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One of the main goals of evolutionary biology is to understand the speciation 

process that creates the vast diversity of life we observe on earth. In the case of 

speciation with gene flow, it is important to understand how populations become 

isolated from each other to allow genetic differences to accumulate. This isolation can 

occur due to distance (IBD) and adaptation to the local ecology (IBA). While both have 

been characterized in different systems, it is unknown how these processes affect 

certain genome correlations involving FST that are indicative of linked selection and 

genome divergence. Using reduced representation sequencing (RAD-seq), we first 

characterized population structure in our study system Mimulus aurantiacus ssp. 

puniceus, where IBD and local adaptation have been well-characterized. We found that 

puniceus displays more levels of genetic subdivision than related subspecies, and we 

were able to characterize two distinct lineages of puniceus that display near-identical 

distributions of floral phenotypes. Our population genomics analysis then revealed that 

IBA was a better predictor of genome correlations than IBD in a subset of populations 

that occurred across a considerable climatic gradient. However, the best predictor of the

genome correlations was differences in ancestry between the two discrete lineages 

characterized in our population structure analysis. These results show that ancestry 

differences can explain patterns of genomic divergence without clear signs of 

adaptation, but that divergent selection is likely important for explaining patterns of 

genomic divergence during early stages of speciation.
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Introduction

Determining the mechanisms by which populations become genetically isolated 

is crucial for understanding how speciation produces the vast diversity we observe on 

earth. In particular, it is now common to find examples where speciation can occur in 

the face of gene flow. The application of genomics to the field has introduced the 

possibility of identifying the regions of the genome responsible for this divergence. A 

common outcome of these studies is that genomic differentiation is often 

heterogeneous, leading to a pattern of “islands of divergence,” where certain areas of 

the genome are highly differentiated, whereas the rest of the genome is not. The 

conventional wisdom is that the islands represent the regions of the genome responsible 

for divergence, while the rest of the genome is homogenized due to gene flow (Feder, 

Egan, & Nosil, 2012; Feder & Nosil, 2010; Nosil, Egan, & Funk, 2008; Renaut et al., 

2013; Turner, Hahn, & Nuzhdin, 2005). However, key to understanding the 

mechanisms contributing to this heterogeneity is the idea of linked selection, which 

occurs when positive or negative selection indirectly impacts patterns of genetic 

diversity in linked genetic regions. While one cause of “islands” is that they are due to 

divergent natural selection reducing local gene flow due to hitchhiking, it is also 

possible that selection against areas of the genome nearby deleterious alleles (a process 

known as background selection) generates heterogeneity in genetic variation across the 

genome. Therefore, determining the role of local adaptation in divergence becomes 

critical.

An under-addressed topic within the study of speciation genomics is how to 

measure the effects of linked selection and determine where these islands of divergence 



are located. A recent review shows that most speciation genomics studies use the 

statistic FST as a measure of genetic differentiation (Wolf & Ellegren, 2017). FST is 

inherently tied to levels of genetic diversity (π) ) (Charlesworth, 2013), so areas of low 

diversity in the genome may have high FST even under neutral models. This is especially

relevant given that areas of low recombination tend to have low genetic diversity and 

therefore elevated FST (Noor & Bennett, 2009), potentially explaining why some studies 

find peaks of FST near centromeres where recombination is limited (Turner et al., 2005) 

or across the genome in areas with low recombination (Renaut et al., 2013). When 

studies examine variation in FST without considering genome architecture, it can be 

difficult to make definitive conclusions about adaptation.

Because genome architecture is heterogeneous, we can use correlations between 

FST and other genome statistics to inform us about linked selection. For example, linked 

selection affects wider genomic regions when recombination rates are low and acts 

more often in gene-rich regions, leading to locally reduced genetic diversity (Payseur & 

Nachman, 2002). Therefore, the heterogeneous effects of linked selection within 

populations result in the frequent positive correlation between π)  and recombination rate.

Between populations, varying strengths of linked selection will result in a negative 

correlation between FST and π) , and FST and recombination rate, but a positive correlation

of FST with gene density. Moreover, FST is expected to be stochastic near the beginning 

of the speciation process, leading to a weak correlation with π) , recombination rate, and 

gene density (Burri et al., 2015). However, as divergence time increases, the effects of 

linked selection become more pronounced, and the strength of these correlations is 

expected to increase (Burri, 2017). This phenomenon has been seen in both bird and 
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plant systems (Burri et al., 2015; Stankowski et al., 2019). However, it has been argued 

that at least in some cases, the strengthening of these correlations may be due to 

recurrent background selection rather than repeated positive selection (Burri, 2017; 

Burri et al., 2015; Vijay et al., 2016), though this limitation has been overcome in the 

past through use of simulations showing that background selection alone is unlikely to 

be responsible for observed patterns of heterogenous genome divergence in M. 

aurantiacus (Stankowski et al., 2019). 

While we often consider genetic differences accumulating over time, it is also 

important to examine the role of geography and ecology in shaping variation in these 

genomic landscapes in order to properly characterize speciation with gene flow. 

Isolation by distance (IBD) is caused when geographically restricted gene flow leads to 

genetic differentiation due to the effects of genetic drift, and has been observed on both 

small and large scales (Peterson & Denno, 1998; Rose, Paynter, & Hare, 2006). On the 

other hand, isolation by adaptation (IBA) is the concept that differences in local ecology

can restrict gene flow due to selection acting on maladapted immigrant individuals

(Nosil et al., 2008). A review analyzing 70 studies found that IBD and IBA were 

prevalent across different systems, and several systems showed both processes acting in

the same system (Sexton, Hangartner, & Hoffmann, 2014). These studies mostly used 

average FST as their measure of genetic differentiation (Sexton et al., 2014) and showed 

that geographic space and ecological differences may be analogous to differences in 

divergence time. However, because correlations involving FST can tell us about the 

localized effects of linked selection (Stankowski et al., 2019), the covariation of these 

correlations with geographic distance and/or ecological distance also can inform us 
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about the effects of ecologically-based divergent selection driving heterogeneity in 

patterns of genomic variation. In this study, we will determine if variation in geography 

and the environment can inform us about the importance of positive selection in shaping

genomic patterns. If correlations involving FST strengthen over ecology rather than 

geographic space, it suggests that adaptation to the local environment is responsible for 

keeping populations isolated. 

The Mimulus aurantiacus (bush monkeyflower) species complex is excellent for

tackling problems about the roles of history, geography, and ecology in driving 

divergence. M. aurantiacus consists of eight phenotypically-differentiated taxa 

distributed across southern California that diverged in a recent radiation (Chase, 

Stankowski, & Streisfeld, 2017). The plants occur across a range of elevations, 

temperatures, and moisture levels (Thompson, 2005), making them ideal for studies 

investigating local adaptation. As previously mentioned, genome correlations involving 

FST increase with time among subspecies at different stages of divergence (Stankowski 

et al., 2019), and IBD has been demonstrated in subspecies puniceus in San Diego 

county (Stankowski, Sobel, & Streisfeld, 2015). Additionally, the presence of red- and 

yellow-flowered ecotypes within puniceus is an established system for studying local 

adaptation due to pollinator selection (Sobel & Streisfeld, 2015; Stankowski & 

Streisfeld, 2015; M. A. Streisfeld & Kohn, 2007; Matthew A. Streisfeld & Kohn, 2005).

In addition, differences in the environments occupied by populations of puniceus may 

contribute to ecophysiological trait adaptations, further suggesting local adaptation to 

the abiotic environment (Sobel, Stankowski, & Streisfeld, 2019). These factors make 
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M. aurantiacus an ideal system for addressing the effects of ecologically-based 

divergent selection on patterns of genomic variation. 

The first part of our study is a survey of population structure and trait evolution 

in southern California populations of M. aurantiacus, which was designed to reveal 

historical patterns of divergence and admixture across geographic and taxonomic levels.

This survey is similar to one performed by Chase et al. (2017), but instead of sampling 

broadly across the range of the entire species complex, we concentrated on a diverse 

group of three subspecies. Our primary focus was sampling subspecies puniceus across 

its geographic range, but we also included populations from the more divergent 

subspecies calycinus and longiflorus. Specifically, we sampled puniceus populations to 

the north of San Diego, which were regarded previously as belonging to a different 

“population series” based on floral phenotypes (Beeks, 1962). Our population genomic 

survey allowed us to test whether these northern populations represented a distinct 

lineage from the southern San Diego populations. We additionally surveyed floral 

phenotypes from northern and southern plants grown in a common greenhouse to see 

how traits varied across the range. 

From there, we tested the role of local adaptation in driving genomic variation in

subspecies puniceus. Under a model of local adaptation, we predict that ecological 

variation will explain patterns of genomic divergence better than geography. We find 

that northern puniceus populations are highly differentiated from San Diego 

populations, potentially representing two distinct lineages with little gene exchange. 

Thus, we expect comparisons between north and south to exhibit signatures of linked 

selection greater than would be predicted by their geographic distance alone
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(Stankowski et al., 2019). The results of these two studies provide novel insight into the 

role of geography and ecology in shaping patterns of genomic variation during the 

speciation process.
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Methods

Sampling and Sequencing

Individuals were collected from 71 populations comprising three subspecies of 

M. aurantiacus across southern California. Mimulus aurantiacus ssp. puniceus, the 

main subspecies of study, comprised 55 of the sampled populations. In addition, we 

included samples from three populations of ssp. calycinus and 13 populations from ssp. 

longiflorus to examine patterns of admixture across southern California. Details on the 

location of populations are in Fig. 1. Sample sizes, and the specific analyses performed 

with each are in Table 1.

From these populations, we generated new sequence data for 352 plants (227 

puniceus, 25 calycinus, and 100 longiflorus) from 36 populations (20 puniceus, 3 

calycinus, and 13 longiflorus) located to the north of San Diego County. In addition, we

included 263 puniceus plants from 25 populations from San Diego County that were 

included from previously published work (Stankowski, Sobel, & Streisfeld, 2017), for a 

total dataset of 615 individuals from 61 populations (range 3 to 17 individuals per 

population). Genomic DNA was isolated from leaf tissue samples stored at -80C. We 

sequenced restriction-site associated DNA tags (RAD-seq) from each sample using 

single-end 100 bp Illumina HiSeq sequencing. Library construction and sequencing 

procedures followed previous analyses (Stankowski et al., 2015, 2017). 

In addition, we phenotyped floral traits from the northern range of puniceus by 

growing field-collected seeds from 188 maternal plants representing 18 populations. 

These data were combined with previously published information on the same floral 
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traits from 136 individuals representing 16 populations from the southern range of 

puniceus (Stankowski et al., 2015). This resulted in a total dataset of 324 individuals 

from 34 populations, ranging from 7 to 13 individuals per population. Full details on 

sampling can be found in Table 1. Finally, we generated genotypes from 1000 puniceus 

plants from a single SNP within the MaMyb2 gene that is responsible for flower color 

differences (Matthew A. Streisfeld, Young, & Sobel, 2013) to determine how floral 

traits varied based on allelic variation at this flower color locus. 

Figure 1. Location and subspecies of all populations sampled in southern California. 

Colors of the points indicate subspecies sampled (orange for puniceus, dark blue for 

longiflorus, and light blue for calycinus). Letter codes indicate site name.  
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Table 1. Summary of sampling and locations for all populations

populatio
n taxon

correlation
datasets

individual
s

genotyped
families

phenotyped
MaMyb2-sequenced

individuals latitude longitude

t144 calycenus - 9 - - 34.19 -117.28

t149 calycenus - 7 - - 33.90 -116.86

t150 calycenus - 9 - - 33.86 -116.85

t33
longifloru

s - 6 - - 34.34 -118.51

ht
longifloru

s - 7 - - 34.28 -118.66

chs
longifloru

s - 7 - - 34.27 -118.62

ss
longifloru

s - 9 - - 34.27 -118.61

con
longifloru

s - 11 - - 34.17 -118.86

t8
longifloru

s - 8 - - 34.13 -118.65

wcd
longifloru

s - 8 - - 34.12 -118.30

mcr
longifloru

s - 6 - - 34.07 -118.71

t113
longifloru

s - 7 - - 34.06 -117.84

t110
longifloru

s - 4 - - 33.99 -117.99

all
longifloru

s - 8 - - 33.98 -117.29

dav
longifloru

s - 9 - - 33.88 -117.13

dpr
longifloru

s - 10 - - 33.75 -117.45

irl puniceus - - 11 21 33.77 -117.72

scrd puniceus full 12 12 20 33.70 -117.64

tor puniceus full 12 8 19 33.66 -117.64

lke puniceus full 12 - 20 33.65 -117.40

lfp puniceus - - 12 17 33.65 -117.66

mth puniceus full 4 10 20 33.61 -117.83

lgc-2 puniceus full 12 12 20 33.61 -117.76

rpr puniceus full 12 - 20 33.61 -117.80

74-1 puniceus full 11 - 17 33.60 -117.46

osp-2 puniceus full 12 12 20 33.60 -117.62

lb puniceus full 12 - 20 33.57 -117.81

lgc-1 puniceus full 12 12 20 33.57 -117.76

ckr puniceus full 12 - 20 33.56 -117.26

74-2 puniceus full 12 - 21 33.56 -117.55

lgh puniceus full 8 11 20 33.56 -117.76

flw puniceus full 12 - 20 33.55 -117.65

pid puniceus full 12 - 20 33.50 -117.73

vcr puniceus full 12 12 20 33.49 -117.65

ynk puniceus - - 8 11 33.48 -117.48

rcr puniceus full 12 - 20 33.46 -117.13
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otr puniceus - - 9 15 33.45 -117.46

ecs puniceus - - 13 19 33.45 -117.43

dlt puniceus - - 8 9 33.45 -117.44

rg puniceus full 12 - 20 33.42 -117.18

crt puniceus full 12 - 21 33.40 -117.59

hot puniceus - - 11 14 33.39 -117.31

ind puniceus - - 10 11 33.37 -117.33

dcr puniceus - - 10 12 33.35 -117.32

hrc puniceus - - 7 11 33.35 -117.49

395 puniceus full 12 - 20 33.30 -117.15

dlr puniceus
full, sd
subset 8 10 16 33.17 -117.05

lkw puniceus
full, sd
subset 13 9 24 33.16 -117.02

crs puniceus
full, sd
subset 9 - 15 33.13 -117.31

bc puniceus
full, sd
subset 12 7 24 33.12 -116.80

inj puniceus
full, sd
subset 11 8 16 33.10 -116.66

elf puniceus
full, sd
subset 8 9 24 33.09 -117.15

lh puniceus
full, sd
subset 11 11 24 33.06 -117.12

bs puniceus
full, sd
subset 15 - 24 33.01 -117.02

mw puniceus
full, sd
subset 16 6 23 33.01 -116.96

sdp puniceus
full, sd
subset 12 - 16 33.00 -117.24

wcr puniceus
full, sd
subset 12 - 12 32.99 -116.83

bcrd puniceus
full, sd
subset 4 7 8 32.95 -116.64

pmd puniceus
full, sd
subset 12 - 16 32.94 -117.06

oak puniceus
full, sd
subset 10 8 16 32.91 -116.89

elt puniceus
full, sd
subset 11 - 16 32.89 -117.09

ucsd puniceus
full, sd
subset 11 9 32 32.89 -117.24

and puniceus
full, sd
subset 6 - - 32.87 -116.75

wm puniceus
full, sd
subset 17 9 24 32.82 -116.90

mt puniceus
full, sd
subset 10 9 16 32.82 -117.06

flp puniceus
full, sd
subset 9 - 16 32.81 -116.99

jmc puniceus
full, sd
subset 17 13 24 32.74 -116.95

pct puniceus
full, sd
subset 5 8 21 32.73 -116.47

lo puniceus
full, sd
subset 12 7 23 32.68 -116.33

dlz puniceus
full, sd
subset 3 - 9 32.65 -116.79

potr puniceus
full, sd
subset 9 6 23 32.60 -116.63
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Population Structure

To detect patterns of genomic ancestry and levels of admixture among the 

sequenced samples, we ran the program ADMIXTURE (Alexander, Novembre, & 

Lange, 2009). Raw RAD-seq reads were processed in a similar manner to previously 

published work (Chase et al., 2017; Stankowski et al., 2019) using STACKS version 

1.44 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). For this analysis, reads 

were filtered with the process_radtags script from STACKS, aligned to the M. 

aurantiacus v.1 assembly (Stankowski et al., 2019) using bowtie2 (Langmead & 

Salzberg, 2013), and then run through the refmap.pl script from STACKS to call SNPs. 

To filter for errors and linkage disequilibrium, we then further filtered SNPs using a 

minor allele frequency cutoff of 0.01 (across the entire dataset), we only included loci 

present in at least 80% of samples, and we limited the output to one random SNP per 

RAD tag, resulting in 42,386 SNPs. To further reduce the extent of linkage 

disequilibrium among tightly linked sites, we used the command indep-pairwise 50 10 

0.1 in PLINK v1.90 to filter overlapping windows of 50 variant SNPs (step size = 10 

SNPs) down to r = 0.1 (Purcell & Chang, 2015). This resulted in a final dataset of 

15,558 SNPs. 

We ran ADMIXTURE v1.3 with 2 – 5 clusters (K), and 20 independent runs for 

each value of K. The runs were aggregated with CLUMPP (Jakobsson & Rosenberg, 

2007), using the greedy method, weighting populations by number of individuals using 

the G’ similarity matrix, and using random input orders with 1000 repeats (M = 2, W 

=1, S = 2, GREEDY_OPTION = 2, REPEATS = 1000). Additionally, we ran a 

principal component analysis (PCA) using PLINK on the same SNP data, writing all 
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615 principal components to accurately calculate variance explained from the positive 

eigenvalues of the covariance matrix.

Floral Trait Analysis

To understand how floral traits were distributed geographically across the range 

of puniceus, we grew plants from seeds collected from 324 maternal families from 34 

populations (minimum 6 families per population, maximum 12), 16 of which were 

previously published (Sobel et al., 2019; Stankowski & Streisfeld, 2015). Seedlings 

were initially grown in plug trays in a growth chamber for two weeks. Up to three 

individuals from each family were repotted and grown in a common greenhouse 

environment. From two flowers per individual within 48 hours of anthesis, we measured

four floral traits known to differ significantly between the red and yellow ecotypes of 

puniceus in San Diego County (Stankowski et al., 2015): corolla length (CL), pedicel 

length (PL), stigma exertion (SE), tube width (TW), and the concentration of the red 

anthocyanin pigment, as described previously (Stankowski et al., 2015). A principal 

component analysis (PCA) was performed to summarize the multivariate relationship 

among the traits. To test whether the floral traits differed between northern and southern

regions, the PC trait scores in each population were compared to latitude. To test 

whether multi-trait adaptation associated with flower color was consistent across 

different geographic regions, we compared PC scores of these traits to the MaMyb2 

allele frequency for each population.
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Bioclimatic Data and Visualization

In addition to differences in floral traits likely associated with visitation by 

different pollinators (Streisfeld and Kohn 2007; Sobel and Streisfeld 2015), we 

investigated the potential role of local adaptation to the abiotic environment by 

examining variation in climate among sites. Previous work demonstrated physiological 

traits associated with climate variation between western and eastern populations of 

puniceus in San Diego. For all populations that contained sequence data, we 

downloaded data on 23 bioclimatic variables for the years 1981-2010 from 

ClimateWNA (Wang, Hamann, Spittlehouse, & Murdock, 2012). A description of all 

variables can be found in Table 2. We then summarized correlations among variables 

using PCA and extracted the first principal component from these data, which explained

63.7% of the variation in climate. To visualize spatial variation in climate across the 

region, we interpolated variation in climate across the sampled region from normalized 

PC1 data using kriging in the R package “kriging.” To generate a metric for the 

ecological difference in climate between sampled sites, we calculated the difference 

between mean PC1 scores between pairs of populations, which we called “ecological 

distance.” 

Table 2. All 23 measured bioclimatic variables from ClimateWNA

Variable
abbreviatio
n

calculate
d

mean annual temperature (°C) MAT directly

mean warmest month temperature (°C) MWMT directly

mean coldest month temperature (°C) MCMT directly
temperature difference between MWMT and MCMT, or continentality
(°C) TD directly

mean annual precipitation (mm) MAP directly
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May to September precipitation (mm) MSP directly

annual heat-moisture index (MAT+10)/(MAP/1000) AHM directly

summer heat-moisture index ((MWMT)/(MSP/1000) SHM directly

degree-days below 0°C, chilling degree-days DD<0 derived

degree-days above 5°C, growing degree-days DD>5 derived

degree-days below 18°C, heating degree-days DD<18 derived

degree-days above 18°C, cooling degree-days DD>18 derived

the number of frost-free days NFFD derived

frost-free period FFP derived

the day of the year on which FFP begins bFFP derived

the day of the year on which FFP ends eFFP derived
precipitation as snow (mm) between August in previous year and July 
in current year PAS derived

extreme minimum temperature over 30 years EXT derived

extreme maximum temperature over 30 years EXT derived

Hargreaves reference evaporation (mm) Eref derived

Hargreaves climatic moisture deficit (mm) CMD derived

mean annual solar radiation (MJ m^‐2 d^‐1) MAR derived

mean annual relative humidity (%) RH derived
Notes: information obtained from 

http://www.climatewna.com/help/climateBC/help.htm

Population Genomic Analyses

To examine how genome-wide patterns of differentiation varied across 

geographic space and ecology, we re-called variants in STACKS using only individuals 

from subspecies puniceus. Beginning with processed, aligned sequences, we re-ran the 

ref-map.pl script to call SNPs. We then filtered the data to include loci present in at 

least 70% of samples. We did not include minor allele frequency cutoffs or LD pruning 

in this dataset to allow rare alleles to be included in population genetic estimates of 

diversity and differentiation. This resulted in a final dataset of 436,935 SNPs. We 

calculated π)  and FST within and between all sequenced populations in 500 kb non-

overlapping windows using the script popgenwindows.py (downloaded from 

https://github.com/simonhmartin/genomics_general). Estimates of π)  were adjusted to 
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account for invariant sites by multiplying our measure of π)  by the proportion of variant 

to total sites in each window. In addition, we used previously published data on 

recombination rate and gene count in the same 500 kb windows, which were derived 

from a genetic map and genome annotation from subspecies puniceus (Stankowski et 

al., 2019). 

To investigate how genomic variation was impacted by space and ecology, we 

examined the relationship between average FST among genomic windows and distance 

metrics. In addition, we estimated the pairwise population-specific effects of linked 

selection by calculating the correlation coefficient across windows (Pearson’s r) 

between FST and average π) , FST and gene count, and FST and recombination rate. We 

created a subset of the full dataset consisting of southern populations of puniceus, which

we referred to as the “San Diego subset” or “SD subset” (Table 1), as previous work in 

these populations revealed that local adaptation to the abiotic environment likely 

contributed to ecotypic differentiation (Sobel et al. 2019). For both the full dataset and 

the SD subset, we began by evaluating the relationships between these correlations and 

geographic and ecological distance between all pairs of populations using linear 

regression. However, because geographic distance tends to be correlated with ecological

distance in San Diego, we then used partial Mantel tests using the R package ncf v1.2-9

(Bjornstad & Bjornstad, 2020) to compare the independent effects of geographic or 

ecological distance on these correlations. To evaluate the statistical significance of the 

relationship, we used a permutation test with 1000 random permutations of the data. 

Moreover, due to extensive differences in ancestry between northern and southern 

populations of punicieus (see results), we created a distance matrix based on differences
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in ancestry scores from the Admixture analysis. Specifically, “ancestry distance” 

between all pairs of populations was calculated by taking the difference in mean Q 

score between populations from the cluster that primarily characterized the northern 

puniceus populations (fig. 2a,b). Differences in ancestry and geography tend to be 

correlated for populations separated in allopatry. Therefore, we ran partial Mantel tests 

to examine the independent effects of ancestry and geography on correlations involving 

FST. Because IBD was previously characterized in southern punicieus and IBA was 

likely to occur due to known ecogeographic isolation (Sobel and Streisfeld 2015), we 

expected both geography and ecology to explain variation in FST and correlations 

involving FST in the SD subset. Additionally, under the hypothesis that divergence time 

strengthens genome correlations (Stankowski et al., 2019), we expected that differences 

in ancestry would explain variation in genome correlations for the full dataset where 

there are extensive differences in ancestry between north and south (see results). 
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Results

Multiple levels of genetic subdivision due to geographical, ecological, and ancestry 

differences within puniceus

Our SNP dataset reveals large amounts of population stratification present in 

puniceus relative to longiflorus and calycinus. We expected the ADMIXTURE dataset 

to segregate individuals by subspecies, but we were surprised to find that puniceus 

individuals do not all group together at K = 2 or K = 3. Instead, we find that a number 

of geographically clustered northern puniceus populations separate from the rest of their

subspecies for all values of K (Fig. 2a,c). Indeed, a PCA on the same dataset reveals 

that the individuals cluster into three essentially discrete groups along the first two 

principal components that correspond to longiflorus/calycinus, northern puniceus, and 

southern puniceus. At K = 4 and K = 5, we see additional subdivision within puniceus 

that corresponds to eastern and western populations in San Diego (Fig. 2a). 

Within puniceus, separation due to geography at K = 2 points to extensive 

differences in ancestry between northern and southern groups (Fig. 2a,c). This abrupt 

change in ancestry score occurs over a relatively short geographic distance and persists 

at higher values of K, suggesting that northern and southern puniceus populations have 

extreme differences in ancestry. The possibility that there are two distinct lineages is 

relevant for the population genomic analyses below, as the model of IBD assumes a 

single lineage that becomes increasingly differentiated through space. Therefore, 

differences in history due to unique ancestry must be accounted for when considering 

the effects of geography and ecology on patterns of genomic variation.
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Within southern puniceus, patterns of ancestry and admixture appear related to 

geographic and ecological differences. At K = 4, southern puniceus separates into 

eastern and western groups, consistent with differences in climates (Fig. 2a,c). This 

trend supports previous results that demonstrated IBD and adaptation to climate in these

same populations (Sobel et al., 2019; Stankowski et al., 2015). Unlike the separation of 

northern puniceus from the rest of its subspecies, the genetic separation between 

southeastern and southwestern groups occurs over a gradient with extensive admixture 

across many individuals (Fig. 2a,c). This pattern is consistent with IBD and ongoing 

hybridization where the ranges of the red and yellow ecotypes overlap (Stankowski et 

al., 2015, 2017). Additionally, the western and eastern groups of southern puniceus 

group close to each other along the first two principal components (Fig. 2b). In addition 

to southern puniceus grouping together at K = 3, this suggests differences in ancestry 

within the southern populations are much less substantial relative to comparisons 

between the regions.  

Our analysis also finds evidence of admixture among populations of puniceus 

and between puniceus and longiflorus/calycinus. In addition to the well-studied 

hybridization between the red and yellow ecotypes of puniceus in San Diego

(Stankowski et al., 2015; Stankowski & Streisfeld, 2015), we find evidence of 

admixture between the northern and southern ancestry groups of puniceus. While this 

could be due to secondary contact between two previously isolated populations, further 

work will be needed to distinguish this hypothesis from the maintenance of shared 

ancestral polymorphism among the populations. Moreover, there is evidence for 

admixture between northern puniceus populations and longiflorus/calycinus in areas 
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where geographic overlap is evident between these subspecies. Finally, longiflorus and 

calycinus curiously failed to become differentiated from each other, even at K = 5 (Fig. 

2a), suggesting that these two subspecies are extremely closely related. Rather, K=5 

revealed a small group of yellow ecotype individuals with unique ancestry from 

extreme southern San Diego County. These findings are consistent with previous results

(Stankowski et al 2015) and further highlight the many levels of population 

stratification found within puniceus.
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Figure 2. Admixture scores and a PCA of bioclimatic variables. (a) Stacked Admixture 

barplots for all individuals with K = 2-5. (b) PC1 vs. PC2 of the same genetic dataset. 

Individuals with an ancestry score of at least 0.8 for an admixture group at K = 5 are 

colored according to that admixture group, as in Fig. 2a. (c) Pie plots colored by 

admixture scores for K = 5 from Figure 2a, averaged for each population and plotted by

latitude and longitude. The background interpolation represents PC1 scores for 23 

bioclimatic variables from ClimateWNA (shown in the lower left corner; full 

descriptions the variables in Table 2)
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Trait distributions are uniform across northern and southern populations of puniceus

Given the distinct patterns of ancestry between northern and southern 

populations of subspecies puniceus, we compared floral trait distributions between these

areas. In particular, we wished to see if the genetic differentiation between northern and 

southern populations of puniceus was accompanied by divergence in floral features 

(Fig. 2). As noted previously, floral traits are highly differentiated between the ecotypes

in San Diego and contribute to pollinator isolation (Stankowski et al 2015; Sobel and 

Streisfeld 2015). Despite differences in ancestry, multivariate floral phenotypes were 

highly similar between southern and northern regions of the range (linear regression of 

average trait PC1 against collection latitude; multiple r2 = 0.0071, p = 0.63). 

Additionally, we found no correlation between mean trait PC1 and the mean ancestry 

score (difference in the orange bars at K=3 in figure 2a, largely representing for 

northern puniceus individuals; linear regression; multiple r2 = 0.0310, p = 0.40). Instead,

we observed that floral traits grouped by flower color genotype when all families were 

aggregated (Fig. 3a; linear model of population trait PC1 means against MaMyb2 allele 

frequency; multiple r 2 = 0.811, p < 0.001). Moreover, PC1 explained 65.6% of the 

variation in these traits, and clearly separated red and yellow ecotype populations. 

Indeed, red ecotype populations are characterized by higher concentrations of 

anthocyanin pigment, larger stigma exertion and longer pedicels, but shorter and 

narrower corollas. These findings suggest that substantial floral trait variation exists 

across the range of puniceus, but this variation remains similar between the genetically 

differentiated northern and southern regions. 
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Figure 3. A summary of floral traits within M. punicieus. (a) PC1 vs. PC2 for all 

families measured, colored by population allele frequency at the Myb-2 locus linked to 

flower color. (b) Average PC1 of each population plotted against latitude and colored 

by Myb-2 allele frequency, with error bars representing standard error of the mean. (c) 

Loadings of all floral traits measured (Anthocyanin concentration, stigma exertion, 

pedicel length, corolla length, and tube width).

Widespread selection is associated with ancestry and ecology, but not geography

To assess the role of local adaptation in shaping the genomic landscape of 

differentiation, we investigated how genomic correlations involving FST varied due to 

geography and ecology. If the strength of genome correlations is associated with 

variation in geographic but not ecological differences, this suggests that divergent 

natural selection and adaptation may not be the primary driver of divergence. By 

contrast, if the correlations are more strongly predicted by ecological differences 

between populations, this suggests that local adaptation is likely important in explaining

genomic patterns. However, it is possible that correlations may form between 

previously separated lineages that have nothing to do with local adaptation. Therefore, 

we marked comparisons where ancestry estimates differed between populations by at 

least 0.8 (orange bars at K=3 in Fig. 2). If this ancestry-differentiated subset represented

comparisons between two separate lineages, we would expect FST to be high and 

correlations involving FST to be strong regardless of geographic or ecological distances. 

Additionally, we focused separately on the southern puniceus populations (in San Diego
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County; SD), where there exists substantial variation in climate along a west to east 

gradient (Fig 2c), and IBD has been well characterized (Stankowski et al., 2015). 

Therefore, the potential exists that IBA might be prominent within the SD region. 

IBD and IBA both appear to affect patterns of genetic differentiation across 

subspecies puniceus (Fig. 4 a,b). Within the SD subset, the correlation between FST and 

ecological distance (r2
 = 0.5287) is stronger than the correlation with geography (r2

 = 

0.2767), but for the full dataset across all puniceus populations, geographic distance is a

better predictor of FST than ecological distance (FST-geographic-distance; r2
 = 0.2434; 

FST-ecological distance, r2
 = 0.1815). In comparisons between populations that differ 

substantially in admixture scores, geographic distance is not a good predictor for FST (r2
 

= 0.0470). However, these comparisons show signs that ecological differences might 

play a role in driving genetic differentiation (FST-ecological distance r2
 = 0.2418). 

Across the full dataset, genome-wide correlations between FST and measures of 

genetic diversity and genome architecture appear to strengthen due to geographic 

distance. The FST-π)  and FST-recombination correlations grow increasingly negative at 

greater geographic distances between populations, and the FST-gene-count correlation 

grows increasingly positive (Fig. 4 c,e,g, black lines), which is expected as divergence 

increases (Stankowski et al., 2019). Considered separately, these results imply that 

neutral processes and background selection may be important for shaping the genomic 

landscape. However, geographic distance is a relatively poor predictor of FST and 

correlations involving FST when looking within the ancestry-differentiated subset where 

only northern and southern populations are compared, and these correlations are in the 

opposite direction based on predictions due to linked selection (Fig. 4 a,c,e,g red lines). 
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Therefore, comparisons between northern and southern populations may result in strong

trends regardless of geographic distance. Furthermore, we observed stronger 

correlations when considering ecological distance rather than geographic distance for 

the ancestry-differentiated subset (Fig. 4 b,d red lines), but the correlations again are in 

the opposite direction expected under a model of linked selection (Fig. 4 f,h red lines). 
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Figure 4. Scatterplots and linear regressions of FST and the Pearson’s r between FST and 

other genome statistics plotted across geographic and ecological distance for all pairs of

populations. The blue dots, blue trendlines, and blue r2 values represent the SD subset, 

and the red points represent, trendlines, and r2 values represent comparisons that had an

ancestry score difference of at least 0.8 for the orange-colored admixture group at K = 3

(Fig. 2). Black trendlines and r2 values represent the full dataset. All r2 values are 

derived from Pearson’s r between response variables and measures of distance.
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Within the SD subset, the FST-π)  correlation varies more with ecological distance 

(r2 = 0.1383) than geographic distance (r2 = 0.0815), and the relationship between the 

FST-π)  correlation and ecology is stronger within the SD subset than in the full dataset or 

the admixture-differentiated subset (Fig. 4d). By contrast, the FST-recombination and 

FST-gene-count correlations do not covary substantially with either geographic or 

ecological distance for the SD subset (Fig. 4 e-h, blue lines). These results suggest that 

among SD populations, ecology plays a larger role in shaping the genome than 

geography. 

Because geography covaries with both ecology and ancestry (Full dataset: 

geography-ecology r = 0.2659, geography-ancestry r = 0.5374; SD subset: geography-

ecology r = 0.6042; all r values from Mantel tests), we used partial Mantel tests to 

elucidate the relative effects of each distance measure. When geography and ecology 

are compared in the full dataset, both are good predictors of average FST, but only 

geography is a good predictor of the strength of the correlations involving FST (Fig 5a). 

These results line up with what we observed in Fig. 4, but they do not account for the 

effects of ancestry, which also covaries with geographic distance. Therefore, we 

examined the predictive power of both ancestry and geography and found that 

admixture was a better predictor than geography for all variables measured (Fig. 5b). 

Worth noting is that the effects of ecology are not accounted for in this comparison, so 

we cannot discount that the correlations arising from this analysis are due to ecology 

rather than geography. However, as ecological distance shows little covariance with 

ancestry for the full dataset (Mantel r = -0.0983, p = 0.0859), trends that occur across 

ancestry differences are unlikely to confounded by ecology. Finally, we compared the 
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independent effects of geography and ecology in the SD subset, where admixture 

differences at K = 3 are negligible and environmental differences are the most extreme 

(Fig. 2c). We found that both geography and ecology are significant predictors of 

average FST. In addition, ecology (but not geography) is a significant predictor of the 

correlation between FST and π) , but neither is a significant predictor of the correlation 

between FST and gene-count or recombination (Fig. 5c). In sum, these data show that 

despite ecology, geography, and ancestry being good predictors of average FST between 

populations, genome correlations involving FST consistently strengthen only due to 

differences in ancestry. However, in the SD subset, ecology explains more variation in 

the genome wide correlation between FST and π)  than geography, suggesting that local 

adaptation may help shape patterns of heterogeneous genomic divergence in these 

populations that are early in the speciation process. 
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Figure 5. Partial Mantel 

correlation coefficients for FST and correlations involving FST over geographic distance 

(blue points), differences in the orange-colored admixture group from Fig. 2 (yellow-

orange points) and ecological distance (red points), for the full dataset (a) and the SD 

subset (b). Data markers point in the direction of the expected correlation for 

increasingly isolated lineages, as in Stankowski et al. (2019). Asterisks indicate that the 
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Discussion

Population structure allows us to characterize a genetically distinct lineage of puniceus

Our population structure analysis identified two separate lineages of puniceus 

corresponding to northern and southern areas (Fig. 2). Climate does not appear to vary 

considerably between these regions, suggesting that IBA is unlikely to explain this 

pattern. Additionally, the sharp transition between the groups argues against IBD (Fig. 

2c), which contrasts with the gradual pattern of transition in southern, San Diego 

populations (Stankowski et al, 2015). Therefore, these findings suggest that northern 

populations represent a separate lineage of puniceus that was historically isolated from 

the southern populations. 

By contrast, the ancestry-differentiated subset shows signs of IBD and IBA, 

which appears to challenge the notion that northern and southern puniceus were 

allopatrically isolated. However, differences in ancestry rather than geography or 

ecology are the best predictor of these trends. If northern and southern populations were

genetically distinct, we expect FST and the strength of genome correlations to be 

consistently high and unrelated to geographic and ecological distances. Instead, 

geography and ecology predicted some of the variation in FST, with the correlation 

between ecology and FST being stronger (Fig. 4 a,b). However, these results align with a

previous phylogeny that indicated northern populations were more closely related to 

southwestern than southeastern populations (Chase et al., 2017). We therefore expect 

the northern populations to be the most differentiated from populations in the southeast, 

and these comparisons have slightly higher geographic distance and much higher 
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ecological distance than north-southwest comparisons (Fig. 2c). Therefore, the patterns 

of FST we observe in our ancestry-differentiated subset most likely can be attributed to 

differences in evolutionary history that resulted in two separate lineages of puniceus.

While northern puniceus was originally described as part of a separate 

population series (the “Laguna series”) on the basis of perceived differences in floral 

traits (Beeks, 1962), our common garden experiment in the greenhouse failed to detect 

heritable trait differences between the regions. Indeed, we found that the distribution of 

floral traits in northern puniceus populations largely overlapped with southern 

populations (Fig. 3b), but that ancestry was not a significant predictor of trait PC1 

scores. Interestingly, northern populations maintain differences in floral phenotypes 

despite close geographic proximity to each other, while in San Diego, floral trait 

differences are structured east to west (Stankowski et al., 2015). It is currently unclear 

why this is the case. Subspecies of M. aurantiacus are often categorized by floral 

phenotype (Chase et al., 2017), but as we can see here, phenotypically indistinguishable

populations are in fact be genetically distinct. 

Despite ancestry being the best predictor of differences in FST and correlations 

involving FST between northern and southern puniceus, IBA and IBD appear to 

contribute to variation in southern puniceus. At K = 4, southern puniceus splits along a 

geographic and ecological gradient from west to east (Fig. 4a,c). IBD has been 

characterized previously in southern puniceus (Stankowski et al., 2015), showing a 

gradual change in genetic differentiation over geographic distance. In addition, our 

kriging analysis revealed that climate also changed over a similar gradient from east to 

west (Fig. 4c). This is consistent with previous work showing that ecophysiological 
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traits exhibited a gradual clinal transition along the same geographic axis (Sobel et al., 

2019). Therefore, the east-west gradient of ancestry scores in southern puniceus 

populations could be caused by ecological differences, as well as, or instead of, 

geographic distance. The separation within eastern San Diego puniceus populations at K

= 5 also is consistent with previous results (Stankowski et al., 2015), suggesting some 

isolation among yellow ecotype populations, perhaps because suitable habitat is more 

patchy in eastern San Diego or pollen and seed dispersal may be more limited. Further 

work will be necessary to evaluate these hypotheses. 

In addition to the previously well-characterized hybridization between puniceus 

ecotypes in San Diego (Sobel & Streisfeld, 2015; Stankowski et al., 2015, 2017; 

Streisfeld & Kohn, 2007; Streisfeld & Kohn, 2005), we find evidence of admixture 

between southern and northern puniceus populations, as well as between 

longiflorus/calycinus and northern puniceus (Fig. 4c). In both cases, the extent of 

admixture appears to vary across geographic gradients, patterns that are characteristic of

gene flow following secondary contact between lineages (Barton, Gale, & Harrison, 

1993; Endler, 1977). These results highlight the importance of genetic admixture and 

differences in ancestry when considering continuously distributed populations of 

separate lineages. 

Adaptation and ancestry differences predict heterogenous genome divergence

In San Diego populations of puniceus, there is considerable evidence of 

speciation occurring between red and yellow-flowered ecotypes along a geographic and 

ecological gradient (Chase et al., 2017; Sobel et al., 2019; Stankowski et al., 2017). Our 

population genomic analyses find that local adaptation contributes to shaping the 
32



heterogeneous genomic landscape in the SD subset. Variation in both geography and 

ecology explain a significant amount of variation in FST, confirming the effects of both 

IBD and IBA. In addition, ecological distance was a significant predictor of the strength

of the correlation between FST and π) , implying the effects of heterogeneous linked 

selection in driving this pattern (Fig. 5c). However, there were no effects of ecological 

or geographic distance on the strength of the FST-recombination or FST-gene count 

correlations that are hallmark predictors of linked selection (Burri et al., 2015). It is 

worth noting that our measure of climate differences only represents a single axis of 

ecological variation that may be important for adaptation. If we understood more about 

various aspects of the biotic and abiotic environments, such as soil type and organisms 

that consume these plants, we might be able to find stronger signals of linked selection. 

Nevertheless, it appears that differences in climate are associated with a stronger 

association between Fst and π)  than geography, which is consistent with the effects of 

divergent natural selection shaping genomic divergence between these emerging 

species. 

By contrast, when we examine the full dataset, it becomes clear that ancestry 

differences are a strong predictor of variation in genome correlations. While both 

ancestry and geography are significant predictors of variation in average FST, only 

ancestry is a good predictor of the FST-recombination-rate and FST-π)  correlations in the 

direction we expect due to linked selection (Fig. 5b). Although geography is a 

significant predictor of the FST-π)  correlation in the full dataset, this conclusion must be 

tempered because geography covaries with both ecology and ancestry, which cannot 

both be accounted for in a partial Mantel test. We do not have the same concerns about 
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ancestry differences covarying with the climate variables measured, but there may be 

covariation between ancestry and unmeasured sources of ecological variation. 

Therefore, we cannot rule out the possibility of IBA differentiating southern and 

northern populations. 

Our results support the role of adaptive evolution facilitating genetic divergence 

through linked selection in the southern puniceus lineage, but there is little support for a

role of divergent selection in the north. While the relationship between the strength of 

the correlations and ancestry suggest a possible role for background selection in shaping

heterogeneous patterns of genomic differentiation, we also cannot rule out the 

possibility of local adaptation due to unmeasured selective pressures. Moreover, floral 

traits are differentiated similarly in both northern and southern populations, but we did 

not measure ecological features typically associated with divergence in floral traits, 

such as pollinator visitation. That being said, our results suggest the possibility that 

divergent selection due to variation in climate is capable of driving genomic patterns of 

differentiation in San Diego, but because climate differences are less substantial among 

populations to the north, we are unable to detect a signal of local adaptation. 

In sum, these findings indicate the importance of having a strong understanding 

of a system’s ecology when investigating genomic trends arising from adaptation. 

Because similar genomic patterns can arise from both positive and background 

selection, it is important to understand the mechanism by which populations become 

partially or fully isolated from one another. An increasing number of studies is testing 

for IBA (Sexton et al., 2014), but unlike IBD, it is not always clear how to measure 

ecological distance. Understanding the important ecological factors within a system of 
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study is vital for interpreting genetic divergence. It is also important to consider many 

factors of the genome and what they can tell us about divergence and linked selection. 

Genome-wide FST is limited in what it can tell us about important aspects of the 

genome, such as linked selection. Ancestry, geography, and ecology were all significant

predictors of FST (Fig. 5), but they varied dramatically in their ability to explain 

correlations associated with the presence of linked selection and genomic divergence. 

Sampling a variety of genome statistics and understanding what each one tells us is vital

for establishing a holistic view of speciation genomics.
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Conclusion

In summary, we found that local adaptation can shape heterogeneity in the 

genomic landscape during the early phases of divergence with gene flow. However, this

pattern was present across only a portion of the geographic range of subspecies 

puniceus. Our survey identified two lineages of puniceus, and a population genomic 

analysis determined that this difference in ancestry between populations is a strong 

predictor of genomic correlations that form due to heterogeneous linked selection. On 

the other hand, within a subset of puniceus where populations are distributed across an 

ecological gradient, adaptation to the local ecology appears to contribute to 

heterogeneous genomic patterns. Characterizing a system’s ecology and the many 

features of the genome are both crucial for identifying how the speciation process 

affects the genome, which gets us closer to understanding the vast diversity in life on 

earth that surrounds us every day. 
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