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Though DNA contains our genes, the expression of genes varies during 

development and across different cellular conditions. Gene expression can be regulated 

by the post-translational protein modification of chromatin, such as the trimethylation of

lysine 27 of histone 3 (H3K27me3). This mark, catalytically deposited by the protein 

complex Polycomb Repressive Complex 2 (PRC2), represses associated genes. Such 

repression is crucial for establishing gene expression patterns for proper development, 

and aberrant activity of PRC2 can cause disease, such as cancer. Here I present 

Neurospora crassa as a model organism for studying the repressive effects of PRC2, 

independent of its catalytic mark, H3K27me3. I generated a catalytically inactive SET-

7, the catalytic component of PRC2 in N. crassa, demonstrating that elimination of 

H3K27me3 is sufficient to depress genes it normally marks despite the physical 

presence of PRC2. I further show that, in contrast to SET-7 knockout, catalytic 

inactivation of SET-7 does not alter the stability of PRC2. Moreover, catalytic 

inactivation of SET-7 enriches a higher molecular weight form of the core PRC2 

member SUZ12. Overall, this work indicates that the physical form of PRC2 in itself 

does not act repressively and suggests that studies focusing on its repressive effects 

should consider that methods of H3K27me3 elimination, either knockout or catalytic 

inactivation, differentially affect PRC2 complex stability. 
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Introduction

DNA Packaging and Epigenetics

Similarly to how a cookbook contains a complete set of recipes, each cell’s 

DNA contains the complete set of genomic instructions necessary for life. However, we

only prepare a few recipes from a cookbook at a time, akin to how different cells from 

different tissues require only a subset of genes to be active at a given time. Cells must 

therefore find ways to regulate patterns of gene expression while packaging DNA into a

compact form within the nucleus.1A mechanism of regulating gene expression and 

compacting DNA is the evolution of nucleosomes in eukaryotes. Strands of DNA wrap 

around a core of histone proteins, and DNA-histone bundles form nucleosomes (Fig. 

1A).2 Nucleosomes, along with other molecules, bundle to form chromatin, and this 

compaction affects DNA accessibility and thus gene expression (Fig. 1B).2 Epigenetic 

modifications, ones that are associated with heritable and semi-heritable changes in 

gene expression, can alter the organizational structure of chromatin and thus change 

gene expression. One type of an epigenetic modification is the addition of various 

chemical groups to the histones within nucleosomes, and this significantly affects the 

expression of the underlying DNA.2-5
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Figure 1. The structure of nucleosomes and chromatin. (A) DNA wraps around a histone core, forming a 

nucleosome. The 10 nm chromatin filament represents a less compact, and thus more accessible, form of 

chromatin. (B) Different forms of nucleosome bundling affect DNA accessibility through compaction of 

chromatin structure. Greater bundling, such as in the 30 nm fiber, is associated with decreased DNA 

accessibility.2 Figure adapted from Gross et al., 2015.1

Gene Repression by PRC2 and H3K27me3

An important example of this type of modification is methylation of the amino 

acid lysine (K) 27 of histone H3 (H3K27me), a widely conserved mark.7 Lysines are 

able to bear up to three methyl groups simultaneously, and all three forms (mono- 

(H3K27me1), di- (H3K27me2), and trimethylation (H3K27me3)) are thought to be 

biologically significant.6 Repression by H3K27me1 is associated with regions of active 

gene transcription, whereas H3K27me2 is thought to act as a “placeholder” before 

H3K27me3 in embryonic stem cells, preventing other forms of post-translational 

modifications.6 Trimethylation of H3K27 (H3K27me3) is a repressive mark that is 

critical for embryonic development and is involved in the silencing of associated 
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genes.4, 7 H3K27me3 is thought to act repressively by serving as a docking site for 

effector proteins.1

Polycomb Repressive Complex 2 (PRC2) catalyzes the deposition of 

H3K27me3 and localizes to the promoters of lowly transcribed and inactive genes (Fig. 

2).7-9 This complex exhibits greater activity in regions of dense oligonucleosomes in 

vitro, suggesting that it localizes to compact chromatin states and contributes to gene 

inactivation.10

PRC2 has three core components: EZH2 (SET-7 in N. crassa), EED, and 

SUZ12, all of which are conserved and crucial for establishing H3K27me3 patterns 

genome-wide (Fig. 2).4, 7 EZH2 contains a conserved catalytic SET domain that 

transfers methyl groups to lysine 27 of histone H3, depositing the repressive mark.4, 7 

Two characteristic regions in the SET domain are the AdoMet binding pocket and the 

target tyrosine residue adjacent to the F/Y switch.4 The AdoMet binding pocket contains

the methyl group to be transferred to the histone during methylation, and the target 

tyrosine residue coordinates the target lysine to receive methylation.3, 4 Although contact

with SUZ12 and EED are important for PRC2 recruitment, stability, and activity,9, 11 the 

SET domain only minimally requires EED and the VEFS domain (the domain that 

binds EZH2) of SUZ12 for catalytic activity.12 However, the association between each 

of these subunits confers stability to the PRC2 complex as a whole,12 and in the absence 

of the other PRC2 core subunits, EZH2 is autoinhibited.9 It has been shown, however, 

that catalytic inactivation of EZH2 maintains PRC2 complex assembly.13 After EZH2 

deposits H3K27me3, EED can bind to the deposited H3K27me3 and induce a 

conformational change in EZH2 that enhances its ability to further deposit H3K27me3, 
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creating feedback mechanism that results in the “spreading” of H3K27me3 to 

neighboring nucleosomes.9 Additionally, the SUZ12 subunit is important to PRC2 

function, as it both stabilizes EZH2 and can be recruited to other target loci.9, 14
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Figure 2. Deposition of H3K27me3 by PRC2 in the fungus Neurospora crassa. Figure was adapted from 

Laugesen et al., 2019.15

These core subunits are not the only subunits associated with PRC2, and studies 

have shown that accessory PRC2 subunits engage in distinct forms of PCR2 complexes,

named PRC2.1 and PRC2.2 (Fig. 3).9, 16 PRC2.1 contains proteins that are thought to be 

involved in localization to particular regions of chromatin, whereas subunits in PRC2.2 

have been shown to catalytically activate, recruit, and possibly stabilize EZH2.9, 11 

Although these forms of PRC2 are distinct, current models support the hypothesis that 

the accessory proteins to PRC2 cooperatively direct H3K27me3.11
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Figure 3. Schematic of two distinct forms of PRC2 complexes, PRC2.1 and PRC2.2.The potential binding

sites for non-core complex members are indicated. EPOP/PALI and PLC1/2/3 are thought to be the 

accessory subunits in PRC2.1, and AEBP2 and JARID2 are thought to be the accessory subunits in 

PRC2.2. Figure was adapted from Laugesen et al., 2019.15

Nevertheless, because PRC2 deposits H3K27me3, it is unclear if H3K27me3 is 

solely responsible for repression, or if the presence of the protein complex also plays a 

repressive role. This project seeks to determine if the physical presence of PRC2 is also 

involved in repression, independent of its catalytic mark.

PRC2 and H3K27me in Development and Disease

Given the importance of PRC2 and H3K27me in gene expression, it is 

unsurprising that these epigenetic factors are implicated in various developmental 

problems and diseases. PRC2 and H3K27me are widely conserved, existing in 

organisms from humans to fungi, indicating the critical role it plays in gene expression.7 

Research in mice has shown that EZH2 regulates growth control for mouse embryonic 
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development, and mutations in EZH2 result in severe impairment of mouse cell 

differentiation.17 Other subunits of PRC2, namely EED and SUZ12, are also critical for 

embryonic development.8, 13 In addition to development, dysfunction of these factors 

also plays a role in cancer etiology, demonstrating their significance for appropriate 

long-term gene expression patterns.7 For example, Diffuse Intrinsic Pontine Glioma is 

an aggressive type of pediatric brainstem tumor associated with a reduction of 

H3K27me3, suggesting abnormal PRC2 activity contributes to cancerous growth.18 

Additionally, dysfunction of the PRC2 subunit of EZH2 is involved in prostate and 

breast cancer.4, 19 Together, the developmental defects and cancerous outcomes for 

dysregulation of PRC2 and H3K27me demonstrate the vital need for further research 

into these epigenetic factors.

Neurospora crassa as a Model Organism

The filamentous fungus Neurospora crassa is a valuable model organism, as it 

grows quickly, contains a small haploid genome, is well defined, and is genetically 

tractable (Fig. 4).20N. crassa hosts a variety of epigenetic modifications and 

mechanisms.21 Similar to other eukaryotic organisms such as mammals, flies, and 

plants, N.crassa contains H3K27me3, and genes with this mark are normally silent.20 

Though the catalytic component of PRC2 in N. crassa is SET-7, this protein behaves 

like EZH2 in other organisms, and both can be considered equivalent. SET-7, like 

EHZ2 in animals, contains the SET domain that transfers methyl groups to specific 

lysine residues.4, 7 Although disruptions to PRC2 and H3K27me in other organisms lead 

to developmental defects, interestingly, these epigenetic factors are dispensable for 
6



normal growth and developmentin N. crassa.7 Thus, N. crassa is well suited for 

studying PRC2 and its catalytic mark, as others have shown,5as these epigenetic factors 

may be altered or removed to study resulting changes without killing the organism.

Figure 4. Images of Neurospora crassa. (A) Wild growth on sugarcane. (B) Laboratory growth in slants. 

Figures were adopted from Aramayo and Selker, 2013.20

Current Understanding of PRC2 and H3K27me3 Repression

Although it is currently understood that H3K27me3 is a repressive mark 

deposited by PRC2, much remains unknown about the repressive mechanism of this 

complex and its mark. The different methylation states of H3K27 are associated with 

different patterns in gene expression.8 Furthermore, the ways in which different histone 

modifications influence each other and gene expression remain active points of 

research.2, 22 For example, it was recently discovered that PRC2 has a “sensing pocket” 

that recognizes the unmodified histone H3 lysine 36 (H3K36) residue,23 demonstrating 

interactions between PRC2 and histone residues. Methylation of H3K36 is normally 

associated with active transcription, but it has been found to localize near H3K27me3 at

poorly transcribed genes, further indicating the complex interplay between histone 

modifications and gene expression.2, 24 Although H3K27me3 is associated with silenced 
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genes, a “reader” of H3K27me3 in N. crassa has been shown to act repressively, 

suggesting that H3K27me3 alone does not repress genes.25

Thus, a gap in understanding remains regarding the role of the physical complex

of PRC2 in gene repression, independent of its catalytic mark. My project therefore 

seeks to investigate the individual contributions of H3K27me3 and the PRC2 complex 

in gene repression. By inactivating SET-7, the catalytic component of PRC2 in N. 

crassa, I sought to eliminate H3K27me3 but retain the physical integrity of PRC2. This 

allowed to me differentiate between PRC2 and its catalytic mark and gain 

understanding of the role PRC2 may play in gene repression, independent of this mark. 

I divided this researchinto three primary objectives.

Objective 1: Mutant Construction to Eliminate H3K27me3

To eliminate the deposition of H3K27me3 by PRC2, conserved residues in SET-

7 predicted to be essential for catalysis were substituted with biochemically similar 

amino acids that would eliminate catalytic activity. The amino acid tyrosine (Y) 

contains a phenol group in its sidechain, and Y833 of the SET domain is conserved 

throughout animals and other fungi. Y833 coordinates the target lysine of histone H3 

through hydrogen bonds between the target lysine and the hydroxyl group of the 

tyrosine sidechain (Fig. 5A).4 By substituting this tyrosine with a phenylalanine (F) 

amino acid (Y833F), which is similar in size but lacking the hydroxyl group, I aimed to 

eliminate the coordinating activity of Y833.

An additional catalytic mutation was made at histidine (H) 791 of SET-7. H791 

is crucial to the pseudoknot fold of the SET domain, forming an active site adjacent to 
8



where the methyl donor binds, allowing for methylation of the histone substrate (Fig. 

5B).4 Destruction of the pseudoknot fold has been shown to eliminate methyltransferase 

activity in human cells.4 A similar strategy was employed in N. crassa by substituting 

the catalytically important histidine with an alanine residue, thereby decreasing the size 

and eliminating possible hydrogen bonds.
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Figure 5. The conserved catalytic SET domain.Residues and their hydrogen bond interactions 

are outlined in yellow. (A) The conserved tyrosine residue interacting with a lysine residue on the tail of 

histone H3. (B) The conserved histidine residue interacting with the AdoMet methyl donor. Figure was 

adapted from Dillon et al., 2005.4

One additional SET-7 mutant was constructed to investigate the relative 

importance of the C-terminus of SET-7. Sequence alignments of SET-7 between model 

organisms revealed a large unconserved C-terminal extension in N. crassa SET-7 (Fig. 
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6). To study the possible role this C-terminal extension might play in SET-7 activity, 

SET-7 was truncated at residue 853, after the SET domain. 

Figure 6. Schematic of SET-7 orthologs. Red regions denote the conserved SET 

domain.

Objective 2: Assess Repression in SET-7 Mutants

To differentiate between the potential individual contributions of H3K27me3 

and PRC2 outside of catalysis in repression, expression of genes normally marked by 

H3K27me3 was quantified. Although H3K27me3 is repressive, localization of an 

inactive PRC2 may yet impede transcription by physically blocking transcriptional 

machinery from reaching DNA. Because genes marked by H3K27me3 exhibit basal 

levels of expression, increased levels of expression in a catalytic-null SET-7 

background would indicate that the structure of PRC2 does not act repressively. No 

change in expression despite the mutant background, however, would indicate that 

another factor, such as PRC2, is acting to repress genes despite the absence of 

H3K27me3.  
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Objective 3: Assess PRC2 Complex Assembly with Mutant SET-7

Testing my research hypothesis required an evaluation of the complex stability 

of PRC2 when SET-7 is catalytically inactivated. Previous research showed that point 

mutations to this catalytic component do not alter interactions of other PRC2 subunits,26 

demonstrating that inactivation of the methyltransferase does not disrupt complex 

assembly. Identification of changes in PRC2 complex assembly through assessment of 

PRC2 core subunit protein levels could be used as an indicator of complex assembly. 

Loss of subunit protein levels, detected by immunoblot signal intensity, would suggest 

degradation of PRC2 subunits leading to complex instability. 
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Results

Catalytic-null SET-7 mutations eliminates H3K27me3

In order to eliminate H3K27me3 while maintaining the structure of SET-7, I 

engineered two catalytic-null set-7 mutant strains of N. crassa. Each strain contained a 

point mutation in the SET domain, which is critical for SET-7 methyltransferase 

activity.4 One mutation was engineered to change a conserved histidine residue of the 

AdoMet binding pocket of the SET domain into an alanine (H791A) (Fig. 7A). This 

mutation is predicted to affect SET domain capability to transfer methyl groups on to 

histone substrate.4 The second mutation targeted Y833, the tyrosine residue adjacent to 

the F/Y switch of the SET domain (Fig. 7A). This tyrosine coordinates the target lysine 

to receive methylation, and mutation of this residue to a phenylalanine (Y833F) likely 

removes the coordinating hydrogen bond.2, 4 I confirmed and validated these mutant 

strains by Sanger sequencing and western blot analysis. Both mutations eliminated 

H3K27me3, phenocopying a ∆set-7 strain (Fig. 7B). These data demonstrate that 

Y833F and H791A mutations catalytically inactivate SET-7.

SET-7 C-terminus is not required for H3K27me3

To explore the functional importance of regions besides the SET domain, I 

truncated the C-terminus of SET-7 at residue 853, removing a segment of the 

methyltransferase immediately following the evolutionary conserved SET domain. 

Western blot analysis revealed retention of H3K27me3 in set-71-853 strains, suggesting 

that the C-terminus of set-7 is dispensable for H3K27me3 deposition in N. crassa (Fig. 
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7B). In contrast to the wild-type truncation, strains containing both the truncation and 

catalytic mutation exhibited a loss of H3K27me3, identical to ∆set-7strains (Fig. 7B). 

Together, these results indicate that the SET domain, but not the C-terminus, is required

for deposition of H3K27me3.

Figure 7: Mutation, but not truncation, of SET-7 results in loss of H3K27me3. (A) Sequence alignment of

the SET domain of SET-7 orthologs containing the AdoMet histidine (H791) and target tyrosine (Y833). 

(B) Western blot analysis for H3K27me3 in engineered mutant strains, with total protein loaded 

visualized by exposure to UV light. 

Catalytic-inactivation of SET-7 derepresses an H3K27me3-marked gene

To investigate if the loss of SET-7 catalytic activity alone derepresses genes 

marked by H3K27me3, I tested for increases in expression of genes silenced by 

H3K27me3.27 The gene NCU07152 is marked by H3K27me3 and is silent under normal 

conditions.28 Dr. Elizabeth Wiles, of the Selker group, replaced this gene with nat-1, 

which provides resistance to the antibiotic nourseothricin. Sensitivity to nourseothricin 
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would demonstrate maintenance of nat-1 silencing, whereas growth in the presence of 

nourseothricin would indicate derepression of H3K27me3-marked nat-1. The presence 

of nat-1 in a wild-type background or catalytic-null set-7 alone does not allow for 

growth. However, sibling set-7Y833F strains robustly grew on nourseothricin, identical to 

∆set-7 strains (Fig. 8A). This demonstrates that elimination of H3K27me3 alone leads 

to derepression of an H3K27me3-marked gene, even with the presence of SET-7.

To determine if changes in gene expression generally occurred in other genes 

marked by H3K27me3, I performed reverse transcriptase quantitative PCR (RT-qPCR) 

in set-7 siblings on three additional genes repressed by SET-7. I found that the 

expression of H3K27me3-marked genes consistently increased in set-7Y833Fand ∆set-7 

strains. The expression of NCU05173 increased by 213% relative to wild type in set-

7Y833F strains and by 231% in set-71-853; Y833Fstrains (Fig. 8B). These increases in gene 

expression exceed that observed in ∆set-7 strains, which displayed an increase in 

expression of NCU05173 of 143% relative to wild type. I observed similar increases in 

expression for NCU07152, with set-7Y833F exhibiting a 665% increase, set-71-853; Y833F 

exhibiting a 431% increase, and ∆set-7 exhibiting a 224% increase relative to wild type.

However, there were only modest increases in expression of NCU09640: the set-7Y833F 

mutation increased expression by 3.01%, set-71-853; Y833Fby 4.58%, and ∆set-7 by 2.52% 

relative to wild type. Truncated SET-7 only slightly increased NCU05173, NCU07152, 

and NCU07624 expression (Fig. 8B), consistent with the retention of H3K27me3 in this

strain (Fig. 8B). Interestingly, in NCU07624, this increase of expression was greater 

than in any mutant set-7 strain, with an 8.93% increase compared to the 6.23% increase 

of ∆set-7 strains, 7.48% of set-7Y833Fstrains, and 8.28% increase of set-71-853; Y833Fstrains. 
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In contrast, truncated set-7 did not increase the expression of NCU09640, with 0.386% 

decreased expression of this gene. Altogether, these data demonstrate a general increase

of expression of H3K27me3-silenced genes when SET-7 is inactivated.

Figure 8: Catalytic-inactivation of SET-7 derepresses H3K27me-3 marked genes. (A) Serial dilution spot 

test silencing assay for the indicated strains on the indicated media. (B) RT-qPCR results for the indicated

genes, normally repressed by SET-7 activity. Duplicate bars represent duplicate samples of the indicated 

strains.
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Mutant set-7 retains levels of EED while ∆set-7 decreases EED levels

To investigate the potential effects of the catalytic-null SET-7 on PRC2 complex

assembly, I assessed the stability of other core PRC2 components, EED and SUZ12, 

through western blot analysis. Loss of core members could indicate protein instability 

and faulty PRC2 complex assembly.13 Strains containing C-terminal 3xFLAG-tagged 

EED in either a ∆set-7 or set-7Y833F background were assessed by western analysis, 

immunoblotting for enrichment of EED-3xFLAG (Fig.9A). The relative intensities of 

the EED bands were calculated by normalizing intensity to PGK1 levels (a loading 

control). Control strains without the FLAG tag showed only background signal 

intensity. Interestingly, set-7Y833Fretained EED levels, with a 10.5% increase in EED 

signal intensity. In contrast, ∆set-7 showed a 26.5% reduction in EED (Fig. 9B). This 

suggests that the presence of SET-7 maintains EED stability, even with the loss of 

catalytic activity.
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Figure 9: Catalytic-inactivation of SET-7 retained levels of EED. (A) Western blot analysis of the 

indicated N. crassa strains, probing for levels of EED::3xFLAG and PGK1, a housekeeping gene. (B) 

Quantification of relative band intensity of indicated N. crassa strains from Figure 7A, normalized to 

PGK1 levels. “a.u.” indicates arbitrary units. Duplicates were averaged and the intensity of the wild type 

average was set to 1. 

Mutant SET-7 increases levels of higher molecular weight SUZ12 but decreases 

levels of lower molecular weight SUZ12

I further analyzed PRC2 stability by assessing levels of SUZ12 in mutant set-7 

and ∆set-7 backgrounds. Strains with C-terminally tagged suz12 in either ∆set-7 or set-

7Y833F backgrounds were assessed by western blot analysis in duplicate, probing for 
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levels of SUZ12::3xFLAG (Fig. 10A). Wild-type SUZ12 exhibits two molecular weight

bands, of sizes near 97 kDa. I found that the presence of set-7Y833For ∆set-7 enriched the 

higher molecular weight band of SUZ12 but depleted the lower molecular weight band. 

The relative intensities of the SUZ12 bands were calculated by normalizing intensity of 

SUZ12 bands to PGK1levels. The intensity of the higher molecular weight band of 

SUZ12::3xFLAG in set-7Y833F was 3.98-fold greater than the intensity of suz12, 

indicating enrichment of this form of SUZ12. Such enrichment also occurred in ∆set-7, 

although to a lesser extent than the mutant methyltransferase, with 1.66-fold greater 

intensity (Fig. 10B). 

Comparison of ratios of signal intensity between the bands of SUZ12 also 

revealed that the higher molecular weight band of SUZ12 became similarly enriched in 

both ∆set-7 and set-7Y833F strains. The signal intensity ratio of higher molecular weight 

marker/lower molecular weight marker was 0.375, 2.09, and 1.80 in wild type, ∆set-7, 

and set-7Y833F strains, respectively (Fig. 10C). Wild type SUZ12 exhibited a greater 

signal intensity for the lower molecular weight band, as this lower band’s intensity was 

2.66-fold greater than the higher band (Fig. 10B). In contrast, ∆set-7 and set-7Y833F 

strains exhibited a greater signal intensity for the higher molecular weight band of 

SUZ12 than the lower band, resulting in a greater ratio of higher molecular weight 

marker/lower molecular weight marker signal intensity (Fig. 10C). However, compared 

to wild type, the total SUZ12 intensity was not maintained in the ∆set-7 and set-7Y833F 

strains. Wild type strains exhibited a total SUZ12 signal intensity of 1.51 a.u., whereas 

∆set-7 and set-7Y833F strains exhibitedtotal intensities of 1.02a.u. and 2.56 a.u., 

respectively (Fig. 10C). This resulted in a 32.8% decrease in total SUZ12 intensity in 
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∆set-7 strains but a 169% increase in signal in set-7Y833F strains (Fig. 10C). Thus, the 

change in signal intensity ratio, though similar for ∆set-7 and set-7Y833F strains, resulted 

from differing changes in signal intensity of each SUZ12 band. Whereas the signal of 

the lower molecular weight band of SUZ12 in set-7Y833F strains slightly decreased, with 

17.0% decreased intensity of set-7Y833F SUZ12 compared to wild type, ∆set-7 exhibited 

far greater reduction in intensity of SUZ12, with a 70.0% reduction. In summary, these 

data suggest that alteration of set-7 affects the stability of SUZ12. Mutation of set-7 

enriches the higher molecular weight band of SUZ12, yet the elimination of set-7 

greatly reduces the quantity of lower molecular weight SUZ12 compared to mutated 

set-7. 
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Figure 10: Catalytic-inactivation of SET-7 increasedlevels of higher molecular weight SUZ12 and 

reducedlevels of lower molecular weight SUZ12. (A) Western blot analysis of the indicated N. crassa 

strains, probing for levels of SUZ12::FLAG and PGK1, a housekeeping gene. * indicates a nonspecific 

band. (B) The relative intensity of the higher molecular weight SUZ12 band in indicated strains, 

normalized to PGK1. “a.u.” indicates arbitrary units. Duplicates were averaged, and the intensity of the 

wild-type average was set to 1. (C) The normalized signal of each SUZ12 band in the indicated samples, 

as well as the sum of signal intensity and ratio of signal intensity between the high and low molecular 

weight bands of SUZ12.
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Discussion

Although it is well-established that H3K27me3 is a repressive mark deposited 

by SET-7,7  previous methods for studying H3K27me3 through ezh2/set-7 knockouts 

introduced two variables that could influence PRC2-mediated repression: elimination of

H3K27me3 and potential destabilization of PRC2. Though it is known that SET domain

knockouts can destabilize PRC2 complex member associations in mouse embryonic 

stem cells,29 the effect of a set-7 knockout compared to a catalytically-inactiveset-7 on 

complex stability and gene repressionrequires further investigation. Here, I have 

characterized how catalytic-inactivation of the H3K27 methyltransferase affects gene 

repression and PRC2 complex stability in N. crassa. 

An important conclusion of this work is that PRC2 does not repress genes 

independently of its catalytic mark, H3K27me3. Consistent with other work,2 the loss of

methyltransferase activity through mutations to the SET domain eliminated H3K27me3.

This loss is sufficient to derepress genes marked by H3K27me3, suggesting that the 

presence of PRC2 alone is insufficient for repression. Western blot analysis of core 

PRC2 components, EED and SUZ12, suggested that loss of set-7 destabilizes PRC2, 

whereas catalytic inactivation of the methyltransferase maintains the complex. Loss of 

set-7 reduced the signal intensity of EED by 26.5% and reduced the total SUZ12 signal 

by 32.8%, indicating that ∆set-7 destabilizes PRC2. Destabilization of PRC2 through 

deletion of set-7 is consistent with previous research in mouse embryonic stem cells,29 

and thus, it is unsurprising that ∆set-7 strains exhibit reduced immunoblot intensity of 

PRC2 core components (Fig. 9A and Fig 10A). In contrast, set-7Y833F retained EED 

levels, suggesting that the presence of SET-7 is sufficient to maintain EED stability. 
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Moreover, catalytic-null set-7 increased the total signal intensity of SUZ12 by 169%, 

with an enrichment in the higher molecular weight form SUZ12. Thus, it appears more 

likely that catalytic-null set-7 maintains the stability of PRC2 while favoring the higher 

molecular weight form of SUZ12. 

It would be interesting to investigate why catalytic-null set-7enriches this higher

molecular weight SUZ12 form. While further research into the functional importance of

the differently sized SUZ12 proteins is necessary, it is possible that suz12 contains two 

transcriptional start sites, and each of the SUZ12 molecular weight bands correspond to 

two different sizes of SUZ12 protein. It is known that the N-terminus of SUZ12 binds 

the target regions for PRC2 and localizes PRC2 to correct genomic loci,29 yet it remains 

unknown if a different isoform of SUZ12 is involvedin this localization. The case could 

be such that deletion of set-7 destabilizes all forms of SUZ12, whereas loss of 

H3K27me3 but retention of SET-7 enriches the higher molecular weight form of 

SUZ12, which may be present in only a subset of PRC2 complexes. Another possible 

explanation may be that suz12 is alternatively spliced, with variation in forms 

depending on the H3K27 methylation state. The suz12 gene is also marked by 

H3K27me3 (W. Storck, personal communication), and perhaps the presence of 

H3K27me3 facilitates the production of the lower molecular weight SUZ12 by the 

alternative splicing of suz12. Lastly, SUZ12 could preferentially receive post-

translational modifications of mutant set-7 strains that increase the apparent weight of 

its molecular weight band. The existence of these two forms of SUZ12 could be 

evaluated by comparing mass spectrometry samples of each form to their predicted 

protein size, based on possible alternative splicing patterns and start codons for SUZ12. 

22



Additional research into these forms of SUZ12 could help illuminate the mechanisms of

PRC2 localization and complex forms.

Further steps in this inquiry are necessary to elucidate the interplay between 

catalytic-nullSET-7 and PRC2 subunits. Co-immunoprecipitation between EED and 

SUZ12, a method to determine if the two proteins bind to each other, in ∆set-7 and 

catalytic-null set-7 backgrounds could further demonstrate PRC2 complex stability if 

the proteins retain normal binding, despite a mutant background. Additionally, 

chromatin-immunoprecipitation with mutant SET-7, EED, and SUZ12 may reveal if the

methyltransferase and other PRC2 subunits interact with normal target genomic regions,

indicating that the catalytic-null PRC2 complex correctly localizes despite loss of 

methyltransferase activity.

Although catalytic-null set-7 derepresses H3K27me3-marked genes similarly to 

∆set-7-induced derepression, my results indicate that studies involving H3K27me3 

should take care in eliminating this catalytic mark. Because catalytic-null set-7 appears 

to alter PRC2 by enriching the larger molecular weight form of SUZ12 and loss of SET-

7 destabilizes the entire complex, elimination of H3K27me3 by set-7 deletion or set-7 

mutation will have different effects on PRC2 stability. Importantly, my research 

suggests that catalytic-inactivation of set-7 may be a better model for eliminating 

H3K27me3 than deletion of set-7, as the mutation of the methyltransferase does not 

decrease PRC2 stability as severely as ∆set-7.  
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Materials and Methods

N. crassa strains, media, and growth conditions

Table 1 lists the N. crassa strains used in this study. N. crassa strains were 

grown, maintained, and crossed according to standard procedures.30, 31 Spot tests of N. 

crassa strains, to verify genotype and to assess changes in gene expression, were 

performed at 32˚C on Vogel’s minimal medium with 0.8% sorbose, 0.2% fructose, and 

0.2% glucose (FGS) medium plates for 3 days.30 When tests included antibiotic 

resistance, plates also included 200 µg/mL Hygromycin B Gold (InvivoGen), 133 

µg/mL Nourseothricin (Gold Biotechnology), or 10 µg/mL glufosinate ammonium 

(Bayer) as appropriate.25 The methods for isolating genomic DNA were performed as 

previously described.32

Endogenous C-terminal-tagging of SET-7 with 3xFLAG::hph

The 3’ end of the set-7 ORF was PCR-amplified from wild-type genomic DNA 

using primers 4108 and 4109, and the set-7 3’ flank was PCR-amplified from wild-type 

genomic DNA using primers 4110 and 4111. The set-7 ORF PCR-product and the set-7 

3’ flank PCR product were separately stitched to plasmid 2409 (source of 

3xFLAG::hph) via PCR, using primers 4108 and 2955, and 2954 and 4111, 

respectively. The resulting two “split-marker” PCR products were co-transformed into 

N2931 and transformants containing mutant set-7::3xFLAG::hph constructs were 

selected on hygromycin-containing medium. 
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Site-directed mutagenesis

To generate a mutant H791 SET-7 retaining amino acids 1-853, the 5’ (upstream

region) and 3’ (downstream region) mutant flanks were PCR-amplified from wild-type 

genomic DNA using primer pairs 6469 and 6562 (5’) and 6561 and 6470 (3’) (see Table

2). The 5’ and 3’ flanks were PCR-stitched together using primers 6469 and 6470. To 

add 3xFLAG::hph, the mutant fragment was PCR-stitched to plasmid 2409 (source of 

3xFLAG::hph, see Table 3) using primers 6469 and 2955. To add the set-7 3’ UTR to 

the mutant fragment, the 3’ UTR mutant flank of set-7 was PCR-amplified using 

primers 6561 and 4109. The 3’ mutant flank and mutant fragment were PCR-stitched 

together using primers 6469 and 4109. To extend the complete mutant construct, the 

construct was PCR-stitched to plasmid 2409 using primers 6469 and 2955. The 3’set-7 

UTR was PCR-amplified from wild-type genomic DNA with primers 4110 and 4111. 

This PCR product was PCR-stitched to plasmid 2409 to generate a 3xFLAG::hphset-7 

3’ UTR construct. This split-marker PCR product was co-transformed with the mutant 

set-7 fragment into strain N2931 and mutant set-7::3xFLAG::hph constructs were 

selected on hygromycin-containing medium. The co-transformation and selection were 

also performed with the mutant C-terminally truncated set-7 fragment. set-71-853, H791A 

primary transformants were confirmed by Sanger sequencing using primers 6469, 2955,

and 5611 to verify that H791 was mutated. set-71-853, H791A primary transformants were 

then crossed to N3752 to generate N8177 and N8178. set-71-853 primary transformants 

were crossed to N3751 to generate N8157 and N8158. set-7H791A primary transformants 

were subjected to Sanger sequencing using primers 6469, 2955, and 1231 to verify that 
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H791 was mutated. set-7H791A primary transformants were then crossed to N3752 to 

generate N8163 and N8164. 

To generate a mutant C-terminally truncated set-7 fragment retain amino acids 

1-853, the 5’ (upstream region) and 3’ (downstream region) mutant flanks were PCR-

amplified from wild-type genomic DNA using primer pairs 6469 and 6564 (5’) and 

6563 and 6470 (3’). The 5’ and 3’ flanks were PCR-stitched together using primers 

6469 and 6470. To add 3xFLAG::hph, the mutant fragment was PCR-stitched to 

plasmid 2409 (source of 3xFLAG::hph) using primer pairs 6469 and 2955. To generate 

a mutant set-7 fragment, 3’ UTR mutant flank of set-7 was PCR-amplified using 

primers 6563 and 4109. The 3’ mutant flank and mutant fragment were PCR-stitched 

together using primer pairs 6469 and 4109. To add the 3xFLAG::hph epitope, the 

mutant fragment was PCR-stitched to plasmid 2409 using primers 6469 and 2955. The 

3’set-7 UTR was PCR-amplified from wild-type genomic DNA with primers 4110 and 

4111. This PCR product was PCR-stitched to plasmid 2409 to generate a 

3xFLAG::hphset-7 3’ UTR construct. This “split-marker” PCR product was co-

transformed with the mutant set-7 fragment into strain N2931 and transformants 

containing mutant set-7::3xFLAG::hph constructs were selected on Hygromycin-

containing medium. The co-transformation and selection were also performed with the 

mutant C-terminally truncated set-7 fragment. set-71-853, Y833F primary transformants were 

confirmed by Sanger sequencing using primers 6469, 2955, and 5611 to verify that 

Y833 was mutated. set-71-853, Y833F primary transformants were then crossed to N3752 to 

generate N8159 and N8160. set-7Y833F primary transformants were subjected to Sanger 
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sequencing using primers 6469, 6491, and 1231 to verify that Y833 was mutated.set-

7Y833F primary transformants were then crossed to N3752 to generate N8161 and N8162. 

Transformation into N. crassa

To integrate the set-7::3xFLAG::hph construct into the set-7 locus in N. crassa, 

the N2931 strain was electroporated, and the sequence was inserted by subsequent 

homologous recombination.33 To select for growth of the correct progeny, transformed 

conidia were plated on hygromycin-containing medium, then incubated at 32ºC for 3 

days. Twenty transformants from each construct were randomly selected, and correct 

integration was validated by Southern analysis. 

Southern analysis of genotype

Methods for isolation of genomic DNA and Southern hybridization were 

employed as previously described.34 Progeny containing the set-7::3xFLAG::hph, 

suz12::3xFLAG::hph, and eed::3xFLAG::hph markers were identified by Southern 

analysis. Genomic DNA samples were digested with EcoRV-HF restriction enzyme 

(New England Biolabs) overnight at 37˚C with 2 µg of genomic DNA and 40 units of 

EcoRV restriction enzyme. Digested DNA was visualized with an hph probe labeled 

with 32P. Probes were constructed from genomic DNA by PCR, with primer pairs 2954 

and 397 (Table 4). Due to differential EcoRV-HF cut sites in set-7, suz12, and eed, the 

presence of the hph markers in progeny were distinguishable. 
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Western blotting to detect H3K27me3 and the FLAG epitope

N. crassa conidia were inoculated in Vogel’s minimal medium with 1.5% 

sucrose for 16 hours while shaking at 32˚C. Tissue was collected by and suspended in 

500 μL of ice-cold lysis buffer (50 mM HEPES [pH 7.5], 150 mM NaCl, 10% glycerol, L of ice-cold lysis buffer (50 mM HEPES [pH 7.5], 150 mM NaCl, 10% glycerol, 

0.02% NP-40, 1 mM EDTA) supplemented with 1x HaltTM Protease Inhibitor Cocktail

(Thermo Scientific). Tissue was sonicated (Branson Sonifer-450) for 2 sets of 20 pulses 

(Output = 2, Duty cycle = 80), and the samples rested on ice between sets. Samples 

were centrifuged at 14,000 RPM at 4˚C for 10 minutes to pellet insoluble material, and 

the supernatant used in the western analysis, including appropriate controls of 

housekeeping genes and lysate dilutions.25 Anti-H3K27me3 (Cell Signaling 

Technology, 9733) and anti-PGK (Abcam, ab38007) primary antibodies were used with

IRDye 680RD goat anti-rabbit secondary (LI-COR, 926-68071). Anti-FLAG M2 

Peroxidase (HRP) (Sigma, A8592) primary antibody was used with SuperSignal West 

Femto Maximum Sensitivity Substrate. Images of the western membranes were 

acquired with an Odyssey Fc Imaging System (LI-COR) and analyzed with Image 

Studio software (LI-COR).

RNA Isolation and cDNA Synthesis

Germinated conidia were grown for 16-18 hours and added to a 1:1:1 glass 

beads, NETS (300mM NaCl, 1mM EDTA, 10mM Tris-HCl, 0.2% SDS), acid phenol: 

chloroform (5:1, [pH 4.5]) mixture. RNA was extracted from this mixture using a bead 

beater, and ethanol precipitated the RNA. To remove residual DNA, RNA was treated 

with DNAse I (Amplification grade; Thermo Fischer Scientific). The SuperScript III 
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First Strand-Synthesis System (Thermo Fischer Scientific) with poly-dT primers was 

used to synthesize cDNA. 

Assessment of Repression by Reverse Transcriptase qPCR

The cDNA generated from RNA isolation and cDNA synthesis was used for 

qPCR in a Step One Plus Real Time PCR System (Life Technologies) using the 

PerfCTa SYBR Green FastMix (QuantBio).25 The primer pairs used are described in 

Table 4.  
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Supplementary Information

Table 1. Neurospora crassa strains

Strain Genotype
N2931 mat a; ∆mus52::bar; his-3
N3012 mat a; ∆mus52::bar; his-3
N3752 (FGSC 
2489)

mat A; Oak Ridge

N3753 (FGSC 
4200)

mat a; Oak Ridge

N4666 mat a; suz12::3xFLAG::hph
N4667 mat unknown; suz12::3xFLAG::hph
N4718 mat a, set-7::hph
N4729 mat a; ∆set-7::bar
N4731 mat A, ∆set-7::bar; ∆mus52::hph
N4828 mat a; eed::3xFLAG::hph
N4830 mat A; eed::3xFLAG::hph; ∆mus52::bar
N5808 mat a; NCU07152::nat-1
N5809 mat A; NCU07152::nat-1; ∆set-7::bar
N7949 mat a; NCU05173::hph; NUC07152::nat, his-3, sad-1?, set-

7F247L

N8157 mat A; set-71-853::3xFLAG::hph; ∆mus52::bar

N8158 mat A; set-71-853::3xFLAG::hph; ∆mus52::bar

N8159 mat A; set-71-853; Y833F::3xFLAG::hph; ∆mus52::bar

N8160 mat A; set-71-853; Y833F::3xFLAG::hph; ∆mus52::bar

N8161 mat A; set-7Y833F::3xFLAG::hph; ∆mus52::bar

N8162 mat A; set-7Y833F::3xFLAG::hph

N8163 mat a; set-7H791A::3xFLAG::hph; ∆mus52::bar?

N8164 mat a; set-7H791A::3xFLAG::hph; ∆mus52::bar?

N8165 mat A; set-7Y833F::3xFLAG::hph

N8166 mat A; set-7Y833F::3xFLAG::hph; NCU07152::nat-1

N8167 mat A; set-7Y833F::3xFLAG::hph; NCU07152::nat-1

N8168 mat A; set-7Y833F::3xFLAG::hph; NCU07152::nat-1

N8169 eed::3xFLAG::hph; ∆set-7::bar
N8170 eed::3xFLAG::hph; ∆set-7::bar; ∆mus52::bar
N8171 mat A; suz12::3xFLAG::hph; ∆set-7::bar
N8172 mat a; suz12::3xFLAG::hph; ∆set-7::bar
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N8173 mat a; eed::3xFLAG::hph; set-7Y833F::3xFLAG::hph; 
∆mus52::bar

N8174 mat a; eed::3xFLAG::hph, set-7Y833F::3xFLAG::hph

N8175 mat A; suz12::3xFLAG::hph; set-7Y833F::3xFLAG::hph

N8176 mat A; suz12::3xFLAG::hph; set-7Y833F::3xFLAG::hph

N8177 mat A; set-71-835; H791A::3xFLAG::hph; ∆mus52::bar

N8178 mat A; set-71-835; H791A::3xFLAG::hph

Table 2: Primers for set-7 truncation and catalytic-null constructs

Primer Description Sequence (5'->3')
4108 set-7_ORF_FP GCCAACTTCCAGCCTTTCAC
4109 set-7_ORF_RP CTCCTCCTCGTTCCGATATC
4110 set-7_3'UTR_FP GTATTTGACTCGTGATTCTAGATATC
4111 set-7_3'UTR_RP GCATCACCCACTACACGACA
2955 hph_RP TCGCCTCGCTCCAGTCAATGACC
2954 hph_FP AAAAAGCCTGAACTCACCGCGACG
6469 set-7_ORF_FP CTCAAGGCTCAATGCGTGGT
6470 set-71-

853_OFR_RP
CCTCCGCCTCCGCCTCCGCCGCCTCCGCCCGC
CATC

6562 set-7H791A_RP TTCCGAGGCAGCGTTGATGTACC

6561 set-7H791A_FP GGTACATCAACGCTGCCTCGGAA

6564 set-7Y833F_RP GTTGTCGCCGAAGTTGAAGAAGAGC 

6563 set-7Y833F_FP GCTCTTCTTCAACTTCGGCGACAAC

5611 hph_nat-1_RP GCTCCAGCCAAGCCCAAAAAA
1231 set-7_ORF_FP GTGGTATGCAAGGGATGTGGAGCG

Table 3: Plasmid for insertion of 3xFLAG::hph cassette

Plasmid Description

2409 3xFLAG::hph

Table 4: Primers for Southern Analysis Genotyping

Primer Description Sequence (5'->3')
397 hph_RP CGACGTCTGTCGAGAAGTT
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2954 hph_FP AAAAAGCCTGAACTCACCGCGACG

Table 5: Primers for RT-qPCR

Prime
r

Description Sequence (5'->3')

3209 NCU04173_Actin_RTqPCR_F
P

AATGGGTCGGGTATGTGCAA

3210 NCU04173_Actin_RTqPCR_R
P

CTTCTGGCCCATACCGATCAT

6581 NCU05173_RTqPCR_FP CGAGTGTGTTGGACCTGACG

6568 NCU05173_RTqPCR_RP CCTGTTCGAGTTATCGGTGTTG

6583 NCU07152_RTqPCR_FP GGTGACCCCAAACCTTATGTCGC
6584 NCU07152_RTqPCR_RP GGCTCGAATCTGCCTCCAGC

6615 NCU07624_RTqPCR_FP CCCAGGGGCGACAAGCAACC

6616 NCU07624_RTqPCR_RP CAGAAATCATGTCAGCGCGTATGC

6613 NCU09640_RTqPCR_FP CTCGTCTTTTATCTTGCACTTTACTT
CC

6614 NCU09640_RTqPCR_RP GCCAAAATGTGGTGATGAGCC

6271 NCU02840_RTqPCR_FP CCCTCTCAGACGAGGATATTCA
6272 NCU02840_RTqPCR_RP GCTCTGCTGCTTCTCCTTTAT
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Glossary

Alternative splicing: the process in which a single gene can code for different proteins 

via differential expression of regions of the gene 

Amino acids: molecules that are the building blocks of proteins. Lysine is the notable 

amino acid to this research

Chromatin: bundled nucleosomes, consisting of DNA and proteins 

Conidia: asexual fungal spore

C-terminus: the end of an amino acid chain (polypeptide), terminating with a carboxyl 

(-COOH) group 

Epigenetics: the study of heritable and semi-heritable changes in gene expression 

Epitope: the part of an antigen protein to which an antibody binds

Heterochromatin: densely packed chromatin associated with gene regulation, 

specifically poor gene transcription 

Histone: the proteins DNA wraps around. Histones have “tails” that can be modified, 

and these modifications influence DNA packaging

Homokaryons: common to fungus, the state in which a cell contains multiple, identical

nuclei in the same cytoplasm 

Mass spectrometry: an analytic technique that separates molecules based on mass; this

is useful for identifying the size of a protein or determining protein and molecular 

interactions

Methylation: the addition of a methyl (-CH3) group to an amino acid, such as the 

methylation of lysine 27 of histone H3. One, two, or three methyl groups can be 

deposited, and these marks are associated with gene repression
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Nucleosome: bundle consisting of DNA wrapped around a histone protein core, 

composed of two of each of the four histones. Nucleosomes can be further bundled, 

forming chromatin

Orthologs: genes in different species that retain the same function

Post-translational modification: modifications to proteins, such as the covalent 

addition of functional groups, that alter protein function. Several modifications include 

acetylation, phosphorylation, and methylation

Reporter gene: a gene whose gene product indicates that transcription occurred

Repression: the mechanism for blocking expression of a gene

Silencing: the consequence of repression, in that repressed genes are “silent,” for they 

are not being expressed  
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