
 

 

 

 

AN APPLICATION OF FINITE MIXTURE MODELING TO CHARACTERIZE  

SOURCES OF BETWEEN-STUDY VARIATION IN META-ANALYSES OF  

PREVENTION PROGRAM EFFECTS  

 

 

 

 

 

by 

NICHOLAS J. PARR 

 

 

 

 

 

A DISSERTATION 

 Presented to the Department of Counseling Psychology and Human Services  
and the Graduate School of the University of Oregon  

in partial fulfillment of the requirements  
for the degree of  

Doctor of Philosophy 
 

June 2020 
 
 
 



 

 
ii 

DISSERTATION APPROVAL PAGE 
 
Student: Nicholas J. Parr 
 
Title: An Application of Finite Mixture Modeling to Characterize Sources of Between-
Study Variation in Meta-Analyses of Prevention Program Effects  
 
This dissertation has been accepted and approved in partial fulfillment of the 
requirements for the Doctor of Philosophy degree in the Department of Counseling 
Psychology and Human Services by: 
 
John R. Seeley    Chair 
Emily E. Tanner-Smith  Core Member 
Katherine E. Masyn   Core Member 
Kathleen Scalise   Institutional Representative  
 
and 
 
Kate Mondloch Interim Vice Provost and Dean of the Graduate 

School 
 
Original approval signatures are on file with the University of Oregon Graduate School.  
 
Degree awarded June 2020. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2020 Nicholas J. Parr 
This work is licensed under a Creative Commons  

Attribution-NonCommercial-NoDerivs (United States) License.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
iv 

DISSERTATION ABSTRACT 
 
Nicholas J. Parr 
 
Doctor of Philosophy 
 
Department of Counseling Psychology and Human Services  
 
June 2020 
 
Title: An Application of Finite Mixture Modeling to Characterize Sources of Between-
Study Variation in Meta-Analyses of Prevention Program Effects  
 

In meta-analyses of prevention programs, findings of primary research studies are 

pooled to estimate an overall program effect, an approach generally offering improved 

statistical power and precision over analyses at the individual study level. Across studies, 

however, programs are often implemented with considerable variation in implementation 

quality, program components, assessment approaches, and sample characteristics. 

Differences across these and other aspects of a program’s implementation can induce 

between-study variation in program effects. Excessive between-study variation can 

compromise the utility of a summary estimate of program effect, as derived in meta-

analysis, because the estimate can be unrepresentative of the broad distribution of effects 

across implementations of the program. Importantly, variation produced by observable 

primary study characteristics is often explainable using variables that represent study 

methodology, program design, and sample attributes, and utilizing approaches such as 

subgroup analysis and meta-regression can provide insight into study-level factors that 

moderate the magnitude or direction of program effects. While widely used, these 

moderation analysis methods have recognized statistical and interpretive limitations, in 

particular when there is an interest in understanding the interrelation of multiple potential 

moderator variables and their combined influence on variation in program effects, as well 
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as their co-occurrence in typical studies implementing a program. To address these 

limitations, this dissertation describes and demonstrates a multivariate approach to 

moderation analysis in aggregate-data meta-analysis, which employs finite mixture 

modeling as its underlying analytic framework. Results of the approach suggest it 

provides insight into the co-occurrence of potential moderators in a sample of studies 

implementing a prevention program, and into how such co-occurrence relates to program 

effectiveness.   
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CHAPTER I 

INTRODUCTION 

In meta-analyses of prevention interventions, policies, or programs (hereafter 

“programs”), findings of primary research studies are pooled to estimate an overall 

program effect. Synthesizing effects drawn from numerous primary studies can offer 

improved statistical power to detect significant effects and provide more precise effect 

estimates compared with analyses in individual primary studies (Borenstein et al., 2009). 

At the same time, the implementation of a program in each study can vary in rigor (e.g., 

differing levels of fidelity monitoring or quality of randomization), setting or sample 

characteristics (e.g., implementation in controlled clinical vs. naturalistic community 

site), outcome assessment (e.g., differences in assessment measures or length of follow 

up), program design (e.g., variation in active components or delivery modality), or in 

other implementation attributes, and these differences can induce between-study variation 

in program effects (Higgins & Thompson, 2002). Excessive between-study variation can 

compromise the utility of a summary estimate of program effect, as derived in meta-

analysis, because the estimate can be unrepresentative of the broad distribution of effects 

across implementations of the program. 

 Between-study variation in effects produced by observable primary study 

characteristics is often explainable (Parr et al., 2019; Viechtbauer, 2007). That is, 

variables representing study attributes may be assessed for their relation with the overall 

or summary effect estimate, and those found to explain substantial between-study 

variation can be utilized as statistical controls in meta-analytic models as well as 

substantively interpreted to provide insight into study-level factors that influence the 



 

 
2 

magnitude or direction of program effects (Baker et al., 2009; Parr et al., 2019). Several 

methods have been developed to assess the relation of these study attribute variables, 

known as moderators, with summary effect estimates.  

Traditional methods of moderator analysis include meta-regression, which 

assesses the linear relation of one or more moderators with an average program effect, 

and subgroup analysis, which extends analysis of variance methods to compare effect 

size estimates calculated among subgroups of studies defined by an observed categorical 

moderator (e.g., randomized controlled vs. quasi-controlled studies) (Baker et al., 2009; 

Borenstein & Higgins, 2013; Thompson & Higgins, 2002). When there is an interest in 

understanding the influence of program implementation rigor, for instance, meta-

regression can be used to assess the moderation effects of level of interventionist training, 

degree of program fidelity monitoring, and availability of implementation support. The 

outputs of such a model would include coefficients indicating the degree to which the 

magnitude of the summary effect estimate is altered (moderated) by the effect of each 

implementation attribute while controlling for other attributes. Alternatively, subgroup 

analysis could be used to group studies by a relevant categorical moderator, such as 

presence or absence of fidelity monitoring, and differences in the summary program 

effect as estimated among studies in each subgroup could be compared.  

Both meta-regression and subgroup analysis have several limitations. Subgroup 

analysis, for example, is limited to exploring effect moderation by a single variable (i.e., 

the grouping variable). Meta-regression, by contrast, is theoretically able to accommodate 

unlimited moderators, but as with linear regression more generally, in practice increasing 

the number of potential moderator variables can lead to multicollinearity and the 
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possibility of biased and misleading results (Berlin & Antman, 1992). Moreover, with 

meta-regression it can be necessary to examine whether moderator variables would be 

better entered into the model in higher-order (polynomial) forms, and whether 

interactions among moderators should be included (Viechtbauer, 2007). The resulting 

complexity of an extended meta-regression model, despite the possibility of it being well-

fitting and highly explanatory, can hamper its interpretive value to implementation 

researchers and practitioners.  

Beyond the above modeling and interpretation issues (and others to be discussed 

in following chapters), in the application of investigating moderators of program 

effectiveness, meta-regression and subgroup analysis are limited in their capability to 

answer a central question of program implementation research: What are the general set 

of characteristics of a program’s implementation, that when applied together, enhance the 

program’s effectiveness? Continuing the above example, the applied researcher or 

practitioner may find use in understanding the discrete effect of fidelity monitoring while 

holding constant the effect of other implementation factors, but considerably greater 

utility might be found in understanding the impact of a program implemented in a 

broadly rigorous fashion: utilizing intensive interventionist training, providing program 

fidelity monitoring, and offering extensive implementation support. Investigating 

whether such factors are influential, on the whole, requires a multivariate analytic 

approach that can more straightforwardly characterize program implementation across a 

number of dimensions over which it can typically vary.  

Whether implementation characteristics are related to (moderate) a program’s 

effect is a distinct question from how those characteristics typically occur among 
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implementations of a program across different primary research studies or controlled 

evaluations. The former question can be investigated with methods such as meta-

regression or subgroup analysis, which assess the magnitude and significance of relations 

between moderators and program effects. At the same time, however, these methods offer 

little insight into how moderators relate to one another, and whether that interrelationship 

differentiates high- and low-impact program implementations. By contrast, a multivariate 

method that estimates the co-occurrence of multiple moderators representing program 

implementation characteristics – and then allows for assessing the relation of that co-

occurrence with program effects – would facilitate development of profiles representing 

the interrelation of multiple moderators and provide greater understanding of their 

combined influence on program effectiveness. 

Organization of the Dissertation 

Taken together, the above considerations suggest the need for a multivariate 

framework for investigating effect size moderation in meta-analysis. The following 

dissertation describes such an approach employing finite mixture modeling.1 The 

dissertation is organized as follows. First, between-study variation in program effects is 

defined both statistically and as a parameter of substantive interest in meta-analysis. 

Approaches for quantifying and assessing the impact of this variation are next described, 

followed by further discussion of existing methods of explaining between-study 

variation, in particular meta-regression and subgroup analysis. Strengths and limitations 

 
1 Because of an interest in the applicability of the proposed method to the most common meta-analytic 
settings, the present dissertation employs aggregate rather than individual participant data. Moreover, the 
proposed method utilizes a frequentist framework for meta-analysis; potential extensions of the method 
using prior information in a Bayesian estimation approach are discussed in Chapter V.    
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of these methods are highlighted. Descriptions of the motivating example, brief substance 

use interventions, and associated data are then provided. After this overview, the 

proposed method is considered in detail, beginning with finite mixture modeling in the 

form of latent class analysis, which serves as the underlying analytic framework for the 

approach. Additional aspects of the method, including the use of a structural equation 

modeling framework for estimating meta-analytic models and the procedure for fitting 

and evaluating final models, are then described. The method is next demonstrated using 

data derived from a systematic review of studies examining brief substance use 

intervention effectiveness. The dissertation concludes with a discussion of research and 

practice implications of the method and its results, as well as important limitations of the 

approach and future research directions.  

Note on terminology: In the following sections, the term heterogeneity, which in 

meta-analysis typically refers to between-study variation in program effects, is generally 

avoided given its varying definitions in meta-analytic, latent class and finite mixture, and 

structural equation modeling literatures, all of which are called upon in the present 

dissertation. For clarity, therefore, the term between-study variation is used to refer to the 

type of variation in program effects the proposed method is intended to characterize; 

heterogeneity is reserved for discussion of distributional variation in the finite mixture 

modeling context. 
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CHAPTER II 

BACKGROUND 

Effect Size Variation in Aggregate Data Meta-Analysis 

Principally, two forms of variation are present in meta-analysis: within-study 

error and between-study variation in effects.2 In fixed-effect meta-analysis, a program is 

assumed to have a single, common true effect; deviations from the common true effect 

found between individual primary studies are assumed to arise from random sources, 

such as measurement or sampling error within each study (Borenstein et al., 2010). In 

random-effects meta-analysis, by contrast, a program’s true effect is allowed to vary 

across primary studies; differences in the magnitude or direction of effects between each 

primary study are assumed to result from both within-study error and true differences in 

the program effect between studies. As a result, in random-effects meta-analysis, study-

level effects are conceptualized as drawn from a population distribution of effects, with 

the studies present in a meta-analytic dataset representing a sample of effects from that 

population.3 This distinction is evident in the formulations of the respective effect sizes. 

For the fixed-effect model, let 𝑌! be the observed effect size for each study, 

𝑌! = 𝜃 + 𝜖! , (1)
 

 

 
2 Effect sizes refers to estimates of effects synthesized in a meta-analysis. These estimates are not limited to 
measures of program effectiveness, and may be defined as, among other values, prevalence estimates or 
incidence rates, estimates of diagnostic test sensitivity or specificity, or correlation or regression 
coefficients. 
 
3 This is the case when each primary study contributes a single, independent estimate of a program’s effect. 
Primary studies may contribute several, dependent effect sizes that represent multiple measurements of a 
program’s effect (e.g., different measures of alcohol consumption for a program intended to reduce alcohol 
misuse, and/or effect sizes from multiple time points). For simplicity of exposition, here each study (𝑘) is 
assumed to contribute one independent effect size, and therefore 𝑘 = 𝑖.  
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which is composed of the common true effect 𝜃 and within-study error 𝜖!. In the fixed-

effect model, 𝜖! represents the difference between the study’s observed effect size and the 

true common effect 𝜃. In the random-effects model,  

𝑌! = 𝜇 + 𝜉! + 𝜖! , (2) 

the single common effect 𝜃 is replaced by 𝜇 + 𝜉!, where 𝜇 is the mean of the (population) 

distribution of effects and 𝜉! is the extent to which the individual study’s true effect 

departs from the population average effect 𝜇. Although the error term 𝜖! again reflects 

within-study error, in contrast to the fixed-effect model this quantity now represents the 

difference between each study’s observed effect size and study-specific true effect 𝜃! 

(𝜇 + 𝜉!). In both models, random error 𝜖! is typically assumed to be normally distributed, 

with mean of zero and variance equal to the observed sampling variance of the effect 

size, which is treated as known. In the random-effects model, the effect distribution from 

which each study’s 𝜉 parameter is sampled (i.e., 𝜉1, … , 𝜉#) is also assumed normally 

distributed and the variance of this distribution is 𝜏2, the magnitude of between-study 

variation in effects (Hedges & Vevea, 1998). Moreover, each study’s 𝜖 and 𝜉 parameter is 

assumed independently and identically distributed (Viechtbauer, 2005). 

In both fixed- and random-effects meta-analysis, the summary effect (the sample 

estimate of 𝜃 or 𝜇, respectively) is typically calculated simply as a weighted mean of the 

observed study-level effects (Hedges & Vevea, 1998). The weights employed are usually 

defined as the inverse of the variance of each effect size. In fixed-effect meta-analysis, 

the variance is composed of only within-study sources of random error. In the random-

effects model, by contrast, between-study variation also comprises the effect size 
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variance. Contrasting the two weighting formulations, in which 𝑊! is the weight given to 

each effect size 𝑖, the fixed-effect weights are defined as 

𝑊! = 1
𝑉!

 , (3) 

with 𝑉! corresponding to the sample estimate of the within-study error variance 𝑣!. 

Weights under the random-effects model are calculated as  

𝑊! = 1
𝑉! + 𝑇 2  , (4)  

with 𝑉! defined as in (3) and 𝑇 2 defined as the sample estimate of the magnitude of 

between-study variation in effects (𝜏2). Note that 𝑉! is specific to each effect size, 

whereas 𝑇 2 is treated as a constant once estimated. For either model, then, the summary 

effect 𝑌̅  can be calculated as a weighted mean with weights defined as in (3) or (4): 

𝑌̅ =
∑ 𝑊!𝑌!

#
!=1

∑ 𝑊!
#
!=1

 . (5) 

The differing weighting schemes underline two important distinctions in how the 

respective models view the effect data under consideration. First, because the random-

effects model conceptualizes the data as drawn from a population of effect sizes and 

incorporates characteristics of that population distribution (specifically, an estimate of its 

first moment in the form of the summary estimate and its second moment via weighting 

that incorporates the between-study variance component), random-effects meta-analysis 

permits unconditional inference, or generalization of findings beyond the studies sampled 

in a meta-analytic dataset (Borenstein et al., 2010; Hedges & Vevea, 1998). Such 

inference is possible because the estimates of the population parameters allow one to 
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assess how representative the effect size data is of the distribution of effect sizes from 

which they were sampled. The fixed-effect model, on the other hand, does not include 

estimates of a population parameter distribution (because it explicitly assumes there is no 

distribution), and is therefore confined to conditional inference – inference limited to 

only the studies included in the analysis (Hedges & Vevea, 1998).4 

The second important distinction is the more salient for the proposed 

methodology. In fixed-effect meta-analysis, variation in the effect data is essentially 

uninformative; put another way, because this variation is seen to arise mainly from error 

in measurement or sampling, the source of between-study variation in effect size 

estimates is, by definition, explained (as random error). In contrast, by acknowledging 

(and explicitly estimating) between-study variation in effect sizes, random-effects meta-

analysis allows that such variation may arise from sources other than error (Viechtbauer, 

2007). As a result, under the random-effects model, between-study variation becomes a 

potentially informative parameter when sources of that variation are observable.  

Quantifying and Explaining Between-Study Variation  

To assess whether substantial between-study variation exists in a sample of effect 

sizes, the 𝜏2 parameter must first be estimated using either a method of moments or 

iterative estimation approach. Among the former, the most common is the DerSimonian 

and Laird (1986) method; among the latter, maximum-likelihood estimation (MLE) and 

 
4 Hedges and Vevea (1998) provide an exception to this statement, namely when studies outside the sample 
are identical to studies included in the sample. Given that such a scenario is generally unrealistic, this 
rationale has been approximated by generalizing to studies determined a priori to be sufficiently similar to 
the included studies. Hedges and Vevea (1998) note that while the former, identical-study case is well 
within technical sampling theory for fixed-effect modeling, the latter approach is extrastatistical and 
vulnerable to bias. 
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restricted maximum-likelihood (REML) estimation are frequently employed (Cheung, 

2015; Viechtbauer, 2005). Each method has strengths and limitations with regard to 

efficiency and downward biasedness in the estimate of 𝜏2, with the REML estimator 

found to best balance both considerations (i.e., maximizing efficiency and minimizing 

downward biasedness). Unrestricted MLE can underestimate 𝜏2 when the total number of 

studies is small (Viechtbauer, 2005), but MLE is sometimes preferred for its versatility 

and compatibility with other modeling approaches. When random-effects meta-analysis is 

carried out in a structural equation modeling (SEM) framework (see Chapter III), for 

instance, the within-study true effect 𝜃! is treated as a latent random variable whose 

variance (𝜏2) is estimated using MLE (Cheung, 2015). Further discussion regarding the 

use of MLE (and related concerns about the possible underestimation of 𝜏2) in the 

context of the proposed methodology is provided in Chapter III, below.  

When the estimate of 𝜏2 indicates between-study variation in effect sizes, several 

strategies can be employed to identify potential sources of between-study variation. 

Perhaps the most straightforward method is to conceive of the effect sizes as belonging to 

one of two or more groups defined by the levels of a categorical moderator variable. 

Once effect sizes are grouped accordingly, the summary effect can be calculated in each 

group using a typical fixed- or random-effects model and compared. This method is 

referred to as subgroup analysis (e.g., Borenstein & Higgins, 2013), and in the random-

effects application study effects sizes 𝑌! are estimated as  

𝑌!|𝐺 = 𝜇% + 𝜉!% + 𝜖!% , (6) 
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with 𝐺 denoting the observed subgroup of primary studies defined by the categorical 

moderator variable, and 𝜇%, 𝜉!%, and 𝜖!% representing the same quantities defined as in (2) 

but only among the studies classified within each subgroup. Subgroup analysis is often 

employed in meta-analyses of clinical trial data; with such data, there is typically interest 

in a single moderator, for instance levels of a pharmaceutical treatment. Subgroup 

analysis in this context might involve subgroups based on whether studies provided, for 

example, a 500 mg, 1000 mg, or 1500 mg dosage of a medication. The summary 

treatment effect and between-study variance would then be estimated in each subgroup,5 

and differences in the summary effect between subgroups assessed for statistical 

significance using adaptations of analysis of variance or 𝑡-tests (Borenstein et al., 2009). 

In the social sciences, there are frequently several (even many) potential 

moderators of interest, and traditional subgroup analysis becomes limiting. These 

moderators may be selected based on analyst expertise, a priori hypotheses, previous 

findings, or in some cases, using a post hoc selection process (Baker et al., 2009; Parr et 

al., 2019).6 An alternative to subgroup analysis compatible with multiple moderators is 

meta-regression, which for consistency with fixed- and random-effects model 

terminology, may also be described as a mixed-effects model for meta-analysis. For each 

study’s effect size, the meta-regression model generally takes the form of  

𝑌! = 𝛽0 + 𝛽1𝑋!1 + ⋯ + 𝛽'𝑋!' + 𝜉! + 𝜖! , (7) 

 
5 If between-study differences in effect are assumed to be equivalently distributed in all subgroups, a 
common estimate of between-study variation (𝜏2) across groups can be estimated (Borenstein et al., 2009). 
 
6 A growing area of interest is algorithmic moderator selection using machine learning methods. In this 
approach, moderator selection is “automated” by implementing regression forest or similar algorithms to 
identify moderators substantially related to a summary effect estimate, while minimizing selection biases 
and multiple comparison concerns (Van Lissa, 2017).  
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with 𝑌! and 𝜖! defined as in (2) and 𝑋!1 … 𝑋!' indicating observed moderator variables 

included as covariates. The between-studies error component 𝜉! is similarly defined as in 

(2), but here the variance of this quantity across all primary studies represents residual 

between-study variation, i.e., variation not explicitly modeled by the covariates 

(moderators) in the meta-regression. Note that the population average effect 𝜇 is replaced 

by the terms representing the covariate effect(s), with the model intercept term 𝛽0 

interpreted as the average program effect when all moderator values equal zero.7 

Meta-regression has come into broad use for moderator analysis in aggregate data 

meta-analysis, principally because it offers several advantages over subgroup analysis. 

First, as noted above, it resolves the limitation of use of a single moderator variable. 

Second, its implementation is analogous to multiple linear regression in primary research 

in several ways: moderator variables can be entered as interactions and higher-order 

terms (e.g., cubic or quadratic), moderators can serve as “control” variables to adjust for 

sources of variance (here, between-study variation) that are not of substantive interest, 

and key model statistics (e.g., 𝑅2) have relatively similar interpretations. As a result, 

meta-regression is seen as a fairly accessible technique to applied researchers, and of 

equal importance, to consumers of meta-analysis. Despite these strengths, meta-

 
7 Meta-regression and subgroup analysis are conventionally distinguished by the use of continuous (or a 
mix of continuous and categorical) covariates in the former, and the use of a single categorical covariate in 
the latter. Analytically, however, both methods may be seen as extensions of the generalized linear model 
to meta-analysis, in a manner akin to multiple regression and analysis of variance (ANOVA) in primary 
data analysis (Nelson & Zaichkowsky, 1979; Thompson & Higgins, 2002). Additionally, and with some 
similarity to ANOVA and regression methods, subgroup analysis gained early popularity in meta-analysis, 
while meta-regression has only come into widespread use in the most recent two decades, likely because of 
the greater analytic flexibility of the approach (Tipton et al., 2019). As such, differences in nomenclature to 
some degree reflect the historical development of the methods, alongside a broadening of the use of meta-
analysis to research contexts for which moderation by continuous (or multiple) covariates was of interest.    
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regression has several known limitations. As noted above, when many moderators are 

tested, multicollinearity can occur (Berlin & Antman, 1992; Hedges et al., 2010). 

Intuitively, it is possible that multicollinearity may be more likely when conceptually 

similar moderators, such as program implementation factors, are included together. A 

related concern is that multicollinearity can reduce statistical power to detect significant 

moderation effects in meta-regression, which compounds a lack of power arising from 

the small effective sample size (i.e., the number of studies) typical in meta-analysis 

compared with primary research (Baker et al., 2009).  

Outside of the statistical considerations, another set of issues arises with regard to 

meta-regression model interpretation. The output of meta-regression with multiple 

moderators is informative about the magnitude of association between the moderators 

and the summary effect estimate, but as with multiple regression more generally, the joint 

distribution of moderators is not modeled, meaning that individual moderator coefficients 

must be interpreted while all other moderator effects are held constant. Although model-

based predictions can be generated by specifying levels of the included moderators, such 

a process offers no insight into how probable each configuration of values is in practice 

(practice as represented by the various implementations of the program among the studies 

sampled). It can also be a laborious procedure when many moderators are of interest, and 

requires prior knowledge about reasonable levels of moderators to input. Thus, with 

meta-regression it becomes challenging to ascertain the substantive interrelation (joint 

distribution) of the moderators, i.e., how levels of the moderators co-occur in primary 

studies, and how that co-occurrence influences the magnitude or direction of the overall 

program effect.  
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The second interpretive consideration is that in meta-regression, moderators are 

generally treated as fixed effects (hence, the mixed-effects description of the model). This 

constraint implies that, while program effects themselves are allowed to vary across 

primary studies, the effect of a moderator on program effects is constant. If a program 

were implemented with different durations both across and within studies, for example, 

there may be interest in assessing whether longer programs had greater effect. To 

examine if such a disparity in effect exists, a meta-regression model with a continuous 

covariate indicating average program duration in minutes is fitted, finding that for each 

minute increase in average program duration, the outcome of interest is increased by one 

unit on average (here, unit increases are in the desirable/preventive direction of effect). 

This moderation effect is certainly informative, yet it is fixed across all studies regardless 

of whether the true individual study effects may still vary considerably. Individual study 

effects may range from, for instance, four to 14 units of effect. The expected increase in 

effect, as estimated by the meta-regression model, might lead to the conclusion that a unit 

of effect may be gained by both the lowest- and highest-effect studies, when in reality, it 

may be the case that in the highest-effect studies, an additional minute of the program 

makes no difference in effect (the program may already be comparatively long) while in 

the lowest-effect studies, increasing the average duration of the program may garner 

substantial increases in effect (perhaps because the program was too brief).  

The above scenario is a form of aggregation bias sometimes referred to as 

ecological bias, and is visually represented in Figure 1. In this figure, the solid line 

represents the overall effect of average program duration across all studies from the meta-

regression model. The slope of this line corresponds to the one-unit increase in effect for 
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each unit (minute) increase in intervention duration. Each dot represents a primary study 

(and its effect size), and the dashed lines indicate the moderation effect of program 

duration on program effect within each study. Note that such an analysis is not possible 

with aggregate data alone, but could be carried out with individual participant data if 

available. It can be observed that, while the meta-regression slope suggests that increased 

duration is associated with greater program effect, the relation of duration with effect at 

the study level is considerably more complex: in some studies the effect is minimal or 

absent, in others it is quite large and positive, and finally, in some studies the slope is 

negative, suggesting that longer program duration reduced the effect of the program.  

 

 

Figure 1. Representation of aggregation (ecological) bias in meta-analysis. Solid black 
line indicates output (slope) of meta-regression model, denoting a one-unit increase in 
program effect for each unit (minute) increase in program duration. Dots represent 
individual studies, and dashed lines indicate the relation (slope) of duration to effect 
within each study. Figure adapted from Baker et al. (2009) and Thompson (1994). 
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Aggregation bias can be particularly problematic when included moderators 

correspond to attributes of primary study samples, such as average participant age, or 

racial/ethnic or sex/gender composition (e.g., proportion female). In the context of meta-

regression, aggregation bias often arises when the value associated with a moderator is a 

summary measure. In the cases of program duration or participant age, these values are 

likely to range across participants, so the point estimate needed for meta-regression may 

then be a mean of that range. This value could then be unrepresentative of the distribution 

of within-study values, for instance if participants in a study have a mean age of 30 years 

when individual ages range from 18–70 years. In this scenario, a participant who is 30 

years of age is likely clinically and behaviorally different from a 70-year-old participant, 

and conclusions drawn from the use of a value of 30 years for the study in the meta-

regression model may not accurately reflect the relation of age with program effect 

within that study. In contrast, use of a moderator whose value is uniform across all 

primary study participants (e.g., study-level attributes such as whether program delivery 

was monitored for fidelity) does not pose the same risk of aggregation bias. As suggested 

above, one solution to aggregation bias is to utilize individual participant data to more 

accurately model within-study moderation effects. Individual participant data is, 

however, resource-intensive to collect and can be challenging to analyze, and may be 

available in systematically different ways than aggregate data (and thus may represent a 

different population of studies and participants).  

From an interpretation standpoint, the inferential risk accompanying aggregation 

bias may be particularly prominent when moderators are interpreted in relative isolation, 

for instance when concluding, in the above example, that program duration increases 
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program effect. A similar (mis)interpretation could be made with a participant attribute 

moderator such as age: because a program was found to be more effective among older 

participants across studies, it is assumed to be more effective among older participants 

within studies. It may be the case that with both of these moderators, in the absence of 

individual participant data, a more informative assessment of their relative influence on 

program effectiveness could be ascertained by considering the interrelation of multiple 

conceptually- or theoretically-related moderators concurrently. Inference, then, would be 

based on groups of studies sharing a set of (participant) characteristics, rather than driven 

by the linear relation of a single study’s summary value of a moderator with program 

effectiveness. For example, if there were a known greater risk of an outcome of interest 

among older, female-identifying persons of non-white races/ethnicities, a multivariate 

analysis that concurrently utilized average participant age, proportion of female 

participants, and proportion of racial/ethnic minority participants, may be well suited to 

examine whether a program had a larger effect when implemented among multiple study 

samples with high likelihood of being older, non-white, and female-identifying compared 

to implementations among multiple study samples likely to be, on average, younger, 

white, and male-identifying. While such an analysis approach may not eliminate the risk 

of aggregation bias, it may offer insight into how studies differ in their population of 

focus, and as such provide information for future research about the populations to which 

a program could be generalized.  

Primary Study Implementation Characteristics as Sources of Effect Size Variation 

The influence of program implementation characteristics on program 

effectiveness is investigated in the research domain of Implementation Science (IS). In IS 
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frameworks such implementation factors are frequently represented as drivers of program 

effectiveness, in that they are conceptualized as being directly linked to how successfully 

a program is installed and delivered over time (Sims & Melcher, 2017). For example, one 

commonly identified set of drivers relates to the competency of program providers. 

Competency drivers include the selection of appropriate providers and the provision of 

adequate training to selected providers to ensure programs are delivered with fidelity to 

the original program protocol or design. Additional key implementation drivers include 

setting or contextual characteristics that facilitate effective program delivery, such as the 

availability of staffing, technological aids, and other support resources that increase the 

quality of program delivery by reducing provider workload or competing demands (Sims 

& Melcher, 2017). 

Importantly, while some implementation characteristics elaborated by IS research, 

such as implementation support, fidelity monitoring, and provider training, have obvious 

relevance to programs implemented in controlled settings, the focus of IS research is 

chiefly on the successful dissemination and implementation of programs whose efficacy 

has already been determined in randomized trials or controlled evaluations. In this 

context, the emphasis is on how a program can be effectively delivered outside of a 

controlled research environment by community-based organizations or health systems, 

and by practitioners or peers rather than research staff. As a result, the applicability of IS 

frameworks to an earlier phase of research – namely, randomized trials to assess program 

efficacy – may be limited. For example, the presence of fidelity monitoring in a real-

world implementation setting may relate to greater program effectiveness given the lower 

level of implementation control and the likelihood that providers may poorly deliver the 
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intervention when encountering fatigue, distractions, or implicit biases. In a controlled 

trial, however, fidelity monitoring may be one aspect of an overall more rigorously 

designed study that, by contrast, finds lower program effect (i.e., studies with greater 

fidelity monitoring may also have stricter inclusion/exclusion criteria, fewer potential 

biases in outcome assessment, and a more robust analytic approach). Despite this 

consideration, there is still value in examining the role of implementation factors in 

program efficacy in a controlled trial context, and one potential strategy to do so may 

involve examining an implementation factor alongside other design and methodological 

characteristics found across numerous implementations of a program. Such data – on 

multiple implementation characteristics of several or many instantiations of a program – 

can be readily available in a meta-analysis. 

Motivating Example: Brief Substance Use Interventions 

Brief substance use interventions (BIs) are low-resource interventions intended to 

reduce problem behaviors, such as alcohol or drug misuse, and in the healthcare setting 

are typically delivered in one session by a clinician, nurse, or behavioral health specialist 

(Parr et al., 2019). The structure and content of BIs are influenced by theoretical and 

conceptual models, such as motivational interviewing (Miller & Rollnick, 1991) and the 

transtheoretical model of behavior change (Prochaska & DiClemente, 1984), which 

emphasize the importance of personal agency in behavior change and suggest that 

interventions should strengthen individuals’ self-efficacy and ability to alter harmful 

behavior patterns, rather that solely aim to deliver prescriptive or corrective guidance. 

This theoretical stance, which may also be termed “patient-centered” (Van Voorhees et 

al., 2009), is operationalized through a number of commonly-used BI components 
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including personalized normative feedback (information on levels of alcohol or substance 

consumption based on individually-appropriate limits and local or national statistics), 

goal-setting activities, decisional balance exercises (during which individuals self-

identify positive and negative aspects of their use), booklets or information sheets, skills 

training (such as how to avoid drinking excessively in a social setting), and referrals to 

community support services (Tanner-Smith et al., 2020; Tanner-Smith & Lipsey, 2015). 

Some BI implementations have also included prescriptive advice as a primary or 

supplemental component, despite the apparent contradiction with a motivational 

approach. In these instances, advice-based BIs are argued to require less time and to 

better align with medical providers’ traditional approach to patient care (authoritative 

advice to influence patient behavior), and consequently are viewed as more likely to be 

taken up by providers compared to motivational techniques (Davis et al., 2011; Miller & 

Rollnick, 2002; Van Voorhees et al., 2009).  

Brief Intervention Characteristics and Components as Sources of Effect Size Variation 

As noted above, BIs are typically single-session and delivered by a healthcare 

provider, but they may alternatively be composed of multiple sessions, and the content, 

provider profession, and delivery context of the BI may also vary. In particular, the 

number and types of components may differ among implementations of BIs as result of 

differences in theoretical rationale, trial or setting resources, desired level of control, or 

participant baseline severity level. In some cases, for instance, a BI may feature a single 

component, such as advice or normative feedback, while in other implementations, 

several components are included. Further, delivery of one or several components may be 

required by the intervention protocol, or alternatively, the provider is given some level of 
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discretion to choose from a set of components they deem most appropriate for a patient’s 

severity, level of responsiveness to intervention, or readiness to change.  

In addition to differences in components used, because BIs are generally intended 

to be responsive to patient needs and because provider demands may vary, BIs routinely 

differ in duration (both within a study and across studies). They may also be delivered in 

an in-person format or via a computer or tablet, by telephone, or using a pen-and-paper 

modality, and the delivery setting may be, for example, an emergency department, 

primary care office, hospital inpatient or outpatient environment, or university-based 

healthcare facility. Finally, the provider of the BI may be a physician, nurse 

practitioner/physician’s assistant, nurse, behavioral health provider, social worker, or 

peer health worker, among other professions, and such providers may be clinical staff 

already working in the study setting or staff employed and installed in the setting by the 

research program.  

Several primary studies and meta-analyses have found generally positive evidence 

of BI effectiveness among adults and adolescents (e.g., Kypri et al., 2008; Tanner-Smith 

& Lipsey, 2015; Vasilaki et al., 2006), yet it is conceivable that the magnitude of effect 

varies as a result of differences in primary study implementation characteristics and in the 

structure and delivery of the BI itself (Tanner-Smith & Lipsey, 2015). Indeed, prior meta-

analyses have examined a number of implementation factors and BI characteristics using 

established moderator analysis approaches, including meta-regression. These analyses 

have found effect moderation by BI modality used (e.g., whether the BI used a 

motivational or information-only technique) and by specific BI components (e.g., 

whether goal-setting or decisional balance activities are administered, or information on 
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use consequences is provided) (Tanner-Smith & Lipsey, 2015; Vasilaki et al., 2006). 

Nevertheless, as described earlier, a given moderator of BI effectiveness may not be best 

considered in isolation, as such factors instead interrelate with other aspects of study 

implementation or intervention delivery. As such, there may be value in considering the 

co-occurrence of several potential moderators of BI effectiveness across numerous 

examples of BI implementation.  

Analytic Data  

Data analyzed here are drawn from an ongoing meta-analysis (𝑘 = 124) of 

randomized trials examining the effectiveness of brief interventions (BIs) for reducing 

alcohol and drug use behavior, as well as behavioral and health consequences of use, in 

general healthcare settings (Tanner-Smith et al., 2020). For the analyses presented in 

Chapter IV, synthesized effect sizes include those in the following domains: 

1) drug use (cannabis, cocaine, methamphetamine, tobacco, other specific 

substance, or mixed drugs), 

2) alcohol and/or drug use consequences (“use consequences") (arrests, driving-

under-the-influence citations, or other criminal justice-related consequences; 

employment consequences, relationship consequences; sexual behavior 

consequences; health consequences; or other specific consequences). 

Effects sizes were defined as a bias-adjusted standardized mean difference 

(Hedges’ 𝑔) between groups receiving the BI and those in a control condition (e.g., 

treatment as usual, general health information, or sham intervention). Effect sizes 

reported as odds ratios were transformed to the standardized mean difference metric 

using a Cox transformation (Sánchez-Meca et al., 2003). When primary studies reported 
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multiple effect sizes within an outcome domain (e.g., cocaine and cannabis use within the 

drug use domain), effects sizes and their variance estimates were pooled using the 

approach described by Borenstein et al. (2009, p. 228). Meta-analysis models, described 

in detail in the Method section, were fitted separately for each outcome domain (drug use 

or use consequences). Moderators of primary interest are those representing study 

implementation characteristics, aspects of BI design and delivery, and participant sample 

attributes. Table 1 presents all moderators examined and related descriptive statistics. 

Some moderator levels were not represented in the data or were collapsed for analyses 

due to sparseness, and these instances are denoted in Table 1. As a secondary use of 

deidentified, aggregate data, the present analyses did not require institutional review 

board approval or oversight. The ongoing meta-analysis from which data were drawn was 

reviewed by the University of Oregon Institutional Review Board and deemed non-

human subjects research. 

 
Table 1. Moderator (indicator) variables used in analyses. Moderator levels not 
represented in the data are indicated by an asterisk (*) and levels collapsed due to 
sparseness are noted with a dagger (†). 
 
Moderator  Levels  𝑘 (%) 

Efficacy-to-Effectiveness Staging 
Patients and 
problems  

 1. Clinical: patients presenting with 
typical/wide range of problems 

 14 (11.8) 

  2. Mixed: routine patients paid for 
participation 

 105 (88.2) 

  3. *Research: study-solicited volunteers  – 
Practice context  1. Clinical: community setting with limited 

control 
 77 (65.3) 

  2. †Mixed/Research: controlled 
research/university setting or mixed 

 41 (34.7) 
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Table 1. (continued). 
 
Moderator  Levels  𝑘 (%) 

Practitioners and 
therapists 

 1. Clinical: practicing providers  45 (38.1) 
 2. Mixed: recruited clinicians (practicing 

providers paid for participation) 
 27 (22.9) 

 3. Research: contracted non-
clinicians/clinicians in training 

 46 (39.0) 

Intervention 
context 

 1. Clinical: briefer/more realistic intervention 
duration/complexity 

 99 (83.9) 

  2. Research: long and/or complex intervention  19 (16.1) 
Therapeutic 
flexibility 

 1. Most flexibility: provider has full discretion 
over which intervention components to 
deliver 

 6 (5.1) 

  2. Some flexibility: intervention is manualized 
but provider can tailor feedback based on 
patient severity/risk 

 96 (81.4) 

 3. Little/no flexibility: strict adherence to 
protocol/script 

 16 (13.5) 

Pre-therapy 
training 

 1. Clinical: brief training delivered in typical 
CE format 

 55 (46.6) 

  2. †Mixed/Research: Full-day offsite for 
primary care staff, extensive/intensive 
training, required formal qualification 

 63 (53.4) 

Intervention 
support 

 1. Clinical: implementation is supported with 
standard clinical resources 

 27 (22.9) 

  2. Research: level of support not typically 
available in clinical setting (e.g., additional 
support staff during study, researcher 
assistance for intervention 
delivery/monitoring) 

 91 (77.1) 

Intervention 
monitoring 

 1. Clinical: non-invasive monitoring (e.g., 
provider completed brief intervention 
summary after intervention visit) 

 52 (44.1) 

 2. Research: invasive/intensive monitoring 
(e.g., direct observation, recording, 
ongoing/immediate feedback) 

 66 (55.9) 

Study Characteristics (Risks of Bias) 
Random sequence 
generation 

 1. Low   80 (64.5) 
 2. †High/Unclear  44 (35.5) 
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Table 1. (continued). 
 

Moderator  Levels  𝑘 (%) 

Allocation 
concealment 

 1. Low   60 (48.4) 
 2. †High/Unclear  64 (51.6) 

Assessor blinding  1. Low   7 (5.6) 
  2. †High/Unclear  117 (94.4) 
Incomplete data  1. Low   41 (33.1) 
  2. †High/Unclear  83 (66.9) 
Selective reporting  1. Low   26 (21.0) 
  2. †High/Unclear  98 (79.0) 
Missing data 
handling a 

 1. MI/FIML  24 (20.0) 
 2. LOCF/sensitivity analysis  31 (25.8) 
 3. Listwise deletion or unclear  65 (54.2) 

Reporting 
modality 

 1. Biological  10 (8.4) 
 2. Interview  76 (63.9) 
 3. Self-administered  33 (27.7) 

Implementation 
monitoring  

 1. Not reported  52 (42.3) 
 2. Reported  71 (57.7) 

Implementation 
problem 

 1. †Reported or coder-identified  38 (30.9) 
 2. Not reported  85 (69.1) 

Intervention Components b 
Prescriptive advice  1. No  45 (37.2) 

 2. Yes  76 (62.8) 
Information 
booklet 

 1. No  53 (43.8) 
 2. Yes  68 (56.2) 

Decisional balance 
exercise 

 1. No  84 (69.4) 
 2. Yes  37 (30.6) 

Goal-setting 
activity 

 1. No  61 (50.4) 
 2. Yes  60 (49.6) 

Normative 
feedback 

 1. No  33 (27.3) 
 2. Yes  88 (72.7) 

Skills training  1. No  104 (86.0) 
  2. Yes  17 (14.0) 
Referral  1. No  88 (72.7) 
  2. Yes  33 (27.3) 

Intervention Characteristics 
Duration (min.)  Range: 2–124  – 
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Table 1. (continued). 
 
Moderator  Levels  𝑘 (%) 

Sample Characteristics 
Proportion non-
Hispanic white  

 Range: 0.00–0.99  – 

Proportion female-
identifying 

 Range: 0.00–1.00  – 

Mean age (years)  Range: 14.91–69.16  – 
a MI = multiple imputation; FIML = full-information maximum likelihood; LOCF = 
last observation carried forward.  b Homework exercise, video doctor, and website 
access BI components were poorly represented in the data, and therefore were not 
included in analyses.  
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CHAPTER III 

METHOD 

In the prior section, several limitations of subgroup analysis and meta-regression 

for investigating moderators of program effectiveness in meta-analysis were outlined. 

They included, primarily, modeling challenges when numerous moderator variables are 

of interest, limitations relating to the interpretation of model output when multiple 

moderators are included, the inability to examine the co-occurrence of moderators in 

studies included in a meta-analysis, and the risk of aggregation or ecological bias 

depending on the nature of moderator variables (i.e., whether they represent fixed 

conditions across all primary study participants or summarize a range of values 

distributed among participants). To address some of these limitations, in the current 

section a finite mixture modeling-based methodology for moderator analysis is described. 

In this approach, primary studies are first grouped based on their probability of 

membership to subgroups characterized by multiple implementation, intervention, or 

sample attributes; following this classification procedure, random-effects meta-analysis 

can be carried out within each multivariate class of studies while accounting for 

imprecision in study classification. Thus, program effectiveness may be assessed, or 

secondary moderation analyses conducted, after studies are first characterized using a 

number of moderators of interest.  

Overview of Finite Mixture Modeling  

Finite mixture modeling encompasses a broad array of analytic approaches 

unified by the assumption that the overall population distribution of variables of interest 

are more accurately characterized by multiple – a mixture of – component distributions, 
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rather than a single distribution (McLachlan et al., 2019; McLachlan & Peel, 2000). A 

primary benefit of mixture modeling arises in cases when values exhibit, or are expected 

to exhibit, substantial heterogeneity (i.e., when those values may be distributed in 

qualitatively distinct ways and not simply differ in magnitude). More specifically, 

mixture models are optimal when modeling all values as a single distribution would 

obscure meaningful (i.e., informative) heterogeneity in those values (B. O. Muthén, 

2001). In the lesser extreme, the impact of disregarding such heterogeneity or variation is 

that overall inference remains accurate but is incomplete: providing less insight than it 

could otherwise have, had underlying variation been more fully modeled. In the worst 

extreme, treating all values as drawn from a single distribution leads to fundamentally 

incorrect inference due to ignoring a substantial amount of variation. In such a case, an 

overall summary statistic of the single distribution masks underlying variation to the 

degree that the summary measure is unrepresentative of the underlying distribution(s).  

A form of finite mixture modeling that has gained increased use in studies of 

social, behavioral, and public health outcomes is latent class analysis (LCA; Collins & 

Lanza, 2010; Goodman, 1974; Lazarsfeld & Henry, 1968; Masyn, 2013; McLachlan et 

al., 2019; McLachlan & Peel, 2000). The aim of LCA is to identify unobserved clusters 

or subgroups among observations (typically individuals). These subgroups are often 

referred to as classes, and are defined or characterized using multiple indicator variables 

thought to be informative about the latent structure of the data at hand. Indicator variables 

may be categorical or continuous,8 and when modeled together, differentiate observations 

 
8 When continuous indicator variables are used, the analysis is sometimes referred to as latent profile 
modeling. Given the statistical and interpretive similarities, and for conciseness, modeling with categorical 
or continuous variables – or a combination – is here collectively referred to as latent class analysis (LCA). 
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into classes based on their observed pattern of values across indicators. A common 

application of LCA has been examining co-occurrence of substance use behaviors (see 

Collins & Lanza, 2010). In such analyses, response values to a set of indicators of use or 

non-use of several substances (e.g., alcohol, tobacco, cannabis, and cocaine) are modeled. 

The latent class model selected as best fitting then provides an estimate of the number of 

subgroups or classes that are likely to underlie the set of observations, and the 

probabilities of response to each level of the indicator variables within each class. Thus, 

for instance, one class may be characterized by a high probability of endorsing use of all 

substances; this class may be described as a “severe use” class, given that individuals 

belonging to the subgroup are likely to use all substances of interest. Conversely, the 

model may identify another class in which there is a low probability of use of each 

substance; respondents in this class might be described as “low risk”. Importantly, while 

most applications of LCA implicitly define observations as persons such as in the above 

example, this is not a requirement of the underlying statistical model (Lazarsfeld & 

Henry, 1968, p. 17). 

Model Estimation and Class Enumeration  

Two sets of parameters are of interest in LCA, and are typically estimated using a 

maximum-likelihood approach and an expectation-maximization algorithm (Dempster et 

al., 1977; see also Collins & Lanza, 2010; B. O. Muthén, 2001). The first set of 

parameters is the conditional item response probabilities, which estimate the probability 

of endorsing each value of an indicator within each class, and the second set is class 

probabilities, which give the proportion of observations in each class. If a vector 

containing a full pattern of values across indicator variables is defined as 𝒀 , and a 
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specific response pattern as 𝒚, then the probability of that response pattern is estimated 

by 

𝑃 (𝒀 = 𝒚) = ∑ 𝑃 (𝐶 = 𝑡)𝑃 (𝒀 = 𝒚|𝐶 = 𝑡)
(

, (8) 

with 𝐶 indicating the latent class variable composed of multiple latent classes 𝑡 (𝑡 =

1, 2, … , 𝑇 ).9 Here, 𝑃 (𝐶 = 𝑡) is the probability of an observation belonging to class 𝑡, and 

𝑃 (𝒀 = 𝒚|𝐶 = 𝑡) is the probability of a particular response pattern occurring in class 𝑡. 

Taken together, the two sets of parameter estimates provide insight into the latent 

categorical structure of the available data when the model with the correct number of 

classes has been selected and classes are well-separated (i.e., item response probabilities 

indicate distinct response or value patterns in each class). In the absence of accurate 

enumeration and sufficient class separation, characteristics of classes including the 

proportion of observations belonging to each class and the probabilities of indicator 

values in each class are of little substantive use. Finally, the values on indicator variables 

are typically assumed independent conditional on class membership. 

 A number of approaches to selecting the best fitting (i.e., accurately enumerated) 

latent class model have been examined (for review, see Nylund et al., 2007). First, 

information criteria such as the Akaike information criterion (AIC; Akaike, 1974) and the 

Bayesian information criterion (BIC; Schwarz, 1978) are frequently used for model 

comparison and selection. The BIC metric has been found to be well-performing across a 

 
9 In LCA literature, individual classes are sometimes denoted as 𝑘. This usage is not implemented here, and 
this term is instead represented by 𝑡 to avoid confusion with the definition of 𝑘 as the number of primary 
studies in a meta-analysis. This usage is virtually ubiquitous in meta-analytic literature, and is maintained 
here.  
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variety of mixture applications and modeling scenarios, and is generally recommended 

(Cheung, 2008; B. O. Muthén, 2001). When comparing two models using BIC, the model 

with the smaller value of the criterion is considered better fitting. Alternatively, 

likelihood ratio tests (LRT) can be employed to assess the statistical significance of 

differences in model likelihood. In particular, an adjusted version of an LRT (aLRT) for 

models with differing class structures was proposed by Lo, Mendel, and Rubin (2001), 

and has been found to be well performing for latent class model selection (Lubke & 

Muthén, 2005). When using an aLRT, a model with 𝑡 classes is compared to a model with 

𝑡 + 1 classes; a significant 𝑝-value indicates that the larger model is better fitting than the 

smaller model, while a non-significant 𝑝-value suggests that the larger model fits no 

better than the smaller model (and thus the smaller model is more parsimonious). 

Importantly, model selection is best carried out using multiple statistics, such as a 

combination of BIC and an aLRT, to corroborate model fit (Cheung, 2008; Collins & 

Lanza, 2010; Masyn, 2013). 

Examining Class Membership  

A critical aspect of LCA is quantifying class membership, which involves 

identifying those observations likely to belong to each class based on their indicator 

variable values. Accurately characterizing class membership is particularly important 

when there is an interest in auxiliary analyses: testing whether other variables (covariates) 

predict membership in classes, examining whether class membership predicts later 

outcomes, or conducting secondary inference within classes (i.e., fitting additional 

models among observations within each class). Estimating class membership is carried 

out using Bayes’ theorem, 
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𝑃 (𝐶 = 𝑡|𝒀 = 𝒚) =  𝑃 (𝐶 = 𝑡)𝑃 (𝒀 = 𝒚|𝐶 = 𝑡)
𝑃 (𝒀 = 𝒚) , (9) 

which provides the posterior probability of each observation’s membership to each class 

given the observation’s pattern of values across the indicator variables (𝒚). Classes are 

mutually exclusive and exhaustive, such that an observation’s posterior probabilities of 

membership to classes sum to one (Collins & Lanza, 2010).  

While interpretation of posterior probabilities is fairly straightforward, it must be 

recognized that classes are unobserved, and therefore assignment to classes is both 

probabilistic and, to a measurable extent, uncertain.10 To understand the source of this 

uncertainty, it is helpful to observe that Equations 8 and 9 pertain to observations’ 

patterns of values on indicator variables, not to individual observations themselves 

(which would be denoted with an 𝑖 subscript). Thus, while individual observations may 

only belong to one class, and in a well-defined latent class model, a given response 

pattern uniquely characterizes each class, observations with the same response pattern 

may belong to different classes because of the unobserved nature of the classes (i.e., 

because there is error associated with measurement and classification). As a result of this 

classification uncertainty, when using class membership probabilities in auxiliary 

analyses it becomes important to incorporate the uncertainty of membership assignment 

into those analyses in order to provide accurate estimates of standard errors and statistical 

significance.  

 
10 The quality or precision associated with classification is termed entropy, and can range in value from 0 
(classification no better than random chance) to 1 (perfect classification) (Masyn, 2013). 
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 Various methods have been proposed for carrying out auxiliary analyses in latent 

class models while accounting for classification uncertainty (for further discussion, see 

Asparouhov & Muthén, 2014; Bakk et al., 2014, 2016; Lanza et al., 2013; Vermunt, 

2010). In general, the methods vary in how each addresses two central issues. The first, 

and most directly related to class membership estimation, is the concern mentioned above 

regarding carrying class assignment uncertainty into secondary analyses. The second 

issue is ensuring the estimation of class structure is not influenced by variables to be used 

in auxiliary analyses. When the latter occurs, covariates intended to predict, or be 

predicted by, latent classes instead become indicator variables, attenuating estimates of 

the relation between the covariates and the latent class variable. This problem is not 

directly related to uncertainty in how class membership is derived, but has influenced 

how the issue is addressed. Namely, a multistep procedure has been developed in which 

1) the latent class structure is first characterized without auxiliary variables in the model 

(avoiding the second issue), 2) class membership is assigned and uncertainty in the 

assignment estimated, and 3) secondary analyses that incorporate the uncertainty 

quantified in the second step are carried out (addressing the first issue). Several of the 

methods for auxiliary analysis in LCA make use of such a multistep approach, though 

with varying degrees of success in ensuring the estimation of class structure is not 

influenced by auxiliary variables and that standard errors are correctly estimated (see 

Bakk et al., 2014).  

 One approach that has been found to generally achieve both aims and that is 

versatile with regard to secondary inference is the so-called BCH method, first proposed 

by Bolck, Croon, and Hagenaars (2004) and subsequently refined by Vermunt (2010). In 
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the BCH method, the first step as described above is conducted, generating item response 

probabilities and class proportions using Equation 8 and class membership probabilities 

via Equation 9. The class membership (posterior) probabilities provide the individual 

observations’ predicted class membership 𝑊 , with specific predicted classes defined as 𝑠 

(𝑠 = 1, 2, … , 𝑆). The more precisely the model predicts class membership (i.e., the closer 

the posterior probabilities are to one and zero), the more certainty there can be that 𝑠 = 𝑡, 

with 𝑡 as defined above (Bakk et al., 2013). In the second step, the average classification 

uncertainty across all patterns of indicator values can be estimated as the probability that 

an assigned class (𝑠) is a true class (𝑡), or    

𝑃 (𝑊 = 𝑠|𝐶 = 𝑡) =
1
𝑛 ∑ 𝑃 (𝐶 = 𝑡|𝒀 = 𝒚))𝑃 (𝑊 = 𝑠|𝒀 = 𝒚))!

𝑃 (𝐶 = 𝑡)  . (10) 

Bolck, Croon, and Hagenaars (2004) and Vermunt (2010) showed that the estimated 

classification error can be non-linearly transformed to generate observation-level weights 

that reflect both class assignment and its uncertainty. These weights can be incorporated 

into the third step, above, in effect creating a multiple-group analysis in which secondary 

relations can be examined, or auxiliary inference carried out, while incorporating 

classification error (Asparouhov & Muthén, 2018). 

Prior Applications of Mixture Modeling in Meta-Analysis 

To date, mixture modeling in the meta-analytic context has focused on fitting 

mixture models directly to primary study-level effect sizes as a strategy to address (but 

not predict or explain) between-study variation (e.g., Böhning, 2005; Schlattmann, 2009; 

van Houwelingen et al., 2002; Xia et al., 2005). The aim in these applications has been to 

cluster studies into groups within which effects are homogeneous. This strategy can be 



 

 
35 

useful when there is considerable between-study variation in effects among studies, but 

there is reason to believe this variation is random and unexplainable. It may also be 

helpful when there is explainable between-study variation in effects, but few or no 

moderator variables are available to examine as potential sources of that variation. A final 

existing application of mixture models in meta-analysis is in the context of synthesizing 

studies of diagnostic test accuracy. In these studies, effects group into a known number of 

distributions (bivariate, i.e., one for test sensitivity and one for test specificity), and 

mixture models are used to group studies into classes of differing accuracy (Eusebi et al., 

2014; Schlattmann et al., 2015). In contrast to these approaches, the proposed method 

applies mixture modeling to potential effect moderators, rather than effect sizes 

themselves, with the aim of investigating the co-occurrence of moderators. The relation 

of class membership with program effects is then estimated to assess whether moderator 

co-occurrence meaningfully influences program effectiveness. The method, unlike prior 

applications, also does not treat study membership to classes with certainty, and instead 

incorporates classification uncertainty or imprecision into model inference. 

Application 

 In the previous section, mixture modeling was overviewed as a versatile 

framework for multivariate inference. Latent class analysis, in particular, was described 

as an analytic approach useful for investigations of the relation among multiple variables 

that may define discrete classes in a set of observations. In the current section, the 

proposed methodology, which applies LCA to moderator analysis in meta-analysis, is 

described.  
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 When a population of values can be (or is assumed to be) characterized by a 

single distribution, it can be conceptualized that those values belong to a single class. 

That is, if a mixture model were fitted to those values, a single class would sufficiently 

characterize their distribution. Thus, in the context of meta-analysis, a random-effects 

model (Equation 2) can be re-expressed with this implicit (latent) class variable 𝐶 made 

explicit: 

𝑌!|𝐶 = 𝜇* + 𝜉!* + 𝜖!* . (11) 

In this instance, 𝐶 receives no subscript because there is, as described, only one class. It 

is clear, however, that 𝐶 can be defined as 𝑐1, 𝑐2, … , 𝑐+ ; that is, as a categorical latent 

variable representing multiple latent classes 𝑡 (𝑡 = 1, 2, … , 𝑇 ). Classes would then reflect 

qualitatively distinct distributions of values (effects); the question then arises of how such 

classes might be characterized. As described in the prior section, latent subgroups or 

classes are defined by multiple indicator variables that provide information on the 

underlying structure of the available observations. The nature of these indicator variables 

(i.e., what they measure) characterizes the latent space to be modeled. Importantly, and in 

contrast to traditional subgroup analysis in meta-analysis, this latent space is multivariate. 

Indeed, the principal difference between Equation 6, which presents the random-effects 

model for subgroup analysis, and Equation 11, is that the traditional subgrouping variable 

𝐺 defines subgroups that are observed and univariate in nature, while the class variable 𝐶 

reflects subgroups that are latent and multivariate (i.e., derived from the joint distribution 

of indicator variables).  
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In the present application, primary interest is in utilizing indicators related to 

study implementation methodology, intervention design, and sample characteristics to 

define the categorical latent space. Within these categories (classes), primary studies are 

classified using the BCH method and summary statistics estimated, including within-

class summary effect size estimates 𝑌̅ |𝐶,  

𝑌 ̅ |𝐶 =
∑ 𝑊!*𝑌!*

#*
!*=1

∑ 𝑊!*
#*
!*=1

 (12) 

and estimates of the within-class magnitude of between-study variation (i.e., 𝜏!
2). 

Importantly, if the co-occurrence of indicator variables does moderate effects, 𝜏!
2 

provides a measure of residual between-study variation, or the magnitude of variation 

remaining among effect sizes in each class after some part of the total between-study 

variation is accounted for by the moderators defining the classes.  

Initial Stage: Estimating Multivariate Classes of Primary Study Characteristics 

The approach just described was implemented using the motivating data by first 

estimating latent class models with the selected indicator (moderator) variable values for 

all primary studies. At this stage, comparative latent class model fit was evaluated using 

the model BIC value (Schwarz, 1978) and the adjusted likelihood ratio test (Lo et al., 

2001), described above, as well as assessment of model entropy, class separation, and 

overall model interpretability. Final models were fitted with 400 random starts followed 

by a second fitting with 800 random starts to ensure model likelihood was replicated and 

to reduce the risk that the identified model was at a local maximum. When supported by 

the data, alternative models were estimated (e.g., with one additional class than was 

suggested by the fit statistics). The rationale for this approach was that, as exploratory 
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analyses, differing class structures could provide additional information about the 

interrelationship of moderators and their impact on the overall estimate of BI 

effectiveness within classes. Further, because in the meta-analytic context the number of 

observations (studies) is small compared to most modeling settings in which participants 

constitute observations, the results of the likelihood ratio test are subject to small-sample 

biases and power concerns, and therefore may not provide a definitive indication of the 

best-fitting model (Masyn, 2013). Finally, whether an individual indicator was highly 

discriminating between classes (i.e., was associated with response probabilities 

approaching zero or one) was not used as a criterion for inclusion or exclusion of the 

variable from a model. Rather, when an indicator was found to be poorly discriminating 

(in an otherwise well-fitting model), the variable was maintained in the final model as it 

provided some information about the moderator’s role in differentiating among program 

effects (or the absence of such a role).  

Moderator variables (Table 1) were included in specific latent class models based 

on their topical relatedness (e.g., pertaining to characteristics of the BI, such as 

intervention components) or because they represented elements of an existing scale or 

assessment methodology. Examples of the latter include the Cochrane Risk of Bias Tool 

(Higgins et al., 2011), which assesses aspects of a study design or implementation such as 

quality of randomization and degree of allocation concealment that may bias reported 

effects, and measures of the research stage of various elements of the original trial (i.e., 

whether characteristics of the study were representative of efficacy or effectiveness 

testing; Kaner et al., 2003). Moderator values were populated during the original data 

extraction of the motivating systematic review and meta-analysis by two independent 
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coders, whose inputs were reconciled as needed by a third coder. Missing moderator 

values were not imputed to avoid obscuring any latent groupings in the data.  

Second Stage: Conducting Random-Effects Meta-Analysis Within Classes  

Once a model was selected, random-effects meta-analysis models were estimated 

within each class, as defined by BCH weights calculated during the fitting of the selected 

latent class model. Synthesized effect sizes are those available from studies assigned to 

each class. Because mixture modeling, including LCA, is a latent variable method, meta-

analyses carried out using the proposed approach was conducted in an SEM framework. 

Cheung (2008, 2013, 2015) showed that traditional fixed-, random-, and mixed-effects 

meta-analytic models could be estimated using SEM, and at the same time, benefit from 

modeling tools available in SEM.11 These include, for instance, integrated missing data 

handling and robust statistics (Cheung, 2015). In the current application, a further 

rationale is that mixture modeling can be construed as a special case of SEM (Cheung, 

2008), and as such, the LCA approach discussed here could be straightforwardly 

integrated with meta-analysis when the latter is also viewed as a specialization of SEM 

(Cheung, 2015). When implementing random-effects meta-analysis in an SEM 

framework, the focus of modeling is a latent random variable representing the true, study-

level effect size, whose mean across studies is the sample estimate of the overall 

(average) population effect size (𝜇 in Equation 2), and whose variance equals the 

magnitude of between-study variation in effects, 𝜏2. Central to the approach is 

 
11 Note that meta-analysis carried out using SEM is distinct from meta-analytic structural equation 
modeling (MASEM), which describes the synthesis of correlation matrices from primary studies (see Jak, 
2015, for further discussion). 
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transforming sampling errors so they are identically distributed; doing so permits primary 

studies to be treated, in effect, as individual observations (Cheung, 2008). This 

transformation is accomplished by multiplying the terms of the random-effects model 

(Equation 2) by the inverse of the square-root of the variance, so that the error variance of 

each study-level effect size is transformed to a value of one. 

For models presented in Chapter IV, random-effects models with the above 

transformation were estimated within each class as random-slopes models using MLE 

with robust standard errors (Bakk & Vermunt, 2015). Because estimates of 𝜏2 can be 

downwardly biased with the use of MLE (Viechtbauer, 2005), classes were monitored for 

instances when there were few effect sizes available for within-class meta-analyses, and 

limitations in interpretation arising from this scenario are identified and discussed as 

necessary. Model results for overall effect sizes and estimates of 𝜏2 are accompanied by 

95% confidence intervals. All models were estimated using Mplus version 8.4 (L. K. 

Muthén & Muthén, 2019), while data handling was carried out in R version 3.6.3 (R Core 

Team, 2020; RStudio Team, 2019).  
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CHAPTER IV 

RESULTS 

In the present section, results of fitted models are presented in the following 

fashion. First, the findings of the mixture (LCA) model for a particular set of moderators 

(e.g., those related to study efficacy-to-effectiveness staging) are described. Discussion of 

class structure is followed by interpretation of the meta-analytic findings, both for the 

overall (one-class) model and within-class models, for each of the outcome domains of 

interest (drug use and use consequences). For convenience of exposition and so that class 

structure and summary effect size estimates can be considered alongside one another, 

mixture model findings are re-presented for each outcome domain. In all tables in this 

chapter, boldfaced item response probabilities for mixture model findings are those 

greater than 0.60, and boldfacing of confidence intervals indicates statistical significance 

at 𝛼 = 0.05. Additionally, the number of studies within each class (𝑘*) is provided. 

Estimates of 𝑘* are derived from posterior probabilities of class memberships, and as 

noted in the previous section, the BCH method incorporates classification uncertainty, 

and therefore class counts and proportions are approximate. The number of effect sizes 

available to synthesize in each class (𝑘,-) is also estimated from posterior probabilities, 

and may not correspond to the number of studies in each class given that not all primary 

studies reported findings for all outcome domains. The number of effect sizes for each 

outcome domain is indicated in all results tables presented in this chapter, and in the 

meta-analytic results sections of the tables, an asterisk denotes instances when a 

parameter’s standard error (and confidence interval) could not be estimated. Such an 

issue arises when a class has few effect sizes and the within-class estimate of between-
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study variation in effects (𝜏*
2) approaches zero, and this and other implications of class 

imbalance in available effect sizes are considered at length in Chapter V. Finally, unless 

otherwise noted, for the following mixture models a two-class solution was found to be 

best-fitting based on model fit statistics and consideration of parsimony and 

interpretability. As a result, model fit is not discussed in the present chapter, and detailed 

fit information – including BIC values, entropy levels, and likelihood ratio test 𝑝-values 

for all mixture models – is presented in the Appendix. 

Efficacy-to-Effectiveness Staging 

 Rating study characteristics along a continuum from efficacy to effectiveness is a 

means of assessing the degree to which a study is representative of a highly controlled, 

research-typical study, or a minimally controlled, pragmatic or clinically-typical study 

design. In other terms, it can describe whether a study would be considered a test of a 

program’s efficacy, in which case greater control is warranted to reduce spurious 

associations, or a test of its effectiveness, when there is greater interest in determining 

program impact in a realistic implementation setting. As such, when efficacy-to-

effectiveness indicators are considered together, they provide some sense of the 

feasibility with which a program could be implemented in a real-world setting where 

there are typically fewer resources in the form of, for instance, staff to conduct rigorous 

intervention monitoring or implementation support.  

Table 2 presents results of a two-class mixture model of efficacy-to-effectiveness 

indicator variables, with data provided by 119 primary studies. Studies in both classes 

were likely to have mixed or research-typical patients and problems (i.e., routine patients 

paid for participation or volunteers solicited for the study), and to have clinically-typical  
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Table 2. Two-class model of efficacy to effectiveness moderation of 
drug use effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.090 [0.038, 0.143] 
0.010 [0.001, 0.019] 

 Class 1 Class 2 
Patients and Problems   

1 (clinical) 0.08 0.21 
2 (mixed/research) 0.92 0.79 

Practice Context   
1 (clinical) 0.56 0.84 
2 (mixed/research) 0.44 0.17 

Practitioners   
1 (clinical) 0.22 0.71 
2 (recruited clinician) 0.31 0.07 
3 (mixed/research) 0.47 0.22 

Intervention Context   
1 (clinical) 0.80 0.91 
2 (mixed/research) 0.20 0.09 

Therapeutic Flexibility   
1 (low) 0.04 0.07 
2 (moderate) 0.88 0.68 
3 (high) 0.08 0.25 

Pre-therapy Training   
1 (clinical) 0.25 0.91 
2 (mixed/research) 0.75 0.09 

Intervention Support   
1 (clinical) 0.03 0.64 
2 (research) 0.97 0.36 

Intervention Monitoring   
1 (clinical) 0.17 1.00 
2 (research) 0.83 0.00 

𝑘*
  80 39 

(%) (67.4) (32.6) 

𝑘,- 26 5 
𝑔*̅  [95% CI] 0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏*

2 [95% CI] 0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
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interventions (i.e., lower complexity and/or briefer duration) delivered with moderate 

flexibility (i.e., manualized or protocol-driven intervention with some provider discretion 

on the type and number of components delivered). The first class (Class 1), composed of 

approximately 80 studies, was characterized by studies with a high probability of mixed 

or research-typical pre-therapy training, which may include especially long or intensive 

training for providers, or off-site training for primary care providers; a high probability of 

research-typical intervention support, which may include additional staff for risk 

assessment, intervention delivery, or administrative tasks; and a high probability of 

research-typical intervention monitoring, which may feature direct observation, 

immediate corrective feedback, or other invasive or resource-intensive monitoring 

approach. The second class (Class 2) was composed of the remaining 39 studies, and in 

contrast to Class 1, included studies that were likely to feature clinically-typical levels of 

pre-therapy training (i.e., brief training in the format of continuing education), 

intervention support (i.e., few to no additional support staff), and monitoring (i.e., limited 

or indirect monitoring, such as completing a brief report after BI delivery). In addition, 

studies in this class had a high probability of implementation in clinically-typical 

environments, such as a community-based setting, and of BIs being delivered by a 

practicing doctor, nurse, or other working provider rather than a research-recruited 

clinician, non-clinician, or trainee such as a graduate student.   

 The random-effects meta-analyses presented in Table 2 consider the effect of BIs 

on drug use, an outcome reported by 31 of the included studies. The overall (single-class) 

model indicates that the intervention significantly reduced drug use, 𝑔 ̅= 0.090, 95% CI 

[0.038, 0.143], but with significant between-study variation in effect sizes, 𝜏2 = 0.010, 
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95% CI [0.001, 0.019]. In the first class, which includes approximately 26 of the 31 

available effect sizes and is generally characterized by research-typical implementation 

features, the BI effect is similar in both direction and magnitude to the overall model, 𝑔*̅ 

= 0.085, 95% CI [0.033, 0.137]. In this class, there remains the same amount of between-

study variation in effect sizes, 𝜏*
2 = 0.010, 95% CI [0.002, 0.018], though the quantity is 

somewhat more precisely estimated. By contrast, in the class that reflected a more 

clinically-typical implementation, synthesis of the five available effects sizes suggested a 

much larger BI effect, 𝑔*̅ = 0.206, 95% CI [-0.078, 0.491], with increased between-study 

variation compared to the overall model and to the first class, 𝜏*
2 = 0.029, 95% CI [-

0.080, 0.138]. Both estimates are nonsignificant, a finding likely the result of the limited 

number of effect sizes available in the class (an issue further discussed in Chapter V).  

 A similar pattern of results was found for the effect of BIs on use consequences 

(Table 3). Here, the BI had a larger overall effect compared to drug use, 𝑔 ̅= 0.106, 95% 

CI [0.063, 0.150], with a comparable estimate of between-study variation in effects 𝜏2 = 

0.014, 95% CI [0.005, 0.022]. In the research-typical class (Class 1), the BI effect is 

again similar to the overall estimate, 𝑔*̅ = 0.099, 95% CI [0.054, 0.143], with equivalent 

between-study variation, 𝜏*
2 = 0.014, 95% CI [0.005, 0.022]. In the clinically-typical 

class, the BI effect was substantially larger than in the research-typical class, 𝑔*̅ = 0.310, 

95% CI [0.157, 0.464], with no remaining between-study variation in effect sizes, 𝜏*
2 = 

0.000, 95% CI [*]. Note that for the use consequences model, the Class 2 summary effect 

was significantly different from zero, while the standard error for 𝜏*
2 could not be 

estimated in this model. 
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Table 3. Two-class model of efficacy to effectiveness moderation of use 
consequences effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.106 [0.063, 0.150] 
0.014 [0.005, 0.022] 

 Class 1 Class 2 
Patients and Problems   

1 (clinical) 0.08 0.21 
2 (mixed/research) 0.92 0.79 

Practice Context   
1 (clinical) 0.56 0.84 
2 (mixed/research) 0.44 0.17 

Practitioners   
1 (clinical) 0.22 0.71 
2 (recruited clinician) 0.31 0.07 
3 (mixed/research) 0.47 0.22 

Intervention Context   
1 (clinical) 0.80 0.91 
2 (mixed/research) 0.20 0.09 

Therapeutic Flexibility   
1 (low) 0.04 0.07 
2 (moderate) 0.88 0.68 
3 (high) 0.08 0.25 

Pre-therapy Training   
1 (clinical) 0.25 0.91 
2 (mixed/research) 0.75 0.09 

Intervention Support   
1 (clinical) 0.03 0.64 
2 (mixed/research) 0.97 0.36 

Intervention Monitoring   
1 (clinical) 0.17 1.00 
2 (mixed/research) 0.83 0.00 

𝑘*
  80 39 

(%) (67.4) (32.6) 

𝑘,- 41 7 
𝑔*̅  [95% CI] 0.099 [0.054, 0.143]  0.310 [0.157, 0.464] 
𝜏*

2 [95% CI] 0.014 [0.005, 0.022] 0.000           * 
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Study Characteristics (Risks of Bias) 

 As noted above, several characteristics of a primary study’s design or 

implementation that may pose a risk of biasing estimates of program effect have been 

codified in the Cochrane Risk of Bias Tool (Higgins et al., 2011). Other potential factors 

that may influence reported effect sizes include missing data handling (e.g., use of a 

method which inflates bias, such as listwise deletion), whether self-report assessment or 

objective measures (e.g., assays for blood alcohol level) were used, and the presence or 

absence of fidelity monitoring (assuming a known link between adherence to an 

intervention’s design or protocol and the intervention’s effectiveness). Additionally, 

studies may also directly report (or coders may identify) implementation problems, such 

as difficulty recruiting participants or substantial differential attrition between groups. 

 Table 4 presents a two-class mixture model of primary study characteristic 

indicator variables, with data provided by 124 studies.12 Studies in both classes were 

likely to have unclear or high risk associated with assessor blinding (e.g., outcome 

assessors unblinded to group assignment), and to have unclear to high risk of selective 

reporting (e.g., no published study protocol, reporting of outcomes that were not pre-

specified, or failure to report pre-specified outcomes). All studies were also likely to use 

an interviewer assessment format and to report no implementation problems. 

Approximately 76 studies comprised the first class (Class 1); in this class, studies were  

 
12 Fit information for mixture models using study characteristic indicators suggested a two-class model was 
not better fitting than a single-class model (see Appendix). The two-class model is presented as 
exploratory. Additionally, a sensitivity analysis was conducted with only measures derived from the 
Cochrane Risk of Bias Tool (i.e., random sequence generation, allocation concealment, assessor blinding, 
incomplete data, and selective reporting). Findings of both the two-class mixture model and within-class 
meta-analyses did not substantively differ from those presented in Tables 4 and 5. 
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Table 4. Two-class model of study characteristic moderation of drug use 
effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.090 [0.038, 0.143] 
0.010 [0.001, 0.019] 

 Class 1 Class 2 
Random Sequence Generation   

1 (low) 0.82 0.38 
2 (high/unclear) 0.18 0.62 

Allocation Concealment   
1 (low) 0.63 0.26 
2 (high/unclear) 0.37 0.74 

Assessor Blinding   
1 (low) 0.07 0.03 
2 (high/unclear) 0.93 0.97 

Incomplete Data   
1 (low) 0.47 0.11 
2 (high/unclear) 0.53 0.89 

Selective Reporting   
1 (low) 0.29 0.08 
2 (high/unclear) 0.71 0.92 

Missing Data Handling   
1 (MI/FIML) 0.32 0.00 
2 (LOCF/sensitivity) 0.33 0.14 
3 (listwise or unclear) 0.35 0.86 

Reporting   
1 (biological) 0.06 0.12 
2 (interview) 0.63 0.66 
3 (self-administered) 0.31 0.22 

Monitoring   
1 (no) 0.24 0.71 
2 (yes) 0.76 0.29 

Implementation Problem   
1 (yes/possible) 0.32 0.29 
2 (no) 0.68 0.71 

𝑘*
  76 48 

(%) (61.2) (38.8) 

𝑘,- 26 5 
𝑔*̅  [95% CI] 0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏*

2 [95% CI] 0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
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likely to have low risk associated with random sequence generation (e.g., use of a 

computerized random-sequence generator) and allocation concealment (e.g., allocations 

conducted off-site and secured in sealed opaque envelopes). Additionally, these studies 

had a high probability of conducting fidelity monitoring. In the second class, composed 

of approximately 48 studies, studies were likely to be characterized by unclear or high 

random sequence generation risk (i.e., unclear randomization strategy, or use of any non-

random allocation procedure), unclear or high allocation concealment risk (i.e., no 

reported concealment method, or use of any concealment approach that allowed 

participants, investigators, or other staff to foresee assignment), and unclear or high 

incomplete data risk (e.g., high attrition and/or use of an as-treated rather than intention-

to-treat analysis approach). These studies were also likely to use a bias-inducing missing 

data handling strategy, such as listwise deletion, and to lack fidelity monitoring.  

 Findings of the overall meta-analysis of BI effect on drug use (the first section of 

Table 4), which suggest that BIs lead to a reduction in drug use, are identical to those 

presented in Table 2 and discussed in the prior section. Synthesis of the available effect 

sizes in each class also yielded similar findings. In the first class, the class-specific 

overall effect size, 𝑔*̅ = 0.085, 95% CI [0.033, 0.137], and between-study variation 

estimate, 𝜏*
2 = 0.010, 95% CI [0.002, 0.018], were again similar to the single-class 

estimate. In the second class, a much larger BI effect was found, 𝑔*̅ = 0.206, 95% CI [-

0.078, 0.491], again with increased between-study variation compared to the overall 

model and to the first class, 𝜏*
2 = 0.029, 95% CI [-0.080, 0.138]. Findings for the use 

consequences outcome domain (Table 5) also paralleled those presented in Table 3. 
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Table 5. Two-class model of study characteristic moderation of use 
consequences effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.106 [0.063, 0.150] 
0.014 [0.005, 0.022] 

 Class 1 Class 2 
Random Sequence Generation   

1 (low) 0.82 0.38 
2 (high/unclear) 0.18 0.62 

Allocation Concealment   
1 (low) 0.63 0.26 
2 (high/unclear) 0.37 0.74 

Assessor Blinding   
1 (low) 0.07 0.03 
2 (high/unclear) 0.93 0.97 

Incomplete Data   
1 (low) 0.47 0.11 
2 (high/unclear) 0.53 0.89 

Selective Reporting   
1 (low) 0.29 0.08 
2 (high/unclear) 0.71 0.92 

Missing Data Handling   
1 (MI/FIML) 0.32 0.00 
2 (LOCF/sensitivity) 0.33 0.14 
3 (listwise or unclear) 0.35 0.86 

Reporting   
1 (biological) 0.06 0.12 
2 (interview) 0.63 0.66 
3 (self-administered) 0.31 0.22 

Monitoring   
1 (no) 0.24 0.71 
2 (yes) 0.76 0.29 

Implementation Problem   
1 (yes/possible) 0.32 0.29 
2 (no) 0.68 0.71 

𝑘*
  76 48 

(%) (61.2) (38.8) 

𝑘,- 41 7 
𝑔*̅  [95% CI] 0.099 [0.054, 0.143] 0.310 [0.157, 0.464] 
𝜏*

2 [95% CI] 0.014 [0.005, 0.022] 0.000           * 
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The similarity in findings between efficacy-to-effectiveness and study 

characteristic models reflects the fact that the same effect sizes were categorized into the 

two classes identified by each model. This occurs because every study did not have an 

available effect size for the outcomes analyzed, so differences in the studies assigned to 

each class did not necessarily correspond to substantial differences in the effect sizes 

assigned to each class (i.e., some studies assigned to different classes between models did 

not have a corresponding effect size). Nevertheless, interpretation of the study 

characteristic models is distinct from that of the efficacy-to-effectiveness models. In the 

present models, the class having the smaller estimate of BI effect is characterized by 

studies having fewer risks of bias as well as fidelity monitoring, while the class having 

the larger estimate of BI effect is composed of studies with a higher probability of several 

risks of bias, including risk related to random sequence generation, allocation 

concealment, assessor blinding, and the absence of fidelity monitoring. 

Intervention Duration 

 Beyond attributes of the primary study design and implementation, aspects of the 

BI itself may have some relation with its effectiveness. As noted in Chapter II, BIs can 

differ in their duration, as well as in the types and number of intervention components 

delivered to participants. Duration, typically reported in mean or median number of 

minutes, can represent the length of a single session, or less commonly, the total length of 

a multi-session BI. As a continuous quantity, duration may be examined using meta-

regression to determine the influence of minute-increases in BI length on the overall 

effect size estimate. This said, there may be interest in whether primary studies, 

considered together, reflect groupings of effect size durations whose average values may 
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be more useful to decision-making regarding BI implementation than changes in effect by 

minute-units.  

 Table 6 presents the output of a two-class mixture model of BI duration, which 

utilized 103 primary studies providing BI duration information. Approximately 97 studies 

were assigned to the first class (Class 1), and on average, the duration of these studies 

was 21.2 minutes. In contrast, the average duration of the approximately six studies in the 

second class (Class 2) was considerably longer at 108.6 minutes. The meta-analytic 

findings indicate the estimated BI effect on drug use among studies in the first class, 𝑔*̅ = 

0.091, 95% CI [0.035, 0.146], was similar in magnitude and significance to the overall 

(single-class) effect estimate, 𝑔*̅ = 0.090, 95% CI [0.038, 0.143]. The BI effect estimate 

in the second class, which was characterized by longer-duration interventions, was 

substantially larger, 𝑔*̅ = 0.204, 95% [-0.075, 0.482], but not significantly different from 

zero. In the first class, between-study variation was similar in magnitude to the overall 

model and remained significant, 𝜏*
2 = 0.011, 95% CI [0.002, 0.019], while in the longer-

duration class, there was increased between-study variation, 𝜏*
2 = 0.028, 95% CI [-0.070, 

0.126]. Results for the use consequences outcome domain (Table 7) bear some 

similarities to the drug use outcome domain, particularly in the first class where the BI 

effect and between-study variation estimates closely parallel the overall model estimates. 

In the second class of longer-duration BIs, the BI effect estimate is again substantially 

larger than the shorter-duration BI class; in this instance, however, the effect estimate 

remains significant, 𝑔*̅ = 0.323, 95% [0.130, 0.516], and the estimate of residual between-

study variation is reduced to zero, 𝜏*
2 = 0.000, 95% CI [-0.145, 0.146]. Taken together, 
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these findings suggest that the use consequences effect sizes in the longer-duration class 

are a more homogeneous set of effects than the drug use effect sizes included in the 

longer-duration class presented in Table 6. 

 
Table 6. Two-class model of brief intervention duration moderation of 
drug use effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.090 [0.038, 0.143] 
0.010 [0.001, 0.019] 

 Class 1 Class 2 
Duration   

Minutes (mean) 21.2 108.6 

𝑘*
  97 6 

(%) (94.0) (6.00) 

𝑘,- 24 5 
𝑔*̅  [95% CI] 0.091 [0.035, 0.146] 0.204 [-0.075, 0.482] 
𝜏*

2 [95% CI] 0.011 [0.002, 0.019] 0.028 [-0.070, 0.126] 
 
 

Table 7. Two-class model of brief intervention duration moderation of 
use consequences effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.106 [0.063, 0.150] 
0.014 [0.005, 0.022] 

 Class 1 Class 2 
Duration   

Minutes (mean) 21.2 108.6 

𝑘*
  97 6 

(%) (94.0) (6.00) 

𝑘,- 38 6 
𝑔*̅  [95% CI] 0.116 [0.073, 0.159] 0.323 [0.130, 0.516] 
𝜏*

2 [95% CI] 0.011 [0.002, 0.020] 0.000 [-0.145, 0.146] 
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Intervention Components 

 Among the primary studies in the present analyses, the number and types of 

intervention components delivered during a BI session varied (see Table 1). Most BIs 

included prescriptive advice (62.8%), information booklets (56.2%), and/or normative 

feedback (72.7%), yet it is not directly apparent which combination of these or other 

components is most likely to be implemented. Results of a two-class mixture model of BI 

components are presented in Table 8, providing some insight into the configuration of 

components utilized across the 124 included studies. In the first class, composed of 

approximately 78 studies, the predominating component is prescriptive advice; decisional 

balance exercises, goal-setting activities, skills training, and referrals to services are 

unlikely to be used by studies in this class, and information booklets and normative 

feedback are approximately as likely to be used as not used. In the second class of about 

43 studies, BIs are likely to include information booklets, decisional balance exercises, 

goal-setting activities, and normative feedback.  

Table 8 also presents findings of the class-specific meta-analyses for the drug use 

outcome domain. In the first class, characterized by prescriptive advice, 26 studies 

provided effect sizes yielding an estimated BI effect of 𝑔*̅ = 0.085, 95% CI [0.033, 

0.137], a reduction in drug use similar in magnitude and significance to the overall 

(single-class) estimate of 𝑔 ̅= 0.090, 95% [0.038, 0.143]. Between-study variation 

remained identical to the overall model, and maintained significance. In the second class, 

composed of five effect sizes from studies likely to use motivational components, the BI 

effect estimate was substantially larger, 𝑔*̅ = 0.206, 95% [-0.078, 0.491]. In this class, the 

estimate for between-study heterogeneity, 𝜏*
2 = 0.029, 95% CI [-0.080, 0.138], was  
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Table 8. Two-class model of intervention component moderation of 
drug use effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.090 [0.038, 0.143] 
0.010 [0.001, 0.019] 

 Class 1 Class 2 
Advice   

1 (no) 0.27 0.55 
2 (yes) 0.73 0.45 

Booklet   
1 (no) 0.46 0.39 
2 (yes) 0.54 0.61 

Decisional Balance   
1 (no) 0.89 0.33 
2 (yes) 0.11 0.67 

Goal-Setting   
1 (no) 0.73 0.09 
2 (yes) 0.27 0.91 

Normative Feedback   
1 (no) 0.42 0.00 
2 (yes) 0.58 1.00 

Skills Training   
1 (no) 0.87 0.84 
2 (yes) 0.13 0.16 

Referral   
1 (no) 0.84 0.53 
2 (yes) 0.16 0.47 

𝑘*
  78 43 

(%) (64.6) (35.4) 

𝑘,- 26 5 
𝑔*̅  [95% CI] 0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏*

2 [95% CI] 0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
 

somewhat larger than in the advice class, 𝜏*
2 = 0.010, 95% CI [0.002, 0.018]. In the 

motivational class, both the effect size and the between-study variation estimates were 

not significantly different from zero. Meta-analyses of use consequences effect sizes 
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(Table 9) offer similar findings for the first, prescriptive advice component class. Here, 

summarizing the 41 available effect sizes leads to a BI effect and between-study variation 

estimate again similar to the overall (single-class) model. In the motivational component 

 
Table 9. Two-class model of intervention component moderation of 
use consequences effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.106 [0.063, 0.150] 
0.014 [0.005, 0.022] 

 Class 1 Class 2 
Advice   

1 (no) 0.27 0.55 
2 (yes) 0.73 0.45 

Booklet   
1 (no) 0.46 0.39 
2 (yes) 0.54 0.61 

Decisional Balance   
1 (no) 0.89 0.33 
2 (yes) 0.11 0.67 

Goal-Setting   
1 (no) 0.73 0.09 
2 (yes) 0.27 0.91 

Normative Feedback   
1 (no) 0.42 0.00 
2 (yes) 0.58 1.00 

Skills Training   
1 (no) 0.87 0.84 
2 (yes) 0.13 0.16 

Referral   
1 (no) 0.84 0.53 
2 (yes) 0.16 0.47 

𝑘*
  78 43 

(%) (64.6) (35.4) 

𝑘,- 41 7 
𝑔*̅  [95% CI] 0.099 [0.054, 0.143] 0.310 [0.157, 0.464] 
𝜏*

2 [95% CI] 0.014 [0.005, 0.022] 0.000           * 
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class (Class 2), seven available effect sizes lead to an estimate of BI effect that was both 

considerably larger than the advice class and significantly different from zero, 𝑔*̅ = 0.310, 

95% CI [0.157, 0.464]. Between-study variation in this class was reduced to zero, but the 

standard error was inestimable.  

Sample Characteristics  

 As described in Chapter II, characteristics of a primary study’s sample, such as 

racial/ethnic or sex/gender composition or average age, may moderate a program’s 

effectiveness. At the same time, it was noted that utilizing summary estimates of 

participant attributes in moderation analyses may induce aggregation or ecological bias, 

such that the between-study relation of the moderator with the program’s effect differs 

from the within-study relation (in magnitude, direction, or both). Consequently, the utility 

of variables summarizing sample characteristics is limited in aggregate data meta-

analysis. To investigate whether the present method, which in this case would examine 

the co-occurrence of several summary measures of participant attributes, may provide 

additional insight into the role of such characteristics in BI effectiveness, mixture models 

were fitted using each study’s reported proportion of non-Hispanic white participants, 

proportion of female participants, and average participant age.  

 Table 10 presents the results of a two-class mixture model utilizing race/ethnicity, 

sex/gender, and age indicator variables. The first class (Class 1), composed of 

approximately 86 studies, was characterized by participant samples that were on average 

largely non-Hispanic white (74%) and male-identifying (female: 33%), with a mean age 

of 36.5 years. In the second class, 31 studies had a majority of participants who were 

racial/ethnic minority (non-Hispanic white: 24%) and female-identifying (56%), and had 



 

 
58 

a lower mean age (27.8 years). Findings of the meta-analyses of drug use effect sizes 

indicate that in the first class of studies, whose participants were majority older white 

individuals identifying as males, the BI effect estimate using 26 effect sizes was similar 

to the overall effect estimate and suggestive of a positive effect of BIs to reduce drug use, 

𝑔*̅ = 0.085, 95% CI [0.033, 0.137]. In the second class, made up of studies with younger 

participants and with a larger proportion of participants with a racial/ethnic minority 

identity and who identified as female, synthesis of five effect sizes indicated a larger but 

nonsignificant BI effect, 𝑔*̅ = 0.206, 95% CI [-0.078, 0.491]. Between-study variation 

was not decreased from the overall (single-class) model in either class, and was 

somewhat increased in the second class.  

 
Table 10. Two-class model of sample characteristic moderation of 
drug use effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.090 [0.038, 0.143] 
0.010 [0.001, 0.019] 

 Class 1 Class 2 
Proportion Non-
Hispanic White   

Mean 0.74 0.24 
Proportion Female   

Mean 0.33 0.56 
Average Age   

Mean (years) 36.5 27.8 

𝑘*
  86 31 

(%) (73.2) (26.8) 

𝑘,- 26 5 
𝑔*̅  [95% CI] 0.085 [0.033, 0.137]  0.206 [-0.078, 0.491] 
𝜏*

2 [95% CI] 0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
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Results of within-class meta-analyses of use consequences effect sizes (Table 11) 

are similar to those of drug use effect sizes for the first class characterized by studies with 

participants who were older, non-Hispanic white, and male-identifying. In the second 

class, the BI effect was again substantially larger among study samples that had greater 

representation of younger racial/ethnic minority and female-identifying participants, 𝑔*̅ = 

0.310, 95% CI [0.157, 0.464]; in contrast to the drug use model (Table 10), this larger BI 

effect maintained significance, and between-study heterogeneity was reduced to zero (the 

standard error for this quantity could not be estimated, however).  

 
Table 11. Two-class model of sample characteristic moderation of use 
consequences effect sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.106 [0.063, 0.150] 
0.014 [0.005, 0.022] 

 Class 1 Class 2 
Proportion Non-
Hispanic White   

Mean 0.74 0.24 
Proportion Female   

Mean 0.33 0.56 
Average Age   

Mean (years) 36.5 27.8 

𝑘*
  86 31 

(%) (73.2) (26.8) 

𝑘,- 41 7 
𝑔*̅  [95% CI] 0.099 [0.054, 0.143]  0.310 [0.157, 0.464] 
𝜏*

2 [95% CI] 0.014 [0.005, 0.022] 0.000           * 
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Table 12 shows an alternative, three-class model using the sample characteristic 

indicator variables. The first class is broadly similar to the first class of the two-class 

model (Table 10) in its composition (primarily studies with older non-Hispanic white 

individuals identifying as male) and in the findings of the within-class meta-analysis. The 

second class is characterized by studies with majority racial/ethnic minority participants 

(non-Hispanic white: 39%) and a substantial majority of female-identifying participants 

(96%), with a younger average age (34.9 years) compared to Class 1. The final class 

(Class 3) is composed of studies whose samples were majority non-Hispanic white (63%) 

and made up of an approximately equal proportion of male- and female-identifying 

participants on average (female: 52%). Participants in these studies were also 

substantially younger on average (25.4 years) compared to the first and second classes.  

 
Table 12. Three-class model of sample characteristic moderation of drug use effect 
sizes. 
 
𝑔 ̅ [95% CI] 
𝜏2  [95% CI] 

0.090 [0.038, 0.143] 
0.010 [0.001, 0.019] 

 Class 1 Class 2 Class 3 
Proportion Non-
Hispanic White    

Mean 0.60 0.39 0.63 
Proportion Female    

Mean 0.25 0.96 0.52 
Average Age    

Mean (years) 38.8 34.9 25.4 

𝑘*
  69 39 9 

(%) (59.4) (33.1) (7.5) 

𝑘,- 23 5 3 
𝑔*̅  [95% CI] 0.077 [-0.029, 0.183]  0.174 [-0.339, 0.687] 0.333 [-0.140, 0.805] 
𝜏*

2 [95% CI] 0.010 [-0.001, 0.020] 0.000 [-0.052, 0.053] 0.059 [-0.126, 0.243] 
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In within-class meta-analyses of drug use effect sizes,13 both the BI effect and 

between-study variation estimates were nonsignificant for all classes, likely because of 

reduced precision resulting from fewer effect sizes being available in most classes 

compared with the two-class model. Nevertheless, in comparison to the first class 

(composed of studies with primarily older non-Hispanic white participants identifying as 

male), the BI effect was larger in the class featuring studies with larger proportions of 

younger racial/ethnic minority participants identifying as female, 𝑔*̅ = 0.174. 95% [-

0.339, 0.687]. Further, in the third class, composed of studies with participants who were 

on average the youngest, the largest BI effect was observed, 𝑔*̅ = 0.333, 95% CI [-0.140, 

0.805]. Importantly, only five effect sizes were available to synthesize in the second 

class, while only three were available in the third class. Further, aside from Class 2, in 

which between-study variation was reduced to zero, estimates of between-study variation 

were either not decreased (Class 1) or were increased (Class 3) in comparison to the 

overall model.  

 

 

 

 

 

 

 

 
13 Class-specific meta-analyses of use consequences effect sizes for the three-class solution were 
underidentified, and are not presented. 
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CHAPTER V 

CONCLUSIONS 

 Analyses presented in the previous chapter demonstrated a novel application of 

mixture modeling to characterize study, intervention, and sample-related drivers of effect 

size variation in meta-analysis. The aims of this application were to investigate whether 

and how these factors co-occurred in a sample of studies implementing a prevention 

program, and whether such co-occurrence would relate to or modify the program’s 

effectiveness. Findings suggest the method meets both these aims. In the present section, 

findings will be discussed in view of their potential interpretive value and utility in future 

research on, and implementations of, brief interventions and other prevention programs. 

Further, identified limitations and modeling challenges, briefly noted in the prior chapter, 

will be considered in greater detail. The chapter will conclude with an outline of avenues 

for future research.  

 Table 13 summarizes meta-analytic findings presented in Chapter IV and 

additionally provides 95% prediction intervals for within-class meta-analyses. In the first 

models presented, aspects of primary studies’ efficacy-to-effectiveness staging were 

examined. These attributes, which pertain to intervention flexibility, setting 

characteristics, provider type and training level, patient baseline severity and degree of 

incentivization, and degree of implementation support and monitoring, provide an 

indication of the feasibility, resource-intensiveness, and cost with which a program may 

be implemented. Clinically-typical or effectiveness-testing implementations may require 

fewer resources and by consequence have greater feasibility; at the same time, they may 

be at risk of implementation failure arising from poor adherence to an intervention’s 
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Table 13. Summary of meta-analytic findings accompanied by within-class 95% 
prediction intervals (PI). Three-class sample characteristics model (Table 12) not shown. 
 
 

Overall Model 
 Within-class Models 

  Class 1 Class 2 

Efficacy-to-Effectiveness Staging – Drug Use 
𝑘*   80 39 
𝑘,-   26 5 
�̅�  [95% CI] a 0.090 [0.038, 0.143]  0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏! [95% CI] b 0.010 [0.001, 0.019]  0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
 [95% PI]   [-0.129, 0.299] [-0.507, 0.919] 

Efficacy-to-Effectiveness Staging – Use Consequences 
𝑘*   80 39 
𝑘,-   41 7 
�̅�  [95% CI] 0.106 [0.063, 0.150]  0.099 [0.054, 0.143] 0.310 [0.157, 0.464] 
𝜏! [95% CI] 0.014 [0.005, 0.022]  0.014 [0.005, 0.022] 0.000           * 
 [95% PI]   [-0.145, 0.343] [0.108, 0.512] 

Study Characteristics (Risks of Bias) – Drug Use 
𝑘*   76 48 
𝑘,-   26 5 
�̅�  [95% CI] 0.090 [0.038, 0.143]  0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏! [95% CI] 0.010 [0.001, 0.019]  0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
 [95% PI]   [-0.129, 0.299] [-0.507, 0.919] 

Study Characteristics (Risks of Bias) – Use Consequences 
𝑘*   76 48 
𝑘,-   41 7 
�̅�  [95% CI] 0.106 [0.063, 0.150]  0.099 [0.054, 0.143] 0.310 [0.157, 0.464] 
𝜏! [95% CI] 0.014 [0.005, 0.022]  0.014 [0.005, 0.022] 0.000           * 
 [95% PI]   [-0.145, 0.343] [0.108, 0.512] 

Duration – Drug Use 
𝑘*   97 6 
𝑘,-   24 5 
�̅�  [95% CI] 0.090 [0.038, 0.143]  0.091 [0.035, 0.146] 0.204 [-0.075, 0.482] 
𝜏! [95% CI] 0.010 [0.001, 0.019]  0.011 [0.002, 0.019] 0.028 [-0.070, 0.126] 
 [95% PI]   [-0.134, 0.316] [-0.494, 0.902] 
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Table 13. (continued). 
 
   Within-class Models 
 Overall Model  Class 1 Class 2 

Duration – Use Consequences 
𝑘*   97 6 
𝑘,-   38 6 
�̅�  [95% CI] 0.106 [0.063, 0.150]  0.116 [0.073, 0.159] 0.323 [0.130, 0.516] 
𝜏! [95% CI] 0.014 [0.005, 0.022]  0.011 [0.002, 0.020] 0.000 [-0.145, 0.146] 
 [95% PI]   [-0.101, 0.333] [0.05, 0.596] 

Intervention Components – Drug Use 
𝑘*   78 43 
𝑘,-   26 5 
�̅�  [95% CI] 0.090 [0.038, 0.143]  0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏! [95% CI] 0.010 [0.001, 0.019]  0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
 [95% PI]   [-0.129, 0.299] [-0.507, 0.919] 

Intervention Components – Use Consequences 
𝑘*   78 43 
𝑘,-   41 7 
�̅�  [95% CI] 0.106 [0.063, 0.150]  0.099 [0.054, 0.143] 0.310 [0.157, 0.464] 
𝜏! [95% CI] 0.014 [0.005, 0.022]  0.014 [0.005, 0.022] 0.000           * 
 [95% PI]   [-0.145, 0.343] [0.108, 0.512] 

Sample Characteristics – Drug Use 
𝑘*   86 31 
𝑘,-   26 5 
�̅�  [95% CI] 0.090 [0.038, 0.143]  0.085 [0.033, 0.137] 0.206 [-0.078, 0.491] 
𝜏! [95% CI] 0.010 [0.001, 0.019]  0.010 [0.002, 0.018] 0.029 [-0.080, 0.138] 
 [95% PI]   [-0.129, 0.299] [-0.507, 0.919] 

Sample Characteristics – Use Consequences 
𝑘*   86 31 
𝑘,-   41 7 
�̅�  [95% CI] 0.106 [0.063, 0.150]  0.099 [0.054, 0.143] 0.310 [0.157, 0.464] 
𝜏! [95% CI] 0.014 [0.005, 0.022]  0.014 [0.005, 0.022] 0.000           * 
 [95% PI]   [-0.145, 0.343] [0.108, 0.512] 
a For within-class models, values correspond to 𝑔*̅. b For within-class models, values 
correspond to 𝜏*

2. 



 

 
65 

design or protocol (i.e., fidelity), inadequate provider training, or inadequate support for 

program delivery. Moreover, even when a program appears successfully implemented on 

measures such as provider uptake and patient satisfaction, it may be less effective, for 

instance, in the absence of sufficiently rigorous provider training. In research-typical or 

efficacy-testing implementations, by contrast, there may be greater resources for training, 

as well as support for intervention delivery (e.g., additional staff) and more intensive 

fidelity monitoring (e.g., direct observation and immediate corrective feedback). 

Intuitively, the presence of these characteristics could lead to greater program effect, yet 

they may be counterbalanced by other aspects of a research-typical implementation, such 

as having a provider that is contracted or in training. These providers may less effectively 

deliver the program because of a lack of clinical experience or existing relationship with 

the patient, both of which may be more common in clinically-typical implementations in 

which a provider is more likely to be a working clinician, including a patient’s primary 

care provider. Similarly complex relations may be present for patients: clinically-typical 

patients who may present with a variety of severity and risk levels may also be generally 

more willing to accept the program, while at the same time, having fewer severe patients 

in the sample may attenuate the observed effect of the program. Conversely, among 

research-typical patients (who are more likely to exceed an elevated risk or severity 

threshold) there may be less acceptance of the program but simultaneously the possibility 

of observing a larger program effect given their more severe symptomatology. 

 The co-occurrence of efficacy-to-effectiveness factors and their relation to BI 

program effect was examined using a two-class mixture model. Classes were similar 

across several characteristics, including implementation among participants who were 
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more likely to have greater severity or risk, and/or to be incentivized for participation; 

use of briefer, less intensive BIs; and allowing providers moderate flexibility in BI 

delivery. Classes were distinguished, in particular, by their level of provider training, 

intervention support, and fidelity monitoring, as well as practitioner type and 

implementation context. Synthesis of effect sizes in the first class, which was 

characterized by a higher likelihood of intensive provider training and the provision of 

more extensive intervention support and monitoring, indicated that such studies have a 

comparatively small positive effect on reducing drug use and use consequences. 

Inspection of the prediction intervals for both outcome domains suggests that future 

implementations of similar studies would find effects that varied in both magnitude and 

direction.  

Contrastingly, summarizing effect sizes in the second class of studies that had a 

higher probability of less intensive provider training, not providing extensive support or 

monitoring, and additionally being implemented in a community setting and with clinical 

providers, revealed an approximately three-fold larger BI effect compared to the 

research-typical class. Prediction intervals suggested that in future studies similar to those 

in the second class, BI effectiveness for drug use may range in both magnitude and 

direction, while for use consequences studies are likely to find a positive effect that may 

vary substantially in magnitude. Importantly, there were substantially fewer effect sizes 

available in the clinically-typical class than in the research-typical class, so this disparity 

in effect should be interpreted cautiously (this is the case for the smaller class of most 

models presented in Chapter IV). Despite this, these findings suggest that the research- or 

clinically-typical nature of a study’s implementation may be associated with BI effect. 
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More specifically, each class markedly varied in its probability of featuring 

implementation monitoring, support, and intensive training, and yet the class 

characterized by the absence of such resources was found to have the greater overall BI 

effect. It may be the case that despite the evidenced relation of implementation fidelity 

with program effectiveness (Lipsey, 2009; Sanetti & Kratochwill, 2014; Sims & Melcher, 

2017), the relative brevity and simplicity of BIs means they do not necessitate intensive 

monitoring, support, or substantial training to have some effect. Indeed, both classes were 

likely to utilize a shorter-duration and/or low-complexity BI.  

 Rather than extensive fidelity monitoring, support, and training, the key drivers of 

the larger BI effect in the clinically-typical class may be the confluence of 

implementation of the BI in a community or realistic setting, by practitioners or providers 

who have clinical experience and potentially a pre-existing relationship with the patient. 

Such a conclusion is supported by meta-analyses examining the role of providers in 

intervention effectiveness (Del Re et al., 2012) and the importance of the provider-patient 

alliance in achieving therapeutic outcomes (Martin et al., 2000), which conclude that 

positive alliance is consistently associated with effectiveness, but that this relation is 

moderated by the provider’s ability to form and maintain alliance. The setting may also 

have some relation with the level of outcome severity (and responsiveness to 

intervention) among participants. It may be the case, then, that when BIs are delivered in 

community settings by providers whom patients trust or have comfort with, or who have 

experience in patient engagement, BIs have greater effect. In the context of the present 

method, which considered the co-occurrence of numerous potential efficacy-to-

effectiveness factors, this conclusion also highlights a potential utility of the method in its 
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ability to leverage potentially counterintuitive findings related to some factors (e.g., 

fidelity monitoring and implementation support) to further probe for moderators.  

The next series of models examined the co-occurrence of study characteristics 

that may increase biases or could otherwise influence program effectiveness. Many of 

these factors are codified in the Cochrane Risk of Bias Tool (Higgins et al., 2011), which 

is widely used in meta-analysis, while others were ad hoc measures that captured studies’ 

missing data handling strategy, and whether implementation monitoring and problems 

were reported or identified. The results of a two-class mixture model indicated that 

studies in the motivating data set were likely to have high or unclear risk in the blinding 

of outcomes assessors (most studies used self-report measures, which are by definition 

unblinded), in the presence of selective reporting (most studies lacked registered 

protocols to assess selective reporting), and in the reporting modality (most studies used 

interview assessments rather than biological measure or self-administered assessments). 

Studies in both classes were also unlikely to report, or have coders identify, 

implementation problems.  

Primary studies differed in their probability of risk associated with random 

sequence generation, allocation concealment, incomplete data, missing data handling, and 

presence or absence of intervention monitoring. In the first class, studies were more 

likely to have low risk of bias for most factors, which would reflect, for instance, 

computerized random sequence generation, fully concealed allocation to treatment or 

control groups, and the presence of monitoring. In the second class, studies were likely to 

have high or unclear risk across all differentiating factors, suggesting that studies in this 

class were more likely to be characterized by, for example, unclear randomization 
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strategy, poorly concealed allocations, substantial or unbalanced attrition, use of listwise 

deletion rather than a modern imputation approach, and an absence of monitoring. Taken 

together, then, the two classes could be interpreted as reflecting a lower overall risk of 

bias (the first class) or a higher overall risk of bias (the second class). In within-class 

meta-analyses, BIs implemented in studies in the class associated with a lower 

probability of risk of bias had a positive but comparatively small effect to reduce drug 

use and use consequences. In contrast, studies with greater probability of risk of bias had 

an approximately three-fold larger effect. As in the efficacy-to-effectiveness models, the 

latter effect estimate is derived from substantially fewer effect sizes than the former, and 

intervention monitoring (here measured as presence or absence not as degree or intensity) 

is again present in the class associated with lower BI effect. Prediction intervals for study 

characteristic models also have similar interpretations to the efficacy-to-effectiveness 

models: future studies with lower-risk profiles similar to those of studies in the first class 

would be expected to find effects that ranged in both magnitude and direction, while 

higher-risk studies may find effects on drug use that vary in magnitude and direction and 

effects on use consequences that are positive but range in magnitude. 

A straightforward conclusion to draw from these findings is that the BI effect 

observed in the higher-risk class is upwardly biased, perhaps by poorly executed 

randomization and assignment to groups. Alternatively, differences in BI effect among 

these studies may be driven by high differential attrition, and by the same token, listwise 

deletion of participants missing follow-up data. Finally, the BI effect may be unrelated to 

these factors, and be larger for another reason (or set of reasons). Nonetheless, that a 

larger effect was seen in the higher-risk group across two distinct outcome domains (drug 
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use and use consequences) suggests some stability in the link between the study 

characteristics considered and the BI effect. In the context of BIs in particular, it may be 

that factors related to attrition and missing data handling are the overriding drivers of the 

larger overall effect observed. Supporting this conclusion is the observation that some 

alcohol-related BIs have greater effect among those with lower symptom severity 

(Baumann et al., 2018); at the same time, in longitudinal studies in general it is not 

uncommon for participants with greatest risk or severity to also be the most susceptible to 

loss to follow up (Ribisl et al., 1996). It is potentially the case, therefore, that studies in 

the group at high risk of incomplete data and bias-inflating missing data strategies were 

also more likely to have a pool of remaining participants who had less severe drug use or 

use consequences outcomes, among whom BIs have been shown to have greater effect.   

The models presented in the prior chapter also examined aspects of the BI itself, 

beginning with the duration of the intervention. Duration, as a continuous variable 

reported in minute-units, was investigated for two reasons. The first arises from existing 

evidence on BI duration that suggests duration does not moderate BI effectiveness (Beyer 

et al., 2018; Kaner et al., 2018). Importantly, in these studies meta-regression was used to 

assess whether duration was an important moderator, and by consequence minute-unit-

change in duration was the predictor of interest. Single-minute increases in BI duration, 

intuitively, may not measurably impact effectiveness. Thus, as noted above, it may be 

more informative to examine whether studies may be grouped around an average BI 

duration, and to investigate this categorical difference in average BI duration for its 

influence on BI effect. Such an analysis was presented in the form of a two-class mixture 

model, which found that most BIs were, on average, 21.2 minutes in length. A second 
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group of studies was considerably longer in average duration (108.6 minutes), an amount 

that could be accumulated over several BI sessions. Shorter-duration BIs were found to 

have a comparatively small overall effect on drug use and use consequences that would 

be expected to vary in both direction and magnitude in future implementations, while the 

longer-duration interventions had a substantially larger effect, which may range in 

magnitude and direction for future studies of drug use but would likely remain positive 

for use consequences. These findings suggest BI duration may be linked to effectiveness 

when broader categorical rather than incremental differences in duration are considered. 

Importantly, a benefit of mixture modeling in this scenario is that use of arbitrary cut 

points to create duration groups was unnecessary, and instead such groups could be 

derived empirically. Indeed, other studies that examined the moderation role of BI 

duration (Black et al., 2016; Tanner-Smith & Lipsey, 2015) used apparently arbitrarily-

defined categories to represent duration (e.g., less than or equal to 30 minutes, or greater 

than 30 minutes), and found no link between duration and BI effect. This contrasting 

finding underlines the potential utility of empirical cut points, which can be readily 

extended to other prevention programming where there are open questions about the 

optimal duration of intervention exposure or dosage.   

In addition to duration, the number and types of intervention components can vary 

from one implementation of a BI to another. The variety of components that can be 

incorporated into BIs is, on the one hand, a strength of the approach in that BIs can be 

highly tailored to patient severity or risk level, readiness to change, and receptivity to or 

preference for certain intervention activities. On the other hand, the lack of 

standardization in BI structure and composition has complicated determining BI 
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effectiveness, given that the individual implementations vary considerably in the 

components used, and in whether those components are required to be administered to all 

patients or are selected on a case-by-case basis using provider discretion. Relatedly, it has 

been challenging to identify whether some components are essential to program 

effectiveness, i.e., represent indispensable intervention kernels that are key to BI success 

(Embry & Biglan, 2008; Tanner-Smith & Lipsey, 2015).  

Despite inconsistencies in components used, however, an effort to broadly 

categorize the types of components used in BIs can begin with a consideration of whether 

the BI is underlain by a motivational or prescriptive theoretical stance. The former, 

pioneered by Miller (1991, 2002), is oriented toward strengthening patient self-efficacy 

and motivation for change, while the latter is driven more by practical considerations 

such as existing clinician comfort with traditional delivery of authoritative advice and the 

brevity with which such advice can be proffered (Van Voorhees et al., 2009). With this 

line of thinking in mind, a two-class mixture model of common BI components was 

presented. Model results indicated that the majority of studies had a high probability of 

utilizing prescriptive advice, and were unlikely to use decisional balance, goal-setting, or 

skills training components, or to make referrals to other services. Conversely, the 

remaining studies were likely to make use of decisional balance and goal-setting 

components, and to provide a take-home information booklet and personalized normative 

feedback. Thus, studies aligned with the characterization of prescriptive (the first class) 

or motivational (the second class) in orientation.  

Meta-analyses carried out within classes found that studies likely to be 

prescriptive (advice-based) in nature had a comparatively small and positive overall 
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effect to reduce drug use and use consequences (that may range in both magnitude and 

direction in future implementations), while BIs more likely to be motivational had a 

considerably larger positive effect that would be expected to remain positive for use 

consequences but may vary in magnitude and direction for drug use. Because in the 

present analyses, the co-occurrence of components was modeled, findings are suggestive 

of prescriptive advice serving as a modestly effective kernel, in that when implemented 

as a standalone or primary BI component, it does produce some positive effect. By 

comparison, however, decisional balance, goal-setting, normative feedback, and 

information booklet components, when implemented (or available to implement) 

together, yielded a much larger BI effect. Such a finding may indicate that these 

components are kernels in and of themselves, an interpretation that has been examined 

using meta-regression (Tanner-Smith & Lipsey, 2015). Perhaps more critically, it 

suggests that there is an important interrelationship of these components, one that may be 

tied to their common focus on enhancing patient self-efficacy to alter their behavior. The 

same interrelationship may also evidence the complexity and multidimensionality of 

behavior change, and indicate that components targeting multiple sources of motivation 

(e.g., awareness of risk information and norms, or prospective goal-setting) and stages of 

change (e.g., contemplation of pros and cons of use) are necessary to modify behavior 

(Dempsey et al., 2018; Perkins & Berkowitz, 1986; Prochaska & DiClemente, 1984). 

Considering the co-occurrence of these components and the larger BI effect observed 

together, findings of these models lend support to the use of motivational rather than 

prescriptive BI components.  
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The final factors examined as potential drivers of effect size variation were 

sample or participant characteristics, specifically racial/ethnic and sex/gender 

composition, and average participant age. As noted in Chapter II, use of measures that 

summarize participant characteristics (i.e., are participant-variant within studies) can 

produce an aggregation bias that misrepresents the moderation effect of interest. 

Optimally, such moderation relations are explored using individual participant data meta-

analysis, in which the relations are examined within-study and summarized. This 

approach preserves the within-study nature of the relation, while also maintaining the aim 

of meta-analysis to synthesize the findings of numerous primary studies (and, here, the 

study-level influence of a moderator on those findings). Crucially, individual participant 

data meta-analyses are resource-intensive and as yet rarely undertaken in comparison to 

aggregate data meta-analysis.  

To investigate whether the present method may offer some value for examining 

the role of participant characteristics in BI effectiveness in the absence of individual 

participant data, two- and three-class models were estimated using three continuous 

summary measures of primary study sample attributes: proportion non-Hispanic white, 

proportion female, and average participant age. In the two-class solution, the first class 

was characterized by studies with a higher proportion of non-Hispanic white individuals 

identifying as male, who were comparatively older than participants in the second class, 

in which studies also had higher proportions of racial/ethnic minority and female-

identifying participants. The three-class solution effectively separated the latter class into 

two classes: one primarily composed of studies with somewhat younger, racial/ethnic 

minority female-identifying participants, and another characterized by studies with 
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majority non-Hispanic white participants approximately balanced across sexes/genders, 

but having samples with the youngest average age of all classes. All class-specific meta-

analyses found a positive BI effect for reducing drug use and use consequences; the 

smallest effect was found for the classes predominated by studies with older (mean ages 

of 36.5–38.8), non-Hispanic white individuals identifying as male, while the largest 

effect was observed for classes having studies with a higher proportion of participants 

who were younger (mean age of 25.4–27.8), had a racial/ethnic minority identity, and 

who identified as female. As with prior models, most effects would be expected to vary 

in both magnitude and direction in future implementations, with the exception of the 

studies with a similar sample composition to those in the second class of the two-class 

solution (i.e., studies with younger participants and with higher proportions of 

racial/ethnic minority and female-identifying participants); here, BI effects on use 

consequences are likely to remain positive but could vary in magnitude.   

When the findings of the two- and three-class models are viewed together, they 

suggest that participant race/ethnicity and sex/gender may have some role in BI 

effectiveness, and that participant age may also moderate effectiveness, given the 

consistently larger effect size seen as average age decreased across classes, while 

racial/ethnic and sex/gender composition varied across the same classes. This conclusion 

is supported by evidence showing that BIs are effective for young adults ages 18–30 

(Fachini et al., 2012; Tanner-Smith & Lipsey, 2015), but have unclear or no effectiveness 

for older adults (Fleming et al., 1999; Monti et al., 1999). Older adults may be more 

likely to have experienced chronic use and have more intractable use behaviors, and the 

ongoing nature of their use paired with the relatively low treatment intensity 
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characteristic of BIs compared to other treatment modalities (e.g., ongoing therapeutic or 

in-patient substance use treatment) may render BIs less effective for this demographic 

(see Saitz, 2010). The interpretation that foregrounds age (and to a lesser extent, female 

sex/gender) as the factor driving BI effectiveness is in light of several studies that have 

found BIs to be ineffective among racial and ethnic minorities, perhaps as a consequence 

of poor (or entirely absent) cultural adaptation (see Manuel et al., 2015), and to be 

generally effective among individuals identifying as female (Ballesteros et al., 2004; 

Manwell et al., 2000; O’Connor & Whaley, 2007; Ondersma et al., 2007). Finally, as was 

noted for models examining BI duration, a benefit of the present method for examining 

continuously-measured participant characteristics is that decisional cut points were 

unnecessary; instead, groupings of characteristics were defined empirically.  

The above interpretations underline the key feature of the present method: rather 

than examining the influence of a potential effect moderator in isolation, the co-

occurrence of multiple moderators is modeled. In this fashion, moderators are 

investigated in a way that is more reflective of realistic program implementation, in 

which numerous implementation-related factors may work in concert to alter the 

effectiveness of a program. In the present analyses, a finding in which this utility is 

particularly apparent is related to fidelity monitoring. Despite the strong prior evidence 

that higher fidelity is associated with greater program effectiveness, when considered 

alongside other implementation and methodological factors (e.g., implementation setting, 

provider characteristics, attrition, and missing data handling), the importance of fidelity 

monitoring appears to be diminished. This conclusion is not an argument against fidelity 

monitoring, but instead suggests that for a brief, low-intensity intervention such as BIs, 
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greater effect may be achieved by focusing resources on the fit and installation of the 

intervention in appropriate community settings, rather than on intensive fidelity 

monitoring. 

More broadly, the method described here merges two analytic frameworks that 

are useful for exploring rich and complex data: finite mixture modeling and meta-

analysis. The benefit of utilizing mixture modeling to investigate meta-analytic data 

related to prevention program effectiveness is that such data is inherently complex: 

composed of multiple independent trials, each assessing a program’s effectiveness using 

a variety of designs, with different levels of methodological rigor, in distinct settings, and 

among potentially dissimilar participant populations. Further, as is the case with BIs, the 

program itself may differ in composition, theoretical underpinning, delivery modality, 

and duration – a reality that adds both informative and nuisance variation to the data. In 

view of such complexities, mixture modeling can be used to parse relations among 

numerous factors that potentially drive effect size variation into useable representations 

of their co-occurrence in practice. These representations – or implementation profiles – 

can then serve as the basis for synthesizing effects found by studies with such profiles to 

determine whether the interrelationship among moderators drives variation in program 

effectiveness, as demonstrated here.  

Limitations and Considerations 

 The first and most prominent limitation of the present method is the number of 

studies needed for stable mixture model estimation. While there are no firm guidelines 

for minimal sample size in mixture modeling, recommendations have ranged into the 

several-hundreds of observations (e.g., Nylund et al., 2007). Nevertheless, other factors 
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play into estimability of mixture models, particularly number of classes estimated, class 

separation, the true or underlying class structure, and number and types of indicator 

variables (Gudicha et al., 2016; Masyn, 2013). When classes are well separated, for 

example, fewer observations (here, studies) are needed to derive useable parameter 

estimates. Similarly, continuous indicator variables (e.g., program duration) contribute 

comparatively more information to model estimation than do categorical variables, and a 

model with one or multiple continuous indicators may require fewer studies. In its current 

form, then, the present method may be best suited to larger meta-analyses; nevertheless, 

in more moderately-sized meta-analyses, estimation of exploratory models can be used to 

assess model convergence and stability, as well as interpretability arising from quality of 

class separation. When models indicate low entropy, when classes are poorly 

distinguished (i.e., most response probabilities are near 0.5), or when information criteria 

and other fit statistics suggest a multiple-class structure is unlikely, more traditional 

moderation analysis methods such as meta-regression or subgroup analysis could be used.  

 Another quantity that, when limited, produces analytic challenges is the number 

of effect sizes available within a class. It is to be expected in meta-analyses of prevention 

programs that not all studies will provide effect sizes for all outcomes, yet when there is 

substantial imbalance in the number of effect sizes within classes, estimation of meta-

analytic models becomes challenging.14 Especially impacted is estimation of the within-

class between-study variation parameter, 𝜏*
2. It is known that when few effect sizes are 

 
14 For example, exploratory models using effect sizes from the alcohol use outcome domain found that one 
class routinely had only a single effect size available, preventing the estimation of within-class meta-
analyses. 
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available, estimates of 𝜏2 can be downwardly biased with the use of unrestricted 

maximum likelihood estimation (Viechtbauer, 2005), which is utilized here given the use 

of mixture modeling. Thus, in models presented in the previous chapter, it is possible that 

in classes with a low number of effect sizes available, within-class between-study 

variation estimates may be larger than suggested by the reported 𝜏*
2. One strategy that 

may go some way to improving accuracy and reducing biasedness of the between-study 

variation estimate is the use of prior information. In this approach, predictive 

distributions of between-study variation derived from prior meta-analyses of BIs or 

similar prevention programs would be used as mildly informative priors for within-class 

meta-analyses (Turner et al., 2012). Predictive distributions have been estimated for 𝜏2 in 

the context of clinical interventions (e.g., Rhodes et al., 2015; Turner et al., 2015), but 

there is a need to develop similar estimates for prevention programming. Nevertheless, 

this is a growing area of research that could be leveraged in the present method.  

A related issue is that in all models, substantial differences in BI effect between 

classes were found; in many instances, however, the within-class estimate of between-

study variation was not reduced from the overall (single-class) model. In the cases when 

the class-specific between-study variation estimate was similar or unchanged from the 

overall model, the majority of studies had been assigned to that class; consequently, it is 

likely that class contained the same studies that contributed most between-study variation 

in the overall model. Thus, the magnitude of variation in the largest class was in general 

similar to the overall model. In the smaller classes (which typically had the larger BI 

effect estimate), it is possible that the studies assigned were those that, on average, had 

larger effect sizes, but that those effect sizes had greater variation. This conclusion 
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accords with the relatively low number of available effect sizes in those same classes: 

few effect sizes, of comparatively large but dissimilar values, would appear as having 

increased between-study variation. It may be that a remedy for this and other issues that 

occur when few effect sizes are available is the use of imputation to recover missing or 

unreported effect size information. Multiple imputation of meta-analytic data is 

challenging, however, given the complex structure of the data, the use of summary 

measures (e.g., mean group values), and practicalities involved with pooling multiple 

data sets. Similarly, issues are posed in mixture modeling due to the typical distributional 

assumptions of multiple imputation, which can obscure the presence of component 

distributions in the imputed data (Sterba, 2016). Nevertheless, imputation in meta-

analytic contexts is an area of research with recent developments (including the use of 

pattern mixture modeling; Mavridis & White, 2020) that may be utilized in future 

implementations of the present method.  

A final consideration related to effect size availability is that when there are few 

effect sizes available to synthesize, within-class statistical power and precision are 

reduced compared to the overall analysis using all available effect sizes. Together, these 

conditions limit the value of assessments of statistical significance of program effect or 

between-study variation estimates, especially when nonsignificance is indicated. As such, 

when there are a limited number of effect sizes available in any class, it may be most 

appropriate to consider only the effect estimate, and to do so while recognizing that the 

proximity of that value to the true population value is not known. Alternatively, or 

perhaps in addition to limiting interpretation to the effect estimates, Bayes factors (e.g., 

Dienes, 2014) could potentially be used to investigate whether within-class findings 
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accord with existing evidence on the association of certain moderators with program 

effectiveness (i.e., whether a null finding represents a rejection of that evidence or a 

model-specific sensitivity issue).  

With regard to moderator variable selection, a potential limitation arises when 

there is interest in modeling continuous and categorical indicators simultaneously. 

Because continuous variables are typically considerably more informative than 

categorical variables (that is, each observation can be unique, whereas categorical values 

repeat across potentially numerous observations), the underlying component distributions 

identified in the model may be heavily influenced by the comparatively greater 

information provided by the continuous indicator(s). When this occurs, the categorical 

indicators may appear to poorly distinguish between classes because the class structure is 

more strongly driven by the continuous indicator(s). For instance, during preliminary 

model fitting, a model (not shown) was estimated that included BI duration as well as 

categorical indicators for provider and setting type. In this case, classes were identified 

that were nearly identical to those presented in Tables 6 and 7 with respect to fit, average 

duration in each class, and studies grouped into each class. At the same time, levels of  

the categorical provider and setting variables exhibited close to chance probabilities of 

occurring in each class, suggesting that the classes were primarily component 

distributions of BI duration rather than distributions reflecting the co-occurrence of 

certain types of providers and settings alongside differing average durations (the optimal 

interpretation of such a model). This consideration underlines the importance of model 

interpretability as a criterion for model selection. Indeed, despite the likely interrelation 

of duration and provider and setting types that may motivate an interest in modeling these 
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characteristics together, the nature of the variables themselves limits the interpretability 

of the model. One strategy that may go some way to addressing this issue is to first 

estimate a mixture model of the continuous variable of interest, from which approximate 

category levels could be empirically derived. This categorical variable could then be 

included in a mixture with other categorical indicators of interest, an approach which 

maintains some information from a continuous indicator but may limit the degree to 

which it compromises the interpretability of categorical indicators.  

Lastly, in the final set of models that examined participant characteristics, the 

degree to which aggregation or ecological bias influenced the findings could not be 

assessed because individual participant data were not available. It will be important to 

examine the role of aggregation bias in such analyses using simulation studies or 

empirical aggregate data that has accompanying individual participant data, but in the 

interim it should be noted that the analyses presented here do not necessarily aim to 

provide findings similar to regression-based investigations of effect moderation by, for 

instance, mean age or proportion race/ethnicity or sex/gender. That is, what is of interest 

is not the linear relation of participant characteristics with BI effect – a quantity whose 

interpretation can be distorted by aggregation bias – but instead categorical profiles of 

studies represented by average values of the characteristics.  

Indeed, the estimation of such profiles (classes) independent of effects (i.e., in a 

stage prior to moderation analysis), is an important advantage of this method. 

Specifically, when the association of the classes with effects is assessed, the relation that 

is examined is between the effect estimates and values of participant characteristics that 

are to some degree representative of several studies (such as the means of the indicators 
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from all studies assigned to a class). This is in contrast to meta-regression, in which the 

relation of each study’s value of the characteristic (e.g., mean age) with the effect 

estimate is assessed. In real terms, should mean age be found to moderate effects in a 

meta-regression model, differences in program effect would be anticipated in a study 

with older participants compared to a study with younger participants, regardless of the 

nature of the within-study relation between age and program effect in those two studies. 

By contrast, in the present method the interest is in the relation of program effect with 

groups of numerous studies having, on average, older participants or younger 

participants. This qualitative or categorical difference contains information about the 

relation of age with program effects drawn from many studies, and when combined with 

measures of additional participant characteristics, the categorical profiles that are 

generated represent far more information than a summary statistic of a single study for a 

single moderator (given that values of other characteristics must be held constant when 

using meta-regression). As a result, such profiles may have potential to enhance the 

external validity or generalizability of prevention programs by providing insight on who 

can benefit most from the program, across multiple characteristics that may include 

participant age, racial/ethnic or sex/gender identity, or other attributes. This knowledge 

could be used to tailor program recruitment or outreach, or inform decisions about 

installation setting and populations of focus in support of more pragmatic program 

implementations (i.e., that are more realistic and relevant to contexts and participants; 

Glasgow, 2013). 

The stagewise approach that separates modeling the co-occurrence of potential 

moderator variables from modeling moderation also differentiates the method from prior 
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applications of mixture modeling in meta-analysis. In those cases, effect sizes themselves 

were analyzed using mixture modeling, in an effort to identify homogeneous 

subgroupings of effects but not to explain why those subgroups might occur. Here, the 

subject of the mixture models are study characteristics, and insight into their co-

occurrence can provide useful information independent of whether that co-occurrence 

meaningfully moderates program effectiveness. Put another way, should no difference in 

class-specific program effects be discovered, the method still provides an understanding 

of to what degree – and at what frequency – numerous aspects of a program’s 

implementation co-occur in practice. 

Future Research 

 In addition to investigating the use of stabilizing prior information to improve 

estimates of within-class between-study variation magnitude, noted in the previous 

section, future research will examine the compatibility of the illustrated method with a 

routine scenario in meta-analyses of prevention program effects: the availability of 

multiple, dependent effect sizes from primary studies. Effect size dependency occurs 

when studies collect multiple measures of the outcome of interest or collect data over 

several time points. A benefit of the present method is that once classes are formed with 

study-level indicator variables, the generated class assignment weights apply to the study 

overall; thus, these weights may then be associated with multiple effect sizes so that they 

are analyzed within the appropriate class. Importantly, however, standard random-effects 

models for meta-analysis as were used here do not preserve and properly model 

dependency in effect sizes, and instead, multivariate or three-level meta-analyses will 

need to be fitted within classes. Carrying out this modeling approach will be the next 
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stage of research for the present method. A further step will be to conduct simulation 

studies to examine whether use of the method with summary measures of participant 

attributes provides reasonably unbiased information on the relation of these 

characteristics with program effects, in lieu of individual participant data. Future 

applications of the approach will also explore the use of bootstrapped likelihood ratio 

tests for mixture model selection (Nylund et al., 2007).  

Should the above research be fruitful, a longer-term goal is to broaden access to 

the approach through the development of an open-source implementation, such as for the 

R statistical environment. A second long-term aim is to explore full latent regression in 

the context of meta-analysis, which would augment the present method by also fitting 

mixture models directly to effect size data (e.g., Böhning, 2005; Schlattmann, 2009; van 

Houwelingen et al., 2002; Xia et al., 2005). Moderator classes would then be assessed for 

their relation with latent groupings of effects. A related aim is to fit all moderators 

simultaneously rather than as separate models as illustrated here. In this application, a 

higher-order latent variable would capture interrelations among lower-order latent 

variables representing individual groups of moderators (e.g., those pertaining to risks of 

bias, efficacy-to-effectiveness, etc.).  

 In summary, the method demonstrated here offers a novel application and 

integration of mixture modeling and meta-analysis to characterize drivers of between-

study variation in prevention program effects. The method adds to existing approaches 

for identifying and investigating moderators of program effectiveness, such as meta-

regression and subgroup analysis, by providing a framework to examine the co-

occurrence of potential moderators in a way that parallels their interrelatedness in the 
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naturalistic implementation of a program. As a result, the method has the potential to 

strengthen the installation, implementation, and maintenance of prevention programs by 

providing insight into which methodological, intervention, and participant characteristics 

– alone or in combination – are critical for program effectiveness. 
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APPENDIX 

MODEL FIT INFORMATION 

Number of classes BIC a Entropy aLRT b 𝑝-value 
Efficacy-to-Effectiveness 

1 1234.84 – – 
2 1173.15 0.89 0.00 
3 1193.89 0.81 0.01 

Study Characteristics (Risks of Bias) 
1 1487.55 – – 
2 1498.83 0.59 0.24 
3 1529.60 0.84 0.09 

Intervention Duration 
1 967.17 – – 
2 906.70 0.99 0.00 
3 908.21 0.81 0.55 

Intervention Components 
1 1057.71 – – 
2 1046.62 0.68 0.01 
3 1060.92 0.75 0.01 

Sample Characteristics 
1 924.94 – – 
2 916.18 0.69 0.04 
3 911.58 0.81 0.15 
4 911.63 0.73 0.15 

a Bayesian information criterion. b Adjusted likelihood ratio test. 
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