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DISSERTATION ABSTRACT

Julian Smith

Doctor of Philosophy

Department of Physics

June 2020

Title: How Neurons Exploit Fractal Geometry

Neuroscientists do not fully understand why neurons acquire their

morphology and specific dendritic structure. This is important knowledge because

the shape of neurons is connected to the health and computational power of the

brain; it determines the number, type, and the robustness of the connections; and

it may lead to improvements in retinal prostheses. Previous research indicated that

the shape of electrodes may influence the stimulating power and bio-compatibility

of retinal prostheses and any device that interfaces between brains and machines.

In the first part of this dissertation, we worked with 3D reconstructions of adult

CA1 rat hippocampal neurons and used fractal analysis to look at their physical

properties, such as their mass, surface area, bounding area, and their dendritic

profile. We altered the morphology of the neurons to investigate three fundamental

questions: 1) To what extent are neurons fractal? 2) Where did the fractal shape

come from? 3) Why are they fractal? We developed a framework to answer these
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questions and further apply that framework towards the understanding of why

a neuron would establish a planar versus non-planar dendritic morphology. In

the following section of this dissertation, we focused on the general application

of this research, specifically in the hopes of restoring vision and improving retinal

prostheses. We compared three electrode designs that could one day achieve this

goal by replacing damaged photoreceptors, stimulating healthy neurons, and

utilizing the rest of the functional retina to transmit an appropriate signal to

the brain. In the final section of this dissertation, we propose an experiment to

assess the connection between the neurons and the electrode, which is based on

the information and knowledge gathered from the previous sections and informed

by our research at the University of Oregon. This dissertation includes previously

unpublished co-authored material.
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CHAPTER I

INTRODUCTION

The natural world is full of useful systems which derive beauty from how

elegantly they pack function into a seemingly complex, but fundamentally simple,

form. Trees reach to the sky, collecting light to photosynthesize, lungs fill the

chest cavity supplying oxygen to the bloodstream, and arteries deliver that

oxygen throughout the body to keep tissue alive. It is not surprising that form

is intimately tied to function, given how integral that relationship is in natural

selection. To accomplish these demanding requirements biological structures often

use one of nature’s most ubiquitous tools, fractal geometry.

Fractals are frequently utilized in nature because they optimize the balance

between cost and benefit. Often surface area is highly valued, while mass and/or

volume is costly or constrained. For instance trees use the surface area of their

leaves to collect light, and oxygen uses membrane surface area for diffusion either

out of the lungs, or the bloodstream. Perhaps it should have been expected then

that the brain, and it’s processing unit, the neuron, exhibit fractal qualities [1, 2,

3, 4, 5, 6, 7].

Neurons are the crucial processing cell in the central nervous system (CNS)

of nearly all animals. They are largely responsible for how we think, feel, and

move. Originally the entire CNS was thought to be one continuous network of

cells, without gaps between the cells. In 1887 Santiago Ramón y Cajal challenged

this theory when he used a relatively new neuron staining technique to produce

intricate drawings of neurons which lead to the current scientific understanding

- the CNS is composed of discrete cellular units. Immediately a question arises -
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what dictates the complexities of one neuron connecting with another? It speaks

to the diversity and complexity of the CNS that we still do not fully understand

this question. Then, in 1931 a science fiction concept is ignited when Frankenstein

was adapted to film - can we use electrodes to connect to the body and brain?

Since then science fiction has become science fact.

Electrodes are a powerful tool in medicine, research, and technology. They

have been widely used to regulate heart rhythms with a pacemaker [8], restore

hearing with cochlear implants [9], alleviate Parkinson’s tremors with deep

brain stimulation [10], enable fully functioning prosthetic limbs [11], and even

restore sight to the blind with retinal implants [12]. Furthermore, incorporating

fractals into electrode design is promising. Simulations show that the electrical

properties of small-scale fractal electrodes will efficiently stimulate neurons [13, 14].

Fractals are mechanically flexible, a desirable property for implanting electrodes

in the curved space at the back of the eye [15]. Fractals exhibit favorable optical

properties including extraordinary transmission of light [16, 17] (where the light

transmitted through an electrode is greater than a naive ‘pixel count’ predicted by

ray optics) and tuning of the transmitted wavelength optics [18, 19].

To fully utilize the benefits of these promising effects the neurons must be

healthy and in close physical contact with the electrodes. This would require

that 1) the neurons preferentially connect to the electrodes rather than the gaps

between the electrodes, 2) glia, the support cell of the central nervous system,

do not proliferate on the electrodes, and build up scars, 3) glia proliferate in the

gaps and are close enough to provide their health benefits. During my Ph.D. we

have spent a significant amount of time investigating systems that promote the

aforementioned conditions on large-scale electrodes (Area ≈ 36 mm2 ).
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We designed experiments with carbon nanotubes (CNTs) as the electrode

material because they promote neuron adhesion and growth, yet they inhibit glial

proliferation. By patterning the CNTs into fractal geometries with multi-scaled

interconnected gaps we encouraged glial proliferation in the gaps, thereby keeping

those glial cells close to the neurons on the CNTs. In addition, we identified a

network organization in the gaps that we labelled a small-world network. We did

so because observations of the identified small-world network match the general

properties of small-world networks in the literature [20, 21, 22], thereby implying

efficient communication flow between neurons. These neurons in the gaps then

connect to the neurons on the electrodes. Therefore stimulated neurons on the

electrode could additionally pass a signal to the CNS via the small-world network

in the gaps.

We have spent a significant amount of time investigating large scale

electrodes, but in order to achieve better electrodes appropriate for most

applications we need to shrink electrodes down to the size scale of an individual

neuron. This is necessary from a technological point-of-view because the

stimulating and recording resolution increases with decreasing electrode size.

For instance, currently retinal implant technology can restore vision such that an

individual might be able to identify where the door in a room is, but it is far from

the theoretical maximum, which would allow an individual to recognize a loved

one’s face[23].

How we design small-scale electrodes that interface with neurons is a focus

of our research and a practical aim of this dissertation. What if we fabricated

electrodes at the size scale of a neuron such that they had the same characteristics

or complementary characteristics to the neurons that are meant to attach to
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them? Would they become more biophilic? Would there be other enhanced

favorable responses? We specifically ask whether designing a fractal electrode with

characteristics complementary to a neuron, which has been identified as having a

fractal morphology, would provide a favorable response. In order to design such

an electrode it would be useful to understand the fractal qualities of a neuron.

However, although there is a general understanding that neurons are fractal,

central questions have not been explored.

In this dissertation we focus on the central questions necessary to understand

the fractal-like morphology of neurons. To what extent are neurons fractal?

What are the geometric properties that produce their fractal-like behavior (e.g.

distribution of lengths, angles, etc.)? Why does a neuron have a fractal-like

structure? Does it come from a balance between a neurons’ costs and their need

to connect to other neurons? Once we have addressed the above questions we

return to our initial question on electrode design. We ask whether the fundamental

qualities of neurons can be applied to electrode design even though their costs and

benefits are not identical.

In this introduction we provide the language, subjects, and context for

this dissertation. Later, we will make the claim that a fractal framework is an

appropriate framework to discuss geometric properties and their implications for

a neuron. Therefore it is critically important that the reader has a basic ken of

what a fractal is, how we generate fractal geometries, and a method for measuring

the fractal dimension. It is equally important that the reader understand the

basic anatomy, functioning, and energetic costs associated with a neuron. We

discuss glial cell properties because neurons rely heavily on them, and because they

play a particularly notable role when the nervous system interacts with external
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materials, such as electrodes. We describe the general structure and function of

a subretinal implant, the specific electrode of our expertise. We then summarize

relevant recent results from our group: neuronal and glial response to physical

cues; neuron network formation when culturing on carbon nanotubes patterned

into complex fractal geometries, and electrical properties for stimulating neurons at

the single neuron scale 1.

In Chapter 2 we look at the fundamental behaviors of neurons. We

investigate their branching statistics and how their connectivity and costs vary

with the fractal dimension as the neurons are modified. We identify that neurons

follow the relevant behaviors of H-Tree branching fractals. In Chapter 3 we apply

the fractal framework established in Chapter 2. We introduce a cost-benefit

formalism that we first use to calculate the behaviors of the CA1 hippocampal

neurons using heavily constrained exact H-Tree models. We then use these H-Tree

models to investigate whether a more ED2 or ED3 morphology is advantageous.

We apply the same framework to electrode design, accounting for the differences

between them and neurons. Finally in Chapter 4 we integrate our findings and

propose an experiment to look at the fundamental behaviors of neurons as they

maintain proximity to electrodes. We design it to maximize the chances of a

neuron process following an electrode once it has been reached, and to learn the

fundamental branching dynamics of a neuron as it grows along an electrode.

1.1. Fractals

Fractals are self-similar objects in mathematics and nature [25], where

self-similar refers to having the same statistical characteristics, such as space

1For a detailed description of the experiments referenced in this introduction the reader should
see the dissertations of S. Moslehi [24] and W.Watterson [23]
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filling properties, at increasingly small size scales. This property leads to a scale-

invariance, where one cannot determine the degree of magnification purely from

appearance, because without a priori knowledge there are no known measures of

length to use as a guide. In mathematics, fractals can repeat exactly and infinitely.

For instance, Fig. 1.1a shows an exact branching fractal that can be zoomed in on

at specific scales to show the exact same pattern repeated. In nature, fractals are

statistically self-similar and only repeat over a finite length range. For example,

the tree branches in Fig. 1.1b are statistically self-similar over a few orders of

magnitude. In this dissertation we will deal with both exact (e.g. H-Trees Fig.

1.12) and statistical fractals (e.g. Neurons Fig. 1.6).

Fractal scaling is motivated by the way that three primary Euclidean shapes

(a line, a square, a cube) scale with size. Consider the one-dimensional line in Fig.

1.2. The number of lengths N increases as L decreases in the following way: N =

(L/L1)
−1, where L1 is the length of the undivided line. For a square, the number

grows as N = (L/L1)
−2. Finally, for a cube, the number of units that fill a three-

dimensional space grows by N = (L/L1)
−3 as L is decreased. In each instance, the

negative of the exponent is the intuitive value for the dimension of the object. The

line is a 1D object, the square 2D, and the cube 3D. A scaling relationship with a

generalized dimension D is written as,

N ∝ (L/L1)
−D. (1.1)

Fractal shapes also follow this scaling relationship but allow for non-integer, or

fractional, values of D. 2

2Benoit B. Mandelbrot coined the term fractal in his book The Fractal Geometry of
Nature[25].
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FIGURE 1.1. Mathematical and natural branching fractals.(a) The mathematical
branched fractal features an exact, infinitely repeating pattern when zoomed in at
increasingly fine size scales.(b) The tree branch pattern statistically repeats at finer
size scales. However, as with all fractals in nature, the scaling range over which it
is self-similar is finite.

We use this scaling relationship to measure the dimension of a fractal with

a tool called box counting. This tool directly measures the amount of space an

object occupies at different size scales (Fig. 1.3). As with the Euclidean example,

we can count the number of boxes filled, N, at each new box size, L. The exponent

D, if consistent over many different box sizes, gives us our fractal dimension. The

scaling range refers to the variation in box sizes in which an object maintains

a consistent D value [26]. For natural fractals, we typically expect a scaling

range of at least an order of magnitude. We do note though, that just because
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FIGURE 1.2. Scaling with euclidean dimensions. An intuitive idea of dimension is
developed by measuring Euclidean objects, with different sized units, in one, two,
and three dimensions. The number of units N that spans the object grows as L−D,
where L is scaling rate, and D is the dimension.

an object has a limited scaling range, does not necessarily mean that it is not

fractal. In Section 2.5 we discuss in detail how the box counting fractal dimension

is calculated.

An object cannot have a fractal dimension D greater than the space it

is embedded within [25]. The embedding dimension is the fewest number of

dimensions required to describe an object. All natural objects exist in the 3

dimensional world, but at different size scales an object might only use a portion

of that space. Take a long cylindrical tube for example. If we zoom down to the

atomic level, then we need all 3 dimensions to describe that object. Zooming out,

each atom becomes point-like, but together they make a thin surface which we
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FIGURE 1.3. An example of counting boxes on a fractal tree. The number of
colored boxes grows as a function of the box size in a non-integer power because
the pattern is a fractal object. Reprinted with permission from the author [27].

can describe with 2 dimensions. Zooming out even further, we start to see the

curvature of the tube and the hole going down its center. Eventually this becomes

a long line, which can be described with 1 dimension. The number of dimensions

needed to describe the tube at each size scale is the embedding dimension. Since

the box counting dimension cannot exceed the space it is embedded within, the

calculated D would be less than or equal to 3, 2, or 1 respectively. The size scale

at which we look at an object, or the box counting sizes we choose, matters.

This is the same as with neuron models we analyze. The 3D reconstructions

are sets of tubes that branch in complicated ways. Because we are interested in

the branching pattern of the neurons, we will say that a neuron that extends into

2-dimensions at the size scale of its branching (greater than the branch width of

9



∼ 2µm and less than the maximum displacement between any two points on the

neuron) is defined as an embedding dimension 2 (ED2) object, whereas a neuron

that extends into 3-dimensions is defined as an ED3 object. For our purposes the

size scale of a neuron’s branching is between the branch width of ∼ 2µm and

the maximum displacement between any two points on the neuron which ranges

between 185 µm and 690 µm.

We can use the same scaling relationship in equation 1.1 to generate fractals,

where we only slightly modify how we think of the terms. L1 becomes the size

scale of a seed pattern, L the size scale of the current iteration, and N the number

of new patterns in that iteration (Fig. A.1 & A.2).

For example, we use two different H-Tree constructions in this dissertation.

Method 1 is most natural when investigating the behavior of neurons (Chapter 2

& 3), while method 2 is convenient when we compare different electrode designs,

which we will explore at the end of Chapter 3. Method 1 has branches that

decrease in length with every new branch. Starting with a straight branch at

length L1, we draw two shorter branches at right angles with reto the first through

its endpoints. The length of each new branch is divided by 21/D (see A.1). This

process is then repeated for each new branch, adding increasingly shorter lengths.

Several H-Trees with different D values and numbers of iterations can be seen in

Fig. 1.12 & 2.10. Method 2 uses an ‘H’, with equal height and width as the seed

pattern, and iteratively adds smaller H’s to the ends of each H (Fig. A.2). Both

methods can be used to create ED2 and ED3 H-Trees.

We see that a higher D value has relatively more length at small size scales,

and thus we say it has relatively more fine structure. Conversely, a low D value has

relatively more coarse structure.
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Mandelbrot introduced the term fractal geometry to describe physical objects

as a way to allow comparison with mathematical patterns. He insisted that the

term should only be used if it is a useful description for the object and if there is

a physical reason for thinking the object is multi-scaled [25]. We apply fractals

to our investigation of neurons and electrodes because, as we will show, both

conditions are satisfied.

1.2. Inside the brain and retina

1.2.1. Neurons

A neuron is a cell in the nervous system that transmits information via

electrical activity [28]. A typical neuron consists of a cell body (soma), dendrites,

and an axon (see Fig. 1.4), and upon reaching maturity never divides. The

axon extends from the cell body and often gives rise to many smaller branches.

Dendrites also extend from the cell body and receive messages from other neurons.

In general both dendrites and axons are referred to as neuron processes or neurites.

Neurons make connections at synapses which can occur along the length of

dendrites and axons, or at a processes end [29]. The receiving synaptic component

on a dendrite is a spine, and the transmitting synaptic component on an axon is

a bouton. Neurons have many spines along their dendrites. For example, a single

pyramidal neuron in the hippocampal CA1 region possesses as many as 30,000

dendritic spines [30].

1.2.1.1. Neural stimulation

Neurons transmit information through electrochemical signalling. For

chemical signalling, neurotransmitters are released from synaptic vesicles in the
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FIGURE 1.4. The anatomy of a neuron. A typical neuron consists of a cell body
(soma), dendrites, and an axon. A retinal bipolar cell is shown.

presynaptic bouton and bind to the dendritic spine’s postsynaptic receptors,

which causes the receptor molecules to be activated in one of two general ways.

Either ion channels are opened, causing different ions to enter or exit the cell, or

the intensity of response to future neurotransmitters can be modulated [31]. For

electrical signalling, a change in the electrical potential near the neuron results in

ions flowing in or out of the neuron. These signalling mechanisms work because a

neuron maintains a membrane potential, Vm, such that the intracellular potential,

Vin, is less than their extracellular potential, Vout.

Vm ≡ Vin − Vout. (1.2)

Neurons are depolarized if Vm > 0 or hyperpolarized if Vm < 0. The potential

difference which prevents diffusion of ions across the membrane is known as the

resting potential. For a typical mammilian neuron the resting potential is -70 mV .

In a passive neuron model, a neuron’s membrane can be modeled as a

resistor and capacitor in parallel (Fig. 1.5)[32, 33]. The membrane creates an

impermeable separation between charged ions, i.e. a capacitor, while ion channels
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establish a narrow pore for ions to flow through, i.e. a resistor. More complicated

models (Hodgkin and Huxley) extend this same generic scheme to include selective

channels for different types of ions [34] and are more appropriate for models which

involve active signalling (e.g. action potentials).

FIGURE 1.5. Passive cell membrane circuit model. The cellular membrane
behaves as a resistor (ion channels) and capacitor (membrane) in parallel.
The membrane capacitance is Cm and the membrane conductance is gm. The
membrane potential, Vm, results from an imbalance in ions and charged proteins
between the intracellular and extracellular space. Reprinted with permission from
the author [23]

Receiving signals causes the electrical potential within a neuron to change.

For many neurons (e.g. CA1 pyramidal, Purkinje) if the incoming signals

depolarize the neuron by a threshold amount (∼ 15mV ), then they elicit a binary

response in the receiving neuron, in which it transmits a signal through its axon

(i.e. fires an action potential). If the inputs don’t reach this threshold amount of

depolarization then it stays silent to downstream neurons. Other neurons (e.g.

retinal bipolar) transmit a signal via a graded potential, where the amplitude is

proportional to the strength of the stimulus [29]. After the signal is transmitted in

13



either case, the neuron then spends energy to pump ions across the cell membrane

such that it returns to its resting membrane potential [30].

Alternatively, one can bypass the synapses and apply an external electric

field directly to a neuron which induces it to transmit a signal [35]. This property

enables the design of electrodes for stimulating neurons, which can then pass

signals downstream using prototypical mechanisms [36].

1.2.1.2. Neuron morphology

Neuron morphology can be drastically different (see Fig. 1.6). For example,

CA1 pyramidal neurons have a distinct morphological shape with two sets of

dendrites extending from opposing sides of it’s soma in a fairly sparse network. As

we will discuss again in Chapter 2 & 3, those dendrites have a broom-like shape,

but satisfy the condition we established for ED3 objects. The Purkinje neuron

takes a different approach. It forms a dense network with a single initial branch

from the soma. In two dimensions, it’s dendrites almost fill space entirely (Fig.

1.6b), but if looked at from another viewpoint we see that there is no extension

into the third dimension (Fig. 1.6d). The Purkinje neuron satisfies the condition

for an ED2 object.

1.2.1.3. Neuron energy expenditure and geometric costs

There are two types of energy expenditure in the brain, signalling and

non-signalling. Signalling is the brain’s primary mechanism for information

processing and is carried out by neurons. This includes energy used for action

potentials, synaptic transmission, and maintaining resting potentials. These

processes are largely driven by energy in the form of adenosine triphosphate (ATP)
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FIGURE 1.6. Example neuron morphology. Two example neurons (column a &
b) are shown from two distinctive viewpoints (top & bottom row). Dendrites are
shown in green, the soma in red, and the axon in black. (a) CA1 Hippocampal
Neuron, partial axon shown. Dendrites are broom-like but extend into all 3
dimensions (ED3). The soma diameter is 10 µm. (b) Purkinje neuron. Axon
not shown. Dendrites are essentially planar (ED2). The soma diameter is 18 µm.
Models reconstructed from neuromorpho.org [37].

being supplied to ion pumps throughout a neuron, which are located at both

synapse and non-synapse surfaces. The amount of ATP expended is proportional

to the membrane capacitance for action potential propagation or ion channel

conductance in the absence of action potentials [38]. In both instances, the energy

is proportional to the membrane surface area.
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The non-signalling energy expenditure in the brain is used for metabolism

and to build/move material (e.g. actin treadmilling, microtubule dynamic

instability, lipid turnover, protein synthesis, and mitochondrial proton leak).

Although both types of energy expenditures have many interwoven

complexities, we can re-frame them in terms of geometric costs. We identified that

the signalling expenditures can primarily be related to a surface area. Similarly

we propose that the non-signalling expenditures can be described in terms of

geometric costs such as mass, surface area, process length, and occupying space.

For example, lipid turnover is necessary to maintain a healthy cell membrane,

which varies with surface area [39];the energy required for protein synthesis

would be much greater with a more massive cell [40]; and during the construction

of processes, neurons must consider the boundaries of other cells, incurring an

occupancy cost[41]. This is particularly the case when it comes to neuron tiling,

where neurons of the same type reduce their dendritic overlap [42, 43].

1.2.2. Glia

Glia are supportive cells in the central nervous system (CNS). They are as

numerous as neuronal type cells, constituting 50% of the brain [44]. They have

four main functions: surrounding neurons and holding them in place; supplying

nutrients and oxygen to neurons; insulating one neuron from another; destroying

pathogens and removing dead neurons. They also play a role in neurotransmission

and synaptic connections. They have a wide variety of morphologies. Some have

extensive dendritic tendrils, while others are more egg like (the shape they often

take to divide), while still others take on the form of the structures they wrap
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around (like axons). Unlike neurons, glial cells can differentiate and proliferate

(divide) throughout their life.

Glial cells proliferate and enlarge as a reaction to trauma, infection, or

neurodegeneration [45]. With severe damage a glial scar can form, which is

a thick layer of glia through which neuron processes can no longer pass [46].

Unfortunately, electrodes induce trauma when implanted, and once a glial scar

forms, it can inhibit the stimulation or recording capability of the electrode by

pushing neurons far from the electrode site.

Glial scar formation can be reduced. Their formation decreases with implant

size [47, 48, 49]. Completely wireless technologies reduce scar formation because

they can limit downstream micromotions at the electrode site [36]. Another

technique involves pre-loading an anti-glia drug on the implant [50]. Also,

matching the stiffness of the natural environment by the insertion of soft hydrogels

into the CNS can reduce scar tissue formation [51]. Finally, as Piret et al. (2015)

showed, glia will preferentially proliferate on flat surfaces compared to textured

ones, a technique that allows neurons to stay close to the electrodes that stimulate

them [52].

1.2.3. Retina

Positioned at the back of the eye, the retina is responsible for the initial

stages of visual processing (Fig. 1.7). The retina consists of different layers of

neurons organized in two-dimensional sheets stacked on top of each other. Light

entering the eye passes through the inner retina and activates rod and cone

photoreceptors, which act like the pixels in a camera. Bipolar cells transmit a

signal from the photoreceptors to ganglion cells, which transmit a digitized signal
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to the brain. At the photoreceptor-bipolar interface, horizontal cells modify the

signal, and at the bipolar-ganglion interface, amacrine cells modify the signal.

Each step is complex but necessary for the brain to receive an appropriate signal.

FIGURE 1.7. The structure of the retina. There are five main classes of neurons
in the retina. Photoreceptors, horizontals, and bipolars all respond to light with
graded potentials. Amacrine cells exhibit both passive and active membranes.
Ganglion digitize the sum of signals from bipolars and amacrines and send action
potential spikes to the optic nerve. Reprinted with permission from the author
[23].

The three types of glia that exist in the retina are astrocytes, microglia,

and Müller cells [45]. Astrocytes and microglia are located throughout the retina.

Astrocytes provide a scaffold for neurons to grow on, regulate ionic concentrations,

help form the blood brain barrier, provide a fuel reserve for neurons, help regulate

blood flow, collect waste products and move them to the capillaries, and have a

role in the structure and formation of synapses. Microglia are responsible for the

elimination of microbes, dead cells, redundant synapses, protein aggregates, and
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other debris that may endanger the retina. Müller cells extend through all retinal

layers and are responsible for maintaining the structural and functional stability

of the retina. They encapsulate neurons to improve synaptic coupling, maintain

homeostasis, provide structural support, regulate the volume of the retina, and

provide metabolites to microglia.

1.3. Subretinal implants

Subretinal implants have the potential to restore vision to blind patients

without properly functioning photoreceptors. Retinitus pigmentosa (RP) and

age-related macular degeneration (AMD) are two diseases that cause cell death

in photoreceptors which leads to vision loss. Together, these diseases account for

a global cost in excess of $343 billion, including $255 billion in direct health care

costs. [53]. Subretinal implants (Fig. 1.8) replace the damaged photoreceptors

with microphotodiodes combined with electrodes that directly stimulate bipolar

neurons, but leave the remaining functional retina intact. Ideally a single

microphotodiode would replace each photoreceptor. However, even with an

electrode that has 4 times the area of 1-1 replacement, visual acuity could be

restored to 20/80, allowing patients to read large font sized text and recognize

faces [23].

In this dissertation subretinal implants with integrated photodiodes are

discussed. When appropriate, the material of choice is vertically aligned carbon

nanotubes (VACNTs). VACNTs are a promising material for electrodes because

of their nanoscale morphology [54], flexibility [55], and double-layer capacitance

[56]. All of the carbon nanotubes discussed in this dissertation are VACNTs and

therefore the ’VA’ portion will be dropped, leaving just CNTs.
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FIGURE 1.8. Schematic of the eye showing the position of a subretinal implant.
The inset is a zoom in of the boxed area, indicating different neuronal layers in the
retina. The subretinal implant is in contact with bipolar neurons. Reprinted with
permission from the author [24]

Ideally, the implant is self-powered via the photodiode as it reduces the

number and severity of complications [57]. This introduces a technical hurdle

because the photodiode area required to power an electrode capable of stimulating

neurons is large.

Because our focus is on electrodes for stimulating neurons, we will henceforth

refer to any patterned material as an electrode, regardless of whether it is made of

an electrode material or otherwise has the appropriate conditions for functioning

(e.g. a power source).

1.4. in vitro experiments

It is well established that cells not only follow chemical cues, but also

mechanical ones [58, 59]. One experiment attempted to answer whether chemistry

or topography is the dominant surface cue in determining neural growth by seeding

embryonic (E18) hippocampal neurons directly between PDMS microchannels
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and immobilized neural growth factor [60]. Microchannels were 1 or 2 µm wide

and 400 nm deep. In the presence of solely topographical cues or chemical

cues, hippocampal axons preferentially grew from a flat area onto the striped

pattern 70% of the time (Fig. 1.9), indicating that the elongating axons preferred

topographical cues. In another experiment rows of gallium phosphide nanowires

were fabricated and it has been shown that glial cells preferentially grew on flat

surfaces between the nanowires [52].

FIGURE 1.9. Axons prefer topographical over chemical surface cues. Hippocampal
neurons placed between PDMS microchannels and neural growth factor
preferentially grow axons towards the topographical surface cues. Scale bar, 25
µm. Image from Gomez et al. (2007).[60]

These studies motivated a set of in vitro experiments where we tested

whether geometrically patterned CNTs could guide the proliferation of glial cells

into regions away from the surface of the electrodes, as well as enhance neuronal

adhesion and outgrowth on the electrodes surface. Neuron and glial cells were

obtained from young mouse retinas. The retinas were dissociated such that

individual cells without processes were suspended in a medium that was then
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seeded onto the patterned CNT samples where they were allowed to re-grow

processes and proliferate over days. After incubation, neurons and glial cells were

fixed and marked with immunohistochemistry techniques such that they could be

viewed in a fluorescence microscope.

By introducing rows of CNTs separated by rows of silicon, it was established

that retinal cells follow mechanical cues. Next, by adopting H-Tree fractal

electrode geometries while using the same materials, it was shown that the network

formation of neurons and glial cells was modified compared to the row samples and

also between different fractal H-Trees.

This section summarizes a set of observations that pertain to this

dissertation from in vitro experiments performed by graduate students in the

Taylor and Alemán labs. Saba Moslehi (SM) fabricated samples. SM, William

J. Watterson (WJW), Kara M. Zappitelli (KMZ), Conor Rowland (CR) imaged

and characterized CNT samples. David Miller (DM), KMZ, Curtis Colwell,

Derek Hallman, and Benjamı́n Alemán (BA) designed and developed the VACNT

synthesis process. DM built the CVD furnace, the gas delivery system, and wrote

the CVD control software. SM, WJW, KMZ, Julian H. Smith (JHS), and CR

performed cultures, immunohistochemistry and fluorescence imaging procedures.

SM, WJW, and JHS developed the necessary image processing tools. SM and

JHS performed image processing and developed data visualization tools. SM

completed a statistical analysis of the data and analyzed the results. All students

were trained on the culture protocols by Maria-Thereza Perez (MTP). Richard P.

Taylor and (BA) were PIs on this project. For a full list of materials, methods, and

results see the S.Moslehi dissertation [24].
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1.4.1. Alternating rows of CNTs and flat Si

Alternating rows of CNTs and flat silicon (Si) with varying widths were

used to understand how mechanical cues influenced retinal neurons and glia in the

culture environment (Fig. 1.10). Neuronal survival, adhesion, and process growth

were all enhanced on the CNTs compared to the flat Si. The nanoroughness [54]

and lower rigidity [61, 62] of the CNT surfaces was preferred for neurons, but not

ideal for glial cells, whose proliferation was hindered on the CNT surfaces due to

the lack of motility [63].

Very few neuron clusters were seen on CNT surfaces. We proposed that this

occurs for two predominant reasons. 1) Neuron motility is low on CNT surfaces

and 2) neurons adhere strongly to the CNT topography. Therefore neurons

would not actively move to form clusters, nor would they be as susceptible to

other neurons that would pull them into a cluster. Glia were able to grow in

size, often forming a dendritic structure, but very few were found on the CNT

surface. Furthermore, neuron processes preferentially followed the edges of the

rows when given the option. The smooth rigid surface of Si enhanced glial

proliferation. On Si surfaces neurons were characterized by less process length

but more clustering, the defining features of a small-world network [20] (Fig. 1.11).

Although the parameters of a small-world network were never directly studied in

these experiments, it was hypothesized that larger clusters observed on Si were

the result of small-world network formation. This hypothesis is supported by

other research which has previously shown experimentally that in-vitro neuronal

networks tend to develop from a random network state toward a small-world

configuration [21, 22].
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FIGURE 1.10. Schematic showing retinal cells following mechanical cues. Example
of neuron processes and glial proliferation on alternating horizontal rows of CNTs
(blue) and Si (yellow). Fluorescence image with analysis overlay of (a) glia
area (green) and (b) neuron processes (red). (a) and (b) show separate glia and
neuron channels of the same field of view. Glia are noticeably in the Si regions
and neurons on edges of CNTs. (c,d) Zoom in on the marked area in (a) and (b)
respectively without the analysis overlay. Scale bars are 100 m in (a,b) and 50 µm
in (c,d). Modified with permission from the author [24]
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FIGURE 1.11. The Watts-Strogatz model of the small-world network. The
rewiring networks are changed from regular grids to random networks by breaking
and remaking links at random. Between the extremes (0 = regular grid, 1 = fully
random network), the networks are ‘small-world’, with high clustering C and short
average path lengths L between any two points (normalized)[64].

1.4.2. Small-world networks

Small-world networks are such that most entities (e.g. A neuron, airport, etc.

Often referred to as a node) are not neighbors of one another, but the neighbors of

any given entity are likely to be neighbors of each other and most entities can be

reached from every other entity by a small number of hops or steps (Fig. 1.11). A

neighbor refers to an entity that is directly connected to another, not necessarily
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a physically close neighbor. For example, airport networks have been shown to be

small-world [65], because many smaller airports are connected to an airport hub

(e.g. Denver International Airport), forming a cluster, and that hub connects to

other airport hubs. One cannot find a direct flight from Eugene to Berlin, but with

just a few connecting flights, this trip is possible.

Small-world networks might be beneficial for networks of neurons for several

reasons. First, the deletion of a random entity for some small-world networks has

been shown to rarely cause a dramatic increase in the mean shortest path length

[66], a sign that the network would be resiliant to cell death. Additionally, small-

world networks are highly connected which enables efficient information flow, and

adds to the strength of the networks as computational units. However, developing

extended and vastly branched processes has a high energetic cost. A small-world

network maintains this highly connected network while simultaneously reducing

the amount of length, and therefore the energetic cost [22].

Ultimately, a simple system was created that successfully hindered glial

growth on the surface of the electrode and improved neuronal growth, while

keeping glia inside Si areas in close contact with neurons on both surfaces.

Critically, the neurons that are stimulated on the electrode are connected to an

efficient small-world network on the Si surface, thereby increasing the area of

neurons that could connect to the retina and stimulate downstream neurons.

1.4.3. Fractal geometries

H-Tree fractals were generated (Fig. 1.12) with different D values (1.1, 1.5,

and 2) and with iterations ranging from 4 to 6. We fabricated CNT structures on
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a Si substrate out of these geometries and performed 17 day in vitro dissociated

retinal cell cultures on them.

FIGURE 1.12. The set of H-Tree geometries used for in vitro experiments. H-Tree
fractals were generated with different D values (1.1, 1.5, and 2) and with iterations
ranging from 8 to 12 according to Equation 1.1. The width of the each pattern is
approximately 6 mm with feature sizes of 20 µm. Reprinted with permission from
the author [24].

The same general results observed in row samples also existed in fractal

geometry samples. They confined the glial proliferation to Si regions and process

length was increased on CNTs. Additionally, the interconnected Si space enhanced

glial proliferation such that more glia were seen on fractal geometries compared

to those of rows with the same culture duration. At the same time, the neural

networks formed on the Si and CNT surfaces were influenced by changing

distances of the aggregated cells on the Si.

Four distinct regions for neuron and glial behavior (Fig. 1.13) were identified.

On CNTs, the neurons and glia behaved much like they did for the row samples,

with some modulation due to the quality of the network on the Si (e.g. more
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process length on Si was correlated with more process length on CNTs). The

low motility of both glia and neurons meant that processes could extend, but

proliferation and aggregation did not occur. For all of the other regions, neurons

and glial cells are on the Si surface, where cells are motile. This motility means

that glial cells have the opportunity to proliferate [63], but depending on their

surrounding environment and the interaction with neurons, they show different

behaviors. Neurons don’t have as strong of an attachment to Si, so they can move,

and be pulled more freely on this surface.

FIGURE 1.13. Retinal cell behavior when interacting with fractal geometries.
In the 1st row a representative fluorescence image shows four distinct regions of
neural and glial growth identified by the schematic in the 2nd row. Normalized
neuron process length decreases from left to right. The small-world regions exhibit
the most neuron clusters. Glial cells don’t proliferate in the CNT region, but do
proliferate a lot in the boundary region and the most in the small-world region.
Glia don’t proliferate much in the desert region, nor do neurons grow many
processes there. The scale bar is 200 µm.
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In the ‘boundary’ regions there are still a lot of anchoring locations provided

because of close by CNTs. As neurons make connections with each other they are

pulled by other neurons, but many of the neurons are still anchored by neighboring

CNTs, therefore clustering has only a modest increase. Glial cells, now with the

opportunity to proliferate, often do so to support the robust neuron network.

Because a lot of these locations are heavily constrained by the pattern geometry,

the area extent of proliferation is often smaller than they would be otherwise.

In the ‘small-world’ regions, neurons cluster the most and have reduced

process length, but still form extensive networks. Here there are more open spaces

between CNTs. Neurons are still linked via other neurons to CNT boundaries,

but less of them make direct connections. Neurons pull other neurons into larger

clusters, consequently reducing the number of processes in these regions, thereby

increasing the efficiency at which information is transferred between neurons [67].

Glial cells have the most proliferation in these areas, providing vital support to the

neurons.

The ‘desert regions were observed furthest from the CNT electrodes.

They contained mostly individual cells and very few small clusters with a few

shorter processes extending from them. No neural network was observed, and few

individual glial cells existed in these regions.

It was found that fractal geometries combined with a textured material could

prevent glial scars from covering the electrodes and improve neuron-electrode

connectivity while keeping glia close to neurons on both surfaces. Furthermore,

we found that the development of the small-world network could be manipulated

by changing the D value of the electrode, which in turn could theoretically modify

electrode performance.
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All of the aforementioned experiments were done in vitro, because it was

advantageous in maintaining a controlled environment. In the future both explant

and in vivo experiments are required to see if these results translate to an intact

retina.

1.5. Stimulating neurons simulations

Fractal H-Tree geometries are not only useful at the network level, but also

at the micro scale when stimulating neurons. A set of simulations showed how

subretinal implants that use fractal electrodes give a restoration in visual acuity,

up to 20/80, whereas current devices return an acuity of 20/546 at best [23].

Equivalent voltages were applied to square, grid, and fractal electrodes on a 20µm

photodiode (Fig. 1.14) [13]. Each design blocked the same amount of light from

entering the photodiode. Charge distribution simulations demonstrate that a lot

of charge resides on the bounding perimeter of the electrodes. Fractal electrodes

have a large bounding perimeter, which provides a physical explanation for why

they can hold much more charge. Additionally, gaps in the fractal electrode didn’t

reduce effective areas below the Euclidean values. Instead, the associated vertical

side walls supply extra area for charge accumulation. The increased capacity to

hold charge leads to the fractal electrode generating an extracellular field which

extends further from the electrode surface, therefore increasing their stimulating

power compared to conventional electrodes with the same covering area. (Fig.

1.14). Similar fractal designs with large areas for charge accumulation will be

compared in Chapter 3.

Next, Watterson et al. tested a condition where the electrode voltages were

assumed to be supplied by the underlying photodiode. They showed that by
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optimizing the fractal electrode 74% less irradiation was required to stimulate

all neighboring neurons when compared to the best optimized square. When

the threshold irradiation in which the fractal stimulated all nearby neurons was

applied, the square only stimulated ∼10% of neurons. The radiation requirements

for the fractal guaranteed long-term, safe operation of the implant, whereas the

square was very near the maximum permissible safety limit of light that can enter

the eye [23].

FIGURE 1.14. Electrical simulations of fractal electrodes. Comparison between
a square, grid, and fractal extracellular voltages, which correspond to the neuron
stimulating power of the electrode. The first row is the horizontal distribution of
the voltages generated by a square, grid, and fractal with the same covering area.
The second row shows the penetration of the voltage into the extracellular space
for a vertical slice in the middle of the electrodes. The insets show the charge
density distribution for each geometry. The bounding area of the outer square for
all electrodes is 20×20 µm2, and they are 250 nm tall. Reprinted with permission
from the author [13]
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CHAPTER II

HOW NEURON’S EXPLOIT FRACTAL GEOMETRY TO OPTIMIZE THEIR

NETWORK CONNECTIVITY

This chapter includes work under review. The authors on the paper are

J.H. Smith, C. Rowland, B. Harland, S. Moslehi, R.D. Montgomery, K. Schobert,

W.J.Watterson, J.Dalrymple-Alford & R.P.Taylor. All authors participated in

the study design. BH and JD-A created the neuron model reconstructions; JHS

developed the fork and weave angle modification algorithm and the neuron model

morphology analysis; JHS and RDM developed the box counting analysis; CR and

KS developed the profile analysis; CR developed the H-Tree generation algorithm;

JHS, CR, and SM developed the length scaling analysis; JHS, CR, and BH created

the figures; all authors helped edit figures; RPT coordinated the project and

drafted the manuscript; all authors edited the manuscript.

2.1. Abstract

We investigate the degree to which neurons are fractal, the origin of this

fractality, and its impact on functionality. By analyzing three-dimensional images

of rat neurons, we show the way their dendrites fork and weave through space is

unexpectedly important for generating fractal-like behavior well-described by an

‘effective’ fractal dimension D. This discovery motivated us to create distorted

neuron models by modifying the dendritic patterns, so generating neurons across

wide ranges of D extending beyond their natural values. By charting the D-

dependent variations in inter-neuron connectivity along with the associated costs,

we propose that their D values reflect a network cooperation that optimizes these
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constraints. We discuss the implications for healthy and pathological neurons,

and for connecting neurons to medical implants. Our automated approach also

facilitates insights relating form and function, applicable to individual neurons

and their networks, providing a crucial tool for addressing massive data collection

projects (e.g. connectomes).

2.2. Introduction

The prevalence of nature’s fractals can in many cases be explained by the

functionality resulting from their pattern repetition at multiple scales[1, 2, 25].

Along with trees, neurons are considered to be a prevalent form of fractal

branching behavior [68]. Although previous neuron investigations have quantified

the scaling properties of their dendritic branches, typically this was done to

categorize neuron morphologies [1, 2, 3, 4, 5, 6, 7] rather than address the more

profound question of how neurons benefit from their fractal geometry. Why does

the body rely on fractal neurons rather than, for example, the Euclidean wires

prevalent in everyday electronics? Neurons form immense networks within the

mammalian brain, with individual neurons exploiting up to 60,000 connections in

the hippocampus alone [69]. In addition to their connections within the brain,

they also connect to the retina’s photoreceptors allowing people to see, and

connect to the limbs allowing people to move and feel. Given this central role as

the body’s ‘wiring’, we focus on the importance of fractal scaling in establishing

the connectivity between the neurons [68]. Previous analysis over small parts of

the neuron’s dendritic pattern identified scale invariance as one of the geometric

factors used to balance connectivity with the energetic cost of maintaining the

dendrites[70]. In order to determine the precise role of the scale invariance along
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with the most appropriate parameter for describing it, we first need to address

more fundamental questions to what extent are neurons really fractal and what

is the geometric origin of this fractal character? To do this, we construct 3-

dimensional models of rat neurons using confocal microscopy. We show that,

despite being named after trees, dendrites are significantly different in their scaling

behavior. Whereas trees have famously been modeled using a fractal distribution

of branch lengths, the ways in which the dendrites fork and weave through space

are important for determining their fractal character. We demonstrate that fractal

dimension D is a highly appropriate parameter for quantifying the dendritic

patterns because it incorporates dendritic length, forking and weaving in a holistic

manner that directly reflects the neuron’s fractal-like geometry. Serving as a

measure of the ratio of fine to coarse scale dendritic patterns, we use D to directly

map competing functional constraints - the costs associated with building and

operating the neuron’s fractal branches along with their ability to reach out and

connect to other neurons in the network. By investigating 1600 distorted neuron

models with modified dendrite length, forking and weaving behavior, we propose

that the neuron D values reflect a network cooperation that optimizes these

constraints, with connectivity outweighing cost for neurons with high D values.

Remarkably, D captures this functional optimization even though the fractal-like

scaling behavior occurs over a highly limited range of size scales.

We use confocal microscopy to obtain images of CA1 pyramidal neurons

in the coronal plane of the dorsal rat hippocampus (Fig. 2.1a, Fig. 2.5). Their

somata are located in the stratum pyramidale (SP) of the CA1 region. Axonal

and dendritic arbors extend from each soma, with the dendritic arbor featuring

component apical and basal arbors. The complex branching patterns of these
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dendritic arbors extend into the neighboring stratum radiatum (SR) and stratum

oriens (SO) of the CA1 region where they collect signals from the axons of other

neurons [69]. These axons originate either from within the CA1 region and

connect to the dendritic arbors from every direction (e.g. O-LM cells, basket cells,

bistratified cells and axo-axonic cells)[71], or they originate from other regions

such as the neighboring CA2 which extends axons parallel to the strata (e.g.

Schaffer collaterals). We construct three-dimensional models of the dendritic

arbors from the confocal images of 100 neurons using Neurolucida software [72]

(methods Section 2.5.2). The branches in the model are composed of a set of

cylindrical segments which have a median length and width W of 2.4µm and

1.4µm, respectively. The branch ‘weave’ angles θ are defined as the angles between

connecting segments along the branch. We define the fork angle φ as the first of

the branch weave angles (Fig. 2.1c, Fig. 2.6 and methods Section 2.5.2). The

distinct median values for θ(11◦) and φ(34◦) motivated our approach of treating

φ as a separate parameter from θ. Associated with each φ and θ value, there is

an additional angle, ψ, measuring the segment’s direction of rotation around the

dashed axis in Fig. 2.1c. The branch length L is defined as the sum of segment

lengths between the forks. As an indicator of arbor size, the maximum branch

length Lmax varies between 109-352µm across all neurons, with a median value for

L/Lmax of 0.24. Because each parameter (φ, θ, and L) features a distribution of

sizes, we will investigate their potential to generate fractal branch patterns that

repeat at multiple scales.
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FIGURE 2.1. Neuron properties. (a) An example confocal micrograph (x-y
layer) showing three neighboring dendritic arbors, each spanning the oriens
(SO), pyramidale (SP), radiatum (SR) and lacunosum-moleculare (SLM) strata
of the CA1 region. The dashed lines represent the strata boundaries and the
bar corresponds to 100µm. (b) A three-dimensional model of a dendritic arbor
(reconstructed from a stack of micrographs in the z direction) featuring the apical
(blue) and basal (red) arbors and the soma (black). The neuron’s axon arbor
is not shown. (c) Schematic showing the neuron parameters L, W, φ and θ. (d)
Histogram of N that represents the number of neurons with a given D value,
measured for the neurons’ apical and basal arbors.

2.3. Results

2.3.1. Fractal analysis

In principle, a neuron could extend into the SR and SO layers following a

straight line with dimension D = 1 or spread out and completely fill the space with

a dimension of D = 3. If they instead adopt fractal branches, then these will be
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quantified by an intermediate D value lying between 1 and 3 [25]. This fractal

dimension quantifies the relative contributions of coarse and fine scale branch

structure to the arbor’s fractal shape (fractals with larger contributions of fine

structure will have higher D values than fractals with lower contributions of fine

structure). Whereas a variety of scaling analyses have been applied to neurons

[5, 70, 73, 74, 75] here we adopt the traditional ‘box-counting’ technique to directly

quantify their D value (methods Section 2.5.3). This technique determines the

amount of space occupied by the neuron by inserting it into a cube comprised of a

three-dimensional array of boxes and counting the number of boxes, Nbox, occupied

by the dendrites (Fig. 2.7). This count is repeated for a range of box sizes, Lbox.

Fractal scaling follows the power law Nbox ∼ Lbox
−D. The histogram of Fig. 2.1d

plots the number of neurons N with a given D value for both apical and basal

arbors. The medians of their distributions are D = 1.41 (basal) and 1.42 (apical),

indicating that their branches have similar scaling characteristics despite the apical

arbors having longer branches that typically feature more forks. Given that D can

assume values up to 3, it is intriguing that the dendrites’ D values are relatively

low. Additionally, the scaling range over which the neurons can be described by

this D value is limited to approximately one order of magnitude of Lbox (methods

Section 2.5.3). This is inevitable because the coarse and fine scale limits are set by

the widths of the arbor and its branches, respectively (methods Section 2.5.3). We

will show that this scaling behavior is so effective that its limited range is sufficient

for the low D values to optimize the connectivity process. Accordingly, D serves as

an ‘effective’ fractal dimension for quantifying neuron functionality despite lacking

the range associated with mathematical fractal exponents.
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To clarify this favorable functionality, we first need to determine which

parameters (L, θ, and/or φ) contribute to the neuron’s fractal-like character.

In mathematics, fractals can be generated by using forking angles (e.g. Self-

contacting Trees), weave angles (e.g. Peano curves) or branch lengths (e.g. H-

Trees) [25]. Because many mathematical fractals are generated by scaling L, we

start by comparing the neurons’ L behavior to that of H-Trees. Fig. 2.2 shows the

scaling relationship of N (the number of branches with a given L/Lmax) measured

for a D = 1.4 H-Tree (Fig. 2.2a, c, e) and a typical basal arbor (Fig. 2.2b, d, f).

We assign the branch iterations such that i = 1 corresponds to branches emerging

from the soma, i = 2 to the branches emerging from the first forks, etc., with

neurons featuring a median of 7 iterations on the basal side and 24 iterations

on the apical side (other common iteration assignments such as the Strahler

scheme [76] generate similar findings to those below). The H-Tree exhibits the

well-defined reduction in L/Lmax as i increases and follows the expected power

law decrease in N as L/Lmax increases: the magnitude of the data line’s gradient

in Fig. 2.2e equals the H-Tree’s D value of 1.4. This behavior is absent for the

neuron: L/Lmax doesn’t depend on i in Fig. 2.2d nor does the Fig. 2.2f data

follow a well-defined slope. The neurons’ fractal-like character is even preserved

when the L/Lmax distribution is suppressed by setting all branch lengths equal

(for the neuron shown in Fig. 2.2h, this common length is chosen such that the

combined length of all branches matches that of the undistorted neuron of Fig.

2.2a). The median D value of the basal arbors drops from 1.41 to 1.30 during this

suppression. This occurs because the lower branch iterations of the undistorted

neuron are consistently shorter than the higher iterations [76] (Fig. 2.2d and

Fig. 2.8). This characteristic is removed when the branch lengths are equated,
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so pushing the branches further apart and generating the drop in the ratio of fine

to coarse structure seen in comparisons of Fig. 2.2b and Fig. 2.2h. Significantly,

when we similarly suppress their branch length distribution, H-Trees with a

sufficient number of iterations exhibit the expected non-fractal behavior (D = 3)

for φ= 90◦, but display the limited-range fractal behavior if we instead assemble

the H-Tree using the neurons’ median φ value (Fig. 2.2g). This highlights the

important role of angles for determining the fractal-like appearance.

This finding opens up an appealing strategy for exploring how the neuron’s

D value influences its functionality. In Fig. 2.3, we mathematically manipulate the

weave angles by multiplying every θ value by a common factor α. This changes the

neuron’s D value as follows. Values of α higher than 1 increase the weave angles

above their natural values and cause the neuron branches to curl up. We set the

highest value to be α = 2 to ensure that branches rarely intersect. As shown by

the blue line in Fig. 2.3, this curling process causes the D value to rise because

the amount of fine structure in the neuron’s shape increases. Similarly, reducing α

causes the branches to gradually straighten out and this reduces the amount of fine

structure and D drops. Fig. 2.3 includes a visual demonstration of this curling

process. Interestingly, a key feature of curling - that total branch length does

not rise with D - is also displayed by the undistorted neurons (and deliberately

incorporated into our H-Trees), further emphasizing the appropriateness of this

technique. Applying this technique to φ and θ simultaneously, we find that either

increasing or decreasing α results in a rise in D. This is because the branches move

closer together, which generates an increase in the ratio of fine to coarse structure

(note: approaching the extreme case of α= 0, the neuron will eventually collapse

down to a one-dimensional line).
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FIGURE 2.2. Neuron branching distribution. A D = 1.4 H-Tree fractal with W
= 1µm(a) and an example basal arbor with median W = 1.4µm (b). The branch
iteration i is colored as follows: red (1st branch), orange (2nd), yellow (3rd), green
(4th), blue (5th) and purple (6th). Histograms for an H-Tree (c) and neuron (d)
plotting the number of branches N with a given value of L/Lmax. Panels (e) and
(f) show the analysis of (c) and (d) plotted in log-log space. Panels (g) and (h)
take the H-Tree and neuron shown in (a) and (b) and adjust all their branch
lengths to be equal. Additionally, the H-Tree’s forking angle φ has been adjusted
to 35.8◦(the median value of the basal arbors).

2.3.2. Connectivity analysis

We now investigate the impact of changing D on the neuron’s potential to

connect to other neurons. Previous studies established that the arbor’s physical

structure is sufficient for describing the connection process, with chemical steering
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FIGURE 2.3. Adjusting the morphology of neurons by varying the weave. P/As

(the arbor’s profile, P, averaged over all orientations and normalized to the arbor’s
surface area, As) (red) and fractal dimension D (blue) plotted against the weave
angle manipulation factor α. The data shown here for both the red and blue
lines are averaged over all basal arbors and their variations are represented by
the shown standard errors from the mean. The upper insets show an example
neuron for α = 0.25 (left), 1 (middle) and 1.75 (right). The lower insets show the
equivalent profile spheres, where the black dot represents the orientation with
maximal P/As for the middle neuron and the bar indicates the colors ranging from
high to low P/As values.

playing a relatively minor role [77]. In particular, the arbor’s dendritic density

[78, 79, 80, 81] and resulting physical profile [70] are powerful indicators of its
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potential to connect to other neurons. When viewed from a particular orientation,

we define the arbor’s profile P as the total projected area of its branches. Large

profiles will therefore result in the increased exposure of synapses, which are

responsible for receiving signals from other neurons. When calculating the profile

from the dendrite images, we incorporate an extra layer (orange in Fig. 2.3 upper

inset, Fig. 2.9) surrounding the branches (black) to account for outgrowth of

dendritic spines - small protrusions which contain the majority of the dendrite

synapses (methods Section 2.5.4). For each arbor shown in Fig. 2.3, P is therefore

the sum of the projected black and orange areas. We then normalize this projected

surface area of the dendrites using their total surface area, As, to accommodate for

the range in neuron sizes and associated surface areas. (Because the orange areas

are included in P but not in As, note that P/As > 1 is possible). The current

study adopts the general approach of averaging P/As across all orientations of

the dendritic arbor to allow for the fact that axons originating from within the

CA1 region connect to the dendritic arbors from every direction [71]. The profile

variation with orientation can be visualized by projecting the P/As values obtained

for each direction onto a spherical surface. For the profile spheres included in Fig.

2.3, the neurons are viewed from a common direction which corresponds to the

middle point on the sphere’s surface. For the natural neuron, the orientation for

which P/As peaks is marked by the black dot. Typically, this peak occurs in the

direction that the Schaffer collateral axons enter from the CA2 region [69] and so

maximizes the connectivity of our natural neurons to those incoming axons.

The inverse relationship between P/As and D observed for the weave in Fig.

2.3 also occurs when adjusting the fork angle. Its physical origin can be traced

to the increased fine structure of high D neurons causing branches to block each
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other and so reduce the overall profile. Including this blocking effect is important

for capturing the neuron’s connectivity because multiple connections of an axon

to the same dendritic arbor are known to generate redundancies [70]. Therefore,

if a straight axon connected to an exposed branch, subsequent connections to

blocked branches wouldn’t increase the connectivity and should be excluded.

Fig. 2.4a summarizes this blocking effect by plotting P/As directly against D for

arbors that have had their φ and θ values manipulated independently. Fig. 2.4b

demonstrates that this blocking reduction in P/As is also seen for H-Trees (which

have had their weaves similarly adjusted - see methods Section 2.5.4 and Fig. 2.9),

highlighting that the blocking dependence on D is general to fractals. Fig. 2.4c,

d explore another well-known fractal effect that high D fractals increase the ratio

of the object’s surface area As to its bounding area Ab (i.e. the surface area of

the volume containing the arbor, as quantified by its convex hull - see methods

Section 2.5.2). Fig. 2.4e,f combine the ‘increased surface area effect’ seen in Fig.

2.4c,d with the ‘blocking area effect’ seen in Fig. 2.4a,b by plotting P/Ab (i.e.

the multiplication of P/As and As/Ab) against D. In effect, P/Ab quantifies the

large surface area of the arbor while accounting for the fact that some of this area

will be blocked and therefore excluded from the profile P. Normalizing P using Ab

serves the additional purpose of measuring the arbor’s potential connectivity in

a way that is independent of its size. Accordingly, P/Ab serves as a connectivity

density and is an effective measure of the neurons’ capacity to form a network.

The clear rise in P/Ab revealed by Figs. 2.4e, f highlights the functional

advantage offered by high D branches - incoming axons will experience the

dendritic arbor’s large connectivity density. Note that the plotted connectivity

density is for individual neurons. Because of the inter-penetrating character of
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FIGURE 2.4. Physical dependency on D. Dependencies of various parameters (see
text for parameter definitions) on D for neurons (left column) and H-Trees (right
column). Red data are for unmanipulated basal arbors while the blue data are
for basal arbors where either their φ or θ values are manipulated. H-Trees with
straight and with weaving branches are included. The connected cyan data points
are average values of the H-Tree data.

dendritic arbors from neighboring neurons, the collective connectivity density

will be even larger due to their combined profiles. If this functionality was the

sole driver of neuron morphology, then all neurons would therefore exploit high

D values approaching 3. Yet, both the apical and basal dendrites cluster around

relatively low values of D ∼ 1.41 suggesting that there are additional, negative

consequences of increasing D. In Figs. 2.4g, h, we plot the ratio of the volume

occupied by the branches Vm to the neuron’s bounding volume Vb (i.e. the arbor’s

convex hull volume). For high D dendrites, the tighter weave angles along with

forking angles that bring branches closer together result in more densely packed

structures. This produces the observed rise of Vm/Vb. Assuming constant tissue

density, Vm is proportional to the neuronal mass. The rise in Vm/Vb therefore

quantifies the increase in mass density and associated ‘building’ costs of high
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D neurons. Aside from this, there is also an ‘operational’ cost. It is well-known

from allometric scaling relationships that metabolic costs generally increase with

mass[82, 83]. Specifically, previous research proposed that the amount of ATP

expended by neurons increases with As [38, 70]. Revisiting Fig. 2.4c and Fig. 2.4a,

As/Ab therefore charts how the normalized energy cost increases with D, and P/As

measures the neuron connectivity relative to this cost.

2.4. Discussion

Taken together, Figs. 2.4a-h summarize the competing consequences

of increasing D for both the neurons and H-Trees: the benefits of enhanced

connectivity density increase (Fig. 2.4e, f), but so does the cost of building (Fig.

2.4g, h) and operating (Fig. 2.4c, d) the branches. The distinct forms of these

three factors are highlighted for the H-Trees by plotting their average values

against D (cyan). Allowing for scatter, the neurons share the same forms as the H-

Trees. By establishing these shared forms, the H-Trees serve as artificial neurons.

Neuron behavior can then be observed for D values beyond their naturally

occurring ranges, allowing a clear picture of their tolerances for the above factors.

The sharp increase in building cost and high operating cost observed at high D

values explain why the natural neurons (red) don’t exceed D = 1.51. Nor do they

occur below D = 1.33 because of the low connectivity. This balance of factors is

likely optimized at their most prevalent D value (D = 1.41 in Fig. 2.1d). This

value agrees with the scaling exponent of 1.38 from a previous study of pyramidal

arbors [70] which limited its focus to the optimization condition. Based on our

analysis spanning a wide range of D, we hypothesize that different neuron types

have different D values depending on the relative importance of connectivity
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and cost. Neurons with a greater need for connectivity will optimize around

higher D. For example, human Purkinje cells are characterized by D ∼ 1.8 [84].

We also hypothesize that pathological states of neurons, for example those with

Alzheimer’s disease, might affect the fractal optimization and explain previous

observations of changes in the neurons’ scaling behavior [85].

Fractal analyses of a wide variety of neurons indicate that their D values

don’t generally exceed D = 2, presumably because of the excessive costs of higher

D fractals. For comparison, we note that a sphere (D = 3) achieves much higher

connectivity ( P/Ab = 0.25 compared to the D = 1.4 neuron’s 0.1). However,

the sphere suffers from large mass density (Vm/Vb = 1 compared to 10−3) and

higher operational costs (As/Ab = 1 compared to 0.1), suggesting that neurons

adopt fractal rather than Euclidean geometry in part because the mass and

operational costs of the latter are too high. We note that neurons’ restriction to

lower D values doesn’t apply to fractal electrodes designed to stimulate neurons

[14, 23, 86]. These artificial neurons require large profiles to physically connect

with their natural counterparts. However, unlike natural neurons, the large As

associated with high D electrodes reduces the operation costs because their higher

electrical capacitances lead to larger stimulating electric fields [14, 23]. Thus,

fractal electrodes approaching D = 3 might be expected to efficiently connect

to and stimulate neurons. That said, there might be advantages of matching the

electrode’s D value to that of the neuron. This will allow the neuron to maintain

its natural weave and forking behavior as it attaches to and grows along the

electrode branches, so maintaining the neuron’s proximity to the stimulating field.

Previous studies of connectivity and dendritic cost focused on component

parameters of the neuron geometry (such as tortuosity, branch length and scaling
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analysis of small parts of the arbor) [70, 78]. We have shown that our ‘effective’

D incorporates these parameters in a holistic approach that directly reflects the

neuron’s fractal-like geometry. For example, our discovery that the neurons’ weave

(generated by variations in θ) is an important factor in determining D provides a

link between D and tortuosity. However, whereas tortuosity quantifies the weave

of an individual branch measured at a specific size scale, D captures a more

comprehensive picture by accounting for the weave’s tortuosity across multiples

scales. Because D measures across multiple branches within the arbor it is also

sensitive to φ and L. Accordingly, by incorporating θ, φ, and L, D is the most

appropriate parameter for charting the connectivity versus cost optimization.

As an indicator of this central role, the forms of Fig. 2.4 are highly sensitive

to the intricacies of the neuron structure. This further highlights the power

of our approach - the use of D facilitates direct comparisons of the favorable

functionalities generated by diverse structures. Here, we compared our neurons

to distorted versions, to H-Trees, to fractal electrodes, and to Euclidean shapes,

but this approach could readily be extended to many natural fractals. The fact

that the H-Trees and neurons exploit the same D-dependent optimization process

(Fig. 2.4) raises the question of why the two structures use different branch length

distributions (Fig. 2.2) to generate their scaling behavior. The answer lies in the

neuron’s need to minimize signal transport times within the arbor [87]. This is

achieved with short branches close to the soma (Fig. 2.8) while the H-Tree suffers

from longer branches. Remarkably, Fig. 2.4 shows that the D-dependent behavior

impacts neuron functionality even though it occurs over only a limited range

of branch sizes. Many physical fractals are also limited [26], demonstrating the

effectiveness of fractal-like behavior for optimizing essential processes ranging from
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oxygen transfer by our lungs, to light collection by trees, to neuron connections

throughout the body.

2.5. Methods

2.5.1. Rodents

Rat pups were bred and housed with their mother in cages with wood

chips and ad libitum food and water in an environmentally controlled room. All

procedures pertaining to the use of live rats were conducted in compliance with all

relevant ethical regulations for animal testing and research. All procedures were

approved by the University of Canterbury Animal Ethics Committee, 2008-05R.

2.5.2. Image acquisition and model reconstruction

Thirty-three adult PVGc male hooded rats (13 – 16 months old) were

given an overdose of sodium pentobarbital. The brains were removed fresh

without perfusion, rinsed with Milli-Q water, and a 4mm block containing the

hippocampus was cut in the coronal plane using a brain matrix (Ted Pella,

Kitchener, Canada). These tissue blocks were processed with a metallic Golgi-

Cox stain, which stains 1% to 5% of neurons so that their cell bodies and dendritic

trees can be visualized. Thick 200µm coronal brain sections spanning the bilateral

dorsal hippocampus were taken using a microtome. A standard microscope was

used to locate isolated neurons in the dorsal CA1 subfield (Fig. 2.5a). These

large pyramidal neurons consist of a long apical dendritic tree protruding from

the apex of the soma and a shorter basal dendritic tree protruding from the

other end (Fig. 2.1b). Only some intact whole neurons were located, whereas

many intact basal-only or apical-only dendritic trees were located. A Leica laser
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scanning confocal microscope was used to collect high-resolution image stacks

for each of these neuronal processes (Fig. 2.5b). The image stacks were captured

using a 20x glycerol objective lens with a 0.7 numerical aperture, providing an

x and y resolution of 0.4µm. The step size (z distance between image stacks)

was 2µm. Dendritic arbors were manually traced through the image stacks using

Neurolucida[72] (MicroBrightField Bioscience) to create three-dimensional models

(Fig. 2.1b and Fig. 2.5c). The data was then exported to the Wavefront .obj

format and the cell soma removed.

FIGURE 2.5. Image acquisition. (a) Schematic diagram of a coronal slice through
the hippocampus at Bregma -4.52mm showing the collection region (red box)
within hippocampal CA1 (darkened area); the somata layer is denoted by the
dashed line. (b) Confocal micrographs of Golgi-Cox stained cells. Three 774 by
774µm cross-sections separated by 2µm in the z-direction are shown. (c) A model
showing a neuron’s soma (outlined in white) as well as its basal (red) and apical
(blue) dendritic arbors superimposed on the original micrograph.

The three-dimensional models are composed of a set of connected hollow

cylinders (segments) which form the branches of the arbors. Each cylinder is

constructed using two sets of rings of 16 points (vertices) and 32 connecting
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triangles (faces). At branch endings, the final segment has 14 faces that form an

end cap. Connecting branches start new segments at the same location as the

last set of 16 vertices from the previous branch. For the apical arbors, one branch

extends from the apex of the soma and all other branches connect either directly

or indirectly to it. For the basal arbors, multiple initial branches extend from the

soma, each with its own set of connecting branches.

In order to perform the box-counting and profile analyses, the Wavefront

files were converted to voxel data using Matlab software. The voxelization was

performed at a resolution of 4 voxels/µm for box counting and 1 voxel/µm for the

profile calculation. In both cases, the models were voxelized exactly, meaning that

if any part of the polygonal model fell inside a voxel, the voxel was added to the

list of x; y; z coordinates.

We used rotation quaternions [88] to adjust the weave angles to the modified

values multiplied by the pre-factor α. We started with the angles furthest from the

soma and, working inwards, adjusted angles one at a time until all of the angles

had acquired their new values. When an angle was adjusted, the entire connected

section of the branch between that angle and the terminal endcaps was rotated

too. This rotation occurred in the plane of the two vectors that define that angle.

We created three sets of arbor models modified by the multiplier α for values

between 0 and 2, incremented by 0.25. In one set θ was modified, in another φ

was modified, and in another both were modified simultaneously. The qualitative

results shown in Fig. 2.4 were the same for all three sets.

When calculating the surface area, As, of the models, the precision was

raised by increasing the number of faces in a neuron’s construction four-fold by

converting each triangle into four sub-triangles using a midpoint method (Fig.
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2.6b). We then summed the areas of all the triangles in the model, excluding the

faces where all three vertices resided inside another segment. The bounding area,

Ab, and bounding volume, Vb, were calculated using the convex hull method [89]

on the vertices of the Wavefront object. Ab is the sum of the areas of all triangles

composing the convex hull that encloses the vertices, whereas Vb is the volume

enclosed within those triangles.

FIGURE 2.6. Model reconstruction. (a) A close-up image of dendritic branches.
The Wavefront object files (.obj) consist of cylinders constructed from vertices
(blue) and triangular faces (red). (b) The triangular faces are increased 4-fold for
the surface area calculations by finding the midpoints between connected vertices
in a face and creating new vertices at those points. Then 4 new faces are created
that connect the new vertices as shown.

2.5.3. Box counting analysis

The box-counting method used to analyze the fractal characteristics of the

neurons is shown in Fig. 2.7. Using Matlab software, the voxelized dentritic arbor

was inserted into the three-dimensional array of boxes and the number of boxes

51



Nbox occupied by the neuron were counted for different sizes of boxes, Lbox, and

this was normalized to Lmax, the largest branch size of the arbor. The largest box

size was set to the size of the longest side length of the arbor’s bounding box and

the smallest box size to the voxel pixelization (0.25µm). The insets show example

schematics of the filled boxes for large and small Lbox values. We performed

a modified ‘sliding’ box count [4] in which the boxes slid in every coordinate

direction simultaneously in 0.25µm steps and the minimum count was selected.

FIGURE 2.7. Scaling plot. log(Nbox) plotted against log(Lbox/Lmax) for an
example dendritic arbor, where Nbox is the number of occupied boxes and Lbox is
the box length. The top graph shows a zoom-in on the fractal-like scaling region of
the bottom graph. The insets show occupied boxes at small and large box scales.
See the text for explanations of the arrows.
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Fractal scaling, Nbox ∼ L−Dbox , appears as a straight line in the log-log plot.

The range of Lbox/Lmax values for which fractal behavior might be observed lies

between the vertical arrows. For large boxes to the right of the right arrow, there

are too few boxes (less than five along each side of the bounding box) to reveal the

fractal behavior. Consequently, all of the boxes become filled and so the analysis

interprets the neuron as being three-dimensional and the gradient eventually shifts

to a value of three. To the left of the left arrow (corresponding to 2µm), the box

sizes approach the diameters of the branches and so the analysis starts to pick up

the two-dimensional character of the branches’ surface and the gradient shifts to a

value of two.

Between the arrows, a straight line was fitted for all sets of points ranging

over at least one order of magnitude. The fit that maximized R2 was chosen to

measure the D value (the slope of the line). When looking at the residuals of this

regression analysis, their behavior confirmed that the fit range was appropriate.

We note that applying the angle multiplier to the neurons didn’t reduce the

quality of the fit nor the scaling range of fractal behavior.

2.5.4. Profile analysis

An arbor’s physical profile [70] has been shown to be intrinsically related

to its ability to connect with other neurons. We developed MATLAB software

that measures the profile of the dendritic arbor using a list of cartesian points in

space that denote the locations occupied by the dendrites. In our calculations, we

used the voxelized list of points generated using the Wavefront file of the dendritic

arbor. To allow the dendritic spines to contribute to the calculation of an arbor’s

profile, we uniformly expanded the voxelized arbor by 2µm in every direction. The
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FIGURE 2.8. Branch iteration distribution. Histogram of the number N of
normalized branch lengths (L/Lmax) across all basal arbors used in the study.
The shade of gray in each box represents the branch iteration m, with the darker
shades corresponding to the lower iterations closer to the somas.

orange region around the black dendrites seen in Fig. 2.9a, b represents the space

around the dendrites in which a spine could grow in order to form a synapse with

an axon passing through the arbor.

This expanded list of points was then orthographically projected onto the

x-y plane. After projection, the points were rounded and any duplicate points

occupying the same location were removed. Because the location of the points

has been rounded, each point represents a 1µm area and the total area occupied

by this projection can be measured by counting the number of remaining points
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FIGURE 2.9. Profile calculation. (a) An arbor viewed from the direction for which
P/As peaks. The zoom-in shows a black branch surrounded by the orange region
of spines. (b) The same arbor viewed from a different direction. (c) and (d) show
the equivalent profile spheres. The middle point on the spheres surface shown in
(c) and (d) corresponds to the profile of the arbor as seen from the viewpoints
shown in (a) and (b), respectively.

constituting the projection. The area of this projection divided by the bounding

area of the neuron is then proportional to the probability of connection with an

axon travelling parallel to the z-direction and passing through the dendritic arbor.

However, because the axons that pass through the arbors of our CA1 neurons

can arrive from any direction [69, 71], we calculated the average profile of each

neuron’s arbor as though it were viewed from any point on the surface of a sphere
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containing the neuron’s arbor with its origin at the neuron’s center of mass. To

accomplish this, we defined a set of polar and azimuthal angles that corresponded

to the viewpoints on the sphere. By rotating the expanded list of points by these

angles and then projecting the result onto the x-y plane, we obtained what the

arbor would look like if seen from the given viewpoint. We calculated the average

profile by defining a set of uniformly distributed points on the circumscribing

sphere and then averaging the area of the projections corresponding with each

viewpoint. Because it is impossible to distribute a general number of equidistant

points on the surface of a sphere [90], we defined our set of points using the

Fibonacci lattice, a commonly used and computationally efficient method for

distributing the points [91].

The colored spheres (comprised of 10001 points) in Fig. 2.3 and Fig. 2.9 give

a visual representation of the variation in profile with respect to the viewpoint.

The average profile data used in Fig. 2.4 was calculated using only 201 viewpoints,

which is sufficient for convergence - the average P for 201 viewpoints deviates by

less than 1% from the value achieved when approaching infinite viewpoints.

2.5.5. H-Tree generation

Fig. 2.10 shows examples of the H-Tree models used to generate the data of

Fig. 2.4b, d, f. Whereas these H-Trees extend into three-dimensional space (middle

and bottom row), we also include two-dimensional H-Trees (top row) for visual

comparison. Using Mathematica software, the D values of these straight branched

models were generated using the branch scaling relationship

Li = L1/2
(i−1)/D (2.1)
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where Li is the branch length of the ith iteration. The H-Trees used to generate

the data seen in Fig. 2.4 had 12 iterations of branches and the length of the first

branch, L1, of any given H-Tree was chosen such that the total length of all the

branches was constant across all D values. For comparison of the H-Trees with

the basal arbors in Fig. 2.4, the number of branch iterations in the H-Tree was

chosen to be close to the largest number of iterations observed for the basal arbors

(11). The D values of H-Trees in the bottom row are determined by a combination

of the length scaling between branch iterations and the weave of the branches.

The distribution of weave angles was generated using a fractional Gaussian

noise process, which is known to be self-similar, and the resulting D values

were measured using the box-counting algorithm. The width of the weave angle

distribution was specified before generating the H-Tree, allowing for fine control

over the tortuosity of its branches. By using four different weave angle distribution

widths and creating H-Trees with a multitude of D values, we demonstrated the

robustness of the relationship between the D value and our various functional

parameters shown in Fig. 2.4.

A complete description of H-tree properties are included in Appendix A.1.

57



FIGURE 2.10. H-Tree models. A visual comparison of H-Tree models extending
into two-dimensional (top row) and three-dimensional (middle row) spaces for D
= 1.1 (left), D = 1.5 (middle) and D = 1.9 (right). Their branches are straight,
and their D values are set by the scaling relationship between branch lengths L
at subsequent iterations i. For the bottom row of H-Trees, the branch angles have
been modified to introduce a weave into the branches.
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CHAPTER III

APPLICATIONS OF THE FRACTAL FRAMEWORK

In this chapter we will investigate the fundamental behavior of neurons

as they establish connectivity with an electrode. One might assume that since

neurons are 3-dimensional fractals that a 3-dimensional fractal electrode would

perform the best. However, electrodes have two critical differences when compared

to neurons. First, we showed in Chapter 2 that neuron morphology is highly

impacted by mass. However, there is no such cost for a microfabricated electrode,

where adding additional material is not inherently detrimental. Second, in

contrast to neurons, an increase in the surface area benefits an electrode as it

increases the capacitance which stimulates neurons. We will compare 3 promising

electrode designs for their capacitance, connectivity, bio-compatibility, and ease of

fabrication.

First, we want to revisit the H-Tree models from Chapter 2. We consider

those models generated without adding a weave so that we can exactly calculate

all the neuron’s costs (Appendix A.1). We use the generative D value defined

in Equation 1.1 & 2.1 for simplicity. First we show in more exact detail what

we demonstrated previously, that balancing costs and connectivity alone is

sufficient to explain why a neuron chooses an intermediate D value. We then do

the same for a case where axons only approach from a single direction and find

that higher D values are preferred, which is consistent with intuition and previous

observations. For example, Purkinje neurons have high D values and parallel fibers

that come from a single direction [84, 92, 93]. We then compare ED2 and ED3 H-

Tree models. We smoothly transition between those two extreme conditions and
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apply the findings to our understanding of neurons. Then we predict the relative

number of axons connecting to basal and apical dendrites from different directions.

We use a cost-benefit analysis to justify the types of dendritic morphologies

observed. We define two generic functions G and K, which represent the benefits

and costs to the neuron respectively. The ratio G/K then motivates more likely

neuron geometries. We’ve already described costs to the neuron in Chapters 1 &

2, but it is worth identifying them here again (summarized in Table 3.1). Because

we want to analyze the morphology of dendrites, we will restrict ourselves to the

dendritic costs.

For signaling energy expenditures we identified that surface area, As, is

the primary geometric cost [70]. Non-signalling geometric costs also include the

surface area, As, the total length, Lt, the segment width, W, a space occupancy

cost, Ab, and a mass cost. We use the volume of the mass, Vm, as a substitute

for a traditional mass by assuming a constant density throughout the dendritic

structure.

Parameter (Symbol) Neuron Electrode

Profile (P ,P̃ ,Pmax) Benefit Benefit
Surface Area (As) Cost Benefit
Occupying Space (Ab,Vb) Cost Cost
Total Length (Lt) Cost NA
Volume of Mass (Vm) Cost Neither
Height NA Benefit & Cost
Footprint (Af ) NA Cost

TABLE 3.1. Summary table of parameters. Parameters used in this chapter are
listed and identified as either a benefit, cost, or not applicable (NA) as they apply
to neurons and electrodes. P is the average profile, P̃ the median profile, and Pmax

the single largest profile from all viewpoints. The bounding area, Ab, and bounding
volume, Vb, both measure occupying space, but we use Ab for consistency with
Chapter 2. See Appendix A for definitions.
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3.1. Neurons modeled as H-Trees

Using H-Trees as model neurons, we investigate the D dependence of ED3

(Fig. 3.1a) and ED2 (Fig. 3.1b) models in response to incoming axons. By fixing

the total length, Lt, and the width, W, we also fix the volume of mass, Vm, and

the surface area, As. Together these parameters (Lt, W, Vm, As) comprise the

constant costs, C, of an H-Tree model. The space occupied, Ab, is then the

only cost that is free to vary. As done in Chapter 2, we will consider the profile

averaged over all viewpoints, P, as a measure of connectivity, which a neuron seeks

to increase (see Section 2.5.4). We assume G and K monotonically increase with

increasing P and Ab respectively.

ba

FIGURE 3.1. Two examples of H-Tree models. Both models have a fixed total
length and branch width. This correspondingly fixes the surface area and volume
of mass. Each branch length is reduced at every bifurcation according to a fractal
of D=1.4 and 9 iterations (a) ED3 model (b) ED2 model (see Section 2.5.5 & A.1
for construction).

3.1.1. Uniform axonal inputs

First, we assume that axons approach uniformly from every direction. We

apply the same procedure for calculating profile outlined in Section 2.5.4 (Fig.

2.9). For both models P decreases with D, and thus G(P) also decreases with D

(Fig. 3.2). Ab also decreases with D. Importantly, the rate at which Ab decreases
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is much faster at low D values, and flattens out at higher D values. P on the other

hand, decreases at a much more consistent rate with varying D. Therefore it is

possible that to maximize the benefit to cost ratio an intermediate D value is

preferred (Fig. 3.3a). This preference for an intermediate D value is the behavior

seen in many neuron types (e.g. CA1 hippocampal neurons) [94].

FIGURE 3.2. H-Tree bounding area variation with D. H-Trees with fixed total
length have a decreasing bounding area with increasing D.

3.1.2. Unidirectional axonal inputs

Next, we consider the ED2 model interacting with axons that bisect the

model plane (e.g. axons interacting with Purkinje cells) [92]. In this case the

profile will take on its maximal value, Pmax = W × Lt, a constant. Therefore,

G(Pmax) is also a constant. Our cost function, K has constant input, C, and

a variable input, Ab. Ab decreases with D and therefore so does K(C,Ab).

Consequently our cost-benefit analysis shows that the ratio G/K then increases

with D. This result suggests that any ED2 neuron with inputs from a single

direction would choose the highest D value possible. Again, Purkinje cells have

relatively high D values which is consistent with this result [84]. Fig. 3.3b

demonstrates this behavior with example functions for G and K.

If we would have considered a ED3 model the same logic would hold.
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FIGURE 3.3. Cost-Benefit analysis behavior with D. (a) A combination of
decreasing P , Ab, and constant costs, C, results in a maximal benefit to cost ratio
if C is on the order of Ab. Profile, P , is fitted data of a profile measurement. Here
we guess G = P and K = C + Ab, where C accounts for the constant costs. (b)
When the profile is set to its maximum value (P → Pmax, a constant) the benefit
to cost ratio monotonically increases with D because K monotonically increases
with Ab.

3.1.3. A comparison between ED2 and ED3 H-Tree models

In the previous two sections we asked: Given a model (ED2 or ED3) and

a condition (uniform or unidirectional), what D value maximizes the benefit to

cost ratio? We identified that the D value behavior matches our expectations. An

intermediate D value could be preferred when axons come from many directions,

and a high D value would be preferred when axons come from a single direction.

We now ask a follow up question. If we have a condition, can we predict the

model?

One might reasonably assume based off of observation that an ED3 model

would perform better when axons approach from many directions, and an ED2

model would perform better when axons approach from a single direction. That

intuition is verified when axons approach from a single direction, the maximum

profile is always higher and the bounding area is always lower for the ED2 model.
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Therefore G(Pmax)/K(Ab) is always greater for any given D value. However, when

axons approach from many uniform directions we find the exact same result, the

ED2 model performs better than the ED3 at every D value. Again, this occurs

because the measured average profile is always higher and the bounding area is

always lower for the ED2 model.

In order to understand these results, it is useful to create H-Trees that

vary smoothly between the exact ED2 and ED3 models. In Chapter 2 we briefly

introduced, but did not use the angle ψ, which measures the next segment’s

rotation along the long axis of the current segment. Every new segment had a

single ψ associated with it. At a bifurcation one segment splits into two new

segments (the start of two new branches). Each of those new segments has a

branching angle, φ, and a ψ. For instance, if we fix both branching angles φ1 and

φ2 (shorthand φ1,2) to be 90◦ and opposing each other, then rotating about ψ1,2 is

akin to spinning a two blade propeller with each blade the start of a new branch

(Fig. 3.4e).

For H-Trees, the ED2 and ED3 models do not weave and have φ = 90◦

everywhere. Both have ψ = 0◦ associated with every new segment within a

branch (for the weave - when only 1 new segment proceeds another). The only

difference is that the ED2 model has ψ1,2 = (0◦, 180◦) and the ED3 model has

ψ1,2 = (90◦, 270◦) for every pair of segments at the start of a new branch. For the

H-Trees described in this dissertation ψ2 = ψ1 + 180◦ always.

If we vary the ψ1,2 angle pair, then we can smoothly transition between an

ED2 and ED3 model (Fig. 3.4). When ψ1 is between 0◦ and 15◦, we define this as

the semi-ED2 region, for its relatively planar structure. In the semi-ED2 region

there is at least one viewpoint at which every segment of every branch is not
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FIGURE 3.4. H-Trees varied between ED2 and ED3 models. The normalized
average profile (a), median profile (b), and bounding area (c), are shown as a
function of rotation angle ψ, for various D values. ψ1 varies from the ED2 model
(ψ1 = 0◦), to a semi-ED2 region (0 < ψ1 < 15◦), to a asymmetric-ED3 region
(30◦ < ψ < 80◦), to the ED3 model (ψ1 = 90◦). ψ2 = ψ1 + 180◦. (e) Schematic
showing ψ definitions. An incoming segment (purple) bifurcates into two new
segments (black).

blocked by another. At angles greater than approximately 15◦, every viewing angle

has at least some blocking for all D values. We define the range from 30◦ to 80◦

as the asymmetric-ED3 region. In this region blocking is more uniform from every

viewing angle. Additionally, the bounding area, Ab, and both the mean profile

(P ) and median profile (P̃ ) maintain relatively constant values for all D values

compared to the variation that exists in the semi-ED2 region for many D values.

65



We have introduced the median profile because we have identified it as

varying with ψ and having a physical interpretation that is different than the

mean profile. When a distribution is symmetric the two are identical, but given

an asymmetric distribution the median is a better predictor of the most likely

outcome because it is less affected by outliers. For an axon that connects with a

dendrite, it would be more likely to established a connection from any random

direction if the dendritic morphology had a larger median profile. However, for

the mean profile those outliers are very important because a neuron can make

lots of connections at that viewpoint. Therefore, having a larger mean profile

signifies that if axons are connecting from every direction, then the total number of

connections would also be larger.

We now ask the same question as before. If axons approach uniformly from

every direction, can we predict the more likely model? If we compare ψ = 0◦ and

ψ = 90◦, then the former always maximizes G/K for the same reason the ED2 did

when axons approached from a single direction, ψ = 0◦ has a higher profile (both

mean and median) and a lower bounding area no matter what D value we inspect.

However, if considering semi-ED2 and asymmetric-ED3 structures then the largest

profile (mean or median) does not always exist at ψ = 0. In figure 3.4 the red

curves are D values where the maximum P and P̃ occur in the asymmetric-ED3

region, the green curves are D values where the max P is in the asymmetric-ED3

region but the max P̃ is the semi-ED2 region, and the blue curves are D values

where the maximum P and P̃ occur in the semi-ED2 region.

For high D values (blue) at least, a semi-ED2 model is always preferred as

the benefit from a higher P and P̃ is combined with a lower Ab. For low D values

(red) an asymmetric-ED3 has a relatively large P and P̃ , but any low D structure

66



pays an increasingly large Ab cost. For mid range D values (green) it depends on

the relative importance of P and P̃ , and the importance of the Ab cost. We do

not have a robust theory for how any neuron type weighs these benefits and costs,

therefore we cannot directly determine which model is preferred for low or mid

range D values in the uniform axon input condition.

We can however investigate the relative importance of P and P̃ for the CA1

hippocampal neurons in Chapter 2. We do this by comparing the connectivity

maps of H-Trees near the mean D value of the neurons (D=1.4) and at different

values of ψ (Fig. 3.5). Does a neuron increase the mean profile? Or does it want

to increase the probability that an axon approaching from any direction makes a

connection (P̃ )?

The connectivity map ‘signature’ that matches both the apical and basal

CA1 hippocampal neurons (Fig. 3.5) is at the minimum ψ (13◦) in Fig. 3.4b.

Therefore, it is reasonable to assume that it is more important for a neuron

to maximize the mean compared to the median profile. The connectivity map

‘signature’ identified is a right-skewed distribution of profile values (Fig. 3.5f).

3.1.4. Predicting the connection from two regions

The connectivity maps elucidate the axonal input directions for the CA1

hippocampal neurons that have the largest profiles. By looking at regions of the

connectivity maps (sets of viewpoints) we can predict the relative proportion

of axons approaching from a particular direction. We do so by comparing the

measured profile in that region to a naive expectation of the profile. The naive

expectation is such that the fraction of the total profile in that region matches

the fraction of the total viewpoints that make up a viewing region. For example a
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viewing region with 10% of the viewpoints would have 10% of the total profile. If

we however calculate 15% of the total profile in that region, we would identify that

as having 50% more profile and would predict 50% more axons connecting with

dendritic morphologies from that viewing region.

FIGURE 3.5. Connectivity map comparison. Connectivity maps for apical (a) and
basal (b) dendrites, as well as for H-Trees with various values of ψ(c,d,e). Larger
profile regions (red) in (a,b) are from the view of the incoming parallel fibers. Each
color range is set individually for each connectivity map (a,b,c,d,e). (f) Histogram
of normalized profile from individual viewpoints in (c,d,e). The range of profile
values is much narrower in (e) than (c,d) as can be seen in (f).
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We identify two viewing regions of interest: 1) viewpoints associated

with incoming parallel fibers (Schaffer collaterals) and 2) viewpoints in a ring

perpendicular to region 1 (Fig. 3.6). We restrict both regions to 10% of the total

viewpoints. In region 1 this corresponds to a spherical cap with a solid angle of

51.6◦ centered on the incoming direction of the parallel fibers (ẑ-direction in Fig.

2.5c). In region 2 this corresponds to a ring with an angular width of 11.5◦.

FIGURE 3.6. Two viewing regions of interest. The color black identifies
viewpoints within a region of interest.(a) Region 1: a spherical cap associated
with the direction of incoming parallel fibers.(b) Region 2: a ring perpendicular to
region 1. Both regions are displayed overlapping the apical connectivity map and
account for 10% of the total viewpoints.

Using this analysis on the basal and apical connectivity maps, we predict

11% and 19% more axons respectively connecting with dendrites from viewpoints

in region 1 than one would naively expect (Fig. 3.2). This is in contrast to region

2, where 7% and 14% fewer axons would connect with basal and apical dendritic

morphologies from viewpoints in that region respectively. Furthermore, we notice

that the apical and basal values are much less polarized than the ED2 and semi-

ED2 H-Trees, and more polarized than the asymmetric-ED3 and ED3 H-Trees.
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Structure Region 1: Cap Region 2: Ring

basal +11% -7%
apical +19% -14%
H-Tree (ψ = 0◦) +39% -55%
H-Tree (ψ = 5◦) +38% -40%
H-Tree (ψ = 13◦) +32% -19%
H-Tree (ψ = 70◦) -1% -1%
H-Tree (ψ = 90◦) -5% -5%

TABLE 3.2. Relative connectivity from two incoming axon directions.
Quantitative predictions for the relative increase/decrease for axons connecting
with neuron and H-Tree models from viewpoints in a spherical cap and ring region
compared to a naive expectation.

Currently, a host of complex mapping techniques are utilized in order to

identify the relative number of axons from different neuron types that connect with

a particular neuron [95]. If tested and proven accurate, the predictions in Table

3.2 could allow a researcher to identify the relative numbers of connecting neuron

types based solely on the receiving neuron’s morphology. This would inform a

further link between structure and function we have not previously touched on,

which infers the quality of processing that a neuron executes based on the relative

quantity of different types of neurons that connect with it.

3.1.5. Neurons modeled as H-Trees summary

We have applied the fractal framework that was established in Chapter 2 and

introduced a cost-benefit formalism. We first asked which D value maximizes the

benefit to cost ratio given a model (ED2 or ED3) and an axon condition (uniform

or unidirectional). We found that a D=2 geometry would maximize the benefit to

cost ratio for either model for the unidirectional condition. In uniform condition

70



we found the same competing benefits and costs for either model could explain the

peak at D=1.4 we found for the CA1 hippocampal neurons in Chapter 2.

Next we asked if we could predict either a ED2 or ED3 model given an axon

condition. We found in the unidirectional condition that the cost-benefit analysis

predicted an ED2 model for any D value. In the uniform condition our analysis

still predicted an ED2 model, even though there are clearly ED3 neurons in the

brain. We then investigated H-Tree models that vary between the ED2 and ED3

model with the angle ψ. We defined a semi-ED2 and asymmetric-ED3 region

and found that the region that maximized the average and median profile was

dependent on D. ED2 and semi-ED2 models were still favored for high D values

(1.7-2.0), but the framework could not predict exactly for low- or mid-range D

values which region would be preferred. However, we were able to indirectly

investigate whether the mean and median profile had a larger impact on the

neuron morphology. We compared the connectivity maps of the CA1 hippocampal

neurons in Chapter 2 to H-Trees. The mid-range D values of the neurons had a

profile signature at the edge of the semi-ED2 region, where the median profile

was a minimum. Thus it is more important for a neuron to maximize the mean

compare to the median profile.

Finally, based on our analysis of profile connectivity maps, we predicted 11%

and 19% more axons innervating basal and apical dendrites respectively in the

direction of the parallel fibers. We identified that with these results a researcher

could theoretically determine the relative numbers of connecting neurons of

different types on to a target neuron based solely on the receiving neuron’s

morphology.
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3.2. Applying the framework to electrode design

Here we consider retinal electrodes with varying constructions (Fig. 3.7).

Instead of fixing the total length as before, we fix the electrode footprint,

Af . Where Af is defined as the square area that contains the entire electrode

(including the photodiode and the outer ground electrode), which is particularly

relevant as it is advantageous to fit more electrodes into a given area [96]. We also

fix the feature width and the number of iterations. For convenience we construct

the electrode pattern using method 2 in Appendix A.2. For the two ED3 fractal

constructions (Fig. 3.7(b,c)) the height of the electrode is half the electrode

width. In Section 3.1 our target structures were dendrites and we envisioned

axons connecting with them. Now we consider an electrode to be the target with

dendrites connecting with the electrode. In this case, when the electrode is biased

by a voltage it will produce an electric field that contributes to stimulating the

neurons that have extended processes into the vicinity of the electrode [14, 23].

Processes that connect to an electrode also create a tensile force that pulls the

neuron closer to the electrode, or even parts of the electrode (if it’s flexible

enough) to the neuron. As before we have a set of potentially relevant physical

parameters; P , Vm, As, Ab, Af and Lt.

The profile, P , is still relevant as it determines the connectivity and

indirectly the stimulating efficiency of the electrode. Because we are interested

in retinal electrodes, we also consider the light let through to the photodiode (i.e.

the footprint minus the light blocked in the ẑ-direction by the stimulating and

ground electrode). The bounding area, Ab, varies between Electrode 1 (E1) and

the other two, but they are constant between Electrode 2 (E2) and Electrode

3 (E3). The total electrode length, Lt, doesn’t hold the same meaning as it
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FIGURE 3.7. Comparison of three electrode models. All constructions have the
same footprint, ground electrode (yellow), and photodiode area (blue). Feature
width and iterations are chosen such that they block the same amount of light
from the z-direction. The surface area of the electrode pattern (red) holds a charge
to stimulate neurons. (a) Electrode 1 (E1) has a planar construction with a height
of 250nm, D=2, and 2 iterations. (b) Electrode 2 (E2) has a planar construction
but is extruded to a height that is half the pattern width, D=2, and 2 iterations.
(c) Electrode 3 (E3) has a 3D H-Tree construction, D = 3, and 2 iterations. The
full 3D structure is bisected such that its first “H” lies flat on the photodiode.
Thus the height is half the pattern width. See Section A.2 for construction.

did with neurons, and its effects should be viewed through other parameters.

Adding additional material is not inherently detrimental in the fabrication of

a microfabricated electrode and therefore the volume of mass, Vm, is negligible.

However, the way this material is distributed is important. Critically, the surface

area of the electrode pattern, As, is no longer a cost to the system but instead the

driver of capacitance that stimulates nearby neurons.

3.2.1. Comparing electrode constructions

First we compare E1 to E2/3. The surface area of the E1 pattern is 5 times

less than the E3 pattern and 11 times less than the E2 pattern. Consequently

the capacitance is far inferior for E1 than either E2 or E3. However, even E1 is

better at stimulating neurons than a traditional square electrode [23]. Second,

E2/3 can penetrate further into the retina, bringing the stimulating field closer

to the functional neurons it intends to stimulate [97]. The physically larger size
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could however induce more trauma than a shorter electrode. This response might

be mitigated, or even eliminated by features that mimic the retinas natural

environment (e.g. natural height variation). Finally, E2/3 has the same profile

from the z-direction, but if you include all angles that neuron processes might

approach the electrode from, then the profile is much larger for both E2/3

compared to E1.

So long as the electrode is sufficiently strong to survive insertion and one

does not cause undue trauma to the retina, it is only logical to construct electrodes

that have some height to them.

We now compare E2 to E3. First, E2 always has more surface area than E3.

For example, considering the electrodes described in Table 3.3 E2 has 2.5 times

the surface area compared to E3. With one more iteration, E2 has 1.4 times the

surface area compared to E3. This trend approaches equal surface areas for high

iterations and small feature widths. We take note that traditionally typical D=3

fractals like E3 are thought to have more surface area for a given bounding area

than a D=2 fractal, but we note that the pattern in E2 is not a typical D=2

fractal as it is extruded with a large height. In particular, E2 arrives at such a

high pattern surface area by using much more material than E3. Consequently,

E3 has more space open at the size scale of the smallest iteration. These openings

(> 2µm for electrodes in Table 3.3) could allow more processes to make their way

inside the bounding area of E3 compared to E2. More processes that are closer to

the electrode would be beneficial for stimulation. A single process might connect

with several points on a pattern which could increase adhesion. Additionally,

glial cells could also penetrate into the structure on the level of the substrate,

supporting neurons more directly and with fewer cells. If the feature sizes are
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chosen (or the number of iterations is increased) such that the gaps are too small

for a neuron process to penetrate into the structure, the E3 would still have a more

varied topography. With enough iterations the varied topography could mimic

fractal mountains, which have been shown to increase neuron growth [98, 99].

Property E1 E2 E3

Connectivity (off axis) Low High Med
Insertion Trauma Low High High
Fluid flow High Low Med
Electrode Surface Area 155 µm2 1,975 µm2 796 µm2

Fabrication Technique Established Established Not Established
Penetration 250 nm 20 µm 20 µm
Flexibility Med Low High
Exerted fluid forces Low High Med
Structural stability High Med Low
Nano-scale roughness Med High Med
Photodiode area 258 µm2 258 µm2 258 µm2

TABLE 3.3. Comparison of electrode designs. A summary table comparing the
properties of the 3 electrode designs in Fig. 3.7, with a 20 µm × 20 µm footprint,
18 µm pattern width, 2 iterations, a feature width of 1µm, and a ground electrode
width of 1µm.

E2 would likely be more stable than E3 but also would have greater forces

exerted on it due to the large flat sidewalls. This stability might come at the cost

of flexibility. Fractals are mechanically flexible, a desirable property for implanting

electrodes in the curved space at the back of the eye [15]. However, the large

amount of material in E2 might add an undesirable rigidity [100] to the design. E3

might even out-compete E1 in terms of flexibility with its relatively small pattern-

substrate contact area.

Retinal fluid, which contains nutrients and helps with waste removal [36]

would not be able to perfuse through E2 as easily as with E3, thus increasing the
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risk of a defense response and a rejection of the electrode [101]. Fluid flow could

even work to dislodge the electrode from its base, which could be more likely with

the large euclidean walls of E2.

3.2.2. Electrode comparison summary

We have seen that Electrode 2 has some functional advantages and it

best suits established CNT fabrication techniques [102]. Additionally the CNTs

have the advantage of an inherent nano-scale roughness that promotes neuron

growth and adhesion (i.e. CNTs are biophilic without modification). Electrode

3 has many advantages over Electrode 1 and 2. However, it would have the most

intricate fabrication challenges. Complicated ED3 structures can be fabricated

with techniques such as two photon lithography [103], however adding a metallic

layer would increase the complexity of the design even further. Electrode 1 can be

fabricated with a thin metal layer, yet it is the least functional electrode presented

for most of the desirable properties. For both Electrode 1 and 3 ensuring that the

metallic layer is biophilic would be an added technical challenge.

Another commonly fabricated electrode beyond the 3 presented here is a

fractal mountain [98, 99]. Fractal mountains have high capacitance and high

connectivity. However, their traditional design would block incoming light and

would lack the mechanical flexibility of fractal branched structures. Most crucially,

we hypothesize that it is important to have fractal branches (akin to neurons) to

encourage neurons to maintain proximity to an electrode once they are growing

along it. We propose an experiment to test this hypothesis in the next chapter.
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CHAPTER IV

NEURONS INTERACTING WITH PATTERNED CNTS: AN EXPERIMENT

PROPOSAL

By examining the profile we discussed in Chapter 3, we investigated the

likelihood of a neuron making contact with an electrode. In this chapter we

propose an experiment to examine how the neuron interacts with the electrode

after contact has been established. In particular we investigate whether we can

increase the probability of a neuron maintaining contact with an electrode as we

adjust electrode parameters. In Chapter 1 we considered this question at large

scales, now we propose an experiment to map out a strategy at the size scale of a

single neuron.

In Chapter 2 we showed that neurons have characteristic weave and

forking angles. We propose that it is advantageous for them to maintain those

characteristic angles after having established a connection with an electrode. If we

provide an electrode that has those characteristic angles available to the neurons,

will they increase their probability of maintaining proximity to the electrode?

We have preliminary evidence that shows that neurons follow features that are

at the same width as their processes (Fig. 4.1a). However, when neurons grow

along those features they are constantly exploring their surroundings, presumably

searching for other features to grow along that also support their growth. What if

we were able to provide an underlying pattern for sufficient unconstrained growth,

but without completely covering the surface with an electrode? Can we identify

the precise geometric characteristics that promote natural branching patterns? If

we do, will we see more growth or other desirable behaviors?
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FIGURE 4.1. Neurons interacting with textured and smooth surfaces. The top
neuron follows a textured V-shaped line, while the bottom neuron grows fractal
dendrites on a nearby smooth surface. The white scale bar is 20 µm and the
texture is patterned in SU8.

Generally we may design an experiment in two fundamentally different ways:

A holistic approach might look at many neuron processes together on a non-trivial

branching electrode, where-as a reductionist approach might look at individual

neuron branching dynamics in a limited environment. The holistic approach is

exciting but runs the risk of being unable to control the relevant parameters of

interest in a reproducible way. The reductionist approach might miss unintended

discoveries due to its narrow focus. This chapter offers a reductionist map for

future experiments that could be performed independently or in tandem with the

holistic approach.

We seek to understand the branching dynamics of neuron processes at

the single neuron level. We propose a control group of uniform CNTs and

an experimental group of varying branching angle electrodes informed by the

description of neuron morphology given in Chapter 2 (e.g. branch lengths,
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branching angles, and turning angles. Fig. 2.1). We specifically include angles

that match those of the reconstructed CA1 hippocampal neurons in Chapter 2.

We focus on branching and turning angle dynamics to see how changes in an

underlying texture change specific growth behaviors. This experimental setup

would allow a researcher to compare the in vivo neuronal branching dynamics

to conditions where a neuron is more or less likely to be able to maintain its

natural morphology in vitro. We predict that when the natural morphology is

encouraged (or at least not restricted) by the underlying pattern that the chance

of maintaining contact with the electrode will be increased. This in turn could be

used in the retina, or in any neuron-electrode interface to enhance the efficacy of

stimulation.

Crucially we propose an experiment with a meaningful null result. If there

is no response to different patterns compared to uniform CNT patterns, then

that would be valuable information in the design of electrodes as other more

important features could be focused on without a reduction in performance. If

specific patterns are favored as we expect, then that could be used to tune the

ability of neurons to maintain connection with an electrode material.

4.1. Culture design

4.1.1. Culture procedure

We are interested in the dynamics of single neurons interacting with

patterns. Therefore we suggest that pattern samples are placed in a culture of

randomly sampled dissociated mouse retinal cells as described in Section 1.4

(although we note that many culture procedures would be sufficient for similar

results). We propose a 7 day in vitro culture to minimize superfluous glial growth.
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At this duration we have previously demonstrated that cultures typically have

glial cells, but minimal to no glial proliferation, and still have healthy neuron

growth. Additionally, diluting the seeding density by half would help to avoid

misidentification of one neurite with one from another neuron.

To minimize any potential variation in culturing and fabrication, we strongly

suggest that both are accomplished in rapid succession over a period of less

than two months. We propose 3 separate cultures of 16 samples each (12 in the

experimental group and 4 in the control). Three separate cultures is the minimum

necessary to properly account for biological variation from one culture to another,

and including 16 samples of each would provide a sufficient number of interactions

for robust statistics.

4.1.2. Pattern element

We propose implementing pattern elements that are reminiscent of the 3D

neurons introduced in Chapter 2 at locations where a neurite bifurcates or turns.

We suggest the construction of a pattern element fabricated out of CNTs with

varying angles (Fig. 4.2). Each pattern element consists of a central node with

extending line segments at angles described by α and δ. All line segments of the

pattern element are intended to guide neuron growth at the single neurite size

scale. Therefore, we suggest a width and height of 2µm, which is approximately

the diameter of a neurite.
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FIGURE 4.2. Pattern element description. (a)Example scanning electron
microscope image of vertically aligned CNTs patterned on a silicon substrate.
The proposed line segments for this experiment will have a width and height of
2 µm.(b) At a node there are 3 straight line segments, I, A, & B. The direction
of A is defined by the angle α from the extended line of I. The direction of B is
defined by the angle δ from the A segment. (c) When δ = 0 only one outgoing line
segment exists. This pattern isolates the turning angle and establishes a reference
point for other behaviors.

4.1.3. Pattern

A single pattern is comprised of 10 (7 for δ = 0◦) pattern elements. Each

pattern is set to have an identical central pattern element with α = 60◦ and δ =

120◦. The rest of the pattern elements explore combinations of α (−30◦ to 90◦)

and δ (0◦ to α + 90◦). We specifically propose a set of pattern elements at δ = 75◦

(α = 0◦,37.5◦, and 75◦) because it matches typical branching angles of the CA1

hippocampal neurons. See Fig. 4.3 for all patterns.

The length distribution of the patterns is held constant and is set by the

fractal dimension to D = 2 (Fig. 4.4a). These lengths optimize pattern packing

while maintaining enough space between line segments for reliable data.

The angle definition assumes that a neurite grows from a pattern’s central

node outwards but in actuality a neuron could grow in any direction. If we

81



90

60

30

0

300 60 90 120 150 18075

75

37.5

15

-30

-15

δ
FIGURE 4.3. All patterns. A schematic showing all individual patterns on the
sample. ∼220 of each pattern will be on a sample.
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consider these new possibilities of α and δ (Fig. 4.4b), then our parameter space

increases by more than half.

''
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'''
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δ
δ

δ
�
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FIGURE 4.4. Pattern description. (a) A single pattern is shown with α = 30◦

and δ = 60◦. The lengths of segments 1, 2, and 3 are given by L1 = 20 µm,
L2 = L0√

2
, and L3 = L0

2
. The pattern’s dimensions are 80.2µm × 69.5µm. (b) A

larger parameter space of angles is obtained when considering that a neurite could
grow inwards along any part of the pattern element. These angles are given by:
α′ = π − δ : δ′ = π + α− δ : α′′ = δ − α : δ′′ = π − α

4.1.4. Pattern repeat

Each pattern can be inscribed in a rectangle with an area of 6, 000 µm2.

Three patterns of each type are randomly distributed on a 9×9 grid (Fig: 4.5a). A

single sample has an area of investigation of 6mm× 6mm which can accommodate

∼6000 patterns. 27 pattern types correspond to ∼220 patterns of each type (and

∼57000 pattern elements) per sample.

4.1.5. Control

We propose a CNT serpinski carpet as a control sample (Fig. 4.5b). The side

lengths of the individual squares that comprise the entire pattern are 80 µm, 240
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µm, 720 µm, and 2160 µm. This control has large isotropic CNT regions where

neuron growth direction on the surface is topographically unbiased. The various

square sizes serve a dual purpose: 1) CNT surface topology can vary with height

and CNT height can vary with the size of the area being grown. The individual

patterns have a relatively small area of CNTs being grown and therefore would

likely have a different surface topography than any of the squares. By including a

multi-scale set of squares a researcher could track any differences in neuron growth

behavior within the control group. Statistically identical growth dynamics between

square sizes would provide evidence that growth dynamic differences are due to

differences in the experimental and control group. If statistically different growth

dynamics between square sizes were observed, then the quality of behavior change

could potentially be extrapolated to the experimental group. 2) We established

that glial cells have a strong proximity dependent effect on neurons in Section 1.4.

Multi-scaled square sizes would ensure that some glial cells are far from neurons

but others are close, increasing the likelihood of matching the neuron-glia distances

in the experimental group established by random seeding.

4.2. Quantifying neuron behavior

A neurite growing along a line segment of a pattern element towards a node

can exhibit one of five behaviors. A neurite will:

1. Terminate Growth

2. Grow off the pattern

3. Grow along the A branch

4. Grow along the B branch
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(a) (b)

FIGURE 4.5. Experimental pattern repeat and control. (a) Pattern repeat
including all 27 patterns (3 of each) randomly distributed in a 9 × 9 grid.(b) A
serpinski carpet control with squares ranging in side length from 80 µm to 2160
µm.

5. Bifurcate (β)

To simplify the results these behaviors should first be identified in regions far

from the influence of glial cells.

4.2.1. Primary questions

The behavior observed would likely depend on the angles of that pattern

element. We ask:

1. What is the probability of a bifurcation (β) given α and δ? Prob(β|α, δ)

2. What is the preference for the A segment given α and δ? Prob(A|α, δ)

First, we predict a peak near the δ that matches the CA1 hippocampal

neurons, δ = 75◦ (Fig. 4.6a). Furthermore, the probability might maximize close

to the symmetric value of α. Second, we have previously identified that neurites

85



will make extreme turns (at least up to 90◦) when following an edge, but from

our analysis of 3D neurons we see that turning angles are relatively small. We

predict a preference for straight trajectories since those are closest to the in vivo

condition (Fig. 4.6b). Regardless of whether or not the prediction is satisfied, the

topography of this plot would be particularly interesting.

Additionally it would be fruitful to analyze neuron behaviors on patterns

compared to large isotropic regions on a control sample (Fig. 4.5b). By identifying

the neuron’s branching and turning angles on this isotropic surface one could

determine the characteristic angles (we expect a branching angle of ∼ 75◦ based

off of our 3D analysis). Next, a researcher would compare neurons grown on

patterns with the angles that match the characteristic angles to patterns with

different angles. By quantifying observable differences, such as neurite length, it

will shed light on if they are enhanced when the angles match. If for example the

neurite length is increased then the first purpose of this study would be satisfied,

to maximize the chances of a neuron process following an electrode.

Explicitly we ask:

3. If we match a condition (e.g branching angle) observed on an unbiased CNT

region, will that correspond to unique behavior (e.g. increased neuron length)

on the pattern?

4.3. Data analysis

Fluorescence microscopy can be used to image neurons, glia, and nuclei

separately. Data analysis tools would need to be built in addition to those

established by our group, not only to identify glia and neurons, but also to track

the direction of neurite growth, distances between cells, branching angles, and
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(a) (b)

FIGURE 4.6. Predicted results. (a) Probability of a bifurcation given α and δ.
(b) Possible segment A/B preference results. Preference for segment A is given by
‘warmer’ colors, and for B by ‘cooler’ colors.

turning angles. These tools combined will allow the creation of a ‘library’ of

neuron morphology and behavior.

4.4. Secondary questions

For our primary questions the proximity of a neurite to other neurons and

glia was controlled for. Ultimately the aim is to develop a model that includes

geometric effects and the distances to other cells.

We propose a model of the form,

F (α, δ, ~G, ~N) = f(α, δ) + g(~G) + n( ~N),

where ‘g’ and ‘n’ are yet to be determined functions of the relative distances to

nearby glial (~G) and neural ( ~N) cells, and ‘f’ accounts for geometric effects of the

underlying pattern. F is then the combined influence from which we calculate the

probability of a neurite exhibiting a behavior at a node. In particular we seek to

examine Prob(β|F ) and Prob(A|F ).
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4.5. Conclusions

Ultimately, the fundamental question we ask here is simple but potentially

profound. Is there enhanced behavior by matching the scale and branching

patterns of the electrodes to the neuron behavior?

We’re hopeful that the aforementioned approach of reducing neuron

morphology into its primary descriptors and analyzing that behavior in response to

varying physical environments will not only elucidate the fundamental branching

dynamics of a neuron as it grows along an electrode, but will also help in the

design of a better implant-retina interface.
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CHAPTER V

CONCLUSIONS

From the results in the introduction we know that a simple system can

be created that hinders glial growth on an electrode surface and simultaneously

improves neuronal growth, while keeping glia inside Si areas in close contact with

neurons on both surfaces. The neuronal small-world network created an efficient

communication mechanism between neurons on both surfaces, thereby increasing

the area of neurons that could stimulate downstream neurons. Furthermore,

we found that we could modify the proliferation of glial cells and the small-

world network properties by changing the D value of the electrode. The in vitro

experiments were done at a large scale (∼ 6mm), however, each individual

electrode used in a retinal prosthesis would need to be much smaller (20µm for

a theoretical 20/80 vision). Still, these large scale in vitro experiments present a

map for the design of future electrode arrays. Those electrode arrays would not

be restricted to subretinal implant technologies. The fundamental findings of their

interactions with neurons and glia could be utilized in implants that interface with

other parts of the central nervous system.

We showed in the introduction that a fractal electrode at the size scale

of just a few neurons was better at stimulating surrounding neurons than a

square electrode, potentially leading to an improved visual acuity. Furthermore,

the fractal electrode stimulated the same neurons but required less power from

incoming light via a photodiode.

Large scale networks and small scale electrical results provide a promising

path towards designing better functioning electrodes. However, we identified that
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it would be important to further investigate the fundamental behaviors of neurons

in order to design electrodes that facilitate better neuron-electrode connections.

In Chapter 2, we investigated how neurons exploit fractal geometry to

optimize their network connectivity, which addresses a major question concerning

the operation of the human body - how neurons optimize their connections to

each other in order to form a network. The results from this chapter have broad

implications such as providing a framework for interpreting Connectome data to

increase the viability of novel medical implants designed to interface with neurons.

Previous studies showed that neurons are composed of fractal branching patterns,

but it was not clear how neurons benefit from these patterns and to what extent

they were fractal. To better understand these two questions we constructed 3-

dimensional models of rat hippocampal neurons using confocal microscopy to

identify the precise geometric properties that contribute to their fractal character.

Unexpectedly, we found that neurons are not like other commonly branched

fractals such as trees where the distribution of branch lengths dominate their

fractal characteristics. Instead, we showed that the ways in which the branches

fork and weave through space are important determiners of their connectivity and

costs. By manipulating the weave and fork angles of the branches in the neuron

models, we created distorted neurons that deviate from their natural state. We

examined their evolving properties as a function of a geometric parameter called

fractal dimension D.

Based on the fractal framework we developed, we proposed that the neuron

D values quantify network cooperation that balances the neurons need to connect

to their neighbor neurons with the energetic cost of maintaining this connectivity.

Neurons have the ability to develop more branches to connect to their neighbors,
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but each extra branch requires vital operational energy. The neurons solve this

dilemma using their fractal character to fine-tune the connectivity of the branches

using D.

We show that this fractal strategy can be achieved with branch patterns

that repeat over only one order of magnitude of scale. Furthermore, we found

that neurons adopt the opposite geometric strategy to fractal trees whereas tree

branches become increasingly small further from the central trunk, the neuron

branches become longer. The impetus for this lies in the neurons need to minimize

signal transport times within the arbor. This is achieved with short branches close

to the soma while the H-Tree suffers from longer branches.

Our fractal framework allows neurons, including healthy and pathological

neurons (e.g. Alzheimers) and even artificial neurons, to be compared to many

branching objects. For example, our results can inform the choice of the D

values of fractal electrodes used in retinal implants designed to combat diseases

such as macular degeneration. In addition to medical applications, our fractal

framework provides an automated approach for fundamental research that allows

researchers to easily analyze large amounts of data (e.g. the 121,544 neurons on

neuromorpho.org).

In Chapter 3 we applied the fractal framework that was established in

Chapter 2 and we introduced a cost-benefit formalism that we first used to

calculate the behaviors of our CA1 hippocampal neurons using heavily constrained

exact H-Tree models. We assessed two conditions: One in which axons approach

from a single direction and the other in which axons approached from many

directions uniformly. In the former we found that a D=2 geometry would

maximize the benefit to cost ratio. In the latter we found the same competing
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benefits and costs could explain the peak at D=1.4 we found for the CA1

hippocampal neurons in Chapter 2.

Next we asked whether an ED2 or ED3 model would maximize the benefit to

cost ratio for those same two conditions. We found that when axons come from a

single direction, the cost-benefit analysis predicts an ED2 model for any D value,

which is consistent with what we see in the literature (e.g. Purkinje cells). When

axons approach uniformly from many directions our analysis still predicted an ED2

model, even though there are ED3 neurons in the brain. This result motivated us

to transform H-Tree smoothly between the ED2 and ED3 model. We defined a

semi-ED2 and asymmetric-ED3 region and found that the region that maximized

the average and median profile was dependent on D. We predicted which region

would be preferred for a set of the D values. Furthermore, we identified results

that indicated that it is more important for a neuron to maximize the mean

compared to the median profile.

The direction that they favored corresponds to parallel axon fibers that pass

through CA1. Based on our analysis of profile connectivity maps, we predicted

11% and 19% more axons connecting to Basal and Apical dendrites respectively in

the direction of the parallel fibers.

In the next section of Chapter 3, we applied the fractal framework to

compare 3 different electrode designs for bio-compatibility, connectivity, and ease

of fabrication. We found that for the two most critical properties, surface area, and

connectivity, electrodes that extended into 3 dimensions (ED3) achieved higher

values than a mostly flat electrode. The height of the ED3 electrodes also brought

them closer to the neurons they would stimulate. However, they paid a penalty

in the ease that fluid would flow across them. Still, when considering all the
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properties for most applications, it would be unlikely that the flat electrode would

perform better than either of the ED3 electrodes. Between the two ED3 electrodes

it was clear that the specific requirements of the application would dictate which

electrode was best suited.

In Chapter 4 we proposed an experiment to investigate the fundamental

behaviors of neurons interacting with patterned CNTs. This experiment would

serve two purposes: 1) to understand how to maximize the chances of maintaining

proximity to the electrode once the neuron has reached it and 2) to learn the

fundamental branching dynamics of neurons as they grow along an electrode. The

experiment would build on the knowledge we learned in the previous chapters; the

techniques established in the introduction, the fundamental properties of neuron

branching dynamics discovered in Chapter 2, and the principles of electrode design

established in Chapter 3.

We must consider a host of relevant features in order to design a better

electrode. The system dynamics of retinal cells, their interactions with artificial

surfaces at the single neuron size scale, the stimulation power of a single electrode,

knowing how neurons curve through space in-vivo, the use of fabrication

techniques to increase electrode surface area, connectivity, or fluid flow - all of

these are necessary components, but none in isolation are sufficient. However, if

we consider these concepts in tandem we might break free from established designs

that fall short of theoretical maximums, achieve a much better electrode interface,

and improve the quality of life for those who benefit from these technologies and

the fundamental research that makes them possible.
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APPENDIX

H-TREE FUNCTION DEFINITIONS

In this appendix function definitions are defined for exact H-Trees.

A.1. Method 1: H-trees with lengths that decrease every branch

We work in the regime such that the width of any branch is much smaller

than the bounding length of any pattern.

A.1.1. ED2 H-trees

The side length of the entire ED2 H-Tree in the x̂, ŷ, and ẑ direction is

Lx(D,N,L1) = 2L1

N/2∑
n=0

1

22n/D
, (A.1)

Ly(D,N,L1) = 2L1

(N−1)/2∑
n=0

1

2(2n+1)/D
, (A.2)

Lz(W ) = W, (A.3)

where W is the width of a branch, N is the number of iterations minus 1, D is the

fractal dimension, and L1 is the length of the initial segment.

94



FIGURE A.1. H-Tree generation: Method 1. Schematic of different stages of an
H-tree fractal generation. a) through f) show consecutive stages of generating an
H-tree with D = 1.5 and 6 iterations. Reprinted with permission from the author
[24]

A.1.2. ED3 H-trees

The side length of the entire ED3 H-Tree in the x̂, ŷ, and ẑ direction is

Lx(D,N,L1) = 2L1

N/3∑
n=0

1

23n/D
, (A.4)

Ly(D,N,L1) = 2L1

(N−1)/3∑
n=0

1

2(3n+1)/D
, (A.5)

Lz(D,N,L1) = 2L1

(N−2)/3∑
n=0

1

2(3n+2)/D
. (A.6)
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A.1.3. Definitions for both ED2 & ED3 models

The convex hull bounding volume is given by

VB = LxLyLz. (A.7)

The area is given by

AB = 2LxLy + 2LzLy + 2LxLz. (A.8)

The total length of all the branches is

L = L1

N∑
n=0

2n+1

(
1

21/D

)n

. (A.9)

Therefore the volume occupied by the branches is

Vm = π

(
W

2

)2

L (A.10)

and the surface area is

As = πWL. (A.11)

A.2. Method 2: H-Trees with lengths that decrease every ‘H’

For method 2 H-Trees all lengths in the H are equal, and each H is scaled

down according to D. For ED3 method 2 H-Trees, there is a length in each

dimension that is constant, and that entire structure is scaled down. Segments

are rectangular, with a width W in both transverse directions. No simplifying

assumptions are made.
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FIGURE A.2. H-Tree generation: Method 2. Each row is a new iteration. (Left
Column) ED2 generation method for a D=2 fractal with H=W. (Middle Column)
ED3 generation method for a D=3 fractal. (Right Column) View from above
without perspective for both generation methods. From this viewpoint they have
the same profile.

A.2.1. ED2

The side length of the entire ED2 H-Tree in either the x̂ or ŷ direction is

Lxy = W + 2L1

N∑
n=0

1

4n/D
. (A.12)

The bounding volume is given by

VB = HL2
xy. (A.13)
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The area by

AB = 2L2
xy + 4HLxy. (A.14)

The total length of all the branches is

L =
W

2
4N+1 + 6L1

N∑
n=0

(
4

41/D

)n

. (A.15)

Therefore the volume occupied by the branches is

Vm = WH

(
L−W − 3W

2

N∑
n=1

4n

)
(A.16)

and the surface area is

As = (2H +W )L+HW4N+1 − 1

2
(4HW +W 2)(2 + 3

N∑
n=1

4n). (A.17)

The profile in the ẑ direction is

Pz = W

(
L−W − 3W

2

N∑
n=1

4n

)
. (A.18)

The smallest gap is

SH = L1

(
1

4(N−1)/D −
1

4N/D

)
−W (A.19)

and the maximum segment width without overlap is

Wmax =

√
A

−1 + 22+N
. (A.20)
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A.2.2. 3D

The side length of the entire ED3 H-Tree in the x̂, ŷ, or ẑ direction is

Lxyz = W + 2L1

N∑
n=0

1

8n/D
. (A.21)

The bounding volume is given by

VB = L3
xyz. (A.22)

The area is given by

AB = 6L2
xyz. (A.23)

The footprint, Af , is the square area of entire electrode The total length of all the

branches is

L =
W

2
8N+1 + 14L1

N∑
n=0

(
8

81/D

)n

. (A.24)

Therefore the volume of the mass is

Vm = W 2

(
L− 3W − 7W

2

N∑
n=1

8n

)
(A.25)

and the surface area is

As = W

(
4L+W8N+1 −W

(
18 + 21

N∑
n=1

8n

))
. (A.26)

The profile in the ẑ direction is

Pz = W

(
4N+1

2
+ 6L0

N∑
n=0

4n

8n/D
−W − 3W

2

N∑
n=1

4n

)
(A.27)
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