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DISSERTATION ABSTRACT

Andrew Wray

Doctor of Philosophy

Department of Mathematics

June 2020

Title: Moduli Spaces of Twisted Hermite-Einstein Connections over K3 Surfaces

We study the moduli space M of twisted Hermite-Einstein connections on a vector bundle

over a K3 surface X. We show that the universal bundle U → X × M can be viewed as a

family of stable vector bundles over M parameterized by X, therefore identifying X with a

component of a moduli space of sheaves over M. The proof hinges on a new realization of twisted

differential geometry that puts untwisted and twisted bundles on equal footing. Moreover, we

use this technique to give a new and streamlined proof that M is nonempty, compact, and

deformation-equivalent to a Hilbert scheme of points on a K3 surface, and that the Mukai map

v⊥ → H2(M,Z) (v⊥/Zv when v2 = 0) is a Hodge isometry.
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CHAPTER I

INTRODUCTION

This thesis centers around the relationship between a K3 surface X and moduli spaces

of stable sheaves over X. This connection has been studied in great detail over the last several

decades using techniques from algebraic geometry by Mukai, Yoshioka, O’Grady, Huybrechts and

others; see the survey article [Saw16] for a concise summary of the theory of moduli spaces of

sheaves.

The goal of this work is to elucidate foundational results in the theory of moduli spaces

of sheaves using techniques from complex geometry and analysis. The central theorem linking

these two points of view is the Kobayashi-Hitchin correspondence, which relates the existence of

Hermite-Einstein metrics to stable holomorphic structures for vector bundles.

When the first Chern class c1(E) is non-algebraic, we show that E may be viewed as

a holomorphic vector bundle twisted by a Brauer class obtained from a B-field coming from

−c1(E)/ rk(E). The main result we prove is the following theorem.

Theorem 1. Let X be a K3 surface equipped with a hyperkähler metric g and associated Kähler

form ω, and let E → X a C∞ hermitian vector bundle with hermitian structure h. Assume that

the rank and first Chern class of E are coprime, and that the Mukai vector satisfies the inequality

0 ≤ v(E)2 + 2 < 2 rk(E). Then the following hold:

1. The moduli space M := MHE
ω (E, h,B) of irreducible B-twisted Hermite-Einstein

connections on E is nonempty, compact, and deformation-equivalent to a Hilbert scheme

of points on a K3 surface;

2. There is a twisted universal bundle U → X × M that induces a Hodge isometry v⊥ →

H2(M,Z) when v2 6= 0, and v⊥/Zv → H2(M,Z) when v2 = 0;

3. U is a family of twisted stable bundles on M parameterized by X, with stability taken with

respect to the hyperkähler structure induced on M by the hyperkähler metric g. This family

identifies X with a connected component of the moduli space of stable sheaves on M with the

topological type of U|{x}×M.
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Results (1) and (2) are not new, but the proof we give is dramatically shorter than proofs

in the literature, which span several papers and often include various restrictions on the rank and

first Chern class.

The key to the new proof lies in putting vector bundles twisted by a topologically trivial

Brauer class on the same footing as untwisted bundles. An untwisted holomorphic bundle can be

understood as a topological bundle with a Dolbeault operator satisfying ∂
2

= 0; we show that a

twisted holomorphic bundle twisted by a topologically trivial Brauer class can also be encoded by

a Dolbeault-type operator satisfying ∂
2

= 2πiB0,2. This also allows us to encode twisted Hermite-

Einstein connections on a twisted bundle as an ordinary, untwisted connection on an untwisted

topological bundle that solves a variant of the classical Hermite-Einstein equations. Chapter III

details this correspondence further.

The beauty of this method is that we can deform an untwisted bundle into a twisted bundle

and vice-versa, allowing for a faster, more conceptual deformation to a Hilbert scheme. There

are five essential operations in deforming the moduli space M to the Hilbert scheme: tensoring

with a line bundle; deforming the polarization; deforming across a twistor family; the Kobayashi-

Hitchin correspondence; and a spherical twist. Chapter IV pins down these steps more precisely

and contains the proof of part (1) of the Theorem.

In Chapter V we construct the universal bundle U and address parts (2) and (3) of this

theorem. We make use of the deformation to the Hilbert scheme from Chapter IV along with the

explicit analytic formulas granted from working over a moduli space of connections.
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CHAPTER II

PRELIMINARIES

Differential Geometry of Twisted Vector Bundles

In this section I lay out the foundations of classical differential-geometric structures on

twisted vector bundles, which are slightly more subtle than their untwisted counterparts. Most

of the material in this section can be found in Perego’s recent paper on the twisted Kobayashi-

Hitchin correspondence [Per19]; it is presented here because in Chapter III we will see a vast

simplification of these definitions in the case of a topologically trivial Brauer class. The standard

reference for the theory of twisted sheaves is Căldăraru’s thesis [C0̆0].

The definitions of twisted geometric structures mimic the classical definitions, but because

twisted bundles do not satisfy the cocycle condition one usually needs to include extra Čech

data to get well-defined structures. The primary application of this section will be to a twisted

bundle on a K3 surface X; however, in what follows it is no extra cost to work on general complex

manifolds.

Let X be a connected complex manifold and α ∈ H2(X,O∗X)tors be a Brauer class. Let

U = {Ui}i∈I be a good open cover, which is a cover of X by analytic open sets Ui whose finite

intersections Uij...k = Ui ∩ Uj ∩ · · · ∩ Uk are empty or contractible. Also let {αijk} ∈ Č2(U,O∗) be

a fixed cocycle representative of α.

Definition 2.1.1. A {αijk}-twisted sheaf F is a collection of sheaves of O-modules Fi over Ui

together with isomorphisms

ϕij ∈ HomO(Fj |Uij , Fi|Uij )

that satsify the twisted cocycle condition

ϕijϕjkϕki = αijk · 1F

along with the usual conditions ϕii = 1Fi and ϕ−1
ij = ϕji. If Fi are coherent sheaves, we call F

coherent, and if Fi are all vector bundles, then we call F a twisted bundle.
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We often relax the notation and refer to these as α-twisted sheaves and bundles. A

homomorphism f : E → F of twisted sheaves is a sheaf homomorphism fi : Ei → Fi that

intertwine with the gluing maps ϕij .

For the case of a twisted vector bundle E = {Ei, ϕij} we allow the local bundles Ei and

the transition matrices ϕij to be smooth maps; thus, twisted bundles by convention need not come

equipped with a holomorphic structure. We will have more to say in Section 2.1 below.

It is a simple verification that if F is α-twisted, then the bundle of endomorphisms

End(F ) is an untwisted sheaf. More generally, the Hom sheaf H om(E ,F) from an α1-twisted

sheaf E to an α2-twisted sheaf F is an α2α
−1
1 -twisted sheaf.

Twisted Connections and Hermitian Metrics

Let E = {Ei, ϕij} be an α-twisted vector bundle.

Definition 2.1.2. A connection ∇ on E is a collection {∇i, ηij} where:

1. ∇i is a connection on Ei;

2. ηij is a C∞ complex 1-form on Uij ;

3. on the overlap Uij we have

∇j = ϕ∗ij∇i − ηij · 1E ;

4. for every i, j, k we have

d log(αijk) = ηij + ηjk + ηki

Conditions 3 and 4 look mysterious at first. To understand them, one could first try to

define a connection on E by the usual transformation law ∇j = ϕ∗ij∇i. However, one would need

that ∇i = (ϕijϕjkϕki)
∗∇i, which in general will not be true if the ϕij do not satisfy the usual

cocycle condition ϕijϕjkϕki = 1. Instead, with the α-twisted cocycle condition one has

(ϕijϕjkϕki)
∗∇i = (αijk 1E )∗∇i = ∇i + d log(αijk) · 1E .

Expanding the left using condition 3 would imply that condition 4 is necessary. Note that

{d logαijk} is a Čech 2-cocycle for the sheaf of smooth 1-forms on X, which is acyclic because
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it admits partitions of unity. Condition (4) says that we have an explicit representation of

{d logαijk} as a coboundary.

In a similar spirit one can define a hermitian structure on a twisted vector bundle as a

collection of hermitian metrics Hi on each Ei with the usual formula Hj = ϕTijHiϕ̄ij = ϕ∗ijHi, but

again one finds an inconsistency with the usual definition: applying this relation three times one

finds

Hi = (ϕijϕjkϕki)
THi(ϕijϕjkϕki) = |αijk|2Hi.

Agian, the solution is to introduce additional data to fix this inconsistency. The right choice is to

multiply one side of the transformation law by a non-vanishing real-valued function ρij (defined on

Uij) that satisfies

ρijρjkρki = |αijk|−2,

which leads us to the next definition.

Definition 2.1.3. A hermitian structure on a twisted vector bundle E = {Ei, ϕij} is a collection

h = {Hi, ρij} where each Hi is hermitian metric on Ei and ρij is a positive-valued function on Uij

such that the two equalities hold for all i, j, k:

Hj = ρijϕ
T
ijHiϕ̄ij (2.1.1)

|αijk|−2 = ρijρjkρki. (2.1.2)

Remark 2.1.4. If h is a hermitian structure on E , then End(E ) inherits an untwisted hermitian

structure. This is due to the fact that locally End(E ) ∼= Ei ⊗ E∨i inherits the induced hermitian

structure Hi ⊗ (HT
i )−1. It then follows that the factor ρij disappears from equation (2.1.1) in the

above definition (with Hi ⊗ (HT
i )−1 in place of Hi).

Definition 2.1.5. A connection ∇ = {∇i, ηij} is hermitian with respect to h = {Hi, ρij} if each

∇i is hermitian with respect to the local metrics Hi.

In this thesis I will consistently use the notation ∇̃ for the connection induced on End(E )

by a connection ∇ on a bundle E . A quick calculation shows that for any 1-form A ∈ A1(X) the
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action of the induced connection (∇+A · 1E )∼ is related to ∇̃ by

(∇+A · 1E )∼R = ∇̃(R)− (A+ Ā)R, R ∈ A0(End(E)) (2.1.3)

which will be useful in the next lemma.

Lemma 2.1.6. Suppose ∇ = {∇i, ηij} is a hermitian connection on E with respect to {Hi, ρij}.

Then 2 Re(ηij) = −d log ρij.

Proof. Assume ∇i is hermitian with respect to Hi. Using equation (2.1.3) on the connection

ϕ∗ij∇i on Ej with the 1-form ηij and the endomorphism Hj , we find

(ϕ∗ij∇i − ηij · 1E )∼(Hj) = (ϕ∗ij∇i)(Hj) + (ηij + η̄ij)Hj

= (ϕ∗ij∇i)(ρijϕ∗ijHi) + (ηij + η̄ij)Hj

= dρij · ϕ∗ijHi + (ηij + η̄ij)Hj

= (ρ−1
ij dρij)Hj + (ηij + η̄ij)Hj .

However, ϕ∗ij∇i − ηij · 1E = ∇j , and since ∇̃j(Hj) = 0, we must have 2 Re(ηij) = −d log ρij as

required.

Curvature and B-fields

Suppose that ∇ = {∇i, ηij} is a twisted connection on E . One would hope that the local

curvatures {F∇i
} could be glued into a global 2-form, but a quick calculation shows this is not the

case. We will apply the well-known formula F∇+γ = F∇ + ∇̃(γ) + γ ∧ γ for the curvature of a

connection shifted by γ ∈ A1(End(E)). Using this and the Liebniz rule we see

F∇j = Fϕ∗ij∇i − (ϕ∗ij∇j)∼(ηij · 1E ) + (ηij · 1E ) ∧ (ηij · 1E )

= ϕ∗ijF∇i
− (dηij · 1E −ηij(ϕ∗ij∇i)∼(1E ))

= ϕ∗ijF∇i − dηij · 1E

To solve this issue observe that {dηij} is a Čech 1-cocycle for the sheaf of 2-forms, which is also

an acyclic sheaf. Thus, {dηij} is expressible as a coboundary via some 0-cochain {Bi} for the
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sheaf of 2-forms, which allows us to write Bi −Bj = dηij . Then we have

F∇j
+Bj · 1E = ϕ∗ij(F∇i

+Bi · 1E ) + (dηij −Bi +Bj) · 1E

= ϕ∗ij(F∇i +Bi · 1E ).

This shows that the local 2-forms {F∇i
+Bi · 1E } glue into a global 2-form valued in End(E ).

Definition 2.1.7. We call a collection of 2-forms B = {Bi} satisfying Bi − Bj = dηij a B-field

compatible with ∇. Similarly, we call the global 2-form F̃∇, given on Ui by F̃∇i := F∇i +Bi · 1, the

curvature with respect to B, or the B-curvature.

Note that F̃∇ depends on the choice of B-field. To emphasize this dependence I will write

F̃B or F̃∇,B . If ∇ = {∇i, ωij} is a hermitian connection and B is a B-field consisting purely

imaginary 2-forms compatible with ∇, then the B-curvature F̃∇,B is a 2-form with values in

End(E , h), the bundle of skew-hermitian endomorphisms of E .

Holomorphic Structures

Recall that if E is an ordinary complex vector bundle over X, then a holomorphic structure

on E is determined by a Dolbeault operator ∂̄E : A0(E) → A1(E) that satisfies ∂̄2
E = 0, which is

the content of the Newlander-Nirenberg theorem. One source of such operators are connections ∇

satisfying F 0,2
∇ = 0, and the corresponding Dolbeault operator is ∂̄E := ∇0,1. To go backwards, fix

a hermitian structure h on E and a Dolbeault operator ∂̄E ; then one has the Chern connection ∇,

which is the unique h-hermitian connection with ∇0,1 = ∂̄E . This story can be generalized to the

setting of α-twisted complex bundles.

Definition 2.1.8. We say an α-twisted bundle E = {Ei, ϕij} is holomorphic if Ei are

holomorphic bundles and the ϕij are holomorphic sections of Hom(Ej , Ei).

Next we discuss holomorphic structures in terms of Dolbeault operators.

Proposition 2.1.9. If E = {Ei, ϕij} is an α-twisted holomorphic vector bundle, then there is a

twisted connection ∇ = {∇i, ηij} such that η0,1
ij = 0 and ∇0,1

i = ∂̄. Conversely, if E is a complex

C∞ twisted bundle that admits a connection ∇ with η0,1
ij = 0 and (∇0,1

i )2 = 0, then ∇ furnishes a

holomorphic structure on E .

7



Proof. Start by fixing an index i. On the bundle Ei we can find a connection ∇i such that

(∇0,1
i )2 = 0. Now, for all j, choose (1, 0)-forms ηij such that

ηij + ηjk + ηki = ∂ log(αijk)

which can be done using a partition of unity. (Note αijk is holomorphic, so d may be replaced by

∂). Then, for any other j such that Uij 6= ∅, define ∇j by the formula

∇j = ϕ∗ij∇i − ηij · 1 .

Then, since ϕij is holomorphic, (ϕ∗ij∇i)0,1 = ∂̄. Together with the assumption that η0,1
ij = 0, we

conclude that ∇0,1
j = ∂̄.

We can keep extending like this as long as Uj overlaps with an open set Uk where ∇k has

already been defined. If there is a Uj which does not meet any Uk with ∇k defined, then choose

a connection ∇j such that ∇0,1
j is the Dolbeault operator. This proves the first statement. Now

assume that E admits a connection ∇ = {∇i, ηij} where ηij is type (1, 0) and (∇0,1
i )2 = 0. The

Newlander-Nirenberg theorem implies that each Ei is a holomorphic bundle over Ui and that

∇0,1
i = ∂̄Ei . Furthermore, the compatibility on overlaps gives

∇0,1
j = (ϕ∗ij∇i)0,1 − η0,1

ij · 1E = (ϕ∗ij∇i)0,1. (2.1.4)

In order to see that ϕij is holomorphic we expand ∇i = d + Γi in local coordinates on Ui

(here Γi is the connection matrix of 1-forms). Since ∇0,1
i = ∂̄, we know Γ0,1

i = 0. Writing out

equation (2.1.4) applied to a local section s of Ej gives

∂̄(s) =

(
ϕ−1
ij ∇i(ϕij(s))

)0,1

(2.1.5)

=

(
ϕ−1
ij d(ϕij(s)) + ϕ−1

ij Γiϕij(s)

)0,1

(2.1.6)

= ϕ−1
ij ∂̄(ϕij(s)) (2.1.7)

= ϕ−1
ij ∂̄(ϕij)s+ ∂̄(s). (2.1.8)

From this we see ∂̄(ϕij) = 0, so ϕij is indeed holomorphic. This proves the second assertion.

8



Definition 2.1.10. We will call a connection ∇ as in Proposition 2.1.9 an integrable connection.

Next we discuss the Chern connection for a hermitian twisted holomorphic bundle. For a

detailed account of Chern connections on untwisted bundles, see sections V.10–12 of Demailly’s

book [Dem].

Proposition 2.1.11. Suppose that E is a holomorphic α-twisted vector bundle equipped with a

hermitian structure h = {Hi, ρij}. Then there exists a unique integrable hermitian connection ∇

on E , called the Chern connection.

Proof. On each Ui we form the Chern connection ∇i with respect to Hi. We set ηij := −∂ log ρij ,

which will ensure the compatibility from Lemma 2.1.6 holds. Using that ϕij is holomorphic and

η0,1
ij = 0 we have

(ϕ∗ij∇i − ηij · 1E )0,1 = ϕ∗ij(∂̄) = ∂̄.

Also, following a similar calculation to the one in the proof of Lemma 2.1.6, we have

(ϕ∗ij∇i − ηij · 1E )∼(Hj) = (d log ρij)Hj − (∂ log ρij + ∂̄ log ρij)Hj = 0.

which relies on our choice of ηij . This shows that ϕ∗ij∇i − ηij · 1E is hermitian with respect to

Hj . Therefore ϕ∗ij∇i − ηij · 1E is a Chern connection on Ej for Hj . The uniqueness of the Chern

connection for Hj shows that

∇j = ϕ∗ij∇i − ηij · 1E

by uniqueness of the Chern connection on Ej . This finishes the construction of the Chern

connection. Uniqueness follows by the local uniqueness of the Chern connections ∇i.

As noted earlier, if B is a purely imaginary B-field, then the B-curvature F̃∇,B is a section

of A2(End(E , h)). Since F∇i
has Hodge type (1, 1), the Hodge type of F̃∇,B is the same as B.

Hermite-Einstein Connections

Assume that X is now a connected compact Kähler manifold with Kähler metric g and

Kähler form ω. Let Lω :
∧∗

T ∗CM →
∧∗+2

T ∗CM be the Lefschetz operator and let Λω :
∧∗

T ∗CM →∧∗−2
T ∗CM be its adjoint.

9



Definition 2.1.12. A hermitian metric h = {Hi, ρij} and B-field B on a holomorphic α-twisted

bundle E is called Hermite-Einstein if the B-curvature of the associated Chern connection ∇

satisfies the equation

iΛωF̃∇,B = λ · 1E

This equation can be rewritten as

iF̃∇,B ∧ ωn−1 =
1

n
λωn · 1E

by using the Kähler identity [Lnω,Λω] = nLn−1
ω on 2-forms. Both versions of the Hermite-Einstein

equations will be useful at different points throughout this thesis.

The importance of this definition is the Kobayashi-Hitchin correspondence, which will be

reviewed in the next section.

Stability for Twisted Bundles

This section defines the notion of stability for twisted bundles on a Kähler surface X with

Kähler form ω.

Definition 2.2.1. An α-twisted holomorphic vector bundle E is ω-(semi)stable if for all α-twisted

subsheaves F ⊂ E , ∫
X

c1(Hom(F ,E )) ∧ ω (≥) 0.

Since E and F are both twisted by the same amount, Hom(E ,F ) is an untwisted sheaf,

so our definition of stability is independent of how Chern classes are defined for twisted sheaves.

Also, if E and F are untwisted, then this definition reduces to usual ω-slope stability by recalling

that

c1(Hom(F,E)) = rk(F )c1(E)− rk(E)c1(F ).

Remark 2.2.2. On surfaces one can replace subsheaves by subbundles. Indeed, by [HL10, Prop.

1.2.6] it suffices to work only with saturated subsheaves of E . Now, if F is a saturated subsheaf,

then [Kob14, Cor. V.5.20] implies that F is reflexive, and reflexive sheaves on surfaces are vector

bundles since their singular locus has complex codimension at least 3.
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Slope stable twisted bundles are linked to Hermite-Einstein connections via the Kobayashi-

Hitchin correspondence. The classical version of the Kobayashi-Hitchin correspondence began

with Narasimhan and Seshadri in [NS64]. In [Don85], Donaldson extended this theory to complex

algebraic surfaces, and later Uhlenbeck and Yau [UY86] extended the result to arbitrary compact

Kähler manifolds. This story continues with Wang [Wan12], who proved the correspondence

holds for twisted bundles. His methods use the theory of gerbes, which are an alternative way

of working with twisted sheaves. More recently, Perego [Per19] wrote a proof of the twisted

Kobayashi-Hitchin correspondence that closely follows the original of Uhlenbeck and Yau using

the more approachable language of Čech cocycles, which is the style adopted in this thesis.

Theorem 2.2.3 (Donadlson, Uhlenbeck, Yau, Wang, Perego). A twisted holomorphic bundle E

over (X,ω) is ω-stable if and only if it admits an irreducible Hermite-Einstein metric.

A connection ∇ on E is irreducible if the induced connection

∇̃ : A0(End(E , h))→ A1(End(E , h))

has kernel consisting of the constant endomorphisms c · 1E . (Recall that End(E ) and its real

subbundle End(E , h) are untwisted bundles.) This notion is equivalent to requiring that the

holonomy group of E is irreducible, and to the underlying holomorphic bundle being simple; see

[Kob14, Prop VII.4.14]. Later in Proposition 4.3.4 I describe how this correspondence works on

the level of moduli spaces.

Hyperkähler Structures

This section introduces the notion of hyperkähler structures on a K3 surface. In this

thesis a K3 surface is a simply-connected compact complex manifold of dimension 2 with trivial

canonical bundle. For background on K3 surfaces I recommend [Huy16]. All K3 surfaces are

diffeomorphic to each other, so different K3 surfaces can be viewed as different complex structures

on the same smooth manifold M , which can be taken to be the smooth manifold underlying the

Fermat quartic {
z4

0 + z4
1 + z4

2 + z4
3 = 0

}
⊂ CP 3.
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Definition 2.3.1. A hyperkähler structure on the K3 manifold M is a triple of real two-forms

$ = (ωI , ωJ , ωK) such that

1. dωI = dωJ = dωK = 0

2. ωα ∧ ωβ = 0 for α 6= β ∈ {I, J,K}

3. ω2
I = ω2

J = ω2
K > 0 as 4-forms on M .

From such a triple, we can form a complex 2-form σ = ωJ + iωK , which satisfies the

relations

σ ∧ σ = 0, σ ∧ σ̄ > 0, dσ = 0.

I will write $ = (σ, ω) to emphasize this view of a hyperkähler structure.

As expected, a hyperkähler structure corresponds with a hyperkähler metric.

Lemma 2.3.2. Given a hyperkähler structure $ = (σ, ω), there is a complex structure on M such

that σ generates A2,0(M) and a hyperkähler metric g with Kähler form ω.

Proof. By exercise 2.6.10 in [Huy05a], σ generates a complex structure I on M , where the

(1, 0)-forms are the kernel of the map ∧σ : A1
C(M) → A3

C(M). Once the complex structure is

constructed, ω will be type (1, 1) from the condition σ ∧ ω = 0. A Kähler metric g can then be

constructed from ω and I as g(−,−) = ω(I(−),−). Furthermore, our definition of hyperkähler

structure entails 2ω2 = σ ∧ σ̄. From Corollary 4.B.23 in [Huy05a] (which relies on Yau’s Theorem),

the Kähler metric g is Ricci-Flat. Therefore, the holonomy group of (M, g) is SU(2) ∼= Sp(1),

which implies that g is a hyperkähler metric on M .

The definition of hyperkähler structure given here is a special case of the definition of a

hyperkähler structure given in [Huy05b, Def. 2.3].

Associated to a hyperkähler structure $ is a 3-plane

P$ := R〈ωI , ωJ , ωK〉 ⊂ A2
R

and its image in cohomology

P[$] := R〈[ωI ], [ωJ ], [ωK ]〉 ⊂ H2(M,R).
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We also have real 2-planes Pσ, P[σ] defined as R〈ωJ , ωK〉 and R〈[ωJ ], [ωK ]〉, respectively. It is clear

that taking cohomology classes yields an isomorphism

[−] : P$
∼→ P[$]. (2.3.9)

Notice that these spaces all come with an orientation, and that each space consists

of positive forms or classes, i.e. α2 > 0 for all α in these spaces. In particular, P[σ] ∈

Grpo
2 (H2(M,R)) is the period of a K3 surface induced by σ.

v-Genericity and Stability

Suppose now we are given a Mukai vector v = (r, c, s) ∈ H∗(M,Z). In this thesis, a Mukai

vector need not be algebraic; that is, c is not restricted to be in the Néron-Severi group. The

reason, as we shall see later, is that when c is not algebraic we can interpret a rational multiple of

c0,2 as a B-field for a possible twisted holomorphic structure on a bundle having Mukai vector v;

see Proposition 3.4.7 in Chapter III.

Definition 2.3.3. A hyperkähler structure $ is v-generic if there are no integral classes ξ ∈

H2(M,Z) such that ξ ∈ P⊥[$] and

−r
2

4
∆ ≤ ξ2 < 0,

where ∆ = v2 + r2 is the discriminant of a sheaf with Mukai vector v.

Proposition 2.3.4. Assume that $ = (σ, ω) is a v-generic hyperkähler structure. Then an ω-

semistable twisted sheaf E with v(E ) = v is ω-stable.

Proof. As noted in [Yos06, Theorem 3.11], the proof in the untwisted case goes through the same

with twisted sheaves.

Twistor Families

Here I discuss notation and known results relating to twistor families for hyperkähler

manifolds.
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General Hyperkähler Manifolds

Let g be a hyperkähler metric on a smooth manifold M , with compatible complex

structures I, J,K satisfying the quaternion relations. For each point (a, b, c) ∈ S2 ⊂ R3,

aI + bJ + cK is another complex structure compatible with g. The twistor family is the

holomorphic map

f : X → P1

where the fiber f−1(a, b, c) is the complex manifold M with the complex structure aI + bJ + cK.

If instead we parameterize the family by a complex coordinate t ∈ P1, the complex structure It is

given by (see [GS15])

It =

(
1− |t|2

1 + |t|2

)
I +

(
2 Re(t)

1 + |t|2

)
J +

(
2 Im(t)

1 + |t|2

)
K.

In particular, I0 = I, I1 = J , and I√−1 = K.

As a smooth manifold, X is diffeomorphic to M × P1, and hence comes with a smooth (but

not holomorphic) map p : X → M . This projection can be used to prove a well-known result

characterizing when a 2-form is of type (1, 1) for all complex structures on a hyperkähler manifold.

Recall that on a complex manifold with complex structure I, (p, q)-forms bring out a factor of

ip−q upon inserting I into each argument of the form. In particular, a 2-form α is type (1, 1)

provided that α(Iv, Iw) = α(v, w) for all tangent vectors v, w. The result is the following lemma.

Lemma 2.4.1. A 2-form α on M is type (1, 1) for each complex structure in the twistor family if

and only if p∗α is type (1, 1) on X .

Proof. At (x, t) ∈ X , the tangent space is TxM × TtP1, and the complex structure is I := It × IP1 .

Note that

p∗α(Iv, Iw) = α(Itp∗v, Itp∗w).

If α is type (1, 1) for each t ∈ P1, then the right-hand side equals α(p∗v, p∗w) = p∗α(v, w), showing

that p∗α is type (1, 1) on X . Conversely, if p∗α is type (1, 1) on X , then the left-hand side equals

p∗α(v, w), which implies that α is type (1, 1) for each t ∈ P1.

14



K3 Surfaces

Now consider the case where M is the underlying smooth manifold of a K3 surface. For

another account of hyperkähler structures on K3 surfaces see [Huy16, Ch. VII].

A hyperkähler structure $ = (σ, ω) gives rise to a twistor family X ($). Each complex

structure It from this twistor family has a corresponding Kähler form ωt and It-holomorphic 2-

form σt that satsify the same relations as σI , ωI :

σt ∧ σt = 0, σt ∧ σ̄t = 2ωt ∧ ωt > 0, σt ∧ ωt = 0. (2.4.10)

With this notation, σ0 = σ and ω0 = ω. The pair (σt, ωt) for It can be described by

σt =
1

1 + |t|2
(
σ − 2tω − t2σ̄

)
ωt =

1

1 + |t|2
(
(1− |t|2)ω + tσ̄ + t̄σ

)
,

(2.4.11)

which follows from a direct calculation; see [GS15, Lemma 2].

Lemma 2.4.2. Suppose $ = (σ, ω) is a hyperkähler structure on the K3 manifold M . Then any

oriented 2-plane Q ⊂ P[$] defines a unique complex structure on M . These complex structures

completely describe all complex structures appearing in the twistor family X ($). Furthermore,

the subspace H1,1 ⊂ H2(M,R) of real (1, 1)-classes is equal to Q⊥ (taken with respect to the

intersection pairing).

Proof. Given a positive oriented 2-plane Q ⊂ P[$], choose an orthonormal basis [α], [β] of Q with

respect to the intersection pairing. Using equation (2.3.9), there are unique lifts α, β ∈ P$. These

lifts automatically satisfy

α ∧ β = 0, α2 = β2 > 0,

which can be checked by expanding α and β in terms of ωI , ωJ , ωK . Such expansions have

constant coefficients (not functions), so the relations [α].[β] = 0 and [α]2 = [β]2 > 0 lift directly to

α and β. Therefore the complex 2-form σ′ = α + iβ satisfies σ′ ∧ σ′ = 0, σ′ ∧ σ̄′ > 0, and dσ′ = 0.

This means that σ′ defines a complex structure on M (cf. the proof of Lemma 2.3.2), and that

P[σ′] = Q.
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It is straightforward to check that different choices of orthonormal basis for Q multiply

σ′ by a complex number of unit norm. Therefore, different choices of orthonormal bases lead

to the same complex structure on M . Thus, a single oriented 2-plane Q gives rise to a unique

complex structure on M . Also, the complex structures in X ($) arise from the σt described in

equations (2.4.11). The real and imaginary parts of [σt] span the oriented 2-plane P[σt] ⊂ P[$],

and it is clear that these two constructions are inverse to each other.

Finally, note that a cohomology class η ∈ H2(M,R) is type (1, 1) on X = (M,σ′) if and

only if η.[σ′] = 0. Taking real and imaginary parts of this equation leads directly to the condition

η ∈ P⊥[σ′].

We now use this characterization of the twistor family to prove a useful lemma on when a

cohomology class is type (1, 1).

Lemma 2.4.3. Given a positive class η ∈ H2(M,R), there are precisely two complex structures in

the twistor family X ($) where η is type (1, 1).

Proof. We begin by representing a complex structure in $ as a 2-plane Q ⊂ P[$]. Since Q⊥

describes H1,1, the condition that η is a (1, 1)-class on X is equivalent to η ∈ Q⊥, which, in turn,

is equivalent to Q ⊂ η⊥. Therefore, the complex structures in X ($) where η is type (1, 1) are

constrained by the requirement that Q ⊂ P[$] ∩ η⊥. When η is a positive class, η⊥ ∼= R2,19, while

P[$]
∼= R3,0. So, the desired Q must be a subspace of P[$] ∩ η⊥ ∼= R2,0. This only leaves two

possibilities for Q, which are obtained by choosing an orientation on P[$] ∩ η⊥.

Elliptic Complexes

This section collects facts about elliptic operators and complexes. In a proper treatment

of these ideas it is important to work in the setting of the Hilbert space completions of spaces of

forms, but we will neglect this difficulty since it does not affect the results we use. For a more

detailed analytic treatment of this material, I recommend [Kob14, Ch VII.2], for the specific case

of elliptic complexes for moduli spaces of vector bundles, [DK90, Appendix II] for general results

on Sobolev spaces, and [Wel08, Ch. IV] for a treatment of the general theory of elliptic operators

and elliptic complexes.
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Fix a hyperkähler structure $ = (ωI , ωJ , ωK) on the K3 manifold M and let ∇ be a

Hermite-Einstein connection on E. 1 The content of this section generalizes to higher dimensional

Kähler manifolds, though we choose to phrase results for surfaces; we again refer to [Kob14, Ch.

VII] for the general case.

Let E and F be two C∞ vector bundles over a smooth manifold X. From a differential

operator D : A0(E) → A0(F ) we will define the (principal) symbol σD(x, ξ). Choose a local

trivialization of both bundles, in which case the operator D can be represented as

D =
∑
|α|≤d

Aα(x)
∂α

∂xα

where Aα is a matrix-valued function of x ∈ X. We use multi-index notation, which means that

for a multi-index α = (α1, . . . , αn),

∂α

∂xα
=

∂α1

∂xα1

∂α2

∂xα2
. . .

∂αn

∂xαn

and similarly for a tangent vector ξ ∈ Tx,RX,

ξα = ξα1ξα2 · · · ξαn

where n = dimR(X). The principal symbol is then obtained by substituting ξα in for ∂α/∂xα in

the top-degree terms in D: 2

σD(x, ξ) =
∑
|α|=d

Aα(x)ξα.

For a fixed x ∈ X and nonzero real tangent vector ξ ∈ TxX, the matrix written above can be

viewed as a linear map Ex → Fx. This symbol is independent of the choice of local coordinates on

X. We say that the operator D is elliptic when the symbol σD(x, ξ) is an invertible linear map for

each x ∈ X and each nonzero ξ ∈ TxX.

1This connection may also be a twisted Hermite-Einstein connection, which will be defined in Chapter III.

2This operation is less strange when considering the Fourier transform of such an operator, which turns
differentiation into multiplication by ξ.
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Elliptic complexes are an extension of this idea. To a complex of differential operators

· · · −→ A0(Ei−1)
Di−1−→ A0(Ei)

Di−→ A0(Ei+1) −→ · · ·

we associate a symbol sequence of vector spaces for each x, ξ:

· · · −→ (Ei−1)x
σDi−1

(x,ξ)
−→ (Ei)x

σDi
(x,ξ)
−→ (Ei+1)x −→ · · ·

This sequence is automatically a complex, and if it is exact for each x and nonzero ξ we call the

original complex elliptic. Elliptic complexes enjoy many wonderful properties: the cohomology

spaces Hi = ker(Di)/ im(Di−1) are finite dimensional, and in each homological dimension there is

a generalized Hodge decomposition

A0(Ei) = im(D∗i )⊕H i ⊕ im(Di−1),

where H i is the space of D-harmonic forms that satisfy D∗i−1α = Diα = 0.

We will be interested in the following elliptic complex, which is sometimes called the

deformation complex :

C•(E,∇) :=

(
0 A0(End(E, h)) A1(End(E, h)) A+

2 (End(E, h)) 0∇̃ ∇̃+

)
(2.5.12)

where A2
+ is the space of global sections of the trivial real line bundle generated by the

hyperkähler forms ωI , ωJ , ωK and ∇̃+ = P+∇̃ is the derivative followed by projection onto A2
+.

For a 2-form η ∈ A2, P+η can be described by

P+η =
η ∧ ωI
ω2
I

ωI +
η ∧ ωJ
ω2
J

ωJ +
η ∧ ωK
ω2
K

ωK . (2.5.13)

Here, the ratio η ∧ ωI/ω2
I stands for the smooth function f such that η ∧ ωI = fω2, which exists

since both ω2
I and η ∧ ωI are top forms and ω2

I is non-vanishing. The complex C•(E,∇) is elliptic

when ∇ is a Hermite-Einstein connection, see [Kob14, Lem. VII.2.20]. We will write H •(E,∇)

for the harmonic spaces for this complex.

18



The deformation complex describes the tangent space to the moduli space of Hermite-

Einstein connections MHE(E, h). This moduli space is a quotient of the infinite dimensional

space of all Hermite-Einstein connections on E by the infinite dimensional group of unitary

reduced gauge transformations

G = U(E, h)/U(1) = {g ∈ A0(EndE) | g∗g = 1E}/{c · 1E};

more details will be given in Chapter V. At a point [∇] ∈ MHE(E, h), the tangent space is given

by H 1(E,∇). These spaces are isomorphic if a different choice of gauge representative of the class

[∇] is chosen, so this space is well-defined. Lastly, there is a chain map from C• to the Dolbeault

complex of End(E) (see [Kob14, Sec. VII.2]) that is an isomorphism in cohomology in degree 1,

identifying T[∇]MHE with Ext1(E,E).
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CHAPTER III

UNTWISTING

Overview

In this section I describe an “untwisting” procedure associating an α-twisted vector bundle

E to a smooth, untwisted bundle E under the assumption that the Brauer class α is topologically

trivial. This means that α has trivial image under the connecting homomorphism H2(X,O∗X) →

H3(X,Z) from the exponential sequence.

The idea for this untwisting procedure originated from [HS05] where Huybrechts and

Stellari define ch(E ) of a bundle E twisted by a topologically trivial Brauer class as the Chern

character of the associated untwisted bundle. Here we study this untwisting procedure as a

method in its own right. I will show that twisted differential-geometric data can be faithfully

represented as ordinary differential geometric data on the untwisted bundle. The most important

thing to observe is that a twisted holomorphic structure on E can be encoded by a Dolbeault

operator ∂E on E that satisfies ∂
2

E = 2πiB0,21E for some B-field B, rather than the ordinary

integrability condition ∂
2

E = 0. Using this idea it is straightforward to encode a twisted Hermite-

Einstein connection as an untwisted connection on an untwisted bundle satisfying a slight

variation of the classical Hermite-Einstein equations.

For this section, X is a connected complex manifold, as in Section 2.1. Fix a good open

cover U of X. In contrast to Section 2.1, a cocycle representative of α need not be fixed.

Topological Untwisting

When a Brauer class is topologically trivial we can lift it to a rational cohomology class, as

the next lemma shows.

Lemma 3.2.1. Given a topologically trivial Brauer class α ∈ H2(X,O∗)tors, there exists a

rational class β ∈ H2(X,Q) such that ord(α) · β ∈ H2(X,Z) and exp(2πiβ0,2) = α.
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Proof. Consider the morphism of short exact sequences

0 Z Q Q/Z 0

0 Z O O∗ 0
exp

(3.2.1)

where the second row is the exponential sequence with the convention that exp: f 7→ exp(2πif).

This induces a chain map

H2(X,Z) H2(X,Q) H2(X,Q/Z) H3(X,Z)

H2(X,Z) H2(X,O) H2(X,O∗) H3(X,Z)
exp δ

(3.2.2)

Since α is topologically trivial, δ(α) = 0. Using exactness of the bottom row, we can find a class

β ∈ H2(X,Q) with exp(2πiβ0,2) = α. Let r = ord(α). Since exp(2πirβ0,2) = αr = 1, rβ ∈

H2(X,Z) from chasing the left-most square above.

The untwisting procedure from [HS05] begins by fixing a lift β ∈ H2(X,Q) as in

Lemma 3.2.1. Fix a Čech cocycle representative {βijk} of β, where βijk : Uijk → Q is a constant

function. This gives a Čech representative αijk := exp(2πiβijk) of α. Next, because the sheaf

of C∞ functions is acyclic, we may view βijk as smooth functions and choose a Čech 1-cochain

aij ∈ Γ(Uij , C∞) such that βijk = aij + ajk + aki.

Now suppose that E is an α-twisted vector bundle given by the data {Ei, ϕij} with

ϕijϕjkϕki = αijk · 1E . Let ψij = e−2πiaijϕij . Then ψij satisfies ψijψjkψki = 1E , so E = {Ei, ψij}

glues into a C∞ bundle.

Definition 3.2.2. With the fixed Čech data {βijk} and a := {aij}, the bundle E = {Ei, ψij} will

be called E the untwisting of E by a.

Simplifications in the Topologically Trivial Case

There are two main observations that allow for simplifications of the definitions given in

Section 2.1. The first is that the functions βijk : Uijk → Q can be taken to be constant, and

therefore the same is true of the αijk. Second, notice that if βijk = δ(a)ijk then βijk = δ(Re(a))ijk

since βijk are real. Thus, we can assume that the functions aij are real-valued. Many of the
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properties in this chapter hold only under these two assumptions; greater care would be needed

if one chooses a cocycle representative of α with non-constant holomorphic functions.

Twisted connections. The 1-forms ηij form a Čech cocycle because d logαijk now

vanishes.

Hermitian Structures. Since αijk has unit modulus, the functions ρij for a hermitian

metric {Hi, ρij} can be taken to be 1. Indeed, from the compatibility relation

ρijρjkρki = |αijk|−2 = 1,

it follows that the functions log(ρij) form a Čech 1-cocycle for the sheaf of smooth real-valued

functions on X. Since this sheaf is acyclic, we can choose smooth functions gi : Ui → R with

log(ρij) = gi − gj , or ρij = egie−gj . Then the local metrics H ′i = egiHi form a twisted hermitian

metric with ρ′ij = 1. From now on we assume hermitian metrics have ρij = 1.

Chern Connections. The Chern connection ∇ = {∇i, ηij} must satisfy ηij = 0, as we

prove in the next lemma.

Lemma 3.3.1. Let ∇ = {∇i, ηij} be a connection on E and h = {Hi} a hermitian structure on

E .

1. If ∇ is hermitian, then ηij is a purely imaginary 1-form.

2. If ∇ is integrable, then η0,1
ij = 0.

3. If ∇ is the Chern connection on E for h, then ηij = 0.

Proof. The first is a consequence of requiring that every ∇i is hermitian: using the compatibility

condition in Lemma 2.1.6 we see that 2 Re(ηij) = −∂ log(1) = 0.

The second property is just the definition of an integrable connection. The third follows

from the other two: for the Chern connection ηij must simultaneously be imaginary and satisfy

η0,1
ij = 0. But then ηij = η1,0

ij = −η0,1
ij = 0.

Transporting Structures

It is natural to expect that twisted geometric structures on E correspond to untwisted

geometric structures on E, especially in light of the simplifications noted above. This section

collects results along these lines.
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Untwisting Connections

Proposition 3.4.1. Suppose that ∇ = {∇i, ηij} is a twisted connection on E . Then ∇ glues into

an untwisted connection on E if and only if ηij = 2πidaij. Conversely, if ∇ is any connection on

E, then ∇i := ∇|Ui
defines a twisted connection {∇i, 2πidaij} on E .

Proof. Recall that ψij = e−2πiaijϕij . The statement that ∇ glues into a connection on E is

equivalent to the equality

∇j = ψ∗ij∇i (3.4.3)

for each i, j. It follows that

ψ∗ij∇i = ϕ∗ij∇i − 2πidaij · 1E

Thus, equation (3.4.3) holds if and only if

ηij · 1E = ϕ∗ij∇i −∇j = 2πidaij · 1E

For the second statement, note that ∇ being a globally defined connection says that the ∇i must

satisfy equation (3.4.3), and the above calculations show exactly that {∇|Ui , 2πidaij} is a twisted

connection on E .

These kinds of connections will be called untwistable. Proposition 3.4.1 gives a very strong

condition for when a connection is untwistable. If a connection ∇ = {∇i, ηij} has ηij 6= 2πidaij ,

then ∇ can be shifted by a 1-cochain of 1-forms to produce an untwistable connection. This is

summarized in the next Proposition.

Proposition 3.4.2. If ∇ = {∇i, ηij} is a twisted connection, then one can choose local 1-forms

ri ∈ A1(Ui) to ensure that ∇̂ = {∇i − ri · 1E , 2πidaij} is an untwistable connection on E .

Proof. Observe that {ηij − 2πidaij} is a Čech 1-cocycle for the sheaf of smooth 1-forms (which is

acyclic), so we may choose 1-forms ri on Ui such that ηij = 2πidaij+ri−rj . Define ∇̂ = ∇i−ri·1E .
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Then

ϕ∗ij∇̂i = ϕ∗ij∇i − ri · 1E

= ∇j + (ηij − ri) · 1E

= ∇j − rj · 1E +2πidaij · 1E

= ∇̂j + 2πidaij · 1E

and hence ∇̂ = {∇i − ri 1E , 2πidaij} defines an untwistable connection on E .

Untwisting Curvature

As explained in section 2.1, in general one needs to choose a B-field in order to define the

curvature of a twisted connection as a global section of A2(End(E)). However, in the topologically

trivial setting we will see that there is a natural way to define a B-field.

First notice that when ∇ is an untwistable connection its curvature is already a well-defined

global quantity with no B-field required.

Proposition 3.4.3. Suppose ∇ = {∇i, 2πidaij} is an untwistable connection. Then F∇ is a

globally-defined 2-form with values in End(E) without needing to choose a B-field.

Proof. The connections on E and E are both given by {∇i}, but glue according to ϕij and ψij

respectively. However, their curvatures transform according to the adjoint action of GL, and since

ϕij and ψij differ by a scalar they have the same adjoint action. Consequently, the curvatures

defined by the twisted connection are identical to the curvatures defined by the untwisted

connection, which is already a global quantity.

Suppose now that ∇ is not untwistable. Following Proposition 3.4.2, choose local 1-forms ri

on Ui such that ηij = 2πidaij + ri − rj and set ∇̂i := ∇i − ri. The local curvatures then satisfy the

equation

F∇̂i
= F∇i

− dri · 1E , (3.4.4)
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and the curvature of ∇̂ is globally-defined. 1 As a consequence, we can take the B-field B =

{−dri} and notice that the B-curvature with this B-field coincides with the curvature of ∇̂:

F̃∇i
= F∇i

+Bi · 1E = F∇i
− dri · 1E = F∇̂. (3.4.5)

Integrable Connections

For what follows we need to recall the process of passing between Čech and de Rham

cohomology class representatives. Keep fixed the choice of a good open cover U. We compare two

resolutions of the sheaf of smooth functions C∞X , one being the de Rham resolution and the other

being the Čech resolution. Taking the Čech resolution of each sheaf in the de Rham resolution

gives the following grid of sheaves:

Č0(C∞) Č0(A1) Č0(A2) . . .

Č1(C∞) Č1(A1) Č1(A2) . . .

Č2(C∞) Č2(A1) Č2(A2) . . .

...
...

...

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

Starting with a 2-cocycle {βijk} of the constant sheaf Q regarded as a 2-cocycle in the sheaf

of smooth functions (which starts at the bottom left corner of the above diagram), we zig-zag

from bottom left corner to the top right corner making choices along the way. This gives us the

following data: a 1-cochain of smooth functions {aij}, a 0-cochain of 1-forms {ci}, and a 0-cochain

of 2-forms {Bi} satisfying the following identities:

aij + ajk + aki = βijk

ci − cj = daij (3.4.6)

Bi = dci.

1This equation shows that topological information, such as Chern classes, may be defined using connections on
the untwisted bundle E.
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The notation is chosen to match with the previous sections, so βijk and aij agree with their

previous incarnations. Observe that Bi − Bj = d2aij = 0, so B is a closed real-valued 2-form

on X that represents of β.

I want to point out that all of these choices are made without referencing the twisted

bundle. Furthermore, notice that the above process works in reverse: beginning with a global

2-form B representing the cohomology class β, following the zig-zag in reverse produces ci, aij ,

and βijk.

Note that an integrable connection ∇ is not untwitstable unless the Brauer class α is

trivial. Indeed, if η0,1
ij = 0, then it follows that ∂̄aij = 0 from the condition ηij = 2πidaij .

This means that the cocycle βijk is a Čech coboundary when viewed as a cocycle for OX ; in other

words, β0,2 ∈ H2(X,OX) is trivial, making α = exp(2πiβ0,2) trivial as well.

While an integral connection may not be untwistable in general, the shifted connection

from Proposition 3.4.2 still produces an interesting connection on E.

Proposition 3.4.4. Suppose a holomorphic α-twisted bundle E untwists to E by a. Then there

exists a connection ∇̂ on E such that F 0,2

∇̂
= 2πiB0,2 · 1 for some real closed 2-form B representing

the cohomology class β ∈ H2(X,Q).

Proof. Fix a hermitian structure h on E and let ∇ = {∇i, 0} be the associated Chern connection.

We set

ri := −2πici.

The 1-forms ri satisfy 2πidaij + rj − rj = 0 by virtue of equations (3.4.6). It follows that ∇̂i :=

∇i − ri · 1E is untwistable since ηij = 0. We get that

F∇̂i
= F∇i

+ 2πiB · 1E . (3.4.7)

But since ∇ is integrable, F 0,2
∇i

= 0, and we see that F 0,2

∇̂i
= 2πiB0,2 · 1E . This proves the

proposition.

Proposition 3.4.4 gives several corollaries.

26



Corollary 3.4.5. Let B be the 2-form representative of β constructed in equation (3.4.6). The

2πiB-curvature of the Chern connection coincides with the curvature of the untwistable connection

∇̂.

Proof. This follows immediately from equation (3.4.7) and the definition of F̃∇,2πiB .

Corollary 3.4.6. The first Chern class of the untwisted bundle E satisfies

c1(E)0,2 = − rk(E)β0,2.

Proof. This follows by taking the trace and cohomology class of F 0,2

∇̂
= 2πiB0,2.

Next we see how to reverse the untwisting procedure starting with a connection ∇ on E

with F 0,2
∇ = 2πiB0,21E .

Proposition 3.4.7. Suppose a smooth bundle E admits a connection ∇̂ such that F 0,2

∇̂
= 2πiB0,2.

Then there exists a holomorphic α-twisted bundle E untwisting to E.

Proof. Suppose that E has transition matrices ψij on the open cover U. With the smooth

functions aij we can define ϕij := e2πiaijψij , which produces an α-twisted bundle E = {Ei, ϕij}

that a priori is only a C∞ twisted bundle. However, we do know that {∇̂i, 2πidaij} is a

connection on E . Setting ∇i = ∇̂i − 2πic0,1i produces another twisted connection ∇ = {∇i, ηij}

with

ηij := 2πi∂aij

which can be checked with the help of the equations (3.4.6). Clearly η0,1
ij = 0, and we also have

that

F 0,2
∇i

= F 0,2

∇̂i
− 2πiB0,2 · 1E = 0.

Hence, ∇ is an integrable twisted connection, furnishing E with a holomorphic structure.

We have begun to see an equivalence between untwisted bundles with a special kind of

connection and twisted holomorphic bundles, with the equivalence given by untwisting. Let V(α)

be the category of {αijk}-twisted holomorphic vector bundles with twisted sheaf homomorphisms.
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Let V (B) be the category of smooth vector bundles E admitting a connection ∇̂ satisfying

F 0,2

∇̂
= 2πiB0,2,

with morphisms given by holomorphic2 sections of Hom(E,F ). Note that these categories

depend on the choices of representatives αijk and B of α and β respectively, but recall that

these choices are all dependent on the initial choice of βijk (as well as the open cover U) through

equations (3.4.6).

Theorem 3.4.8. Let X be a connected complex manifold and α a topologically trivial Brauer

class. Then the untwisting functor U : V(α)→ V (B) is an equivalence of categories.

Proof. Proposition 3.4.7 shows that the untwisting functor is essentially surjective. To prove that

it is fully faithful we first note that Hom(E ,F ) ∼= F ⊗ E ∨, and this in turn is isomorphic to

F ⊗ E∨, which can be seen by noting that the transition matrices for F ⊗ E ∨ are identical to the

transition matrices of F ⊗ E∨. Consequently there is an isomorphism of bundles

Hom(E ,F ) ∼= Hom(E,F ). (3.4.8)

It remains to be seen that this isomorphism respects the holomorphic structures on these bundles.

Choose integrable twisted connections ∇E ,∇F corresponding to untwisted connections ∇̂E , ∇̂F

whose (0, 1)-components square to 2πiB0,2, and observe that

(∇E )
0,1
i = (∇̂E)0,1

i + 2πic0,1i .

The final term is the same for F , and therefore the (0, 1)-parts of the connections ∇F ⊗∇E∨ and

∇̂F ⊗∇̂E∨ agree. Thus, holomorphic sections on both sides of equation (3.4.8) are the same. Since

the holomorphic sections on either side are the Hom sets in these categories, we see that U is fully

faithful.

2If E and F have connections ∇̂E , ∇̂F such that F 0,2

∇̂E
= F 0,2

∇̂F
= 2πiB0,2, then the induced connection on

Hom(E,F ) has F 0,2

∇̃
= 0, so we can make sense of holomorphic maps between such bundles.
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Chern Connections and Hermite-Einstein Metrics

Assume that (X,ω) is a compact connected Kähler manifold. Recall from the proof of

Proposition 3.4.4 that untwisting the Chern connection ∇ = {∇i, 0} produces a connection ∇̂

given locally by ∇̂i = ∇i + 2πidci, and from Corollary 3.4.5 we know that the curvature F∇̂ agrees

with the B-curvature F̃∇,2πiB . Applying this to a Hermite-Einstein metric h, we immediately have

the following proposition.

Proposition 3.4.9. Suppose B is a real, closed 2-form on X representing a cohomology class β.

If h is a Hermite-Einstein metric on a twisted bundle E with respect to the B-field 2πiB, then the

resulting untwisted connection ∇̂ on E satisfies the twisted Hermite-Einstein equations:

F 0,2

∇̂
= 2πiB0,2

iΛωF∇̂ = λ 1E

(3.4.9)

Conversely, any smooth hermitian bundle (E, h) with hermitian connection satisfying these

equations gives rise to a twisted bundle E with a twisted Hermite-Einstein metric.

Later it will be helpful to relax the condition that λ in the Hermite-Einstein equations

be a constant. When λ : X → R is a real-valued smooth function on X we call the metric (or

connection) a B-twisted weak Hermite-Einstein metric (connection). For untwisted metrics it is

well-known that a weak Hermite-Einstein metric can be made into a Hermite-Einstein metric by

a conformal mapping h 7→ efh, where f is a smooth function on X. The next lemma shows that

this is still true for B-twisted metrics without needing to adjust the B-field.

Lemma 3.4.10. Let E be a C∞ bundle on X with hermitian structure h, and assume h is a

weak Hermite-Einstein metric with B-field 2-form B. Then there is a conformal change in metric

h′ = efh which is Hermite-Einstein with respect to the same B-field B.

Proof. Let ∇ be the h-hermitian connection on the untwisted bundle E satisfying

equations (3.4.9) and define ∇′ = ∇ + ∂f . It is straightforward to check that ∇′ is hermitian

with respect to h′ (which is the result of untwisting the twisted Chern connection for h′). Then

the curvature F∇′ is related to F∇ by

F∇′ = F∇ + ∂∂̄f.
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Since ∂∂̄f is of type (1, 1), we see that F 0,2
∇′ = F 0,2

∇ = 2πiB0,2.

For the other equation we have iΛωF∇′ = λ(x) + iΛ∂∂̄f . The Kähler identities show that

iΛω∂∂̄f = −∆∂̄f , and elliptic operator theory shows that C∞(X,R) = Im(∆∂̄) ⊕ R. Using this

decomposition we can choose the function f so that λ = ∆∂̄(f) + λ0 for λ0 ∈ R. We then get

iΛωF∇′ = λ01E as desired.

We now understand that the structure of an ω-slope stable twisted holomorphic bundle

E is encoded by a C∞ bundle E that admits a B-twisted Hermite-Einstein connection. For the

rest of this thesis a twisted Hermite-Einstein connection will mean a hermitian connection on an

untwisted bundle E satisfying the twisted Hermite-Einstein equations (3.4.9).

Remark 3.4.11. We will end this section with a compactification of the Hermite-Einstein

equations on a K3 surface. The content of this remark is interesting but will not be used in later

sections, so the reader may feel free to skip this remark. When we have a hyperkähler structure

$ = (ωI , ωJ , ωK), the Hermite-Einstein equations can be rewritten into the following equivalent

form:

iF∇ ∧ (ωI , ωJ , ωK) =

(
1

2
λω2

I1E , −2πB ∧ ωJ , −2πB ∧ ωK
)

(3.4.10)

This follows from splitting the equation F∇∧σI = 2πiB∧σI into the hermitian and skew-hermitian

parts and remembering that σI = ωJ + iωK for a hyperkähler structure.

We can make one more interesting simplification. Both B ∧ ωJ and B ∧ ωK are top degree

forms, and hence both can be expressed as a function multiple of ω2
J and ω2

K . If we assume that

the B-field is a harmonic representative of −c1(E)/rk(E) with respect to the hyperkähler metric

g induced by $, then both B ∧ ωJ and B ∧ ωK are also harmonic, which is a consequence of the

Lefschetz operators LωJ
and LωK

preserving harmonic forms. Therefore, B ∧ ωJ and B ∧ ωK

are both constant multiples of ω2
J and ω2

K . After absorbing minus signs and multiples of 2π, the

Hermite-Einstein equations now take the form

iF∇ ∧$ =
1

2
(λI , λJ , λK)ω2

I (3.4.11)
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where the symbol iF∇ ∧ $ means wedging with each component of $. If we define $2 = ω2
I =

ω2
J = ω2

K then we can write this as

iF∇ ∧$ =
1

2
λ$21E (3.4.12)

where λ = (λI , λJ , λK), which is a rather compact way of expressing the Hermite-Einstein

equations for a hyperkähler structure. Equation (3.4.12) contains the information about the

twisted holomorphic structure of E as well as the slope stability information held by λI .

On the other hand, given a hyperkähler structure $, a hermitian bundle E, and a

hermitian connection ∇ satisfying equations (3.4.12), we can immediately deduce

F∇ ∧ σI = 2πi

(
−λJ + iλK

4π
σ̄

)
∧ σI1E .

Thus, we merely need to choose a real 2-form B having the property B0,2 = −(λJ + iλK)σ̄/4π,

and B = −(λJωJ + λKωK)/2π will meet this requirement. Thus, the twisted Hermite-Einstein

equations are equivalent to the compact form in equation (3.4.12).

Deformations Over a Twistor Family

So far we have been working in the general context of Kähler manifolds, but now we turn

to K3 surfaces. As before, M is the smooth manifold underlying the Fermat quartic K3, and

throughout this section we assume that a hyperkähler structure $ = (σ, ω) has been fixed.

The next proposition is not strictly needed in proving the results of the next few chapters,

but it illustrates an important point in the philosophy of this thesis. Because twisted bundles are

now represented by Dolbeault operators obeying ∂
2

E = 2πiB0,2, it is a matter of turning on a B-

field to move from an untwisted bundle to a twisted one. This can be achieved for stable bundles

using a twistor family.

Proposition 3.5.1. Suppose that E admits an ω-(poly)stable σ-holomorphic structure. Then E

deforms as a twisted ωt-(poly)stable holomorphic bundle over the twistor family X ($).
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Proof. The (untwisted) Kobayashi-hitchin correspondence implies that E admits a Hermite-

Einstein connection ∇, which satisfies

F∇ ∧ σ = 0

iF∇ ∧ ω =
λ

2
ω2 · 1E . (3.5.13)

Let B := − λ
4πω and λt := 1−|t|2

1+|t|2 λ. We claim that ∇ satisfies the following equations:

F∇ ∧ σt = 2πiB ∧ σt

iF∇ ∧ ωt =
λt
2
ω2
t · 1E

This can be checked using equations (2.4.11) for σt and ωt. Note that we need both of

equations (3.5.13) to deduce these equations. Using the twisted Kobayashi-Hitchin correspondence

in reverse, we learn that E is (poly)stable for t 6= 0.

Irreducibility of ∇ is independent of the complex structure on X since it is a purely

differential-geometric condition. So, if the bundle is stable, it remains so over the deformation.

In either case (stable or polystable), ∇ endows E with an ωt-stable twisted holomorphic structure

for each t, which we denote by Et.

We now construct a twisted bundle E → X that restricts to Et on M × {t}. Let E :=

p∗E, which is a smooth bundle over X , and endow E with the pullback connection p∗∇. Since

F∇ − 2πiB is type (1, 1) for each σt, Lemma 2.4.1 implies that p∗F∇ − 2πip∗B is type (1, 1) on X .

By Proposition 3.4.7, E corresponds to an α-twisted vector bundle over X , where the Brauer class

is α = exp(p∗B) ∈ H2(X ,O∗X ). Furthermore, (E , p∗∇)|M×{t} is just Et equipped with ∇. Thus,

the set of Et’s with ∇ gives rise to a deformation E of E.

Remark 3.5.2. The proof of Proposition 3.5.1 refines a result mentioned by Huybrechts and

Schröer, [HS03, Proposition 2.3], where it was noted that if λ = 0 then a bundle E as in the above

proposition is hyperholomorphic. Indeed, when λ = 0, the B-field is zero, so the bundle E remains

untwisted over the entire twistor family. When λ 6= 0, only the projectivized bundle P(E) deforms,

in which case the bundle is called projectively hyperholomorphic. Our interpretation instead says
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that the bundle E deforms as a twisted bundle, which can be thought of as a new characterization

of projectively hyperholomorphic.
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CHAPTER IV

DEFORMATION TO THE HILBERT SCHEME

Overview

The goal of this chapter is to prove part (1) of Theorem 1, that the moduli space

MHE
σ,ω (E, hE , BE) of BE-twisted Hermite-Einstein connections on E is nonempty, compact, and

deformation-equivalent to a Hilbert scheme (Theorem 4.6.1 below).

Before outlining this chapter we recall some of our conventions. M is the smooth manifold

underlying all K3 surfaces. Mukai vectors are triples (r, c, s) ∈ H∗(M,Z) and need not be

algebraic. We will always be working with the Mukai pairing on H∗(X,Z), which will be written

as either 〈α, β〉 or α.β. It is given by

〈α, β〉 = −(α0.β4) + (α2.β2)− (α4.β0)

where ( . ) denotes the intersection pairing on H∗(M,Z). When a complex 2-form σ defines

a complex structure on M , we will sometimes write Pic(σ) to mean the Picard group of the

associated K3 surface.

Let v = (r, c0, s) be the Mukai vector of a hermitian bundle (E, hE), and assume that r

and c0 are coprime and 0 ≤ v2 + 2 < 2r. Also suppose that $ = (σ, ω) a v-generic hyperkähler

structure (in the sense of Definition 2.3.3) on the K3 manifold M . The condition v2 + 2 < 2r

ensures that that the moduli space Ms
ω(v) of ω-slope-stable sheaves with Mukai vector v consists

entirely of vector bundles, which is proven in Lemma 4.4.2 below. Also fix a real closed 2-form BE

representing −c1(E)/ rk(E).

We will begin by constructing a C∞ hermitian line bundle (L, hL) equipped with a twisted

Hermite-Einstein metric; see Lemmas 4.2.2 and 4.2.3 for constructing L and Proposition 4.2.4 for

the Hermite-Einstein connection. Tensoring with L yields an isomorphism

MHE
σ,ω (E, hE , BE)

∼→MHE
σ,ω (E ⊗ L, hE ⊗ hL, BE +BL)
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where BL is a B-field for L and the new Mukai vector v′ = (r, c, 1). We will select L to ensure

that c is primitive, positive, and not algebraic with respect to σ. This final property of c is crucial

in deforming the Kähler form from ω to ω′ so that the twistor family X (σ, ω′) contains a K3

surface whose Picard group is generated by c with c being an ample class; see Proposition 4.3.3.

The deformation of ω to ω′ will be done within a single chamber of the σ-Kähler cone, thus

preserving slope stability and hence producing an isomorphism

MHE
σ,ω (E ⊗ L, hE ⊗ hL, BE +BL) ∼=MHE

σ,ω′(E ⊗ L, hE ⊗ hL, BE +BL).

We then perform the aforementioned twistor rotation on both the underlying K3 surface and the

moduli space. That the moduli space inherits the hyperkähler structure necessary for twistor

rotation is detailed in Proposition 4.3.6 below. We will let (σt, ω
′
t) be the complex structure and

Kähler form arising from the twistor rotation beginning at the hyperkähler structure (σ, ω′).

At this point we will have demonstrated a deformation-equivalence

MHE
σ,ω (E, hE , BE) ∼MHE

σt,ω′t
(E ⊗ L, hE ⊗ hL, BE +BL).

Due to c = c1(E ⊗ L) being algebraic with respect to σt, the latter moduli space consists of

untwisted Hermite-Einstein connections, and the Kobayashi-Hitchin correspondence allows us

to identify this moduli space with the moduli space Ms
σt,ω′t

(E ⊗ L) of ω′t-stable holomorphic

structures on E ⊗ L. Using the fact that any two C∞ bundles with equal Chern characters are

C∞-isomorphic (Proposition 4.4.1 below) we can identify Ms
σt,ω′t

(E ⊗ L) with Ms
σt,ω′t

(r, c, 1), the

moduli space of stable bundles with Mukai vector (r, c, 1). Changing the polarization from ω′t to c,

dualizing, and applying the spherical twist (Proposition 4.5.3) finally establishes an isomorphism

MHE
σt,ω′t

(E ⊗ L, hE ⊗ hL, BE +BL) ∼= X [n]
σt
.

This will finish our proof that MHE
σ,ω (E, hE , BE) is deformation-equivalent to a Hilbert scheme on

a K3 surface. We also learn that MHE
σ,ω (E, hE , BE) is nonempty and compact, the latter following

from the property that c is a v-generic polarization.
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Tensoring with a Line Bundle

Our first goal will be to construct the C∞ line bundle L discussed in the section

introduction. We begin with a lattice-theoretic lemma.

Lemma 4.2.1. Let x ∈ H2(M,Z) be a primitive class, and let p, q be arbitrary integers. Then

there exists a class y ∈ H2(M,Z) with x.y = p and (y)2 = 2q.

Proof. We begin by fixing an isometry H2(M,Z) ∼= U ⊕ U ⊕ U ⊕ (−E8)⊕2. Taking the standard

basis e, f of U satisfying e2 = f2 = 0, e.f = 1, we write an element of H2(M,Z) in the first two

copies of U as a four-tuple (α, β, γ, δ).

Let (x)2 = 2d. Since x is primitive, it is unique up to the action of O(Λ) among primitive

vectors with square 2d. Thus there is some g ∈ O(Λ) for which g(x) = (1, d, 0, 0) ∈ U ⊕ U . Take y

to be the vector such that g(y) = (0, p, 1, q) ∈ U ⊕ U .

Lemma 4.2.2. Suppose v = (r, c0, s) is primitive and r is coprime to c0. Then there exists a class

` ∈ H2(M,Z) such that v. exp(`) = (r, c1, 1), where c1 is primitive.

Proof. Let c0 = kc′0 with c′0 primitive and k an integer. We know that gcd(r, k) = 1, so choose

integers a, b such that ak + br = 1− s. By Lemma 4.2.1 there is an ` with c′0.` = a and `2 = 2b. It

follows that kc′0.y + ry2/2 = 1− s, whence

v.e` = (r, c0 + r`, 1).

Using the notation in the proof of Lemma 4.2.1, c1 := c0 + r` is primitive because

g(c1) = (k, kd− rb, r, ra) ∈ U ⊕ U

is primitive.

Next is another short calculation that will ensure that the first Chern class of our bundle is

not algebraic.

Lemma 4.2.3. Let X be a K3 surface and let c1 ∈ H2(X,Z) be a primitive vector with c21 6= 0.

Then there exists a class `′ ∈ H2(X,Z) such that c1.`
′ = 0, (`′)2 = 0, and c1 + r`′ /∈ Pic(X).
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Proof. Right away, if c1 is not algebraic, then we take `′ = 0 and we are done. So, we assume that

c1 is algebraic. Under this assumption it follows that c1 + r`′ ∈ Pic(X) if and only if `′ ∈ Pic(X),

so we now seek an isotropic `′ /∈ Pic(X) ∩ c⊥1 .

Let c21 = 2d 6= 0. We identify H2(X,Z) with U3 ⊕ (−E8)2 in a way that sends c1 to the

vector e1 + df1, where e1, f1 are the standard basis for the first copy of U . Then c⊥1 is identified

with (−d)⊕ U2 ⊕ (−E8)2, where (−d) is the one-dimensional lattice Z whose generator has length

−d. Next, note that Pic(X) ∩ c⊥ can have rank at most 20, while c⊥1 has rank 21 since c21 6= 0.

Since we can find a basis of c⊥1 consisting of isotropic vectors, we will certainly be able to ensure

one of these isotropic basis elements, call it `′, does not lie in Pic(X).

Summarizing the last two lemmas, we now have the following proposition.

Proposition 4.2.4. Let X be a K3 surface and v = (r, c0, s) a primitive Mukai vector with

coprime r and c0. Also suppose that E is a smooth vector bundle with Mukai vector v. Then there

exists a smooth line bundle L such that v(E ⊗ L) = (r, c, 1), c is primitive, and c is not algebraic

on X.

Proof. Combining Lemmas 4.2.2 and 4.2.3, we can find a topological line bundle L with c1(L) =

`+ `′. The properties of ` and `′ imply that

v(E ⊗ L) = (r, c0, s)e
`+`′

= (r, c, 1)

where, with the notation of the previous lemmas,

c = c0 + r(`+ `′) = c1 + r`′.

The properties of `′ ensure that c is not algebraic.

Line bundles always admit Hermite-Einstein connections when the bundle is holomorphic.

When the bundle is not holomorphic, that is, when c1(L)0,2 6= 0, we can construct a twisted

Hermite-Einstein metric on L.

One usually prefers to think of line bundles as naturally untwisted objects, since any

Brauer class α that twists a line bundle must necessarily be trivial. This is because the twisted
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cocycle condition implies αijk is a coboundary when the transition matrices ϕij are rank one.

However, it is crucial that we make use of this twisted structure on line bundles to construct a

twisted Hermite-Einstein connection on L, as will be seen in the next proposition.

Proposition 4.2.5. Let g be the hyperkähler metric determined from a hyperkähler structure

$ = (σ, ω) (see Lemma 2.3.2). Let (E, h) be a hermitian bundle on M and L an arbitrary smooth

line bundle on M . Then L admits a BL-twisted Hermite-Einstein metric hL, where BL is the

g-harmonic representative of −c1(L). Consequently, tensoring with L yields an isomorphism

MHE
σ,ω (E, hE , BE)

∼→MHE
σ,ω (E ⊗ L, hE ⊗ hL, BE +BL).

Proof. First, fix a hermitian structure hL and hermitian connection ∇0 on L. Since iF∇0
/2π

is an ordinary 2-form on X that represents c1(L), iF∇0/2π = −BL + dα for some real 1-form

α. Then set ∇L := ∇0 + 2πiα. This connection is still hermitian and its curvature satisfies

iF∇L
/2π = −BL.

It now follows that ∇L satisfies the twisted Hermite-Einstein equations. Indeed, Λω

preserves harmonicity, and hence it takes iF∇L
to iΛωF∇L

∈ H 0 = R. The other equation,

F 0,2
∇L

= 2πiB0,2
L , is trivially satisfied since F∇L

= 2πiBL.

From here it is a straightforward check that if ∇ is a B-twisted Hermite-Einstein

connection on E, then ∇ ⊗ ∇L := ∇ ⊗ 1L + 1E ⊗ ∇L is (B + BL)-twisted on E ⊗ L with

respect to the induced hermitian structure hE ⊗ hL. This operation is invertible with inverse given

by tensoring with L∨. Furthermore, tensoring with ∇L preserves irreducibility of ∇.

Finally, we note that a gauge orbit of ∇ is mapped onto the gauge orbit of ∇ ⊗ ∇L. This

follows from the isomorphism in Lemma 4.2.6 below and by noting that the map ∇ 7→ ∇ ⊗ ∇L

commutes with the action of U(E, h) and U(E ⊗ L, h⊗ hL).

Lemma 4.2.6. Let (E, hE) be a smooth hermitian bundle and (L, hL) a smooth hermitian line

bundle. Then the map Φ: U(E, hE)→ U(E⊗L, hE⊗hL) defined by g 7→ g⊗1L is an isomorphism.

Proof. We will break this down into two steps. First we show that the map Φ: End(E) →

End(E ⊗ L) is an isomorphism, and then that Φ preserves unitary endomorphisms.
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To see that Φ is an isomorphism consider the sequence of maps

End(E)
Φ→ End(E ⊗ L)

Φ′→ End(E ⊗ L⊗ L∨)
trL∼= End(E)

Φ→ End(E ⊗ L)

where trL : L ⊗ L∨ ∼→ O is the usual trace map, and Φ′ is defined as Φ but with L∨ in place of L.

It is straightforward to verify that trL ◦Φ′ ◦ Φ = 1End(E) and Φ ◦ trL ◦Φ′ = 1End(E⊗L).

Now let g ∈ U(E, hE) be a unitary endomorphism. Working locally on M , g is represented

by an hE-unitary matrix. Since L is a line bundle, g ⊗ 1L is represented by the same matrix as

g. Furthermore, hL is locally represented as a positive, real-valued scalar function, which does

not change how the conjugate-transpose of g is computed. (Recall that when H is a hermitian

matrix defining a hermitian structure on Cn, the adjoint of an n × n matrix A is computed as

A∗ = H−1A
T
H, which is invariant under multiplying H by a nonzero real number.)

Deforming the Kähler Form

We now focus on deforming the Kähler form in a hyperkähler structure $ = (σ, ω). The

goal is to deform ω and keep σ fixed so that a twistor rotation around $′ = (σ, ω′) contains a

point where the Picard group is generated by c.

Before embarking on this I will explain the idea behind the deformation. The goal is to

find a hyperkähler structure $′ = (σ, ω′) and a twistor rotation (σt, ω
′
t) through the twistor

family of $′ such that the class c is algebraic for σt (see Lemma 2.4.3) and Pic(σt) = Zc. (See

equations (2.4.11) for the definition of σt.) Certainly Pic(σt) will contain Zc, but for some choices

of ω′ it may be larger. If Pic(σt) is larger than Zc, then we will be able to find a nonzero α ∈

Pic(σt) orthogonal to c. This produces an affine1 line α + Rc, which we will show below must

intersect P⊥[$′]. Turning this idea on its head, for fixed c we ask for Kähler forms ω′ where (α +

Rc) ∩ P⊥[$′] = ∅ for all α ∈ c⊥ ∩ H2(M,Z). This can be thought of a genericity condition on

hyperkähler structures or positive oriented 3-planes that is similar in spirit to the idea of a generic

twistor line from [Huy16, Ch. 7.3].

1Affine here means that the line does not pass through the origin.
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Lemma 4.3.1. Let c ∈ H2(M,Z) be a class with c2 > 0, and let P[σt] ⊂ P[$] be the 2-plane

associated to a complex structure σt in the twistor family for $ where c is algebraic. Suppose that

Pic(σt) ∩ c⊥ contains a nonzero class α. Then (α+ Rc) ∩ P⊥[$] 6= ∅.

Proof. Recall from Lemma 2.4.3 that the complex structures σt in the twistor family where

c is algebraic are determined by the constraint P[σt] = c⊥ ∩ P[$]. Taking the perpendicular

complement, we get a description of all of the (1, 1)-classes:

H1,1(σt) = P⊥[σt]
= P⊥[$] + Rc.

Since α ∈ H1,1(σt), we can write α = β + rc with β ∈ P⊥[$] and r ∈ R. Then β = α − rc lies in

(α+ Rc) ∩ P⊥[$].

Lemma 4.3.2. Let v = (r, c, s) be a Mukai vector, let $ = (σ, ω) be a v-generic hyperkähler

structure, and assume that c2 > 0 and c is not algebraic with respect to σ. Then there exists a

v-generic hyperkähler structure $′ = (σ, ω′) such that P⊥[$′] ∩ (α + Rc) = ∅ for all α ∈ H2(M,Z) ∩

c⊥. Moreover, the class [ω′] can be taken close to [ω], so that ω and ω′ define the same stability

condition.

Proof. Fix α ∈ H2(M,Z) ∩ c⊥, and let `α = α + Rc be its corresponding affine line. We will also

consider the real 2-plane Lα = Rα+ Rc spanned by `α.

We start by describing the problematic α resulting in `α ∩ P⊥[σ] 6= ∅. First note that c ∈ Lα,

and that c /∈ P⊥[σ], for otherwise c would be algebraic with respect to σ. Therefore, we know

Lα∩P⊥[σ] 6= Lα. It follows that Lα∩P⊥[σ] has dimension 0 or 1 (as a vector space). If this dimension

is zero, then it immediately follows that `α ∩ P⊥[σ] = ∅. On the other hand, if the dimension is 1,

the line Lα ∩ P⊥[σ] may either be parallel to `α (leaving `α ∩ P⊥[σ] = ∅ again) or, more generically,

will meet `α. We then see that a nonzero class α ∈ H2(M,Z) ∩ c⊥ will be problematic when

`α ∩ P⊥[σ] = {zα} for some nonzero vector zα.

Each problematic α leads to a hyperplane section Kσ ∩ z⊥α of the Kähler cone for σ.

Consider the complement of their union

Z = Kσ \
⋃′

α
z⊥α
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(the prime on the union indicating only union over the problematic α). Since each z⊥α is

codimension 1 and since Kσ is an open cone in H1,1(σ), the Baire category theorem implies that

Z is dense in Kσ. Since we assumed that $ is v-generic, the Kähler class [ω] does not lie on a v-

wall in the Kähler cone. Thus, density of Z allows us to find a Kähler class [ω′0] ∈ Z as close as we

like to [ω]. Since the v-walls are locally finite in Kσ ([HL10, Lem. 4.C.2]) we can ensure [ω′0] lies

in the interior of the same v-chamber as [ω]. Therefore, [ω′0] can be taken to be v-generic.

We now use Yau’s theorem in the following form: for a compact Kähler manifold X with

given volume form vol compatible with the natural orientation, there is a unique Kähler metric g′

with Kähler form ω′ such that (ω′)dimX = vol with prescribed Kähler class [ω′0] ∈ H2(X,R). We

take vol = 1
2σ ∧ σ̄ and [ω′0] as our Käher class. This ensures that 2(ω′)2 = σ ∧ σ̄, which entails

that $′ = (σ, ω′) is a hyperkähler structure. We also know that [ω′] = [ω′0], so [ω′] lies in the same

v-chamber as [ω].

Having chosen [ω′] ∈ Z, we see that [ω′].zα 6= 0 for problematic α. Hence, P⊥[$′] will not

intersect any `α for α ∈ H2(M,Z) ∩ c⊥; either such an `α fails to intersect P⊥[σ], or, if it does, then

`α will fail to intersect [ω′]⊥. Either way, we can guarantee `α ∩ P⊥[$′] = ∅.

The next proposition combines the last two lemmas.

Proposition 4.3.3. Let v = (r, c, s) be a Mukai vector, and let $ = (σ, ω) be a v-generic

hyperkähler structure. Assume that c is primitive, c2 > 0, and that c is not algebraic with respect

to σ. Then there is a twistor rotation (σt, ω
′
t) of the hyperkähler structure $′ from Lemma 4.3.2

such that Pic(σt) = Zc and such that c is ample.

Proof. From Lemma 2.4.3, we know there are two places in the twistor family of $′ such that c is

algebraic with respect to the complex structure σt, and the two complex structures are determined

by the two possible orientations of the 2-plane c⊥ ∩ P[$′]. Precisely one of these orientations

ensures that c is in the positive cone. To see this, suppose that c⊥ ∩ P[$′] is spanned by classes

α and β with α2 = β2 = 1 and α.β = 0, and let γ ∈ P[$′] be orthogonal to α and β so that the

orientation of P[$′] is realized by the ordering 〈α, β, γ〉. The two complex structures are given by

σ1 = α + iβ and σ2 = β + iα. The Kähler forms for σ1 and σ2 are γ and −γ, respectively. If

γ.c > 0, then c is in the positive cone of σ1, and if γ.c < 0 then c is in the positive cone for σ2.

Either way, it is possible to choose a complex structure in the twistor family of $′ for which c is

algebraic and lies in the positive cone.
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By Lemma 4.3.2, both of these complex structures have Picard group equal to Zc, and

therefore neither of these K3 surfaces can contain a rational curve P1 ∼= C ⊂ X, for such a curve

would produce the line bundle OX(C) with degree −2, which is impossible.

For K3 surfaces, the Kähler cone is determined by those classes α ∈ H1,1(X,R) such that α

is in the positive cone and α.C > 0 for all rational curves P1 ∼= C ⊂ X by [Huy16, Thm. 8.5.2].

Since we have no rational curves, the class c is automatically Kähler. Since c is also integral, the

Kodaira Embedding Theorem implies that c is ample.

This finishes the description of the deformation of ω to ω′. However, I do not know of an

explicit method for taking an ω-Hermite-Einstein connection ∇ and producing an ω′-Hermite-

Einstein connetion ∇′, even if ω and ω′ are cohomologous. Thus I will make use of the Kobayashi-

Hitchin correspondence to identify the ω-Hermite-Einstein moduli space with the ω′-Hermite-

Einstein moduli space. The next proposition describes the Kobayashi-Hitchin correspondence on

the level of moduli spaces.

Proposition 4.3.4. Let E be a smooth bundle with hermitian structure h, and let (X,ω) be a

compact connected Kähler manifold. Then the twisted Kobayashi-Hitchin correspondence induces

a complex-analytic isomorphism between the moduli space MHE
ω (E, h,B) of B-twisted ω-Hermite-

Einstein connections on E and the moduli space Mst
ω (E,α) of α-twisted ω-stable holomorphic

structures on E, where α = exp(2πiB0,2).

Proof. To simplify notation let MHE and Mst be the two moduli spaces in question.

Though never explicitly said, Kobayashi essentially proves this in his book [Kob14]. We

will sketch the roadmap through this book (chapter 7 in particular) to prove this proposition.

Furthermore, the central results and arguments from this book go through exactly the same

when E is a smooth bundle arising from untwisting a twisted bundle. This is because End(E)

is naturally an untwisted bundle, and any twisted connection on E gives rise to an untwisted

connection on End(E). The arguments and results of [Kob14] are based on the induced

connections on End(E), so the arguments go through the same for the twisted connections.
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The twisted Kobyashi-Hitchin correspondence (Theorem 2.2.3) gives a set bijection

Φ: MHE →Mst

[∇] 7→ [∇0,1]

By analyzing the local models for each moduli space we will see that this turns into a complex-

analytic isomorphism.

Fix a connection ∇ representing a point [∇] ∈ MHE . A local model of the moduli space

near [∇] is obtained by taking a neighborhood of origin η = 0 in the slice

S∇ =

∇+ η

∣∣∣∣∣ η ∈ A1(End(E, h)), Λω(∇̃η + η ∧ η) = 0,

∇̃η + η ∧ η ∈ A1,1, ∇̃∗η = 0

 . (4.3.1)

The first condition says ∇ + η is hermitian; the next two conditions come from writing down the

twisted Hermite-Einstein equations (3.4.9) for ∇ + η, expanding F∇+η = F∇ + ∇̃ + η ∧ η, and

using the fact that ∇ also satisfies the same equations; and the third condition says that S∇ is

perpendicular to the gauge orbit U(E, h) · ∇. If we linearize these equations we get

T∇S∇ =
{
η ∈ A1(End(E, h)) | ∇̃η ∈ A1,1(End(E, h)), Λω∇̃η = 0, ∇̃∗η = 0

}
. (4.3.2)

The set on the right is exactly the harmonic space H 1(E,∇) of the complex C•(E,∇) from

Section 2.5. Consequently, we can identify T[∇]MHE with H 1 ∼= H1(End(E)).

Similarly, at a holomorphic structure ∂E , a slice for the action of GL(E) on the space HB

of B-twisted holomorphic structures is given by

S∂E
= {∂E + γ | γ ∈ A0,1(End(E)), ∂End(E)(γ) + γ ∧ γ = 0, ∂

∗
End(E)(γ) = 0}.

Linearizing these equations gives

T∂E
S∂E

=
{
γ ∈ A0,1(End(E, h)) | ∂E(γ) = 0, ∂

∗
(γ) = 0

}
.
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The latter set is exactly the harmonic space H 0,1 of the Dolbeault complex for ∂End(E).

Consequently, we can identify T[∂E ]Mst with H 0,1 ∼= H0,1(End(E)).

Now, when Φ is considered as a map Φ: A1(End(E, h)) → A0,1(End(E)), the derivative

dΦ is exactly the map η 7→ η0,1. Kobayashi shows that dΦ induces a linear isomorphism on the

harmonic spaces

dΦ: H 1 ∼→H 0,1. (4.3.3)

(see [Kob14, Section 7.2]). We note that Φ(S∇) is not exactly S∂E
, but the isomorphism (4.3.3)

shows that Φ(S∇) is also a slice to the GL(E)-orbit through ∂E .

It remains to be seen that dΦ commutes with the complex structures on H 1 and H 0,1.

The complex structure on H 1 is defined through the complex structure I induced by σ on M via

Iη = −η(I(−)) = −iη0,1 + iη0,1, (4.3.4)

while the complex structure on H 0,1 is multiplication by i. It is now immediate that dΦ

commutes with these complex structures, and hence Φ: MHE → Mst is a holomorphic bijection.

Since holomorphic bijections are automatically biholomorphic ([Huy05a, Prop. 1.1.13]) we are

done.

Proposition 4.3.5. Let E be a smooth bundle with Mukai vector v, and let $ = (σ, ω) and

$′ = (σ, ω′) be two v-generic hyperkähler structures on M such that ω and ω′ define the same

stability condition. If E admits a twisted Hermite-Einstein metric h with B-field 2-form B, then

there exists a complex analytic isomorphism

MHE
$ (E, h,B)

∼→MHE
$′ (E, h,B).

Proof. Using the Kobayashi-Hitchin correspondence in the form of Proposition 4.3.4, we have the

chain of isomorphisms

MHE
$ (E, h,B) ∼=Mst

$(E,α) ∼=Mst
$′(E,α) ∼=MHE

$′ (E, h,B).

Note that the B-field remains fixed since $ and $′ share the same holomorphic structure σ.
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Proposition 4.3.6. Let (σ, ω) be any v-generic hyperkähler structure on the K3 manifold M and

E a smooth bundle with Mukai vector v. The hyperkähler metric g corresponding to (σ, ω) induces

a hyperkähler metric on M := MHE
σ,ω (E, h,B). Moreover, the complex structures It in the twistor

family of M all arise from complex structures It in the twistor family X (σ, ω). Furthermore,

the twistor rotation (M, It) is isomorphic to the moduli space MHE
σt,ωt

(E, h,B). Also, the three

hyperkähler forms ΩI ,ΩJ ,ΩK on M are given by2

Ω`(η, ξ) = 2

∫
M

tr(η ∧ ξ) ∧ ω`, ` = I, J,K.

Proof. The statement that g induces a hyperkähler metric on M can be found in [IN90, Thm.

2.17], and in [Kob14, Ch. VII.6] Kobayashi shows that the Kähler forms are the Ω` described

above.

A similar computation to the one performed in Proposition 3.5.1 shows that the underlying

set of the moduli space is unaffected from the Kähler rotation. The local models S∇ are also

preserved by the hyperkähler rotation, which can be seen from analyzing equation (4.3.1).

Any complex structure I in the twistor family for g defines a complex structure on H 1 by

the formula

I(η) = −η(I(−)). (4.3.5)

So, the complex structure I ′ on MHE
σt,ωt

(E, h,B) is given by I ′(η) = −η(It(−)), which is exactly

the formula for It. Hence these two moduli spaces are the same.

Miscellaneous Results on Vector Bundles

We now collect some results on vector bundles that aid in the proof of Theorem 4.6.1.

Proposition 4.4.1. If E and E′ are two C∞ complex vector bundles over the K3 manifold with

the same rank and Chern classes, then there is a C∞ isomorphism E
∼→ E′.

Proof. The result is standard for r = 1, so we assume r ≥ 2. The Chern character gives an

isomorphism ch: Ktop(M) → H∗(M,Z), which is true because we are working on K3 surfaces. It

follows that the bundles E and E′ have the same classes in Ktop, which implies that E ⊕ O` =

2The factor of 2 ensures this Kähler form corresponds with the L2 metric on H 1.
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E′ ⊕O` for some topologically trivial bundle O`. Since r ≥ 2, [Hus94, Theorem 9.1.5] implies that

E and E′ are topologically isomorphic. Finally, any two C∞ vector bundles that are topologically

isomorphic are smoothly isomorphic, see [Hir94, Theorem 3.5].

Lemma 4.4.2. Let v = (r, c, s) be a primitive Mukai vector satisfying v2 + 2 < 2r and let H be a

v-generic polarization on a K3 surface X. Then any H-slope-stable sheaf E is locally free.

Proof. I would like to thank Daniel Huybrechts for explaining this result. Suppose E an ω-

stable sheaf with Mukai vector v that is not locally free. Let E∨∨ be the reflexive hull, which

is locally free, and let T be the cokernel of the inclusion E ↪→ E∨∨. The singular set of E is

at least codimension 2 since E is torsion-free, so T is supported on a finite set of points, and

v(T ) = (0, 0, n) for some integer n ≥ 1.

Next we show that E∨∨ is also H-slope stable. To see this, suppose F ⊂ E∨∨ is a subsheaf

with 0 < rk(F ) < rk(E∨∨) and consider the diagram below.

0 F ∩ E F T ′ 0

0 E E∨∨ T 0

(4.4.6)

Since T ′ ⊂ T , T ′ is also supported at a finite number of points, and thus v(T ′) = (0, 0,m) for

some integer m ≤ n. So, the top row of the diagram gives us rk(F ∩ E) = rk(F ) as well as

deg(F ∩ E) = deg(F ), so µ(F ∩ E) = µ(F ). Likewise, µ(E) = µ(E∨∨), so the fact that E is stable

gives

µ(F ) = µ(F ∩ E) < µ(E) = µ(E∨∨).

Finally, we see that v(E∨∨) = (r, c, s+ n), so

v(E∨∨)2 + 2 = v(E)2 + 2− 2rn < 2r − 2rn ≤ 0

by our assumption that v2 + 2 < 2r and n ≥ 1. This implies that E∨∨ belongs to the smooth

locus of a moduli space of sheaves with negative dimension, a contradiction. Therefore E must be

locally free.
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Proposition 4.4.3. Let E be a C∞ bundle on M with primitive Mukai vector v = (r, c, s)

satisfying v2 + 2 < 2r and let $ = (σ, ω) be a v-generic hyperkähler structure. Assume further

that the moduli space Ms
$(v) is nonempty. Then Ms

$(E) is isomorphic to Ms
$(v).

Proof. By Lemma 4.4.2, any sheaf in Ms
$(v) is locally free, and by Proposition 4.4.1 its

underlying smooth bundle is smoothly isomorphic to E. This produces a holomorphic structure on

E, and thus Ms
$(E) is also nonempty.

Let F : Ms
$(E) → Ms

$(v) be the map sending a holomorphic structure ∂E to the

holomorphic bundle [(E, ∂E)]. Surjectivity of F follows by the observations in the previous

paragraph. This map is also seen to be injective, for if two holomorphic structures ∂E , ∂
′
E map

to the same holomorphic bundle, then we get a bundle endomorphism f ∈ GL(E) commuting with

∂E and ∂
′
E ; hence [∂E ] = [∂

′
E ] in Ms

$(E). This follows from the fact that Ms
$(E) is a quotient of

a space of ∂ operators modulo GL(E).

Finally, note that the tangent spaces to both moduli spaces are H1(End(E)). It is then

seen that F induces a holomorphic bijection, which must be a complex-analytic isomorphism.

Hilbert Schemes of Points

We now recall some properties of the Hilbert scheme X [n] of n points on a K3 surface. We

identify X [n] with the moduli space of c-stable sheaves Ms
c(1, 0, 1− n) by associating a subscheme

of length n with its ideal sheaf In. Later we will encounter the moduli space Ms
c(1, c, r), which is

isomorphic to X [n] by tensoring with OX(−c), where n := c2

2 − r + 1. Note that the assumption

v2 + 2 ≥ 0 ensures n is nonnegative. We let Z ⊂ X × X [n] be the universal subscheme and

IZ(c) = IZ ⊗ π∗2OX(c) for the ideal sheaf of Z twisted by c. We also let ∆ ⊂ X × X be the

main diagonal. Note that I∆ is the kernel for the spherical twist. For a review of Fourier-Mukai

transforms, see [Huy06, Ch. 5].

Lemma 4.5.1. Let X be a K3 surface with Pic(X) = Zc with c ample and with c2 < 4r−2. Every

sheaf of the form In(c) is globally generated and acyclic.

Proof. The reduced Hilbert polynomial of In(c) is given by

pc,In(c) =
m2

2
+m+ const,
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and since pc,OX
= m2/2 + const, we have pc,OX

< pc,In(c). Therefore,

H2(In(c)) ∼= Hom(In(c),O)∗ = 0.

We next look at vanishing of H1. Markman proves in [Mar01, Corollary 34] that the locus

of sheaves in Ms
H(r, c, s) having nonzero H1 is empty when Pic(X) = ZH and

dim(Ms
H(r, c, s)) ≤ 2(r + s). (4.5.7)

Our moduli space has dimension c2 − 2r + 2 which is less than 2(r + 1) by our assumption that

v2 + 2 < 2r. Therefore H1(In(c)) = 0 for all In(c) ∈Ms
c(1, c, r).

For global generation, note that h0(In(c)) = χ(In(c)) = r + 1. Suppose for sake of

contradiction that the evaluation map ev : Or+1 → In(c) is not surjective, and let R be the

cokernel. Choose a point P ∈ supp(R) and a surjection R � OP . Now let K be the kernel of the

composite map In(c)→ R→ OP , from which we get the short exact sequence

0→ K → In(c)→ OP → 0. (4.5.8)

With Pc,K being the nonreduced Hilbert polynomial with respect to c, we have Pc,K = Pc,In(c)−1,

so any sheaf destablizing K would destablize In(c), which is absurd. Therefore, K is Gieseker

stable with Mukai vector (1, c, r − 1). On one hand, using the assumption that v2 + 2 < 2r, we

see that Ms
c(1, c, r − 1) also satisfies the condition in equation (4.5.7) and conclude that H1(K) =

0. On the other hand, all sections of F factor through K, so h0(K) = h0(In(c)), and we see

from the long exact sequence in cohomology arising from the sequence (4.5.8) that C ↪→ H1(K).

This is a contradiction, so it must be that R is the zero sheaf. We conclude that In(c) is globally

generated.

The next lemma establishes that twisting IZ(c) around O leaves us with another family of

sheaves over X ×X [n].

Lemma 4.5.2. Keep the assumptions from Lemma 4.5.1. The convolution I∆ ◦ IZ(c) is a sheaf

(and not a complex) flat over X [n].
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Proof. We will demonstrate this by appealing to [Huy06, Lem. 3.31] in the following form: if a

complex Q ∈ Db(X ×X [n]) has the property that every derived restriction i∗FQ to a fiber X ×{F}

of the projection map X ×X [n] → X [n] is a sheaf, then Q is concentrated in degree zero (that is,

Q is a sheaf) and it is flat over X [n]. We will apply this to Q = I∆ ◦ IZ(c), so to prove the lemma

it is enough to prove that i∗FQ is a sheaf for every F ∈ X [n].

We begin by recasting i∗FQ in a more useful form. Let π12, π13, π23 be the projections from

X ×X ×X [n]. By definition,

Q = π13∗ (π∗12I∆ ⊗ π∗23IZ(c)) .

We first base change around the diagram

X ×X X ×X ×X [n]

X X ×X [n]

π1

iF

π13

iF

(4.5.9)

to get

i∗FQ = π1∗i
∗
F (π∗12I∆ ⊗ π∗23IZ(c))

= π1∗ (i∗Fπ
∗
12I∆ ⊗ i∗Fπ∗23IZ(c))

Next, note that π12 ◦ iF = 1 and π23 ◦ iF = iF ◦π2 using projections onto the second factor in place

of the first in diagram (4.5.9). We are then left with

i∗FQ = π1∗ (I∆ ⊗ π∗2 (i∗F IZ(c))) . (4.5.10)

The right hand side we recognize as the spherical twist. Since IZ(c) is flat over X [n], the derived

restriction is an honest restriction. But we know that the spherical twist of a sheaf produces a

sheaf because each fiber of IZ(c) satisfies the conclusions of Lemma 4.5.2. Thus the lemma cited

above applies, so the lemma is proven.

Under the same hypotheses the spherical twist of an ideal sheaf In(c) is a stable vector

bundle, which will be demonstrated in the next proposition. Combined with the previous lemma,

this will produce a classifying map to the moduli space of stable bundles.
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Proposition 4.5.3. Let X be a K3 surface with Pic(X) = Zc with c ample and satisfying c2 <

4r − 2. Then the spherical twist of an ideal sheaf In(c) ∈ X [n] is a stable vector bundle with Mukai

vector (r,−c, 1). Consequently, the family I∆ ◦ IZ(c) induces an isomorphism

φ : X [n] →Ms
c(r,−c, 1). (4.5.11)

Proof. The spherical twist of In(c) is the sheaf E appearing in the short exact sequence

0→ E → Or+1
X → In(c)→ 0. (4.5.12)

(This makes use of the global generation from Lemma 4.5.1.) We first prove that E is c-slope

stable. Suppose for the sake of contradiction that this is not the case, and let F ⊂ E be the

maximal destablizing subsheaf ([HL10, Def. 1.3.6]); F is c-semistable by definition. First observe

that there is an inclusion F ↪→ E ↪→ Or+1, and since both F and Or+1 are semistable we must

have µ(F ) ≤ 0. Suppose next that µ(F ) = 0. One can then find a c-stable F ′ ⊂ F also having

slope 0 by taking the first nonzero sheaf in the Jordan-Hölder filtration for F . Then, because

F ′ → Or is a non-trivial morphism, 0 6= Hom(F ′,Or) = Hom(F ′,O)r, so there is a nonzero

morphism F ′ → O. Since both F and O are stable of the same slope, this map is an isomorphism,

and hence E contains O as a subsheaf. This would furnish a nonzero section of E; however, the

long exact cohomology sequence arising from the sequence (4.5.12) implies that H0(E) = 0. This

is a contradiction, so it must be that µ(F ) < 0.

This observation shows that c1(F ) = −nc for some n ≥ 1. But since c1(E) = −c, we have

deg(F ) ≤ deg(E) < 0. Combining these inequalities with the inequalities 0 < rk(F ) < rk(E) we

see that

deg(F ) rk(E) < deg(E) rk(F ).

This implies that µ(F ) < µ(E), a contradiction. Thus, E must be a c-stable sheaf with Mukai

vector (r,−c, 1). This Mukai vector satisfies the hypotheses of Lemma 4.4.2, and therefore E must

also be locally free.

Next, the family I∆ ◦ IZ(c) is a sheaf over X × X [n] whose fibers are the c-stable bundles

E just considered, and thus the universal property of M := Ms
c(r,−c, 1) gives a classifying map

φ : X [n] →M sending a closed point represented by In(c) to the bundle E from above.
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The functor FMI∆
: Db(X [n]) → Db(M) is an equivalence and therefore the map φ is

injective on closed points. Viewing φ as a holomorphic map, we see that it is a holomorphic

injection. However, holomorphic injections are open embeddings, and therefore the image of φ

is an open compact subset of M.

Next, note that the assumption Pic(X) = Zc with c2 > 0 implies that the set of walls of

the Kähler cone of X is empty, which tells us that every polarization, in particular c, is v-generic.

Therefore, M = Mss
c (v) is compact, and it is smooth since it is also a moduli space of stable

sheaves. Moreover, by results of Kaledin, Lehn, and Sorger [KLS06], M is connected. Therefore,

φ(X [n]) must equal M, and we are done since holomorphic bijections are biholomorphisms.

Proof of Deformation-Equivalence to the Hilbert Scheme

Theorem 4.6.1. Let (E, hE) be a smooth bundle over the K3 manifold M with v(E) = (r, c0, s)

such that r and c0 are coprime and 0 ≤ v(E)2 + 2 < 2r, and let $ = (σ, ω) be a v(E)-generic

hyperkähler structure and BE a B-field 2-form on M . Then the moduli space MHE
σ,ω (E, hE , BE) is

nonempty, compact, and deformation-equivalent to a Hilbert scheme S[n], with n = (v2 + 2)/2.

Proof. We will describe how the propositions and lemmas in this chapter fit together to prove this

result. Beginning with a C∞ bundle E with Mukai vector (r, c0, s), choose a smooth line bundle L

on M as in Proposition 4.2.4 so that v(E ⊗ L) = (r, c, 1), with c being primitive and not algebraic

on the initial K3 surface defined by σ. Note that the condition 0 ≤ v2 + 2 < 2r is preserved by

tensoring with L, and this constraint implies implies that c2 ≥ 2r ≥ 2. Therefore we can deform

the Kähler form ω to ω′ following Proposition 4.3.3 so that there is a twistor rotation (σt, ω
′
t) of

the hyperkähler structure $′ so that Pic(σt) = Zc with c ample.

We begin from the Hilbert scheme and apply the spherical twist from Proposition 4.5.3:

X [n]
σt
∼=Ms

σt,c(1, c, r)
∼=Ms

σt,c(r,−c, 1).

This latter moduli space is a moduli space of untwisted vector bundles, since the Mukai vector

satisfies the hypotheses of Lemma 4.4.2. Hence, sending a bundle to its dual gives an isomorphism

Ms
σt,c(r,−c, 1) ∼=Ms

σt,c(r, c, 1). Since Pic(σt) = Zc with c2 > 0, there are no v-walls in the Kähler
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cone of Xσt
, so c and ω′t both define the same stability condition. This gives an identification

Ms
σt,c(r, c, 1) =Ms

σt,ω′t
(r, c, 1).

Next, Proposition 4.4.3 lets us view this moduli space as a moduli space of stable structures on

E ⊗ L, giving

Ms
σt,ω′t

(r, c, 1) ∼=Ms
σt,ω′t

(E ⊗ L).

Combining this with the untwisted Kobayashi-Hitchin correspondence (Proposition 4.3.4 with

B = 0 and α = 1) we see that the latter moduli space is isomorphic to MHE
σt,ω′t

(E ⊗ L, hE ⊗ hL).

Summarizing, we have a complex analytic isomorphism

X [n]
σt
∼=MHE

σt,ω′t
(E ⊗ L, hE ⊗ hL). (4.6.13)

Starting from the other direction we tensor E with L, and we get isomorphisms coming

from Propositions 4.2.5 and 4.3.5:

MHE
σ,ω (E, hE , BE) ∼=MHE

σ,ω (E ⊗ L, hE ⊗ hL, BE +BL) ∼=MHE
σ,ω′(E ⊗ L, hE ⊗ hL, BE +BL).

We then see from equation (4.6.13) and Proposition 4.3.6 that the moduli space MHE
σ,ω (E, hE , BE)

is deformation-equivalent to X
[n]
σt , with the twistor family of $′ serving as the deformation.
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CHAPTER V

UNIVERSAL BUNDLES

Overview

In this chapter I describe the universal bundle over X ×M, where M is a moduli space

of twisted Hermite-Einstein connections on M. As in the previous chapter, the main strategy is

to use the deformation to the Hilbert scheme of Picard rank one from the previous chapter and

utilize results for moduli spaces of sheaves over such K3 surfaces.

As always, fix C∞ bundle E with hermitian metric h over X and a hyperkähler structure

(σ, ω) with corresponding hyperkähler metric g on the K3 manifold M . Also fix a B-field 2-form

B representing −c1(E)/ rk(E). Let A HE = A HE
σ,ω (E, h,B) be the space of irreducible Hermite-

Einstein connections on E with respect to this data. The moduli space M := MHE
σ,ω (E, h,B) is a

quotient of A HE by the group of reduced gauge transformations G = U(E, h)/U(1).

We will construct a universal bundle over X ×M by forming a G -equivariant bundle over

X × A HE . Let π1, π2 be the projections to X and A HE . The pullback π∗1E and its natural

connection A, the tautological connection, would be ideal for this task were it to be G -equivariant.

The tautological connection is defined by the property that A|X×{∇} = ∇ on E, and that it is flat

in the {x} ×A HE-direction.

The problem is that G does not necessarily act on E. To clarify, we think of U(E, h) as

acting on X ×A HE trivially in the X-coordinate and as its usual action on the A HE-coordinate,

∇ 7→ g ◦ ∇ ◦ g−1. The action of U(E, h) on π∗1E = E × A HE is only slightly more involved: a

gauge transformation g acts on a point (x, v,∇) ∈ E ×A HE by

(x, v,∇) 7→ (x, gx(v), g ◦ ∇ ◦ g−1),

where a point in E has been represented by (x, v) in a local frame for some x ∈ X and v ∈

Cr. That this is well-defined is a consequence of g being a gauge transformation, which is by

definition compatible with a change in frame. The action of U(E, h) enjoys the property of being

proper [Kob14, Prop 7.1.14], however it is far from free: the scalars U(1) = eiθ1E leave every

connection fixed. In order to get a free action it is customary to divide U(E, h) by U(1). This
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poses no problem for X × A HE , though it creates an issue for π∗1E since scalars act non-trivially

on the fibers of E.

The solution to this is to use the determinant line bundle L → A HE associated to a

family of elliptic operators. For an account of the determinant line bundle see Donaldson’s paper

[Don87]. The determinant line bundle was studied by Quillen, Atiyah and Singer, and Bismut and

Freed, among others. Bismut and Freed in [BF86a, BF86b] showed that one can associate to a

family of elliptic operators a determinant line bundle L over the space of hermitian connections

that comes equipped with a natural metric and connection, the Bismut-Freed connection, which

we denote by ∇L . For a suitable family of operators U(1) will act on L with weight −1. This

ensures that E � L has a trivial U(1)-action, so that E � L admits a G -action. More details will

be given in Section 5.2.

The universal bundle U := E � L /G and its quotient connection ∇U will then be used to

define the Mukai map θ : v⊥ → H2(M,Z) (or v⊥/Zv if v2 = 0). O’Grady proved in [O’G97] that

θ is a Hodge isometry over an algebraic K3 surface with Picard rank one. Combining this with the

deformation to the Hilbert scheme from the previous chapter will prove part (2) of Theorem 1; see

Theorem 5.4.4 below.

Last, I will show that the “wrong-way” slice of ∇U |{x}×M is an irreducible twisted Hermite-

Einstein connection on U|{x}×M. This will show that we can identify the original K3 surface X

with a component of the moduli space of twisted sheaves over M with the same topological type

as U|{x}×M; see Corollary 5.5.4 below. This result is similar to results obtained by Reede and

Zhang [RZ19], who prove this for certain moduli spaces of rank zero sheaves whose first Chern

class generates Pic(X), as well as for X [n] for a general K3 surface X.

In what follows we will be dealing with differential forms on X ×A HE and X ×M. These

differential forms can be decomposed using the Künneth decomposition

∧k
(X ×A HE) =

⊕
i+j=k

∧i
X ⊗

∧j
A HE .

Furthermore, both X and A HE have complex structures, the latter being equipped with the

complex structure from equation (4.3.4) interpreted as an endomorphism of T∇A HE . With

both the Hodge decomposition and Künneth decomposition we will use a subscript of H or K

to indicate which decomposition is being referred to: (p, q)K for Künneth, (p, q)H for Hodge.
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In the rest of this chapter we will sometimes use the notation F (∇) for the curvature of

a connection, especially when the connection being referred to is on a bundle over A HE or a

similarly large space. We will also write F (E) for a bundle E when the connection is clear from

context.

Determinant Line Bundles

In this section we recall some results on the determinant line bundle L . First we justify the

ellipticity of a relevant differential operator.

Lemma 5.2.1. Let X be a compact complex manifold with a hermitian metric and E a smooth

hermitian bundle over X admitting a B-twisted holomorphic structure ∂E such that ∂
2

E = 2πiB0,2

for a real closed 2-form B on X. Then the differential operator

∂E ⊕ ∂
∗
E :
⊕
A0,2k(E)→

⊕
A0,2k+1(E)

is elliptic. Moreover, considered as a family of operators indexed by A HE, this family is U(E, h)-

equivariant.

Proof. We prove ellipticity by relating the principal symbol σx(∂E ⊕ ∂
∗
E) at a point x ∈ X to

a principal symbol known to be invertible. The untwisting theory from Section 3.1 tells us that,

near x, ∂E differs from the Dolbeault operator ∂
r

X of a trivial bundle OrX by a 1-form. Since the

principal symbol is unaffected by (differential-)degree 0 terms, the symbols σx(∂E) and σx(∂
r

X)

are the same. Using additivity and duality properties of principal symbols, we conclude that

σx(∂E ⊕ ∂
∗
E) is a direct sum of r copies of σx(∂X ⊕ ∂

∗
X), which is invertible since ∂X ⊕ ∂

∗
X is

elliptic.

The operators ∂E ⊕ ∂
∗
E can be viewed as a family of elliptic operators indexed by ∇ ∈ A HE

since ∇ gives1 ∂E := ∇0,1. The U(E, h)-action on a connection ∇ coincides with the GL(E)-

action on ∇0,1 = ∂E . This means that a unitary gauge transformation g sends the ∂-operator

associated with ∇ to the ∂-operator associated with g(∇), which means that this family is

U(E, h)-equivariant.

1This may seem like we are throwing away a lot of information, but ∇0,1 determines ∇1,0 for unitary
connections; see [Dem, Sec. V.10].
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Remark 5.2.2. There is likely to be a generalization of this lemma to coupling Dirac operators

to twisted connections on α-twisted bundles. The operator ∂X ⊕ ∂
∗
X is the Dirac operator for the

standard spin structure on a complex manifold with c1(X) = 0, and a similar statement likely

holds for more general spin structures on other manifolds.

The next lemma illustrates that we can always find a complementary Mukai vector to a

given Mukai vector v that will aid in the construction of our determinant line bundle.

Lemma 5.2.3. For any Mukai vector v = (r, c, s) ∈ H∗(X,Z) with r and c coprime, there exists a

C∞ line bundle G with v.v(G) = −1 and v(G)2 = −2.

Proof. Begin by writing c = kc0 for c0 primitive. Then, using gcd(k, r) = 1, choose integers a, b

with ak − br = s − 1. By Lemma 4.2.1 we get a class c′ with c0.c
′ = a and (c′)2 = 2(b − 1). We

then take G to be the line bundle representing c′, so v(G) = (1, c′, b). The properties v.v(G) = −1

and v(G)2 = −2 are then immediate.

Fix a twisted Hermite-Einstein connection ∇G on G. (See the proof of Proposition 4.2.5

for constructing ∇G.) Given a connection ∇ ∈ A HE , ∂E := ∇0,1 is a Dolbeault operator that

defines a B-twisted holomorphic structure on E, and likewise ∂G := ∇0,1
G defines a BG-twisted

holomorphic structure on G. The bundle E ⊗ G∨ is therefore also a twisted holomorphic bundle

with Dolbeault operator given by

∂E⊗G∨ = ∂E ⊗ 1G∨ + 1E ⊗ ∂G∨ . (5.2.1)

Then, applying Lemma 5.2.1 to the bundle E ⊗G∨ we see that

D∇ := ∂E⊗G∨ ⊕ ∂
∗
E⊗G∨ : A0,0(E ⊗G∨)⊕A0,2(E ⊗G∨)→ A0,1(E ⊗G∨) (5.2.2)

is an elliptic operator. We view this as a U(E, h)-equivariant family of elliptic operators indexed

by A HE . The U(E, h)-equivariance is a consequence of the equivariance noted in Lemma 5.2.1

and the fact that U(E, h) ignores any data pertaining to G. Thus we have the determinant line

bundle L → A HE whose fiber over a point ∇ ∈ A HE is

L∇ =
∧top

ker(D∇)⊗
(∧top

ker(D∗∇)
)∨

. (5.2.3)
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Proposition 5.2.4. The determinant line bundle L → A HE associated to the family of elliptic

operators in equation (5.2.2) has the following properties:

1. L admits an action of the unitary gauge group U(E, h). The action of U(E, h) induces an

action of U(1) on L of weight −1.

2. The curvature of the Bismut-Freed connection ∇L on L is given by

F (L ) = 2πi

{∫
X

ch(A⊗ π∗1∇G∨) td(X)

}
(2)

, (5.2.4)

where the integral is interpreted as integration along the fibers of the projection π2 : X ×

A HE → A HE and {}(2) indicates the degree 2 part of this differential form. The Bismut-

Freed connection is U(E, h)-invariant.

Proof. For details of the action of the Gauge group on L , see the paper by Freed [Fre18]. Note

that the action of a scalar preserves the fiber of L , and the weight of the action of U(1) on L∇

is seen to be Ind(D∇) = dim(ker(D∇)) − dim(ker(D∗∇)) from equation (5.2.3). From the Atiyah-

Singer index theorem,

Ind(D∇) = −v.v(G) = −1.

For (2), see [BF86b] for the curvature formula for the Bismut-Freed connection for a general

family of Dirac operators, or [Don87] for the specific case of the determinant line bundle over the

space of connections on a vector bundle. For our setting, a K3 surface admits only a single spin

structure since H2(X,Z/2) = 0. The Dirac operators are exactly the operators in equation (5.2.1).

To obtain our formula for the curvature from theirs, we note that our line bundle L can

be viewed as the restriction of a similarly defined determinant line bundle over the space of

connections A HE(E ⊗ G∨, BE − BG) on E ⊗ G∨ along the inclusion A HE(E) → A HE(E ⊗ G∨)

sending ∇ 7→ ∇⊗∇G∨ . The tautological connection on π∗1(E ⊗G∨) restricts to A⊗ π∗1∇G∨ under

this map, thus giving our formula for F (L ).

For U(E, h)-invariance, see [Fre18, Remark 19].

We now turn equation (5.2.4) into a more explicit form. According to [DK90, Ch. 5.2.3],

the tautological connection A has the following Künneth components, which will be useful in

57



evaluating F (L ). In the equations below, u, v ∈ TxX and η, ξ ∈ T∇A HE ⊂ A1(End(E, h)).

F (A)|∇,x(u, v) = F (∇)x(u, v)

F (A)|∇,x(η, v) = ηx(v)

F (A)|∇,x(η, ξ) = 0.

(5.2.5)

Here, η(v) is the contraction of a 1-form with a tangent vector to the K3 surface.

The calculation of F (L ) can be viewed as a warm-up for computing the Mukai map, which

will be carried out in a similar manner in the appendix.

Proposition 5.2.5. For η, ξ ∈ T∇AB, the determinant line bundle L associated with the family

of elliptic operators in equation (5.2.2) is given by

F (L )|∇(η, ξ) =
1

4π2

∫
X

tr

[
(η ∧ ξ − ξ ∧ η) ∧ F∇

]
+

1

2π2

∫
X

tr
[
η ∧ ξ

]
∧ tr(F∇G∨ ). (5.2.6)

Proof. To evaluate F (L ) on a pair of tangent vectors η, ξ ∈ T∇A HE ⊂ A1(End(E, h)), we

contract ch(A ⊗ π∗1∇G) with η and ξ and integrate the resulting top form over X. We proceed

by working out the (4, 2)K component of this characteristic class. Expand the Chern character to

third order in F = F (A⊗ π∗1∇G), since no higher terms will contribute to the (4, 2)K component:

ch(A⊗ π∗1∇G) td(X) = tr

[
1 +

iF
2π
− F

2

8π2
− iF3

24π3
+ · · ·

]
td(X)

The terms of type (4, 2)K from this expression are

− i

24π3
(F3)4,2 td(X)0,0 +

i

2π
F0,2 td(X)4,0.

The second term is easier to calculate. Note that

F0,2 = F (A)0,2 ⊗ 1π∗1G + 1π∗1E ⊗ F (π∗1∇G)0,2 = 0

by equation (5.2.5) and since the pullback of a form from X can only have type (∗, 0)K .

The other term contains the most information. The (4, 2)K part of F3 will only come from

cyclic permutations of F2,0 ∧F2,0 ∧F0,2 (all of which are zero for the same reason above) and from
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cyclic permutations of F1,1 ∧ F1,1 ∧ F2,0. There will be three such terms, all of which are equal

after applying the trace operator. Hence, we arrive at

{ch(A⊗ π∗1∇G) td(X)}4,2 = − i

8π3
tr (F1,1 ∧ F1,1 ∧ F2,0) . (5.2.7)

By definition of integration over the fiber of π2,

F (L )|∇(η, ξ) = 2πi

∫
X

ιηιξ
[

ch(A⊗ π∗1∇G∨) td(X)
]
4,2
. (5.2.8)

To proceed we make use the fact that the contraction operation ιη is an antiderivation of degree

−1 on
∧∗A HE , as well as the two identities

ιηF2,0 = ιξF2,0 = 0, ιηιξF1,1 = 0.

Using equation (5.2.7) we arrive at the following equation:

F (L )|∇(η, ξ) =
1

4π2

∫
X

tr

[
ιηF1,1 ∧ ιξF1,1 ∧ F2,0 − ιξF1,1 ∧ ιηF1,1 ∧ F2,0

]
.

Now observe that ιηF1,1 = η since tensoring A by π∗1∇G does not affect the middle equation in

(5.2.5). Also, F2,0|∇ = F∇ ⊗ 1π∗1G∨ + 1π∗1E ⊗ Fπ∗1∇∨G , so

F (L )|∇(η, ξ) =
1

4π2

∫
X

tr

[
(η ∧ ξ − ξ ∧ η) ∧ (F∇ ⊗ 1π∗1G∨)

]
(5.2.9)

+
1

4π2

∫
X

tr

[
(η ∧ ξ − ξ ∧ η) ∧ (1π∗1E ⊗ Fπ∗1∇G∨ )

]
.

We note that tr[. . . ] here represents the trace operator on the bundle End(π∗1E ⊗ π∗1G
∨).

Therefore, the first term in equation (5.2.9) picks up a factor of 1 from tracing out 1π∗1G∨ , and

the trace in the second term splits in two. We arrive at

F (L )|∇(η, ξ) =
1

4π2

∫
X

tr

[
(η ∧ ξ − ξ ∧ η) ∧ F∇

]
+

1

2π2

∫
X

tr(η ∧ ξ) ∧ tr(F∇G∨ ),

which is the desired result.

Corollary 5.2.6. The curvature F (L ) is G -invariant, and thus descends to a 2-form on M.
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Proof. We will show that a gauge transformation g ∈ U(E, h) preserves the form, and the G -

equivariance will follow by the fact that scalars act trivially on connections and tangent vectors to

A HE .

We first claim that the differential g∗ : T∇A HE → Tg(∇)A
HE is also given by conjugation

on the endomorphism parts of tangent vectors η, ξ ∈ T∇A HE , and furthermore that it takes

the subspace T∇S∇ of the slice to Tg(∇)Sg(∇). To see this, take a path ∇ + tη in the space of all

connections. Then it follows that

g∗η =
d

dt

∣∣∣∣
t=0

(g ◦ (∇+ tη) ◦ g−1) = g ◦ η ◦ g−1.

We also see that the induced action on the connection ∇̃ on End(E) is given by g(∇̃) =

g̃ ◦ ∇̃ ◦ g̃−1, where g̃ is the induced action on End(E) by conjugation. These two observations

make it straightforward to verify that g∗ preserves all of the equations defining T∇S∇ from

equation (4.3.2). Therefore, the formula above for g∗η requires no additional modifications to

define a map T∇S∇ → Tg(∇)Sg(∇).

It then remains to check that F (L )g(∇)(g∗η, g∗ξ) = F (L )∇(η, ξ) using the formula

obtained in Proposition 5.2.5. To this end, note that g acts as η ∧ ξ 7→ g(η ∧ ξ)g−1 and

F∇ 7→ gF∇g
−1. Hence, every term inside a tr[. . . ] in equation (5.2.6) also gets transformed by

conjugation with g (except the term with F∇G∨ , which is left alone). The cyclic property of trace

then shows we can cancel the factors of g and g−1, giving the desired result.

Curvature of a Quotient Connection

We will need to calculate curvature of a quotient connection since the universal bundle

U carries a quotient connection ∇U . This is a retelling of the explanation found in [DK90, Ch.

5.2.3], which we include for the convenience of the reader. Let G be a Lie group acting on a

smooth manifold Ŷ and let π : Ŷ → Y = Ŷ /G be the quotient map. When the group acts properly

and freely Y is also a smooth manifold. Now, if Ê → Ŷ is a smooth bundle that admits a G-

action which carries fibers linearly to fibers, then E := Ê/G is a smooth bundle over Y .

Next, suppose that Ê admits a G-invariant connection, ∇̂, and that we are given a

connection H (viewed as a horizontal distribution) with connection 1-form θ in the principal

G-bundle π : Ŷ → Y with curvature form Θ = dθ + [θ ∧ θ]. Then there exists a connection ∇ on E

60



defined by

(̂∇us) := ∇̂ûŝ. (5.3.10)

This means that, given u ∈ TY and s ∈ Γ(E), we take a θ-horizontal lift û of u, a G-invariant lift

ŝ of s, and apply ∇̂ to ŝ along û. The resulting section ∇̂ûŝ of Ê will be G-invariant since ∇̂ is,

and therefore it corresponds with a section of E, which we define to be ∇us.

The curvature of the quotient connection ∇ can be computed in terms of the curvature of

∇̂ and the curvature of H. To this end we let B ∈ A1
Ŷ

(End(Ê)) be the 1-form such that

∇̂ = π∗∇+B.

(This B is entirely unrelated to the B-field.) It is immediate from equation (5.3.10) that the 1-

form B vanishes on horizontal vectors. Now, the horizontal subspaces Hŷ, ŷ ∈ Ŷ are the kernel

of θŷ viewed as a map TŷŶ → Lie(G). Viewing B as a map T Ŷ → End(Ê) we may then factor

B = Φ ◦ θ for some linear map Φ: Lie(G) → End(Ê). The curvature F (∇) of the quotient

connection evaluated on u, v ∈ TyY is then

F (∇)(u, v) = F (∇̂)(û, v̂)− Φ(Θ(u, v)), (5.3.11)

where û, v̂ ∈ TŷŶ are H-horizontal lifts of u and v, and π(ŷ) = y.

We will be applying this construction to the following data:

Ŷ = X ×A HE

Ê = E � L

∇̂ = A⊗ π∗2∇L = A⊗ 1π∗2L + 1π∗1E ⊗ π
∗
2∇L

with G = U(E, h)/U(1) as our Lie group. Part 1 of Proposition 5.2.4 ensures that G acts on

E � L . We denote the quotient bundle and connection by (U ,∇U ).
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Before moving on we take a moment to describe the connection 1-form θ and its curvature

Θ. At a point ∇ ∈ A HE , according to [DK90, Ch. 5.2],

θ∇(η) = −G∇(∇̃∗η)

Θ∇(η, ξ) = 2G∇({η, ξ})
(5.3.12)

where G∇ is the Green’s operator2for the elliptic complex C•(E,∇) from equation (2.5.12) in

degree 0 and {η, ξ} is the tensor product of the Riemannian metric g on X with the Lie bracket

on End(E, h). Explicitly, if we write η =
∑
i ai ⊗ Ai with ai a real 1-form on X and Ai a skew-

hermitian matrix (depending on x ∈ X), and similarly ξ =
∑
j bj ⊗ Bj , then the value of the

pairing {η, ξ} at a point x ∈ X is

{η, ξ}|x =
∑
ij

g(ai, bj)|x[Ai(x), Bj(x)] (5.3.13)

where [Ai, Bj ] is the commutator of Ai and Bj .

Mukai Map and Hodge Structures

We next turn to proving that the Mukai map θ (to be defined below) is a Hodge isometry

between v⊥ ⊂ H∗(X,Z) (or v⊥/Zv if v2 = 0) and H2(M,Z). We start by defining the map

θ : H∗(X,Z)→ H2(M,Q) by

θ(β) =

{∫
X

β̃ ∧ ch(U∨)
√

td(X ×M)

}
(2)

(5.4.14)

where β̃ is a de Rham representative of β ∈ H∗(X,Z). An explicit formula is given in the next

lemma.

2See references mentioned in Section 2.5 on elliptic complexes for details on the Green’s operator. We will only
need the fact that G∇ is a linear operator.
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Lemma 5.4.1. Let β = (β0, β2, β4) ∈ H∗(X,Z) be any vector. Then the formula for the 2-form

θ(β) applied to η, ξ ∈ T[∇]M is given by

θ(β)(η, ξ) =
i

2π
〈β, v(E)〉F (L )(η, ξ)− i

2π

∫
X

β4 tr(ΦΘ(η, ξ))

− 1

4π2

∫
X

β2 tr

[
η ∧ ξ + F∇ ∧ ΦΘ(η, ξ)

]
− i

2π

∫
X

β0 tr(ΦΘ(η, ξ)) volg

+
i

8π3

∫
X

β0 tr

[
1

2
F∇ ∧ (η ∧ ξ − ξ ∧ η) +

1

2
F 2
∇ ∧ ΦΘ(η, ξ)

] (5.4.15)

where 〈 , 〉 is the Mukai pairing, and where Φ and Θ are as in equation (5.3.12).

Proof. Postponed to the appendix.

One immediate consequence of this calculation is that θ is independent of the choice of

G and L when restricted to v⊥. Indeed, if β ∈ v⊥ the only term involving F (L ) vanishes.

Furthermore, the map Φ: Lie(G ) → End(E � L ) is independent of L because of the natural

isomorphism End(E � L ) ∼= π∗1 End(E).

Hodge Structures

We next clarify the Hodge structures on v⊥ and on H2(M,Z). Classically a K3 surface

X with holomorphic 2-form σ has a Hodge structure on H2(X,Z) given by H2,0(X) = C[σ].

With the B-field BE associated with a Brauer class α we can define a twisted Hodge structure on

H2(X,Z). The multiform e−BEσ = σ − BE ∧ σ defines a weight-2 Hodge structure on H∗(X,Z)

by setting3 H2,0 = Ce−[BE ][σ]. This Hodge structure only depends on α and not the choices of lift

under the exponential map or de Rham representative. For more details on this Hodge structure

see [Huy09]. In order for E to admit a B-twisted Hermite-Einstein connection it is necessary

that e−[BE ][σ].v = 0, which follows by tracing and taking the cohomology class of the equation

F∇ ∧ σ = 2πiB ∧ σ. Thus, because e−[BE ][σ] ∈ v⊥C , the Hodge structure descends to v⊥.

On the other side, H2(M,Z) has a natural Hodge structure whose (2, 0) component is

given by C[Σ], where Σ is the complex 2-form Σ = ΩJ + iΩK and ΩJ and ΩK are the real 2-forms

described in Proposition 4.3.6.

3The unsavory minus sign appearing here is necessary. One could remove it at the cost of writing F∇ ∧ σ =
−2πiB0,2.
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We next show that θ maps e−[BE ][σ] to [Σ]. Note that this calculation happens in place on

the moduli space M =MHE
σ,ω (E, hE , BE) without needing to deform to the Hilbert scheme. Later

this will be used to directly relate the Hodge structures on v⊥ (or v⊥/Zv) and H2(M,Z) during a

twistor deformation.

Proposition 5.4.2. The Mukai map sends the generator e−[BE ][σ] of the Hodge structure on v⊥

to a scalar multiple of the generator Σ of the Hodge structure on H2(M,Z).

Proof. Apply the formula from Lemma 5.4.1 to e−Bσ = σ − B ∧ σ. Since this has no degree 0

term, the formula for θ(e−Bσ) dramatically simplifies to

θ(e−Bσ)(η, ξ) =
i

2π

∫
X

B ∧ σ tr(ΦΘ(η, ξ))− 1

4π2
σ ∧ tr

[
η ∧ ξ + F∇ ∧ ΦΘ(η, ξ)

]
. (5.4.16)

Then, since ∇ is Hermite-Einstein, we can replace F∇ ∧ σ with 2πiB ∧ σ in the second term. Upon

doing so the terms involving ΦΘ cancel, and we are left with

θ(e−Bσ)(η, ξ) = − 1

4π2

∫
X

σ ∧ tr(η ∧ ξ),

which is directly proportional to Σ.

Next we will work through the reductions to the Hilbert scheme that appeared in Chapter

III to relate θ on MHE
σ,ω (E, hE , BE) to the Mukai map on X [n]. Recall that, broadly speaking,

there are five steps in this reduction: tensor E with a line bundle; deform the Kähler structure;

deform across the twistor family to a Picard-rank one K3 surface; the Kobayashi-Hitchin

correspondence; and the spherical twist. Using these steps we can lift results about θ on the

Hilbert scheme of points proved by O’Grady [O’G97] to an arbitrary K3 surface. We will use

some of the notation from the proof of Theorem 4.6.1.

Proposition 5.4.3. The Mukai map θ : v⊥ → H2(M,Z) (or v⊥/Zv when v2 = 0) takes integral

classes to integral classes. Furthermore, it is a linear isomorphism that intertwines the Mukai

pairing on v⊥ and the Beauville-Bogomolov form on H2(M,Z).

Proof. First we assume that M = Ms
c(v) is a moduli space of sheaves with Mukai vector v =

(r,−c, 1) with c primitive and ample and that Pic(X) = Zc, along with the assumption that
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v2 +2 < 2r. Under these conditions we recall from Proposition 4.5.3 that the family I∆ ◦IZ(C) on

X ×X [n] induces an isomorphism φ : X [n] →M. Furthermore, this classifying map also satisfies

I∆ ◦ IZ(c) = (1× φ)∗U ⊗ π∗2L

for some line bundle over X [n], again from the universal property of M. We take the liberty of

absorbing L into I∆ ◦ IZ(c) and just write

I∆ ◦ IZ(c) = (1× φ)∗U .

This equality of Fourier-Mukai kernels gives us the following commuting diagram.

H∗(X,Z) H∗(M,Q) H2(M,Q)

H∗(X,Z) H∗(X [n],Q) H2(X [n],Q)

v(I∨∆)

v(U∨)

φ∗

deg 2

φ∗

v(I∨Z ) deg 2

(5.4.17)

The maps labeled with Mukai vectors are cohomological Fourier-Mukai transforms (see [Huy06,

Ch. 5.2]). The horizontal compositions are identified with the Mukai map when restricted to

either (r,−c, 1)⊥ or (1, c, r)⊥. Also, the spherical twist maps the Mukai vector (r,−c, 1) to the

Mukai vector (1, c, r) and preserves the Mukai pairing on H2(X,Z), and therefore maps (r,−c, 1)⊥

to (1, c, r)⊥. By work of O’Grady [O’G97], the Mukai map on the bottom row has image exactly

H2(X [n],Z) when restricted to v⊥ (or v⊥/Zv), so the same is true of the Mukai map on the top

row. Similarly, the properties of being bijective and preserving the pairings also transfer over.

The next step is to take the dual bundle. Let M1 = Ms
c(r,−c, 1), U1, and θ1 be the

moduli space, universal bundle, and Mukai map for the Mukai vector (r,−c, 1), and let and

M2 = Ms
c(r, c, 1), U2, and θ2 be the same for (r, c, 1). The bundle U∨2 is a family of stable

bundles each with Mukai vector (r,−c, 1), and thus the universal property of M1 gives a map

D : M2 →M1 sending a bundle to its dual. Furthermore, over X ×M2 we have

U∨2 = (1×D)∗U1 ⊗ π∗2L
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for some line bundle on M2. As in the last paragraph we absorb L into U2, and we have a similar

diagram that transfers the desired properties from θ1 to θ2:

H∗(X,Z) H∗(M1,Q) H2(M1,Q)

H∗(X,Z) H∗(M2,Q) H2(M2,Q)

(−)∨

v(U∨1 )

D∗

deg 2

D∗

v(U∨2 ) deg 2

(5.4.18)

Here, the dual map on H∗(X,Z) sends (β0, β2, β4) 7→ (β0,−β2, β4).

After dualizing, we change polarizations from c to ω′t. There is also another change of

polarization later on from ω′ back to ω. In both cases, the change in polarization does not change

the universal bundle nor its Chern classes, so the Mukai map is the same before and after the

polarization change.

The next critical step in generalizing from the Hilbert scheme is the twistor rotation.

Under the twistor rotation only the complex structure on U varies, which will not affect the

Chern character of U nor the Mukai map. (However, the twistor rotation does affect the Hodge

structures, but this is addressed by Proposition 5.4.2.)

Lastly, we study the effect of tensoring the initial bundle E by the line bundle L from

Proposition 4.2.5 on the Mukai map. The Mukai vector v(E) becomes v(E ⊗L) = v(E)∧ ch(L), so

if we also tensor the line bundle G with L we preserve the relation v(E).v(G) = −1 (since wedging

with ch(L) is an automorphism of the Mukai lattice H∗(X,Z)). The family of elliptic operators in

equation (5.2.2) also changes quite predictably. Under tensoring by L, ∂E 7→ ∂E ⊗ ∂L, so

∂E ⊗ ∂G∨ 7→ ∂E ⊗ ∂G∨ ⊗ (∂L ⊗ ∂L∨).

However, ∂L ⊗ ∂L∨ = ∂End(L) = ∂X , since L ⊗ L∨ ∼= End(L) ∼= OX . Under the natural

isomorphism E ⊗ G∨ ⊗ OX → E ⊗ G∨, the factor of ∂X drops out. This shows that the family of

elliptic operators D∇⊗∇L
is isomorphic to the original family D∇, showing that the determinant

line bundle L does not change with tensoring with L. As such, E � L becomes (E � L ) ⊗ π∗1L.

Then, using equation (5.3.11) together with the definition of the Mukai map in equation (5.4.14),
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we see that

θE⊗L(β) =

∫
X

β ∧ tr

[
exp

(
F (E � L )− ΦΘ + 1E�L ⊗ F (L)

)]√
td(X ×M)

=

∫
X

β ∧ exp(F (L)) tr

[
exp

(
F (E � L )− ΦΘ

)]√
td(X ×M)

= θE(β ∧ ch(L)).

Thus, the two Mukai maps differ by an automorphism of the Mukai lattice, and again the desired

properties of the Mukai map transfer through this isomorphism.

The last two propositions combine to show part (2) of Theorem 1, which is summarized

below. In this theorem M =MHE
σ,ω (E, h,B).

Theorem 5.4.4. Let X be a K3 surface with hyperkähler structure (σ, ω), and let E be a bundle

with Mukai vector v = (r, c, s). Assume that v is primitive, r is coprime to c, and 0 ≤ v2 + 2 < 2r.

Then the Mukai map θ : v⊥ → H2(M,Z) (v⊥/Zv when v2 = 0) is a Hodge isometry, where v⊥ is

given the Hodge structure generated by e−Bσ and H2(M,Z) is given the Hodge structure generated

by Σ, the induced holomorphic 2-form on M by σ.

Wrong Way Slices

We now turn to the restriction of (U ,∇U ) to a slice {x} ×M for x ∈ X. We will show that

∇U |{x}×M is an irreducible twisted Hermite-Einstein connection with respect to the hyperkähler

structure induced on M from X. We will shorten notation by writing U|x in place of U|{x}×M.

The proof will be in two stages: first we prove that this connection is Hermite-Einstein, and then

we leverage our deformation to the Hilbert scheme to prove that it is irreducible.

Proposition 5.5.1. The bundle U|x is a twisted polystable bundle with respect to the hyperkähler

structure (Σ,Ω) induced on M from the hyperkähler structure (σ, ω) on X with B-field

proportional to F (L ).

Proof. We prove this by showing the connection ∇U |x is weak Hermite-Einstein and appealing to

Lemma 3.4.10 and the twisted Kobayashi-Hitchin correspondence.

Let η, ξ ∈ T[∇]M be tangent vectors viewed as ∇-harmonic 1-forms valued in End(E, h).

When viewed this way we can consider η, ξ as either tangent vectors to M or A HE , and this
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gives a natural horizontal lift of the tangent vectors up to {x} × A HE . Since we are evaluating

on tangent vectors from M we only need to worry about the (0, 2)K-piece of F (U). Using

equations (5.3.11) and (5.2.5), we see that the tautological connection entirely drops out, leaving

us with

F (U|x)(η, ξ) = F (A�∇L )|x(η, ξ)− ΦΘ(η, ξ)

= 1p∗E |x ⊗ F (L )(η, ξ)− ΦΘ(η, ξ)

We first focus on the (0, 2)H type of F (U|x). The complex structure I on M from

equation (4.3.4) can be expressed as

I(η) = −
∑
i

I(ai)⊗Ai,

where we have expanded η =
∑
i ai ⊗ Ai with 1-forms ai and skew-hermitian matrices Ai. Using

this with the formula for Θ given in equation (5.3.12), we have

Θ(Iη, Iξ) =
∑
ij

g(I(ai), I(bj))[Ai, Bj ].

The complex structure I on X is compatible with g, so we have g(I(ai), I(bj)) = g(ai, bj), and

thus Θ(Iη, Iξ) = Θ(η, ξ). This means that Θ is a (1, 1)H form on M. From this, we note that

F (U|x)0,2(η, ξ) = F (L )0,2(η, ξ) 1U (5.5.19)

from which we can interpret F (L ) as a B-field for U up to factors of 2πi. (Recall that F (L ) is a

2-form on M by Corollary 5.2.6.)

Next we look at the other Hermite-Einstein equation. I have found that it is easiest to work

with the form of this equation given in equations (3.4.9). We will use a simple fact from complex

geometry that the Lefschetz operator ΛΩI
is calculated on a 2-form Π by

ΛΩI
Π =

dimM∑
i=1

Π(ξi, I(ξi))
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where {ξ, I(ξi)} is a real orthonormal basis for T[∇]M with respect to the metric associated with

the Kähler form ΩI (see [Huy05a, Exercise 1.2.10]).

Observe that Θ(η, I(η)) vanishes for any η ∈ T[∇]M. To see this, write η = η1,0 + η0,1 and

Iη = −iη1,0 + iη0,1. It follows that

{η, Iη} = −i{η1,0, η1,0}+ i{η1,0, η0,1} − i{η0,1, η1,0}+ i{η0,1, η0,1}.

The first and last terms vanish by antisymmetry of {, }, while the second and third terms vanish

because (1, 0) forms and (0, 1)-forms on X are orthogonal with respect to the metric g. We

conclude that {η, Iη} = 0, which implies that ΦΘ(η, Iη) = 0 by equation (5.3.12). This tells

us that ΦΘ drops out after applying ΛΩI
. We are left with

iΛΩI
F (U|x) = iΛΩI

F (L ) 1U .

Since iΛΩI
F (L ) is a real-valued function on M, we recognize that ∇U |x solves the weak twisted

Hermite-Einstein equations.

Next we calculate Ext∗(U|x,U|y) for x, y ∈ X by deforming to the Hilbert scheme.

Proposition 5.5.2. For x, y ∈ X,

Ext∗M(U|x,U|y) ∼= Ext∗X(Ix, Iy)⊗H∗(Pn),

where Ix is the ideal sheaf of x ∈ X.

Proof. We first calculate this in the special case where Pic(X) = Zc with c ample and

M = Ms
c(r,−c, 1). Let F ′ : Db(X) → Db(M) be the Fourier-Mukai functor associated with

U , F : Db(X) → Db(X [n]) the functor associated with IZ(c), and R the right adjoint of F . As

we noted in the proof of Proposition 5.4.3, I∆ ◦ IZ(c) = (1 × φ)∗U , where φ : M → X [n] is the

isomorphism induced by the spherical twist. Thus, on the level of functors, φ∗ ◦ F ′ = F ◦ TO.
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Replacing U|x by F ′(Ox) and pulling back to X [n], we have

Ext∗M(U|x,U|y) = Ext∗M(F ′(Ox), F ′(Oy))

= Ext∗X[n](F (Ix), F (Iy))

= Ext∗X(RF (Ix), Iy).

In [Add16, Theorem 2], Addington4 proves that F is a Pn-functor, which means that RF ∼=

1X ⊕[−2] ⊕ [−4] ⊕ · · · ⊕ [−2n + 2], or, more compactly, RF ∼= − ⊗ H∗(Pn). This finishes the

calculation in this special case. Note that

Ext∗X(Ix, Iy) ∼= Ext∗X(Ox,Oy)

using the spherical twist, and also note that the right-hand side vanishes in all degrees when

x 6= y.

Next we generalize from this special case again following the deformation to the Hilbert

scheme. The dual map D : Ms
c(r, c, 1) → Ms

c(r,−c, 1) gives the equality D∗U(r,−c,1) = U∨(r,c,1)

(again up to a line bundle, which can be ignored for this calculation). Thus,

Ext∗M(r,c,1)(U(r,c,1)|x,U(r,c,1)|y) = Ext∗M(r,c,1)(U(r,c,1)|∨y ,U(r,c,1)|∨x )

∼= Ext∗M(r,−c,1)(U(r,−c,1)|y,U(r,−c,1)|x).

Since these Ext groups vanish when x 6= y we can relabel x and y in the last line of this equation

to get

Ext∗M(r,c,1)(U(r,c,1)|x,U(r,c,1)|y) ∼= Ext∗X(Ix, Iy)⊗H∗(Pn).

The Kobayashi-Hitchin correspondence then gives

Ext∗MHE(E⊗L)(UHE |x,UHE |y) ∼= Ext∗X(Ix, Iy)⊗H∗(Pn).

where UHE is the universal bundle on X ×MHE constructed earlier in this chapter.

4This result was also proved with a different method by Markman and Mehrotra [MM15, Theorem 1.1].
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The next step is to deform over the twistor line from the picard-rank one K3 surface to the

initial K3 surface. To do this we use the isomorphism

Ext∗MHE(E⊗L)(UHE |x,UHE |y) ∼= H∗(MHE(E ⊗ L),UHE |y ⊗ UHE |∨x )

This quantity is invariant under the twistor deformation by a result of Verbitsky [Ver96, Corollary

8.1]. This result says that for a hyperholomorphic bundle V over a hyperkähler manifold the

cohomology groups H∗(V) are independent of the complex structure chosen from the twistor

family. From equation (5.5.19) we see that F (UHE |x)0,2 is independent of x. Thus, F (UHE |y ⊗

UHE |∨x )0,2 = 0 for any x, y and even any complex structure in the twistor family for MHE(E ⊗

L) = MHE
σt,ω′t

(E ⊗ L). So, this curvature is type (1, 1)H for each complex structure for the twistor

family of MHE(E ⊗ L). This means that U|y ⊗ U|∨x is hyperholomorphic, so Verbitsky’s result

applies, giving the isomorphism

Ext∗σ,ω′(UHE |x,UHE |y) = Ext∗σt,ω′t
(UHE |x,UHE |y)

where Ext∗σ,ω′ is the Ext group calculated with reference to the holomorphic structure on MHE
σ,ω′ ,

which corresponds with the complex structure on the K3 surface associated with σ. Since we have

shown the result applies to the right-hand side, we now have it for the left-hand side.

The second to last step in our roadmap is deforming ω to ω′. This does not affect the

complex structure on the K3 surface determined by σ, and it does not affect the holomorphic

structure on UHE |y ⊗ UHE |∨x . Thus the proposition holds for the universal bundle over the moduli

space MHE
σ,ω (E⊗L,BE +BL). Lastly, tensoring E by the line bundle L does not change U|y⊗U|∨x ,

so the proposition holds for the universal bundle UHE over the initial K3 and moduli space.

Corollary 5.5.3. The slice U|x is stable with respect to the hyperkähler structure (Σ,Ω) on M

induced from the hyperkähler structure (σ, ω) on X.

Proof. Polystability follows from Proposition 5.5.1, and Proposition 5.5.2 gives

Hom(U|x,U|x) = Hom(Ix, Ix) = C

since Ix is a stable sheaf.
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As a final corollary we have Part (3) of Theorem 1.

Corollary 5.5.4. The K3 surface X embeds as a connected component of the moduli space M̃ of

twisted sheaves on M with the toplogical type of U|x.

Proof. Since U|x is stable for all x we get a map f : X → M̃ sending x to U|x. By

Proposition 5.5.2, we know that HomM(U|x,U|y) = HomX(Ix, I|y) = 0 when x 6= y, so f is

injective. It also follows that

TU|xM̃ = Ext1
M(U|x,U|x) ∼= Ext1

X(Ix, Ix) ∼= Ext1
X(Ox,Ox) = TxX

where we have used the spherical twist for the second to last isomorphism. This shows that f is

an isomorphism on tangent spaces and hence a local isomorphism, and in particular f is an open

embedding. However, we also know that M̃ is Hausdorff, and the image f(X) is compact, so f(X)

is also closed. Thus, X embeds as a connected component.
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APPENDIX

MUKAI MAP CALCULATION

This appendix is devoted to the calculation for proving Lemma 5.4.1. Here, β ∈ H∗(X,Z).

First we note that td1(M) = 0 since it is a hyperkähler manifold. Since we are seeking terms of

type (4, 2)K , only td0(M) = 1 contributes to θ(β), and thus we may omit it from the calculation.

To ease the notation slightly we introduce F := F (A ⊗ ∇L ). We begin by expanding the

Chern character of U∨ to third order; anything higher will not contribute to the degree (4, 2)K

component.

θ(β) =

∫
X

β ∧ tr

[
1− (F − ΦΘ) +

1

2
(F − ΦΘ)2

− 1

3!
(F − ΦΘ)3 + . . .

](
td0(X) +

1

2
td2(X)

) (A.1.1)

The alternating signs appear since tr(F (U∨)) = − tr(F (U)). We have also substituted F (U) =

F −ΦΘ following equation (5.3.11). Next we split β into components (β0, β2, β4) and collect terms

of type (4, 2)K . We have

θ(β) = −
∫
X

β0 tr

[
1

3!
(F − ΦΘ)3

4,2 td0(X) +
1

2
td2(X)(F − ΦΘ)0,2

]
+

∫
X

β2 ∧ tr

[
1

2
(F − ΦΘ)2

2,2

]
td0(X)−

∫
X

β4 ∧ tr (F − ΦΘ)0,2 td0(X).

(A.1.2)

We now proceed to break down these terms into smaller degree pieces. Here is the first set of

reductions:

(F − ΦΘ)3
4,2 = (F3)4,2 − 3(F2)4,0ΦΘ

(F − ΦΘ)2
2,2 = (F2)2,2 − 2F2,0ΦΘ.

(F − ΦΘ)0,2 = 1p∗E ⊗ F (L )− ΦΘ

(A.1.3)

It is important to keep in mind while using the above identities that ΦΘ is of type (0, 2)K . We

will also use the expansion

F = F (A)⊗ 1L + 1π∗1E ⊗ F (L ) (A.1.4)
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The next step is to use eq. (A.1.4) in conjunction with eq. (5.2.5) to evaluate F2,0, F1,1, and F0,2.

The original formula (5.4.14) is to be evaluated on a pair of tangent vectors η, ξ ∈ T[∇]M, so we

will replace F (A)2,0 = F∇ as we have done in the first equation of eq. (5.2.5). To break down the

identities (A.1.3) further, we make use of the following set of identities:

F2,0 = F∇ ⊗ 1L

(F2)4,0 = (F2,0)2 = F 2
∇ ⊗ 1L

(F2)2,2 = F (A)2
1,1 ⊗ 1L + 2F∇ ⊗ F (L )

(F3)4,2 = 3F∇ ∧ F (A)2
1,1 ⊗ 1L + 3F 2

∇ ⊗ F (L ).

(A.1.5)

Note that these equalities are only true after taking the trace of both sides; the cyclic property

of trace is necessary to collect the like terms from expanding F2 and F3. With the identities in

eqs. (A.1.3) and (A.1.5), eq. (A.1.2) becomes

θ(β) = −
∫
X

β0

{
tr

[
1

2
F∇ ∧ F (A)2

1,1 +
1

2
F 2
∇ ⊗ F (L )− 1

2
F 2
∇ ∧ ΦΘ

]
td0(X)

+
1

2
tr

[
1p∗E ⊗ F (L )− ΦΘ

]
td2(X)

}
+

∫
X

β2 tr

[
1

2
F (A)2

1,1 + F∇ ∧ F (L )− F∇ ∧ ΦΘ

]
td0(X)

−
∫
X

β4 tr

[
1p∗E ⊗ F (L )− ΦΘ

]
td0(X)

(A.1.6)

where we have traced out the factors of 1L . We next trace out factors of 1π∗1E (which give

a factor of rk(E)) and regroup all terms involving F (L ). We also take the liberty of setting

td0(X) = 1 and 1
2 td2(X) = volg in the resulting formula. We are left with

θ(β) = −
∫
X

β0

{
tr

[
1

2
F∇ ∧ F (A)2

1,1 −
1

2
F 2
∇ ∧ ΦΘ

]
− tr(ΦΘ) volg

}
+

∫
X

β2 tr

[
1

2
F (A)2

1,1 − F∇ ∧ ΦΘ

]
+ β4 tr(ΦΘ)

+

∫
X

F (L )

{
− β0

[
1

2
tr(F 2

∇) + rk(E) volg

]
+ β2 tr(F∇)− β4 rk(E)

} (A.1.7)

The term in braces next to F (L ) we recognize as the Mukai paring between β0 and v(E,∇),

keeping in mind that the factors of i/2π are implicitly in the factors of F∇. Here, v(E,∇) is a de
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Rham representative of the Mukai vector v(E) coming from ∇. We now reinsert1 the factors of

i/2π to get

θ(β)(η, ξ) =

∫
X

β0

{
i

8π3
tr

[
1

2
F∇ ∧ F (A)2

1,1 −
1

2
F 2
∇ ∧ ΦΘ

]
+

i

2π
tr(ΦΘ) volg

}
+

∫
X

i

2π
β4 tr(ΦΘ)− 1

4π2
β2 tr

[
1

2
F (A)2

1,1 − F∇ ∧ ΦΘ

]
+

i

2π

∫
X

F (L )〈β, v(E,∇)〉
(A.1.8)

Next we will contract with two tangent vectors η, ξ ∈ T[∇]M. The definition of integration over

the fiber calls for us to calculate θ(β)(η, ξ) by first contracting with ξ and then η. Notationally,

this looks like θ(β)(η, ξ) =
∫
iηiξ(· · · ), where iξ denotes the contraction of the tangent vector ξ

with a differential form (from M). We note the following identities that will be used:

iηiξF (A)2
1,1 = η ∧ ξ − ξ ∧ η

iηiξΦΘ = −ΦΘ(η, ξ)

iηiξF (L ) = −F (L )(η, ξ)

(A.1.9)

The first follows from (5.2.5) while the other two follow from exchanging the order of inputs to

a 2-form. The F (A)2
1,1 term appears twice, once on its own and once multiplied by F∇. When

it appears on its own we can use the cyclic property of trace and the fact that η and ξ are

differential 1-forms on X to write tr(ξ∧η) = − tr(η∧ξ), which allows us to make the simplification

1

2
tr(η ∧ ξ − ξ ∧ η) = tr(η ∧ ξ).

The other term involving F∇ will not simplify in this manner. We also note that F (L )(η, ξ) is

independent of x ∈ X since the dependence of η and ξ on x is already integrated out; see the

formula for F (L )(η, ξ) in (5.2.6). We then have the desired result:

θ(β)(η, ξ) =
i

2π
〈β, v(E)〉F (L )(η, ξ)− i

2π

∫
X

β4 tr(ΦΘ(η, ξ))

− 1

4π2

∫
X

β2 tr

[
η ∧ ξ + F∇ ∧ ΦΘ(η, ξ)

]
− i

2π

∫
X

β0 tr(ΦΘ(η, ξ)) volg

+
i

8π3

∫
X

β0 tr

[
1

2
F∇ ∧ (η ∧ ξ − ξ ∧ η) +

1

2
F 2
∇ ∧ ΦΘ(η, ξ)

]
.

(A.1.10)

1Since the factors of i/2π were essentially absorbed into the curvature F − ΦΘ, we reinsert as many factors of
i/2π as there are curvature terms.
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