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DISSERTATION ABSTRACT

Tom Tong

Doctor of Philosophy

Department of Physics

June 2020

Title: Beyond the Standard Model: Dark Mesons and Custodial Symmetry

We describe our investigations on possible new physics beyond the Standard

Model that reveal their connections with custodial symmetry.

First, we consider several strongly-coupled dark sectors with fermions that

transform under the electroweak group. We construct the non-linear sigma model

describing the dark pions and match the ultraviolet theory onto a low energy effective

theory that provides the leading interactions of the lightest dark pions with the

Standard Model. We uncover two distinct classes of effective theories: “Gaugephilic”

and “Gaugephobic”.

Second, we demonstrate such a dark sector could be accessible to current searches

by studying the production and decay of dark mesons at the LHC. Dark pions can be

pair-produced and decay in one of two distinct ways: “gaugephilic” or “gaugephobic”.

We recast a vast set of existing LHC searches to determine the current constraints

on the dark meson. We find the relative insensitivity of LHC searches, especially

at 13 TeV, can be blamed mainly on their penchant for high mass objects or large

missing energy. Future dedicated searches would undoubtedly improve sensitivity.
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Finally, we consider custodially-symmetric UV physics, mapping their effects

onto higher-dimensional operators in a custodial basis. This basis explicitly identifies

the global SU(2)R symmetries of the Higgs and flavor sector with custodial preserving

and violating operators. Custodially symmetric UV physics that contributes purely

to oblique corrections at leading matching order leads to the electroweak observable

ρ = 1 at tree-level. Nevertheless, such UV physics can also generate non-oblique

corrections, and thus ρ 6= 1 is insufficient to claim custodial violation. We therefore

identify a set of observables that are able to capture the leading tree-level effects of

integrating out a custodially-symmetric UV sector. We illustrate our results with four

examples: a heavy singlet scalar; a heavy Z ′ transforming under U(1)B−L; heavy W ′s

and Z ′s transforming under SU(2)L × SU(2)R × U(1)B−L; and a heavy W ′
L coupling

purely to left-handed fields. These examples demonstrate that our observables could

be used to “fingerprint” custodial symmetry of UV physics.

This dissertation consists of previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

The discovery of a Higgs-like boson at the Large Hadron Collider in 2012 is a

profound milestone. As the final missing piece, it completed the Standard Model of

particle physics and made it a reliable model to both explain and predict virtually

all of the microscopic physical phenomena known to us. Nevertheless, the Standard

Model cannot be the whole story. We list several well-established observational and

experimental facts below as motivations for new physics beyond the Standard to

attempt to explain the mysteries.

– Dark matter. There is vast evidence that roughly 80% of the matter content

of the universe does not interact through electromagnetism, the strong force,

or the weak force, hence dark matter. From the large scale structure formation

of our universe, we believe dark matter is massive and “cold” in the sense that

its primordial velocity dispersion is small. And from the fact that no evidence

of dark matter decay has been observed so far, it must be stable on at least

a cosmological timescale. According to these properties, the Standard Model

provides us no particle candidate. (And while primordial black holes are a

theoretical possibility, even this explanation is highly constrained [6].)

– Neutrino mass. Current measurements [7] assert that at least two

neutrino species have non-zero masses. These results directly contradict the

(conventional) definition of the Standard Model, which treat neutrinos as

massless particles. Neutrino masses can be incorporated in a ν-extended

Standard Model but this requires new interactions and/or fields that is an

extension of the Standard Model.

1



There is also a mysterious matter-antimatter asymmetry. The fact that almost

all of the baryonic content in our observable universe is matter instead of antimatter

suggests that something distinguished baryons and antibaryons in the early universe.

Long ago Sakharov recognized that mechanisms of baryongenesis require baryon

number violation, C and CP violation, with interactions out of thermal equilibrium [8].

However, the size of the imbalance is several orders of magnitude larger when

compared to the known sources of CP-violation in the Standard Model that could

have possibly produced the asymmetry while still satisfing current experimental

constraints [9]. Baryogenesis, therefore, may very likely require novel mechanisms

from new physics beyond the Standard Model to provide an adequate explanation.

In addition to these evidences, the Standard Model also contains other theoretical

puzzles within its own framework, such as the hierarchy problem and the strong-

CP problem. Very often, the proposed solutions to these problems, such as

supersymmetry and the axion, also involve new physics beyond the Standard Model.

Two primary methods are used in the search of BSM physics. One is to

look for new particles. The other is to look for new or modified interactions of

known particles.1 Both methods have been utilized by our studies described in this

dissertation, using effective field theory. Effective field theory is a common tool used

in particle physics and other areas of physics. It is defined by particle content and

symmetries with a cutoff scale; higher dimensional operators account for integrating

out particles that are not able to be produced directly at low energies. By matching an

ultraviolet full theory model onto an effective field theory description of the physical

system of interest, it connects the ultraviolet theory to an infrared theory that only

1These are not necessarily independent searches although they can probe different energy scales
of new physics.
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contains the degrees of freedom relevant to the infrared regime [10]. This is a trade-off

between staying agnostic to the complete ultraviolet theory and having the theory we

use being valid to arbitrarily high energy scales.

In this dissertation, we first implement an effective theory approach to consider

beyond the Standard Model scenarios of strongly-coupled new physics that provides

a novel explanation to dark matter. Then we explore the potential of a discovery

of such dark mesons both at the current LHC experiments and in the near future.

Finally, we treat the Standard Model itself as an effective theory (SMEFT), and

then investigate the theoretical and phenomenological implications of matching UV

theories that satisfy custodial symmetry within a new basis that we construct for this

purpose: the custodial basis of νSMEFT (SMEFT with right-handed neutrinos). To

be specific, the definition of custodial symmetry in our study states that UV physics

is said to be “custodial symmetric” when an SU(2)R global symmetry is preserved by

all UV interactions with the Higgs sector of the SM.

Effective theories of dark mesons

The Chapter II of this dissertation describes our studies into the effective theories

of dark mesons, particularly with those preserving custodial symmetry. We consider

extensions of the Standard Model that incorporate a new, strongly-coupled, confining

gauge theory with fermion representations that transform under the electroweak

group. The notion of a new sector of fields transforming under a new, strongly-

coupled, confining group is a fascinating possibility for physics beyond the Standard

Model. All of the new sector’s scales are either natural (the new confinement scale)

or technically natural (new fermion masses), and so such a scenario is, at a minimum,

no worse off than the Standard Model in terms of naturalness.
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From a theoretical point of view, there are a wide variety of uses of a new,

strongly-coupled, confining group. One use is to at least partially break electroweak

symmetry dynamically, such as bosonic technicolor [11, 12, 13, 14, 15, 16, 17, 18,

19] and the closely related ideas on strongly-coupled induced electroweak symmetry

breaking [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Composite Higgs theories also posit

a new strongly-coupled sector in which at least an entire Higgs doublet emerges in the

low energy effective theory (the literature is far too vast to survey, for a review see

e.g., [31]). There is also a interesting connection to the relaxation of the electroweak

scale [32] using a new strongly-coupled sector, e.g., [32, 33, 29, 34, 30].

Another use is to simply characterize generic strongly-coupled-like signals as

targets for LHC and future colliders. Vector-like confinement [35] pioneered this

study in the context of vector-like fermions that transform under part of the SM

group as well as under a new, strongly-coupled group with scales near or above the

electroweak scale. Further explorations into the phenomenology and especially the

meson sector included [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 30, 46]. In theories with

somewhat lower confinement scales, the new sector may lead to invisible showers and

related phenomena [47, 48, 49, 50, 51, 52, 53], displaced signals [54, 55] and potentially

intriguing spectroscopy [56, 57, 58]. Spectacular “quirky” signals can arise in theories

with a very low confinement scale [59, 60]. The latter theories may also lead to a high

multiplicity of soft particles that are tricky to observe [61, 62, 63].

The difficulty with strongly-coupled physics is that it is strongly-coupled,

implying the breakdown in perturbative calculation and the significance of non-

perturbative effects. However, many years ago Kilic, Okui, and Sundrum pioneered

the study of a new strongly-coupled sector’s phenomenology for collider physics [35].

Their insight was to determine the leading interactions of an effective theory of

4



pseudo-Nambu Goldstone (pNGB) mesons with vector mesons (both composite and

fundamental). They were motivated by imagining QCD scaled up to weak scale

energies, except, and here is the key point, their BSM fermion masses were taken to

be purely vector-like. We generalize vector-like confinement by permitting specific

interactions between the strong sector fermions and the Standard Model. In some

models, these interactions are renormalizable Yukawa couplings of the dark sector

fermions with the Higgs of the SM. In others that do not permit Yukawa couplings,

we also consider higher dimensional operators (that also involve the Higgs sector in

some way). These interactions lead to dark pion decay. And, what is distinct in

the vector-like theories we consider is that there is no axial anomaly contribution to

neutral dark pion decay. We use a non-linear sigma model (NLSM) to describe the

pNGB mesons, which we carry out in detail. Equally important, the fact that we

break the flavor symmetries of the strong sector with Higgs interactions necessarily

locks the strong sector flavor symmetries to the O(4) ∼= SU(2)L × SU(2)R global

symmetry of the Higgs potential. As a result, the strong sector fields can be grouped

into multiplets of this symmetry, with different assignments possessing qualitatively

different phenomenology.

Needless to say, the biggest motivation for such a strongly-coupled theory

is that dark matter can emerge as a composite meson or baryon, often with an

automatic accidental symmetry that protects against its decay. Since the early

days of technicolor there was a possibility of dark matter emerging as technibaryons

[64, 65, 66, 67, 68, 69, 70]. There is now a growing literature that has studied strongly-

coupled dark matter as dark pions [71, 72, 73, 74, 75, 76, 40, 77, 78, 79, 80, 81, 82, 83,

56, 84, 85, 86, 87], dark quarkonia-like states [88, 36, 89, 90], as well as dark baryons

and related candidates [91, 92, 93, 71, 94, 36, 95, 96, 97, 75, 98, 99, 100, 101, 102, 78,
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103, 104, 42, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116] (for a review,

see [117]).

Collider phenomenology of dark mesons

In Chapter III of this dissertation, we studied the collider phenomenology of the

dark meson theories and its signatures for a potential discovery at the LHC. The

dark sector model that is of particular interest to us is Stealth Dark Matter [106].

In this theory, there is a new, strongly-coupled “dark sector” that consists of vector-

like fermions that transform under both the new “dark group” group as well as the

electroweak part of the SM, and crucially, also permit Higgs interactions. Others have

also pursued dark sectors with vector-like fermions that permit Higgs interactions for

a variety of purposes [81, 33, 118, 115, 30].

One might think a dark meson sector whose low energy effective theory is a set of

scalars with electroweak quantum numbers has already been fully (or mostly) covered

by the wide range of existing search strategies. This is simply not the case. We find

that a dark vector meson could be as light as about 300 GeV, something that, at first

glance, seems hard to believe given the multi-TeV bounds on new Z ′ bosons from

LHC data. The dark vector meson can mediate dark pion pair production (just like

ρ → ππ in QCD), and in some models, the bounds on the dark pion mass could be

as small as 130 GeV. Clearly, the LHC easily has the energy to produce these states,

and so it really comes down to finding search strategies that maximize sensitivity. We

believe substantial improvements are possible, providing impetus and breathing new

life into LHC searches in the hundreds of GeV regime.

The dark meson sector of the Stealth Dark Matter theory has several intriguing

properties due to the accidental symmetries of the model. Like vector-like confinement
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[35] the dark sector is free of constraints from precision electroweak observables and

Higgs coupling measurements so long as the vector-like mass is dominant. Unlike

vector-like confinement, however, the Higgs interactions break the global (species)

symmetries of the dark sector, permitting dark pions to decay into SM states.

Provided the vector-like masses are smaller than ∼ 4πf , where f is the scale of the

new strong interaction, we can organize the states using chiral perturbation theory.

In this study we focus on the most phenomenologically relevant states: the (lightest)

triplet of pseudoscalar pions πaD and the heavier triplet of vector mesons ρaD [119].

The scales of the theory, as we will see, are comparable to or somewhat larger than

the electroweak scale.

The presence of a SU(2) dark flavor symmetry arises from global symmetries of

the ultraviolet strongly-coupled sector. For example, a strongly-coupled sector that

contains two flavors of dark fermions with identical (current) masses has a global

SU(2) × SU(2) symmetry that is broken by the condensate to a SU(2) dark flavor

symmetry [120]. This is just like QCD with its two light flavors of quarks with nearly

equal (current) masses. In Ref. [120], we demonstrate strongly-coupled theories where

the SU(2) dark flavor symmetry can be identified as an exact custodial symmetry

of the dark sector. That is, the Higgs multiplet interacts with the dark flavors such

that the SO(3) ∼ SU(2)c is not further broken by the dark sector. Consequently,

the dark sector’s meson degrees of freedom can be categorized in custodial symmetric

representations. Again considering the example of theories with two flavors of dark

fermions, the meson sector contains dark pions and one set of dark vector mesons in a

triplet representation of the SU(2) dark flavor symmetry. Unlike QCD, however, the

vector-like nature of the dark sector permits two possibilities for gauging the global

flavor symmetry: the entire SU(2) could be gauged (the SU(2)L weak interaction)
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or just the U(1) (as in U(1)B hypercharge).2 This leads to two distinct low energy

effective theories of dark mesons:

SU(2)L model : SU(2)global flavor ↔ SU(2)L

SU(2)R model : SU(2)global flavor ↔ SU(2)R

(1.1)

In the latter case, obviously only the U(1) subgroup is gauged, but since we assume

the dark sector respects the full global SU(2), we’ll refer to this as the SU(2)R model.

In the meson sector the dark pion states can be pair-produced, either via Drell-

Yan or resonantly via mixing of the ρ with SM electroweak gauge bosons. The dark

pion decays can be categorized into two distinct possibilities: “gaugephobic”, when

πD → ff̄ ′ dominates; or “gaugephilic”, when π → W + h, Z + h dominates once

kinematically open. The decay π0
D → γγ is highly suppressed due to the dark flavor

symmetry [120]. For a wide range of parameters, the interaction between single dark

pions and the SM is small enough to make single pion production phenomenologically

irrelevant, and yet, the interaction can be easily large enough that the dark pions

decay promptly back to SM states. We also briefly comment on the possibility that

dark pions are sufficiently long-lived so as to modify their phenomenological signature.

Dark mesons are therefore an example of new physics that must be pair

produced with ∼ weak strength and decay back to multiple SM particles (only).

The combination of a relatively low production cross section and complex final states

with no BSM sources of missing energy can lead to weak LHC constraints. We

perform a detailed breakdown of which LHC searches could potentially set bounds

on dark mesons. For the searches with potential sensitivity, we recast the searches

and estimate the bounds for some benchmark dark meson scenarios. For the searches

2It is also possible that there is some mixture between SU(2)L and SU(2)R, but this requires
more than just a single triplet of dark pions and dark vector mesons. More details can be found in
Ref. [120].
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that fail, we identify why. This latter step is useful as we find many 13 TeV analysis

are insensitive to dark mesons because their cut thresholds are too high.

One lesson we have learned from our investigation of dark mesons is that

custodial symmetry has the potential of constraining certain kinds of theories and

their corresponding phenomenology. Regarding the two types of dark meson decay

patterns, i.e. “gaugephilic” and “gaugephobic”, custodial symmetry was demonstrated

to be of critical importance. For example, in the 2-flavor vector-like theory, by

imposing custodial symmetry on the dark sector, we found that the leading higher

dimensional operators that are responsible for the π-f -f decay first appeared at

dimension-7. Meanwhile, those dimension-7 operators with respect to π-V -h are

forbidden by the custodial symmetry. The leading custodial preserving π-V -h

operators first appear at dimension-9. As a result, the coefficient of the π-V -h

interaction is suppressed relative to the π-f -f interaction by two extra powers of

the heavy cutoff mass scale of the EFT. Thus, dark pions preferentially interact with

(and ultimately decay primarily to) SM fermions – these theories are gaugephobic –

in two-flavor, vector-like, custodially-preserving dark sector theories.

Another such example we have studied during the investigation was the

Two-Higgs-Doublet-Model (2HDM) [120]. Although a general 2HDM model does

not necessarily preserve custodial symmetry, the amount of custodial violation is

nevertheless proportional to (g′)2 and the electroweak VEV v2, but is also suppressed

by the mass scale of the heavy Higgs state m2
A. As a result, one can say that the

2HDM becomes custodially symmetric whenmA � v. Moreover, it is also well-known

that the decays of 2HDM heavy states to gauge bosons are suppressed by two extra
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powers of mA compared to that of fermions. In other words, they are gaugephobic

[121].

From these two brief examples we see that, custodial symmetry is capable of

affecting the leading interactions of BSM sectors with the Higgs sector of the SM.

This effect will further determine the decay branching fraction of that BSM sector,

and may well be testable in the LHC physics.

SMEFT with custodial symmetry

The goal of this project is to elaborate on the connection between the potential

unknown new physics at a high energy scale (the ultraviolet, or UV physics scale)

and custodial symmetry in a model-independent manner. For new physics that

is sufficiently heavy, it can be integrated out, resulting in contributions to higher

dimensional operators of the Standard Model Effective Field Theory (SMEFT).

Chapter IV of this dissertation covers our recent effort of a systematic investigation

on this topic.

The SMEFT is a consistent effective theory generalization of the Standard Model

constructed from a series of higher dimensional operators that use the same building

blocks and obey the same gauge symmetries as the Standard Model. In other

words, these higher dimensional operators are SU(3)C × SU(2)L × U(1)Y invariants

constructed out of the Standard Model fields.

Following these assumptions, the SMEFT is defined as [122]

LSMEFT = LSM + L(5) + L(6) + L(7) + ..., L(d) =

nd∑
i=1

C
(d)
i

Λd−4
O

(d)
i for d > 4 . (1.2)

The dimension-d operators O(d)
i are suppressed by d− 4 powers of the cutoff scale Λ,

and the C(d)
i are the Wilson coefficients. The number of non-redundant operators in
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L(5), L(6), L(7) and L(8) is known [123]. Furthermore, general algorithms to determine

operator bases at higher orders have been thoroughly studied [123, 122, 124].

The basic idea of SMEFT is perfectly well-aligned with the goal of our

investigation:

– It is generally model-independent as long as the new physics is heavy. Hence it

does not overly rely on the existence of a particular UV-completion.

– It can be truncated to arbitrary desired dimension and generate a well-defined

set of operators.

– It can incorporate global symmetries we wish to impose with a relatively simple

implementation.

Nevertheless, the number of higher dimensional operators in SMEFT increases

exponentially with dimension. For practical reasons, in this study, we restrict to

higher dimensional operators up to dimension-6. Any possible further investigation

involving operators at dimension-7 or higher will depend on these results obtained at

dimension-6, and is outside the scope of this dissertation.

Classifying the general form of these operators has had a long history [125, 126].

The ‘Warsaw’ basis [127], for instance, provides a non-redundant parameterization

of the set of all dimension-six (dim-6) operators. Other operator bases, e.g.SILH

basis [128] can be related through integration-by-parts (IBP) and equations-of-

motion (EOM) redundancies [129]. A systematic classification and counting of

SMEFT operators has been recently achieved using the Hilbert series technique

[130, 131, 132, 133, 134] up to dim-8 and beyond [135, 136, 123, 124].

The number of operators grows rapidly with the dimension [123]. At dim-6,

SMEFT contains 3045 operators [137, 123], assuming all of the global symmetries
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of the Standard Model are broken. This has led to simplifications of SMEFT by

focusing on a more restricted set of operators. For instance, a subset of operators

that preserves part of the global symmetries of the SM, such as baryon number. Or

a subset of operators restricted to just one generation [138], just bosonic operators

[139, 140] and related “universal” theories [141, 142, 143].

It is also possible that integrating out ultraviolet (UV) physics does not result

in any additional violation of global symmetries that are not already violated in the

SM. There are two distinct possibilities: 1) UV physics is invariant under the global

symmetries, or, 2) UV physics minimally violates the global symmetries. Uncovering

UV physics that is invariant under the SM global symmetries will be our main focus,

and includes a wealth of possibilities, as we will see below. This is a presumption

about the form of the UV physics, not of the EFT, similar in spirit to Universal

Theories [141, 142, 143]. Alternatively, UV physics that minimally violates the global

symmetries is presumed to have global symmetry-violating couplings proportional to

the same couplings that violate those symmetries in the SM. A well-known example

is minimal flavor violation (MFV) [144], in which the full ensemble of flavor violating

higher dimensional operators are presumed to exist but with coefficients proportional

to the flavor-violating Yukawa couplings of the SM.

The focus of Chapter IV is to uncover the “fingerprint” of custodial symmetric

UV physics in low energy precision observables. Many theories beyond the Standard

Model utilize custodial symmetry in order to avoid the strong bounds from experiment

on custodial violation, including originally technicolor [145] (for a review [146]) as well

as composite Higgs, e.g., [147, 148, 149, 150, 128] little Higgs theories [151, 152, 153,

154, 155] dark matter theories [156, 120, 157], etc. We re-emphasize our definition
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that UV physics is said to be “custodial symmetric” when an SU(2)R global symmetry

is preserved by all UV interactions with the Higgs sector of the SM.

In order to study the impact of custodial symmetric UV physics onto precision

observables, we need to identify the various ways in which higher dimensional

operators can violate custodial symmetry. This is not as simple as it sounds.

For example, in the SM the Yukawa couplings simultaneously break all SU(2)R

symmetries [the custodial SU(2) of the Higgs sector as well as SU(2) isospin in the

flavor sector]. By contrast, these symmetries can be separately violated by different

operators in SMEFT. This impacts the predictions of low energy observables – which

is a good thing! – since it means we have ways to fingerprint the symmetry structure

of the UV physics. In order to study the impact of UV physics with custodial

symmetry on SMEFT, we re-write all interactions with SU(2)R invariance (and

SU(2)R breaking) manifest. When this is done for all but the lepton sector, we

call this the “custodial basis” for SMEFT. When the SU(2)R symmetry is formally

extended also to lepton sector, we include right-handed neutrinos enlarging SMEFT

to νSMEFT, and then are able to construct the custodial basis for νSMEFT.

The explicit violation of SU(2)R in the SM could easily make it difficult to

disentangle the UV preservation of custodial symmetry from the SM-induced violation

of custodial symmetry. This subject has a long history. The ρ parameter [158]

ρ =
m2
W

m2
Zc

2
θ

(1.3)

was proposed as an observable that was designed to distinguish between custodial

symmetric and custodial violating UV physics. Common lore is that is sufficient to

establish custodial symmetry violation beyond the SM. For instance, in theories with

new scalars transforming under SU(2)L × U(1)Y in representations other than 21/2

tree-level deviations from 1 are possible, e.g. [7]. More precisely, it is well-known
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that new physics contributions that are purely oblique at leading matching order

implies ρ 6= 1 at tree-level is in one-to-one correspondence with custodial violation

of the UV physics (e.g., [159]). However, for general UV physics, there can be non-

oblique contributions to electroweak precision observables that is still nevertheless

custodial symmetric, and this leads to ρ 6= 1 at tree-level [160, 161]. If we wish to

unambiguously discern the custodial symmetric structure of UV physics imprint on

(ν)SMEFT, we must account for these contributions. One of the main results of our

paper is to determine the correlated predictions of custodial symmetric physics on

a set of low energy observables. So while ρ by itself is insufficient to “fingerprint”

custodial symmetry in UV physics, when combined with other observables including

several Z andW partial widths, we find the correlated predictions that unambiguously

signal the UV physics that was integrated out does not violate custodial symmetry

at tree-level.

There is a critical issue we must tackle in order to identify the pattern of

correlated predictions of observables. Integrating out custodial symmetric UV physics

generates custodial symmetric operators, but not necessarily in our custodial basis of

(ν)SMEFT. (Predictions for physical observables are, of course, basis-independent.)

Ordinarily one simply utilizes integration-by-parts (IBP) and equation of motion

(EOM) redundancies to rewrite the UV generated operator(s) in terms of whatever

basis one prefers, in our case, our custodial basis of (ν)SMEFT. However, the EOM

redundancy is incomplete – custodial symmetric operators can be traded for custodial

violating operators proportional to the SM violation of custodial symmetry. This is

simply because the EFT does not respect custodial symmetry, even if the integrated-

out UV physics does. This could have sunk any chance to recover correlated

predictions. Our central result is that we have identified observables that remain
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faithful to fingerprinting custodial symmetric UV physics at tree-level and do not

suffer from the EOM ambiguity. By contrast, other observables that one might

naively have assumed could have provided discriminating power about the UV physics

are ultimately subject to the EOM ambiguity. For instance, the absence of certain

custodial violating operators, such as ψ2H3, might have been a sign of custodial

symmetric UV physics, but these can be generated at tree-level proportional to the

SM violation of custodial symmetry, and so are not obviously useful discriminators.

Outline

The theme of this dissertation is the impact of custodial symmetry with regard

to beyond the Standard Model theories of dark matter and new physics in general. In

detail, Chapter II discusses effective theories of dark mesons, with a deeper perspective

on those preserving custodial symmetry; Chapter III investigates, in light of the

current LHC searches done by ATLAS and CMS, the collider phenomenology of the

dark meson theories and its signatures for a potential discovery at the LHC. The dark

sector model that is of particular interest to us is Stealth Dark Matter; Chapter IV

discusses observable fingerprints of extensions to the Standard Model Effective Theory

integrated out from custodial symmetric UV theories, with right-handed neutrinos

included.

Chapter II contains previously published material co-authored with G. D. Kribs,

A. Martin; Chapter III contains previously published material co-authored with G.

D. Kribs, A. Martin and B. Ostdiek; Chapter IV contains unpublished material co-

authored with G. D. Kribs, X. Lu and A. Martin.
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CHAPTER II

EFFECTIVE THEORIES OF DARK MESONS

In this chapter, we describe our study on the effective theories of dark mesons.

The structure of this chapter is as follows. First (Sec. II), we briefly remind the reader

of the ingredients in the type of strong sector we want to consider. Next, in Sec. II we

discuss custodial SU(2) of the Higgs sector, emphasizing the role of hypercharge and

the difference between up-type and down-type fermion Yukawa couplings that act as

the spurions for custodial SU(2) violation. This will greatly assist us in understanding

and classifying the dynamics of dark mesons in the set of theories we consider.

In Sec. II, we discuss two-flavor theories, one chiral and two vector-like scenarios.

Understanding the dynamics of these relatively simple theories provides a warmup

to theories with more flavors. Next we consider vector-like four-flavor theories, that

are the smallest field content that permit vector-like masses and Higgs interactions at

the renormalizable level. The model was first proposed in [106, 107] where baryonic

sector of these theories was extensively studied since the lightest baryon is a viable

dark matter candidate. Our main goal is to determine the dark pion interactions with

the SM, and to understand the results in terms of limits when two of the flavors are

decoupled and the theory reduces to just a two-flavor theory with higher dimensional

interactions. Finally, to emphasize the role of custodial SU(2), we discuss a vector-

like two-flavor theories where custodial symmetry is violated, and the consequences

for the dark pion decays. In Appendix A, we review the case of a general two-Higgs

doublet model and the “gaugephobic” decays of its A0, H± states.

Defining the dark sector

Throughout this paper, we will refer to the new strong sector as the “dark”

sector. It consists of a strongly-coupled “dark gauge group” SU(ND) with its own
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“dark confinement scale”, and “dark fermions” or “dark flavors” that transform under

the dark group as well as the electroweak part of the Standard Model. Below the

dark confinement scale, the effective theory description of the composites includes

“dark baryons” and “dark mesons”; the latter breaking up into “dark vector mesons”

and “dark pions”. Despite the naming convention, we emphasize that the new states

are certainly not “dark” to collider experiments [162].

When describing the fermionic content of the dark sector (in the UV), we will

work entirely with left-handed fields, meaning (1/2, 0) under the Lorentz group.

We will distinguish between theories by the number of dark fermion flavors, where

each flavor corresponds to one (two-component) fermion in the fundamental of the

dark color group and one anti-fundamental. We will generically refer to dark color

fundamentals as F , and anti-fundamental as F̂ . Throughout this paper, we will

assume that all dark fermions are inert under SM SU(3)c while at least some of them

interact electroweakly. Other references that have pursued dark sectors transforming

under SU(3)c can be found in [35, 74, 163].

In the absence of other interactions, the symmetry of the dark sector is

SU(Nfund) × SU(Nanti). Turning on electroweak interactions, some of these flavor

symmetries are explicitly broken. The majority of the dark sectors we’ll study are

vector-like, which – in terms of two-component fermions – implies that if Fi is a

fundamental of dark color and transforms under EW representationG, then the theory

also includes a dark-color anti-fundamental F̂j also residing in EW representation G.

This charge assignment permits mass terms of the form MijFiF̂j. In addition, we

can form dimension > 3 operators connecting dark fermions with the Higgs boson.

Interactions with the Higgs force us to connect flavor symmetries of the fermionic

sector with the O(4) ∼= SU(2)L × SU(2)R global symmetry Higgs potential. If F are
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EW doublets and F̂ are EW singlets, then the interactions take a form familiar from

SM Yukawas, yF F̂ H. For other representations of F, F̂ , the interactions only come

about at the non-renormalizable level, e.g., F F̂ H†H/Λ.

Once we cross below the dark confining scale, the low energy effective theory

is described in terms of the composite mesons and baryons of this sector. Provided

that the vector-like dark fermion masses are < 4π f , the leading interactions of the

dark pions can be determined using non-linear sigma model language analogous to

the real pions of QCD. Confinement spontaneously breaks the chiral symmetry of the

dark fermions down to the diagonal subgroup: SU(Nfund) × SU(Nanti) → SU(N)V ,

with the dark pion multiplets falling into representations of SU(N)V . Whether or nor

SU(N)V is gauged and how it connects with the Higgs potential symmetries depends

on the setup. In the IR, interactions between dark fermions and Higgses become

interactions between the dark pions and the Higgs. For example, the two examples

used above become tr(ΣH†) + h.c. and Tr(ΣH†H+ h.c.) respectively, where Σ is the

NLSM field.

At this point it is useful to distinguish between the dark sectors that we consider

in this paper and early proposals for dynamical electroweak symmetry breaking

(technicolor). Simply put, in the extension we consider, we assume there is a Higgs

doublet in the low energy effective theory that acquires an electroweak breaking vev

that is responsible for (most) of electroweak symmetry breaking in the Standard

Model.

Custodial SU(2)

A critical part of the classification of effective theories of dark mesons is whether

custodial SU(2) is preserved or violated by the dark sector dynamics. Custodial
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SU(2) is the residual accidental global symmetry of the Higgs multiplet after it

acquires an expectation value, O(4) ∼= SU(2)L × SU(2)R → O(3) ∼= SU(2)C .

Custodial SU(2) arises automatically once the matter content and interactions

are (at least formally) promoted to become SU(2)L × SU(2)R invariant. We will use

the terminology SU(2)L , SU(2)R frequently in this paper and emphasize that this

will always refer to internal symmetries of the theory and never to Lorentz symmetry.

It will become very convenient to utilize a manifestly SU(2)C symmetric formalism

for writing interactions of the dark sector with the Higgs multiplet. The basic notions

are well-known, though not necessarily exploited in the ways that we will be doing.

A manifestly custodially SU(2)C symmetric formalism promotes U(1)Y to SU(2)R,

where only the t3 generator of SU(2)R is gauged.

To establish notation, the Higgs doublet of the Standard Model

H =

 G+

(v + h+ iG0)/
√

2

 , (2.1)

can be re-expressed in terms of a (2,2) bifundamental scalar field under SU(2)L ×

SU(2)R as

HiLiR =
1√
2

 (v + h− iG0)/
√

2 G+

−G− (v + h+ iG0)/
√

2

 . (2.2)

In principle, all custodially-symmetric interactions can be written in terms of powers

of H, and suitable SU(2)L and SU(2)R contractions. The notation becomes much

more compact when we utilize the definition

H†iRiL ≡ εiRjRεiLjLHiLiR (2.3)

which matches the naive complex conjugation and transpose of the 2 × 2 matrix

definition in Eq. (2.2). In this form, the Standard Model Higgs potential becomes

19



simply

V = m2
HTrH†H +

λ

4

(
TrH†H

)2
. (2.4)

The absence of any explicit t3R signals the absence of any explicit custodial symmetry

violation. When the Higgs gets a vev and SU(2)L × SU(2)R breaks to the diagonal

SU(2)C , the original (2,2) of Higgs states decomposes into a singlet (radial mode)

plus a triplet (Goldstones) of the diagonal SU(2)C .

The full covariant derivative for the Higgs multiplet, Eq. (2.2), does not respect

SU(2)R due to gauging hypercharge, i.e., just the t3R generator is gauged. This is

straightforwardly handled by writing the covariant derivative as

DµHiLiR = ∂µHiLiR − igW a
µ (taLH)iLiR − ig′Bµ(Ht3R)iLiR (2.5)

making kinetic term of the bi-doublet H:

TrDµH†DµH . (2.6)

The explicit t3R can be thought of as 2Y t3R, where the Higgs doublet HY=1/2 and

its complex conjugate H∗Y=−1/2 are embedded as the two components of an SU(2)R

doublet. In the limit g′Y → 0, the last term of Eq. (2.5) vanishes, restoring the full

SU(2)R global symmetry. In this way, we see that g′Y t3R acts as a spurion for custodial

SU(2) violation. One could instead promote Bµt
3
R → W a

Rt
a
R, formally gauging the

full SU(2)R symmetry. In this case, we would need an explicit SU(2)R-breaking mass

term in order to remove the W 1,2
R gauge bosons and recover the Standard Model.

Moreover, as is well-known from left-right models, an additional U(1) is required

to obtain the correct hypercharge of the left-handed and right-handed quarks and

leptons (e.g., for a review, see [164]).
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Yukawa couplings are another source of custodial breaking. In terms of the usual

Higgs doublet H, the up and down Yukawa couplings are

yuijQLiεHuRj + ydijQLiH
†dRj + h.c. (2.7)

Grouping QRi = {uci , dci} together, we can rewrite the up and down quark Yukawas

in terms of H as

yuijQLiHPuQRj + ydijQLiHPdQRj + h.c. (2.8)

where Pu,d = (1R∓2t3R)/2 are matrices in SU(2)R space that project out the up-type

or down-type right-handed fermion. In fact, it is useful to rewrite Eq. (2.8) as the

sum of a custodial symmetric Yukawa plus a custodial violating term:

LYuk = YCijQLiH
1R

2
QRj + Y /C

ijQLiHt3RQRj + h.c. (2.9)

where

YCij = yuij + ydij

Y /C
ij = yuij − ydij .

(2.10)

There is no loss of generality from the SM, i.e., YCij and Y
/C
ij are independent matrices.

In the special case where yuij = ydij and thus Y /C
ij = 0, the Yukawa couplings are

custodially symmetric. Later in the paper when we write higher dimensional operators

involving the SM fermions, we will always assume a form of minimal flavor-violation

(MFV) where operators involving QLiH(1R/2)QRj are accompanied by YCij and

operators involving QLiHt3RQRj are accompanied by Y /C
ij .

Looking beyond the SM, we will use the same logic we applied to SM Yukawas

when writing down interactions between the dark fermions and the Higgs. Specifically,

in addition to grouping dark fermions into multiplets of (gauged) SU(2)W ≡ SU(2)L,

we also assign them to multiplets of SU(2)R then classify interactions in SU(2)L ×

SU(2)R language. Put another way, interactions among the SM Higgs multiplet
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and dark fermions break the combination of the SU(2)R Higgs potential symmetry

and the SU(Nfund) (or SU(Nanti)) flavor symmetries of the dark fermions down to

a common SU(2), which we relabel as SU(2)R. New custodial violating breaking

interactions/spurions must be proportional to t3R, as that is the only choice consistent

with gauging SU(2)L and the t3 generator [U(1)Y ] of SU(2)R [165]. Thus, in SU(2)L×

SU(2)R language, strong sectors that respect custodial symmetry contain no terms

with explicit t3R, while a generic custodial violating dark sector can have one or more

such terms.1

Effective Interactions of Dark Pions

The dark sectors of greatest interest to us in this paper preserve custodial SU(2),

so all deviations from exact custodial symmetry can be traced to g′Y or the differences

among SM Yukawas. Consequently, dark pions transform in representations of

SU(2)L × SU(2)R. Once the Higgs gets a vacuum expectation, these pions will

break up into multiplets of custodial SU(2). The smallest, and therefore lightest,

non-trivial SU(2)C representation the pions can fill is the triplet. Heavier dark pions

in larger representations are possible, as are higher spin composites such spin-1 dark

rho mesons. In general, these states rapidly decay into the lightest dark pions. While

this is certainly highly relevant for phenomenology [35, 162], it the lightest dark pion

decays that are the main concern for this paper.

Dark Pion Triplet interactions in custodial preserving strong sectors.

Suppose we have an SU(2)C triplet of dark pions πa, that we have already motivated

as arising in a wide class of interesting class of dark sector theories, and we wish to

understand its interactions. The most phenomenologically relevant interactions to

1Additionally, dark sector theories with SU(2)L multiplets with hypercharge, as well as SU(2)R
multiplets with hypercharge not proportional to t3R, require an additional U(1)X . We do not consider
such theories in this paper.
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determine are those with a single dark pion since they will govern decays. As we will

show below, single pion interactions can be understood from symmetry considerations

alone.

First, let’s consider a “toy” Standard Model that is fully SU(2)L × SU(2)R

symmetric – meaning we set g′ = 0 and Y /C
ij = 0, in the presence of a dark

sector that produces a (custodially symmetric) triplet of dark pions. In this limit,

the {uc, dc} quarks of the SM can be written in terms of a SU(2)R doublet as in

Eq. (2.8) and the SU(2)W gauge bosons lie in a SU(2)L triplet. When EWSB occurs,

SU(2)L × SU(2)R → SU(2)C , so we can reclassify all fields into SU(2)C multiplets

and form invariants from them. Contracting πa with SU(2)C triplets formed from

SM fields, the lowest dimension operators involving a single dark pion are:

YCij
( v
vπ

)
πa
(
QLit

aQRj

)
+ ξ g

( v
vπ

)
W a
µ

(
h
←→
∂ µπa

)
, (2.11)

where ta are the generators of SU(2)C . (A similar expression for the first term is

also present for the leptons of the SM.) As both terms require electroweak symmetry

breaking, they must be proportional to the mass of the SM fields. Therefore, we need

another dimensionful parameter vπ to balance dimensions. For the fermion terms,

we have assumed the flavor structure obeys minimal flavor violation with a (lowest

order) coefficient of YCij . The factor ξ parameterizes the relative strength between the

interactions of pions with fermions versus the gauge/Higgs sector. We will explore the

size and origin of vπ and ξ in specific theories shortly. The presence of the Higgs boson

in the second term is also easy to motivate. While W a
µ∂µπ

a is custodially symmetric,

by itself this is a mixing involving longitudinal W a and would indicate that we have

not properly gauge fixed. Hence, we need to add a SU(2)C singlet, and h is the option

with the lowest dimension in the broken phase of the SM.
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One might wonder how ξ could be different from unity, given what we have

described thus far. When dark pions transform in representations that are larger

than a triplet, there is a possibility of dark pion–Higgs boson mixing. For example,

dark pions in the complex representation (2,2) under SU(2)L × SU(2)R contain a

“Higgs-like” dark pion state (SU(2)C singlet) that can – and generically does – mix

with the SM (SU(2)C singlet) Higgs boson. This implies additional contributions

to the gauge/Higgs boson/dark pion interactions arise from the covariant derivative

of the dark pions. These interactions turn out to be critical to understanding the

phenomenology of models with more than two flavors of dark fermions.

Let’s now re-introduce the custodial SU(2) violation in the SM. This involves

the difference between up and down Yukawas,

Y /C
ij

(
v

vπ

)
πa
(
QLit

at3RQRj

)
(2.12)

as well as g′ 6= 0,

ξ g′
( v
vπ

)
Bµ

(
h
←→
∂ µπ0

)
. (2.13)

With these terms, the simple lagrangian Eq. (2.11) becomes somewhat more

complicated. If we focus our attention on just one generation of quarks, and convert

from two-component fermions to four-component notation, the effective lagrangian

for dark pion decay becomes:

Ldecay =

√
2

vπ

[
πD

+ψ̄u(mdPR −muPL)ψd + πD
−ψ̄d(mdPL −muPR)ψu

+
i√
2
πD

0(mu ψ̄uγ5ψu −md ψ̄dγ5ψd)

]
− ξ mW

vπ

[
(W−

µ h
←→
∂ µπD

+) + (W+
µ h
←→
∂ µπD

−) +
1

cos θW
(Zµ h

←→
∂ µπD

0)

]
(2.14)
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The effective theories of dark mesons that we consider below will give specific

predictions for these couplings. We find two qualitatively distinct possibilities:

ξ ∼ 1 “gaugephilic”

ξ � 1 “gaugephobic”
(2.15)

Equation (2.14), which has been argued purely from custodial symmetry and

assumptions about the most relevant connections between the dark sector and the

SM, is our first main result. The main purpose of the rest of this paper is to determine

how dark pion interactions in different dark sector theories with (or without) custodial

SU(2)C map into Eq. (2.14) and, especially, whether they fall into the gaugephilic or

gaugephobic category.

Before jumping head first into strongly-coupled dark sectors, the interactions of a

custodial SU(2) triplet given in Eq. (2.14) are perhaps most familiar from two-Higgs

doublet models. We take a brief look at this in the next section, leaving a detailed

discussion to Appendix A.

Two-Higgs Doublet Models. As a point of reference, it is helpful to

consider the couplings of (H±, A0) in two-Higgs doublet models (2HDMs). The

couplings to the fermions are model-dependent; for illustration here let’s consider

the so-called Type I 2HDM where the fermions couple to just one Higgs doublet as

that is the 2HDM setup that most closely resembles the our dark pion theories. In

Type I 2HDM theory, one obtains [166]

1

vπ
=

1

v
cot β

where we have neglected the CKM mixing for the charged Higgs couplings. For the

gauge/Higgs sector,

ξ

vπ
=

1

v
cos(β − α)
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Here, cot β is the usual ratio of the expectation values in two Higgs doublets. In the

decoupling limit, the coupling to gauge/Higgs boson is well-known to scale as [121]

| cos(β − α)| ∼ v2

m2
A

. (2.16)

Since the coupling of fermions does not have a similar scaling, we see that 2HDMs

are gaugephobic regardless of the Type of 2HDM.

There is an interesting story about utilizing the custodially-symmetric basis for

2HDMs. In the decoupling limit a 2HDM becomes custodially symmetric, and the

decays of its heavy states (H±, A0) to SM particles in this limit are gaugephobic.

Details are presented in Appendix A.

Neutral Dark Pion Decay to Diphotons. Finally, it is interesting to

discuss the coupling of π0 to γγ. The usual axial anomaly contribution to this decay

mode, π0FµνF̃
µν/f , whose leading contribution is proportional to TrQ2t3a [where t3a is

the generator of the axial U(1)] is conspicuously absent from Eq. (2.14). The reason

for this is that in a dark sector where the SU(N)V , preserved by strong interactions, is

an exact symmetry, this contribution must vanish. For example, in a two-flavor dark

sector, invariance under an exact SU(2)V would enforce the two flavors of dark fermion

masses are equal. Gauging the full SU(2)V [as in SU(2)L] or just the t3 subgroup

[as in U(1)Y ] implies the dark fermion electric charges are equal and opposite. In

this case, TrQ2t3a vanishes, as do higher order π0
Dγγ operators proportional to the

differences of dark fermion masses.

Nevertheless, there is a very small, residual contribution to π0
D → γγ, due to

the interactions with the SM in Eq. (2.14). That is, even though custodial SU(2) is

preserved by the dark sector interactions with the SM, the SM itself violates custodial

SU(2). The dark pion interactions with the SM fermion axial current generate a one-

loop suppressed π0
D-γ-γ coupling proportional to mf/(16π2vπ). We can calculate the
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amplitude for the rate by borrowing the standard results for A0 decay in two-Higgs

doublet models [167] and suitably substituting couplings:

A(π0
D → γγ) =

∑
f

α

4π
NcQ

2
f

(
mf

vπ

)
√
τff(τf ) (2.17)

where Nc is the number of colors, Qf is the electric charge, τf = 4m2
f/m

2
π, and

f(τ) =

 arcsin2 1√
τ

τ ≥ 1

−1
4

[
log 1+

√
1−τ

1−
√

1−τ − iπ
]2

τ < 1 .
(2.18)

In the limit τ � 1,

f(τ)→ −(1/4)[log(4/τ)− iπ]2 , (2.19)

and thus we see an additional suppression of the π0
D decay amplitude of roughly

√
τf = 2mf/mπD when mπD � mf (neglecting the τ dependence of the log). Hence,

while there is π0
D decay to γγ due to the custodial SU(2) breaking in the SM, the

decay rate is suppressed by roughly α2/(16π2)×(4m2
f/m

2
πD

) that is ' 10−6×m2
f/m

2
πD

smaller than the direct decay to fermions. This is so small as to be phenomenologically

irrelevant.

Two-flavor theories

The simplest anomaly-free dark sector theories that we consider have two flavors

of dark fermions. We refer to the dark color fundamentals as Fi and anti-fundamentals

as F̂i transforming under SU(ND) with flavor index i = 1, 2. The global symmetry

of the flavors is SU(2)fund × SU(2)anti. Once we include interactions between the

dark fermions and the Higgs multiplet, we will be forced to connect the fermion

flavor symmetries to the SU(2)L × SU(2)R symmetry of the Higgs potential. This

connection can be made in a few different ways, two vector-like and one chiral. In

the vector-like assignments, both Fi and F̂i must be doublets of the same SU(2) –

either SU(2)L or SU(2)R, while in the chiral assignment, F and F̂ transform under
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different SU(2)s.2 However, in all of these cases, SU(2)fund × SU(2)anti is broken

to the diagonal SU(2)V by strong dynamics, just as in two-flavor QCD. Also just

like QCD, the dark pions form a triplet of the diagonal SU(2)V , which ultimately

becomes (π+, π0, π−) after electroweak breaking down to just U(1)em. This is the

custodial SU(2) symmetric triplet that we discussed in the previous section.

Prior to electroweak breaking scale, all three pions π±, π0 are stable. Once

electroweak symmetry is broken, electromagnetic corrections split the multiplets by

[168]

m2
π± −m2

π0 =
(3 ln 2)

2π
αm2

ρ (2.20)

where α is the electroweak coupling constant, and mρ is the mass of the vector

resonances of the dark sector. This mass splitting allows the weak decay of π± →

π0f̄ ′f . Whether this decay is competitive (or not) with direct decays π → SM will

depend on the π-SM-SM coupling strength proportional to 1/vπ in the effective theory.

We now consider each of these theories in turn.

Field (SU(ND), SU(2)L, SU(2)R)
F (N,2,1)

F̂ (N,1,2)

Table 1. Two-flavor fermion content of the chiral theory.

Two-flavor chiral theory. The two-flavor chiral theory contains the matter

content in Table 1. SU(2)L is embedded as SU(2)fund while U(1)Y is the t3 generator

of SU(2)anti. Confinement breaks the global symmetry to SU(2)V , of which only the

gauged U(1)em survives.

2Anomaly cancellation requires ND to be even for the chiral case.
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Identifying the flavor symmetries SU(2)fund, SU(2)anti with SU(2)L, SU(2)R

respectively, we can write a Yukawa interaction between the Higgs bi-doublet and

the dark fermions

YYuk = yFHF̂ + h.c. , (2.21)

Once the Higgs acquires a vev, this will give gives equal contributions to the masses

of the “up-type” and “down-type” dark fermions. In the absence of a fundamental

Higgs, this theory is minimal technicolor. Including the Higgs (and Yukawa coupling),

the two-flavor chiral theory dynamics “induces” electroweak symmetry breaking even

when the Higgs multiplet (mass)2 is positive. This theory is better known as bosonic

technicolor [11, 12] or strongly-coupled induced electroweak symmetry breaking [20,

21].

Now that we have established how dark fermions transform under SU(2)L ×

SU(2)R we can consider a more general set of interactions that arise with higher

dimensional operators. These terms can involve more Higgs fields, derivatives, SM

quarks and/or leptons. Examples at dimension-6 include:

c6A
(F F̂ )(QLQ̂R)

Λ2
, c6B

(F †σ̄µ F )(HDµH)

Λ2
, c6C

(F †σ̄µ taL F )(H taLDµH)

Λ2
, · · · (2.22)

where taL are the generators of SU(2)L that pick out the triplet combination of the

two doublets. We will use taL and the SU(2)R counterpart taR throughout this paper.

The translation to the NLSM involves

FF̂ → 4πf 3Σ, Σ = exp

[
i
2πata

f

]
. (2.23)

The covariant derivative acts on Σ identically to the Higgs bi-doublet, Eq. (2.5),

leading to interactions of the dark pions with the electroweak gauge bosons. While

there is a systematic way to transmute interactions between a strong, chiral symmetry

breaking sector and external fields into interactions involving pNGBs [169, 170], we
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do not need the full machinery since we are interested in the additional (higher

dimensional) terms in the dark sector chiral lagrangian that, after expanding Σ,

involve a single power of πa. This criteria selects out operators whose dark sector

components are i.) Lorentz invariant, as we want operators with πD, not ∂µπD, and

ii.) that transform non-trivially under SU(2)C – as discussed in Sec. II, the dark pion

decay terms involve connecting SU(2)C triplets in the strong sector with SM SU(2)C

triplets. In the chiral case, these criteria tell us to ignore operators containing F †σ̄µF

(inert under SU(2)C and not a Lorentz invariant) in favor of operators containing

FF̂ .

Performing the translation to pNGB form and focusing on the most relevant

interactions between the dark fermions and the Higgs/SM, the theory becomes

L =
f 2

4
Tr (DµΣ)†DµΣ

+ 4πf 3yTr (HΣ† + h.c.) + higher dimensional terms . (2.24)

Here Σ contains the triplet of dark pions, and “higher dimensional” here refers to

operators such as Eq. (2.22) that are non-renormalizable when written in the UV, in

terms of the underlying dark fermions. In this model the higher dimensional operators

are subdominant (and so we can ignore them for now), but as we will see in later

sections, in other models they are vital to connect the dark sector to the SM.

With the pNGB description of the theory in hand, we can now work out how

these Σ interactions map into interactions among dark pions to SM fields in Eq. (2.14).

The term linear in Σ expresses the explicit chiral symmetry breaking that arises from

the Yukawa interactions. Expanding the linear term out to quadratic order in the

dark pion fields,

4πf 3yTr (HΣ† + h.c.) ⊃ 8πf 2y Gaπa + 4πfyv πaπa , (2.25)
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we see the dark pions acquire masses m2
π = 8πfyv and mixing between the would-be

Goldstones of the Higgs doublet and the triplet of dark pion fields. The Goldstone-

dark pion mixing is independent of a, as it should be given the custodially-symmetric

origin of the Yukawa couplings.

Defining the physical pions and Goldstones as Ga
phys

πaphys

 = V

 Ga

πa

 (2.26)

where the mixing angle is determined by diagonalizing the mass matrix

M2
diag = VM2V T (2.27)

with

M2 =

 8πf 3y/v 8πf 2y

8πf 2y 8πfyv

 , V =

 cθ −sθ

sθ cθ

 (2.28)

and θ = arctan(f/v) is the mixing angle. The nonzero entry for Goldstone part of

the mass matrix (GaGa) arises after minimizing the Higgs potential to include the

contributions from the dark sector (see [24] for details). Inserting the diagonalized

eigenstates back into the Lagrangian leads to a shift of the electroweak vev

v2 + f 2 = v2
246 ' (246 GeV)2 . (2.29)

This leads to well-known corrections to Higgs couplings [24]. For our purposes, the

couplings of the physical pions to f̄f , Zh and f̄ ′f , Wh become

(π±phys∂µh− h∂µπ
±
phys)W

µ,∓ :
MW

v
sθ

(π0
phys∂µh− h∂µπ0

phys)Z
µ :

MZ

v
sθ

π±physf̄
′f :

√
2
(mf ′

v
PL −

mf

v
PR

)
(2T f3 ) sθ

π0
physf̄f : i

(mf

v
γ5

)
(2T f3 ) sθ (2.30)

31



where 2T f3 = ±1 is the isospin of the fermion. The mixing angle is

sθ =
f

v246

. (2.31)

We see that custodially-symmetric two-flavor chiral theories have couplings to

fermions and gauge bosons that are parametrically comparable – MW,Z versus mf .

From the couplings we can identify

1

vπ
' 1

v
×
(

f

v246

)
, ξ = 1 (2.32)

so the couplings are “gaugephilic” according to Eq. (2.14). While this provides

an excellent example of “gaugephilic” dark pion interactions, there is no way to

formally separate the Goldstone/pion mixing from the dark pion mass itself – both

are proportional to the Yukawa coupling y. Consequently, there is no limit where

the mixing between the Goldstone and the dark pion can be taken small while

simultaneously holding the dark pion mass fixed.

We should emphasize that in the two-flavor chiral model we arrive at Eq. (2.14)

through the mixing of the dark pions with the triplet of Goldstone bosons. This

mixing was possible only because of the Yukawa term, which is the only allowed

renormalizable coupling. Had we included the higher dimensional terms in the

chiral lagrangian, we would find that they can still be parameterized by the effective

lagrangian Eq. (2.14). In two-flavor vector-like models, which we explore next, the

dark pion–Goldstone mixing is not present, however we will still recover Eq. (2.14).

Finally, the absence of π0-γ-γ coupling critically relied on the renormalizable

coupling between the dark sector and the SM, Eq. (2.21), being custodially symmetric.

If there had been an explicit custodial violation of the dark sector with Higgs

multiplet, e.g., y /CFHt3RF̂ , the pions would acquire different masses as well as different
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mixings with the Goldstones. This would re-introduce π0 → γγ and a more detailed

calculation would be needed to determine the branching fractions of π0.

Two-flavor vector-like theories. Vector-like confinement [35] popularized

the possibility that a new strong sector contains fermions in vector-like representations

so that contributions to electroweak precision corrections are negligible, and (bare)

vector-like masses for the dark fermions are allowed. There are two versions of two-

flavor vector-like theories, shown in Table 2, depending on whether the dark fermions

transform under just SU(2)L or just SU(2)R. We will refer to these as the “SU(2)L

model” and “SU(2)R model”, respectively.

SU(2)L model

Field (SU(ND), SU(2)L, SU(2)R)
F (N,2,1)

F̂ (N,2,1)

SU(2)R model

Field (SU(ND), SU(2)L, SU(2)R)
F (N,1,2)

F̂ (N,1,2)

Table 2. Two-flavor fermion content of SU(2)L and SU(2)R vector-like theories.

Vector-like theories permit dark fermion masses,

Lmass = MFF̂ + h.c. . (2.33)

The global SU(2)fund × SU(2)anti symmetries are broken to SU(2)V that is identified

either with the fully gauged SU(2)L or SU(2)R (with, as usual, just U(1)Y gauged).

Now we begin to add interactions between the dark fermions and the SM fields,

working in a SU(2)L×SU(2)R invariant manner. Unlike the two-flavor chiral model,

in the vector-like models we cannot write a renormalizable interaction between F, F̂

and H. To write down interactions between the Higgs and the dark fermions, we need

to consider higher dimensional operators. Both the SU(2)L and SU(2)R vector-like
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models theories allow the “singlet” contribution at dimension-5

c5M
(FF̂ )TrH†H

Λ
+ h.c. (2.34)

The (FF̂ ) part and the TrH†H are singlets that are separately invariant under their

respective global symmetries. After electroweak symmetry breaking, this operator

leads to a ∼ v2/Λ contribution to the dark fermion masses but does not influence

their decays. This is because the first non-zero interactions arising from expanding

out Eq. (2.34) must contain a singlet, i.e., at least two dark pions.

Hence, to find an operator contributing to dark pion decay we need to go beyond

dimension-5. We seek a non-singlet contraction of F and F̂ . In the case of the

SU(2)L model, this is FtaLF̂ . In the case of the SU(2)R model, invariance under the

full SU(2)R allows just FtaRF̂ . Of course given that just U(1)Y is gauged, the term

Ft3RF̂ is gauge-invariant but not SU(2)R invariant. If we insist that the dark sector

preserves custodial SU(2), this combination is forbidden.

In the Standard Model, there are no dimension-3 operators of the form QtaLQ
′

since, of course, the SM fermions transform under a chiral representation of the

electroweak group. By dimension-4 we can write, e.g., QLt
a
LHQ̂R, which can be

combined with the FtaL,RF̂ from the dark sector to obtain dimension-7 operators

including:

SU(2)L model : L = YCij
(FtaLF̂ )(QLit

a
LH1R

2
Q̂Rj)

Λ3
+ Y /C

ij

(FtaLF̂ )(QLit
a
LHt3RQ̂Rj)

Λ3
,

SU(2)R model : L = YCij
(FtaRF̂ )(QLiHtaRQ̂Rj)

Λ3
+ Y /C

ij

(FtaRF̂ )(QLiHtaRt3RQ̂Rj)

Λ3
(2.35)

As we discussed in Sec. II, we have included the SM Yukawa couplings as coefficients

to these operators in order to maintain minimal flavor violation.
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Focusing on just one generation of SM fermions, these dimension-7 operators

become

SU(2)L model : L = c7f
(FtaLF̂ )(QLt

a
LHYudQ̂R)

Λ3
,

SU(2)R model : L = c7f
(FtaRF̂ )(QLHtaRYudQ̂R)

Λ3
. (2.36)

where Yud is a 2 × 2 matrix in SU(2)R space with the form Yud = (yu + yd)1R/2 +

(yu−yd)t3R. After electroweak symmetry breaking, this operator mixes (FtaL,RF̂ ) with

a triplet combination of SM fermions (yduLd
c
R, yuuLu

c
L − yddLdcL, yudLucL). Passing

to the non-linear sigma model formalism, the dimension-7 operator becomes

SU(2)L model : L = c7f
4πf 3

Λ3
(TrΣLt

a
L)QLt

a
LHYudQ̂R

SU(2)R model : L = c7f
4πf 3

Λ3
(TrΣRt

a
R)QLHtaRYudQ̂R , (2.37)

where ΣL,R is in terms of the SU(2)L,R generators, ΣL,R = exp
[
i2πataL,R/f

]
. Notice

that ΣL transforms as an adjoint under the SU(2)V [that is fully gauged as SU(2)L],

hence the combination TrΣLt
a
L expands to πa/f to leading order in πa. Using this

expansion, we obtain the interactions:

π±physf̄
′f :

√
2 (mf ′PL −mfPR)(2T f3 ) × (c7f

√
2πf 2

Λ3
)

π0
physf̄f : i (mfγ5)(2T f3 ) × (c7f

√
2πf 2

Λ3
) (2.38)

From this we can identify

1

vπ
= c7f

√
2πf 2

Λ3
(2.39)

Notice that the interactions are otherwise identical regardless of whether the

underlying theory is SU(2)L or SU(2)R.

If we extend the effective theory to even higher dimension operators, we encounter

operators involving the triplet combination FtaL,RF̂ with the Higgs multiplet. The

lowest dimension operator involving FtaL,RF̂ and custodially symmetric contractions
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of of powers of H occurs at dimension-9:

SU(2)L model : L = c9Cεabcδde
(FtaLF̂ )Tr

[
(DµH)†tbL(DµH)tdRH†tcLHteR

]
Λ5

SU(2)R model : L = c9Cεabcδde
(FtaRF̂ )Tr

[
(DµH)†tdL(DµH)tbRH†teLHtcR

]
Λ5

(2.40)

Passing to the low energy effective theory, the non-linear sigma model acquires the

same kinetic and mass terms as in Eq. (2.83) with an interaction term

SU(2)L model : L = c9C
4πf 3

Λ5
εabcδdeTr [ΣLt

a
L] Tr

[
(DµH)†tbL(DµH)tdRH†tcLHteR

]
SU(2)R model : L = c9C

4πf 3

Λ5
εabcδdeTr [ΣRt

a
R] Tr

[
(DµH)†tdL(DµH)tbRH†teLHtcR

]
(2.41)

where ΣL,R is as before. Expanding the interaction in unitary gauge to leading order

in πa we obtain:

L = c9C
πf 2

16Λ5
(v + h)3

[
gW∓

µ

(
π±∂µh− h∂µπ±

)
+

√
g2 + g′2Zµ

(
π0∂µh− h∂µπ0

)]
(2.42)

and thus the couplings are

(π±phys∂µh− h∂µπ
±
phys)W

µ,∓ : MW ×
(
c9C

πf 2

Λ3

)
×
(
v2

8Λ2

)
(π0

phys∂µh− h∂µπ0
phys)Z

µ : MZ ×
(
c9C

πf 2

Λ3

)
×
(
v2

8Λ2

)
(2.43)

Compare to the fermion couplings, we then obtain

1

vπ
= c7f

√
2πf 2

Λ3
, ξ =

(
c9C

c7f

)
×
(

v2

8
√

2Λ2

)
. (2.44)

The single dark pion interactions with the Standard Model can be precisely

characterized by the effective lagrangian Eq. (2.14). Unlike the two-flavor chiral

model, in the vector-like models there is no Goldstone/dark pion mixing connecting

the dark sector with the Standard Model. Instead, this is fully characterized by the

higher dimensional interactions that, by assumption, preserve custodial SU(2).
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Notice also that the coefficient of the π-V -h interaction is suppressed relative

to the π-f -f interaction by an amount ξ ∝ v2/Λ2. In this particular model, the

suppression arises because custodial symmetry demanded that operators involving

the Higgs multiplets appear at a dimension that is two powers higher than that for

SM fermions. Thus, dark pions preferentially interact with (and ultimately decay

primarily to) SM fermions – these theories are gaugephobic – in two-flavor, vector-

like, custodially-preserving dark sector theories.

Four-flavor theories

The main disadvantage to limiting ourselves to two flavors of fermions is that

we are forced to choose between either having chiral masses or vector-like masses

for fermions at the renormalizable level. With four flavors, we can engineer the

electroweak quantum numbers to permit both vector-like and chiral masses, governed

by Lagrangian parameters that are fully adjustable.

Large chiral masses with small vector-like masses will tend to cause the dark

sector to substantially break electroweak symmetry (and violate bounds from the

S parameter as well as Higgs coupling measurements). Therefore, we focus on

the opposite case – the parameter space where the dark sector fermion masses

are mostly vector-like with small chiral masses where yv/M � 1. In this way,

these theories are automatically safe from electroweak precision constraints and

Higgs coupling measurements. Yet, the presence of both vector-like and small

chiral masses in general means that the dark sector flavor symmetries are broken

to SU(2)L × SU(2)R × U(1)dark baryon. The existence of baryons stabilized by the

accidental U(1)dark baryon was exploited by the Stealth Dark Matter model [106]. In

that theory, with N(≥ 4, even), the lightest baryon was shown to be a viable dark
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Field (SU(ND), SU(2)L, SU(2)R)
FL (N,2,1)

F̂L (N,2,1)
FR (N,1,2)

F̂R (N,1,2)

Table 3. Four-flavor, custodially-symmetric dark sector fermion content.

matter candidate. In this paper, we focus solely on the mesons of the dark sector

that was of only peripheral interest in the dark matter papers.

The field content of our prototype four-flavor, custodially-symmetric theory is

given in Table 3. At dimension-3, the vector-like masses for the dark fermions are

L = M12FLF̂L +M34FRF̂R + h.c. . (2.45)

At dimension-4, the chiral masses for the dark fermions are

L = y14FLHF̂R + y23F̂LHFR + h.c. . (2.46)

With fully general M12, M34, y14, y23, and the gauging of SU(2)L × U(1)Y , we see

that vector-like and chiral masses arise at the renormalizable level, unlike the case of

the two-flavor theories.3 We could also include higher dimensional operators that we

considered earlier in Sec. II. But like the two-flavor chiral theory, we anticipate the

renormalizable interactions with the SM Higgs sector above will dominate over the

higher dimensional ones, and so we won’t consider them further in this section.

3We have switched notation (F1, F2, F3, F4)→ (FL, F̂L, FR, F̂R) but retained the same mass and
Yukawa coupling parameter names as Ref. [106].
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After electroweak symmetry breaking, the mass matrix for the dark fermions can

be written in a fully Higgs field-dependent way as

Lmass = −( F u
L − iF d

L F u
R − iF d

R )M



F̂ d
L

−iF̂ u
L

F̂ d
R

−iF̂ u
R


+ h.c. , (2.47)

where

M =



M12 0 y23(−iG0+h+v)√
2

−iy23G
+

0 M11 −iy23G
− y23(iG0+h+v)√

2

y14(iG0+h+v)√
2

iy14G
+ M34 0

iy14G
− y14(−iG0+h+v)√

2
0 M34


(2.48)

The field-independent mass terms break up into two 2×2 mass matrices – one for

the Q = +1/2 fermions and one for the Q = −1/2 fermions that are identical due to

custodial symmetry. It is very convenient to rewrite y14 = y(1 + ε) and y23 = y(1− ε)

since, as we will see, contributions to electroweak precision observables is proportional

to (εy)2. Using this parameterization, the 2× 2 mass matrices are

Mu = Md =

 M12 y(1− ε)v/
√

2

y(1 + ε)v/
√

2 M34

 . (2.49)

The mass matrix can be diagonalized by a biunitary transformation involving

tan 2θ1 = −
√

2yv (∆ε−M)

2∆M + εy2v2

tan 2θ2 =

√
2yv (∆ε+M)

2∆M − εy2v2
(2.50)

where M ≡ (M12 + M34)/2, ∆ ≡ (M34 −M12)/2, and θ1 (θ2) diagonalizes MuM
T
u

(MT
uMu). The diagonalized fermion masses are

m1,2 = M ∓
√

∆2 +
y2(1− ε2)v2

2
. (2.51)
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We can use these results to rotate Eq. (2.47) into the mass basis. The field-

independent parts of the mass matrix are, of course, fully diagonalized. But the

field-dependent ones are not. We need the field-dependence to determine the dark

pion / Goldstone mixing.

Passing to the non-linear sigma model, we use

Σ = exp

[
2 iπa ta15

f

]
, (2.52)

where the πa are in the adjoint representation of SU(4)V . Decomposing πa into

multiplets of SU(2)L × SU(2)R, we have

15 → (3,1)⊕ (2,2)a ⊕ (2,2)b ⊕ (1,3)⊕ (1,1) , (2.53)

where a and b are two separate bi-doublets. After rotating into the mass eigenstates

of the dark mesons, we have

Σ = exp


i

f



π0
1 + η√

2

√
2π+

1 K0
A −

√
2K+

B

√
2π−1 −π0

1 + η√
2
−
√

2K−A K0
B

K̄0
A −

√
2K+

A π0
2 −

η√
2

√
2π+

2

−
√

2K−B K̄0
B

√
2π−2 −π0

2 −
η√
2




(2.54)

where we use π1,2 to denote the dark pions transforming as (3,1) and (1,3), KA,B to

denote the “dark kaons” that are in (2,2) representations, and η to denote the “dark

eta” singlet.

The lowest dimension terms in the NLSM lagrangian are:

Lχ =
f 2

4
Tr(DµΣ(DµΣ)†) + 4πcDf

3 Tr
(
LMR†Σ† + h.c.

)
, (2.55)

where cD is an O(1) coefficient from the strong dynamics. As we discussed in Sec. II,

these terms are sufficient to capture the leading interactions of the dark pions, and

in particular, will allow us to characterize the single dark pion interactions with the

SM that lead to dark pion decay. The mixing matrices are formed from the angles
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Eq. (2.50)

L =



cos θ1 0 − sin θ1 0

0 cos θ1 0 − sin θ1

sin θ1 0 cos θ1 0

0 sin θ1 0 cos θ1


(2.56)

R =



cos θ2 0 − sin θ2 0

0 cos θ2 0 − sin θ2

sin θ2 0 cos θ2 0

0 sin θ2 0 cos θ2


. (2.57)

In the field-independent limit,

LMR† =



m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2


, (2.58)

and so the dark pion masses are

mπ1 = 4πcDf(2m1) (2.59)

mK = 4πcDf(m1 +m2) (2.60)

mπ2 = 4πcDf(2m2) . (2.61)

Finally, the covariant derivative for Σ involves the weak currents

DµΣ = ∂µΣ− i gWα
µ

(
jVα + jAα

)
Σ− i g′Bµ

(
jVY + jAY

)
Σ (2.62)

where it is convenient to express the vector and axial currents explicitly

jV,Aα = L†tαL ±R†tαR (α = 1 . . . 3) (2.63)

jV,AY = L†t15L ±R†t15R . (2.64)
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Expanding the covariant derivatives to extract only the non-derivative contributions

– the mass terms for W µ and Zµ – we find the contributions of the dark sector to

electroweak symmetry breaking for two flavors:

v2
246 = v2

(
1 +

ε2y2f 2

M2
+ . . .

)
. (2.65)

Here we have written the leading result in a small ε expansion. Obviously the

correction from the dark sector, ε2y2f 2/M2, should be small to avoid constraints

from the electroweak precision observables as well as Higgs coupling measurements.

In particular, the dark sector’s contribution to the S parameter can be estimated

[106] utilizing QCD and large ND,

S ∼ 1

6π
NFND

(
εyf

M

)2

' 0.1
NF

4

ND

4

( εy
0.3

)2
(
f

M

)2

(2.66)

Since M < 4πf for the NLSM effective theory to be valid, in general we need |εy|

small to ensure the dark sector condensate is aligned nearly (but not completely) in

an electroweak preserving direction.

While Eq. (2.65) is reminiscent of Eq. (2.29) in the two-flavor chiral case, there

are some crucial differences. In Eq. (2.29), we could not take f – the EWSB

contribution from the strong sector – to be arbitrarily small without making the

dark pions dangerously light. As a result, there is a minimum f that we can

take, and therefore a minimum deviation in Higgs coupling and precision electroweak

observables, see Ref. [24]. In the four flavor case, we have more freedom. The fact that

the fermions are vector-like means we can take f (more correctly yf) as small as we

like without worrying about mπD . This allows us to explore a parameter space where

the renormalizable coupling between the Higgs and the dark sector has negligible role

on EWSB yet still acts as a portal for the dark pions to decay through.
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Mixing with the Higgs and Goldstones. We have chosen a basis for our

dark pions such that they do not acquire an expectation value. This is evident by

expanding the linear term, Eq. (2.55), where one finds no terms linear in the dark

pion fields, i.e., contributions of the form L ⊂ (constant)π are absent.

There are, however, dark pion mixing terms with both the Higgs field h and

(prior to gauge-fixing) the Higgs Goldstone fields G±, G0. Disentangling the mixing

among the Higgs and dark pion fields is somewhat involved, and in full generality

would need to be done numerically. In the following, we have calculated the mixing

to leading order in εy, where we can obtain analytic expressions. Since we know

εy must in general be small to ensure electroweak symmetry breaking occurs mostly

from the fundamental Higgs field, this is a good choice of an expansion parameter.

One unique combination of the dark pion fields mixes with the Higgs boson h,

4πcDf
3 Tr

(
LMR†Σ† + h.c.

)
⊂ 4

√
2πcDεyf

2h Im(K0
A +K0

B) . (2.67)

This will turn out to be critical to understand the effective couplings of the lightest

dark pions to the SM gauge sector.

The dark pions also mix with the Higgs Goldstones,

4πcDf
3 Tr

(
LMR†Σ† + h.c.

)
⊂

8πcDf
2εy

M

[(
G−
(
sm(2m1π

+
1 − 2m2π

+
2 ) + cm(m1 +m2)(K+

A −K
+
B )
)

+ h.c.
)

+G0
(
sm(2m1π

0
1 − 2m2π

0
2) + cm(m1 +m2)Re(K0

A −K0
B)
) ]

, (2.68)

where

sm ≡ sin θm ≡
√

2yv√
2(yv)2 + 4∆2

(2.69)

cm ≡ cos θm ≡
2∆√

2(yv)2 + 4∆2
, (2.70)
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are mixing angles among combinations of the dark pions. The dark pion / Goldstone

mass mixing can be perturbatively diagonalized to leading order in εy,

G±,0phys = G±,0 +
εyf

M

(
sm(π±,01 − π±,02 ) + cm Re(KA −KB)

)
(2.71)

π±,01,phys = π±,01 +
εyf

M
smG

±,0 (2.72)

π±,02,phys = π±,02 − εyf

M
smG

±,0 (2.73)

Re
(
K±,0A,phys −K

±,0
B,phys

)
√

2
=

Re
(
K±,0A −K±,0B

)
√

2
+
εyf

M
cmG

±,0 (2.74)

Re
(
K±,0A,phys +K±,0B,phys

)
√

2
=

Re
(
K±,0A +K±,0B

)
√

2
. (2.75)

In addition, diagonalizing the Higgs boson / dark pion mixing one obtains

hphys = h− εyfmK

M

Im(K0
A +K0

B)

m2
h −m2

K

(2.76)

Im
(
K0
A,phys +K0

B,phys

)
= Im

(
K0
A +K0

B

)
+
εyfmK

M

h

m2
h −m2

K

(2.77)

where mK is given by Eq. (2.60).

Dark Pion Couplings to the SM. We now calculate the couplings of dark

pions to the gauge sector of the Standard Model. These couplings arise when the

interaction eigenstates (G, π, K) are rotated into the physical states (Gphys, πphys,

Kphys). Gauge-fixing in unitary gauge removes all terms involving Gphys, leaving just

the interactions with the “physical” (mass eigenstate) dark pions.

It is clear from Eqs. (2.51) that a non-zero Yukawa coupling necessarily splits

the fermion masses, and thus there is always some (possibly small) mass hierarchy

between π1, K, and π2 (and η), see Eqs. (2.59)–(2.61). While it is straightforward to

calculate the couplings of all of the dark pions to the Standard Model, here we focus

only on the lightest pions. For instance, strong decays of πheavy, K → πlight + X are

expected to be rapid so long as the dark pion mass differences are large enough that

phase space does not severely limit their rates.
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The two-pion interactions with the SM gauge sector take the form

W µ,∓ (π±phys∂µπ
0
phys − π0

phys∂µπ
±
phys

)
: = g

1 + cm
2

. (2.78)

Several limits are interesting. First, for ∆ > 0 and ∆� yv, then cm ' 1, and so the

coupling of the dark pions to the gauge bosons becomes ' g – exactly the coupling

expected for three SU(2)L-triplets to interact via the SU(2) anti-symmetric tensor

contraction. This is not surprising – in this limit the lightest pions are a nearly exactly

an SU(2)L triplet with only (yv)/∆-suppressed mixings into the other dark pions.

Next consider ∆ < 0, while still |∆| � yv. Now cm ' −1, and the coupling of

the dark pions to the gauge bosons becomes ' 0. This is again unsurprising – in this

limit the lightest pions are a nearly exact SU(2)R triplet that does not couple with

SU(2)L gauge bosons.

Finally, when ∆ � yv (and thus cm ' 0) the splittings among the dark pions

are dominated by electroweak symmetry breaking contributions. In this case, the

would-be SU(2)L triplet and SU(2)R triplets are fully mixed, and each share an

approximately g/2 coupling to SU(2)L gauge bosons.

Single pion interactions with one gauge boson and one Higgs boson are the most

interesting (and most relevant for pion decay). We obtain:

(π±phys∂µh− h∂µπ
±
phys)W

µ,∓ :
MW

v
×
(√

2cDεysm
4πf 2

m2
K

)
×
(

m2
h

m2
K −m2

h

)
(π0

phys∂µh− h∂µπ0
phys)Z

µ :
MZ

v
×
(√

2cDεysm
4πf 2

m2
K

)
×
(

m2
h

m2
K −m2

h

)
π±physf̄

′f :
√

2
(mf ′

v
PL −

mf

v
PR

)
(2T f3 ) ×

(√
2cDεysm

4πf 2

m2
K

)
π0

physf̄f : i
(mf

v
γ5

)
(2T f3 ) ×

(√
2cDεysm

4πf 2

m2
K

)
(2.79)

From these expressions, we can identify

1

vπ
=

1

v
×
(√

2cDεysm
4πf 2

m2
K

)
, ξ =

m2
h

m2
K −m2

h

(2.80)
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This is the main result for the four-flavor theory. We find that the pion interactions

with the gauge bosons and Higgs boson are suppressed relative to the fermion

couplings by a factor m2
h/(m

2
K −m2

h) that becomes roughly m2
h/m

2
K for larger dark

kaon masses. This relative suppression in gauge/Higgs boson couplings to the fermion

couplings is exactly what happened in the two-flavor, custodially-symmetric model.

The four-flavor model is, essentially, one ultraviolet completion of the two-flavor

theory with higher-dimensional operators that are both custodially symmetric and

minimal flavor violating. The dimension-7 operators that lead to interactions with

the fermions are matched at Λ3 = 4πfm2
K ; the dimension-9 operator that leads to

the interactions with the gauge bosons and Higgs boson is matched at Λ5 = 4πf 3m2
K ;

with the coefficient c9C ∝ λh the quartic coupling of the Higgs sector.

Dark Sector Custodial Violation

We have focused on dark sectors that preserve custodial SU(2). In practice this

means that renormalizable and higher dimensional operators involving dark fermions

do not involve explicit t3R – this only appears from the custodially violating SM

spurions proportional to g′Y or Y /C
ij ).

Naturally, it is interesting to consider what happens when explicit t3R is

introduced. In the SU(2)R model, this is possible already at the renormalizable

level. One can include M ′Ft3RF̂ in addition to MFF̂ . This is equivalent to simply

writing different dark fermion masses for the Y = +1/2 and Y = −1/2 states under

U(1)Y .

In the SU(2)L model, gauge invariance forbids a dimension-3 term violating

custodial SU(2). At dimension-5 there is an interaction:

L = c5V
(F1t

a
LF2)TrH†taLHt3R

Λ
(2.81)
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that violates custodial SU(2). With two Higgs bifundamentals, the group contractions

are

(2L,2R)⊗ (2L,2R) = (1L,1R)⊕ (3L,3R) (2.82)

where the surviving combinations are precisely those in Eqs. (2.34),(2.81). (The

would-be (3L,1R) or (1L,3R) involves TrH†taL,RH that simply vanishes.) The only

way we can write a gauge-invariant term of the form Eq. (2.81) is to use t3R of SU(2)R,

and hence is custodially violating.

The low energy effective theory including higher dimensional operators up to

O(v2/Λ) can again be described by a non-linear sigma model,

L =
f 2

4
Tr (DµΣ)†DµΣ + 4πf 3

(
M + c5M

v2

Λ

)
Tr (Σ† + h.c.)

+ c5V
4πf 3

Λ
Tr(ΣLt

a
L)Tr (H†taLHt3R + h.c.) (2.83)

Expanding the non-linear sigma model up to O(π2), we obtain

L = TrDµπ
aDµπa − 1

2
m2
ππ

aπa − c5V
4πf 2

Λ
H†πataLH (2.84)

where m2
π = 4πf(M + O(v2/Λ)), and we have written the single pion – Higgs

interaction in the more familiar form using Higgs doublet notation. This Lagrangian

is precisely that of a “crappy triplet model”4, e.g. [171]. That is, the two-flavor SU(2)L

dark sector with a dimension-5 custodially-violating interaction with the SM Higgs

sector provides an ultraviolet completion of the SM extended to include a real triplet.

Higher order terms in the chiral Lagrangian lead to the usual pion self-interactions

as well as interactions of multiple pions with Higgs fields.

In this theory, we see that the dark pion interactions with the SM arise at a

comparatively low dimension operator, Eq. (2.81). The explicit custodial violation

4“Crappy” in the sense that the linear term for πa causes it to acquire a custodially-violating vev.
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causes the dark pions to acquire a “triplet” vev

vT ≡ 〈πa〉 ∼ c5V
fv2

ΛM
. (2.85)

Obviously this is highly constrained by electroweak precision data. Nevertheless,

following Ref. [171] one can proceed as usual, shift to the new vacuum, and extract

the effective interactions from Eq. (2.84). The result is that there is a neutral singlet

that mixes with the Higgs boson and a charged scalar that mixes with the charged

Higgs Goldstones. Diagonalizing these interactions leads to G±phys

π±phys

 =

 cos δ sin δ

− sin δ cos δ


 G±

π±

 (2.86)

where sin δ ∼ vT/
√
v2 + v2

T . The interactions of the charged dark pions are obtained

by replacing G+ with π±phys. Just like in the two-flavor chiral model, this leads to

gaugephilic branching ratios. However, unlike the two-flavor chiral model, there is no

neutral dark pion / neutral Goldstone mixing.
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CHAPTER III

LHC PHENOMENOLOGY OF DARK MESONS

In Chapter II we discussed dark sectors whose (ultraviolet) strongly-coupled

sector preserves a SU(2) dark flavor symmetry. These theories are mapped into

a low energy effective theory that provides the leading interactions of the dark

mesons with the Standard Model. In this chapter we further investigate the collider

phenomenology of dark mesons. The structure of this chapter is as follows. In Sec. III

we introduce our phenomenological dark meson model and its relevant parameters.

This model description is broken up into three parts: the strong sector, kinetic mixing,

and πD decay. Using this setup, we explore the constraints on dark meson parameter

space. Sec. III is devoted to constraints from single ρD production, while we explore

constraints from πD pair production in Sec. III. We step through the details of the

searches that provide constraints and provide insight into why other searches fail to.

Finally, we present our conclusions in Sec. V.

Phenomenological Description of Dark Mesons

The dark meson interactions will be described below using a phenomenological

lagrangian. The core philosophy was formulated in “vector-like confinement” [35, 37],

and our discussion of resonant production of dark pions through a dark rho parallels

theirs. The key distinction between our formulation and vector-like confinement is

the presence of Higgs interactions among the dark fermions which breaks enough of

the dark flavor symmetries to allow dark pions to decay. In the language of vector-

like confinement, all species symmetries are broken by Higgs interactions in the dark

sector (either Yukawa couplings or higher-dimensional interactions).
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Dark Mesons in SU(2) Triplet Representations. The lagrangian can be

written as

L = Lstrong + Lkinetic mixing + Ldecay . (3.1)

The first contribution contains the meson sector of the theory as it arises from the

strongly-coupled dark sector:

Lstrong = − 1

4
ρD

a
µνρD

aµν −
m2
ρD

2
ρD

a
µρD

aµ (3.2)

+
1

2
(DµπD

a)† (DµπD
a)− 1

2
m2
πD
πD

aπD
a (3.3)

− gρDπDπDfabcρDaµπDbDµπD
c, (3.4)

It contains the kinetic terms of the vector (ρD) and pseudoscalar (πD) mesons, mass

terms, and the interactions among these mesons. As we indicated in the introduction,

the mesons fill out representations of the SU(2) dark flavor symmetry, and the meson

self-interactions respect the SU(2) dark flavor symmetry. Throughout all of these

expressions, we have assumed that the dark sector contains (at least) one set of dark

pions and (at least) one set of dark vector mesons in the triplet representation of the

SU(2) dark flavor symmetry. Hence the a = 1, 2, 3 index attached to πaD and ρaD.1

We will only consider the phenomenological consequences of the lightest triplet dark

vector meson (ρaD) and the lightest triplet dark pion (πaD).

The coupling between the ρD and πD is show in Eq. (3.4). This is the analogue

of gρππ in QCD. In the SU(2)R model, the full set of SU(2)R-symmetric interactions

are present, though in practice only the ρ0
Dπ

+
Dπ
−
D interaction is phenomenologically

relevant since only ρ0
D talks to SM fermions via kinetic mixing (see Sec. III). The

NDA estimate of the coupling strength is given by

gρDπDπD ≈
4π√
ND

. (3.5)

1We use ρ3D and ρ0D interchangeably.
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Kinetic Mixing of ρD with SM. The second term of Eq. (3.1) contains

the kinetic mixing of the dark rhos and the electroweak gauge bosons:

Lkinetic mixing = − ε
2
ρD

a
µνF

aµν =

 −
ε
2
ρD

a
µνW

aµν SU(2)L model

− ε′

2
ρD

0
µνB

µν SU(2)R model
(3.6)

This provides the main “portal” from the Standard Model into the dark sector. There

are two cases we detail below: F aµν identified with W aµν (the SU(2)L model), and

F aµν identified with δa0Bµν (the SU(2)R model).

In each of the models defined by Eq. (1.1), all or part of the SU(2) dark flavor

symmetry is gauged. In SU(2)L model, the triplet of global SU(2) is identified as a

triplet of the gauged electroweak SU(2)L group. In the SU(2)R model, the triplet

of global SU(2) is identified as a triplet of the would-be gauged electroweak SU(2)R

group, had the entire SU(2)R been gauged. Of course the entire SU(2)R is not gauged

– just the U(1)B subgroup. After electroweak symmetry breaking, SU(2)L×U(1)B →

U(1)em, the triplet of vector and pseudoscalar mesons of the SU(2)L and SU(2)R

models have the same electric charges, Q = (+1, 0,−1).

In both models, we use naive dimensional analysis (NDA) to estimate the size of

the kinetic mixing:

ε ≈
√
ND

4π
g, SU(2)L model

ε′ ≈
√
ND

4π
g′ SU(2)R model ,

(3.7)

strictly valid for a large number of colors ND of the confining dark gauge group.

Diagonalizing the kinetic terms leads to a field redefinition of

W a
µ → W a

µ − ε ρDaµ SU(2)L model

Bµ → Bµ − ε′ ρD0
µ SU(2)R model ,

(3.8)
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at leading order in ε. This leads to a ρD interaction with the SM fermions with a

coupling strength proportional to g2 or g′2,

LρDff̄ =

 ε g f̄i σ̄
µtaij ρD

a
µ fj SU(2)L model

ε′Yf g
′ f̄ σ̄µ ρD

0
µ f SU(2)R model ,

(3.9)

where fi,j are left-handed SM fermions in the SU(2)L model, while f are any SM

fermions with hypercharge Yf in the SU(2)R model.

The difference between the two models is mainly in the kinetic mixing. In the

SU(2)L model, the entire triplet of ρaD mixes with the triplet of W a bosons. In

the SU(2)R model, only the neutral component of the triplet, ρ0
D, mixes with the

hypercharge gauge boson. Additionally, the kinetic mixing ε has one power of the

gauge coupling: g in the SU(2)L model; g′ in the SU(2)R model. Here we emphasize

that while the difference between g/g′ ' 2 may seem small or trivial, pp → ρ

production is proportional to 3g4 in the SU(2)L model (compared with g′4 in the

SU(2)R model), and so this leads to a significant difference in the production rates

of ρD’s in the two models.

Neglecting mass differences among states within the triplets, the strong sector is

thus described by three parameters:

mπD , mρD , ND or equivalently mπD , η ≡
mπD

mρD

, ND . (3.10)

As our canonical example that we use throughout this paper, we have taken ND = 4

in the bulk of our results below. This choice was motivated by the Stealth Dark

Matter model [106]; the phenomenology is broadly similar so long as the number of

colors is not excessive. We quantify this in detail below.

Additionally, we will often replace one of the dark meson mass parameters for

the ratio η = mπD/mρD . This ratio is important because it governs how the ρD can
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Figure 1. The left panel shows the production cross section at
√
s = 13 TeV for the

dark vector mesons. The blue and orange lines depict whether the vector mesons
are SU(2)L or SU(2)R symmetric and kinetically mix with the appropriate standard
model gauge bosons. The middle and right panels show the subsequent branching
ratio for the ρD depending on whether or not it can decay to the πD. The red lines
denote decays to quark anti-quark pairs, and the dashed line indicates the top quark.
The purple lines show leptonic decays.

decay. Specifically, if η < 0.5, ρD can decay to a pair of dark pions, while if η > 0.5

the dark rhos must decay directly back to SM particles. As we will see, the latter case

is strongly constrained by limits from Z ′,W ′ searches. From now on, we will label

our dark meson models by the type of kinetic mixing and the ratio of dark meson

masses, i.e.,

SU(2)ηL : ε = g
√
ND/(4π), ε′ = 0

SU(2)ηR : ε = 0, ε′ = g′
√
ND/(4π)

Having specified ND, the production cross section for ρD is completely

determined for both models as shown in the left-side plot in Fig. 1. Figure 1 also

shows the ρD branching ratios for two different η values: as expected, if η < 0.5

(middle panel) then the interaction strength and form of the ρDπDπD interaction

make ρD → πDπD. On the other hand, if the πD are too heavy (η > 0.5, right

plot), the ρD decay back through kinetic mixing and the branching ratios are simply

determined by the SM color factors.
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In focusing on the two models, we are ignoring scenarios where the SU(2)L ×

U(1)Y properties of the ρD [and πD] are not well defined. Generally, large mixing can

only happen in scenarios where the strong sector plays a large role in electroweak

breaking and therefore faces constraints from Higgs coupling measurements and

precision electroweak tests. In terms of ρD phenomenology, having well defined

SU(2)L × U(1)Y properties means that the ρD → V πD (V = SM electroweak boson)

decay modes are always small.

We would be remiss to not point out that the SU(2)R model invovling a dark

U(1) vector boson mixing between the hypercharge is ubiquitious in the literature of

simple dark sectors as “dark photons” (e.g., for a review [172]). While most of this

literature focuses on (much) lighter dark photons, for simple dark photon models with

a dark photon mass at or above the electroweak scale, we can map this toy model onto

a special case of our strongly-coupled dark sector. The mapping utilizes the SU(2)R

model with: η > 0.5 (so that the dark vector boson can decay only into SM states),

mSM/vπ small (so that single production of dark pions is negligible), and the number

of dark colors ND chosen to obtain a kinetic mixing ε′. Even with these parameter

choices, our strongly-coupled dark sector obviously has differences from the simple

toy models. One is that the kinetic mixing is at most one-loop suppressed. Another

is that there is relationship between the smallness of the kinetic mixing, the number

of dark colors, and the relative size of self-interactions of the dark mesons. While it

would be interesting to map out this space more fully, this is beyond the scope of this

paper.

Dark Pion Decay to SM. Finally, dark pion decay. This is the main

subject of our companion paper [120]. There we show that strongly-coupled models

with custodially-symmetric Higgs interactions among the dark fermions leads to a
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low energy effective theory in which dark pions interact with the SM through:

Ldecay =

√
2

vπ

[
πD

+ψ̄u(mdPR −muPL)ψd + πD
−ψ̄d(mdPL −muPR)ψu

+
i√
2
πD

0(mu ψ̄uγ5ψu −md ψ̄dγ5ψd)

]
− ξ mW

vπ

[
(W−

µ h
←→
∂ µπD

+) + (W+
µ h
←→
∂ µπD

−) +
1

cos θW
(Zµ h

←→
∂ µπD

0)

]
(3.11)

where ψu,d are SM fermions. There are several important features of this Lagrangian.

First, while we have used the language that the decay interactions ‘break the flavor

symmetry’, this is slightly sloppy. Stated more correctly, we have married the SU(2)V

symmetry of the dark pions to part of the O(4) symmetry group of the Higgs potential.

Both the dark pions and the SM fields transform under the shared symmetry, so we

can write down single pion interactions of the form πaOa where Oa is some triplet of

SM fields.

The overall scale of the operators is set by 1/vπ for the fermions and ξ/vπ for

the gauge/Higgs bosons. The fact that the interactions do not further distinguish

the fermions (i.e., one overall coupling for the first four terms) nor the gauge/Higgs

interactions (one coupling for the last three terms) is due to the the dark sector’s

preservation of custodial symmetry. However, since custodial SU(2) is broken in the

SM by differences of Yukawa couplings as well as hypercharge, there is a residual

differentiation of the interactions by mu −md as well as g′ 6= 0.

This form is convenient, since coupling πD to the SM fields requires breaking

electroweak symmetry and hence the coupling strengths must be proportional to the

mass of a SM field. The primary role of the 1/vπ parameter is to set the total width

of the πD. In this paper our main focus is on scenarios where the πD decay promptly.

This sets a lower bound on mSM/vπ, where mSM is the mass of the mass of the SM

particle(s) in the dominant πD decay. Scenarios where πD is displaced or long-lived
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are also interesting to study. The main search methodologies are well-known from

other displaced/long-lived searches (for a review, see e.g. [173]).

The remaining model-dependent parameter is the relative strength of the

coupling to fermions versus the gauge/Higgs sector that we have parameterized by ξ.

We will consider two possibilities for ξ:

ξ = 1 “gaugephilic”

ξ = cξ
v2

m2
πD

� 1 “gaugephobic”
(3.12)

The scaling of the gaugephobic parameter with the electroweak scale and the dark

pion mass scale deserves some discussion. The origin of this scaling is found from

an analysis of the strongly-coupled effective theories that we have discussed in detail

in Ref. [120]. In essence, there are higher dimensional operators involving additional

Higgs fields, suppressed by at least the scale of the dark pions, that can regenerate

couplings to the gauge/Higgs sector even if they don’t exist at leading order. As

we show in Ref. [120], the Stealth Dark Matter model is gaugephobic with ξ =

m2
h/(m

2
KD
−m2

h) ' m2
h/m

2
KD

where KD is a another dark pion that is at least slightly

heavier than πD. Since the dark kaon scales with the parameters of the ultraviolet

theory in exactly the same way as the dark pion, in our phenomenological study we

take cξ = λh and do not distinguish between the dark pion and kaon masses.

In the limit that the dark pion mass scale is taken large, ξ → 0, and the dark

pions can only decay back to fermions. However, when the dark pions are near to

the electroweak scale, ξ can be “smallish” but, importantly, nonzero. This implies

πD → ff̄ ′ dominate so long as there is no small coupling. For the specific case of π0
D

in the mass range mh +mZ < mπ0
D
< 2mt, the decay π0

D → Z + h dominates despite

being gaugephobic. This is because the Zh mode is longitudinally enhanced, while

the competing fermionic mode π0
D → bb̄ is suppressed by the small Yukawa coupling
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Figure 2. Branching ratios of the charged pions

yb. For all other ranges of dark pion masses (both charged and neutral), πD → ff̄ ′

dominates. By contrast, in the gaugephilic case πD → W + h, Z + h dominate once

they are kinematically open.

While the two choices in Eq. (3.12) may seem arbitrary at first, a large class of

strongly-coupled models can be mapped into this categorization (see Ref. [120] for

more details). Specifically, the Stealth Dark Matter model [106, 107, 117] and others

similar to it are gaugephobic. By contrast, models of bosonic technicolor / induced

symmetry breaking [24], as well as the triplet state in Georgi-Machacek models [174]

have gaugephilic interactions.

In our taxonomy, the gaugephilic case only occurs for the SU(2)L model. This

is not immediately obvious from our discussion thus far. Essentially the gauge/Higgs

interactions on the last line of Eq. (2.14) is permitted with order one ξ when πaD

is in the same representation as W a
µ , i.e., an SU(2)L triplet. The reader may then

immediately wonder why the SU(2)R case does not have ξ = 0. At leading order it

does, but at higher orders one finds gauge/Higgs interactions are generated albeit with

a suppression typically of order m2
h/m

2
πD

. This is parametrically the suppression we
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Figure 3. Branching ratios of the neutral pions

find in the Stealth Dark Matter model [120], and is similar to what we find in generic

2-flavor custodially-symmetric models. More details can be found in Ref. [120].

Any given model may or may not permit arbitrary choices for vπ and ξ; for

instance, induced electroweak symmetry breaking requires vπ fixed (up to order one

coefficients) and ξ = 1 due to the requirements of proper electroweak symmetry

breaking. However, as we detail in [120], there are models that span a wide range of

(vπ, ξ . 1).

Given ξ, the branching fractions of the πD are fully specified as a function of the

pion mass. As πD decay couplings are proportional to mass, they decay to the heaviest

kinematically available SM particles. The branching ratios for the gaugephilic and

gaugephobic scenarios are compared side by side in Fig 2 (charged πD) and 3 (neutral

πD).2

2We have omitted the anomaly-induced decay πD0 → γγ from Fig. 3. In models with a SU(2)
flavor symmetry that becomes custodial SU(2) after Higgs interactions, the dark sector is anomaly-
free. The decay mode does reappear due to SM interactions violating custodial SU(2), but is highly
suppressed so as to be phenomenologically irrelevant [120].
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For the charged πD, the branching ratios in the two cases are similar at small

masses. However, the unsuppressed gauge/Higgs couplings in the gaugephilic scenario

imply πD → W+ h quickly dominates once it is kinematically allowed (due to the

kinematic enhancement of decays to longitudinalW ), while the πD → tb̄ mode always

dominates at heavy mass for the gaugephobic case. There is a similar pattern in

the branching ratio of the neutral pions. Again, when the pion is light, the decay

modes between the two categories are similar and are dominated by the bb̄ mode.

This similarity persists after πD passes the Zh threshold. However, as πD is further

increased past the tt̄ threshold we can spot the difference, as the πD → t̄t branching

ratio dominates at large πD masses in the gaugephobic case but stays subdominant

to Zh in the gaugephilic case.

Constraints from single production

Having established the dark meson phenomenological Lagrangian and fleshed

out the relevant parameters, we now move on to LHC production, sensitivities, and

constraints.

The phenomenology of the dark meson sector that we pursue in this paper clearly

bifurcates at η = 0.5 as evident from the branching fractions of the dark pions in

Fig. 1. For η > 0.5, the ρD is kinematically forbidden to decay to a pair of on-

shell dark pions, and thus decays to SM fermions dominate.3 The decays into SM

fermions are determined solely by the gauge and color charges of the fermions, so the

ρD phenomenology is essentially independent of the details of how the pions interact

with the SM.

When η < 0.5, ρD → πDπD is open, and generally dominates so long as the

number of dark colors, ND, is not large (we’ll be more precise below). In this case,

3Fig. 1 includes three-body decays though an off-shell dark pion, but the rates for these decay
modes are always small compared to what is shown in the figure.

59



the most promising way to search for dark mesons is dark pion pair production. The

largest contribution to dark pion pair production is resonant production pp→ ρD →

πDπD through the dark rho, so long as it is not very heavy. Dark pions can also be

pair-produced through Drell-Yan production, though this tends to give a smaller cross

section due to theW or Z exchange being off-shell. We find that resonant production

through ρD dominates for η & 0.2 for ND = 4.

The final states populated by dark pion pairs depends on how the dark pions

decay, which in turn depends on whether we are in a gaugephilic or gaugephobic

scenario. We have chosen 9 benchmarks spanning the phenomenology possibilities

that we believe give a solid idea of the differing phenomenology, shown in Table 4.

We provide the FeynRules [175] model files and corresponding UFO files on GitHub.4

We used MadGraph5_aMC@NLO [176] to simulate the events. When studying

constraints directly on the ρD, we simulated pp→ ρD and then allowed for any decay

mode. For the constraints on πD, we simulated pp→ πDπD which then had resonant

and Drell-Yan production. In all cases, showering and hadronization was performed

by Pythia 8 [177] and Delphes 3 [178] was used for fast detector simulation. We

used the default detector card because we recast both ATLAS and CMS results.

Within Delphes, jets were calculated with FastJet [179] using the anti-kt algorithm

[180]

For each of the benchmark scenarios in Table 4, the mass of the πD was scanned

with variable spacing in order to capture the different decay mode transitions. We

take the lower limit of dark pion mass to be 100 GeV, coming from the bound on

BSM charged particles from LEP II. At each mass point, 500k events were produced

for pair production of dark pions (all allowable modes). This was done for both

4https://github.com/bostdiek/HeavyDarkMesons
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Model η ≡ mπD/mρD ξ

SU(2)55
L 0.55

SU(2)45
L 0.45 gaugephilic (ξ = 1)

SU(2)25
L 0.25

SU(2)55
L 0.55

SU(2)45
L 0.45 gaugephobic (ξ = m2

h/m
2
πD

)
SU(2)25

L 0.25

SU(2)55
R 0.55

SU(2)45
R 0.45 gaugephobic (ξ = m2

h/m
2
πD

)
SU(2)25

R 0.25

Table 4. Benchmark models and parameters used in our study. Note that the
gaugephilic case only occurs for the SU(2)L model, as discussed in Sec. III in the
text.

√
s = 8 TeV and

√
s = 13 TeV collisions. The πD are decayed in the narrow width

approximation using Pythia.

There is no dedicated search for dark mesons at the LHC. We therefore estimate

the existing bounds by recasting a vast set of potentially constraining searches using

Monte Carlo methods. We will present our results first, followed by a more detailed

description of our recasting methods and a summary of why several searches which

look promising at first glance fail to set strong bounds.

ρD constraints. We first consider ρD production and decay. The ρD dark

vector mesons kinetically mix with electroweak gauge bosons, shown in Eq. (3.6),

giving direct couplings to SM fermions, shown in Eq. (3.9). In both the SU(2)L and

SU(2)R models, there is a neutral ρ0
D, better known as a new Z ′ gauge boson. Via

kinetic mixing, this ρ0
D acquires a coupling to leptons.

The strongest constraints on generic Z ′ gauge bosons (with masses near or above

the electroweak scale) is from the absence of resonances in the the `+`− invariant
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mass spectrum [181, 182]. Using the ATLAS 13 TeV search with 36.1 fb−1 of

integrated luminosity [181], we have recast the dilepton searches for the combined

electron and muon channels into a limit on ρD cross section times branching fraction

to leptons. This is accomplished by simulating the production of ρD and decaying

them according to the branching ratios shown in Fig 1. After passing through a

parton shower, hadronization, and detector simulation, we select events which contain

same-flavor opposite-sign leptons within the ATLAS selection criteria. The combined

efficiency (branching ratio times the detector efficiencies) multiplied by the cross

section can then be compared against the exclusion limits provided by the ATLAS

HEPData [183].

In Fig. 4, we illustrate the bounds that we have obtained by determining the

largest coupling of the ρ0
D to the SM for any choice of mρD within the range of interest

in this paper. The coupling is completely determined by the model-independent

quantity ε2 ×BR(ρ0
D → `+`−), that is shown as a black line in both panels of Fig. 4.

Also superimposed on the panels are the predicted sizes of ε2×BR(ρ0
D → `+`−) for a

given mπD/mρD and number of dark colors ND in the SU(2)L model. It is important

to note that ε is the kinetic mixing parameter and not the detector efficiency. (Similar

but weaker constraints are found in the SU(2)R model.) The right panel clearly shows

that the neutral dark vector meson is strongly constrained by the dilepton data when

mπD/mρD > 0.5.

The dependence on the number of dark colors is nontrivial:

σ(pp→ ρ0
D → `+`−) ∝ ε2 ×BR(ρ0

D → `+`−) ∝

 ND η > 0.5

N3
D η < 0.5 .

(3.13)

In the case η > 0.5, the one power of ND comes from ε2 while in the branching fraction

the ND dependence cancels. Contrast this with the case η < 0.5, where the branching
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Figure 4. Constraints on the kinetic mixing between the the SM and ρ0
D (times the

leptonic branching fraction of ρ0
D) from the non-observation of a dilepton resonance

near mρD . The black line is the model-independent limit. To illustrate the impact of
this bound on the model space, we have superimposed the predicted ε2 × BR(ρ0

D →
`+`−) for the SU(2)L model, varying the number of colors between 2 to 16. On the
right, the 2-body decay ρ0

D → π+
d π
−
d is kinematically forbidden, leading to strong

constraints: mρD > 1.5-2.5 TeV. On the left, the 2-body decay ρ0
D → π+

d π
−
d is open,

and we see that when ND . 4, there is no constraint from resonant ρ0
D production

and decay to dileptons.

fraction BR(ρ0
D → `+`−)|η<0.5 ' Γ(ρ0

D → `+`−)/Γ(ρ0
D → πDπD) ∝ N2

D. The left

panel clearly shows that when ρD → πDπD is both kinematically open (η < 0.5) and

dominates (ND . 4), there are virtually no LHC constraints on neutral dark vector

meson production and decay. (The very narrow region near mρD ∼ 300 GeV is, as we

will see, also constrained by other searches).

The bounds we have obtained from the ATLAS searches for dilepton resonances

assumed the width of the new resonance is relatively narrow, Γ(Z ′)/MZ′ . 0.03 [181].

In all of the cases with η = 0.55, where the ρ0
D can only two-decay into SM states, the

width is narrow, Γtot(ρ
0
D)/mρ0D

< 10−3. Once ρD → πDπD is open, we can estimate
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this partial width [35]

Γ(ρD → πDπD)

mρD

=
π

3ND

(
1−

4m2
πD

m2
ρD

)3/2

' 4

ND

×

 0.02 η = 0.45

0.16 η = 0.25 ,
(3.14)

where we have evaluated the result for the two values η = 0.45, 0.25 used in our

benchmarks for the paper. Despite the relative strong-coupling among mesons

(gρDπDπD = 4π/
√
ND � 1), the kinematic suppression of taking η = 0.45 suppresses

the width of the ρ0
D to a few percent, and so the ATLAS bounds are fully applicable.

For η = 0.25, the width is now tens of percent that is large enough requiring a re-

analysis of the dilepton data to set precise bounds on the ρ0
D. For η = 0.25, N < 4, the

ρD width to mass ratio reaches ∼ tens of percent, so a simple recast of the ATLAS

bounds is not completely precise. However, given that i.) the bounds on a wide

resonance will be weaker than on a narrow resonance, and ii.) the narrow resonance

bounds for N < 4 are already weak, we conclude that there is no bound on ρ0
D for

η = 0.25, N < 4.

There is one additional constraint on the kinetic mixing of ρD with SM gauge

bosons from LEP constraints on four-fermion effective operators [184]. Integrating

out ρ0
D results in four-fermion operators of the form

4π

Λ2
ēef̄f , (3.15)

where we have used the operator normalization of Ref. [184]. Matching the coefficient,

4π

Λ2
=

1

m2
ρD

×

 ε2g2 SU(2)L model

ε′2g′2 SU(2)R model

=
ND

16π2m2
ρD

×

 g4 SU(2)L model

g′4 SU(2)R model
. (3.16)

The strongest constraints from the LEP data suggest Λ & 20 TeV [184]. For the

SU(2)R model, there is no constraint due to the smallness of g′. For the SU(2)L
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model, the bound on mρ0D
varies from about 250–750 GeV for ND = 2–16. Given the

order one uncertainties in the large ND estimate for the kinetic mixing, this bound is

not any stronger than what we have already found from Fig. 4.

Constraints on the dark pion coupling to SM. Throughout the paper,

we will generally work in the “vector-like” limit (See Ref. [120]) where mSM
vπ

is small

and thus single production of πD is suppressed. This limit is automatically safe

from constraints from electroweak precision observables as well as Higgs coupling

measurements, and coincides with the demarcation of our model space into the two

categories SU(2)L and SU(2)R. If, however, mSM
vπ

is not so small, single production

of dark pions is possible and relevant to the phenomenology. In the model of

bosonic technicolor / induced electroweak symmetry breaking, this sets the strongest

constraints [24].

We can also characterize the parameter space of our effective theory by

determining the constraints on 1/vπ of Eq. (2.14). In Fig. 5, we consider several

processes5 where single dark pion production can set upper bounds on 1/vπ. One

process is top decay, t → π+
Db̄. In this process the π+

D must be somewhat lighter

than the top quark, and thus π+
D → τ+ντ dominates for the charged pions, leading

to an excess of τ ’s in top decay. LHC analyses of top decay, however, are consistent

with lepton universality [185, 186]. For values of the pion mass slightly less than the

top quark mass, the pion branching ratio to τ is similar to the SM branching ratio

of the W to tau. Thus, in this region the branching ratio alone is not enough to

constrain the coupling. Instead, we use the total width of the top quark [7, 187, 188]

as a secondary constraint, and exclude any region where the BSM additions to the

5Note that we only consider processes involving fermions so that we have ξ-independent
constraints on 1/vπ. Larger ξ, e.g., ξ ∼ 1, there can be stronger constraints from couplings to
the gauge/Higgs sector [24]. We thank Ennio Salvioni for discussions on this point.

65



200 400 600 800 1000

mπD  [GeV]

10-12

10-10

10-8

10-6

10-4

10-2

100

102

1/
v π

 [
1
/G

eV
]

π0
D→ ττ

top decay

cτ(π0
D), cτ(π +

D ) = 1mm

cτ(π0
D), cτ(π +

D ) = 10m

π +
D → τν

π +
D → tb̄

Figure 5. Constraints on the value of 1/vπ as a function of the dark pion mass.
Precise measurements of the top quark exclude regions above the red line. The green,
blue, and orange lines come from collider searches for heavy Higgs particles (mainly
in 2HDM). Lastly, the brown and pink dashed lines are not constraints, but show
at what point the phenomenology changes. Below these lines, the pions start to
travel an appreciable distance in the detector, either leading to displaced vertices or
disappearing tracks. The lower of these lines are around the scale when the particles
leave the detector either as missing energy or look like stable charged particles.

top decay change either the width or the tauonic branching ratio by more than two

standard deviations away from the measured values. This constraint is shown in red

in Fig. 5.

There are also many searches for the heavy Higgs particles of two-Higgs doublet

models that can be recast into searches for single production of the charged or neutral

dark pions. In Refs. [189, 190], ATLAS searches for a charged Higgs produced

association with tb̄. The two searches consist of one looking for H+ → τ+ντ while

the other looks for H+ → tb̄. The limits are presented in terms of σ(tb̄H+) × BR,

but unfortunately HEPData is not given. We therefore take the limits from plots in

Refs. [189, 190] and reinterpret them by replacing π+
D for the charged Higgs boson.

The upper bounds on 1/vπ we obtain are shown in orange and blue in Fig. 5. Finally,
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in a similar approach, Ref. [191] performed searches for a heavy neutral Higgs boson

produced in association with bb̄ and decaying to τ+τ−. Upon recasting this search for

neutral dark pions, we find somewhat weaker constraints – shown in green in Fig. 5

– compared with the bounds from charged dark pions.

Finally, while this is not a constraint on the parameter space per se, it is

interesting to determine when 1/vπ is small enough that the decays of the dark pions

are no longer prompt in colliders. As a rough guide, we can use

Γ =

(
2 mm

cτ

)
× 10−13 GeV (3.17)

and estimate that if cτ = 1 mm, then the neutral pions would lead to displaced tracks,

or the charged pions would lead to kinked (or disappearing) tracks when they decay.

If cτ > 10 m, then the pions can escape the detectors before decaying, leading to

missing energy or long-lived charged tracks. Search strategies for both of these types

of signals are interesting but best explored through existing dedicated strategies for

long-lived charged or neutral particles [192, 193, 194, 195]. The smallness that 1/vπ

needs to be to lead to these long-lived signals is shown in Fig. 5.

There can also be a contribution to the S parameter as a result of the interactions

in Eq. (2.14). However, in the ultraviolet strongly-coupled theories considered in

Ref. [120], we find the contributions depend on the spectrum of the heavier mesons,

and so there is no useful translation into bounds on 1/vπ. Suffice to say that there

are no bounds from the S parameter when the contributions to the dark fermion

masses are mostly vector-like with only smaller contributions arising from electroweak

symmetry breaking [16, 196].

Clearly, there is a huge range in 1/vπ – roughly values larger than 10−7 and

smaller than 10−2, with some slight variation depending on mπD – where dark pion

decays are prompt but the rate for single dark pion production is too small to
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be detected. Our goal for the remainder of this paper is to explore how prompt

LHC searches constrain paired dark pion production in this otherwise open region of

parameter space.

Resonant Dark Pion Pair-Production at LHC

The rate for dark pion pair-production depends on the model – SU(2)L versus

SU(2)R, and the NDA estimates for the kinetic mixing as well as the meson self-

interactions. It does not depend on how the dark pions decay (gaugephilic versus

gaugephobic) because the production rate is independent of 1/vπ and ξ/vπ from

Eq. (2.14). However, the different decay modes require different search strategies.

In Table 5, we have denoted different mass regions for each of the categories defined

by which decay modes are dominant. The intermediate SM particles, which may

subsequently decay, are listed for both the charged (πD
± πD

0) and the neutral

(πD
+πD

−) currents. Note that the symmetries do not allow for neutral currents

of the type πD0πD
0, so the SU(2)R model does not contain a resonantly enhanced

charged current.

Table 5 shows that there are many Standard Model particles in the final states,

with possibly exotic combinations. We analyzed 13 searches (in addition to the ones

already discussed), broken down into 6 searches at 8 TeV and 7 searches at 13 TeV.

Surprisingly, we find that many of the searches are not sensitive to our benchmark

models. The searches with sensitivity are further detailed here, while we save a

discussion of the non sensitive searches for Sec. III.

The results of our recasting are summarized in Fig. 6. This is the main result of

our paper. The top line of each plot (colored in blue) shows the constraints on the

model coming from searches for resonant dilepton production. As discussed in the

previous section, this depends only on if the ρD can decay to leptons or not, and is
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Mass Charged Current Neutral Current
ga

ug
ep
hi
lic

mπD . 150 GeV bb̄τν τ+τ−νν̄

150 GeV . mπD . 200 GeV bb̄tb̄ tt̄bb̄

200 GeV . mπD . 450 GeV Z h tb̄ tt̄bb̄

mπD & 450 GeV hhZ W+ hhW+W−

ga
ug

ep
ho

bi
c mπD . 150 GeV bb̄τν τ+τ−νν̄

150 GeV . mπD . 220 GeV bb̄tb̄ tt̄bb̄

220 GeV . mπD . 350 GeV Zhtb̄ tt̄bb̄

mπD & 350 GeV tt̄tb̄ tt̄bb̄

Table 5. Phenomenological regions for collider signatures. The charged and neutral
current columns show the SM particles for the dominant branching ratios.

independent of how the πD decay. The x axis for the plots is mπD , so the results are

obtained from Fig. 4 by scaling the x axis by the ratio mπD/mρD .

The next two lines in the Fig. 6 display the best constraints we could find for

13 TeV searches. The first of these is a search for supersymmetry in final states

with either same-sign leptons or three leptons. Recasted in terms of dark pions,

it excludes mπD in the 200-300 GeV range for the gaugephilic and slightly worse

for the gaugephobic categories when η = 0.45. This search does not work when

η = 0.25 because for fixed mπD , smaller η implies a heavier ρ and therefore a

smaller resonant contribution to pion pair production. The other 13 TeV search

with moderate sensitivity is a supersymmetry search with final states of tau leptons.

The bounds from this search limit the dark pion mass in all models with η < 0.5 that

we examined to be & 130 GeV, the mass above which πD+ → τ+ν ceases to be the

dominant decay mode.
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Figure 6. Summary of the dark meson exclusions for the benchmark scenarios and
values of the πD and ρD masses. The scenarios are labeled by the type of kinetic
mixing, the ratio of the dark pion to dark rho mass η = mπD/mρD , and the relative
strength of the fermionic versus bosonic dark pion decay modes. All of the dark pions
decay promptly. The top line indicates the bound on ρ0

D inferred from recasting the
latest dilepton bounds and interpreted in terms of mπD . The next five lines (in black)
show the πD mass bound from the most constraining 8 and 13 TeV searches we could
find. The union of the exclusions from all of the searches is shown in the last line.

The remaining lines in Fig. 6 come from the 8 TeV searches which have sensitivity

to πD. Two are multilepton searches from ATLAS and CMS, which are general

searches counting the numbers of events for many signal regions. These work well

for the models at low masses, and are slightly better for the gaugephilic models.

The other exclusion comes from a search for supersymmetry in states with same
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sign leptons. In particular, one of the signal regions trades the usual missing energy

requirement for more b-jets, which works well for the gaugephobic models.

Finally, the last line (shown in red) combines all of the previous constraints in

the most naive method. The models where the ρD cannot decay to πD are excluded

to over mπD = 1100 GeV for SU(2) kinetic mixing and to 900 GeV for U(1) (SU(2)R

model). If the mass ratio allows for decays to pions, the exclusion limits are drastically

reduced. For mπD/mρD = 0.45, the gaugephilic limits are to around 425 GeV while

the gaugephobic limits are at 500 GeV for SU(2) mixing. This corresponds to 13 TeV

cross sections of 600 fb and 300 fb, respectively. It is surprising that processes with

such distinct final states are still allowed with these large of rates at the LHC. The

SU(2)R model limits aremπD & 130 GeV, with a cross section of a few pb. As the mass

ratio is further extended, the decay products become more energetic, boosting some

of the search efficiencies. However, the resulting decrease in the cross section from

the heavier ρD compensates for this and leads to reduced limits. All of the models

with mπD/mρD = 0.25 have limits at or below mπD = 200 GeV, corresponding to a

(13 TeV) cross section of around a pb.

The rates that are still allowed are much larger than one would expect, especially

given the exotic combinations of final state particles. In the next subsections, we

examine the constraining searches in more detail, looking at why the searches work

and what the deficiencies are. The details we expose, combined with the information

in Sec. III, will help us identify important elements that future searches should

incorporate in order to improve sensitivity to dark pion scenarios.

Searching for taus. Working from the bottom up of the dark pion mass

range, O(100−150 GeV) dark pions in all of our benchmark models decay primarily as
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πD
+ → τ+ντ . Therefore, we begin our survey of experimental searches with searches

that explicitly look for taus.

ATLAS searches for supersymmetry in electroweak production of supersymmetric

particles with final states with τ leptons using 14.8 fb−1 of
√
s = 13 TeV data [1].

They interpret the search in terms of the leptons coming from the decays of charginos

or neutralinos. As this search is aimed at a supersymmetric model with a neutralino

also in the final state, they require a large amount of missing energy, which limits the

sensitivity to our benchmarks. The general search strategy is:

1. Trigger on events with two hadronically decaying τs with pT > 35(25) GeV and

have Emiss
T > 50 GeV.

2. Require opposite sign taus with mττ > 12 GeV.

3. Veto any event with a b-jet to suppress top-quark backgrounds.

4. Suppress SM backgrounds with a Z boson by removing events with |mττ −

79 GeV| < 10 GeV.6

5. Large missing energy cut, Emiss
T > 150 GeV.

6. Large stransverse mass mT2 > 70 GeV.

The stransverse mass is defined as

mT2 = min
qT

[
max

(
mT,τ1(pT,τ1,qT ),mT,τ2(pT,τ2,p

miss
T − qT )

)]
, (3.18)

where the transverse momenta of the two taus are pT,τ1(2) and qT is the transverse

vector which minimizes the larger of the two transverse masses. The transverse mass

679 GeV is the “visible” mass of the Z for tau decays which have inherent missing energy.
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Figure 7. Cut flow for the search for hadronically decaying taus, optimized for
electroweak production of supersymmetric particles [1]. The efficiency is much larger
for the η = 0.25 benchmarks than the η = 0.45 models because the larger ρD mass
leads to more energetic πD. This increase in efficiency is offset by the decrease in
resonant production cross section.

is defined as,

mT (pT ,qT ) =
√

2(pT qT − pT · qT ) . (3.19)

Figure 7 shows the efficiency of the signal as the various cuts are being made,

and exemplifies the kinematic differences between models with different value of η.

There is very little loss in efficiency from the b- and Z-vetos for masses less than 150

GeV. Additionally, the figure shows that at this stage, there is very little difference

between the η values. However, there is a huge drop in efficiency when requiring large

amounts of missing energy. This is not as dramatic in the η = 0.25 models, which

produce more energetic πD because of the heavier ρD.

The exclusions from this search are plotted in Fig. 8, where the y-axis is the cross

section times search efficiency. The expected number of events in the signal region

from standard model backgrounds was 5.9±2.1, while only three events were actually
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observed. As fewer events were seen than expected, the observed limits of 0.32 fb is

more stringent than the expected 0.43+0.21
−0.12 fb. Both the gaugephilic and gaugephobic

models with SU(2) kinetic mixing and η = 0.25 or η = 0.45 are excluded from this

search if mπD . 170 − 180 GeV. Surprisingly, this search also constrains the SU(2)

models with η = 0.55 even though the πD are not produced through a resonant ρD.

These are only allowed if mπD > 160 GeV.7

Additionally, the SU(2)R models [that kinetically mix through U(1)Y ] with η =

0.25, 0.45 are also constrained to be abovemπD & 130 GeV. As shown in the summary

plot of Fig. 6, this is the only search we examined which had sensitivity to the

SU(2)25,45
R models.

The reason these limits are not stronger is because the branching ratio to taus

is decreasing rapidly as the mass of the pions increases. This is compensated by

an increase in the expected number of W s, Zs, and bs. The next sections examine

searches which exploit these particles.

Generic multilepton searches. Examining Table 5, once mπD & 150 GeV,

pair produced dark pions decay to lots of bottom and top quarks, along with Z and

W . It should be expected that searches utilizing bs and leptons could place strong

constraints on the benchmark models. While we studied many model driven searches

and found no limits (see Sec. III), model-independent searches proved useful. Both

ATLAS and CMS have a generic search at 8 TeV based on final states with multiple

leptons. (Neither collaboration has repeated the analysis at 13 TeV).

7While all of our signal numbers were determined using Delphes tagging and identification
efficiencies, we derive limits by comparing them with ATLAS/CMS background numbers computed
with their own dedicated programs and setting. As the identification and tagging efficiencies in
Delphes are only an approximation to the true ATLAS/CMS numbers, our signal vs. background
comparison is not totally genuine. To quantify the effect of the mismatch, we have checked the
ramifications of changing the Delphes lepton identification efficiency by ±10% and find that this
variation only leads to very minor shifts in the derived mπD

limits.
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Figure 8. Exclusions from the ATLAS search for supersymmetry in final states with
tau leptons [1]. The dark mesons on the lighter side of our spectrum predominately
decay to taus, and the cross sections are large. The SU(2)L type models are excluded
if mπD . 180 GeV while the SU(2)R models limits are around 130 GeV. This is the
only search which limits the SU(2)R models where the ρD can decay to πDπD.

The inclusive ATLAS search looks for 3+ leptons [2]. The basic search

requirements are: 1 electron or muon for triggering purposes (pT > 26 GeV, |η| < 2.5),

a second electron or muon with slightly looser requirements, and a third e/µ or

hadronic τ . The events are broken into further sub-categories according to several

kinematic variables, such as the b-jet multiplicity, or whether or not the event

contains a same-flavor-opposite-sign lepton anti-lepton pair. The signal regions are

not orthogonal, and they set bounds on the BSM cross section of roughly a few fb.

Applied to πD production, we find the most constraining signal regions are those

containing a hadronic τ and that contain ≥ 1 b-jet or have low HT,L, defined as

the scalar sum of the pT of the three leading leptons (or τ) in the event. The limits

depends strongly on the lepton and tau identification. In particular, the ATLAS study

used only single-prong hadronic taus8 in the analysis and a benchmark identification

8Also, there was no dedicated τ trigger in place for this analysis.
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Figure 9. Expected signal cross section in two different signal regions of the ATLAS
multilepton search [2] as a function of dark pion mass.

efficiency of 0.5. Compared to more recent τ reconstruction numbers [197] (which are

in the default Delphes card), the ATLAS values are worse by a factor of ∼ 2. We

artificially imposed the reduced tau reconstruction numbers for consistency.

The shape of the exclusion curves for two of the signal regions are shown in

Fig. 9, and exemplify the difference between gaugephilic and gaugephobic models

which were not observed in the ditau search discussed in Sec. III. The shapes show

that the exclusions closely follow the πD the branching ratios.

Out of the 144 signal regions defined in the ATLAS search, we find that 16

provide some level of constraint. These are summarized in Fig. 10. Picking the

strongest limit from the signal regions, we find πD > 370 GeV in the gaugephilic,

mπD/mρD = 0.45 case and πD > 330 GeV in the gaugephobic, mπD/mρD = 0.45 case.

For mπD/mρD = 0.25 the bounds are looser, due to the fact that smaller mπD/mρD for

fixed mπD implies a heavier ρD, and therefore a smaller resonant contribution to the
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Figure 10. Out of the 144 signal regions defined in Ref. [2], 16 regions constrain some
portion of the dark meson parameter space. The mass ranges which are colored are
excluded. The gaugephilic models have larger branching ratios to Zh and Wh than
the gaugephobic models, which leads to greater search efficiency and larger bounds.

pp → πDπD cross section. The difference between the limits in the gaugephilic and

gaugephobic can be traced to the presence of more Higgs bosons in the gaugephilic

πD decays, since more Higgs bosons leads to more events with τs or b-jets.

The CMS generic multilepton search is similar, but contains some important

differences. It is based on 19.5 fb−1 of
√
s = 8 TeV data [3] and looks for events

with either three or four reconstructed leptons. In this case, the definition of leptons

includes electrons with pT > 10 GeV and |η| < 2.4, muons with pT > 20 GeV and
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|η| < 2.4, or hadronically decaying taus with pT > 20 GeV and |η| < 2.3. To trigger,

events must contain either an electron or muon with at least pT > 20 GeV and events

are only allowed to have one hadronic tau.

The events are divided into 192 independent bins (96 for each of the three or four

lepton cases). The bins are split based whether there are same-flavor-opposite-sign

(OSSF) pairs of leptons, the invariant mass of existing OSSF pair, the presence of

tagged b jets, the number of hadronic τ leptons, the amount of missing energy, and

the scalar sum of accepted jet transverse momenta. When CMS combines their signal

regions, they are able to set bounds on new physics on the order of σ×Br . 100 fb.

While it would in principle be possible to combine signal regions within our

study, CMS does not provide the correlation information. Therefore, we are forced to

examine each bin individually. This is in contrast to the method used in the ATLAS

search, which used overlapping signal regions, such that some of the regions were more

inclusive. Because of this, we find that the exclusions on the benchmarks from the

CMS search are not as strong at the ATLAS ones. They are summarized in Fig. 11

for the signal regions which provide a limit. While the limits are not as strong, we

find that the pattern is similar to the ATLAS result, in that the gaugephilic modes

have tighter constraints than the gaugephobic models.

To date, there is no 13 TeV multi-lepton analysis. Given the success we see in the

8 TeV versions at catching models that fall through the cracks in dedicated searches

(see Sec. III), we encourage ATLAS and CMS to pursue similar model-independent,

inclusive searches in the future.

Same sign lepton searches. The last type of search that we find has

sensitivity to pair produced dark pions is also fairly generic. The main difference is

that instead of looking for three or four leptons, they look for multiple leptons of
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Figure 11. Out of the 192 signal regions defined in the CMS multilepton search [3], 8
regions constrain some part of the dark meson parameter space. The excluded mass
ranges are colored according to the denoted signal region. The regions labeled SR3 and
SR4 regions contain either 3 or 4 leptons, respectively. The L or H denotes whether
the scalar sum of the pT of the selected jets is less than 200 GeV or greater than 200
GeV. While there are different cuts concerning the number of b-jets or taus, all of the
constraining regions require either Emiss

T < 50 GeV or 50 GeV < Emiss
T ≤ 100 GeV.

the same electric charge. Frustratingly, the limits we find from these scenarios are

stronger from an 8 TeV ATLAS search than the follow-up using a similar analysis

strategy at 13 TeV with more integrated luminosity.

The ATLAS search for supersymmetry using 20.7 fb−1 of
√
s = 8 TeV collisions in

final states with two same sign leptons [4] is a particularly powerful search. The search

requires two leptons of the same electric charge. For electrons to be reconstructed,

the must have pT > 20 GeV and |η| < 2.47, while reconstructed muons have pT >

20 GeV and |η| < 2.4. Jets are reconstructed with the anti-kt algorithm with a

radius parameter of 0.4 and are required to have pT > 40 GeV and |η| < 2.8. In

defining the signal regions, the search makes use of the transverse mass, defined as

mT =
√

2p`TE
miss
T (1− cos ∆φ(`, Emiss

T )]). In addition, the effective mass is defined as

the scalar sum of the transverse momentum of the leading two leptons, the selected

jets, and the missing energy.
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Three different signal regions are defined. The first signal region has a veto on

b-jets, which severely restricts the efficiency for higher mass πD. For lower masses,

there is not enough missing energy in the events to pass the cut of Emiss
T > 150 GeV,

so this signal region does not offer constraints on the model.

The next signal region looks for≥ 1 b-jet. In addition, there must be at least three

jets (can include the b jets), missing transverse momentum > 150 GeV, transverse

mass > 100 GeV, and an effective mass > 700 GeV. There are no limits from this

region as well, due to the large amount of missing energy required.

The third signal region takes an different approach. In addition to the two same

sign leptons, at least three b jets and at least 4 jets overall are required as well. In

order to be statistically independent of the other regions, this region looks for events

with small amounts of missing energy or transverse mass. The dark pions have no

intrinsic missing energy (other than leptonic W decays), but do produce a lot of b

quarks, making this an ideal signal region.

In the gaugephobic model, the fraction of decays to W± h (Z h) grows with

increasing charged (neutral) πD mass, while dark pions in the gaugephobic case

predominantly decays to tb̄ (tt̄). The difference in branching fractions leads to a

smaller average b-jet multiplicity in the gaugephilic case which results in a slightly

lower efficiency and, as a consequence, weaker bounds.

To obtain the number of expected signal events, we multiply the cross section and

luminosity by the efficiency derived from the analysis cuts. These are then compared

to the limits set by ATLAS. In the signal region, 4 events were observed against

an expected background of 3.1 ± 1.6. With this, models which would produce 7.0

expected signal events are excluded at the 95% CL. The left panel of Fig. 12 shows

the results of this signal region with number of expected events for the different
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Figure 12. Signal regions of ATLAS searches for three leptons or same sign leptons
which have sensitivity to our benchmarks. The left panel shows the limits from the
8 TeV analysis [4] and the right panel has the limits for the 13 TeV analysis [5]. The
8 TeV analysis has bounds to the largest values of mπD for all of the 8 and 13 TeV
analysis which we studied. The 13 TeV search does not do as well because the focus
of the analysis shifted to search for higher mass objects.

models are shown in the red, blue, and green lines. The regions where the expected

events extends above the black line are excluded. The only benchmarks which are

limited by this search are the SU(2)45
L models. The gaugephilic version is excluded

for 210 GeV . mπD . 420 GeV, while the gaugephobic model is ruled out if mπD is

between 250 GeV and 500 GeV. These are the strongest limits that we obtained for

all of the searches.

With the success of the 8 TeV analysis, there was hope that when the search

was extended to 13 TeV, the limits would greatly improve. However, this is not that

case. Using 36 fb−1 of
√
s = 13 TeV collisions, ATLAS searched for supersymmetry

in final states with two same-sign leptons or three leptons [5]. The basic requirements
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are nearly the same for the lepton reconstruction, however, the η cut is tightened to

|η| < 2.0 for electrons and loosened to |η| < 2.5 for muons.

The signal regions are more complicated in the 13 TeV analysis. There are 19

non-exclusive signal regions defined in terms of the number of leptons required; the

number of b-jets; the number of jets harder than 25, 40 or 50 GeV, regardless of flavor;

the missing energy and effective mass, and the charge of the leptons.

Unlike the previous search at 8 TeV, the 13 TeV search does not have any signal

regions which require at least three b-jets. Instead, to cut down on background, the

signal regions either require more than 6 jets or large effective mass. This combination

is aimed at TeV scale colored particles and does not bode well for searching for pair

produced particles with masses in the hundreds of GeV.

The only one of the 19 regions that has sensitivity to heavy dark mesons is the

one that does not have requirements on the number of jets, the effective mass, or

the missing energy. Instead, it requires at least three leptons of the same-sign and

one b-jet. In addition, it requires that no combination of same-sign leptons has an

invariant mass around the Z pole (veto 81 < me±e± < 101 GeV).

The limits from this region for the different models are shown in the right panel

of Fig. 12. The efficiency is largest in the mass region where πD+ → tb̄ and πD0 → Zh

dominate. The πD0 → Zh mode is suppressed in the gaugephobic models, hence the

limits are not quite as strong as the gaugephilic case. From Fig. 12, we see that this

search only excludes mπD ∼ 200-400 GeV for η = 0.45, while η = 0.25 models are

not constrained at all. Thus, while we expected that updating the best 8 TeV search

would yield impressive bounds, it was unable to extend the limits above the 500 GeV

bound set at
√
s = 8 TeV.
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This result highlights a troubling trend. We found the strongest limits from

the 8 TeV analysis, pushing the mass of the dark pion to 500 GeV for the most

excluded model. However, that search was designed with supersymmetry in mind,

and using a supersymmetric interpretation of the 8 TeV search excluded sparticles

(stops, specifically) up to 1 TeV. In the supersymmetry interpretation, it makes sense

to harden the cuts and focus on particles heavier than 1 TeV. As we have seen in

this analysis, however, imposing harder cuts as done with the 13 TeV analyses is

detrimental to the signals in our benchmark models, with the result that the older,

8 TeV analyses yielded the strongest constraints. In the next subsection, we discuss

other searches which have been thwarted in a similar way.

Additional searches. According to Table 5 (or the branching ratios in

Figs. 2 and 3), we expect pair produced dark pions to result in lots of third generation

fermions or gauge/Higgs bosons. However, this is not a unique feature of heavy dark

mesons. Many BSM scenarios involve new particles that couple predominantly to

gauge/Higgs bosons and third generation fermions, and as a result there are numerous

LHC searches (underway, or already done) looking for characteristics signals of, e.g.

multiple b-jets, multiple τs, multiple e/µ in association with b-jets or τ , etc. of this

type of final states. Based on energy and luminosity alone, the expectation is that

one of these 13 TeV searches should be the most constraining. Our results strikingly

show this is not the case – we find only a few searches constrain dark pions, with the

strongest searches coming from 8 TeV.

Our main result, Fig. 6 came from considering a wide array of BSM searches.

While the details of the most successful five searches have been provided in the

previous sections, we summarize the other, un-constraining searches in Table. 6. In
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Search
√
s [TeV] Comments

ATLAS search for a CP-odd
Higgs boson decaying to Zh
[198]

8 Veto events with more than 2 b-
tagged jets kills efficiency

ATLAS search for tt
resonances [199]

8 Must have exactly one lepton.
We have too many jets, confuses
search

CMS Pair produced
leptoquark [200]

8 Looking for bb̄τ+τ−. Has minor
sensitivity to overall rates, would
do better with shape analysis but
not enough data is provided to
recast this.

ATLAS search for SUSY in
final states with multiple b-
jets [201]

13 Looking for heavy states, so
demands large Emiss

T and meff

CMS search for V h [202] 13 Looking for single production.
Needs very boosted hard object.

CMS Di-Higgs → ττ bb̄
[203]

13 Neutral pions decay through
mixing with the Higgs.
Measurement uses BDTs and
is not recastable.

CMS Low mass vector
resonances → qq̄ [204]

13 Looks for a bump on the falling
soft-drop jet mass spectrum. Not
enough information to recast
the designed decorrelated tagger.
Only sensitive to σ & 103 pb.

CMS Vector-like T → t h
[205]

13 Looking for t h resonance, only
very heavy and needs QCD
production.

Table 6. Possible search strategies which seem like they should set bounds, but have
limited-to-no sensitivity.

addition to the search channel, we provide a short explanation of why dark pions were

so inefficiently captured by the search strategy.
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While there are varying reasons the searches in Table 6 are not sensitive, there

are a few common themes:

1. Searches expect single production. This is especially true for scalars which decay

to the Higgs and gauge bosons. To cut down backgrounds, events are vetoed if

there are too many objects to be only V h.

2. Searches assume large Emiss
T . The searches which allow for pair production

assume that pair production comes from a sector preserving a Z2 symmetry

and that therefore result in an invisible/dark matter particle at the end of the

decay chain. While dark pions in the parameter space we are interested are

predominantly pair-produced, they only decay back to SM particles.

3. Searches at 13 TeV have their sights set on heavier new physics. As a result,

their cuts are too high to capture lighter dark pions. Heavier dark pions do

have higher efficiency, but are not produced at rates the ATLAS and CMS are

sensitive to, especially given that there are no leading order QCD-mediated

production modes.

4. Data is not presented in a way that is recast-friendly. For instance, the CMS

pair produced leptoquark search actually has some minor sensitivity when only

using the total number of events. The search then uses the shape of the scalar

sum of the pT of the light lepton, the hadronic τ , and the two jets to set limits,

but they do not provide a fit of the shape. Similarly, experiments trying to

measure standard model processes (such as hh → bb̄τ+τ−) may potentially

be sensitive to some πD parameter space, but they rely on machine learning

techniques which cannot be reproduced.
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We encourage the experiments to continue to push the limits of the LHC searches

using all of the techniques they have available. However, as it is not possible for them

to test every theory model, it is important that the results be presented in such a

way that they can be reproduced without insider knowledge.
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CHAPTER IV

SMEFT WITH CUSTODIAL SYMMETRY

From previous two chapters, we have learned that custodial symmetry has the

potential of affecting the leading interactions of BSM sectors with the Higgs sector

of the SM, and further determining the phenomenology of that BSM new physics.

The focus of this chapter is to uncover the “fingerprint” of custodial symmetric UV

physics in low energy precision observables. In this chapter, UV physics is said to

be “custodial symmetric” when an SU(2)R global symmetry is preserved by all UV

interactions with the Higgs sector of the SM. In order to explore the impact of

custodial symmetric UV physics onto precision observables, we start from a thorough

analysis of the structure of SU(2) symmetries in the Standard Model.

SU(2) Symmetries of the Standard Model

We first begin our discussion of the SU(2) global symmetries of the SM. The

Higgs sector’s SO(4) flavor symmetry

SO(4) ∼ SU(2)L × SU(2)RH , (4.1)

is spontaneously broken to SO(3) ∼ SU(2)V In the SM, the t3V generator of SU(2)V

is gauged, explicitly breaking SU(2)V to just U(1) that is the usual gauged U(1)Y .

In the flavor sector, it is well-known that in the absence of Yukawa couplings the

global flavor symmetries are enlarged to

U(3)q × U(3)u × U(3)d × U(3)l × U(3)e . (4.2)

Once hypercharge is also ungauged, the down-type quark sector flavor symmetries

become U(3)u × U(3)d → U(6)qR . In a one-generation theory, this is simply U(1)u ×

U(1)d → U(2)qR = U(1)B × SU(2)RqR , baryon number and a global SU(2) isospin

symmetry, that we’ll call SU(2)RqR . This SU(2)RqR is exactly what would be gauged
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as SU(2)R in theories that extend the SM electroweak gauge symmetry to SU(2)L ×

SU(2)R × U(1)B−L (as well as the U(1) part being gauged into U(1)B−L), however

we emphasize that we are not imposing the larger gauge symmetry on the SM (or

SMEFT) in this discussion.

There is no analogous SU(2) symmetry in the SM with the lepton field content

of just l and e. However, when the SM is extended to include three right-handed

neutrinos, what we refer to as νSM, the lepton sector contains a larger global flavor

symmetry

U(3)l × U(3)ν × U(3)e . (4.3)

Following the same logic for the quarks, in a one-generation theory we see that the

lepton flavor symmetry is enlarged U(1)ν × U(1)e → U(2)lR = U(1)L × SU(2)RlR ,

lepton number and lepton isospin. Again, just like for the quarks, if the SM gauge

symmetry were extended to SU(2)L×SU(2)R×U(1)B−L, the right-handed neutrinos

would be required, and the global flavor symmetry SU(2)RlR would be gauged as

SU(2)R.

With three generations, the global flavor symmetries are:

SM : SU(2)RH×U(6)RqR ⊃ SU(2)RH×[SU(2)RqR ]3 (4.4a)

νSM : SU(2)RH×U(6)RqR×U(6)RlR ⊃ SU(2)RH×[SU(2)RqR ]3×[SU(2)RlR ]3 (4.4b)

where we have identified the SU(2) subgroups for convenience. The sources of global

SU(2) symmetry breakings in the SM are thus:

– Gauging hypercharge, which corresponds to gauging the t3R generator of every

global SU(2)R in 4.4a or 4.4b, simultaneously breaking all of the SU(2)R’s down

to U(1)Y .
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– SU(2)-preserving Yukawa couplings, in which for each generation SU(2)RH ×

SU(2)RI → SU(2), with I = (qR, lR). The sum of the up-type and down-type

Yukawa couplings causes this breaking pattern.

– SU(2)-violating Yukawa couplings, in which for each generation SU(2)RH ×

SU(2)RI → U(1), where the U(1) becomes hypercharge once it is gauged. The

difference between the up-type and down-type Yukawa couplings causes this

breaking pattern.

We are now in a position to precisely define custodial symmetry:

UV physics is said to be custodial symmetric when an SU(2)R global

symmetry is preserved by all UV interactions with the Higgs sector of the

SM.

This is a property of a restricted set of UV theories, not a constraint on our effective

field theory. Having SU(2)R gaugeable is certainly a sufficient (but not necessary)

condition. As we will see, in some cases the SU(2)R that survives after integrating

out UV physics is a diagonal subgroup of SU(2)RH × SU(2)RqR × SU(2)RlR , while in

other cases all three SU(2)s are present.

In order to explicitly identify the SU(2)R symmetric and non-symmetric

structures, we formally promote each SU(2)R symmetry of νSM [4.4b] to be manifest,

and then re-write the interactions as as SU(2)R-preserving and SU(2)R-violating

couplings. This is what we refer to as the “custodial basis” of the νSM that we then

extend to νSMEFT.

The Custodial Basis

Notation and Definitions. The custodial basis of the νSM promotes all of

the SU(2)R’s in Eq. (4.4b) to global symmetries that are explicitly violated by Yukawa

couplings and the gauging of hypercharge. To accomplish this, we first establish
89



notation for the relevant group theory as well as the field content for both the standard

basis as well as the custodial basis.

We use τa = τaR = σa with a = 1, 2, 3 to denote Pauli matrices. The SU(2)L

and SU(2)R generators in the fundamental representation are hence ta = 1
2
τa and

taR = 1
2
τaR respectively. The SU(3)c generators in the fundamental representation are

denoted by TA with A = 1, · · · , 8. The SM covariant derivative is

Dµ = ∂µ − ig3G
A
µT

A − ig2W
a
µ t
a − ig1Bµy , (4.5)

with y denoting the hypercharge, GA
µ ,W

a
µ , Bµ denoting the gauge fields, and g3, g2, g1

denoting the gauge couplings. A general field strength is denoted as Xµν ∈{
GA
µν ,W

a
µν , Bµν

}
. For the dual, we adopt the convention X̃µν ≡ 1

2
εµναβX

αβ, with

ε0123 = +1. We use the usual Dirac matrices γµ, and σµν ≡ i
2
[γµ, γν ].

The Higgs doublet of the SM is

H =

 G+

(v + h+ iG0)/
√

2

 , (4.6)

and we also often encounter the following Higgs field currents

H†i
←→
D µH ≡ H† (iDµH)−

(
iDµH

†)H , (4.7a)

H†i
←→
D a

µH ≡ H†τa (iDµH)−
(
iDµH

†) τaH . (4.7b)

Our convention for the SU(2) invariant tensor εij = −εji is that ε12 = +1. For

convenience, we also define the field H̃ ≡ iσ2H∗ = εH∗, which transforms in the

same way as H itself under the SU(2)L symmetry.

We can re-express the Higgs field in terms of a (2,2) bifundamental scalar field

under SU(2)L × SU(2)RH as

Σ ≡
(
H̃ H

)
=

 (v + h− iG0)/
√

2 G+

−G− (v + h+ iG0)/
√

2

 , (4.8)
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In principle, all custodial symmetric interactions can be written in terms of powers

of Σ with suitable SU(2)L and SU(2)R contractions. However, the notation becomes

much more compact when we utilize the definition

Σ†iRiL ≡ εiRjRεiLjLΣiLiR (4.9)

which matches the complex conjugation and transpose of the 2× 2 matrix definition

in Eq. (4.8). For example, the SM Higgs potential becomes

V =
λ

4

[
tr
(
Σ†Σ

)
− v2

]2
. (4.10)

The matter content of the SM is rewritten as

q −→ q (4.11)

u

d
−→ qR ≡

 u

d

 (4.12)

l −→ l (4.13)

ν

e
−→ lR ≡

 ν

e

 , (4.14)

where we follow the notation of Ref. [127] in which q is the left-handed quark doublet,

l is the left-handed lepton doublet, and we denote the right-handed doublets as qR

and lR. As an example, the quark Yukawa couplings of the SM are re-written as

1

2
yuij q̄iΣ (P+ + P−)qRj −

1

2
ydij q̄iΣ (P+ − P−)qRj + h.c. (4.15)

where we have introduced the convenient shorthand

P+ ≡ 12×2 , P− ≡ τ 3
R , (4.16)

for contractions in the SU(2)R space. Exactly which SU(2)R contraction is being

done will be made clear as we explain in the next section.

The Custodial Basis of (ν)SMEFT Operators. Having established

our notation, we now turn our attention to constructing the custodial basis for
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higher dimensional operators. Our presentation largely follows [206] extended to

include right-handed neutrinos [207]. We first present all of the independent baryon-

preserving operators in the Warsaw basis for νSMEFT (suppressing flavor indices)

in .1. In addition to the 76 = 42 + (17 + h.c.) SMEFT operators, there are

25 = 7 + (9 + h.c.) new operators involving right-handed neutrinos ν that we show in

brown color for easy reference.

Next, using the notation and definitions from Sec. IV, we re-express all of the

operators from the Warsaw basis in .1 into our custodial basis in .2. Our notation is

Warsaw basis operators

 Qi SMEFT

Qi additional operators in νSMEFT
(4.17)

custodial basis operators



Oi SU(2) -invariant

Oi SU(2)RH -violating

Oi SU(2)RqR -violating

Oi SU(2)RlR -violating

(4.18)

Here we distinguish among operators generated by the UV physics that preserve

or violate combinations of the global SU(2)RH symmetry and the global isospin

symmetries SU(2)RqR and SU(2)RlR . Our convention is:

– If an operator is invariant under SU(2)RH×SU(2)RqR×SU(2)RlR , or if it breaks

SU(2)RH × SU(2)RqR,RlR → SU(2)R, we call this custodial preserving and use

black color to denote these operators.

– If an operator breaks SU(2)RH → U(1) or SU(2)RH × SU(2)RqR,RlR → U(1),

we call this SU(2)RH violating (recognizing that isospin is also violated) and

use blue color to denote these operators.
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– If an operator preserves SU(2)RH but violates SU(2)RqR or SU(2)RlR , we use

red or green color to denote these operators. There are a few operators in which

SU(2)RqR × SU(2)RlR may be simultaneously broken, and these appears with

both red and green colors together.

Our definition of custodial symmetry – UV physics preserves an SU(2)R global

symmetry in all UV interactions with the Higgs sector of the SM – is satisfied by

the operators in black by construction, as well as the operators in red and green at

leading matching order. The presence of new isospin violation in isolation from the

Higgs sector does not affect our (tree-level) results, as we will see. We also note that

four operators of type ψ̄ψH2D categorized as custodial preserving have a possible

custodial violating piece from the gauging of hypercharge. Since custodial symmetry

requires the UV physics be neutral under hypercharge, we do not need to concern

ourselves with this additional potential custodial violation.

An explicit translation dictionary between the two operator bases is given in .3.

From this translation dictionary, one can easily determine the corresponding relations

between the Wilson coefficients in the two bases through

LEFT =
∑
i

aiOi =
∑
i

CiQi . (4.19)

We provide explicit translation dictionaries between the operator coefficients in ??.

Several highlights of the results in the tables include:

– Some operators are invariants under custodial symmetry, and so the translation

is trivial, such as the operators of type X3, H6, X2H2, and (L̄L)(L̄L).

– Operators involving Bµν or covariant derivatives that involve Bµ violate

custodial symmetry due to the gauging of hypercharge, including OHB, OHB̃,

OHWB, OHW̃B, O
±
lB and O±qB.
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– Some custodial basis operators involve a single SU(2)R contraction with P+

(custodial symmetric) or P− (custodial violating), formed from simple linear

combinations of Warsaw basis operators, such as ψ̄ψH3 and ψ̄ψXH. The

custodial preserving (violating) operators are denoted with a superscript, as

in O+−.

– Some custodial basis operators involve a two SU(2) contractions, which is the

maximum number that appear at dimension-6. These operators involve two

projectors P± in the same operator, and have a slightly more complicated

translation, such as (R̄R)(R̄R). These operators have two superscripts, as in

O±±. The colors of the superscripts denote whether the operator breaks quark

and/or lepton isospin.

– Some operators have no explicit Bµ or P− and yet can break custodial symmetry

through the appearance of a covariant derivative that implicitly includes Bµ,

such as O(3)
Hl and O

(3)
Hq. These operators contain two parts: a custodial preserving

part from the gauging of SU(2)L, i.e. the W a
µ t
a
L term, and a custodial violating

part has the hypercharge term Bµt
3
R. Note that the Wilson coefficients of these

two parts are proportional to the electroweak couplings g and g′, and so lead to

correlated phenomenological predictions.

– Finally, there are three operators at dimension-6 that separately break three

different linear combinations of SU(2)RH , SU(2)RqR , SU(2)RlR : O
(3)+
HqR

breaks

SU(2)RH×SU(2)RqR → SU(2)R; O
(3)+
HlR

breaks SU(2)RH×SU(2)RlR → SU(2)R;

O
(3)+
lRqR

breaks SU(2)RqR × SU(2)RlR → SU(2)R. One example where these

operators appear is when SU(2)R is gauged, as we will see in Sec. IV.
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νSMEFT → SMEFT in Warsaw basis νSMEFT → SMEFT in custodial basis

CνH = 0 a+
lH = − a−lH

CνW = 0 a+
lW = − a−lW

CνB = 0 a+
lB = − a−lB

CHνe = C∗Hνe = 0 a
(3)+
HlR

= a
(3)−
HlR

= 0

CHν = 0 a
(1)+
HlR

= − a(1)−
HlR

Cνν = Cνe = 0 a++
lRlR

= a−−lRlR = −1
2
a+−
lRlR

Cνedu = C∗νedu = 0 a
(3)++
lRqR

= a
(3)+−
lRqR

= 0

Cνu = Cνd = 0
a

(1)++
lRqR

= − a(1)−+
lRqR

a
(1)+−
lRqR

= − a(1)−−
lRqR

Clν = 0 a+
llR

= − a−llR
Cqν = 0 a+

qlR
= − a−qlR

Clνuq = 0 a+
llRqRq

= − a−llRqRq
Clνle = 0 allRllR = 0

C
(1)
lνqd = 0 a

(1)+
llRqqR

= − a(1)−
llRqqR

C
(3)
lνqd = 0 a

(3)+
llRqqR

= − a(3)−
llRqqR

Table 7. Recovering SMEFT from νSMEFT: the left (right) column shows the
constraints on the Wilson coefficients in Warsaw (custodial) basis.

Recovering SMEFT from νSMEFT. It is straightforward to recover

the dim-6 operators of SMEFT from νSMEFT by setting the appropriate Wilson

coefficients to zero. We have shown this in Table 7, along with the translation into

the constraints on the custodial basis Wilson coefficients.

Flavor Indices of the Wilson Coefficients. In Tables .1-.5, we have

suppressed all the flavor indices, but it should be understood that each fermion field

actually comes with a generation index, so are the corresponding Wilson coefficients.

For example, the two-fermion operator Q(3)
Hl and four-fermion operator Qll should
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actually read

Q
(3)
Hl
pr

=
(
H†i
←→
D a

µH
) (
l̄pγ

µτalr
)
, (4.20a)

Q ll
prst

=
(
l̄pγµlr

) (
l̄sγ

µlt
)
. (4.20b)

The EFT Lagrangian therefore has a sum over these generation indices:

LEFT ⊃
3∑

p,r=1

C
(3)
Hl
pr

Q
(3)
Hl
pr

+
3∑

p,r,s,t=1

C ll
prst

Q ll
prst

=
3∑

p,r=1

a
(3)
Hl
pr

O
(3)
Hl
pr

+
3∑

p,r,s,t=1

a ll
prst

O ll
prst

. (4.21)

Our convention is that Wilson coefficients without explicit flavor indices are assumed

to be flavor-universal.

As we will see, most four-fermion operators are irrelevant for the phenomenology

to be discussed in IV. However, one exception is that the mixed first and second

generation four-lepton operator will feed into ĜF . Let us give it a special name,

a12 = C12, for future convenience:

LEFT ⊃ a12

(
l̄1γµl2

) (
l̄2γ

µl1
)
. (4.22)

Note that its relation to our general notation is1

a12 = a ll
1221

+ a ll
2112

= C ll
1221

+ C ll
2112

= C12 . (4.23)

Observables of Custodial Symmetry in (ν)SMEFT

In this section, we map (ν)SMEFT at dim-6 onto the following set of observables{
α̂, ĜF , m̂

2
Z , m̂

2
W , Γ̂ZνLν̄L , Γ̂ZeLēL , Γ̂Zeē, Γ̂WνLeL

}
. (4.24)

In order, these are denoting the fine structure constant, the Fermi constant, the pole

masses of W and Z bosons, the partial decay widths of the Z boson to left-handed

neutrinos, left-handed electrons, and right-handed electrons, the partial decay widths

of the W boson to left-handed neutrinos and left-handed electrons.

1Operators involving flavor indices 2112 and 1221 we abbreviate the “Rush” and “Shru”
contractions.
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We have chosen a restricted set of observables that illustrate the effects of

integrating out custodial symmetric UV physics. Some of them can be directly

measured, for example α̂, m̂2
Z , m̂2

W , while others require multiple measurements or

need to be inferred from other measurements. That is, we have explicitly made

the choice to present observables that most easily illustrate our theoretical results.

Later in Sec. IV we will discuss how to map experimental measurements to these

observables and a subset of their hadronic counterpart observables in B.15. For

example, while we present our results below in terms of
{

Γ̂ZeLēL , Γ̂Zeē

}
, it is much

more straightforward to utilize different combinations to enable comparison with

experiment, namely
{

Γ̂ZeLēL + Γ̂Zeē, Â
0,e
FB

}
, the sum of the partial widths of the Z

boson into left- and right-handed electrons and the forward-backward asymmetries

for the e+e− → e+e− scattering on Z resonance.

Observables in the SM. In SM, these observables are given by the three

Lagrangian parameters g1, g2, v as2

α̂ SM =
g2

1g
2
2

4π (g2
1 + g2

2)
, (4.25a)

ĜF , SM =
1√
2v2

, (4.25b)

m̂2
Z, SM =

1

4

(
g2

1 + g2
2

)
v2 , (4.25c)

m̂2
W , SM =

1

4
g2

2v
2 . (4.25d)

2We are neglecting the lepton masses in the decay widths.
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Γ̂ZνLν̄L, SM =
m̂Z, SM

96π

g2
2

c2
θ

, (4.26a)

Γ̂ZeLēL, SM =
m̂Z, SM

96π

g2
2

c2
θ

(
1− 2s2

θ

)2
, (4.26b)

Γ̂Zeē, SM =
m̂Z, SM

24π

g2
2

c2
θ

s4
θ , (4.26c)

Γ̂WνLeL, SM =
m̂W , SM

48π
g2

2 , (4.26d)

where θ denotes the Weinberg angle

cθ ≡
g2√
g2

1 + g2
2

, sθ ≡
g1√
g2

1 + g2
2

. (4.27)

It is also convenient to rewrite the observables
{

Γ̂ZeLēL , Γ̂Zeē

}
in terms of{

Γ̂ZeLēL + Γ̂Zeē, Â
0,e
FB

}
as

Γ̂ZeLēL, SM + Γ̂Zeē, SM =
m̂Z, SM

96π

g2
2

c2
θ

(
1− 4s2

θ + 8s4
θ

)
, (4.28a)

Â0,e
FB, SM =

3

4

(
1− 4s2

θ

1− 4s2
θ + 8s4

θ

)2

(4.28b)

Observables in the SMEFT. Clearly, once the first three observables

in 4.26 are measured, SM predicts the values of the other five as functions of{
α̂, ĜF , m̂

2
Z

}
. However, once we consider SMEFT, these predictions will be modified,

as the Wilson coefficients Ci feed into every equation in 4.26.

We work in the Warsaw basis, and restrict our mapping analysis to tree-level.

Because we are only interested in the leading corrections from SMEFT at dim-6 level,

we only need to keep up to the linear terms in the Wilson coefficients Ci (see .1 for

definitions of Warsaw basis operators extended to νSMEFT).
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In the following we present five observables corresponding to the deviations of{
ρ̂, Γ̂ZνLν̄L , Γ̂ZeLēL , Γ̂Zeē, Γ̂WνLeL

}
from the SM predictions:

ρ̂ ≡ m̂2
W

m̂2
Z

2

x̂

(
1−
√

1− x̂
)
, (4.29a)

r̂ZνLν̄L ≡
24π

√
2ĜF m̂3

Z

Γ̂ZνLν̄L , (4.29b)

r̂ZeLēL ≡
24π

√
2ĜF m̂3

Z (1− x̂)
Γ̂ZeLēL , (4.29c)

r̂Zeē ≡
24π

√
2ĜF m̂3

Z

(
1−
√

1− x̂
)2 Γ̂Zeē , (4.29d)

r̂WνLeL ≡
24π

ĜF m̂3
Z

(
1 +
√

1− x̂
) 3

2

Γ̂WνLeL . (4.29e)

Here, we have introduced a convenient combination

x̂ ≡ 2
√

2πα̂

ĜF m̂2
Z

. (4.30)

These five observables are unity in SM, but are modified in SMEFT due to nonzero

Wilson coefficients. Using Warsaw basis and assuming universality among fermion

generations, we calculate their dim-6 SMEFT predictions as

ρ̂ = 1 +
v2

1− 2s2
θ

[
− 1

2
c2
θCHD − 2sθcθCHWB − 2s2

θC
(3)
Hl +

1

2
s2
θC12

]
, (4.31a)

r̂ZνLν̄L = 1 + v2

[
− 1

2
CHD − 2C

(1)
Hl +

1

2
C12

]
, (4.31b)

r̂ZeLēL = 1 +
v2

(1− 2s2
θ)

2

[
− 1

2
CHD − 4sθcθCHWB + 2(1− 2s2

θ)C
(1)
Hl − 4s2

θC
(3)
Hl +

1

2
C12

]
,

(4.31c)

r̂Zeē = 1 +
v2

1− 2s2
θ

[
1

2
CHD +

2cθ
sθ
CHWB + 2C

(3)
Hl −

1− 2s2
θ

s2
θ

CHe −
1

2
C12

]
, (4.31d)

r̂WνLeL = 1 +
v2

1− 2s2
θ

[
− 3

4
c2
θCHD − 3sθcθCHWB − 3s2

θC
(3)
Hl +

2− s2
θ

4
C12

]
. (4.31e)
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We show more details of deriving these results in B. We have explicitly checked

that our results agree with Ref. [122]. From 4.31, we see that in generic dim-6 SMEFT,

there are nearly as many Wilson coefficients as the observables listed, so there is

enough freedom for them to be modified almost freely. However, if we restrict to dim-

6 operators that are custodial and flavor conserving, then many operator coefficients

vanish and there will be stronger correlations among these six observables.

Observables in the Custodial Basis. To see this, we first rewrite the

expressions for the observables into the custodial basis given in .2 using the translation

relations provided in .5 to obtain

ρ̂ = 1 +
v2

1− 2s2
θ

[
− 2c2

θ aHD + 4sθcθ aHWB − 2s2
θ a

(3)
Hl +

1

2
s2
θ a12

]
, (4.32a)

r̂ZνLν̄L = 1 + v2

[
− 2 aHD + 2 a

(1)
Hl +

1

2
a12

]
, (4.32b)

r̂ZeLēL = 1 +
v2

(1− 2s2
θ)

2

[
− 2 aHD + 8sθcθ aHWB − 2(1− 2s2

θ) a
(1)
Hl − 4s2

θ a
(3)
Hl +

1

2
a12

]
,

(4.32c)

r̂Zeē = 1 +
v2

1− 2s2
θ

[
2 aHD −

4cθ
sθ

aHWB + 2 a
(3)
Hl

+
1− 2s2

θ

s2
θ

(
a

(1)+
HlR
− a(1)−

HlR
− a(3)+

HlR
+ a

(3)−
HlR

)
− 1

2
a12

]
,

(4.32d)

r̂WνLeL = 1 +
v2

1− 2s2
θ

[
− 3c2

θ aHD + 6sθcθ aHWB − 3s2
θ a

(3)
Hl +

2− s2
θ

4
a12

]
. (4.32e)

Now if we restrict to only operators that are flavor and custodial symmetric, we

obtain
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ρ̂ = 1− v2s2
θ

1− 2s2
θ

[
2 a

(3)
Hl −

1

2
a12

]
, (4.33a)

r̂ZνLν̄L = 1 +
1

2
v2 a12 , (4.33b)

r̂ZeLēL = 1− v2

(1− 2s2
θ)

2

[
4s2

θ a
(3)
Hl −

1

2
a12

]
, (4.33c)

r̂Zeē = 1 +
v2

1− 2s2
θ

[
2 a

(3)
Hl −

1

2
a12

]
− v2

s2
θ

a
(3)+
HlR

, (4.33d)

r̂WνLeL = 1− v2

1− 2s2
θ

[
3s2

θ a
(3)
Hl −

2− s2
θ

4
a12

]
. (4.33e)

These five observables only depend on three Wilson coefficients as free

parameters.

An interesting question is the robustness of the predictions in 4.33. One way

to investigate this is to consider if there is any nontrivial solution, other than the

custodial symmetric one above, in which the general result in 4.31 with custodial

preserving and custodial violating operators can conspire to masquerade as 4.33. We

find the only nontrivial solution to be

C
(3)
Hl +

cθ
sθ
CHWB = a

(3)
Hl (4.34a)

CHe = a
(3)+
HlR

(4.34b)

C12 = a12 (4.34c)

CHD = 0 (4.34d)

C
(1)
Hl = 0 . (4.34e)

The only way custodial preserving and violating operators could conspire to

reproduce 4.33 is for a custodial preserving operator coefficient C(3)
Hl to be equal and

opposite to the custodial violating coefficient cot θCHWB. (All of the other relations
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are consistent with custodial symmetry.) Since CHWB is only generated at one-loop

leading matching level, this seems extremely contrived. It is gratifying to see that

any tree-level custodial violation arising CHD necessarily implies a different set of

correlated predictions for our observables.

We have presented our results in 4.31 that apply to SMEFT and νSMEFT alike,

since we did not consider observables involving right-handed neutrinos. Nevertheless,

the conversation from 4.31 to 4.32 to 4.33 implicitly assumes that right-handed

neutrinos are in the spectrum at the scale where the UV physics is integrated out.

Hence, in νSMEFT, one could construct an (at least in principle) observable involving

Γ̂ZνRνR . However, we cannot construct the ratio r̂ZνRνR , because of course Γ̂ZνRνR

is zero in (ν)SM. One can show that Γ̂ZνRνR receives a correction from just one

νSMEFT operator, CHν . In the case where there are no flavor or custodial violating

observables generated by integrating out the UV physics, i.e., the same assumptions

that led to our result 4.33, the custodial symmetric part of CHν is just a(3)+
HlR

, and

so there is no additional dependence on custodial preserving operators of νSMEFT.

While it is possible to construct observables that involve Γ̂ZνRνR , they are necessarily

dependent on the masses of the right-handed neutrinos. For example, if the right-

handed neutrino masses were above the electroweak symmetry breaking scale, but

below the scale of the UV physics, there would be no new (Z pole) observables to

consider. For this reason, we do not consider further observables that rely on assuming

the scale of the right-handed neutrinos is below the electroweak scale.

EOM Redundancies

From the argument we made in the section above, one may naively think that

the EFT of a custodial preserving UV sector would be fully captured by the subset of
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those operators in our custodial basis (.2) that do not contain any type of custodial

violation. Interestingly, this is not the case.

After integrating out UV physics, the resulted EFT operators may lie outside

of an arbitrarily chosen operator basis. In order to present the entire EFT in the

custodial basis, one can apply integrating by parts (IBP) and equation of motion

(EOM) redundancies to trade these operators into linear combinations of operators

within the custodial basis. Most redundancy relations, such as integration by parts

(IBP) and Fierz identities, will not change the custodial-preserving nature of these

operators. However, the Standard Model EOMs mix operators that are custodial

preserving with custodial violating ones because the gauging of hypercharge and the

presence of Yukawa couplings explicitly breaks custodial symmetry. As a result,

even if the original operators from integrating out heavy physics preserve custodial

symmetry, the linear combinations they are traded into may contain custodial

violating operators.

This means that, to fully capture the EFT from integrating out a custodial-

preserving UV sector one may need both custodial-preserving operators and custodial-

violating ones in a particular basis. To better illustrate this issue, we take a closer

look at a specific example that we will encounter later in our discussion of UV theory

examples.

Consider the operator QR = |H|2|DH|2 that preserves custodial symmetry. It

can be generated at tree-level by integrating out a heavy W ′ gauge boson as we see

in Secs. IV,IV. Although QR is not an operator in the Warsaw basis, it can be traded

into Warsaw operators by IBP and the EOM of Higgs field in the Standard Model,

which reads as(
D2H

)j
=
(
m2
H − λ|H|2

)
Hj +

(
εjk l̄

kΓνν − ēΓ†elj + εjkq̄
kΓuu− d̄Γ†dq

j
)

(4.35)
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Combine this using EOM and IBP, and we convert QR into

|H|2|DH|2 =
1

2
QH� + 2λQH − λv2|H|4

+
1

2
(YuQuH + YdQdH + YνQνH + YeQeH + h.c.) , (4.36)

While QH� and QH are custodial preserving operators, the appearance of Yf QfH

violates custodial symmetry. This is a consequence of the implementation of EOM

because the Standard Model EOM explicitly breaks custodial symmetry via the

Yukawa couplings. Therefore, integrating out custodial symmetric UV physics may

generate both custodial-preserving and custodial violating operators in a particular

basis.

Implications of EOM Redundancies for our Observables. We now

consider implications of the EOM redundancies which a custodial invariant outside

of Warsaw basis can become a custodial violating operator in the Warsaw basis. Our

observables given in 4.33 assumed the presence of only custodial preserving operators

in our custodial basis. Given that using EOM can generating custodial violating

operators in our basis, our analysis in Sec. IV is potentially incomplete. In this

section we show that this EOM subtlety does not affect our results in 4.33 if we

restrict to tree-level matching.

Let us first identify which EOMs in νSM lead to custodial symmetry violating

operators. Clearly, the EOM for gluons and W bosons do not break custodial

symmetry, and hence do not cause this problem. The EOM for B boson is

irrelevant, since operators containing factors of ∂µBµν are considered custodial

violating operators already, which would not be generated at the matching scale.

Therefore, the only potentially problematic EOMs are those for the Higgs H and the

fermions ψ.
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Total H4D2 ψ̄ψH2D H2D4 ψ̄ψD3 ψ̄ψXD ψ̄ψHD2

38 1 8 1 4 8 16

Table 8. Custodial invariants outside of Warsaw basis that yield custodial violating
operators in Warsaw basis upon using H and ψ EOM redundancies.

Next, let us find all the νSMEFT dim-6 custodial preserving operators containing

an EOM factor of H or ψ, i.e.containing D2H, /Dψ, or /Dψ̄. Using the Hilbert series

technique [130, 131, 132, 133, 134], with the EOM redundancy relation relaxed,3 we

find that there are 38 additional independent custodial preserving operators outside

of Warsaw basis.4 They can be divided into six classes according to the field content,

as listed in 8.

In general, these custodial invariant operators will yield, upon trading via EOM,

a variety of custodial violating operators in the Warsaw basis. However, if we focus on

tree-level matching, then the situation is much simpler. As was originally worked out

in [208, 209], and recently emphasized and generalized by [210], only a small subset

of SMEFT operators can be generated by tree-level matching.5 Among the operators

listed in 8, only the first two classes, H4D2 and ψ̄ψH2D belong to this subset. They

contain nine operators, which are nothing but the νSMEFT “kinetic terms” multiplied

3This can be achieved by taking H, ψ, and ψ̄ (and their descendants) as “long representations”
of the conform group, as opposed to “short representations”. See [134] for details.

4Here we are counting the number of real Wilson coefficients.
5For completeness, we repeat the derivation of this result in B, following the method used in

[210].
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by |H|2:

|H|2 |DH|2 , (4.37a)

|H|2 ψ̄i /Dψ + h.c. , with ψ = q, l, qR, lR . (4.37b)

We already encountered the first operator above, and showed the result of

transforming it into the Warsaw basis through EOM in 4.36. The second operator

transformed into the Warsaw basis becomes

|H|2q̄i /Dq = YuQuH + YdQdH , for ψ = q . (4.38)

We see that the custodial violating operators obtained through this procedure are

all in class 5, ψ̄ψH3, as given in .1. However, it is clear from 4.31 that none of

these custodial violating operators feeds into the observables discussed in Sec. IV.

Therefore, our results in 4.33 stand, provided that we limit ourselves to tree-level

matching of a custodial symmetric UV theory onto our custodial basis of νSMEFT.

Observables of UV Theories with Custodial Symmetry

In this section, we calculate the predictions for our observables in four different

custodial symmetric UV theories as simple examples that demonstrate our results.

We consider in Sec. IV a real singlet scalar; in Sec. IV a heavy Z ′ from a

spontaneously broken U(1)B−L theory; in Sec. IV heavyW ′’s and Z ′’s from embedding

the electroweak group into SU(2)L × SU(2)R × U(1)B−L; in Sec. IV a heavy W ′
L

from embedding SU(2)L into SU(2)A × SU(2)B. The real singlet scalar theory

is well-known to produce a small number of higher dimensional operators making

it straightforward to study. The U(1)B−L theory is interesting because there are

only four-fermion interactions generated at the matching scale, which is distinct

from many SMEFT analyses that consider, for example, just bosonic operators.

The SU(2)L × SU(2)R × U(1)B−L theory is nontrivial and quite interesting because
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it effectively gauges custodial symmetry in the UV. Once SU(2)R × U(1)B−L is

spontaneously broken to U(1)Y , however, custodial symmetry is spontaneously broken

and custodial violating operators are generated at the matching scale. However, in the

formal limit in which the gauge coupling of the U(1)B−L group vanishes, custodial

symmetry is restored, and we find nontrivial tree-level contributions to two of our

observables arising from O
(3)+
HlR

. Finally, the heavy W ′
L from embedding SU(2)L

into SU(2)A × SU(2)B is interesting because it leads to contributions to all of our

observables. In particular, this custodial symmetric UV theory leads to both vertex

corrections as well as four-fermion operators that result in ρ̂ 6= 1 at tree-level.

Singlet scalar extension. We consider a real singlet scalar φ at some heavy

scale M as a first example of UV-completion of SMEFT with custodial symmetry.

This model has been studied in detail by Jiang et al. in [211].

At the renormalizable level, this scalar is only allowed to couple to the Standard

Model exclusively through the SM Higgs doublet H due to Lorentz invariance and

Gauge invariance. We parameterize the φ part of the Lagrangian (up to tadpoles) as

L ⊃ 1

2
(∂φ)2 − 1

2
M2φ2 − A|H|2φ− 1

2
κ|H|2φ2 − 1

3!
µφ3 − 1

4!
λφφ

4 . (4.39)

After integrating out φ, we get a SMEFT. At tree-level, there are only two

nonzero Wilson coefficients at dim-6 in the Warsaw basis [211]:

CH = − κA
2

2M4
+
µA3

6M6
, (4.40a)

CH� = − A2

2M4
. (4.40b)
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Now transforming to our custodial basis defined in .2 (by applying our dictionary

in .4), we get the nonzero Wilson coefficients as

aH = − κA2

16M4
+

µA3

48M6
, (4.41a)

aH� = − A2

2M4
. (4.41b)

As both OH and OH� are custodial invariants (shown in .2), we see that this

SMEFT is indeed custodial symmetric. Applying our result 4.33 to this EFT, we get

the prediction on the observables at tree-level as

ρ̂ = r̂ZνLν̄L = r̂ZeLēL = r̂Zeē = r̂WνLeL = 1 . (4.42)

Z ′ associated with a U(1)B−L symmetry. Another example highlighted

in this section is a Z ′B−L model, where the heavy Z ′ is the gauge boson of a U(1)B−L

symmetry in the UV (see, e.g., Ref. [212]). This classical symmetry can be broken at

the quantum level through triangle anomalies. To consistently gauge the symmetry,

one has to ensure that the triangle anomaly contributions from different fermion

species are canceled. In the case of U(1)B−L, the anomaly cancellation can be simply

achieved by introducing three SM-singlet right-handed neutrinos ν, a requirement that

is automatically by enforcing SU(2)RlR isospin on the right-handed lepton sector.

Assuming that this U(1)B−L gauge boson Z ′ couples to the B−L current jB−L ≡

jB − jL through a coupling 1
2
gZ , then our UV Lagrangian is

LUV = −1

4
Z ′µνZ

′µν +
1

2
M2Z ′µZ

′µ + gZZ
′
µ

∑
ψ=q,u,d,l,ν,e

ψ̄γµYZ,ψψ . (4.43)

Here the charge YZ,ψ = 1
2
(B − L) for each type of fermion is summarized in 9. We

have also assumed that the Z ′ has a large mass M . This can be acquired through the
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Higgsing from a heavy scalar in the UV which only couples to Z ′, or via a Stüeckelberg

mechanism which allowsM to be a free parameter in the model. In principle, a generic

Z ′B−L can mix with the hypercharge gauge boson B through a coupling 1
2
εBµνZ ′µν .

As we have pointed out previously, hypercharge is one of the two sources in the

Standard Model which break custodial symmetry (the other is the Yukawa coupling).

The mixing of Z ′ with hypercharge will break custodial symmetry in the UV. Because

of that, we have taken ε to vanish, ε = 0. This is a requirement that follows once we

impose the UV theory preserve custodial symmetry, which was after all the purpose

of this section.

ψ q u d l ν e

YZ,ψ
1
6

1
6

1
6

−1
2

−1
2

−1
2

Table 9. Fermion charges YZ under the Z ′ gauge interaction.

Now integrating out Z ′ at tree-level, we obtain the EFT Lagrangian

LEFT = − g2
Z

2M2

( ∑
ψ=q,u,d,l,ν,e

ψ̄γµYZ,ψψ

)( ∑
ψ=q,u,d,l,ν,e

ψ̄γµYZ,ψψ

)
. (4.44)

We see that only four-fermion operators of the type (L̄L)(L̄L), (R̄R)(R̄R), and

(L̄L)(R̄R) are generated. In Warsaw basis, the Wilson coefficients can be summarized

as

C
(1)
ud = C(1)

qu = C
(1)
qd = 2C(1)

qq = 2Cuu = 2Cdd = − g2
Z

2M2
2Y 2

1 , (4.45a)

Cνe = Clν = Cle = 2Cll = 2Cνν = 2Cee = − g2
Z

2M2
2Y 2

2 , (4.45b)

C
(1)
lq = Cνu = Cνd = Ceu = Ced = Clu = Cld = Cqν = Cqe = − g2

Z

2M2
2Y1Y2 , (4.45c)

where we have defined Y1 ≡ 1
6
and Y2 ≡ −1

2
for convenience. Transforming to our

custodial basis defined in .2 (again by applying the dictionary in .4), we see that the
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only nonzero Wilson coefficients are those of the custodial invariants:



all = − g2
Z

2M2
Y 2

2

a
(1)
qq = − g2

Z

2M2
Y 2

1

a
(1)
lq = − g2

Z

2M2
2Y1Y2

,



a++
lRlR

= − g2
Z

2M2
Y 2

2

a
(1)++
qRqR = − g2

Z

2M2
Y 2

1

a
(1)++
lRqR

= − g2
Z

2M2
2Y1Y2

,



a+
llR

= − g2
Z

2M2
2Y 2

2

a+
lqR

= − g2
Z

2M2
2Y1Y2

a+
qlR

= − g2
Z

2M2
2Y1Y2

a
(1)+
qqR = − g2

Z

2M2
2Y 2

1

.

(4.46)

This is the manifestation of the UV physics preserving custodial symmetry.

Now to apply our observable results in 4.33, we also need to figure out the Wilson

coefficient a12 defined in 4.22. We can restore the generation indices in Qll from 4.44:

LEFT ⊃ −
g2
Z

2M2
Y 2

2

3∑
p,r=1

(
l̄pγµlp

) (
l̄rγ

µlr
)
. (4.47)

We see that

a ll
prst

= − g2
Z

2M2
Y 2

2 δprδst . (4.48)

Therefore, using 4.23 we get

a12 = a ll
1221

+ a ll
2112

= 0 . (4.49)

Now plugging everything into 4.33, we finally get for this EFT

ρ̂ = r̂ZνLν̄L = r̂ZeLēL = r̂Zeē = r̂WνLeL = 1 . (4.50)

Heavy W ′s and Z ′s from a UV theory with SU(2)L×SU(2)R×U(1)B−L.

In this section, we consider a minimum custodial symmetric UV embedding of the
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electroweak sector, by promoting the electroweak gauge symmetry to SU(2)L ×

SU(2)R × U(1)B−L. The covariant derivative is now

Dµ = ∂µ − igW a
µ t
a − igRRa

µt
a
R − igKYKKµ . (4.51)

withRa
µ, Kµ the gauge bosons and taR, YK the corresponding generators for SU(2)R and

U(1)B−L. In order to break this enlarged symmetry down to electroweak symmetry

at low energy, we introduce a new heavy scalar field Φ, which is an SU(2)R doublet

with YK,Φ = 1
2
and SU(2)L singlet. Upon acquiring a vev

Φ =
1√
2

 0

vφ + φ

 , (4.52)

it breaks SU(2)R × U(1)B−L to U(1)Y , with the hypercharge y = t3R + YK .6 In this

example, the custodial symmetry is an exact symmetry respected by the UV theory

at the high energy scale. However, it is spontaneously broken at the scale vφ. Once

we integrate out the heavy gauge bosons and Φ, this vφ gives rise to all the custodial

violating effects in the resulting SMEFT, putting the hypercharge part of the dim-4

custodial violations and those at higher mass dimensions onto the same footing. This

is in analogy with the case of MFV [144].7

The UV Lagrangian in this example is

LUV = −1

4
W a
µνW

a,µν − 1

4
Ra
µνR

a,µν − 1

4
KµνK

µν + |DΦ|2 − VΦ + |DH|2 − VH + ψ̄i /Dψ .

(4.53)

Here we have switched off any possible interactions between Φ and H for simplicity,

and hence focus on the effects of integrating out the heavy gauge bosons. After the

6The story is completely in parallel with how the SM Higgs H breaks SU(2)L×U(1)Y to U(1)EM ,
with electric charge Q = t3 + y.

7Note that this example would not account for the Yukawa custodial violation in SM.
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symmetry breaking, we can identify the mass eigenstates of the gauge bosons(
Ra
µ, Kµ

)
→
(
R±µ , Xµ, Bµ

)
, (4.54)

among which Bµ remains massless, but R±µ and Xµ obtain masses

m2
R =

1

4
g2
Rv

2
φ , (4.55a)

m2
X =

1

4

(
g2
R + g2

K

)
v2
φ . (4.55b)

We then integrate out these heavy gauge bosons (together with the heavy scalar Φ)

at the tree-level, and obtain the EFT Lagrangian

LEFT = LSM +
g2
R

2m2
R

[(
iDµ

SMH̃
†
)
H +

∑
ψ=qR,lR

ψ̄γµt−Rψ

][
H†
(
iDSM,µH̃

)
−

∑
ψ=qR,lR

ψ̄γµt
+
Rψ

]

− g2
R

2m2
Xc

2
R

[
c2
R

2

(
H†i
←→
D µ

SMH
)

+
∑

ψ=qR,lR

ψ̄γµ
(
t3R − s2

Ry
)
ψ

]

×

[
c2
R

2

(
H†i
←→
D SM,µH

)
+

∑
ψ=qR,lR

ψ̄γµ
(
t3R − s2

Ry
)
ψ

]

+O (dim-8) . (4.56)

Here the mixing angle is defined as usual

cR = cos θR ≡
gR√

g2
R + g2

K

. (4.57)

We see that as expected, this EFT spontaneously breaks custodial symmetry,

and thus custodial violating operators are generated at the matching scale vφ, such

as the combination(
H†i
←→
D SM,µH

)(
H†i
←→
D µ

SMH
)

= QH� + 4QHD , (4.58)

in which QHD is a custodial violating operator. However, the Wilson coefficients

of these custodial violating operators (as one can check) are proportional to the
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hypercharge gauge coupling

g2
1 =

g2
Rg

2
K

g2
R + g2

K

. (4.59)

This is just a reflection that the dim-6 custodial violations have the same source as

that of dim-4. From this point of view, we see that there are two interesting limits in

which the UV theory could preserve custodial symmetry: gK → 0 and gR → 0, both

of which will yield a vanishing g1 → 0. Let us now explore both of them in detail

below.

The Limit gK → 0. In this limit, cR → 1 and sR → 0. The result in 4.56

simplifies to

LEFT (gK → 0) = LSM (g1 → 0)− 1

2v2
φ

[
tr
(
Σ†iDSM,µΣτaR

)
−

∑
ψ=qR,lR

ψ̄Rγµτ
a
RψR

]

×

[
tr(Σ†iDµ

SMΣτaR)−
∑

ψ=qR,lR

ψ̄Rγ
µτaRψR

]
.

(4.60)

Clearly, this is a custodial symmetric Lagrangian. Focusing on the dim-6 part, we

find

Lc ≡ LEFT (gK → 0)− LSM (g1 → 0)

= − 1

2v2
φ

[
4QR +OH� − 2

(
O

(3)+
HlR

+O
(3)+
HqR

)
+

(
O++
lRlR

+ 2O
(3)++
lRqR

+O(3)++
qRqR

)]
.

(4.61)

We see the appearance of

QR ≡ |H|2 |DH|2 , (4.62)

a custodial symmetric operator (upon taking g1 = 0) that is outside of the Warsaw

basis. We now can apply our results from IV to transform it into Warsaw basis
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operators using the Higgs EOM redundancy relation:

QR ≡ |H|2|DH|2 = 2λQH +
1

2
QH� +

1

2
QY − λv2|H|4 . (4.63)

Since this EOM relation does not respect custodial symmetry, a custodial violating

operator in Warsaw basis QY have been generated:8

QY ≡ YuQuH + YdQdH + YνQνH + YeQeH + h.c. . (4.64)

Now putting everything together, we can identify the Wilson coefficients in our

custodial basis:

aH = − λ

2v2
φ

aH� = − 3

2v2
φ

,



a
(3)+
HlR

= a
(3)+
HqR

= −a(3)++
lRqR

=
1

v2
φ

a++
lRlR

= a
(3)++
qRqR = − 1

2v2
φ

,



a±lH = −Yν ± Ye
4v2

φ

a±qH = −Yu ± Yd
4v2

φ

.

(4.65)

These are mostly custodial preserving operators. The only exceptions are a−lH and a−qH .

As explained, this is a consequence of implementing the SM EOM, which mediates

the custodial violation at dim-4 (Yu 6= Yd and Yν 6= Ye) to dim-6. We also notice

the appearance of the three operators: O(3)+
HlR

, O(3)+
HqR

and O(3)++
lRqR

. They are generated

because in the 2-2-1 model, the gauging of SU(2)R reduces the three independent

global SU(2)RH × SU(2)RqR × SU(2)RlR down to one single gauged SU(2)R.

Now let us turn to the predictions on the observables discussed in IV. Because

we do have custodial violating operators generated in this example, we should in

principle use 4.32. However, our custodial violating Wilson coefficients are a−qH and

a−lH , belonging to class 5: ψ̄ψH3 in .2, which do not feed into these observables,

as demonstrated by 4.32. Therefore, our result in 4.33 still holds, as we expect by

8Note that this operator violates custodial symmetry due to Yukawa mismatch Yu 6= Yd and
Yν 6= Ye.
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the general argument given in IV. Plugging in 4.65, we find that the only nontrivial

contribution to the observables is from a
(3)+
HlR

:

ρ̂ = 1 , (4.66a)

r̂ZνLν̄L = 1 , (4.66b)

r̂ZeLēL = 1 , (4.66c)

r̂Zeē = 1− s2
θ

v2

v2
φ

, (4.66d)

r̂WνLeL = 1 . (4.66e)

The Limit gR → 0. Now let us consider the other limit, gR → 0, that also

yields g1 → 0. In this limit, we have cR → 0 and sR → 1. However, simplifying the

result in 4.56 is not as naive as plugging these values in. The subtlety of this limit

that the “heavy” gauge bosons R±µ become massless mR → 0 (see 4.55), if vφ (and

hence mX) is kept finite. In this case, truncating the EFT expansion at 1
m2
R

is no

longer a good approximation, namely that some higher mass dimension terms in 4.56

actually become more important. Correctly summing over these contributions turns

out to be simply removing the first line in 4.56, and yields the EFT Lagrangian

LEFT (gR → 0) = LSM (g1 → 0)− g2
K

2m2
X

(
ψ̄γµYKψ

) (
ψ̄γµYKψ

)
+O (dim-8) . (4.67)

This EFT Lagrangian is precisely 4.44.

The above derivation of 4.67 through summing over all the important higher mass

dimension terms, and then canceling the first line in 4.56 seems somewhat mysterious.

This awkwardness is merely a reflection of the EFT not being a convenient framework

anymore when mR → 0. The story is actually quite simple if we take the limit gR → 0

in the UV theory instead, i.e.in 4.53. It is then clear that gR → 0 decouples the gauge

bosons Ra
µ from the rest of the theory, and only Kµ will acquire mass from vφ, which
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then works precisely as the Z ′ boson in 4.43. So there is no doubt that we will obtain

precisely the same EFT as in 4.44.

A Heavy W ′
L Gauge Boson. In this section, we consider an example

of integrating out a heavy W ′
L gauge boson. Specifically, we consider a symmetry

breaking SU(2)A × SU(2)B → SU(2)L. The covariant derivative is

Dµ = ∂µ − igAW a
Aµt

a
A − igBW a

Bµt
a
B . (4.68)

The gauge sector Lagrangian is

L ⊃ −1

4
W a
AµνW

aµν
A − 1

4
W a
BµνW

aµν
B +

1

2
tr
[
(DµΦ)† (DµΦ)

]
, (4.69)

where the heavy scalar field Φ is a 2×2 matrix that transforms as a fundamental

bilinear under the SU(2)A × SU(2)B:

Φ→ UAΦU †B . (4.70)

Therefore, the concrete form of its covariant derivative is

DµΦ = ∂µΦ− igAW a
Aµt

aΦ + igBΦW a
Bµt

a , (4.71)

with ta = 1
2
σa the SU(2) generators in the fundamental representation. The

symmetry is spontaneously broken by the vev of the heavy scalar field Φ:

Φ ⊃ 1√
2
vΦ

1 0

0 1

 . (4.72)

The unbroken group is an SU(2) formed by the generators taA + taB, which we

identify as our SU(2)L group in the SM. The corresponding gauge boson is the W

116



boson. For the broken generators, the corresponding gauge boson W ′
L acquire mass

from vΦ:

1

2
tr
[
(DµΦ)† (DµΦ)

]
⊃ 1

8
v2

Φ (gAW
aµ
A − gBW

aµ
B )
(
gAW

a
Aµ − gBW a

Bµ

)
=

1

8
v2

Φ

(
g2
A + g2

B

)
W ′
L
aµ
W ′
L
a
µ . (4.73)

We see that m2
W ′L

= 1
4

(g2
A + g2

B) v2
Φ, and

W ′
L
a
µ ≡

1√
g2
A + g2

B

(
gAW

a
Aµ − gBW a

Bµ

)
, (4.74a)

W a
µ ≡

1√
g2
A + g2

B

(
gBW

a
Aµ + gAW

a
Bµ

)
. (4.74b)

With the above rotation, we can write the covariant derivative as

Dµ = ∂µ − ig2W
a
µ (taA + taB)− iW ′

L
a
µ

(
g2
A√

g2
A + g2

B

taA −
g2
B√

g2
A + g2

B

taB

)
, (4.75)

with the SM gauge coupling g2 = gAgB√
g2A+g2B

.

For the interactions between the above gauge sector and the SM fields, we assume

thatWA plays the role ofW before the symmetry breaking, namely that the SM fields

couple to WA exactly the way they couple to the W boson, and do not couple to WB

at all. This means that for nontrivially charged fields taA 6= 0 but taB = 0. From 4.75,

we see that after the symmetry breaking, the SM fields couple to both W and W ′
L.

Up to linear power in W ′
L, this interaction is

L ⊃ g2
A√

g2
A + g2

B

W ′
L
a
µJ

aµ
W . (4.76)

Here JaµW denotes the SM SU(2)L current:
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JaWµ =
1

2

(
H†i
←→
D a

SM, µH +
∑
ψ

ψ̄γµτ
aψ

)
. (4.77)

Integrating out W ′ at tree-level, we obtain an EFT up to dim-6 as

LEFT = − g4
A

g2
A + g2

B

1

2m2
W ′L

JaWµJ
aµ
W = −2c4

A

v2
Φ

JaWµJ
aµ
W , (4.78)

where we have defined the mixing angle cA ≡ gA√
g2A+g2B

. Clearly, this EFT

Lagrangian is custodial symmetric. Plugging in 4.77, we get

LEFT = −c
4
A

v2
Φ

[
1

2
QR +

1

8
QH� +Q

(3)
Hl +Q

(3)
Hq +

1

2
Qll +

1

2
Q(3)
qq +Q

(3)
lq

]

= −c
4
A

v2
Φ

[
λQH +

3

8
QH� +

1

4
(YuQuH + YdQdH + YνQνH + YeQeH + h.c.)

+Q
(3)
Hl +Q

(3)
Hq +

1

2
Qll +

1

2
Q(3)
qq +Q

(3)
lq

]
. (4.79)

From the first line above, we see that all the effective operators are custodial

invariants, as expected from 4.78. In the second line, we trade the operator QR for

operators in the Warsaw Basis. As explained before, this procedure yields custodial

violating operators, due to the use of SM equations of motion. We can now identify

the Wilson coefficients in Warsaw Basis



CH = −c
4
A

v2
Φ

λ

CH� = −c
4
A

v2
Φ

3

8

,



(CuH , CdH , CνH , CeH) = −c
4
A

v2
Φ

1

4
(Yu, Yd, Yν , Ye)

C
(3)
Hl = C

(3)
Hq = 2Cll = 2C

(3)
qq = C

(3)
lq = −c

4
A

v2
Φ

.

(4.80)

118



Using the translation relations provided in .4, we get the Wilson coefficients in

the Custodial Basis:



aH = −c
4
A

v2
Φ

1

8
λ

aH� = −c
4
A

v2
Φ

3

8

,



a±lH = −c
4
A

v2
Φ

1

16
(Yν ± Ye)

a±qH = −c
4
A

v2
Φ

1

16
(Yu ± Yd)

, (4.81a)

a
(3)
Hl = a

(3)
Hq = 2all = 2a(3)

qq = a
(3)
lq = −c

4
A

v2
Φ

. (4.81b)

As expected, we find the appearance of a−lH and a−qH , due to use of SM equations of

motion. However, as generally argued in IV, as well as concretely shown in 4.32, these

custodial violating Wilson coefficients do not feed into our benchmark observables

discussed in IV, and our results in 4.33 still hold. To use this result, however, we also

need to compute the a12 defined in 4.22 to compute the observables discussed in IV.

To do so, we restore the generation indices in Qll from 4.78:

LEFT ⊃ −
c4
A

2v2
Φ

3∑
p,r=1

(
l̄pγµτ

alp
) (
l̄rγ

µτalr
)
. (4.82)

To make this into the form of Q ll
prst

, we need to also restore the SU(2)L indices

being contracted, and use the group identity:

τaijτ
a
kl = 4

(
1

2
δilδjk −

1

4
δijδkl

)
. (4.83)

Substituting this in, we get
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LEFT ⊃ −
c4
A

2v2
Φ

3∑
p,r=1

(
l̄ipγµτ

a
ijl
j
p

) (
l̄krγ

µτakll
l
r

)
= − c4

A

2v2
Φ

3∑
p,r=1

[
2
(
l̄ipγµl

j
p

) (
l̄jrγ

µlir
)
−
(
l̄ipγµl

i
p

) (
l̄jrγ

µljr
)]

= − c4
A

2v2
Φ

3∑
p,r=1

[
2
(
l̄pγµlr

) (
l̄rγ

µlp
)
−
(
l̄pγµlp

) (
l̄rγ

µlr
)]
. (4.84)

To obtain the last line above, we have used Fierz identity for the first term in

the square bracket, and then suppressed the SU(2)L indices as usual. Now we can

read off the Wilson coefficient with generation indices:

a ll
prst

= − c4
A

2v2
Φ

(2δptδrs − δprδst) . (4.85)

Now using 4.23 we get

a12 = a ll
1221

+ a ll
2112

= −2
c4
A

v2
Φ

. (4.86)

Plugging all the relevant Wilson coefficients into 4.33, we obtain the pseudo

observables

ρ̂ = 1 +

[
s2
θ

1− 2s2
θ

]
c4
Av

2

v2
Φ

, (4.87a)

r̂ZνLν̄L = 1− c4
Av

2

v2
Φ

, (4.87b)

r̂ZeLēL = 1−
[

1− 4s2
θ

(1− 2s2
θ)

2

]
c4
Av

2

v2
Φ

, (4.87c)

r̂Zeē = 1−
[

1

1− 2s2
θ

]
c4
Av

2

v2
Φ

, (4.87d)

r̂WνLeL = 1−
[

2− 7s2
θ

2(1− 2s2
θ)

]
c4
Av

2

v2
Φ

. (4.87e)
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In particular, note that the observable ρ̂ 6= 1, even though the UV sector

integrated out is custodial symmetric.

Custodial Symmetry vis-a-vis Flavor Symmetry

As we discussed in Sec. IV, there are several SU(2)R global symmetries in the SM.

The one we associate with custodial symmetry arises in the Higgs sector SU(2)RH is,

however, explicitly broken by Yukawa interactions that cause SU(2)RH×SU(2)RqR to

be broken down to just U(1)Y . Thus, even a “minimal flavor violating” extension to

the SM has custodial violation. Most of the Yukawa couplings are numerically small,

and so the explicit custodial violation is similarly small. However, the near maximal

difference between the top and bottom Yukawas implies the top quark is able to

induce substantial custodial violation in many operators of (ν)SMEFT at both tree-

level and loop level. The observables we considered in 4.31 are precisely constructed

to not have custodial violation from the top quark Yukawa coupling appear at tree-

level. This is obvious because there is no dependence of our observables on yt. This is

the central reason we have focused on exploring observables that are sensitive to tree-

level violations of custodial symmetry. Put another way, our results are fundamentally

limited by top-quark induced radiative corrections of additional νSMEFT operators

feeding into our observables.

One can also probe the possibilities in which the UV theory has non-trivial flavor

structure. In our UV theory examples, the singlet scalar theory is trivially flavor-

symmetric. The U(1)B−L theory is also necessarily flavor-symmetric, since after all

what is being gauged is the residual U(1) global flavor symmetry that remains in

νSM after all of the SM Yukawa couplings have broken U(3)6 → U(1)B × U(1)L.

Finally, the SU(2)L × SU(2)R × U(1)B−L theory is flavor-symmetric assuming all of
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the SU(2)R global symmetries are gauged. This is essentially automatic once one

permits custodial symmetric 3× 3 Yukawa couplings.

For the W ′
L model, however, if some of the left-handed quark doublets

transformed under SU(2)A while others transformed under SU(2)B, this would also

lead to flavor-nonuniversality. The flavor nonuniversalities would show up as flavor-

dependent deviations to our observables, i.e., one would need to generalize beyond

the flavor-universal corrections to the observables that we have calculated.

Experimental Measurements of our Observables

We have presented our results in terms of the observables{
ρ̂, Γ̂ZνLν̄L , Γ̂ZeLēL , Γ̂Zeē, Γ̂WνLeL

}
, (4.88)

and an additional set of hadronic observables in Appendix B. Observable in this

context is by definition basis independent, but that does not necessarily imply that

it can be directly measured.

First consider what is required to make tree-level predictions for our observables,

and then we consider how they would be modified to account for SM loop corrections.

We have used as our inputs α̂, ĜF , m̂2
Z , and so the observable ρ̂ requires in

addition a measurement of m̂2
W . The widths

{
Γ̂ZeLēL , Γ̂Zeē

}
are most easily measured

by rewriting them in the linear combinations
{

Γ̂ZeLēL + Γ̂Zeē, Â
0,e
FB

}
. Here, direct

measurements of the angular distributions of e+e− → e+e− on Z resonance can

determine Â0,e
FB [213]. The partial width into electrons Γ̂ZeLēL + Γ̂Zeē is not directly

measured, and instead one uses measurements of the total rate e+e− → e+e− on Z

resonance as well as the total width of Z boson, ΓZ , that was determined by separate

measurements scanning the lineshape of e+e− → hadrons [213].

The partial width of Z into neutrinos must be inferred by subtracting the

measured contributions of the Z partial widths from the measured total width [213].
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For this presentation, we assume flavor universality and neglect the masses of the

quarks and leptons. The Z partial width into neutrinos is

3Γ̂ZνLν̄L = Γtot − Γ̂Zll − Γ̂Zqq (4.89)

where we emphasize the observable we have used throughout this paper, Γ̂ZνLν̄L , is

the width into just one generation, and

Γ̂Zll = 3
(

Γ̂ZeLēL + Γ̂Zeē

)
, (4.90a)

Γ̂Zqq = 2
(

Γ̂ZuLūL + Γ̂Zuū

)
+ 3

(
Γ̂ZdLd̄L + Γ̂Zdd̄

)
. (4.90b)

Notice that it is not possible to determine the width into neutrinos without taking

into account the corrections to the hadronic observables given in Appendix B. Since

the hadronic observables in B.15 depend on additional νSMEFT quark operators, we

must also measure a restricted set of hadronic observables in order to remove the

dependence on those quark operator Wilson coefficients. This is accomplished by

enlarging our set of observables to include Γ̂Zqq. This depends on one specific linear

combination of quark operator Wilson coefficients that can be read off from B.15.

(It also depends on a
(3)
Hl and a12, but this poses no ambiguity since the observables

in Sec. IV already depend on the same quantities.) Hence, once this Z to hadrons

width is measured, any deviation is ascribed to the otherwise unknown quark level

operators, and thus Z hadronic observables do not provide any additional information.

But, they do allow us to obtain a measurement of Γ̂ZνLν̄L using Eq. (4.89).

Finally, we turn to the W partial widths. Similar to the discussion for Z

partial widths, separate measurements must be combined to obtain an experimental

determination of the partial widths: the branching fraction of W into lν or hadrons,

multiplied by the measured W total width. This can be accomplished using LEP

II data that simultaneously measures the W mass and width by doing a global
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fit to e+e− → f̄f f̄f rates and distributions [214]. Care must be taken to extract

these quantities given that there are additional operators in SMEFT that induces

corrections such as to the triple gauge boson vertex that also must be disentangled

[122]. This is beyond the scope of our work.

Tables of Operators, Coefficients, and Translations
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1 : X3

QG fABCGAνµ GBρν GCµρ

QG̃ fABCG̃Aνµ GBρν GCµρ

QW εabcW aν
µ W bρ

ν W cµ
ρ

Q
W̃

εabc W̃ aν
µ W bρ

ν W cµ
ρ

2 : H6

QH |H|6
3 : H4D2

QH� −
(
∂µ|H|2

) (
∂µ|H|2

)
QHD

[(
DµH

†)H] [H† (DµH)
]

5 : ψ̄ψH3 + h.c.

QνH |H|2 (l̄H̃ν)

QeH |H|2 (l̄He)

QuH |H|2 (q̄H̃u)

QdH |H|2 (q̄Hd)

4 : X2H2

QHG |H|2GAµνGAµν

QHG̃ |H|2 G̃AµνGAµν

QHW |H|2W a
µνW

aµν

Q
HW̃

|H|2 W̃ a
µνW

aµν

QHB |H|2BµνBµν

QHB̃ |H|2 B̃µνBµν

QHWB H†τaHW a
µνB

µν

Q
HW̃B

H†τaH W̃ a
µνB

µν

6 : ψ̄ψXH + h.c.

QνW (l̄σµνν)τaH̃W a
µν

QeW (l̄σµνe)τaHW a
µν

QνB (l̄σµνν)H̃Bµν

QeB (l̄σµνe)HBµν

QuG (q̄σµνTAu)H̃GAµν

QdG (q̄σµνTAd)HGAµν

QuW (q̄σµνu)τaH̃W a
µν

QdW (q̄σµνd)τaHW a
µν

QuB (q̄σµνu)H̃Bµν

QdB (q̄σµνd)HBµν

7 : ψ̄ψH2D

Q
(1)
Hl (H†i

←→
D µH)(l̄γµl)

Q
(3)
Hl (H†i

←→
D a
µH)(l̄γµτal)

Q
(1)
Hq (H†i

←→
D µH)(q̄γµq)

Q
(3)
Hq (H†i

←→
D a
µH)(q̄γµτaq)

QHν (H†i
←→
D µH)(ν̄γµν)

QHe (H†i
←→
D µH)(ēγµe)

QHνe + h.c. (H̃†iDµH)(ν̄γµe)

QHu (H†i
←→
D µH)(ūγµu)

QHd (H†i
←→
D µH)(d̄γµd)

QHud + h.c. (H̃†iDµH)(ūγµd)

8 : (L̄L)(L̄L)

Qll (l̄γµl)(l̄γ
µl)

Q
(1)
qq (q̄γµq)(q̄γ

µq)

Q
(3)
qq (q̄γµτ

aq)(q̄γµτaq)

Q
(1)
lq (l̄γµl)(q̄γ

µq)

Q
(3)
lq (l̄γµτ

al)(q̄γµτaq)

8 : (R̄R)(R̄R)

Qνν (ν̄γµν)(ν̄γµν)

Qee (ēγµe)(ēγ
µe)

Qνe (ν̄γµν)(ēγµe)

Quu (ūγµu)(ūγµu)

Qdd (d̄γµd)(d̄γµd)

Q
(1)
ud (ūγµu)(d̄γµd)

Q
(8)
ud (ūγµT

Au)(d̄γµTAd)

Qνu (ν̄γµν)(ūγµu)

Qνd (ν̄γµν)(d̄γµd)

Qeu (ēγµe)(ūγ
µu)

Qed (ēγµe)(d̄γ
µd)

Qνedu + h.c. (ν̄γµe)(d̄γ
µu)

8 : (L̄L)(R̄R)

Qlν (l̄γµl)(ν̄γ
µν)

Qle (l̄γµl)(ēγ
µe)

Qlu (l̄γµl)(ūγ
µu)

Qld (l̄γµl)(d̄γ
µd)

Qqν (q̄γµq)(ν̄γ
µν)

Qqe (q̄γµq)(ēγ
µe)

Q
(1)
qu (q̄γµq)(ūγ

µu)

Q
(1)
qd (q̄γµq)(d̄γ

µd)

Q
(8)
qu (q̄γµT

Aq)(ūγµTAu)

Q
(8)
qd (q̄γµT

Aq)(d̄γµTAd)

8 : (L̄R)(R̄L) + h.c.

Qlνuq (l̄iν)(ūqi)

Qledq (l̄ie)(d̄qi)

8 : (L̄R)(L̄R) + h.c.

Qlνle (l̄iν)εij(l̄
je)

Q
(1)
quqd (q̄iu)εij(q̄

jd)

Q
(8)
quqd (q̄iTAu)εij(q̄

jTAd)

Q
(1)
lνqd (l̄iν)εij(q̄

jd)

Q
(1)
lequ (l̄ie)εij(q̄

ju)

Q
(3)
lνqd (l̄iσµνν)εij(q̄

jσµνd)

Q
(3)
lequ (l̄iσµνe)εij(q̄

jσµνu)

Table .1. νSMEFT dim-6 baryon-preserving operators in Warsaw basis. In addition
to the 76 = 42 + (17 + h.c.) SMEFT operators, there are 25 = 7 + (9 + h.c.) new
operators involving right-handed neutrinos ν, which are colored in brown.
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1 : X3

OG fABCGAνµ GBρν GCµρ

OG̃ fABCG̃Aνµ GBρν GCµρ

OW εabcW aν
µ W bρ

ν W cµ
ρ

O
W̃

εabc W̃ aν
µ W bρ

ν W cµ
ρ

2 : H6

OH
[
tr
(
Σ†Σ

)]3 3 : H4D2

OH�
[
tr
(
Σ†iDµΣ

)]2
OHD

[
tr
(
Σ†iDµΣτ3R

)]2
5 : ψ̄ψH3 + h.c.

O
+−
lH tr

(
Σ†Σ

) (
l̄ΣP+−lR

)
O

+−
qH tr

(
Σ†Σ

) (
q̄ΣP+−qR

)

4 : X2H2

OHG tr
(
Σ†Σ

)
GAµνG

Aµν

OHG̃ tr
(
Σ†Σ

)
G̃AµνG

Aµν

OHW tr
(
Σ†Σ

)
W a
µνW

aµν

O
HW̃

tr
(
Σ†Σ

)
W̃ a
µνW

aµν

OHB tr
(
Σ†Σ

)
BµνB

µν

OHB̃ tr
(
Σ†Σ

)
B̃µνB

µν

OHWB tr
(
Σ†τaΣτ3R

)
W a
µνB

µν

O
HW̃B

tr
(
Σ†τaΣτ3R

)
W̃ a
µνB

µν

6 : ψ̄ψXH + h.c.

O
+−
lW (l̄σµντaΣP+−lR)W a

µν

O±lB (l̄σµνΣP+−lR)Bµν

O
+−
qG (q̄σµνTAΣP+−qR)GAµν

O
+−
qW (q̄σµντaΣP+−qR)W a

µν

O±qB (q̄σµνΣP+−qR)Bµν

7 : ψ̄ψH2D

O
(1)
Hl tr

(
Σ†iDµΣτ3R

) (
l̄γµl

)
O

(3)
Hl tr

(
Σ†τaiDµΣ

) (
l̄γµτal

)
O

(1)
Hq tr

(
Σ†iDµΣτ3R

)
(q̄γµq)

O
(3)
Hq tr

(
Σ†τaiDµΣ

)
(q̄γµτaq)

O
(1)±
HlR

tr
(
Σ†iDµΣτ3R

) (
l̄Rγ

µP+−lR

)
O

(3)+−
HlR

tr
(
Σ†iDµΣτaR

) (
l̄Rγ

µτaRP+−lR

)
O

(1)±
HqR

tr
(
Σ†iDµΣτ3R

) (
q̄Rγ

µP+−qR

)
O

(3)+−
HqR

tr
(
Σ†iDµΣτaR

) (
q̄Rγ

µτaRP+−qR

)
8 : (L̄L)(L̄L)

Oll (l̄γµl)(l̄γ
µl)

O
(1)
qq (q̄γµq)(q̄γ

µq)

O
(3)
qq (q̄γµτ

aq)(q̄γµτaq)

O
(1)
lq (l̄γµl)(q̄γ

µq)

O
(3)
lq (l̄γµτ

al)(q̄γµτaq)

8 : (R̄R)(R̄R)

O
+−+−
lRlR

(l̄RγµP+−lR)(l̄Rγ
µP+−lR)

O+−
lRlR

(l̄RγµP+lR)(l̄Rγ
µP−lR)

O
(1)+−+−
qRqR (q̄RγµP+−qR)(q̄Rγ

µP+−qR)

O
(1)+−
qRqR (q̄RγµP+qR)(q̄Rγ

µP−qR)

O
(3)++
qRqR (q̄Rγµτ

a
RqR)(q̄Rγ

µτaRqR)

O
(1)+−+−
lRqR

(l̄RγµP+−lR)(q̄Rγ
µP+−qR)

O
(1)+−−+
lRqR

(l̄RγµP+−lR)(q̄Rγ
µP−+qR)

O
(3)++−
lRqR

(l̄Rγµτ
a
RlR)(q̄Rγ

µτaRP+−qR)

8 : (L̄L)(R̄R)

O
+−
llR

(l̄γµl)(l̄Rγ
µP+−lR)

O
+−
lqR

(l̄γµl)(q̄Rγ
µP+−qR)

O
+−
qlR

(q̄γµq)(l̄Rγ
µP+−lR)

O
(1)+−
qqR (q̄γµq)(q̄Rγ

µP+−qR)

O
(8)+−
qqR (q̄γµT

Aq)(q̄Rγ
µTAP+−qR)

8 : (L̄R)(R̄L) + h.c.

O
+--
llRqRq

(l̄iljR)P jk+--
(q̄kRq

i)

8 : (L̄R)(L̄R) + h.c.

OllRllR (l̄ilkR)εijεkl(l̄
j llR)

O
(1)
qqRqqR (q̄iqkR)εijεkl(q̄

jqlR)

O
(8)
qqRqqR (q̄iTAqkR)εijεkl(q̄

jTAqlR)

O
(1)+--
llRqqR

(l̄ilkR)εij

(
εP+--

)
kl

(q̄jqlR)

O
(3)+--
llRqqR

(l̄iσµν l
k
R)εij

(
εP+--

)
kl

(q̄jσµνqlR)

Table .2. νSMEFT dim-6 baryon-preserving operators in our custodial basis.
Operators are colored black (custodial preserving), blue (custodial violating), red
(quark isospin violating), or green (lepton isospin violating). For example, O+ is
custodial preserving while O− is custodial violating, since the former involves P+

while the latter involves P−. The notation O-- implies the operator violates both
quark and lepton isospin. See text for details.
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1 : X3

OG QG

OG̃ QG̃

OW QW

O
W̃

Q
W̃

2 : H6

OH 8QH

3 : H4D2

OH� QH�

OHD QH� + 4QHD

5 : ψ̄ψH3 + h.c.

O
+−
lH 2 (QνH+−QeH)

O
+−
qH 2 (QuH+−QdH)

4 : X2H2

OHG 2QHG

OHG̃ 2QHG̃

OHW 2QHW

O
HW̃

2Q
HW̃

OHB 2QHB

OHB̃ 2QHB̃

OHWB −2QHWB

O
HW̃B

−2Q
HW̃B

6 : ψ̄ψXH + h.c.

O
+−
lW QνW+−QeW

O±lB QνB±QeB

O
+−
qG QuG+−QdG

O
+−
qW QuW+−QdW

O±qB QuB±QdB

7 : ψ̄ψH2D

O
(1)
Hl −Q(1)

Hl

O
(3)
Hl Q

(3)
Hl

O
(1)
Hq −Q(1)

Hq

O
(3)
Hq Q

(3)
Hq

O
(1)±
HlR

− (QHν±QHe)

O
(3)+−
HlR

+−2 (QHνe+−h.c.)−QHν+−QHe

O
(1)±
HqR

− (QHu±QHd)

O
(3)+−
HqR

+−2 (QHud+−h.c.)−QHu+−QHd

8 : (L̄L)(L̄L)

Oll Qll

O
(1)
qq Q

(1)
qq

O
(3)
qq Q

(3)
qq

O
(1)
lq Q

(1)
lq

O
(3)
lq Q

(3)
lq

8 : (R̄R)(R̄R)

O
+−+−
lRlR

Qνν +Qee+−2Qνe

O+−
lRlR

Qνν−Qee

O
(1)+−+−
qRqR Quu +Qdd+−2Q

(1)
ud

O
(1)+−
qRqR Quu−Qdd

O
(3)++
qRqR 8Q

(8)
ud −

2Nc−4
Nc

Q
(1)
ud +Quu +Qdd

O
(1)+−+−
lRqR

(Qνu +Qed) +-- (Qνd +Qeu)

O
(1)+−−+
lRqR

(Qνu −Qed)−+ (Qνd −Qeu)

O
(3)++−
lRqR

2 (Qνedu+−h.c.) + (Qνu −Qeu)−+ (Qνd −Qed)

8 : (L̄L)(R̄R)

O
+−
llR

Qlν+−Qle

O
+−
lqR

Qlu+−Qld

O
+−
qlR

Qqν+−Qqe

O
(1)+−
qqR Q

(1)
qu +−Q

(1)
qd

O
(8)+−
qqR Q

(8)
qu +−Q

(8)
qd

8 : (L̄R)(R̄L) + h.c.

O
+--
llRqRq

Qlνuq+--Qledq

8 : (L̄R)(L̄R) + h.c.

OllRllR 2Qlνle

O
(1)
qqRqqR 2Q

(1)
quqd

O
(8)
qqRqqR 2Q

(8)
quqd

O
(1)+--
llRqqR

−Q(1)
lequ+--Q

(1)
lνqd

O
(3)+--
llRqqR

−Q(3)
lequ+--Q

(3)
lνqd

Table .3. A dictionary of the custodial basis in terms of Warsaw basis. The color
scheme is the same as given in Table .1 and Table .2.
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1 : X3

aG CG

aG̃ CG̃

aW CW

a
W̃

C
W̃

2 : H6

aH
1
8CH

3 : H4D2

aH� CH� − 1
4CHD

aHD
1
4CHD

5 : ψ̄ψH3 + h.c.

a±lH
1
4 (CνH ± CeH)

a±qH
1
4 (CuH ± CdH)

4 : X2H2

aHG
1
2CHG

aHG̃
1
2CHG̃

aHW
1
2CHW

a
HW̃

1
2CHW̃

aHB
1
2CHB

aHB̃
1
2CHB̃

aHWB − 1
2CHWB

a
HW̃B

− 1
2CHW̃B

6 : ψ̄ψXH + h.c.

a±lW
1
2 (CνW ± CeW )

a±lB
1
2 (CνB ± CeB)

a±qG
1
2 (CuG ± CdG)

a±qW
1
2 (CuW ± CdW )

a±qB
1
2 (CuB ± CdB)

7 : ψ̄ψH2D

a
(1)
Hl −C(1)

Hl

a
(3)
Hl C

(3)
Hl

a
(1)
Hq −C(1)

Hq

a
(3)
Hq C

(3)
Hq

a
(1)±
HlR

− 1
2 (CHν ± CHe) + 1

4 (±CHνe − C∗Hνe)

a
(3)±
HlR

1
4 (±CHνe + C∗Hνe)

a
(1)±
HqR

− 1
2 (CHu ± CHd) + 1

4 (±CHud − C∗Hud)

a
(3)±
HqR

1
4 (±CHud + C∗Hud)

8 : (L̄L)(L̄L)

all Cll

a
(1)
qq C

(1)
qq

a
(3)
qq C

(3)
qq

a
(1)
lq C

(1)
lq

a
(3)
lq C

(3)
lq

8 : (R̄R)(R̄R)

a±±lRlR
1
4 (Cνν + Cee ± Cνe)

a+−lRlR
1
2 (Cνν − Cee)

a
(1)±±
qRqR

1
4

[
(Cuu + Cdd)± C(1)

ud −
1
4C

(8)
ud ±

(
1
4 −

1
2Nc

)
C

(8)
ud

]
a
(1)+−
qRqR

1
2 (Cuu − Cdd)

a
(3)++
qRqR

1
8C

(8)
ud

a
(1)+±
lRqR

1
4 [(Cνu + Ceu)± (Cνd + Ced)]

a
(1)−±
lRqR

1
4 [(Cνu − Ceu)± (Cνd − Ced) + (−Cνedu ± C∗νedu)]

a
(3)+±
lRqR

1
4 (Cνedu ± C∗νedu)

8 : (L̄L)(R̄R)

a±llR
1
2 (Clν ± Cle)

a±lqR
1
2 (Clu ± Cld)

a±qlR
1
2 (Cqν ± Cqe)

a
(1)±
qqR

1
2

[
C

(1)
qu ± C(1)

qd

]
a
(8)±
qqR

1
2

[
C

(8)
qu ± C(8)

qd

]

8 : (L̄R)(R̄L) + h.c.

a±llRqRq
1
2 (Clνuq ± Cledq)

8 : (L̄R)(L̄R) + h.c.

allRllR
1
2Clνle

a
(1)
qqRqqR

1
2C

(1)
quqd

a
(8)
qqRqqR

1
2C

(8)
quqd

a
(1)±
llRqqR

1
2

[
−C(1)

lequ ± C
(1)
lνqd

]
a
(3)±
llRqqR

1
2

[
−C(3)

lequ ± C
(3)
lνqd

]

Table .4. A translation dictionary from the Warsaw basis Wilson Coefficients Ci to
Custodial basis Wilson Coefficients ai.
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1 : X3

CG , CG̃ aG , aG̃
CW , C

W̃
aW , a

W̃

2 : H6

CH 8 aH

3 : H4D2

CH� aH� + aHD

CHD 4 aHD

5 : ψ̄ψH3 + h.c.

CνH , CeH 2
(
a+lH ± a

−
lH

)
CuH , CdH 2

(
a+qH ± a

−
qH

)
4 : X2H2

CHG 2 aHG

CHG̃ 2 aHG̃

CHW 2 aHW

C
HW̃

2 a
HW̃

CHB 2 aHB

CHB̃ 2 aHB̃

CHWB −2 aHWB

C
HW̃B

−2 a
HW̃B

6 : ψ̄ψXH + h.c.

CνW , CeW a+lW ± a
−
lW

CνB , CeB a+lB ± a
−
lB

CuG , CdG a+qG ± a
−
qG

CuW , CdW a+qW ± a
−
qW

CuB , CdB a+qB + a−qB

7 : ψ̄ψH2D

C
(1)
Hl − a(1)Hl

C
(3)
Hl a

(3)
Hl

C
(1)
Hq − a(1)Hq

C
(3)
Hq a

(3)
Hq

CHν , CHe − a(1)+HlR
∓ a(1)−HlR

∓ a(3)+HlR
− a(3)−HlR

CHνe 2
[
a
(3)+
HlR
− a(3)−HlR

]
CHu , CHd − a(1)+HqR

∓ a(1)−HqR
∓ a(3)+HqR

− a(3)−HqR

CHud 2
[
a
(3)+
HqR
− a(3)−HqR

]
8 : (L̄L)(L̄L)

Cll all

C
(1)
qq a

(1)
qq

C
(3)
qq a

(3)
qq

C
(1)
lq a

(1)
lq

C
(3)
lq a

(3)
lq

8 : (R̄R)(R̄R)

Cνν a++
lRlR

+ a−−lRlR + a+−lRlR

Cee a++
lRlR

+ a−−lRlR − a
+−
lRlR

Cνe 2
(
a++
lRlR
− a−−lRlR

)
Cuu a

(1)++
qRqR + a

(1)−−
qRqR + a

(1)+−
qRqR + a

(3)++
qRqR

Cdd a
(1)++
qRqR + a

(1)−−
qRqR − a

(1)+−
qRqR + a

(3)++
qRqR

C
(1)
ud 2

[
a
(1)++
qRqR − a

(1)−−
qRqR

]
+
(

4
Nc
− 2
)
a
(3)++
qRqR

C
(8)
ud 8 a

(3)++
qRqR

Cνu a
(1)++
lRqR

+ a
(1)−−
lRqR

+ a
(1)+−
lRqR

+ a
(1)−+
lRqR

+ a
(3)++
lRqR

+ a
(3)+−
lRqR

Cνd a
(1)++
lRqR

− a(1)−−lRqR
− a(1)+−lRqR

+ a
(1)−+
lRqR

− a(3)++
lRqR

+ a
(3)+−
lRqR

Ceu a
(1)++
lRqR

− a(1)−−lRqR
+ a

(1)+−
lRqR

− a(1)−+lRqR
− a(3)++

lRqR
− a(3)+−lRqR

Ced a
(1)++
lRqR

+ a
(1)−−
lRqR

− a(1)+−lRqR
− a(1)−+lRqR

+ a
(3)++
lRqR

− a(3)+−lRqR

Cνedu 2
[
a
(3)++
lRqR

+ a
(3)+−
lRqR

]

8 : (L̄L)(R̄R)

Clν a+llR + a−llR

Cle a+llR − a
−
llR

Clu a+lqR + a−lqR

Cld a+lqR − a
−
lqR

Cqν a+qlR + a−qlR

Cqe a+qlR − a
−
qlR

C
(1)
qu a

(1)+
qqR + a

(1)−
qqR

C
(1)
qd a

(1)+
qqR − a

(1)−
qqR

C
(8)
qu a

(8)+
qqR + a

(8)−
qqR

C
(8)
qd a

(8)+
qqR − a

(8)−
qqR

8 : (L̄R)(R̄L) + h.c.

Clνuq , Cledq a+llRqRq ± a
−
llRqRq

8 : (L̄R)(L̄R) + h.c.

Clνle 2 allRllR

C
(1)
quqd , C

(8)
quqd 2 a

(1)
qqRqqR , 2 a

(8)
qqRqqR

C
(1)
lνqd , C

(1)
lequ ∓ a(1)+llRqqR

− a(1)−llRqqR

C
(3)
lνqd , C

(3)
lequ ∓ a(3)+llRqqR

− a(3)−llRqqR

Table .5. A translation dictionary from the Custodial basis Wilson Coefficients ai to
Warsaw basis Wilson Coefficients Ci.
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CHAPTER V

CONCLUSIONS

Effective Theories of Dark Mesons

In Chapter II we have studied dark sectors that arise from a new, strongly-

coupled confining gauge group SU(ND) with dark fermions transforming under the

electroweak part of the SM. In dark sectors that preserve custodial SU(2) in their

interactions with the SM, a custodial triplet of dark pions appears in the low energy

effective theory. The low energy effective interactions with the SM can be classified

by the custodial symmetry, leading to two distinct possibilities: “Gaugephilic”: where

π0
D → Zh, π±D → Wh dominate once kinematically open, and “Gaugephobic”: where

π0
D → f̄f , π±D → f̄ ′f dominate. These classifications assume the only sources of

custodial SU(2) breaking are from the SM: the gauging of hypercharge, g′Y , and the

difference between the up-type and down-type Yukawa couplings, Y /C
ij .

The simplest theories that exhibited the gaugephobic and gaugephilic

classifications contained two-flavors, and we examined one chiral theory and two

vector-like theories. The chiral theory is familiar from bosonic technicolor/strongly-

coupled induced electroweak symmetry breaking. There, the dominant source of

dark pion interactions with the SM is from Goldstone-pion mixing and leads to a

gaugephilic decay pattern. In the vector-like theories, dark pion interactions with

the SM arise through higher dimensional operators. If we demand custodial SU(2)

invariance in these higher dimensional operators, we find that interactions between the

πD and gauge bosons first occur at dimension-9 (in the UV) while πDf̄f operators can

be written at dimension-7. The mismatch in operator dimension means the vector-like

theories are gaugephobic.
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Next, we examined a four-flavor theory. With the proper electroweak charge

assignment, this scenario can have both vector-like and chiral masses among its dark

fermions, and is therefore a hybrid of the chiral and vector scenarios. The most

phenomenologically interesting limit is when the chiral mass is small compared to the

vector-like mass. In this case, we find the lightest custodial SU(2) triplet of dark

pions have gaugephobic interactions with the SM in which π0 → Zh, π± → Wh

are suppressed by ' m2
h/m

2
K relative to fermionic decays. In the chiral lagrangian

for the full multiplet of 15 dark pions, this arises through a cancellation between

the dark pion mixing with the Goldstones of the SM and dark pion mixing with the

Higgs boson of the SM. Decoupling the heavier dark pion multiplets such that only

the lightest triplet remains, the four-flavor theory maps into a two-flavor theory with

higher dimensional operators that preserve custodial SU(2) and are minimally flavor

violating. The custodial SU(2) symmetry of these interactions automatically leads

to the operator suppression ' v2/Λ2, in agreement with what we found by explicit

calculation of the four-flavor theory.

In theories that preserve custodial SU(2), the neutral dark pion decays to the

SM through “gaugephobic” or “gaugephilic” interactions with a suppressed rate of

π0 → γγ. In each of the theories considered, there is no axial anomaly contribution

to the decay. However, since the dark pions do have interactions with SM, and the

SM fermions have an anomalous axial-vector current, the decay π0 → γγ does occur,

but is suppressed by the same 1/vπ that suppresses the direct decay π0 → SM SM. In

the Standard Model, the analogy would be to imagine that the up and down quarks

have an exact custodial SU(2) symmetry, i.e., Qu = −Qd = 1/2 and yu = yd. In

this case, the anomaly contribution to π0 → γγ in the Standard Model would vanish.

However, even without the anomaly, the SM π0 decays through the mode π0 → e+e−
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proportional to the electron Yukawa coupling. This interaction has the same form as

the two-flavor chiral theory we considered in this paper. Now there remains a one-

loop suppressed contribution π0 → γγ through the electron Yukawa coupling, but

this is highly suppressed compared with the fermionic decay, which is precisely what

happens with the π0 of the custodial SU(2) symmetric dark sector theories that we

have considered in this paper.

Finally, the astute reader may have noticed that all of the vector-like dark sector

theories with custodially symmetric interactions with the SM were gaugephobic. The

only gaugephilic case presented in the paper is the two-flavor chiral theory, which

might give the reader the impression that vector-like theories are automatically

gaugephobic. This is not the case. As an explicit counter-example, the custodial

triplets in Georgi-Machaeck models have gaugephilic couplings (e.g. [174]). It will

come as no surprise that we have already constructed strongly-coupled models based

on coset theories that generate the scalar sector of Georgi-Machaeck theories as dark

pions with gaugephilic couplings with the SM. The details will be left to further

investigations.

LHC Phenomenology of Dark Mesons

In Chapter III we have examined the phenomenology of dark pions – composite

states with electroweak and Higgs interactions that may lurk at the electroweak scale.

Dark pion - like states are a component of many BSM scenarios with new strong

dynamics near the electroweak scale.

– In addition to electroweak interactions, dark pions are also resonantly produced

via dark rhos that kinetically mix with SM gauge bosons and decay through

interactions with SM fermions or into hV . The overall size of the single-pion to
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SM coupling and the relative strength of the fermionic versus V h decay modes

encodes some information about the symmetry structure of the strong sector

and is the subject of Ref. [120].

– Taken more abstractly, dark pions represent a type of new physics that is

predominantly pair produced, is uncolored, and decays back to SM final states.

This is a particularly tricky combination for the LHC, since the lack of strong

interactions means the BSM cross sections are small and the fact that the final

states are pure SM leaves few easy handles to separate signal from background.

– The phenomenology of the dark pions is governed largely by a few parameters;

the relative strength of the dark pion decays to fermionic versus gauge bosons,

the type of kinetic mixing [whether with SU(2)L or U(1)Y ], and the mass of

πD relative to ρD. Setting up nine benchmark models with different values for

these key parameters, we explored the constraints on dark mesons from 8 and

13 TeV LHC searches.

– The only scenario where we find constraints in the TeV range is when the ρ0
D is

kinematically forbidden from decaying to dark pions and therefore decays with

significant branching ratio into leptons, the SU(2)55
L,R cases. For all other cases,

ρD → πDπD is kinematically accessible so the dilepton bounds are negligible

and the best avenue is to look for signals of πD pairs. Depending on the type of

kinetic mixing and the relative mass of the ρD mesons, the bounds on mπD from

πD pair production signals vary from slightly above the LEP II charged particle

bound to ∼ 500 GeV. The strongest bounds come when the mass of ρD is not

too much heavier than 2mπD , and kinetically mix with the SU(2)L, while the

weakest bounds come when the kinetic mixing only involves U(1)Y . As the most
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extreme example of how light these particles can be while remaining undetected,

consider the SU(2)45
R model. There, dark pions as light as ∼ 130 GeV are

still viable; perhaps more surprising, the vector ρD in this scenario sits at ∼

300 GeV!

– In our survey of LHC searches, we found the most useful features for bounding

dark mesons to be signal regions with high multiplicity of leptons and/or b-

jets without strong requirements on the energy (of the individual objects, or

summed) or missing energy. As model-specific searches march towards higher

masses in the 13 TeV era, this type of signal region has become rarer and rarer.

For scenarios without a dedicated search, such as the dark meson explored here

– or, more generally, for types of BSM physics that is pair produced with sub-

QCD rates and does not bring a non-SM source of missing energy – the net

result is that 13 TeV searches can be less sensitive than 8 TeV versions. Generic

searches based on multiple leptons served as a catch-all for this type of “non-

standard” BSM at 8 TeV, and we encourage ATLAS and CMS to repeat similar

studies with 13 TeV.

SMEFT with Custodial Symmetry

The robust way to uncover the details of UV physics is to measure all (ν)SMEFT

operators in complete generality. This requires measurements to constrain the

coefficients of over 3000 operators at dimension-6. Even restricting to one generation,

measurements would be required for nearly 100 coefficients of dimension-6 operators.

This is a daunting task.

134



In Chapter IV, we have proposed a much smaller set of operators to probe specific

information: is the UV physics consistent (or not) with custodial symmetry. We have

identified a set of observables, in Sec. IV:

{ ρ̂, r̂ZνLν̄L , r̂ZeLēL , r̂Zeē, r̂WνLeL } , (5.1)

[as well as corresponding hadronic pseudo-observables, see Eq. (B.19)] in which

if experimental measurements do not match the custodial symmetric pattern of

predictions, c.f. Eq. (4.33), then the UV physics does not respect custodial symmetry

at tree-level. Our result generalizes the commonly used observable ρ 6= 1 at tree-level

implying custodial symmetry violation, which only occurs when the leading matching

corrections to (ν)SMEFT operators are purely oblique.

The observables Eq. (5.1) depend on on just three custodial symmetric operators

with Wilson coefficients a(3)
Hl , a

(3)+
HlR

and a12. The ρ̂ observable, for instance, does

not receive a correction from either m̂2
Z or m̂2

W , and instead it arises purely from

the corrections to ĜF from vertex corrections and four-fermion interactions. As a

result, the deviation of ρ̂ from 1 is proportional to just the linear combination of

Wilson coefficients 2 a
(3)
Hl − a12/2. The same linear combination also appears in other

observables such as r̂Zeē in Eq. (4.33). This is because the vertex correction VZeē

only receives a correction from a
(3)+
HlR

, a Wilson coefficient related to right-handed

leptons, instead of a(3)
Hl , which is left-handed. Given these two different operators are

independent, the corrections to r̂Zeē happen to be a simple sum of these two different

effects. Notice also that the same linear combination from ĜF , namely 2 a
(3)
Hl − a12/2,

appears in all five predictions of the hadronic pseudo-observables, Eq. (B.19) for the

same reason as explained in more detail at the end of App. B.

We demonstrated the utility of our results by calculating the corrections to our

observables in four distinct custodial symmetric UV theory examples. In two UV
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theory examples, a singlet scalar [Sec. IV] and a heavy Z ′ associated with U(1)B−L

[Sec. IV], the predictions are

ρ̂ = r̂ZνLν̄L = r̂ZeLēL = r̂Zeē = r̂WνLeL = 1 . (5.2)

By itself, this is entirely uninformative, since predicting these observables do not

deviate from unity is indistinguishable from the what the SM predicts (again, at tree-

level). However, when combined with other observables that deviate from the SM

prediction, e.g., a modified Higgs trilinear coupling (in the case of the singlet model)

or a new/modified four-fermion interaction (in the case of the U(1)B−L model), our

observables provide a way to distinguish among UV theory possibilities. In the case

of these two particular models, the prediction for our observables is no deviation from

the SM which is fully consistent with the UV theories having custodial symmetry.

We also calculated the corrections in two custodial symmetric UV theory

examples in which there are contributions to our observables. The first example

of this type is embedding the SM into a larger gauge symmetry, SU(2)L× SU(2)R ×

U(1)B−L in which custodial symmetry is effectively gauged as SU(2)R [Sec. IV]. The

spontaneous breaking of SU(2)R × U(1)B−L → U(1)Y in general also spontaneously

breaks custodial symmetry, leading to tree-level contributions to custodial violating

operators. However, in a particular limit in which the gauge coupling of U(1)B−L is

taken to vanish, custodial symmetry is restored. In this specific version of this UV

theory, O(3)+
HlR

, O(3)+
HqR

and O(3)++
lRqR

are generated by the gauging of SU(2)R that explicitly

breaks three independent global symmetries SU(2)RH × SU(2)RqR × SU(2)RlR down

to one single gauged SU(2)R. The leptonic operator O(3)+
HlR

, in particular, contributes

only to the observable r̂Zeē, that leads to the predictions

r̂Zeē = 1− s2
θ

v2

v2
φ

, ρ̂ = r̂ZνLν̄L = r̂ZeLēL = r̂WνLeL = 1 . (5.3)
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This pattern of deviation of our observables is a telltale sign of the custodial symmetric

UV theory in which gauged SU(2)R × U(1)B−L is spontaneously broken to U(1)Y .

Finally, we considered a UV theory with a heavy W ′
L that arises from a gauged

SU(2)A×SU(2)B spontaneously breaking to SU(2)L [Sec. IV]. In this theory, the left-

handed quarks and leptons of the SM transformed under SU(2)A, and after SU(2)A×

SU(2)B → SU(2)L, couple to the SM W boson. However, there remains a residual

coupling of the left-handed quarks and leptons to the heavy W ′
L due to the mixing

among WA,B, and this leads to both vertex corrections of W couplings, C(3)
Hl , C

(3)
Hq,

as well as four-fermion couplings Cll, C
(3)
qq , C(3)

lq among other corrections shown in

Eq. (4.80). The vertex corrections and four-fermion operators lead to deviations from

the SM for all of our observables, shown in Eq. (4.87), that depend on only one

quantity from the UV physics, c4
A/v

4
Φ, the heavy W ′ mixing angle cA divided by the

vev of the scalar field vΦ that breaks SU(2)A × SU(2)B → SU(2)L. In particular, in

this model the ρ observable is

ρ̂ = 1 +

[
s2
θ

1− 2s2
θ

]
c4
Av

2

v2
Φ

, (5.4)

that has a tree-level deviation from 1 due to the non-oblique corrections arising in

this custodial symmetric UV theory. By itself, observing the deviation in ρ̂ from the

SM in Eq. (5.4) is insufficient to conclude anything about the symmetry structure of

the UV theory. Once we combine this deviation with the other predictions shown in

Eq. (4.87), we could uncover whether the UV theory is (or is not) consistent with

custodial symmetry.

Alas, our results have limitations. We have already emphasized that if

experimental measurements do not match the custodial symmetric pattern of

predictions then the UV physics does not respect custodial symmetry at tree-level.

The converse is not true. If experimental measurements follow our pattern of
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predictions, this is a necessary but not sufficient condition for custodial symmetry of

the UV theory. In particular, there are a few operators in which custodial symmetry

can be violated that do not contribute to our observables, specifically those of the

form ψ2H3. We argued in Sec. IV they do not affect our observables, which was a

good thing since they are generated by under the EOM redundancy used to rewrite

custodial symmetric operators that are generated not in our custodial basis back into

our custodial basis. If custodial violating contributions were generated to just these

operators by a UV theory, our observables would not be sensitive. Our results are also

not sensitive to custodial violation that appears only at loop level at leading matching

order. Here we should distinguish between two possibilities: there are well-known loop

corrections to our observables purely from the SM physics, such as the contribution to

ρ̂ from the custodial-violating difference between the top and bottom quark Yukawa

couplings. These effects could be easily incorporated into framework by redefining

our observables to include the SM loop effects. However, additional contributions

to our observables that arise from radiative corrections from (ν)SMEFT operators

are not included. For some theories, radiative corrections are known, for example

the singlet scalar model [211, 215]. It would be interesting to investigate if there

are persistent patterns that bely a UV theory with custodial symmetry even after

radiative corrections are included.
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APPENDIX A

EFFECTIVE THEORIES OF DARK MESON

Gaugephobic 2HDMs

We review the application of the (2,2) custodial symmetry formalism in the

context of general two-Higgs doublet models (2HDM) [216, 217, 218, 219]. We’ll

focus on a general CP-conserving 2HDM.

The most general 2HDM potential can be written as [220, 121]

V2HDM = m2
11(φ†1φ1) +m2

22(φ†2φ2)

−m2
12(φ†1φ2)− (m2

12)∗(φ†2φ1)

+
1

2
λ1(φ†1φ1)2 +

1

2
λ2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2)

+λ4(φ†1φ2)(φ†2φ1) +
1

2
[λ5(φ†1φ2)2 + λ∗5(φ†2φ1)2]

+[λ6(φ†1φ2) + λ∗6(φ†2φ1)](φ†1φ1)

+[λ7(φ†1φ2) + λ∗7(φ†2φ1)](φ†2φ2) (A.1)

where m2
11, m2

22, λ1,2,3,4 are real parameters and m2
12, λ5,6,7 complex. And φ1 and φ2

are two complex scalar doublets

φ1 =

φ+
1

φ0
1

 , φ2 =

φ+
2

φ0
2

 , (A.2)

In general, m2
11, m2

22, and λ1,2,3,4 are real parameters while m2
12 and λ5,6,7 can

be complex. Nevertheless, in this study we restrict our discussion to CP-conserving

models, by assuming all the parameters of V2HDM are real [121]. And we also assume

the parameters are chosen to make V2HDM bounded below so that each of the φi

acquires a VEV, denoted as v1 and v2 which satisfy

v2
1 + v2

2 = v2 = (246 GeV)2 (A.3)

139



and we define

tβ ≡ tan β ≡ v2

v1

(A.4)

The goal of this section is to demonstrate explicitly that it’s possible to write

a general 2HDM potential in terms of a (2,2) custodial symmetry formalism, by

introducing matrices Mij similar to Eq. (2.2)

Mij ≡ (φ̃i, φj) =

 φ0?
i φ+

j

−φ−i φ0
j

 (A.5)

where i, j = 1, 2

It is crucial to our approach that we define the following K-terms [216, 217, 218]

K =



K0

K1

K2

K3


=



φ†1φ1 + φ†2φ2

φ†1φ2 + φ†2φ1

i(φ†2φ1 − φ†1φ2)

φ†1φ1 − φ†2φ2


(A.6)

Given Eqs. (A.5-A.6), we may write K in two different ways, with either M11

and M22, or M21 alone

K0 = 1
2

tr
(
M †

11M11 +M †
22M22

)
= tr

(
M †

21M21

)
K1 = tr

(
M †

11M22

)
= 2 Re(detM †

21)

K2 = (−i) tr
(
M11τ3M

†
22

)
= −2 Im(detM21)

K3 = 1
2

tr
(
M †

11M11 −M †
22M22

)
= − tr

(
M21τ3M

†
21

)
(A.7)

Then it is straightforward to verify that V2HDM can be written in terms of K in a

compact form of

V2HDM = ξTK + KTEK (A.8)
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where the mass parameter vector ξ and the coupling parameter matrix E are [218]

ξ =



1
2
(m2

11 +m2
22)

−Re(m2
12)

Im(m2
12)

1
2
(m2

11 −m2
22)


(A.9)

E =
1

4



1
2
(λ1 + λ2) + λ3 Re(λ6 + λ7) − Im(λ6 + λ7) 1

2
(λ1 − λ2)

Re(λ6 + λ7) λ4 + Re(λ5) − Im(λ5) Re(λ6 − λ7)

− Im(λ6 + λ7) − Im(λ5) λ4 − Re(λ5) − Im(λ6 − λ7)

1
2
(λ1 − λ2) Re(λ6 − λ7) − Im(λ6 − λ7) 1

2
(λ1 + λ2)− λ3


(A.10)

As a consequence of Eq. (A.7), there are actually two types of custodial

transformations to the potential [221]: Type I: M11 and M22 transform as

Mii −→ LMiiR
† for i = 1, 2 (A.11)

where L and R are SU(2)L and SU(2)R matrices. Type II: In this case, it’s M21

which transforms as

M21 −→ LM21R
† (A.12)

The potential V2HDM preserves custodial symmetry if it is invariant under either type

of the custodial transformations.

Nevertheless, recall that there is an explicit τ3 in Eq. (A.7). In fact, it’s a (τ3)R

which appears either in the K2 term under the Type I custodial transformation, or

in the K3 term for the Type II. Since (τ3)R breaks custodial symmetry explicitly, K2

term should be absent from V2HDM with Type I custodial symmetry, same as K3 term

for Type II. Apparently, to meet this requirement the corresponding entries in ξ and

E must vanish.
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With the argument above, the conditions for a custodial symmetric 2HDM

potential can be summarized as:

Type I:

ξI =



·

·

0

·


, EI =



· · 0 ·

· · 0 ·

0 0 0 0

· · 0 ·


(A.13)

Type II:

ξII =



·

·

·

0


, EII =



· · · 0

· · · 0

· · · 0

0 0 0 0


(A.14)

For a CP -conserving 2HDM:

ξCP =



1
2
(m2

11 +m2
22)

−m2
12

0

1
2
(m2

11 −m2
22)


(A.15)

ECP =
1

4



1
2
(λ1 + λ2) + λ3 λ6 + λ7 0 1

2
(λ1 − λ2)

λ6 + λ7 λ4 + λ5 0 λ6 − λ7

0 0 λ4 − λ5 0

1
2
(λ1 − λ2) λ6 − λ7 0 1

2
(λ1 + λ2)− λ3


(A.16)

Compare Eqs. (A.15-A.16) to (A.13), we see that to preserve Type-I custodial

symmetry, the condition required is

λ4 = λ5 (A.17)
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Similarly, the conditions for a Type-II custodial symmetry are

m2
11 = m2

22

λ1 = λ2

λ6 = λ7

λ3 = 1
2
(λ1 + λ2) = λ1

(A.18)

As is well-known, the observable that measures custodial violation is the

ρ-parameter. Assuming the first three conditions of Eq. (A.18), the one-loop

contributions to ∆ρ [174] from either Type-I or Type-II models can be calculated

to the leading order in v2 as

∆ρ =
1

192π2

(
v2

m2
A

)
(λ4 − λ5)(λ1 − λ3) (A.19)

where mA is the mass of the heavy pseudoscalar Higgs state A0 in 2HDM. We

explicitly see that ∆ρ is proportional to (λ4 − λ5) and (λ1 − λ3), which can be

identified with the contribution from Type-I and Type-II, correspondingly.

We can also map the general Type II 2HDM model onto the the minimal

supersymmetric model (MSSM) where the λi are [121]

λ1 = λ2 = 1
4
(g2 + g′2)

λ3 = 1
4
(g2 − g′2)

λ4 = −1
2
g2

λ5 = λ6 = λ7 = 0 .

(A.20)

The contribution to ∆ρ is then

∆ρ =
1

192π2

(
v2

m2
A

)(
−1

2
g2

)(
1

2
g′2
)
. (A.21)

The 2HDM potential of the MSSM contains custodial symmetry violation with a small

but non-zero correction to the ρ-parameter. The correct is, nevertheless, proportional

to g′2 that is precisely the SM violation of custodial symmetry by gauging hypercharge.
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Phenomenologically, the heavy Higgs states in a 2HDM may decay into SM

particles if kinematically allowed. Comparing to our study of dark mesons, we are

particularly interested in the branching fractions of the charged Higgs H± and the

pseudoscalar A0 decaying into SM fermion pairs or gauge boson and Higgs pairs,

especially in the decoupling limit mA � v. In this limit, Eq. (A.19) indicates that

∆ρ is always suppressed by two powers of the heavy mass scale mA, which means the

amount of possible custodial symmetry violation is restricted to be relatively small.

As a result, one can say that 2HDM becomes custodially symmetric in the decoupling

limit.

As for the decay branching fractions, though the couplings of H± and A0 to SM

fermions are usually model dependent, their values are proportional to tan β or cot β

[174]

Cff ∝ g
mf

mW

(tan β or cot β) (A.22)

On the other hand, the couplings to SM gauge bosons and SM Higgs are proportional

to cos(β − α) [174]

CWh ∝ g cos(β − α) (A.23)

where α is the CP-even scalar mixing angle, and in the decoupling limit,

cos(β − α) = O
(
v2

m2
A

)
(A.24)

Compare Eq. (A.22) to Eq. (A.23), we see that to the leading order in v2,

CWh

Cff
∝ cos(β − α) ∝ O

(
v2

m2
A

)
(A.25)

Therefore, in the decoupling limit a 2HDM becomes custodially symmetric, and the

decays of its heavy states to SM particle in this limit are gaugephobic.

144



APPENDIX B

SMEFT WITH CUSTODIAL SYMMETRY

Details of Mapping onto Observables

In this appendix, we provide some details on the intermediate steps that lead to

our results in 4.31. We work with the Warsaw basis of dim-6 νSMEFT shown in .1,

restricted to one fermion generation. We will perform tree-level mapping, and only

up to dim-6.

First, we find the corrections to the two-point functions of electroweak gauge

bosons

ΠWW

(
p2
)

= 2p2v2CHW , (B.1a)

ΠZZ

(
p2
)

=
1

2
m̂2
Z, SMv

2CHD + 2p2v2
(
c2
θCHW + s2

θCHB + cθsθCHWB

)
, (B.1b)

Πγγ

(
p2
)

= 2p2v2
(
s2
θCHW + c2

θCHB − cθsθCHWB

)
, (B.1c)

ΠγZ

(
p2
)

= p2v2
[
2cθsθ (CHW − CHB)−

(
c2
θ − s2

θ

)
CHWB

]
, (B.1d)

where as usual ΠV V (p2) denotes the transverse part of the full two-point function

of the gauge bosons:

iΠµν
V V

(
p2
)

= iΠV V

(
p2
)(

ηµν − pµpν

p2

)
+

(
i
pµpν

p2
term

)
. (B.2)

Next, we move on to the three-point vertices. For the observables considered

in IV, the relevant vertex corrections between the electroweak gauge bosons and the

leptons are

145



VZνLν̄L = 1− v2
(
C

(1)
Hl − C

(3)
Hl

)
, (B.3a)

VZeLēL = 1 +
v2

1− 2s2
θ

(
C

(1)
Hl + C

(3)
Hl

)
, (B.3b)

VZeē = 1− v2

2s2
θ

CHe , (B.3c)

VWll̄ = 1 + v2C
(3)
Hl . (B.3d)

Note that corrections to the four-fermion vertices would not feed into α̂ due to

lack of pole structure. The only corrections to the four-point vertices (or more) needs

to be considered in our analysis is C12 we mentioned in IV. It is the only four-fermion

correction that would feed into ĜF .

With the above, we would like to find the modifications to 4.26. The first four

observables are relatively simpler:

α̂ =
g2

1g
2
2

4π (g2
1 + g2

2)

[
p2

p2 − Πγγ (p2)

∣∣∣∣
p2→0

]

= α̂SM
[
1 + 2v2

(
s2
θCHW + c2

θCHB − cθsθCHWB

)]
, (B.4a)

ĜF =

√
2g2

2

8
V 2
Wll̄

 −1

p2 − m̂2
W , SM − ΠWW (p2)

∣∣∣∣∣
p2→0

− C12

2
√

2

= ĜF , SM

[
1 + 2v2C

(3)
Hl −

1

2
v2C12

]
, (B.4b)

m̂2
Z = m̂2

Z, SM + ΠZZ

(
m̂2
Z, SM

)
= m̂2

Z, SM

[
1 +

1

2
v2CHD + 2v2

(
c2
θCHW + s2

θCHB + cθsθCHWB

)]
, (B.4c)

m̂2
W = m̂2

W , SM + ΠWW

(
m̂2
W , SM

)
= m̂2

W , SM

(
1 + 2v2CHW

)
. (B.4d)

These will lead us to the ρ̂ part in 4.31.
146



For the decay widths corrections in 4.26, we need a bit more setup. We define

the amplitude iM̂ as the strength κ̂ multiplied by the polarization kinematics:

iM̂Zψψ̄ ≡ iκ̂
(
εµūψγ

µPL/Rvψ̄
)
, (B.5)

with εµ denoting the polarization vectors for Z boson, u and v denoting the Dirac

spinors for the fermion legs, and PL/R = 1∓γ5
2

denoting the projector depending on

the chirality of the fermion ψ. The κ̂ for W boson decay is defined similarly. With

this, one can compute the decay width

Γ̂Zψψ̄ =
1

16πm̂Z

∣∣∣M̂Zψψ̄

∣∣∣2 =
m̂Z

24π
κ̂2 . (B.6)

So our r̂ defined in 4.29 can be expressed as

r̂ZνLν̄L =
κ̂2
ZνLν̄L√

2ĜF m̂2
Z

, (B.7a)

r̂ZeLēL =
κ̂2
ZeLēL√

2ĜF m̂2
Z (1− x̂)

, (B.7b)

r̂Zeē =
κ̂2
Zeē√

2ĜF m̂2
Z

(
1−
√

1− x̂
)2 , (B.7c)

r̂WνLeL ≡
m̂W κ̂

2
WνLeL

ĜF m̂3
Z

(
1 +
√

1− x̂
) 3

2

. (B.7d)

In SM, these strengths are

κ̂2
ZνLν̄L, SM =

g2
2

4c2
θ

=
√

2ĜF , SMm̂
2
Z, SM , (B.8a)

κ̂2
ZeLēL, SM =

g2
2

4c2
θ

(
1− 2s2

θ

)2
=
√

2ĜF , SMm̂
2
Z, SM (1− x̂ SM) , (B.8b)

κ̂2
Zeē, SM =

g2
2

c2
θ

s4
θ =
√

2ĜF , SMm̂
2
Z, SM

(
1−

√
1− x̂ SM

)2

, (B.8c)

κ̂2
WνLeL, SM =

g2
2

2
= ĜF , SM

m̂3
Z, SM

m̂W , SM

(
1 +

√
1− x̂ SM

) 3
2
. (B.8d)
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In SMEFT dim-6 Warsaw basis, these become

κ̂ZνLν̄L = κ̂ZνLν̄L, SM(RZ)1/2VZνLν̄L

= κ̂ZνLν̄L, SM

[
1 + v2

(
c2
θCHW + s2

θCHB + cθsθCHWB

)
− v2

(
C

(1)
Hl − C

(3)
Hl

)]
,

(B.9a)

κ̂ZeLēL = κ̂ZeLēL, SM(RZ)1/2

[
VZeLēL +

2cθsθ
1− 2s2

θ

1

p2
ΠγZ

(
p2
)]

= κ̂ZeLēL, SM

[
1 + v2

(
c2
θCHW + s2

θCHB + cθsθCHWB

)
+ v2 1

1− 2s2
θ

(
C

(1)
Hl + C

(3)
Hl

)
+ v2 4c2

θs
2
θ

1− 2s2
θ

(CHW − CHB)− 2v2cθsθCHWB

]
, (B.9b)

κ̂Zeē = κ̂Zeē, SM(RZ)1/2

[
VZeē −

cθ
sθ

1

p2
ΠγZ

(
p2
)]

= κ̂Zeē, SM

[
1 + v2

(
c2
θCHW + s2

θCHB + cθsθCHWB

)
− v2 1

2s2
θ

CHe

− v22c2
θ (CHW − CHB) + v2 cθ

sθ

(
1− 2s2

θ

)
CHWB

]
, (B.9c)

κ̂WνLeL = κ̂WνLeL, SM(RW )1/2VWll̄

= κ̂WνLeL, SM

[
1 + v2CHW + v2C

(3)
Hl

]
. (B.9d)

These are the corresponding corrections to the last three expressions in 4.26, where

RW and RZ are the residues of the W and Z boson at the pole mass:

RW = 1 +

[
d

dp2
ΠWW

(
p2
)]∣∣∣∣

p2=m̂2
W , SM

= 1 + 2v2CHW , (B.10a)

RZ = 1 +

[
d

dp2
ΠZZ

(
p2
)]∣∣∣∣

p2=m̂2
Z, SM

= 1 + 2v2
(
c2
θCHW + s2

θCHB + cθsθCHWB

)
.

(B.10b)
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Plugging B.9 as well as B.4 into B.7 leads us to the expressions in 4.31. In

particular, after obtaining r̂ZeLēL and r̂Zeē, the last line of 4.31, namely the forward-

backward asymmetry of e+e− → e+e− scattering on Z resonance can be calculated

straightforwardly as

Â0,e
FB =

3

4

[
Γ̂ZeLēL − Γ̂Zeē

Γ̂ZeLēL + Γ̂Zeē

]2

. (B.11)

Recall 4.26 and 4.29, we may express the decay widths in terms of our pseudo-

observables,

Γ̂ZeLēL =

[
m̂Z, SM

96π

g2
2

c2
θ

]
×

[
(1− 2s2

θ)
2 r̂ZeLēL

]
, (B.12a)

Γ̂Zeē =

[
m̂Z, SM

96π

g2
2

c2
θ

]
×

[
(4s4

θ) r̂Zeē

]
. (B.12b)

Substitute B.12 back into B.11, we have

Â0,e
FB =

3

4

[
Γ̂ZeLēL − Γ̂Zeē

Γ̂ZeLēL + Γ̂Zeē

]2

=
3

4

[
(1− 2s2

θ)
2 r̂ZeLēL − (4s4

θ) r̂Zeē
(1− 2s2

θ)
2 r̂ZeLēL + (4s4

θ) r̂Zeē

]2

. (B.13)

Finally, putting the expressions of r̂ZeLēL and r̂Zeē we obtained in 4.31 back into

B.13, with further simplification this provides us the last line of 4.31, i.e. the tree-level

SMEFT prediction of the pseudo-observable r̂0,e
FB at dim-6.

It is worth mentioning that if we restrict to operators that are flavor and custodial

symmetric, then the corrections we have calculated here are substantially simplified.

First, the corrections to the two-point functions of electroweak gauge bosons in

B.1 vanish because they are all custodial violating operators except CHW , which
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nevertheless cannot be generated at tree-level. As a consequence, the corrections to

α̂, m̂2
Z and m̂2

W in B.4 also vanish, as well as the residue corrections RW and RZ in

B.10. The only surviving non-zero corrections are the vertex corrections in B.3 and

the correction to ĜF ,

VZνLν̄L = 1 + v2C
(3)
Hl = 1 + v2 a

(3)
Hl , (B.14a)

VZeLēL = 1 +
v2

1− 2s2
θ

C
(3)
Hl = 1 +

v2

1− 2s2
θ

a
(3)
Hl , (B.14b)

VZeē = 1− v2

2s2
θ

CHe = 1− v2

2s2
θ

a
(3)+
HlR

, (B.14c)

VWll̄ = 1 + v2C
(3)
Hl = 1 + v2 a

(3)
Hl , (B.14d)

ĜF

ĜF , SM
= 1 + v2

[
2C

(3)
Hl −

1

2
C12

]
= 1 + v2

[
2 a

(3)
Hl −

1

2
a12

]
. (B.14e)

This explains why the observables in 4.33 demonstrate correlated predictions when

arising from operators that are custodial and flavor preserving, with only three Wilson

coefficients a(3)
Hl , a

(3)+
HlR

and a12 involved.

Hadronic Observables

In this Appendix, we consider a set of five quark pseudo-observables in addition

to those listed in Sec. IV:{
Γ̂ZuLūL , Γ̂Zuū, Γ̂ZdLd̄L , Γ̂Zdd̄, Γ̂WuLdL

}
(B.15)

In order, these denote the partial decay widths of the Z boson to left-handed up-type

quarks, left-handed down-type quarks, right-handed up-type quarks, right-handed

down-type quarks, and the partial decay widths of the W boson to left-handed up-

type and down-type quarks.

We present our results in terms of definite parity hadronic final states in order to

most easily compare with the results we showed in Sec. IV. In Z decay measurements,
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however, the first two generations of quarks are essentially indistinguishable, and so

in practice the measurable observables are Γ̂Zqq and Γ̂Wqq as well as measurements

involving the b-quark. This is why, in this section, we refer to these as (pseudo)-

observables instead of simply observables. With these caveats in mind, let’s proceed

to determine the pseudo-observables leaving an interpretation of their use with respect

to measurements to Sec. IV. In terms of the three Lagrangian parameters g1, g2, v,

the hadronic (pseudo)-observables are

Γ̂ZuLūL, SM =
m̂Z, SM

288π

g2
2

c2
θ

(
3− 4s2

θ

)2
, (B.16a)

Γ̂Zuū, SM =
m̂Z, SM

18π

g2
2

c2
θ

s4
θ , (B.16b)

Γ̂ZdLd̄L, SM =
m̂Z, SM

288π

g2
2

c2
θ

(
3− 2s2

θ

)2
, (B.16c)

Γ̂Zdd̄, SM =
m̂Z, SM

72π

g2
2

c2
θ

s4
θ , (B.16d)

Γ̂WuLdL, SM =
m̂W , SM

16π
g2

2 . (B.16e)

We can then construct the ratios of the new correction pseudo-observables with

respect to the SM ones as:

r̂ZuLūL ≡
72π

√
2ĜF m̂3

Z(1 + 2
√

1− x̂)2
Γ̂ZuLūL , (B.17a)

r̂Zuū ≡
18π

√
2ĜF m̂3

Z(1−
√

1− x̂)2
Γ̂Zuū , (B.17b)

r̂ZdLd̄L ≡
72π

√
2ĜF m̂3

Z(2 +
√

1− x̂)2
Γ̂ZdLd̄L , (B.17c)

r̂Zdd̄ ≡
72π

√
2ĜF m̂3

Z(1−
√

1− x̂)2
Γ̂Zdd̄ , (B.17d)

r̂WuLdL ≡
8π

ĜF m̂3
Z

(
1 +
√

1− x̂
) 3

2

Γ̂WuLdL , (B.17e)

where x is defined as before by 4.30.
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These five pseudo-observables are unity in SM, but are modified in SMEFT due

to nonzero Wilson coefficients. Nevertheless, in a generic SMEFT at dim-6 there are

8 Wilson coefficients related to these 5 pseudo-observables. Here we list them in the

Warsaw basis:

r̂ZuLūL = 1 +
v2

(1− 2s2
θ)(3− 4s2

θ)

[
− 1

2
(3− 2s2

θ)CHD − 8sθcθCHWB − 6(1− 2s2
θ)C

(1)
Hq

− 2(3− 2s2
θ)C

(3)
Hl + 6(1− 2s2

θ)C
(3)
Hq +

1

2
(3− 2s2

θ)C12

]
,

(B.18a)

r̂Zuū = 1 +
v2

1− 2s2
θ

[
1

2
CHD +

2cθ
sθ
CHWB + 2C

(3)
Hl +

3(1− 2s2
θ)

2s2
θ

CHu −
1

2
C12

]
,

(B.18b)

r̂ZdLd̄L = 1 +
v2

(1− 2s2
θ)(3− 2s2

θ)

[
− 1

2
(3− 4s2

θ)CHD − 4sθcθCHWB + 6(1− 2s2
θ)C

(1)
Hq

− 2(3− 4s2
θ)C

(3)
Hl + 6(1− 2s2

θ)C
(3)
Hq +

1

2
(3− 4s2

θ)C12

]
,

(B.18c)

r̂Zdd̄ = 1 +
v2

1− 2s2
θ

[
1

2
CHD +

2cθ
sθ
CHWB + 2C

(3)
Hl −

3(1− 2s2
θ)

s2
θ

CHd −
1

2
C12

]
,

(B.18d)

r̂WuLdL = 1 +
v2

1− 2s2
θ

[
− 3

4
c2
θCHD − 3sθcθCHWB

− (2− s2
θ)C

(3)
Hl + 2(1− 2s2

θ)C
(3)
Hq +

1

4
(2− s2

θ)C12

]
.

(B.18e)

Now consider the UV physics respects flavor and custodial symmetry. Many

operators are absent and there are stronger correlations among these observables. To

see this, we go to the custodial basis given in .2 and restrict to those that are flavor
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and custodial symmetric:

r̂ZuLūL = 1− v2(3− 2s2
θ)

(1− 2s2
θ)(3− 4s2

θ)

[
2 a

(3)
Hl −

1

2
a12

]
+

6v2

3− 4s2
θ

a
(3)
Hq , (B.19a)

r̂Zuū = 1 +
v2

1− 2s2
θ

[
2 a

(3)
Hl −

1

2
a12

]
− 3v2

2s2
θ

a
(3)+
HqR

, (B.19b)

r̂ZdLd̄L = 1− v2(3− 4s2
θ)

(1− 2s2
θ)(3− 2s2

θ)

[
2 a

(3)
Hl −

1

2
a12

]
+

6v2

3− 2s2
θ

a
(3)
Hq , (B.19c)

r̂Zdd̄ = 1 +
v2

1− 2s2
θ

[
2 a

(3)
Hl −

1

2
a12

]
− 3v2

s2
θ

a
(3)+
HqR

, (B.19d)

r̂WuLdL = 1− v2(2− s2
θ)

2(1− 2s2
θ)

[
2 a

(3)
Hl −

1

2
a12

]
+ 2v2 a

(3)
Hq . (B.19e)

As we have mentioned at the end of App. B, these predictions of the five hadronic

observables are determined somewhat surprisingly by only three free parameters: two

hadronic Wilson coefficients a(3)
Hq and a

(3)+
HqR

, and the aforementioned linear combination

from the correction to ĜF , namely
[
2 a

(3)
Hl −

1

2
a12

]
. If we combine all of these results

into Z and W partial decay widths into hadrons, then incorporate the five leptonic

observables in 4.33, these two hadronic partial decay widths do not add any additional

information but could still be used as cross-check information at least with respect

to specific UV theories.

Tree-level Dim-6 Operators

In this appendix, we show that for the operators types listed in 8, only H4D2 and

ψ̄ψH2D can be possibly generated at tree-level when matching with a renormalizable

UV theory. In below, our derivation follows the argument given in Section 3 of [210].

We parameterize a generic renormalizable UV theory as

LUV =
1

2
ΩTKΩ− ΩTJ +O

(
Ω3
)
. (B.20)
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Here Ω denotes a collection of heavy particles that we will integrate out when

performing the matching:

Ω =



Φ

Ψ

Ψ̄

Vµ


, (B.21)

with Φ a set of real scalars, Ψ, Ψ̄ a set of Weyl fermions, and Vµ a set of vector bosons.

The matrix K captures the quadratic piece in Ω:

K =



−D2 −M2 −yψ −yψ̄ 0

−yψ −M − yφ −(σ̄ · iD)T 0

−yψ̄ σ̄ · iD −M − yφ 0

0 0 0 ηµν (D2 +M2 + gφ2)−DνDµ + [Dµ, Dν ]


.

(B.22)

Here φ, ψ, ψ̄ denote the light scalars and Weyl fermions that we are going to keep in

the EFT. Similarly, the covariant derivative Dµ contains only the light gauge bosons

in the EFT. Note that our masses and couplingsM,λ, y, g etc. here are all schematic.

If there is a nonzero tree-level matching result, then we also need a term linear in Ω

in the UV Lagrangian. This is parameterized by the second term in B.20, with

J =



yψψ + yψ̄ψ̄ + λφ3

yφψ

yφψ̄

gψ̄σµψ + gφ
←→
D µφ


. (B.23)

To match at tree-level, we solve the equations of motion for Ω to get

Ωv

[
φ, ψ, ψ̄

]
= K−1J . (B.24)
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We then substitute this solution back into LUV to obtain the EFT:

LEFT = LUV (Ω = Ωv) = −1

2
JTK−1J . (B.25)

Now expanding K−1 gives us a tower of effective operators, which we can truncated

according to the desired mass dimension. At dim-6, this expansion is fairly simple

because the factors JT and J have already mostly saturated the mass dimension,

allowing for at most one mass dimension (from the fields) to keep in K−1. Therefore

we get

K−1 ⊃ − 1

M2



1 0 0 0

0 M − yφ −(σ̄ · iD)T 0

0 σ̄ · iD M − yφ 0

0 0 0 −ηµν


, (B.26)

and

LEFT ⊃
1

2M2
JT



1 0 0 0

0 M − yφ −(σ̄ · iD)T 0

0 σ̄ · iD M − yφ 0

0 0 0 −ηµν


J . (B.27)

From this we can easily enumerate all the possible types of field content in the dim-6

matching result, which is summarized by Figure 1 in [210]. In particular, we note that

the presence of the covariant derivative Dµ is very limited. First, there will be no field

strength factor, which are commutators of the covariant derivatives Xµν ∼ [Dµ, Dν ].

In addition, there is no operator with three or higher powers of Dµ. Furthermore, at

the second power of Dµ, the only possible operators are of the type φ4D2; and at the

first power of Dµ, the only possible operators are of the type ψ̄ψφ2D. Applying this

conclusion to our 8, we see that only H4D2 and ψ̄ψH2D can be possibly generated

at tree-level.
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EOM Equivalence Example

We know that predictions on physical observables are invariant under a basis

change in an EFT. One way of performing a basis change is to trade operators

through their redundancy relations due to the Equations of Motion (EOM) at the

leading order (see e.g.Ref. [222] for detailed explanation). Such a basis change yields

equivalent physical predictions up to the order of the EFT expansion. This intuitive

fact, however, brings complications for characterizing models with “minimal” custodial

violation. Since custodial symmetry is broken by νSM interactions, it is violated by

νSM equations of motion, namely the leading order EOM in νSMEFT. This means

that when changing basis through EOM redundancy in νSMEFT, one can trade

custodial preserving operators into custodial violating operators and vice versa. But

they give the same predictions on physical observables. This point is potentially

confusing. In this appendix, we give a simple example, demonstrating how custodial

preserving and violating operators could yield the same physical predictions.

In this example, the physical observables that we will focus on are the Higgs

decay widths Γh→WW ∗ , Γh→ZZ∗ , and Γh→ff̄ , with f denoting the Dirac fields for νSM

fermions f ∈ {fu, fd, fν , fe} and 1

fu ≡

uL
uR

 , fd ≡

dL
dR

 , fν ≡

νL
νR

 , fe ≡

eL
eR

 . (B.28)

For our purpose, it is actually sufficient to study the corresponding amplitudes

iMhWW , iMhZZ , and iMhff̄ as “pseudo” observables. In fact, as we shall see in

below, we will also strip off the external polarization vectors, spinors, etc. from these

amplitudes, because the corrections we will study have trivial momentum dependence.

1For simplicity, we work with only one generation of fermions, and assume real Yukawa couplings.
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In the following, we will pick a simple basis change through EOM redundancy,

and show how the two bases give the same predictions on these amplitudes. In

particular, we consider the operator

QR ≡ |H|2 |DH|2 , (B.29)

which is outside the Warsaw basis in .1. Using the Higgs EOM in νSM, one can

write this operator as a linear combination of those included in the Warsaw basis.

Concretely, the Higgs sector of the νSM Lagrangian is

LSMν ⊃ |DH|2 − λ
(
|H|2 − 1

2
v2

)2

−
(
Yuq̄H̃u+ Ydq̄Hd+ Yν l̄H̃ν + Yel̄He+ h.c.

)
.

(B.30)

The resulting Higgs EOM (together with integration by parts redundancy) gives the

following redundancy relation

QR ≡ |H|2|DH|2 =
1

2
QH� + 2λQH +

1

2
QY − λv2|H|4 , (B.31)

where we have defined the custodial violating (due to Yukawa mismatch Yu 6= Yd and

Yν 6= Ye) operator QY as

QY ≡ YuQuH + YdQdH + YνQνH + YeQeH + h.c. . (B.32)

Rearranging B.31, we get

QH� = 2QR − 4λQH −QY + 2λv2|H|4 → 2QR −QY . (B.33)

In the last expression here, we have dropped operators not contributing to the

aforementioned amplitudes. This equivalence relation means that for the corrections

on iMhWW , iMhZZ , and iMhff̄ , the custodial preserving operator QH� in the Warsaw

basis is equivalent to the combination 2QR − QY , with QY a custodial violating

operator in the Warsaw basis and QR a custodial preserving operator outside the

Warsaw basis. In the rest of this appendix, we will demonstrate this equivalence,
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i.e.between the following two toy EFT Lagrangians

LWarsaw = CH�QH� , (B.34a)

LAlternative = CRQR + CY QY , (B.34b)

with CR = 2CH� and CY = −CH�.

νSM Predictions. Before studying the EFT corrections, let us first work

out the predictions in νSM as a warm up. To compute the gauge boson amplitudes,

we examine the Higgs sector:

LSMν ⊃ |DH|2 =
1

2
(∂h)2 +

g2
2

4
(v + h)2W+

µ W
−µ +

1

2

g2
2

4c2
θ

(v + h)2ZµZ
µ

⊃ 1

2
(∂h)2 +

g2
2v

2

4
W+
µ W

−µ +
1

2

g2
2v

2

4c2
θ

ZµZ
µ +

g2
2

4
2vhW+

µ W
−µ +

1

2

g2
2

4c2
θ

2vhZµZ
µ .

(B.35)

In order to determine the free parameters g2
2, c2

θ, and v, we take the observables m̂2
W ,

m̂2
Z , and ĜF .2 From the above, we see that these are related to the νSM parameters

as

m̂2
W =

g2
2v

2

4
, m̂2

Z =
g2

2v
2

4c2
θ

, ĜF =

√
2g2

2

8m̂2
W

=
1√
2v2

. (B.36)

Solving these, we get the νSM parameters

v2 =
1

√
2ĜF

, g2
2 =

4m̂2
W

v2
= 4
√

2ĜF m̂
2
W ,

g2
2

c2
θ

=
4m̂2

Z

v2
= 4
√

2ĜF m̂
2
Z . (B.37)

Now we can obtain the νSM predictions on the amplitudes h→ WW and h→ ZZ:

iMhWW =
g2

2

4
2v = 2m̂2

W

√√
2ĜF , (B.38a)

iMhZZ =
g2

2

4c2
θ

2v = 2m̂2
Z

√√
2ĜF . (B.38b)

As noted before, we have stripped off the polarization vector part of these amplitudes,

since they are irrelevant for our current analysis.

2We use m̂2
W here for simplicity. In real analysis (see e.g.[140]), one typically uses the more

accurately measured quantity α̂ — the fine structure constant in place of m̂2
W .
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To compute the fermion amplitudes, we examine the Yukawa sector:

LSMν ⊃ −
(
Yuq̄H̃u+ Ydq̄Hd+ Yν l̄H̃ν + Yel̄He+ h.c.

)
= −

∑
f

1√
2
Yf (v + h) f̄f = −

∑
f

1√
2
Yfvf̄f −

∑
f

1√
2
Yfhf̄f . (B.39)

Again, we need to first determine the new free parameter Yf . For this we can pick

m̂f :

m̂f =
1√
2
Yfv , (B.40)

which gives

1√
2
Yf =

m̂f

v
= m̂f

√√
2ĜF . (B.41)

Now the h→ ff̄ amplitudes are predicted as

iMhff̄ = −i 1√
2
Yf = −im̂f

√√
2ĜF . (B.42)

Similar to the case of gauge boson amplitudes, the spinor part of the fermion

amplitude is irrelevant for us and has been stripped off.

Correction in Warsaw Basis. Let us now check the prediction of the

aforementioned amplitudes by our Warsaw basis toy EFT Lagrangian in B.34a. For

this, we need to work out the effects of the operator QH�. As is well-known (see

e.g.[223]), this operator corrects the Higgs amplitudes of the type h → XX (with

XX denoting WW , ZZ, or ff̄) by a universal residue effect. Specifically, we have

QH� ≡ −
(
∂µ|H|2

) (
∂µ|H|2

)
= −(v + h)2(∂h)2 ⊃ 1

2

(
−2v2

)
(∂h)2 . (B.43)

This yields a nontrivial residue for the Higgs field

Rh =
(
1− 2v2CH�

)−1
= 1 + 2v2CH� , (B.44)

which feeds into the amplitudes of our interests as

iMhXX → R
1/2
h iMhXX =

(
1 + v2CH�

)
iMhXX . (B.45)
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Note that in above calculations, we are only keeping up to the linear power in the

EFT expansion parameter v2

Λ2 . This is because the EOM equivalence is supposed to

hold only up to this order.

Correction in the Alternative Basis. Now let us check the prediction by

the same toy EFT Lagrangian written in the alternative basis i.e.B.34b. For this we

need to work out the effects of the operators QR and QY .

For QR, we use B.35 to get

QR = |H|2|DH|2 =
1

2
(v + h)2|DH|2

=
1

4
(v + h)2(∂h)2 +

g2
2

4

1

2
(v + h)4W+

µ W
−µ +

1

2

g2
2

4c2
θ

1

2
(v + h)4ZµZ

µ

⊃ 1

2
v2

[
1

2
(∂h)2 +

g2
2v

2

4
W+
µ W

−µ +
1

2

g2
2v

2

4c2
θ

ZµZ
µ

]
+ v2 g

2
2

4
2vhW+

µ W
−µ + v2 1

2

g2
2

4c2
θ

2vhZµZ
µ . (B.46)

We see that now with a Wilson coefficient CR, the observables m̂2
W , m̂2

Z , and ĜF

become

m̂2
W =

g2
2v

2

4

(
1 +

1

2
v2CR

)
, (B.47a)

m̂2
Z =

g2
2v

2

4c2
θ

(
1 +

1

2
v2CR

)
, (B.47b)

ĜF =

√
2g2

2

8m̂2
W

=
1√
2v2

(
1 +

1

2
v2CR

)−1

. (B.47c)

Solving these we obtain

v2 =
1

√
2ĜF

(
1 +

1

2
v2CR

)−1

=
1

√
2ĜF

(
1− 1

2
v2CR

)
, (B.48a)

g2
2 =

4m̂2
W

v2

(
1 +

1

2
v2CR

)−1

= 4
√

2ĜF m̂
2
W , (B.48b)

g2
2

c2
θ

=
4m̂2

Z

v2

(
1 +

1

2
v2CR

)−1

= 4
√

2ĜF m̂
2
Z . (B.48c)
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Comparing with B.37, we see that the parameters g2
2 and c2

θ are unchanged, but v2

receives a modification. Note that we now also have a nontrivial Higgs residue as well

Rh =

(
1 +

1

2
v2CR

)−1

. (B.49)

It is interesting to note that the following combination is unaffected

R
1/2
h

1

v
=

√√
2ĜF . (B.50)

This is a reflection that the part 1
2
v2 |DH|2 in QR is just rescaling the whole

field H (namely v and h together in the same way), and hence has no physical

observable effects. Therefore, all the physical effects of QR come from the rest of it

1
2

(2vh+ h2) |DH|2. For h → XX amplitudes, it is obvious that this part can only

modify h→ WW and h→ ZZ, which are given by

iMhWW = R
1/2
h

g2
2

4
2v
(
1 + v2CR

)
= 2m̂2

W

√√
2ĜF

(
1 +

1

2
v2CR

)
, (B.51a)

iMhZZ = R
1/2
h

g2
2

4c2
θ

2v
(
1 + v2CR

)
= 2m̂2

Z

√√
2ĜF

(
1 +

1

2
v2CR

)
. (B.51b)

Next, we check the effects of the operator QY .

QY ≡ YuQuH + YdQdH + YνQνH + YeQeH + h.c.

= |H|2
(
Yuq̄H̃u+ Ydq̄Hd+ Yν l̄H̃ν + Yel̄He+ h.c.

)
=
∑
f

1

2
√

2
Yf (v + h)3f̄f ⊃

∑
f

1

2
√

2
Yfv

3f̄f +
∑
f

1

2
√

2
Yf3v

2hf̄f . (B.52)

We see that now with a Wilson coefficient CY , the parameter-fixing observable m̂f

becomes

m̂f =
1√
2
Yfv

(
1− 1

2
v2CY

)
. (B.53)

With this, we can compute the fermion amplitude as

iMhff̄ = R
1/2
h

[
−i 1√

2
Yf

(
1− 3

2
v2CY

)]
= −iR1/2

h

m̂f

v

(
1− v2CY

)
= −im̂f

√√
2ĜF

(
1− v2CY

)
. (B.54)
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Note that in getting the second line, we have used the fact that the ratio R1/2
h

1
v
is

unmodified by QR, as we have seen in B.50. This manifests our general argument

that QR would not modify iMhff̄ .

Finally, using B.51 and B.54 with CR = 2CH� and CY = −CH�, we get

iMhWW = 2m̂2
W

√√
2ĜF

(
1 +

1

2
v2CR

)
= 2m̂2

W

√√
2ĜF

(
1 + v2CH�

)
, (B.55a)

iMhZZ = 2m̂2
Z

√√
2ĜF

(
1 +

1

2
v2CR

)
= 2m̂2

Z

√√
2ĜF

(
1 + v2CH�

)
, (B.55b)

iMhff̄ = −im̂f

√√
2ĜF

(
1− v2CY

)
= −im̂f

√√
2ĜF

(
1 + v2CH�

)
. (B.55c)

Clearly, these agree with the Warsaw basis results we obtained in B.45.
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