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Understanding the onset of the adaptive immune system is important for 

understanding host-microbe interactions and the development of disease phenotypes. 

While the onset of adaptive immunity has been previously studied in model organisms 

such as mice and zebrafish, these inbred laboratory models are challenged by a lack of 

genetic diversity and may not be appropriate for all immunological studies. We advance

threespine stickleback fish (Gasterosteus aculeatus) as an outbred immunogenetics 

model in order to study the onset of the adaptive immune system in the context of 

genetic variation. Threespine stickleback fish exist in various coastal habitats 

throughout the Northern hemisphere and exhibit natural genetic diversity within 

families and between populations. Although this teleost model has been effective in 

previous immunological studies, there are foundational questions still left unanswered 

including, when does the onset of the adaptive immune system occur in threespine 

stickleback? To pinpoint the onset of adaptive immunity, we looked at two populations 

of threespine stickleback over a developmental time series and analyzed the expression 

of a gene involved in the development of T-lymphocytes. T-lymphocytes are a primary 

adaptive immune cell type able to recognize and elicit a response against pathogens. 
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Early development of these cells involves the TCR/CD3 protein complex composed of 

six subunits that are necessary for proper T-cell receptor (TCR) expression and cell 

activation in mature T-lymphocytes. Genes encoding the TCR/CD3 complex have been 

previously used to study the ontogeny of immune cells and have provided important 

insights into the development of the adaptive immune system. In this study, we chose to

focus on cd3d, a gene encoding one subunit of the TCR/CD3 complex. Similar work 

determining the timing of onset of adaptive immunity in other fish species has produced

a wide range of results, from 11 hours post fertilization to 26 days post hatching (dph). 

We found that by 10 dph, cd3d was expressed in all individuals, with population level 

variation indicating some individuals may exhibit expression earlier in development. 
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Chapter 1

Introduction to Genetics

Scientists have long been interested in heredity and the variation of genetic and 

physical traits. Heredity can be explained by the fundamental laws of inheritance, first 

discovered by ‘the father of genetics’ Gregor Mendel through his work on pea plants 

(Mendel 1866). Mendel was able to determine that genetic traits are inherited as distinct

units, as opposed to the previous theory of blending inheritance; there are dominant and 

recessive traits passed from parents to offspring; and traits are passed on independently 

of other traits (Mendel 1866). Within years of Mendel’s work, Charles Darwin, the 

‘father of evolution’, proposed the theory of biological evolution by natural selection 

explaining how species change over time as result of heritable traits; changes that are 

beneficial for an organism are maintained through ‘survival of the fittest’ in an 

environment (Darwin 1859). However, Darwin’s theory was lacking a mechanism for 

inheritance, so his theory was incomplete alone. The modern synthesis fuses Mendelian 

genetics with Darwinian evolution allowing for modern evolutionary biology to 

understand inheritance and variations in heritable traits (Huxley 1942). While Mendel’s 

and Darwin’s work contributed to our understanding of how phenotypes – observable 

characteristics – are inherited and selected for, they did not know about DNA or genes. 

Nearly a century later, Watson and Crick discovered the double-helix structure of DNA,

giving rise to modern molecular biology (Watson & Crick 1953). 

The central dogma of genetics explains the flow of genetic information from the 

expression of a genotype to the expression of a phenotype, flowing from DNA to RNA 

to protein. Deoxyribonucleic acid (DNA) is a double-stranded molecule that carries 



genetic information for the development, function, growth, and reproduction of 

organisms. DNA contains genes, the basic physical and functional units of heredity, that

can be transcribed into another molecule to carry genetic information. The initiation of 

gene transcription occurs when RNA polymerase binds to the promoter region of a 

gene. Then, the DNA double helix is unwound and the strands are broken apart so that 

one strand can be read as a template to create a single-stranded, complementary 

messenger ribonucleic acid (mRNA) molecule. mRNA acts as the genetic messenger, 

carrying instructions for protein synthesis from DNA to the ribosome. The nucleotides 

composing the mRNA molecule are ‘read’ in triplets, or codons, each corresponding to 

an amino acid. By this process, the RNA undergoes translation and is decoded to form a

specific chain of amino acids known as a protein. This entire flow of genetic 

information, as well as other regulating factors, can lead to the expression of genes in an

individual. 

While heritable genotypes are a major cause of intraspecific variation, 

environmental factors and genetic background can also influence the variation of 

phenotypes. Studies in a variety of animal models have revealed that the environment 

has a strong influence on the development of the immune system. For example, there is 

differential expression of immune parameters between wild-caught and lab-reared mice 

(Mus musculus domesticus) and differential immune gene expression between lake and 

river populations of threespine stickleback fish (Gasterosteus aculeatus) (Huang et al. 

2016; Abolins et al. 2017). Environmental stress factors such as oxygen levels, 

pollutant exposure, and pathogens can create developmental and long-term changes to 

the immune system causing the organism to be more susceptible to disease and 
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infection (Bowden 2008). In addition to environmental factors, the organism’s genetic 

background can be important for the variable expression of phenotypes between 

individuals – even those with the same genotype. Genetic background is the 

combination of genes that may interact with a gene of interest, and potentially alter the 

expressed phenotype (Linder 2006). Genetic background is especially important in the 

development and progression of disease states (Rosas et al. 2005; Spagnuolo et al. 

2016). For example, patients with the genetic mutation causing cystic fibrosis (CF) are 

more likely to have severe, chronic pulmonary infections of the bacterium 

Pseudomonas aeruginosa than patients with other pulmonary diseases such as chronic 

obstructive pulmonary disease (COPD) (Spagnuolo et al. 2016). While some 

interactions between genetics and the immune system, such as the CF example, are 

understood, there is still much we don’t understand about immunogenetics.

The Immune System

Previously, the immune system was understood primarily as an organism’s 

defense against pathogens and infection, but ongoing research has revealed that the 

immune system has many other responsibilities (Delves & Roitt 2000). For example, it 

maintains homeostasis between bacteria and the host and works closely with many other

body systems such as the circulatory and lymphatic systems for cell production and 

transportation (Delves & Roitt 2000; Hooper et al. 2012; Cueni & Detmar 2013; Girard 

et al. 2012). Additionally, the immune system can cause autoimmune disorders when it 

doesn’t function properly by attacking the host instead of fighting against infection 

(Delves & Roitt 2000; Hooper et al. 2012). 
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The vertebrate immune system is characterized by two branches: the innate 

immune system and the adaptive immune system. Both branches, composed of 

specialized cells and molecules, are designed to respond to microbes and prevent 

infection (Delves & Roitt 2000). Individually, the innate immune system is able to 

respond to extracellular pathogens but can also work in conjunction with the adaptive 

immune system to eliminate intracellular pathogens (Delves & Roitt 2000). Although 

the two branches can work in conjunction, there are many key differences between 

them, particularly in the development, response time and physiology of each.

The innate immune system serves as the first line of defense against pathogens, 

and begins to develop early in embryogenesis, as early as in embryonic stem cells (Guo 

2019). Innate immunity involves a variety of cells that are able to mount a quick 

immune response and are thought to be especially important in targeting viral and 

bacterial pathogens at mucosal surfaces (Hamerman et al. 2005). This system is 

composed of inflammatory cells, phagocytic cells, and natural killer cells. Additionally, 

innate responses often involve the complement system, acute-phase proteins and 

cytokines in order to notify the immune system of infection, respond to the infection, 

and clear out the pathogen (Delves & Roitt 2000).  

The various cell types of the innate immune system each have unique functions 

in response to pathogens. Inflammatory cells release cytokines and proteins in order to 

promote inflammation; this inflammation can protect the infected tissue from further 

damage by pathogens (Abdulkhaleq et al. 2018). There is a collection of cells that can 

induce inflammation: macrophages, neutrophils and lymphocytes. Macrophages are 

able to perform endocytosis by engulfing foreign particles, bacteria, and infected cells 
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to destroy them and remove the pathogens (Hirayama et al. 2018). As inflammatory 

cells, macrophages can also release inflammatory cytokines, acute phase proteins and 

antimicrobial peptides to aid in the immune response (Hirayama et al. 2018). Natural 

killer (NK) cells, rather than directly clearing the infection, initiate cytolytic activity 

against infected cells (Paul & Lal 2017). This activity includes releasing cytokines and 

chemokines to modulate the function of other immune cells that can destroy the 

pathogen (Paul & Lal 2017). NK cells, as part of the innate immune system, mount a 

quick immune response and are thought to be especially important in targeting tumors 

and virus-infected cells (Hamerman et al. 2005). 

With nonspecific immune cells, the innate immune system is able to recognize 

microbes by germline encoded pattern recognition receptors (PRRs) that recognize 

common pathogen-associated molecular patterns (PAMPs) such as peptidoglycans and 

lipopolysaccharides (LPS) in bacterial cell walls or viral double-stranded RNA 

(Medzhitov & Janeway 2000). Germline encoded PRRs are limited in the number of 

PAMPs that they can recognize because the receptor repertoire is established by the 

germline and does not change over the host’s lifetime (Medzhitov & Janeway 2000; 

Magnadóttir 2005). The responses elicited by the innate immune system are nonspecific

and mainly involve phagocytic and cytotoxic cells that can rapidly respond to an 

infection by releasing molecules such as antimicrobial peptides and inflammatory 

cytokines (Janeway 1989; Magnadóttir 2005). The innate immune system, as the first 

line of defense against pathogens, is vital for protecting the host until a more specific 

immune response can be mounted.
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The adaptive immune system, in comparison, mounts more specific immune 

responses than the innate immune system. Specific immune responses are primarily 

carried out by lymphocytes, including B-lymphocytes that mature in the bone marrow 

and T-lymphocytes that mature in the thymus. The development of immune cells in the 

bone marrow makes this branch of the immune system unique to the subphylum 

Vertebrata (Hirano et al. 2011; Zhao & Elson 2018). Additionally, the onset of the 

adaptive immune system may occur as early as embryogenesis, but the specific timing 

of onset is generally unclear. Attempts to study the onset of adaptive immunity have 

utilized early adaptive immune gene markers relating to the progenitors of T- and B-

lymphocytes (Willett et al. 1997; Seemann et al. 2017). Although, the definition of 

‘onset’ and the methods used to determine the timing of onset have not been 

standardized, so there is a wide range of timepoints reported (Willett et al. 1999; Tian et

al. 2009; Uribe et al. 2011).

The adaptive immune system contains B-lymphocytes, or B-cells, which are 

activated by the binding of antigen to a membrane-bound immunoglobin (T-cell 

independent activation) or by an interaction with another immune cell (T-cell dependent

activation) (Bonilla & Oettgen 2010). In T-cell independent activation, the B-cell 

immunoglobin receptors recognize repeating molecular patterns on microbial surfaces 

and the cell becomes activated (Bonilla & Oettgen 2010). However, this form of 

activation can only partially activate the B-cell and the cell requires additional signals to

become fully activated (Bonilla & Oettgen 2010). In contrast, T-dependent activation 

requires the interaction of a B-cell and a T-cell to be fully activated. In this type of 

activation, the B-cell serves as an antigen presenting cell (APC) to the T-cell (Bonilla &
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Oettgen 2010). When the B-cell presents an antigen peptide to the T-cell, there is direct 

cellular contact and release of co-stimulating molecules from the T-cell that fully 

activates the B-cell (Bonilla & Oettgen 2010). Once the B-cell is activated, it is able to 

proliferate and differentiate into its effector form, a plasma cell. The plasma cell 

undergoes clonal expansion and is able to widely secrete antibodies specific to the 

recognized antigen (Delves & Roitt 2000; Janeway & Medzhitov 2002). Secreted 

antibodies tag the specific extracellular pathogen by binding to the surface and elicit an 

immune response by recruiting phagocytes and other immune molecules (Janeway et al.

2001). 

The adaptive immune system also contains T-lymphocytes, or T-cells, which 

mature in the thymus and are activated when an antigen is recognized by the T-cell 

receptor (TCR). The antigen is presented to the TCR by the major histocompatibility 

complex (MHC) on an antigen presenting cell (Figure 2). The TCR is able to recognize 

both the antigen being presented and the MHC (Kronenberg et al. 1986). To become 

activated, the T-cell relies on the TCR/CD3 complex. The TCR heterodimer of the 

complex recognizes the antigen peptide, then the CD3 subunits, with their longer 

intracellular domains, are able to transduce the signal across the membrane to begin T-

cell activation (Clevers et al. 1988). The activated T-cell can then eradicate intracellular

pathogens by recruiting phagocytic or cytotoxic cells (Delves & Roitt 2000; Janeway & 

Medzhitov 2002).
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Antigen Presenting Cell

T Cell

MHC

TCR

Figure 1: Interaction of the antigen presenting cell and the T-cell. The red antigen 

presenting cell has a surface major histocompatibility complex, represented as a grey 

projection, presenting an antigen peptide (black circle). The green T cell has a surface T

cell receptor in yellow that recognizes the presented antigen.

8



Figure 2: Interaction of antigen peptide with the TCR/CD3 complex. The TCR/CD3 

complex is shown with each colored rectangle representing a chain of the complex. The

Greek letter label the chains: TCRα (red), TCRß (purple), CD3δ (blue), CD3γ (yellow) 

and CD3ε (green; appears twice). The black boxes on the cytoplasmic tails on the CD3 

components represent the ITAMS. An antigen (black circle) is being presented to the 

antigen recognition site (curved boxes on top of TCRα and TCRß) by the MHC (grey). 

Adapted from Franco et al. 2016.

T- and B-lymphocyte receptors, unlike innate immune receptors, are not 

germline-encoded and instead undergo V(D)J recombination in order to create a diverse

repertoire of antigen-specific receptors. V(D)J recombination rearranges the variable 

(V), diversity (D) and joining (J) gene segments in the genomic DNA in order to form 
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the variable domain of T- and B-lymphocyte antigen receptors (Figure 1) (Mansilla-

Soto & Cortes 2003). The V, D, and J gene segments are separated from each other in 

the DNA sequence of germline cells, so recombination brings the segments together to 

be expressed in mature lymphocytes (Janeway et al. 2001).

Figure 3: V(D)J recombination. Schematic representation of the recombination of a 

variety (V) and joint (J) gene segment. The blue ovals represent the RAG1/RAG2 

protein complex. The green square represents the V gene segment and the yellow 

triangle represents the 12 base pair recombination signal sequence. The red square 

represents the J gene segment and the brown triangle represents the 23 base pair 

recombination signal sequence. From top to bottom, the schematic shows the section of 

DNA to be recombined, the binding of RAG1 and RAG2 to the DNA, the single-

stranded nick and formation of hairpins, and the repair and ligation of the DNA to 

complete the recombination. Adapted from Kuby Immunology, 8th ed.
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Recombination is initiated when the RAG1 and RAG2 proteins form a complex and 

nick the DNA at the recombination signal sequences (RSS) that flank each gene 

segment (McBlane et al. 1995). These nicks cause two sealed hairpin coding ends and 

two blunt signal ends to form (Fugmann 2001). The hairpins are believed to be cleaved 

by a protein complex called Artemis which allows for DNA enzymes to fill in the 

complementary strands and complete the recombination process (Mansilla-Soto & 

Cortes 2003). Because of the numerous combinations of V, D, and J gene segments that 

can be recombined to form immunoglobin variable domains, this unique process in the 

adaptive immune system allows for a large repertoire of antigen-recognizing receptors 

to be created. This in turn allows for a wide range of elicited specific immune 

responses.

Since there is a time lag between recognition of a pathogen, proliferation of 

lymphocytes, development of effector cells, and action by the immune system, the 

adaptive immune response is more delayed than the rapid innate response. However, 

this initially delayed response can become faster and stronger over time with the 

development of immune memory. When the adaptive immune system encounters the 

same pathogen again, it mounts a secondary immune response with receptors that have 

a higher affinity for the pathogen, and in some cases, a larger immune response 

(Ratajczak et al. 2018). The adaptive immune system has B memory (BM) cells and T 

memory (TM) cells in order to create this immune memory. BM cells have membrane 

bound immunoglobins with a higher affinity for the pathogen and release larger 

amounts of specific antibody than in the primary immune response (Ratajczak et al. 

2018). TM cells develop from naïve (unexposed) T-cells and are able to mount a 
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stronger, more effective immune response even when challenged by lower 

concentrations of antigen than in the initial infection (Ratajczak et al. 2018). The 

development of immune memory is unique to the adaptive immune system and allows 

for greater, faster immune responses with repeated exposure to pathogens.

One area of interest when studying the adaptive immune system is the TCR/CD3

complex embedded in the membrane of T-lymphocytes. The TCR/CD3 complex 

consists of two major protein components: TCR and CD3. Each of these major 

components performs different functions essential to the complex made possible by 

their unique physical structures. The TCR heterodimer is able to recognize a specific 

antigen peptide that is presented by the MHC molecule on an antigen presenting cell, 

and the CD3 components have immunoreceptor tyrosine-based activation motifs 

(ITAM) that become phosphorylated after the TCR engages with the antigen-bound 

MHC (Clevers et al. 1988). Together, this allows for the recruitment of other molecules 

to initiate a signaling cascade (Janeway 1992). One reason for the differing capabilities 

of these components is the length of the cytoplasmic tails. The TCR chains have short 

cytoplasmic tails and have no signaling capabilities in themselves, while the CD3 

components have longer cytoplasmic tails that are capable of transducing signals across 

the membrane (Clevers et al. 1988). They must therefore work together to recognize an 

antigen peptide, trigger a signaling cascade, and initiate the immune response of T-cells.

The TCR/CD3 complex is of particular interest when studying the timing of 

onset of adaptive immunity because the genes encoding the pre-TCR/CD3 complex are 

some of the earliest expressed genes in the developmental pathway of the adaptive 

immune system. In fact, all CD3 components are expressed at the mRNA level in the 
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earliest identifiable thymic precursors, although surface level detection is more delayed 

(Wilson & MacDonald 1995). The genes encoding the pre-TCR complex, consisting of 

a pre-TCRα chain and a mature TCRß chain, are expressed slightly later than CD3, but 

before the maturation of T-lymphocytes (Wilson & MacDonald 1995). 

The pre-TCR and CD3 complex is important for normal progression of early T-

cell development, so the expression of CD3 and pre-TCR genes can be used as an 

effective marker for the onset of the adaptive immune system (Wilson & MacDonald 

1995; von Boehmer & Fehling 1997). To note: the onset of the adaptive immune system

refers to the earliest expression of adaptive immune genes, or earliest development of 

adaptive immune precursors, not the full functionality of the adaptive immune system. 

The TCR/CD3 complex and its precursors have been widely used to study the ontogeny 

of the immune system and could provide important insights on human disease and host-

microbe interactions.

Human Health and the Microbiome

Animals exist with an entire ecosystem of microorganisms that live inside and 

on their bodies (Turnbaugh et al. 2007). This complex microbial ecosystem, collectively

named the ‘microbiome’, consists of a diverse group of microbes including fungi, 

viruses, bacteria, archaea, protozoa and algae. The radiation of microbial eukaryotes 

occurred about 1.5 billion years ago, and by the end of the Cambrian explosion, all 

known animal phyla of microbes had appeared (Rook et al. 2017). Ancestral vertebrates

harbored complex communities of these microbial eukaryotes and evolved an adaptive 

immune system because of the survival advantage gained by adding this form of 
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immunity to the pre-existing innate immune system (Cooper & Alder 2006; Rook et al. 

2017). 

Microbes present throughout a host can be mutualistic or pathogenic to the 

organism. Mutualistic microbes interact with the host by aiding in proper physiologic 

and metabolic processes while the microbes receive nutrition and safe residence (Ivanov

& Honda 2012). Mutualistic interactions between the host and microbes can also have 

immunomodulatory roles (Bouskra et al. 2008; McFall-Ngai et al. 2012). Alternatively, 

pathogenic microbes are capable of causing disease in the host and can be detrimental to

host survival. However, out of the many microbes interacting with a host, only a few 

cause disease and some pathogenic microbes are not pathogenic in all hosts (Casadevall

& Pirofski 2000).

The majority of microbiota are contained in the gut; as many as 10 times more 

bacterial cells than host cells exist in the human digestive tract (Bull & Plummer 2014). 

Therefore, the main interface between the immune system and the microbiome occurs at

the intestinal epithelium (Bull & Plummer 2014). Microbes can also be found 

throughout the body such as on the skin, in the mouth, in the vaginal canal, and even in 

the eye and placenta (Grice & Segre 2011; Neish 2014; Lloyd-Price et al. 2016). 

However, the most intraspecific microbial diversity exists in the colon (Sender et al. 

2016). Because of these interfaces, the presence of microbiota can affect the 

development of the organism’s immune system by continuous exposure to microbes 

from early development (Bull & Plummer 2014).

It is not completely understood how neonates adapt to microbial colonization 

during development. The first exposure of the fetus to microbes is during the passage 
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through the birth canal (Belkaid & Hand 2014; Lloyd-Price et al. 2016). Therefore, the 

neonate’s microbiome is largely influenced by the microbes present in the mother 

during pregnancy and birth. There is also evidence that the mother’s colostrum and 

breast milk are important factors for shaping the microbial environment in early life 

(Hunt et al. 2011; Belkaid & Hand 2014; Lloyd-Price et al. 2016). The developing 

immune system is skewed towards regulatory responses for recognizing self, so it is 

possible that this immunoregulatory environment allows for the colonization of 

microbes with limited inflammatory responses (Elahi et al. 2013; Santori 2015).

After the immune system has matured, the host can elicit an immune response to

disease-causing pathogenic microbes in order to prevent infection. However, the host 

may also elicit an immune response to resident mutualistic microbes if they are 

incorrectly recognized as foreign. The immune system is trained by host-microbe 

interactions during development to recognize the difference between host microbes, the 

‘microbial self’, and foreign microbes (Abraham & Medzhitov 2011). When the 

immune system elicits a response against the ‘microbial self’, a state of dysbiosis, or 

microbial imbalance, is created, leading to many major health problems such as Crohn’s

disease, ulcerative colitis, and other inflammatory diseases (Manichanh et al. 2006; Li 

et al. 2012; Morgan et al. 2012). However, it is not only interactions between the host 

and resident microbes that can cause disease; non-resident microbes can also interact 

with the host immune system and cause diseases such as atopic dermatitis, psoriasis, 

and Lyme disease (Gantz & Allen 2016).

Host-microbe interactions are extremely important for host health and have 

become an essential area of research. With the completion of the Human Microbiome 
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Project in 2013, our understanding of the human microbiome was greatly expanded, but

there are still many questions left unanswered (Turnbaugh et al. 2007; The Human 

Microbiome Project Consortium 2012). Questions relating to host-microbe interactions 

are extremely relevant now during the COVID-19 pandemic. News outlets and 

scientists around the world are asking questions such as, how does the body interact 

with microbes such as viruses? How does immunity develop? Why are some people 

more susceptible to infection than others? Understanding generally how the human 

immune system interacts with a variety of microbes, including novel viruses, is essential

in being able to control and treat human diseases. Additionally, understanding host-

microbe interactions in the context of human disease allows us to answer questions 

about the importance of genetics and environment in the etiology of disease. The 

interactions between environment, host genetics, and microbes can determine the 

severity and progression of disease, yet there is still much to be understood about these 

interactions. 

There are still many unanswered questions about host-microbe interactions, 

especially in the context of human disease. As ongoing research continues to pursue 

answers to these questions, manipulative studies may be necessary in order to 

understand the molecules, processes, and specific interactions involved. By utilizing 

animal models in studies of host-microbe interactions, these manipulative studies can be

more easily performed.

Animal Modeling

Animal models are widely used in biological and biomedical research as 

organisms with similarities to humans. Animals can reflect the processes and 
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physiology of humans, so they provide a different avenue for studying human disease 

and immune processes in studies from basic science research to vaccine and treatment 

development (Barré-Sinoussi & Montagutelli 2015). Specifically, immunological 

studies rely on animal models with immune systems reflective of humans in order to 

understand host-microbe systems and the genetics of innate and adaptive immunity 

(Chandler et al. 2011; Milligan-Myhre et al. 2011; Gootenburg & Turnbaugh 2011; 

Milligan-Myhre et al. 2016). Current models, such as mice and zebrafish, can be 

extremely effective because they mimic the human immune system through conserved 

pathological conditions (Rivera & Tessarollo 2008). However, although physiologically

similar, these isogenic lines of animal models are challenged by a lack of genetic 

diversity, as found in human populations, and for mice, by the invasive procedures 

required to work on mammalian models (Rivera & Tessarollo 2008). There is a need for

a genetically diverse, non-mammalian model in order to study the immune system and 

host-microbe interactions in the context of genetic variation. This gap is being filled by 

fish as animal models including threespine stickleback, zebrafish, and other fish species 

(Davis 2004; Zhu et al. 2013).

Fish Immunology

Fish are becoming more popular models for immunological studies, but there are

foundational questions that must be answered to effectively utilize these models, such 

as, when do the cells and molecules of the adaptive immune system first begin to 

develop? Previous studies on the development, or onset, of adaptive immunity in 

mandarin fish (Siniperca chuatsi) and multiple teleost fishes have shown that externally 

fertilized fish do not require the adaptive immune system for survival until they have 
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hatched (Tian et al. 2009; Uribe et al. 2011). Therefore, the adaptive immune system is 

likely onset when there is first exposure to external pathogens after the embryo is 

exposed to the environment, such as after hatching. However, the methods used to 

determine onset are variable, and different species develop at different rates, so the 

reported onset of adaptive immunity in fish species ranges from 11 hours post 

fertilization in zebrafish (Danio rerio) to 26 days post hatching in mandarin fish 

(Siniperca chuatsi) (Willett et al. 1999; Tian et al. 2009; Uribe et al. 2011). 

Interestingly, the onset of adaptive immunity in two teleost species, marine medaka 

(Oryzias melastigma) and zebrafish (Danio rerio), correlates with a common 

developmental time point: the opening of the mouth and/or anus (Kimmel et al. 1995; 

Swarup 1958; Iwamatsu 2004). The onset of the adaptive immune system could also be 

influenced by how long larvae are sustained on yolk, possibly because of maternally 

transferred immune factors present in the yolk (Zhang et al. 2013).

In addition to microbial exposure, there are many environmental factors that 

could cause variation in the development of adaptive immunity in fish including natural 

environmental factors such as temperature, salinity, or season, or artificial 

environmental factors such as pollutants or human confinement (Bly et al. 1997; Le 

Morvan et al. 1998; Cheng & Chen 2000; Baze et al. 2011; Birrer et al. 2012; Petersen 

et al. 2015; Gobler & Baumann 2016; Cabillon & Lazado 2019).  The habitat-specific 

microbiome can also influence the fish immune system (Hooper et al. 2012). Due to the

strong influence of environment on the development of adaptive immunity, it is 

important to utilize fish models that come from various well-understood environments 

in order to understand the influence of environmental factors across populations. 
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Additionally, it is important to include wild-caught fish in immunology studies because 

wild populations have been reared in environments with different characteristics and 

microbes. In order to accurately represent the human immune system in the context of 

genetic and environmental variation, fish models should also represent a range of 

populations from different environments. There are differences in the expression of 

functional immune parameters and immune genes between wild and lab-bred animal 

models, so it is important to sample across populations to have a better understanding of

immune function and development (Huang et al. 2016; Abolins et al. 2017). One 

species of fish that allows for easy sampling across a range of populations is the 

threespine stickleback fish.

The Threespine Stickleback Model Organism

Threespine stickleback (Gasterosteus aculeatus), a teleost fish, exists in various 

oceanic, freshwater, and brackish environments throughout the Northern Hemisphere 

ranging from the open ocean to small floodplain potholes (Bell & Foster 1994). Some 

freshwater populations are fairly young because the retreat of Pleistocene glaciers 

around 12,000 years ago forced marine threespine sticklebacks to colonize and adapt to 

newly made freshwater environments (McKinnon & Rundle 2002; Jones et al. 2012). 

Additionally, some young Alaskan freshwater populations were formed from previously

marine environments that became freshwater ponds by the 1964 Great Alaska 

Earthquake in Prince William Sound and the Gulf of Alaska (Lescak et al. 2015). These

new populations of threespine stickleback can undergo rapid differentiation when they 

become isolated, but do not go as far as to become distinct species (Bell & Foster 1994; 

McKinnon & Rundle 2002). In addition to phenotypic divergence between populations, 
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threespine stickleback exhibit high genetic diversity between populations and within 

families (Bell & Foster 1994; McKinnon & Rundle 2002; Cresko et al. 2004). 

Figure 4: An adult male threespine stickleback. 

The threespine stickleback is externally fertilized and can vary in time to 

hatching depending on the incubation temperature and population of fish. Within the 

first day post fertilization, the blastodermic cap, a mass of cytoplasm at one pole of the 

egg, is formed and is segmented many times (Swarup 1958). After 1 day post 

fertilization, there is a clear germ ring seen around the edge of the blastoderm; at this 

stage, the blastoderm almost appears to be a mushroom cap over the subgerminal 

cavity. By 2 days post fertilization, there is a well-established embryonic axis and the 

development of the central nervous system causes the embryo to thicken, making it 

obvious to the naked eye (Swarup 1958). The optic, cardiac, and central nervous 

systems continue to develop and by about 5 days post fertilization, the eyes are 

prominent and pigmented, the heart is beating vigorously, the tail shows occasional 

muscular movements, and melanophores begin to appear along the dorsal side of the 

body (Swarup 1958). At 6 to 7 days post fertilization, by lashing its tail around and 

vibrating the pectoral fins, the head is pushed against the chorion – the outer membrane 

surrounding the embryo – and the chorion ruptures allowing the larval fish to free itself 
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from the egg (Swarup 1958). At or shortly after hatching, the hindgut is visible and 

opens by the anus, and the first lymphoid cells may be present in developing lymphoid 

organs: the thymus, spleen, and head kidney (analogous to the human adrenal gland and

the major hematopoietic organ in fish) (Swarup 1958; Zapata et al. 2006; Geven & 

Klaren 2017). Following hatching, the larval fish absorbs its yolk and continues to 

develop with a straightening of the head, a completely developed jaw and functional 

mouth, an elongated intestine, and a visible swim bladder (Swarup 1958). Additionally, 

the TCR genes of the TCR/CD3 complex may be expressed by around 2 days post 

hatching as in other teleost species (Zapata et al. 2006). By around 4 days post hatching,

the yolk has been completely absorbed and the fish must be provided food and moved 

into a larger water system in the laboratory. 

Threespine stickleback are excellent biological models because they are widely 

distributed throughout the Northern hemisphere, can be easily caught and maintained in 

the laboratory, and because there are such striking differences between even adjacent 

habitats (Bell & Foster 1994). The evolutionary history and development of threespine 

stickleback are well understood, which also contributes to their use as a model (Swarup 

1958; Bell & Foster 1994; McKinnon & Rundle 2002). As animal models, the 

threespine stickleback has been used to answer many questions including those about 

the genetic basis for the repeated evolution of armor loss, the differences in immune 

responses to microbiota between populations, intestinal inflammation, and population 

genetics (Cresko et al. 2004; Milligan-Myhre et al. 2016; Small et al. 2017; Small et al.

2019; Beck et al. 2020). While threespine stickleback fish have been used as an 
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effective model for a variety of studies, the species is still emerging as a model for 

studies of the immune system.

Threespine stickleback fish can be used as an outbred immunogenetics model 

appropriate for studies of the immune system within the context of genetic variation. 

These teleost fish are an example of outbred ‘evolutionary mutant models’, defined by 

Albertson et al. 2009 as an assemblage of related organisms in which certain 

populations express a phenotype that mimics human disease and exhibit genetic 

variation from natural selection and genetic drift. The natural genetic variation and 

vertebrate immune systems of threespine stickleback allow the species to be developed 

as an animal model that can mimic human disease phenotypes (Albertson et al. 2009; 

Milligan-Myhre et al. 2016). Additionally, threespine stickleback are genetically 

tractable organisms with a well-annotated genome that is helpful for immunogenetics 

studies. Similar to zebrafish, threespine stickleback are easily reared in the laboratory 

through external fertilization with high fecundity allowing for the facilitation of 

developmental assays and the study of immune development. For these reasons, the 

threespine stickleback fish is presented as a novel model for immunogenetics studies to 

be used for controlled manipulative host-microbe interaction studies. 
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Chapter 2

Introduction

Vertebrates possess an adaptive immune system that is able to initiate responses 

against a variety of pathogens such as viruses, fungi, and bacteria (Delves & Roitt 

2000). These interactions between the immune system and the microbial environment, 

or host-microbe interactions, are important for maintaining homeostasis with 

mutualistic microbes and maintaining a healthy host (Delves & Roitt 2000; Hooper et 

al. 2012). When the relationship between the host and microbes goes awry, major health

problems can occur including Crohn’s disease, ulcerative colitis, Lyme disease and 

atopic dermatitis (Manichanh et al. 2006; Li et al. 2012; Morgan et al. 2012; Gantz & 

Allen 2016). Host-microbe interactions in the context of human disease have become a 

popular area of study, but our current understanding of these interactions and chronic 

immune disorders is challenged by not knowing when the onset of the adaptive immune

system occurs. Understanding the onset of adaptive immunity is important for 

advancing our knowledge of host-microbe interactions and disease etiologies by 

determining when hosts first develop the cells and molecules needed to respond to 

pathogens and microbes. 

The adaptive immune system is a large, complex system that has evolved in 

vertebrates and been maintained for the survival advantage it provides compared to 

possessing the pre-existing innate immune system alone (Cooper & Alder 2006; Hirano 

et al. 2011; Zhao & Elson 2018). This branch of the immune system is advantageous 

because it allows for specific immune responses and the development of immune 
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memory – secondary responses with a higher affinity and greater response to the 

pathogen (Ratajcazk et al. 2018).  Previous studies have determined the molecules, 

mechanisms, and processes associated with adaptive immunity, but the onset of the 

adaptive immune system has been conclusively reported in very few species. 

In studying the onset of adaptive immunity, one area of interest is the TCR/CD3 

complex that is important for the activation of T-lymphocytes. The TCR/CD3 complex 

consists of a heterodimer (TCRα and TCRß) and invariant CD3 components (CD3δ, 

CD3γ and two CD3ε) that are together able to recognize a specific antigen peptide, 

transduce the signal across the membrane, and trigger a signaling cascade to activate the

T-cell (Clevers et al. 1988; Janeway 1992). The TCR/CD3 complex is of particular 

interest when studying the onset of adaptive immunity because it is important for early 

T-cell development. Additionally, the genes encoding the TCR/CD3 subunits are some 

of the earliest expressed adaptive immune genes (Wilson & MacDonald 1995). 

Therefore, the expression of CD3 and TCR genes can be used as effective markers for 

the onset of the adaptive immune system (Wilson & MacDonald 1995; von Boehmer & 

Fehling 1997).

Many ongoing studies on the onset of adaptive immunity utilize isogenic lines of

animal disease models, i.e. mice and zebrafish, and do not include the use of natural 

models from different environments. It is important to utilize immunological models 

that can effectively mimic human diseases within the context of genetic variation and 

different environmental histories because the host’s genetic background and 

environmental exposure are extremely influential on susceptibility to disease and the 

progression of disease states (Zhernakova et al. 2008; Rivera & Tessarollo 2008). 
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Additionally, different environmental histories are often correlated with differences in 

immune activity, so it is vital to include natural models in immunological studies (Le 

Morvan et al. 1997; Cheng & Chen 2000; Matthews et al. 2010). We address the 

challenges of current animal models by presenting threespine stickleback as an 

emerging model in immunogenetics. 

Threespine stickleback fish (Gasterosteus aculeatus) can be used as a 

genetically diverse outbred model appropriate for immunological studies. The teleost 

fish exists in various oceanic, freshwater, and brackish environments through the 

Northern Hemisphere and exhibits genetic diversity among populations and within 

families (Bell & Foster 1994; McKinnon & Rundle 2002; Cresko et al. 2004). 

Additionally, these small fish are genetically tractable organisms with a well-annotated 

genome allowing for immunogenetics studies. Similar to zebrafish, threespine 

stickleback are easily reared in the laboratory through external fertilization and produce 

many offspring allowing for the facilitation of developmental assays and the study of 

immune development. The natural genetic variation and vertebrate immune system of 

threespine stickleback allows for the species to developed as an effective 

immunological model (Albertson et al. 2009; Milligan-Myhre et al. 2016). This non-

mammalian model has already been previously used to study immune responses in 

various environments, but there are fundamental questions left unanswered that are 

necessary for progressing threespine stickleback as a natural disease model (Kurtz et al.

2006; Bolnick et al. 2015; Milligan-Myhre et al. 2016; Small et al. 2017; Small et al. 

2019; Beck et al. 2020). 
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It is currently unknown when adaptive immunity is onset in threespine 

stickleback, and if the adaptive immune system is uniformly onset between populations.

In this study, we attempt to answer these questions and chose to focus on the onset of 

cd3d, a gene involved with the CD3 delta subunit of the TCR/CD3 complex, in two 

populations of threespine stickleback. Similar work determining the onset of adaptive 

immunity in other fish has produced a wide range of results, from 11 hours post 

fertilization in zebrafish (Danio rerio) to 26 days post hatching in mandarin fish 

(Siniperca chuatsi) (Willett et al. 1999; Tian et al. 2009). We determined a timepoint in 

which cd3d is first expressed in threespine stickleback, with population level variation 

indicating that some individuals may exhibit expression at an earlier developmental 

time point. These findings have broader implications for presenting threespine 

stickleback as an emerging immunogenetics model and for understanding the onset of 

adaptive immunity and host-microbe interactions.
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Methods

Populations, Husbandry and Crosses

I generated families of threespine stickleback from two Alaskan populations, an 

anadromous population – born in freshwater, but live in saltwater and return to 

freshwater to spawn – Rabbit Slough (N 61.5595, W 149.2583), and a freshwater 

population, Boot Lake (N 61.7167, W 149.1167) (Figure 5). These populations have 

been maintained in the laboratory for at least ten generations. Three families (the 

offspring of one male and one female) were generated from Rabbit Slough and four 

families were generated from Boot Lake using in vitro crossing outlined by Cresko et 

al. 2004. Each of the Rabbit Slough parents used came from a distinct family, while at 

least one parent in each of the Boot Lake crosses came from a single family. The 

developing embryos were raised in stickleback embryo media in an incubator at 20 ºC 

until 9 days post fertilization (dpf) and then moved to the recirculating water system in 

the Cresko Lab fish facility. Water temperature was kept at 20 C with a salinity of 2-4 

parts per thousand (PPT). The fish were housed in “summer” light conditions of 16 

hours of daylight and 8 hours of night and were fed daily with hatched brine shrimp 

naupli and fry food (Ziegler AP100 larval food). 
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Figure 5: Map of major rivers in the state of Alaska. A map of Alaska, USA showing 

the major rivers in blue. The collection sites for two lab-adapted threespine stickleback 

lines, Boot Lake and Rabbit Slough, are indicated with red dots along the Susitna River.

Developmental Time Series

To analyze the expression of cd3d, we generated developmental time series of 

larval fish from 0 to 21 days post hatching (dph) from each family in each population. 

Three to six fish were grouped and preserved at each time point from each family, 

depending on the number of embryos available in a clutch. Due to limitations of 

embryos, not all series extended until 21 dph (Table 1). Fish were euthanized with 

MESAB according to IACUC approved methods and preserved in RNALater to 

preserve the integrity of RNA for extraction. Preserved individuals were kept at 4 C for

24 hours then stored long-term at -20 C. 
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Table 1: Lab-adapted individuals preserved for the creation of a developmental time 

series

Population Individuals preserved Time Range

Rabbit Slough 44 0 dph to 14 dph

Rabbit Slough 95
0 dph to 21 dph (except 20

dph)

Rabbit Slough 52
0 dph to 21 dph (except 11
dph, 15 dph and 16 dph)

Boot Lake 51
0 dph to 21 dph (except 13
dph, 18 dph and 19 dph)

Boot Lake 36
0 dph to 21 dph (except 16
dph, 18 dph and 20 dph)

Boot Lake 34 0 dph to 10 dph, and 14 dph

Boot Lake 100 1 dph to 22 dph

After all developmental time series were created, we isolated the heads of preserved fish

by cutting directly behind the pectoral fin. By isolating the head at the pectoral fin, the 

major lymphoid organs that express adaptive immune genes such as the thymus and 

head kidney will be included in the caudal section used for assays. The heads were 

preserved in 100 L of RNALater and kept at 4 C to stabilize the RNA in the sample 

and the remaining portions were frozen at -20 C to prevent degradation of DNA.

Identification of Immune Marker Genes

We searched the threespine stickleback reference genome on Ensembl for 

annotated early adaptive immune genes associated with the TCR/CD3 complex. The 

only annotated TCR/CD3 gene in the threespine stickleback genome is cd3d, the gene 

encoding the delta subunit of the CD3 complex. A BLAST search compared the 
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sequence of cd3d (exon two) against the threespine stickleback genome and revealed no

paralogues.

RNA Isolation, First Strand Synthesis and PCR

From the developmental time series generated for seven lab-adapted families, 

RNA was isolated from the heads of three individuals from each population at selected 

time points using the Direct-zol RNA MiniPrep Kit (R2052; Zymo Research, Irvine, 

CA, USA) and quantified using the Qubit RNA High Sensitivity Assay Kit (Q32852; 

Invitrogen). At each time point (except 10 dph) three individuals from one family in 

each population were selected for RNA isolation (Table 2). At 10 dph, one individual 

from three different families in each population were selected for RNA isolation. Then, 

the isolated RNA was converted to single-stranded cDNA by first strand synthesis 

performed using standard protocols.

Time points from the developmental time series were selected using a binary 

classification decision tree that allowed for a methodical approach to narrowing the time

range of 0 to 21 days post hatching (Figure 6). By assaying fish at a predetermined 

midway point, we were able to work through each layer of the tree, choosing the next 

time point to assay based on the results of the previous step. Each step through the 

decision tree allowed for the possible time frame to be cut in half, e.g. confirmed 

expression of cd3d at 10 dph eliminates the need to assay any fish between 11 dph and 

21 dph. 
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Figure 6: Binary classification decision tree. “Y” indicates yes, there was expression of

the gene in the previous step. “N” indicates no, there was not expression of the gene in 

the previous step. The arrows were followed to determine the next timepoint to be 

assayed.
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Table 2: Lab-adapted individuals assayed for analyzing the expression of the cd3d gene

Population Number of Fish Time Point

Boot Lake 1 10 dph

Boot Lake 1 10 dph

Boot Lake 1 10 dph

Rabbit Slough 1 10 dph

Rabbit Slough 1 10 dph

Rabbit Slough 1 10 dph

Boot Lake 3 5 dph

Rabbit Slough 3 5 dph

Boot Lake 3 3 dph

Rabbit Slough 3 3 dph

Boot Lake 3 0 dph

Rabbit Slough 3 0 dph

The synthesized cd3d cDNA was used in polymerase chain reactions (PCR) to 

qualitatively determine if the target adaptive immune gene is expressed at the selected 

timepoints of the developmental time series. Forward and reverse primers for the 

adaptive immune gene, cd3d, were designed with Geneious Prime 2019.1.1 

(https://www.geneious.com) using the threespine stickleback reference genome from 

Ensembl (Kearse et al. 2012) (Table 3). In order to confirm the effectiveness of PCR, 

we used a housekeeping gene as a positive control in parallel to the adaptive immune 

gene. Primers for rpl13a, a threespine stickleback housekeeping gene, were also 

designed with Geneious Prime 2019.1.1 based on primer sequences reported by 
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Hibbeler et al. 2008. All primers were designed across exons to enable joint use as a 

positive control for genomic DNA amplification. 

PCR reactions used the parameters outlined in Table 3. Following PCR, we used

gel electrophoresis to visualize the presence or absence of cDNA for cd3d and rpl13a. 

Individuals were classified as having expression of the early adaptive immune gene or 

having no expression of the gene based on the presence or absence of a band from the 

cd3d PCR product (Figure 7).

Table 3: PCR parameters for cd3d and rpl13a

Gene Name cd3d rpl13a

Forward
Sequence

GCTGTGGTTCCTGTCCTA TATCCCTCCGCCCTACG

Reverse
Sequence

GGTAGTGATCGTCGGTGG
GCAACCTTGGTCAACTTGAAC

A

Annealing
Temperatur

e
54C 54C

Number of
Cycles

48 48

Primer
Volume (per

20 L
reaction)

1.5 L 0.6 L
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Figure 7: Example of positive expression of cd3d on agarose gel. PCR product from 

six 3 dph individuals run on a 2% agarose gel. Lane 1 is a 1 kb plus ladder. Lanes 2, 4, 

6, 8, 10, and 12 are each the product of cDNA from a different individual with cd3d 

primer. Lanes 3, 5, 7, 9, 11, and 13 are each the product of cDNA from a different 

individual with rpl13a primer. Lanes 2-7 are Boot Lake individuals and lanes 8-13 are 

Rabbit Slough individuals. The black arrow represents a lane classified as “expression 

present”. The white arrow represents a lane classified as “no expression”. 
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Results

cd3d Is Expressed in Threespine Stickleback by 10 Days Post Hatching

To determine the developmental timing of cd3d onset, we assayed larval fish for

gene expression from 0 dph to 10 dph in two lab-adapted populations of threespine 

stickleback, Boot Lake and Rabbit Slough. Of the three Boot Lake individuals assayed 

at each of four early time points (0 dph, 3 dph, 5 dph, and 10 dph), at least one 

individual showed expression of cd3d at each time point (Figure 8a). Two of the three 

fish assayed at 0 dph had expression of cd3d, but these results could not be replicated 

and therefore are not conclusive. At 3 dph, all assayed individuals showed expression of

the adaptive immune gene. This pattern was also observed at 5 dph and 10 dph. 

Therefore, we propose the onset of adaptive immunity to be prior to 3 dph in the Boot 

Lake population (Figure 8b).

The individuals from Rabbit Slough families showed expression in at least one 

individual at 3 dph, 5 dph, and 10 dph (Figure 8a). There was no expression of cd3d at 0

dph, but two of the three individuals assayed at 3 dph and 5 dph had expression. In 

comparison to Boot Lake, it was not until 10 dph that all three Rabbit Slough 

individuals showed expression of cd3d. Therefore, we propose the onset of adaptive 

immunity to be prior to 10 dph in the Rabbit Slough population (Figure 8b). 

Considering both populations, by 10 dph, all assayed individuals showed expression of 

the cd3d gene (Figure 8a).
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Boot Lake

Rabbit Slough

0 dph 10 dph5 dph3 dph

Rabbit Slough

Boot Lake

Figure 8: cd3d expression patterns. (a) The expression of cd3d in 3 individuals at each 

developmental time point (0 dph, 3 dph, 5 dph, and 10 dph) from each population. Each

pie chart is above the corresponding timepoint listed in panel B. The pie chart 

represents the proportion of individuals that had expression of cd3d. The black 

represents on and the white represents off.  (b) The proposed range of onset for the two 

assayed populations of threespine stickleback. Range is based on time points from no 

expression of cd3d in at least one individual to earliest expression of cd3d in all three 

individuals. The developmental stages of threespine stickleback are overlaid and 

correlate to the pie charts above. Stickleback development drawings adapted from 

Swarup 1958.
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Discussion

We have determined a window for the onset of adaptive immunity that was 

earlier than previously thought by analyzing the expression of cd3d in threespine 

stickleback. Manipulative studies of the adaptive immune system could now be 

performed within this narrower timeframe. Understanding these patterns could also be 

useful for advancing threespine stickleback as an emerging model for immunological 

studies in the context of genetic and environmental diversity. 

Hypotheses 

We expected to find the onset of the adaptive immune system at or near hatching

in threespine stickleback because of the timing of microbial exposure during 

development. Threespine stickleback are fertilized and develop within the chorion, the 

outer membrane surrounding the embryo, for about 6 to 7 days after fertilization in our 

lab populations. Then, the larval fish hatch out of the chorion and are exposed to the 

environment at 0 days post hatching, remain in embryo media in an incubator until 9 to 

10 days post fertilization, and then are housed in the fish facility’s recirculating water 

system. Each of these developmental stages can expose the fish to different microbes 

from the environment. Over these first days of development, the onset of the adaptive 

immune system would likely occur to face the challenge of microbes in the 

environment. If the fish are not challenged by microbes prior to hatching, assuming a 

sterile interior to the chorion, then we would expect the adaptive immune system to 

onset at a developmental time point after hatching. 

Other teleost fish species such as marine medaka (Oryzias melastigma) and 

zebrafish (Danio rerio) express TCR/CD3-associated genes including tcrß and tcrα at 5 
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days post hatching and 4 days post fertilization, respectively (Lam et al. 2003; Danilova

et al. 2004; Zapata et al. 2006; Seemann et al. 2017). In our own study using a teleost 

model, we found that threespine stickleback express cd3d as early as 0 dph to 3 dph in 

some individuals. Such variation in the timepoint of onset is expected between species, 

as these three teleost fishes develop at different rates. However, the expression of TCR/

CD3-associated genes are consistently expressed at a similar developmental time point. 

In each of the three teleost species, the earliest expression of TCR/CD3 related genes 

corresponds with the opening of the mouth and/or anus (Swarup 1958; Kimmel et al. 

1995; Iwamatsu 2004). These openings are entryways for microbes from the 

environment to enter the fish and colonize. There could be a correlation between the 

opening of the mouth/anus and the onset of the adaptive immune system that could then

be extrapolated to other fish species. These expression patterns are not true of all 

adaptive immune markers, but of the TCR/CD3 complex, specifically.

cd3d Expression Indicates the Onset of the Adaptive Immune System by 10 Days Post 

Hatching

Of the three Boot Lake individuals assayed at each of four early timepoints (0 

dph, 3 dph, 5 dph, and 10 dph) at least one individual showed expression of cd3d at 

each time point while in Rabbit Slough there was at least one individual showing 

expression only at 3 dph, 5 dph, and 10 dph. These earliest expression patterns are in 

line with the hypothesis that the adaptive immune system would be initially onset 

between 0 dph and 3 dph. If there is expression seen at a given timepoint, we determine 

that the onset of the cd3d gene is at or prior to that time point. Even with variable 

38



expression patterns between families, there seems to be expression of cd3d in some 

individuals beginning around 3 dph in each population as a whole. 

Interestingly, there was expression of cd3d in two individuals from the Boot 

Lake population at 0 dph, but no expression from Rabbit Slough individuals at the same

time point. So, considering the species overall, cd3d may be expressed at 0 dph or 

earlier in some threespine stickleback. However, when the individuals in both 

populations were re-assayed for confirmation of these results at 0 dph, there was no 

expression in any individuals from either population. Therefore, the results of gene 

expression at 0 dph were inconclusive. It is more likely that the onset of the adaptive 

immune system occurs after 0 dph because other fish species, including some teleost 

fish, are known for having a delayed onset of adaptive immunity from hatching 

(Chantanachookin et al. 1991; Willett et al. 1997; Magnadottir et al. 2005; Seemann et 

al. 2017). To conclusively determine the earliest onset of the adaptive immune system, 

a larger selection of individuals from each family and population would need to be 

assayed. While variation is expected within and between families and populations, a 

general conclusion about whether or not cd3d is onset at 0 dph could be made through 

future studies.

By determining the onset of cd3d expression, we attempted to pinpoint the first 

time point at which the adaptive immune system begins to develop, or the onset of the 

adaptive immune system. We chose to use cd3d to study the onset of adaptive immunity

because T-lymphocytes are unable to recognize antigen peptides without surface 

expression of the protein complex, and therefore, the adaptive immune system could not

be fully functional without proper expression of the TCR/CD3 complex (Weiss & Stobo

39



1984). Because of its essential role in developing thymocytes, cd3d can serve as a 

marker of some of the earliest gene expression in the adaptive immunity developmental 

pathway (Clevers et al. 1988). Using this adaptive immune marker, we found that by 10 

dph, threespine stickleback individuals express the cd3d gene, indicating that the onset 

of the adaptive immune system occurs by that time point. This proposed timing for the 

onset of adaptive immunity is much earlier than previously thought, as studies doing 

similar work have analyzed gene expression in fish at upwards of 28 dph so future 

studies will be able to perform analyses and manipulations at much earlier time points 

(Hasse et al. 2016; Scharsack et al. 2017). 

Expression of cd3d May Also Indicate the Onset of the Innate Immune System

cd3d, while a useful marker for the adaptive immune system and the delta 

component of the TCR/CD3 complex, may also indicate the onset of the innate immune

system (Lanier et al. 1992). The delta subunit of CD3 can also be expressed in 

developing natural killer (NK) cells of the innate immune system (Lanier et al. 1992). 

Therefore, while the CD3δ subunit is expressed on the surface of T-cells early in 

development, it is also possible that early innate immune cells will have a detectable 

CD3δ subunit (Lanier et al. 1992). In that case, expression of the cd3d gene may 

indicate the onset of the adaptive or innate immune system. 

To confirm the onset of the adaptive immune system versus the innate immune 

system, the expression of other TCR associated genes, e.g. rag1, rag2, tcrα and tcrβ, 

should be analyzed in parallel with CD3 genes. The CD3 delta subunit, encoded by 

cd3d, is one of the earliest expressed chains in the TCR/CD3 complex and is essential 

for proper surface expression and function of the T-cell receptor (Clevers et al. 1988; 
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von Boehmer & Fehling 1997; Araki et al. 2005). Without the co-expression of CD3 

with the T-cell receptor, the T-cell does not transport the TCR/CD3 complex to the 

surface (Weiss & Stobo 1984; Clevers et al. 1988; Alarcon et al. 1988).Therefore, T-

lymphocytes are not fully functional without the co-expression of CD3 and TCR, so by 

analyzing the expression of these genes in parallel, the onset of adaptive immunity 

could be more confidently reported (Clevers et al. 1988; Araki et al. 2005). However, 

TCR genes such as tcrα and tcrβ are not yet annotated in the threespine stickleback 

genome. 

Variation in cd3d Expression Patterns May Indicate Population Level Variation 

An assay of threespine stickleback individuals in the Boot Lake and Rabbit 

Slough populations revealed intraspecific variation in the expression of cd3d which may

indicate population level variation. Boot Lake individuals showed expression of the 

cd3d gene in all individuals starting at 3 dph and there was variable expression between 

the three individuals at 0 dph, however the results at this earliest time point were 

unreliable (Figure 8a). In comparison, Rabbit Slough individuals showed expression of 

the gene in all individuals at 10 dph but showed variable expression between 

individuals at 5 dph and 3 dph, and no expression at 0 dph (Figure 8a). This may 

indicate a later onset of cd3d in the Rabbit Slough population and that Boot Lake has a 

unique, earlier expression of cd3d.

The possibility of cd3d onset occurring later in the anadromous Rabbit Slough 

population is a credible possibility because fish from marine environments may have 

delayed ontogeny of adaptive immune cells (Magnadottir et al. 2005). It is possible that 

threespine stickleback populations follow this same pattern of variation in the onset of 
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adaptive immunity across environmentally distinct populations. In order to fully answer 

the question of population level variation in the onset of adaptive immunity, it is 

necessary to use a greater sample size from each population and to assay across many 

different populations of threespine stickleback from different environments. While this 

study serves to suggest the potential of population level variation, more work is needed 

in order to accurately and quantitatively determine difference in the timing of onset of 

adaptive immunity between populations of threespine stickleback.
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Conclusions

By analyzing the expression of an early adaptive immune marker gene across 

different developmental stages of threespine stickleback, we were able to indicate that 

the onset of the adaptive immune system occurs at or before 10 dph in this species. This

study begins to answer questions about the onset of adaptive immunity and population 

level variation in order to progress threespine stickleback fish as a novel, non-

mammalian natural model appropriate for immunogenetics studies. Our findings, 

although in a teleost model, may be representative of the vertebrate immune system in 

general and have potential for being reflective of the human immune system. With 

genetically diverse models such as threespine stickleback, we will continue to further 

our understanding of host-microbe interactions and the immune system through animal 

models and continue to progress the field of immunology as it attempts to better 

understand human health and disease.
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Chapter 3: Future Directions

Within the field of immunology, there is a need for non-mammalian, outbred 

evolutionary mutant models in order to accurately mimic human immune function and 

disease states in the context of genetic variation. Our current understanding of many 

diseases is in part challenged by the invasive nature of prenatal tests needed to study 

development in mammalian models, and by the complexity of genetic variation that 

plays a large role in etiologies of immune disease. Therefore, the development of an 

outbred, non-mammalian model is essential for progressing our understanding of 

immunogenetics and the immune system. Threespine stickleback are presented as an 

emerging immunogenetics model due to their natural genetic variation and diversity of 

environmental histories that allow for further studies into the onset of the immune 

system and how genetic variation impacts phenotypic variation of immune diseases. 

The use of this novel model creates a wide array of opportunities for further studies in 

immunogenetics. 

One important study related to the onset of the adaptive immune system in 

threespine stickleback would be to explore the onset of other early adaptive immune 

markers such as genes associated with the TCR heterodimer of the pre-TCR/CD3 

complex, tcrα  and tcrβ, and genes associated with the V(D)J recombination of 

immunoglobins, rag1 and rag2. The TCR genes encoding for the alpha and beta 

subunits of the heterodimer form the core of the TCR/CD3 complex and make up some 

of the earliest constructed units of the pre-TCR/CD3 complex (Wilson & MacDonald 

1995). Therefore, the expression of these genes may indicate an even earlier process in 

the development of the adaptive immune system than the expression of CD3 genes. 
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Additionally, the RAG genes, essential for the recombination of immunoglobins, must 

be expressed in order for the adaptive immune system to function properly. When 

mutations occur in rag1 and rag2, immunodeficiencies such as severe combined 

immunodeficiency (SCID) can occur due to a complete absence of functional T- and B- 

cells in the individual (Corneo et al. 2001; Cossu 2010). The expression of rag1 and 

rag2 is therefore essential for normal functionality of the adaptive immune system, so 

the RAG genes could be used as effective markers of the onset of the adaptive immune 

system. These markers could be used widely across many species of animal models 

with annotated orthologues, such as some species of fish, rodents, and primates to study

the onset of adaptive immunity. 

In addition to utilizing a broader range of adaptive immune markers, studies on 

the onset of adaptive immunity would benefit from a quantitative analysis of TCR/CD3 

gene and RAG gene expression. This study was able to qualitatively analyze the 

expression of cd3d with standard PCR and gel electrophoresis, but quantitative 

polymerase chain reaction (qPCR) would provide a quantitative assessment of gene 

expression by monitoring the amplification of a specific cDNA. A quantitative measure 

of expression could provide a more specific and trustworthy result for the onset of 

adaptive immunity by removing any limitations set by trying to visualize small 

concentrations of amplified cDNA at early timepoints. qPCR would also allow for a 

more detailed report of expression patterns by immune marker genes throughout early 

development.

Additionally, we can easily develop laboratory environmental manipulation 

assays for threespine stickleback fish. There are many environmental factors that could 
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cause changes in the development of adaptive immunity including water conditions 

such as salinity, temperature, or exposure to compounds such as lithium chloride (LiCl) 

(Le Morvan et al. 1998; Cheng & Chen 2000; Matthews et al. 2010; Baze et al. 2011; 

Birrer et al. 2012; Petersen et al. 2015). These various environmental differences have a

strong effect on the development of the immune system and can be exploited to develop

manipulative studies in the emerging threespine stickleback model (Gobler & Baumann 

2016; Cabillon & Lazado 2019).

In future studies, it will be important to take advantage of the environmental 

diversity of threespine stickleback populations and include wild-caught fish in immune 

development studies. Between wild-caught and lab-bred populations, and even between 

different wild-caught populations, there may be variations in the microbial environment 

that would present different challenges to the fish. Such variations and their effects on 

the adaptive immune system have been studied in mammalian models and have 

revealed differences between the adaptive immune systems of wild-caught and lab-bred 

animals (Abolins et al. 2017) Therefore, similar patterns may be observed in non-

mammalian models and there may be differences in the onset of the adaptive immune 

system between lab-adapted and wild-caught populations of threespine stickleback. By 

utilizing a wider selection of populations from different environments, studies can also 

analyze the effects of genetic similarity versus environmental similarity on the onset of 

the adaptive immune system.

To prepare for further studies on population level variation and studies utilizing 

populations from different environments, we generated families of threespine 

stickleback from two Oregon populations, the freshwater Green Island population 
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(448’42.02”N 1237’4.88”W), and the anadromous Cushman Slough population 

(4359’224”N 1242’42.94”W) (Figure 9). Adult fish were caught in the summer of 

2019 by other members of the Cresko Lab and crosses were made in the field. The 

embryos were brought back to the Cresko Lab fish facility and bleached to remove 

pathogens at 48-60 hours post fertilization by soaking in a working stock solution of 

bleach (500 L/1L embryo medium) for 1.5 minutes. Then, the embryos were rinsed 

three times in fresh embryo medium and reared in normal conditions. Fish were raised 

according to the same conditions used for lab-adapted families (Cresko et al. 2004). 

Cushman Slough individuals were grouped on the day they hatched regardless of family

while Green Island individuals were grouped on the day they hatched according to 

family. From these fish, we created developmental time series from 0 to 21 dph in each 

family from each population, but with many incomplete series due to embryo 

limitations (Table 4). The Green Island and Cushman Slough developmental time series

fish are currently preserved in RNALater and kept at -20 ºC for long term storage to be 

utilized in future studies.
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Figure 9: Map of major rivers in the Willamette Basin in Oregon. The collection sites 

for wild-caught parents are indicated for Cushman Slough and Green Island by red dots.
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Table 4: Wild-caught individuals preserved for developmental time series

Population Individuals preserved Time Range

Cushman
Slough

12 0 dph to 4 dph  (except 2 dph)

Cushman
Slough

39
0 dph to 12 dph (except 5 dph

and 11 dph)

Green Island 12 0 dph to 3 dph

Green Island 21
3 dph, and 9 dph to 13 dph, and

16 dph

Green Island 30 4 dph to 12 dph, and 14 dph

Green Island 34 0 dph to 11 dph, and 17 dph

Green Island 38
0 dph to 8 dph,, 12 dph to 15

dph, and 18 dph

Green Island 35 13 dph to 24 dph

Finally, the effects of microbes on the development of the adaptive immune 

system can be assessed by creating gnotobiotic, or germ-free, embryos. Since the 

threespine stickleback develops within the chorion – the tough outer membrane 

surrounding the embryo – we can treat the eggs to remove microbes, and then raise the 

fish in a sterile environment until the yolk has been depleted. Methods have been 

developed in order to create germ-free fish and have been effectively used in threespine 

stickleback to study immune responses to microbiota (Milligan-Myhre et al. 2011; 

Milligan-Myhre et al. 2016). 

With the knowledge of when the onset of the adaptive immune system occurs, 

we can analyze the onset of the adaptive immune system of fish who are not challenged 

by microbes and therefore may not develop adaptive immunity with the same timing. 
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