in Eq. B.6. This is also consistent with the quartile

distributions observed previously in Fig. B.3; the squared complex fluctuation term

|g̃s′,ε′ |2 = (g2
s,ε+g

′
s,ε

2)/2 has the distribution of a sum of two squared random standard

Gaussian variates, which gives coefficients that follows the two degree of freedom χ2

distribution scaled by L
(s,ε)
f /2, with the quartiles shown in Fig. B.3. Thus, taking

g̃s′,ε′ as the sum Eq. B.17 with gs,ε and g′s,ε as random Gaussian variates is giving an

entirely consistent description of our results in Figs. B.3 and B.4.

This completes our analysis of the time-evolved |s〉|ε〉 state in Eq. B.8, where

the coefficients cs′,ε′(t) are given in terms of the the Lorentzian averages
√
L

(s,ε)
f

determined by the analysis of the last section and the complex Gaussian variate

fluctuation terms g̃s′,ε′ we have just discussed.

B.3. Time evolution of a Lorentzian initial state

Now we consider the time evolution of Lorentzian initial states, as in Fig. 4.1

and Eqs. 4.21-4.23 and 4.26-4.28. Our goal here is to systematically characterize

the equilibration behavior of the Lorentzian initial states, similar to what we did in

Section B.2 for the |s〉|ε〉 initial states.

We consider the initial Lorentzian state from Eqs. 4.21-4.23, repeated here as
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FIGURE B.4. Histogram counts of coefficient variations for a time-evolved |s〉|ε〉
initial state. The real and imaginary parts the variations in Eqs. B.18 and B.19 each
follow a Gaussian distribution.
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|Ψ0
L〉 =

∑
ε

g̃s,ε
√
L0|s〉|ε〉, (B.20)

where the g̃s,ε are random complex Gaussian variates as in Eq. B.17 and L0 is the

initial state Lorentzian

L0(Es + Eε) =
1

π

γ0/ρ0

(Es + Eε − E0)2 + γ2
0

, (B.21)

where γ0 is the half-width at half-max, E0 is the central Lorentzian energy, and ρ0(E0)

is the density of system-environment states with the system in its initial state |s〉 at

the initial state energy E0 = Es + Eε. Our goal is to show that this evolves into the

final equilibrium state Lorentzian from Eqs. 4.26-4.28, repeated here as

|Ψf
L(t)〉 =

∑
s,ε

g̃s,ε
√
Lf |s〉|ε〉, (B.22)

with the final state Lorentzian

Lf (Es + Eε) =
1

π

γf/ρf
(Es + Eε − E0)2 + γ2

f

, (B.23)

with half-width at half-max

γf = γ0 + 2πk2ρf , (B.24)

where ρf = ρ(E0) is the total density of system-environment zero-order states (when

all system levels are accessible at equilibrium).

Fig. B.5 shows an initial Lorentzian state of Eq. B.20 on the left and a time-

evolved version of the same state as in Eq. B.22 on the right. The state is the

same as in Fig. 4.1. The final state Lorentzian Lf is similar to the initial state
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FIGURE B.5. Average squared coefficients 〈|cs′,ε′(t)|2〉 for a time-evolved Lorentzian
initial state of Eq. B.20 follows a Lorentzian distribution with increased width (the
state is the same as in Fig. 4.1). Error bars show the first and third quartiles of
the distribution of the individual |cs′,ε′(t)|2 in each data point. The quartiles of the
coefficient distributions are in good agreement with the quartiles of the two degree of
freedom χ2 distribution scaled by half the Lorentzian weight, shown in blue.

Lorentzian L0 except the width γf is increased by twice the approximate widths

of the eigenstates 2πk2ρf . To rationalize this behavior, we will begin by analyzing

the average equilibrium behavior of the time-evolving initial Lorentzian state, then

analyze the fluctuations about the average to determine the g̃s,ε. The fluctuations will

follow the same type of random Gaussian structure as we had for the time-evolved

|s〉|ε〉 states, giving the blue χ2 quartiles in the figure.

B.3.1. Average final Lorentzian distribution for the time-evolved

Lorentzian initial state

To determine the average final state Lorentzian in Eq. B.22, we will calculate the

average equilibrium behavior of the time-evolving Lorentzian initial state of Eq. B.20,
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analogous to what we did with the average time-evolving |s〉|ε〉 initial state in Section

B.2.1. To begin, express the initial state density operator as

ρ̂0
L = ρ̂0,diag

L + ρ̂0,coh
L , (B.25)

where ρ̂0,diag
L gives the diagonal component with trace of unity,

ρ̂0,diag
L =

∑
s,ε

|g̃s,ε|2L0(Es + Eε)|s〉|ε〉〈ε|〈s|, (B.26)

and ρ̂0,coh
L gives the coherences between the |s〉|ε〉 states with trace of zero,

ρ̂0,coh
L =

∑
s,ε 6=s′,ε′

g̃s,εg̃s′,ε′
√
L0(Es + Eε)L0(Es′ + Eε′)|s〉|ε〉〈ε′|〈s′|. (B.27)

First consider the diagonal component ρ̂0,diag
L . Its time average is

〈ρ̂0,diag
L 〉t→∞ =

∑
s,ε

|g̃s,ε|2L0(Es + Eε)〈ρ̂s,ε〉t→∞, (B.28)

where 〈ρ̂s,ε〉t→∞ is the time-average of a single |s〉|ε〉 initial state. Using the result

for 〈ρ̂s,ε〉t→∞ from Eq. B.16, then approximating the sum as a convolution integral

analogous to Eq. B.15 this gives

〈s′|〈ε′|〈ρ̂0,diag
L 〉t→∞|ε′〉|s′〉 ≈ Lf (Es′ + Eε′), (B.29)

where Lf (Es′ +Eε′) is the final Lorentzian in Eq. B.22. Thus, we have arrived at the

final Lorentzian distribution by considering the time-averaged diagonal component
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of the density operator. We now consider the coherence component of the density

operator in Eq. B.25.

The coherence component 〈ρ̂0,coh
L 〉t→∞ of the time-averaged density operator has

trace zero, so it has no contribution to the total probability of the time-averaged

state and only serves to give fluctuations about the diagonal component 〈̂̂ρ0,diag
L 〉t→∞,

with zero average fluctuation per basis state. Based on the average behavior, we will

simply approximate time-average of the coherence term as zero

〈s′|〈ε′|〈ρ̂0,coh
L 〉t→∞|ε′〉|s′〉 ≈ 0. (B.30)

We will find that this approximation works very well to model our results. Similarly,

Deutsch treated 〈ρ̂0,coh
L 〉t→∞ as negligible when calculating operator expectation

values, in Eq. 5.7 of Ref. [22].

From the analysis of this section, the average equilibrium distribution for the

initial Lorentzian state of Eq. B.20 is

〈s′|〈ε′|〈ρ̂0
L〉t→∞|ε′〉|s′〉 ≈ Lf (Es′ + Eε′). (B.31)

This gives the final average Lorentzian in the time-evolved state of Eq. B.22 and

Fig. B.5. We will now consider the fluctuations about the Lorentzian average, to

devise the fluctuation terms g̃s,ε in the final expression for equilibrium Lorentzian

state of Eq. B.22.

B.3.2. Fluctuations in the coefficients of the time-evolved Lorentzian state

In this section we analyze the fluctuation terms g̃s,ε in the expression for the

final Lorentzian state of Eq. B.22. Following the same reasoning as in Section B.2.2,
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we assume that the fluctuations g̃s,ε can be expressed in the form of Eq. B.17. We

analyze the real and imaginary components gs,ε and g′s,ε using relations analogous

using Eqs. B.18 and B.19 but with the final state Lorentzian of Eq. B.23,

gs,ε = Re

(
g̃s,ε

1/
√

2

)
= Re

(
cs,ε(t)√

Lf (Es + Eε))/2

)
(B.32)

and

g′s,ε = Im

(
g̃s,ε

1/
√

2

)
= Im

(
cs,ε(t)√

Lf (Es + Eε)

)
, (B.33)

where cs,ε(t) are the exact time-dependent coefficients of the |s〉|ε〉 basis states taken at

an instant in time t at equilibrium (the results are similar for other t at equilibrium).

Fig. B.6 shows the distribution of the gs,ε and g′s,ε, taken as the right hand sides

of Eqs. B.32 and B.33. The distributions follow the standard Gaussian distribution,

indicating that both gs,ε and g′s,ε behave as standard Gaussian variates, analogous to

what we saw with the coefficients of the time-evolved |s〉|ε〉 state in Section B.2.2.

In total, we have seen in this section how the time-evolution of an initial

Lorentzian state of Eq. B.20 gives the final Lorentzian state of Eq. B.22, with random

complex Gaussian variate fluctuations g̃s,ε about the final Lorentzian Lf .
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FIGURE B.6. Histogram counts of coefficient variations for a time-evolved Lorentzian
initial state. The real and imaginary parts the variations in Eqs. B.32 and B.33 each
follow a Gaussian distribution.
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APPENDIX C

ENTROPY OF THE LORENTZIAN

This Appendix includes unpublished material co-authored by Michael E. Kellman

[3]. Michael Kellman and I both contributed to developing the theory and writing in

this Appendix.

In this Appendix we derive the entropy Eq. 4.29 for a state with random

variations about a Lorentzian, following the work on Lorentzian states in Section

4.5 and Appendix B.

Each of the Lorentzian states of Section 4.5 has squared coefficients of the

approximate form

pα = |cα|2 ≈ |g̃α|2Lα = |g̃α|2
1

π

γ/ρ

∆E2
α + γ2

, (C.1)

where ∆Eα = E0 − Eα is the energy difference between the basis state |α〉 = |s〉|ε〉

and the initial state energy E0, g̃α is a complex Gaussian variate as in Eq. 4.23, and γ

is the half-width at half-max of the Lorentzian. Using these coefficient distributions

we will calculate the entropy from Eq. 4.5

SQuniv = −
∑
α

pα ln pα. (C.2)

Using Eq. C.1 the entropy is

SQuniv ≈ −
∑
α

|g̃α|2Lα ln
(
|g̃α|2Lα

)
= −

∑
α

|gα|2Lα ln (Lα)−
∑
α

Lα|gα|2 ln
(
|gα|2

)
(C.3)
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The gα are statistically independent from the Lα by assumption. This suggests

replacing the individual |gα|2 in the first sum on the right of Eq. C.3 with their

average value 〈|gα|2〉 = 1,

∑
α

|gα|2Lα ln (Lα) ≈
∑
α

Lα ln (Lα) , (C.4)

leaving just the entropy of the perfect Lorentzian. For the second sum on the right

of Eq. C.3 the statistical independence of the gα suggests replacing the |gα|2 ln (|gα|2)

with the average value

∑
α

Lα|gα|2 ln
(
|gα|2

)
≈ 〈|gα|2 ln

(
|gα|2

)
〉
∑
α

Lα = 〈|gα|2 ln
(
|gα|2

)
〉 (C.5)

where the last equality uses the normalization of the Lorentzian
∑

α Lα = 1. In total,

Eq. C.3 is then approximated as

SQuniv ≈ −
∑
α

Lα ln (Lα)− 〈|gα|2 ln
(
|gα|2

)
〉 (C.6)

The first term is the entropy of a Lorentzian, while the second term gives the deviation

from the perfect Lorentzian entropy due to the random variations in the state.

Now we will evaluate the terms in Eq. C.6. The Lorentzian sum in the first term

can be approximated as the integral

−
∑
α

Lα ln (Lα) ≈ −
∫ ∞
−∞

d(∆Eα)Lα(∆Eα)ρ(E0) ln (Lα(∆Eα)) (C.7)

In the integral approximation, the density of states ρ is factored into the integrand

to account for having approximately ρd(∆Eα) states in the sum that are within
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each differential interval d(∆Eα) of integration. To simplify the integral, we have

approximated the density of states as the constant value at the central energy of the

Lorentzian ρ = ρ(E0), where the majority of probability in the Lorentzian is located.

To evaluate the integral Eq. C.7 we first split it into two separate integrals by

factoring ρ(E0)/ρ(E0) into the logarithm then separating out a term − ln ρ(E0),

−
∫ ∞
−∞

d(∆Eα)Lα(∆Eα)ρ(E0) ln (Lα(∆Eα))

= −
∫ ∞
−∞

d(∆Eα)Lα(∆Eα)ρ(E0) ln (Lα(∆Eα)ρ(E0)) +

∫ ∞
−∞

d(∆Eα)Lαρ(E0) ln ρ(E0)

(C.8)

The first integral on the right of Eq. C has the well known solution ln(4πγ) for

the entropy of a continuous Lorentzian distribution, while the second integral is

simply ln ρ(E0), since ρ(E0) is a constant and
∫∞
−∞ d(∆Eα)ρ(E0)Lα(∆Eα) = 1 by

the normalization of the Lorentzian. Then in total we have

−
∑
α

Lα ln (Lα) ≈ ln(4πγρ(E0)) (C.9)

The final term in Eq. C.6 for the average 〈|gα|2 ln (|gα|2)〉 is calculated through

integration over all the values of g′ and g′′ with the Gaussian variate probability

density p(g) = (2π)−1/2 exp(−g2/2),

〈|gα|2 ln
(
|gα|2

)
〉 =

∫ ∞
−∞

dg′
∫ ∞
−∞

dg′′p(g′)p(g′′)
g′2 + g′′2

2
ln
g′2 + g′′2

2
= g0 (C.10)

where
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g0 = 1− γEM (C.11)

where γEM = 0.577 215... is the Euler-Mascheroni constant.

Putting Eqs. C.9 and C.10 into Eq. C.6 gives the approximate entropy Eq. 4.29

for the Lorentzian states,

S ≈ ln(4πγρ(E0))− g0. (C.12)
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APPENDIX D

SINGLE BATH TEMPERATURES IN THE TOTAL SYSTEM WITH TWO

BATHS

This appendix includes previously unpublished material co-authored by Michael

E. Kellman [5]. Michael Kellman and I both contributed to developing the theory. I

wrote this appendix.

This appendix develops the single bath temperatures in the total system with

two baths from Chapter VI and Ref. [5]. The next section gives an overview of the

definition for the temperature and discusses its calculated behavior. The final section

presents the details of the calculation.

D.1. Temperature

In this section we define and discuss the single bath temperatures we use

to analyze temperature equilibration in Chapter VI. We begin by considering the

standard notion of temperature, based on a total isolated system, in our setup the

total system E1SE2. We then specialize to defining a temperature the single finite

baths E1 and E2.

Temperature is usually defined with respect to an isolated total system through

the fundamental relation

1

T
=
∂S

∂E
, (D.1)

where E is the energy and S = k lnW is the microcanonical Boltzmann entropy,

where W is the number of states in the microcanonical ensemble. For our total

system E1SE2, this temperature can be evaluated exactly by thinking of the two
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oscillator baths as a single larger bath and using the equilibrium temperature for a

single oscillator bath interacting with a system from Eqs. 5.23 and 5.13. However,

this temperature is for the total system, whereas we would like to have separate

temperatures for the two baths, with potential for the bath temperatures to vary

during equilibration or at equilibrium. For this, we need a new notion of temperature

that applies to a single bath in our model.

We define the single bath temperatures using the relation Eq. D.1 applied to the

separate baths E1 and E2, for example

1

TE1
=
∂SE1
∂EE1

, (D.2)

where the bath entropy is

SE1 = −
∑
ε1

pε1 ln pε1 (D.3)

and the average bath energy is

EE1 =
∑
ε1

pε1Eε1 . (D.4)

Both SE1 and EE1 are defined in relation to the probabilities pε1 of the E1 microstates

|ε1〉 with energies Eε1 (similar relations hold for the bath E2 with microstates |ε2〉

and probabilities pε2). To evaluate these expressions, we will derive the pε1 from

the fundamental microcanonical ensemble description of the total system E1SE2.

This gives relations for SE1 and EE1 based on standard microcanonical reasoning.

We use these relations to evaluate the temperature in Eq. D.2, leading ultimately

to a temperature-energy relationship TE = TE(EE) that we use to calculate the

temperature in our simulations.
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To define the single bath microstate probabilities we begin by considering the

fundamental statistical mechanical description of the total E1SE2 system in terms of

the microcanonical ensemble at total energy E. In the microcanonical ensemble, each

of the E1SE2 microstate trios |ε1〉|s〉|ε2〉 in the microcanonical energy shell E−δE/2 ≤

Eε1 + Es + Eε2 ≤ E + δE/2 are treated as having equal probabilities pε1,s,ε2 = 1/W ,

where W is the total number of states in the energy shell. The probabilities pε1 for

the single bath microstates |ε1〉 come from adding up probabilities for all of the E1SE2

microstates containing |ε1〉,

pε1 =
∑
s

∑
ε2

pε1,s,ε2 (D.5)

(a similar relation holds for the E2 microstate probabilities pε2). We calculate the pε1

and pε2 following the method detailed in the next section; in short, we use a continuous

density of E2 states to approximate the discrete sum in Eq. D.5, leading to continuous

approximations for SE1 and EE1 from Eqs. D.3 and D.4. We use these approximate

expressions to numerically calculate the temperature TE1 in Eq. D.2. The details of

the calculatoin can be found in the next section; in the remainder of this section we

will discuss the behavior of the resulting temperature-energy relationship TE1(EE1).

Fig. D.1 shows the behavior of the single bath temperature TE1 of Eq. D.2 with

η1 = η2 = 4 oscillators per bath (the same curve also applies to the temperature

TE2 of the second bath). TE1 is compared with the average energy per bath oscillator

〈Eosc〉 + 1/2 = EE1/η1 + 1/2 (the factor of 1/2 is an arbitrary added constant that

will be explained shortly). To begin analyzing the temperature behavior, we will

first present some technical notes on the low-energy behavior of TE1 , then move to an

analysis at higher energies as we used in our simulations, where we will compare TE1 to

a more standard type of temperature behavior for an infinite bath. Our temperature
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TE1 begins at a non-zero temperature in the figure, where the bath energy is greater

than zero. This is related to the continuous approximation we use, which treats SE1

as zero in a region around 〈Eosc〉 = 0, where the states are highly discrete and our

continuous approximation fails, see the next section for details. Another technical

note is that there is a discontinuity in the temperature when 〈Eosc〉 + 1/2 = 0.625

in the figure, when the total energy is E = 1. The discontinuity comes from the

discontinuous change in the total density of states when the excited system state with

energy Es = 1 becomes accessible. It might be interesting to study discontinuities

like this in future studies of thermodynamics of finite systems, but for our purposes

here we will focus on higher energies where the temperature is more regular. We now

turn to an analysis of the temperature at modest and high energies, in comparison

with the standard temperature behavior for an infinite bath.

To rationalize the behavior we see in the figure, we will follow a similar route

as in our previous work [4] and compare our curve for TE1 with a more standard

type of type of temperature-energy curve from Einstein’s 1907 [56] model for the heat

capacity of a solid in an infinite fixed-temperature bath. With the infinite bath, the

average number of energy quanta in an oscillator 〈nosc〉 is related to the temperature

by

〈nosc〉 =
1

e1/T − 1
. (D.6)

We work in units where the energy level spacing of the oscillator is ~ω = 1, so

that 〈nosc〉 = 〈Eosc〉. The total energy in the oscillator includes the contribution

from energy quanta plus the zero-point energy 〈Etot
osc〉 = 〈Eosc〉 + 1/2, shown along

the vertical axis in Fig. D.1. The energy starts at the zero-point value of 1/2 at

temperature T = 0, then quickly approaches the equipartition relation T = 〈Eosc〉 +
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1/2 at higher energy. This is the standard behavior with an infinite bath that we will

compare with our results for the finite bath temperature TE1 .

 0
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 2
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 3

 0  0.5  1  1.5  2  2.5  3

〈Eosc〉 + 1/2

Temperature

TE1
TE1SE2

T (∞ bath)

FIGURE D.1. Temperature for a single bath TE1 in a universe with two baths, from
Eq. D.2, approaches the standard temperature-energy relation for an infinite bath
from Eq. D.6. In contrast, the temperature for the total system TE1SE2 for the total
system is higher, as discussed in the text.

Now we would like to analyze the behavior of our single bath temperature TE1 at

modest and high energies, in comparison with the infinite bath temperature. For a

direct comparison with the infinite bath result, we have plotted TE1 against 〈Eosc〉+1/2

in the figure, where 〈Eosc〉 = EE1/η1 is the average energy per oscillator. With the

single bath, the factor of 1/2 is an arbitrary added constant needed for a direct

comparison with the infinite bath. The 1/2 does not exactly equal the average zero-

point energy, which depends on the variable frequencies of the bath oscillators, see

Ref. [4] for details.
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Consider the behavior of TE1 at higher energy, where our continuous

approximation is working well. In this region, TE1 approaches the standard infinite

bath result, where TE1 ≈ 〈Eosc〉 + 1/2 at high energy. Thus, at high energy, we have

a very normal type of temperature behavior for the single bath temperature TE1 from

Eq. D.2. The high-energy region is the region we use in our simulations, where we

have TE & 1.

As a final note, we compare TE1 with the temperature TE1SE2 of the total system.

The total system temperature TE1SE2 is shown by the purple line in Fig. D.1, and

behaves much differently than both TE1 and the infinite bath temperature. We

compared this type of temperature with the infinite bath temperature in detail in

Ref. [4], where we showed there is a direct connection between the difference in the

temperature curves and the number of oscillators in the bath. The temperature

TE1SE2 converges to the infinite bath curve as the number of bath oscillators η →

∞, as needed in a reasonable temperature definition, with deviations at small η

corresponding to finite-size effects. It’s interesting to note that in comparison with

TE1SE2 , the single bath temperature TE1 is much closer to the infinite bath temperature

despite the finite size of the single bath. The difference is related to energy fluctuations

in the single bath—the total system has a fixed energy, whereas E1 alone has an

average energy with significant fluctuations. Evidently, by the analysis of the figure,

these energy fluctuations give a temperature TE1 that is much closer to the standard

temperature with an infinite bath.

In summary, we used the standard definition of Eqs. D.1 and D.2 to develop

temperatures TE1 and TE2 for the single baths within the E1SE2 equilibrium state.

The temperatures vary from the temperature of the total system TE1SE2 due to finite

size effects and energy fluctuations in the bath. The final relations TE1(EE1) and
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TE2(EE2) show approximately standard behavior at modest and high energies as used

in our simulations, with temperature-energy curves close to the standard curves for

an infinite bath.

D.2. Numerical calculation of the single bath temperature

In this section we describe our method of numerically calculating the single bath

temperature TE1 from Eq. D.2 (similar expressions hold throughout for the second

bath E2 with temperature TE2). To calculate TE1 using Eq. D.2, we need expressions

for the single bath entropy SE1 and average energy EE1 from Eqs. D.3 and D.4, which

are both defined in relation to the single bath microstate probabilities pε1 of Eq. D.5.

Our approach is to approximate the pε1 using a density of states function that gives a

continuous “count” of the number of microcanonical states contributing to pε1 . This

leads to tractable continuous expressions SE1 and EE1 that we use to numerically

evaluate the single bath temperature of Eq. D.2 as a converged finite difference.

To begin, consider the expression for pε1 in Eq. D.5. The rightmost sum
∑

ε2

counts the number of E2 states that pair with the E1 microstate |ε1〉 and the S

microstate |s〉 in the microcanonical energy shell E − δE/2 ≤ Eε1 + Es + Eε2 ≤

E + δE/2, where E is the total energy and δE is the width of the energy shell. For

given |ε1〉 and |s〉, the number of E2 states |ε2〉 in the shell can be approximated as

ρE2(Eε2)δE, where

ρE2(Eε2) =


Γ(η2 + Eε2)/Γ(η2)Γ(Eε2 + 1) Eε2 ≥ 0

0 Eε2 < 0

(D.7)
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is the density of E2 states [4] at the central E2 energy Eε2 = E −Es−Eε1 , with Γ the

Gamma function. The sum
∑

ε2
in Eq. D.5 simply counts the number of |ε2〉 states,

which we approximate as ρE2(E − Es − Eε1)δE (where Eε2 = E − Es − Eε1), giving

pε1 ≈
∑
s

ρE2(E − Eε1 − Es)δEpε1,s,ε2 . (D.8)

Next, we consider the microcanonical probability term pε1,s,ε2 = 1/W , where W is the

total number E1SE2 states in the energy shell. We approximate W ≈ ρE1SE2(E)δE

using the total density of states at the microcanonical energy E,

ρE1SE2(E) =
∑
s

∫ E−Es

0

dEε1ρE1(Eε1)ρE2(E − Es − Eε1). (D.9)

Putting pε1,s,ε2 ≈ 1/ρE1SE2(E)δE into Eq. D.8 gives our final expression for pε1 in

terms of the continuous density of states functions

pε1 ≈
∑

s ρE2(E − Eε1 − Es)
ρE1SE2(E)

, (D.10)

with a similar expression for the E2 microstate probabilities pε2 .

With the tractable continuous approximation Eq. D.10 for pε1 , we are now ready

to evaluate the single bath entropy and energy of Eqs. D.3 and D.4. Putting Eq. D.10

into Eqs. D.3 and D.4 gives

SE1 ≈ −
∑
ε1

(∑
s ρE2(E − Eε1 − Es)

ρE1SE2(E)

)
ln

(∑
s ρE2(E − Eε1 − Es)

ρE1SE2(E)

)
(D.11)

and
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EE1 ≈
∑
ε1

(∑
s ρE2(E − Eε1 − Es)

ρE1SE2(E)

)
Eε1 . (D.12)

To further simplify these expressions, we approximate
∑

ε1
as an integral, giving

the final relations we use to evaluate the single bath energies and entropies in our

temperature definition

SE1 ≈ −
∫ E

0

dEε1ρE1(Eε1)

(∑
s ρE2(E − Eε1 − Es)

ρE1SE2(E)

)
ln

(∑
s ρE2(E − Eε1 − Es)

ρE1SE2(E)

)
(D.13)

and

EE1 ≈
∫ E

0

dEε1ρE1(Eε1)

(∑
s ρE2(E − Eε1 − Es)

ρE1SE2(E)

)
Eε1 , (D.14)

with similar final expressions for SE2 and EE2 . The integrands of Eqs. D.13 and D.14

have additional factors of ρE1(Eε1) in comparison to the summands from Eqs. D.11

and D.12 to account for the fact that there are ρE1(Eε1)dEε1 summands in each energy

interval dEε1 of integration. The continuous approximation for SE1 in Eq. D.13 fails at

very small total energies E, where the approximate SE1 can become negative, whereas

the true entropy is strictly non-negative. We simply take SE1 = 0 in this region and

do not evaluate temperatures until SE1 > 0. This is the reason we use a non-zero

minimum energy 〈Eosc〉 in the temperature curve of Fig. D.1.

We are now ready to evaluate the single bath temperature TE1 of Eq. D.2 using

the tractable expressions for SE1 and EE1 in Eqs. D.13 and D.14. The temperature

TE1 is calculated numerically in Mathematica using a finite difference
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1

TE1
≈ ∆SE1

∆EE1
, (D.15)

where ∆SE1 and ∆EE1 are taken as the differences in SE1 and EE1 between two

microcanonical states with total E1SE2 energies E and E + ∆E. We find converged

results with ∆E = 10−6, so that the finite difference is an essentially exact

approximation to the true derivative of Eq. D.2. The relation Eq. D.15, with SE1

and EE1 from Eqs. D.13 and D.14, is the final expression we use for TE1 in Fig. D.1

and in the results of Chapter VI, with a similar expression for temperature of the

second bath TE2 .
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