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The development of a statistically accurate backmapping procedure, coupled 

with an accurate coarse-graining (CG) method, is necessary as it would allow a system 

to freely transform between varying degrees of CG. This ability allows for the 

computational gain of CG with the resolution of atomistic simulations. Therefore, using 

state-of-the-art machine learning techniques coupled with atomistic simulation data, we 

have developed a backmapping procedure for CG polymeric systems. Specifically, we 

used a gated recurrent unit (GRU) to learn the atomistic structure within a single CG 

site of a polyethylene system. A categorical cross-entropy loss function was used to 

allow for more flexibility in the model. The model’s training yielded consistent loss and

validation loss demonstrating that the model did not overfit the data. Furthermore, the 

model was able to accurately reproduce a variety of structural quantities, such as the 

bond angle, bond length, dihedral angle, mean-square internal distance (MSID), end-to-

end distance, and distribution about the center-of-mass.
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Background and Introduction

In our modern age, the study of polymeric systems is becoming increasingly 

important. Polymeric systems include things like proteins, DNA, and synthetic plastics, 

all of which play crucial roles in our everyday lives. These systems are of great interest 

for their applications in material design. For example, it would be extremely useful to 

be able to understand how changes to a polymer’s structure would affect the global 

properties of a polymeric system without having to synthesize the material. Being able 

to do this kind of investigation would allow for new materials to be efficiently created 

based on the desired global properties of the polymer. Furthermore, being able to easily 

study proteins and DNA on a microscopic level has great importance in the biomedical 

industry. 

Unfortunately, when it comes down to investigating how polymeric system 

properties depend on molecular-level structure, experimental approaches do not always 

suffice, and they are economically expensive. Therefore, having time-efficient and 

inexpensive computational approaches to investigate polymeric systems on multiple 

scales, from the microscopic to the macroscopic level, is of great importance and 

necessity. Luckily, with the vast improvements to computers in the past several 

decades, investigating polymer systems from the microscopic to the macroscopic level 

has become more computationally feasible. Still, large systems that are of industrial 

interest, cannot be simulated even in supercomputers, because they require extensive 

computational resources. There are many different computational methods used in 

investigating these systems. A universal computational approach that allows for the 

investigation of time-dependent properties is molecular dynamics (MD) simulations.



Molecular Dynamics Simulations

To understand MD simulations, it is first necessary to understand molecular 

mechanical (MM) methods. MM methods neglect the quantum mechanical aspects of a 

system and treat molecules using classical Newtonian mechanics. This treatment 

corresponds to treating bonded and nonbonded interactions between atoms as springs. 

Like springs, the molecules have potential energy based on their distance from an 

equilibrium state. In this case, the potential energy between atoms of the system is 

purely a function of the distance between nuclei and is well approximated by force 

fields. Different MM force fields make different approximations to reproduce 

experimental quantities. This is where MD simulations come into play. MD simulations 

are a computational method that solves Newton’s equations of motion using a given 

timestep to give the MM forces that are applied to the atoms within the system. Across 

multiple timesteps, a trajectory of positions in time is formed, giving the dynamic 

evolution of the system. In traditional MD simulations of polymeric systems, each 

polymer molecule is described at the atomistic level. However, to investigate the 

properties of large polymeric systems, MD simulations, when at atomistic resolution, 

are very computationally intensive. A way to overcome this problem is to perform MD 

simulations at coarse-grained (CG) resolution.

Coarse-Graining

CG is a method in which the local degrees of freedom (DOFs) of the molecular 

description are averaged out and the representation of the molecule is simplified to 

reduce the computational time. The averaging is conducted by taking a collection of 

consecutive monomers from the atomistic polymer chain and condensing them into a 
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single site located at the center-of-mass of those monomeric sites. This single site is 

known as a CG site, or blob. When the system, or polymer, is completely coarse-

grained to a system of CG sites, it is said to be in its CG representation. If an entire 

polymer chain is condensed into a single site located at the polymer’s center-of-mass, 

then it is known as a soft sphere. An illustration of the atomistic representation of a 

polymer and its corresponding CG representation is depicted in Figure 1. 

Figure 1. Atomistic and CG Representation of a Polyethylene Chain of Length 192

A polyethylene chain containing 192 monomers, depicted in blue, which has been 

coarse-grained to six blobs, depicted in red. Each blob contains 32 monomers of 

polyethylene.

The smaller number of monomers in a CG site, the finer the system is said to be,

and the greater number of monomers in a CG site, the coarser the system is said to be. 

The process of CG is like rendering an image. The atomistic representation is like a 

high-resolution image while the CG representation is like a pixelated image. It is 

significantly quicker to render a pixelated image, but some information is lost due to 

pixelation. This tradeoff is the reason that CG greatly improves computational time but 
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loses some statistical information due to the averaging of atomic DOFs. It is important 

to note that in MD simulations computational time grows roughly with N2, where N  is 

the number of atoms in the system. Therefore, by reducing the DOFs by a factor of ten 

through CG methods improves computational time by a factor of 100. MD simulations 

can be optimized to grow as N ln N  by applying a cutoff distance for the potentials and 

implementing a Verlet neighbor list1,2, but CG still leads to a vast computational gain. 

As stated previously, some systems of industrial interest cannot even be simulated on 

supercomputers. A way to overcome this limit is to combine simulations of the same 

system but depicted at different resolutions, thus combining atomistic with CG 

resolution models. A depiction of different levels of CG is presented in Figure 2. 

Figure 2. Polymeric System at Different Levels of CG

The far-right depicts an atomistic representation and as you go left the level of CG 

increases until you reach the soft sphere representation.

Once the polymer has been coarse-grained, it can be studied as it evolves in time

using MD simulations. However, to conduct MD simulations, the force field, or 
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potential, between CG sites needs to be determined. When a system is coarse-grained, 

the atomistic potentials used for simulation do not apply to the CG system. Therefore, 

new potentials need to be derived. 

There are several different coarse-graining models that attempt to determine 

these interaction potentials. These methods include Boltzmann inversion, iterative 

Boltzmann inversion, inverse Monte Carlo, and force-matching.3–9 These methods can 

be classified into two broad categories: iterative and noniterative methods. Iterative 

methods make corrections to the CG potential by iteratively running simulations and 

adjusting the potential according to the expected local and global properties. Iterative 

Boltzmann inversion and inverse Monte Carlo are examples of iterative methods. 

Noniterative methods attempt to create the potential that recreates the forces on the CG 

sites. Boltzmann Inversion and force-matching are examples of noniterative methods. 

Unfortunately, these methods reproduce the structural properties of the atomistic 

system, but are often unable to recreate many of the thermodynamic properties within 

the system. Several methods require a correction to the system pressure to 

accommodate this issue.3,5,6 

The main pitfall to these models is the potential is not analytically determined, 

which means that the calculated potential is specific to the system for which the 

potential has been optimized; it is not general and cannot be applied to different systems

and in different thermodynamic conditions of temperature and density. On the contrary, 

an analytical determined CG potential is general and can be applied to a wide range of 

systems. Furthermore, analytically determined potentials do not require atomistic 

simulations to be initially performed to find the CG potential, which would largely 
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defeat the purpose of having a CG description in the first place. If we need to perform 

an initial atomistic simulation of our system, there is no purpose in performing a CG 

simulation as all the desired information can be obtained from the atomistic simulation.

To obtain an analytical potential for polymeric liquids, the Guenza group used 

liquid state theory and solved the Ornstein-Zernike (OZ) equation for the CG 

representation to obtain an appropriate potential for various levels of CG of the 

polymeric molecules. This CG approach is known as Integral Equation Coarse-Graining

(IECG).

Ornstein-Zernike Equation

The total correlation function,h (r12 ), is given in Eq. (1).

h (r12 )=g ( r12)−1 (1)
h (r12 ) is a measure of the influence of atom one on atom two as a function of the 

distance between the two atoms, r12. g (r12 ) is the radial distribution function, which 

essentially gives the radial structure of a complex isotropic system. g (r12 ) can be 

thought of as the probability of finding a second atom distance r12 away from a first 

one. g (r12 ) is zero for small distances, where the atoms cannot superimpose, and 

approaches one at larger distances, where the liquid is statistically uniform.

In an atomic liquid, such as liquid argon, the OZ equation decomposes h (r12 ) 

into a direct component, c (r12 ), and an indirect component. This decomposition can be 

seen in Eq. (2).

h (r12 )=c (r 12)+ρ∫c (r13 ) h (r32 ) d ŕ3 (2)
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ρ is the density. In Eq. (2), the indirect component is the effect of particle one on 

particle three, which, in turn, affects particle two. This effect is then integrated over all 

possible positions for atom three. This decomposition is particularly useful for low-

density systems, such as gas phase systems, because the integral goes to zero only 

leaving the direct correlation function. However, for systems in which the indirect 

component cannot be ignored, such as with liquids, the integral component needs to be 

solved. Eq. (2) can be rewritten as a convolution, as seen in the manipulations in Eq. 

(3). 

h ( ŕ12 )=c ( ŕ 12)+ρ∫c ( ŕ12−ŕ32 ) h ( ŕ32 ) d ŕ32=c ( ŕ12 )+ρ (c∗h ) ( ŕ12) (3)
Eq. (3) can be solved by applying a Fourier transform (FT). If we denote the FT 

of h ( ŕ ) and c ( ŕ ) as Ĥ ( ḱ) and Ĉ (ḱ ) respectively, then the FT of Eq. (3) can be computed

by applying the convolution theorem. The result of the FT of Eq. (3) is given in Eq. (4).

Ĥ ( ḱ)=Ĉ( ḱ)+ ρ Ĥ ( ḱ)Ĉ (ḱ ) (4)
ḱ  is the spatial frequency. Because we are dealing with a polymeric system, Eq. (4) 

must be manipulated to include the intramolecular structure, Ω̂ (ḱ ), of the polymers. This

inclusion was done by Schweizer and Curro in the polymer reference interaction site 

model (PRISM).10 The result of including the intramolecular Ω̂ ( ḱ ),  in PRISM is 

depicted in Eq. (5).

Ĥ ( ḱ)=Ω̂ (ḱ ) Ĉ( ḱ )(Ω̂ ( ḱ )+Ĥ ( ḱ)) (5)
Unfortunately, Eq. (4) and Eq. (5) are not in a closed form, meaning that, for 

example in Eq. (5), Ĥ ( ḱ) cannot be written purely as a function of Ĉ (ḱ ) and Ĥ ( ḱ), 

because both values are unknown. Therefore, a closure relation needs to be applied to 

Eq. (5) so that it is in a usable form. Common closures include the hypernetted-chain 
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equation (HNC), mean spherical approximation (MSA), and the Percus-Yevick (PY) 

approximation. Each of these equations relate Ĥ (ḱ ) to Ĉ ( ḱ ) and solve the OZ equation 

for different types of systems. Each closure equation is an approximate solution of the 

full equation, which holds in specific situations. For example, the MSA works well for 

dense liquids, the PY works well for systems that interact with sharp repulsive 

potentials, and the HNC works well for systems that interact with soft repulsive 

potential, like the IECG potentials. 

Solution of the PRISM Equation and Determining the IECG Potential

The molecular OZ equation, Eq. (5), was solved for small molecular fluids in 

the 1970’s by Chandler and Anderson who expanded upon the OZ equation yielding the

reference interaction site model (RISM).10,11 Their model was designed to be applied to 

molecular fluids and chain clusters. In order to solve the OZ equation for polymers, 

RISM was further expanded to the polymer reference interaction site model (PRISM) 

by Schweizer and Curro.12 PRISM was designed to be applied to a variety of polymer 

melts and blends. Then, Yatsenko et al.13 applied PRISM to solve for the potential 

between soft spheres for the ideal model of a polymer represented as an infinite-length 

thread at constant liquid density. Finally, the potential for more realistic CG polymer 

representations was analytically solved by Clark, McCarthy, and Guenza14,15 opening 

the possibility of performing long simulations of polymer liquids with a realistic CG 

potential, which reproduces the equation of state of the atomistic polymer liquid. The 

IECG model has been shown to be accurate and computationally efficient across 

multiple levels of CG.4,16–19 Furthermore, it has been shown to be thermodynamically 
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consistent across multiple levels of CG.16,20,21 Overall, IECG is a robust CG model that 

gives an accurate representation of CG systems.

However, the computational gain from coarse-graining a system is coupled with 

the loss of statistical information on the local length scale. The loss of statistical 

information is the result of the local DOFs of the atomic structure being averaged out to 

gain high computational efficiency. Therefore, to regain the lost atomistic information 

when it is required, while still maintaining computational efficiency, we envisioned a 

CG simulation that reinserted atomistic information where high-resolution is needed. 

Thus, the CG simulation trajectories need to be transformed, at an instant, during the 

IECG simulation to an atomistic representation, starting from the IECG configuration. 

This process is known as backmapping. 

Backmapping

The process of backmapping is nontrivial given that an atomistic model maps 

onto exactly one coarse-grained model while a coarse-grained model maps onto many 

atomistic models. This ambiguity between coarse-grained systems and atomistic 

systems makes it difficult to develop a statistically accurate backmapping procedure 

while still maintaining the gain in computational time. If a statistically accurate method 

were developed, it would allow for MD simulations to transfer between atomistic and 

CG systems freely, improving computational efficiency while maintaining local length 

scale statistics. Geometric and structural approaches are ideal for backmapping because 

they tend to require far less computational time than optimization processes. Several 

backmapping procedures have been developed to accomplish this goal.6,22–24 However, 

these backmapping approaches fail in the same capacity as many of the coarse-graining 
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models. Several of the models backmap from too fine-grained of a CG system22,23 while 

the others lead to local length scale deformation, which then require further simulation 

to regain the correct statistics.6,24,25 Overall, these methods are unable to recreate the 

expected thermodynamic, local length, and large length scale statistics of the system, 

which prompts the need for a statistically accurate backmapping procedure.

Therefore, my project is oriented around attempting to use state-of-the-art 

machine learning techniques to develop a computationally efficient backmapping 

procedure to reconstruct the atomistic information from the CG trajectory. This method 

would allow for MD simulations to transfer between atomistic and CG systems freely, 

improving computational efficiency.
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Methods

The System

The system used in the development of my backmapping procedure is composed

of 350 polyethylene chains of length 192. The system was coarse-grained so that each 

chain was composed of 6 CG sites each containing 32 monomer units. Polyethylene is 

the most basic polymeric system as it is a long chain of single-bonded, non-branching 

carbon atoms. The monomer unit of polyethylene is a single methyl group, which is 

composed of one carbon atom and two hydrogen atoms, or three hydrogen atoms if at 

the end of the polymeric chain. 

I performed an atomistic MD simulation of polyethylene using LAMMPS on the

Comet Supercomputer at the San Diego Supercomputing Center. The atomistic 

simulation is performed to test and assess the accuracy of the backmapping procedure. 

It was also used to produce the CG representation used to train the machine learning 

model. The system underwent 1 ps of simulation using a soft potential to remove the 

extremely unrealistic structures. Then, the system underwent a short 25 ps equilibration 

minimization using a Leonard-Jones (LJ) potential with a cutoff distance of 14.0 Å. 

After minimization, 160 ns of production, using the same LJ potential, was run starting 

from the final configuration of the equilibration. All simulations were conducted in the 

NVT ensemble, with the temperature controlled by the Nosé-Hoover thermostat.26,27

Geometric Approach

Prior to the development of the machine learning model presented here, I 

attempted to develop a geometric approach for a backmapping procedure. The 
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geometric backmapping procedure was developed in Python 3. The backmapping 

procedure works by first removing one CG site from the initial CG system. Then, one 

atomistic site is inserted between each pair of CG sites and at both ends of the CG 

chain. This process functionally doubles the number of sites in the chain. This process is

iteratively repeated until the desired atomistic resolution is achieved. However, because 

one site was removed at the beginning of this process, one site needs to be added at the 

end of the backmapping procedure to get to the desired resolution. Because this process 

doubles the number of sites at each iteration, it is necessary that the number of target 

atomistic sites within a polymer is a multiple of two. Ideally, it would be at least a 

multiple of 25 so that there is a minimum of 30 monomers per CG site. This minimum 

number is the result of assuming that Ω ( ŕ ) is Gaussian to analytically solve for the 

IECG potential.

We named this process by which sites are inserted, the Iterative Cone Method 

(ICM), which was developed by the Guenza group. A depiction of how this method 

functions is seen in Figure 3.
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Figure 3. Diagram of the ICM Process

ŕ  is the bond length between CG sites 1 and 2, ŕ interp is the interpolation bond length,

θinterp is the interpolation bond angle, and ĺ is the interpolation radius determined from

ŕ interp and θinterp.

The ICM works by using equilibrated atomistic data to determine the bond 

length and bond angle as a function of CG. Then, ŕ interp and θinterp are chosen so that 

when the site is inserted, it will have statistically consistent bond length and bond angle 

with respect to that iteration. Then, ĺ is determined as a weighted average of ŕ interp and

θinterp. The weighted average is conducted based on the given iteration. Finally, a site is 

inserted directly in between sites 1 and 2, somewhere on the cone with base radius, ĺ. 

An algorithmic flowchart depicting the main components of the backmapping 

procedure is depicted in Figure 4.
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Figure 4. Algorithmic Flowchart for the ICM Backmapping Procedure

The ovals represent the beginning and end of the main procedure. The rectangles with 

sharp edges represent the main called functions in the procedure. The rectangles with 

rounded edges represent general processes that occur in the procedure. The diamond 

represents a for loop.

As seen in Figure 4, the procedure starts by reading in the CG data and then 

extracting some various fitting parameters that were determined from the equilibrated 

atomistic data. Then, the chain is modified by doing an interpolation where sites are 

only added between adjacent CG sites. Then, the original CG sites are deleted. This 

process reduces the total number of CG sites by one, but it means that the modified 

chain sites correspond to actual atomistic sites rather than CG sites, which correspond to

the center-of-mass of several sites. Also, reducing the number of CG sites by one allows

for sites to be added at both ends of the chain throughout the iterative process resulting 

in a more symmetric construction process. Once the chain is modified, the iterative 

process can begin. For each iteration, sites are inserted using interpolate_on_cone(), 

which is repeated for each pair of sites and for each polymer chain, which is the purpose
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of interpolate_chain(). After the desired resolution is reached, the procedure ends, and 

the data can be analyzed.

This code was made available as a free source code repository on the GitHub 

platform. The repository link is https://github.com/jake93936/Backmapping_ICM.

This approach underwent considerable development, but it was unable to fully 

recreate the desired statistics and it had varying limitations. The problem with this 

approach is that the insertion of a new atom is local but has long-range effects on the 

distribution of the monomers in the chain. In fact, the insertion of one monomer can 

affect the position of another monomer in a distant location along the chain, which can 

be in close spatial proximity due to the formation of loops in the chain. This 

combination of local and long-range effects renders the problem of optimization very 

complex to solve. In practice, this geometrical approach can only work for short chains.

Therefore, a machine learning approach was developed to solve this complex 

optimization problem.

Machine Learning Approach

Machine learning is an application of artificial intelligence (AI) that allows a 

model to automatically learn and improve from experience. Machine learning is a useful

approach because the user is not required to manually code what the model needs to 

learn. Instead, the user sets certain parameters and the model learns what information is 

important in a system. Machine learning methods accomplish this task by using an 

artificial neural network (ANN), which functions like a biological neural network or 

brain. A basic diagram of a machine learning neural network is given in Figure 5.
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Figure 5. Diagram of an Artificial Neural Network

Each circle corresponds to a node within the ANN. The first layer is the input layer, 

which contains all the information fed into the model. The hidden layers determine 

what information is important from the first layer. The output layer is the predicted 

output from the network.

An ANN is composed of sets of nodes, depicted as circles in Figure 5, which act as 

individual neurons that turn on or off depending on what information they receive from 

the previous layers. The received information is represented by the connecting lines in 

Figure 5. The ANN takes in a set of data, represented as x1 through x3 in Figure 5, 

which get fed forward through the hidden layers. The hidden layers help determine what

information is important from the inputs and then passes on that information in the form

of an output. The model learns by adjusting the weights applied to the connections 

between all the nodes until the network reliably produces the correct output. The +1 

values in the nodes in Figure 5 are bias terms which give the model more flexibility in 

the outputs it can predict.
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The model used for my project is a variant of a Recurrent Neural Network 

(RNN). RRNs are a class of neural networks that conserve “memory”.  A standard RNN

suffers from something known as the vanishing gradient problem. This problem occurs 

when determining how to update the weights of the nodes in the hidden layers. During 

back propagation, a process by which the weights are updated, the gradient can decrease

to zero or explode to infinity which is a problem in updating the node weights. 

Therefore, a gated recurrent unit (GRU) network was implemented. A GRU solves the 

vanishing gradient problem by having something known as an update gate and a forget 

gate. These gates more reliably determine what information to keep and what 

information to forget from the past outputs of the model.

The initial goal with the machine learning approach was to backmap a single CG

site rather than an entire chain to test the feasibility of this approach. The idea was that 

the model would predict atomistic sites one at a time within the CG site until the entire 

atomistic structure was reinserted. A GRU was chosen for this model because the model

would be able to store a form of “memory” from the past site insertions. This memory 

would better inform the model on how to place the following sites. The specific model 

used is an encoder-decoder sequence to sequence GRU model. This specific model 

takes in a sequence of data and outputs a sequence of data that may be of a different 

size. i.e. the model predicts a single site given a set of input data that is of a different 

size.

The input data is configured so that the CG site that is being backmapped is 

placed at (0, 0, 0) on a cartesian grid. For simplicity let us call this CG site C0. The 

network will receive from the atomistic simulation, as input information, the ensemble 
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of the positions of the actual atomistic sites within one CG site, the location of all the 

CG sites on the same chain as C 0, and all the CG sites not on the same chain that are 

within 10 Å from C0. This information provides the model with the statistical 

probability of finding an atomistic site relative to the position of the CG site it belongs 

to, and the relative position of intramolecular and intermolecular blobs around the CG 

site. The model also receives the previously predicted atomistic sites within that blob, 

which are related to the site that we want to insert by some statistical distribution of 

bond lengths, bond angles, and dihedral angles. The output of the network is composed 

of all the predicted atomistic sites within C0. The sites are predicted one at a time, 

allowing for the GRU to maintain a memory of the previously predicted sites. The 

model predicts probability distributions of where the site is located. We chose the model

to predict probability distributions rather than discrete values, because there are many 

possibilities for an atomistic chain within a single CG site meaning there are many 

locations for each atomistic site to be placed. Because the model is predicting a 

distribution, the loss function being used is a categorical cross-entropy loss function. 

This loss function was chosen because it compares probability distributions of the 

predicted output of the model to the desired output. Therefore, the network is optimized 

so that it predicts the correct distribution of outputs rather than single discrete values. 

The specific output can then be chosen from that distribution appropriately. The code 

for the machine learning approach was written in Python 3 using TensorFlow and 

Keras.
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Data Representation

The atomistic sites were represented in two different coordinate systems. 

Changing the coordinate system can help reduce the size of the data that is fed to the 

model, which, in turn, can make it easier for the model to learn. Therefore, we chose to 

investigate the performance of two coordinates systems. The first system was a 

spherical coordinate system where the radius was assumed to be fixed at 1.54 Å. This 

length corresponds to the equilibrium bond length of polyethylene. θ and ϕ were 

measured with respect to the previous site on the chain meaning that this is a relative 

coordinates system where the center of the grid is the previous site. The other 

coordinate system was a cartesian coordinate system where the x, y, and z coordinates 

were measured with respect to the previous site on the chain. When these coordinate 

systems are implemented into the model the resulting models are referred to as the 

spherical model and the cartesian model, respectively. Both models received and 

predicted coordinates in these coordinate systems. The inputs and outputs for both 

coordinate systems were binned to create a probability distribution over the possible 

input and output values. Binning allows for the use of a categorical cross-entropy loss 

function. As a result, the model predicted the distributions of these variables rather than 

a single value. Both models were trained for a total of 50 epochs. Each epoch 

corresponds to the model training on the entire set of training data. The entire set of data

was composed of 3,200 timesteps sampled from the 160 ns of atomistic data. For each 

timestep, 100 individual CG sites were used. Therefore, the entire data set corresponded

to 320,000 single CG examples. The training data set is composed of 80% of the total 

data set. The remaining 20% is reserved for development and testing.
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Results and Discussion

Ideally, we would like our model to reproduce the expected thermodynamic, 

local length, and large length scale statistics of the system because these quantities are 

not accurately predicted by other backmapping procedures.6,24,25 The thermodynamic 

properties are related to the efficacy of the CG method as it is the CG system that 

undergoes MD equilibration. Also, the backmapped system maps directly onto the 

original CG system. As discussed previously, IECG captures the thermodynamic 

properties of the system. Thus, the backmapping process should not interfere with these 

quantities. Therefore, we just need to investigate the models’ ability to recreate local 

and large length scale statistics.

Model Efficacy

Prior to considering the local and large length scale statistics, it is necessary to 

check that the model accuracy was improving with increased learning. Also, it is 

necessary to see if the model is overfitting the data. Overfitting is the process in which a

model begins to memorize the statistics of the given data set rather than learning general

behaviors. Overfitting can be seen when a model performs better on the training than on

the validation/test data set. To investigate these aspects of the model, the loss and the 

validation loss were plotted as a function of the epoch for the cartesian and spherical 

models, which can be seen in Figure 6 and Figure 7, respectively.
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Figure 6. Loss and Validation Loss for the Cartesian Model

Loss and validation loss for the cartesian model over the 50 epochs of training.

Figure 7. Loss and Validation Loss for the Spherical Model

Loss and validation loss for the spherical model over the 50 epochs of training.

As seen in Figure 6, the cartesian model shows strong agreement between the 

loss and the validation loss demonstrating that the model is not overfitting the data. 

Also, the loss seems to approach a minimum implying that the model will see negligible
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improvement from further training. The spherical model loss and validation loss, 

depicted in Figure 7, exhibits similar behavior, but the loss is still minorly sloping 

downwards implying there might be more improvement to the model from more 

training. Also, the spherical model’s validation loss does not overlap the loss as the 

number of epochs increases. It is important that the validation loss follows the same 

general trend as the loss, but it is important to take note of the discrepancy between the 

two, which could imply overfitting.

Local Length Scale Statistics

Now that the model efficacy has been investigated, we can consider the local 

length scale statistics. These quantities include the bond length, bond angle, and 

dihedral angle. The bond length distributions for the cartesian and spherical models are 

depicted in Figure 8 and Figure 9, respectively. To determine the bins for all the 

histograms in this analysis, the Freedman Diaconis Estimator (FDE) was used on the 

predicted data set to determine the appropriate number of bins. This estimator works 

well for determining the number of bins for large data sets.
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Figure 8. Bond Length Distribution for the Cartesian Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

Figure 9. Bond Length Distribution for the Spherical Model

The bins were determined using the FDE on the atomistic data set. The predicted data 

set was then plotted using the same bins. Since that bond length was fixed for the 

spherical model, the predicted bond lengths only correspond to a single value. Thus, the

predicted bond lengths are depicted as a single bin with the height of the corresponding 

atomistic bin.
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As can be seen in Figure 8 and Figure 9 the predicted bond lengths do not 

recreate the atomistic bond lengths. The cartesian model produced a limited number of 

discrete values but appeared to have the correct mean. The spherical model produced a 

single bond length corresponding to polyethylene’s equilibrium bond length. However, 

it is not an issue that the model does not perfectly reproduce the bond length statistics. 

Bond lengths equilibrate on the femtosecond timescale, so a short MD simulation could 

be run after backmapping to adjust the bond lengths.

The bond angle distributions for the cartesian and spherical model are depicted 

in Figure 10 and Figure 11, respectively.

Figure 10. Bond Angle Distribution for the Cartesian Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.
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Figure 11. Bond Angle Distribution for the Spherical Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

As seen in Figure 10 and Figure 11, the predicted bond angle distributions 

follow the same general trend as the atomistic distribution. The cartesian model 

predicted unrealistic bond angles between 0 and π /2radians. As a result, the distribution

in Figure 10 is not centered. It is unclear what is causing these unrealistic bond angles, 

but they do quantify a minuscule proportion of the total bond angles. Also, like the case 

with bond lengths, a short MD simulation could fix any minor issues with the bond 

angles. A short MD simulation would also help to correct the broadening of the 

predicted bond angles for the spherical model, as seen in Figure 11.

The dihedral angle distributions for the cartesian and spherical model are 

depicted in Figure 12 and Figure 13, respectively.
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Figure 12. Dihedral Angle Distribution for the Cartesian Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

Figure 13. Dihedral Angle Distribution for the Spherical Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

Both models produced highly consistent dihedral angle distributions when 

compared to the atomistic distributions. Any minor differences can be corrected from a 
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short MD simulation. However, in a simulation you will see minor variation in these 

quantities over time, so these predicted values are accurate. Overall, both models can 

accurately predict the dihedral angle distributions.

The cartesian and spherical models are both able to generally recover the local 

length scale statistics. Any minor variations can be corrected from a short MD 

simulation. However, it is necessary to consider any discrepancies in determining the 

model’s capabilities. For example, the cartesian model produced highly discretized 

bond length values because of the binning process of the x, y, and z coordinates. This 

issue gives insight into any disadvantages to this model.

Large Length Scale Statistics

The models’ ability to reproduce the large length scale statistics is of great 

importance because large length scale statistics define the global properties of the 

system. Furthermore, the ICM method was unable to reproduce many large length scale 

statistics. To start, the end-to-end distance of a polymer chain gives a general picture of 

the size of a polymer. The end-to-end distance distributions for the cartesian and 

spherical model are depicted in Figure 14 and Figure 15, respectively.
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Figure 14. End-to-End Distance Distribution for the Cartesian Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

Figure 15. End-to-End Distance Distribution for the Spherical Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

Since each backmapping example gives exactly one end-to-end distance 

measurement, the distribution for end-to-end distance tends to see more variation than 
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other quantities. Figure 14 and Figure 15 show reasonable agreement between 

predicted and atomistic distributions for both models. Since end-to-end distance 

distributions tend to vary more significantly, the general relationship seen in Figure 14 

and Figure 15 demonstrate that both models can reproduce this quantity.

The distance around the blob center is an important quantity as it gives insight 

into the internal structure of a CG site. The distribution of the distances around the blob 

center should be roughly Gaussian. However, CG sites at the end of the chain are only 

fixed on one end to the chain, meaning the chain is more able to stretch out and get 

further from the blob center. This asymmetry can be seen in Figure 16 and Figure 17.

Figure 16. Distribution Around the Blob Center for the Cartesian Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.
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Figure 17. Distribution Around the Blob Center for the Spherical Model

The bins were determined using the FDE on the predicted data set. The atomistic data 

set was then plotted using the same bins.

Both models show strong agreement with the atomistic distribution around the 

blob center. The spherical model, as seen in Figure 17, does predict too large of 

distances. This issue gives insight into a potential downfall of the spherical model’s 

ability to predict larger length scale properties.

Another important large length scale statistic is the mean-square internal 

distance (MSID). The MSID gives the average squared distance between two sites 

divided by the number of bond lengths between the sites. This quantity is averaged over

the entire chain. When the number of bond lengths between sites is 1, then the MSID 

can be related to the bond length. The same is true for end-to-end distance when the 

number of bond lengths is the number of sites in a chain. An idealistic model, known as 

the freely rotating chain (FRC), assumes a fixed bond length and bond angle but allows 

for rotations about the bond axis. The FRC model gives a baseline to compare both the 
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predicted and atomistic MSIDs against. For this specific system, the FRC is an upper 

bound to the atomistic MSID meaning the FRC always predicts a higher value. The 

plots of the MSID for the cartesian and spherical models are depicted in Figure 18 and 

Figure 19, respectively. 

Figure 18. Mean-Square Internal Distance for the Cartesian Model
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Figure 19. Mean-Square Internal Distance for the Spherical Model

The cartesian model’s MSID predictions, as seen in Figure 18, consistently 

overapproximated the atomistic MSID. The spherical model’s prediction, Figure 19, 

did the opposite. However, upon repeated tests of both models, the models can more 

accurately predict the MSID than what is depicted in Figure 18 and Figure 19. This 

issue could be a limitation of training. i.e. the model was able to learn and recreate local

length scale statistics but not long length scale statistics. Further investigation is needed 

to determine the cause of this effect and to determine if it is even an issue.

Both models were generally able to reproduce larger length scale statistics. 

However, they both displayed some issues, mainly in the prediction of the bond length 

and large-scale chain statistics. Also, it is important to note that the models are only 

recreating a single CG site rather than a chain of CG sites meaning that these quantities 

do not incapsulate the overall structure of the polymer system. Including the 

calculations for multiple CG sites would be the next step in this research project once 

32



the minor discrepancies in bond length distribution and long-chain statistics are further 

minimized.

To further convey the performance of the models, the results from the machine 

learning backmapping procedure is depicted in Figure 20.

Figure 20. Visualization of a Backmapped CG Site

The red dots convey the chin blobs. The predicted sites are depicted as green dots. The 

atomistic sites are shown as red x’s. the blobs not on the same chain are shown as blue 

dots and are shaded to convey depth.

The chain of CG sites is depicted in red with the position of the CG sites 

described as red dots. The atomistic chain that is reconstructed by the machine learning 

procedure is around the central CG site, C0. The real chain in the original atomistic 

simulation, with it center at C0, is depicted in red with red crosses for the atom 

positions. The atomistic chain predicted by our backmapping procedure is depicted in 

green with green dots for the position of the atoms in the atomistic description. The 

position of the CG sites belonging to other chains, surrounding the chain that is 
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reconstructed, are in blue. The predicted chain shows a reasonable structure, with 

realistic bond lengths, angles, and dihedral angles. We notice that the predicted chain is 

not directly matching the original atomistic chain; however, this is expected as we know

that many possible atomistic chains correspond to the CG site C0, and we are predicting 

just one of them. Overall, this result is quite promising, as it shows that the designed 

machine learning procedure is useful in predicting realistic atomistic chains from the 

knowledge of the position of the CG sites in the simulation, using just the atomistic 

chain statistics as inputs.
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Conclusion

Overall, both models were able to give a reasonable reconstruction of the local 

and long length scale statistics for the system. Both models did exhibit some minor 

issues, but further investigation may be needed to determine if they are inherent to the 

models or if extended training of the networks will fix the problem. In future, the model

will be extended to rebuild entire chains of blobs, which will allow the model to 

backmap the entire polymeric system. Being able to rebuild the entire system would 

allow for systems to transfer freely from the atomistic to their CG representation and 

back, while maintaining the thermodynamics and structural properties. This ability 

would further improve the power of MD simulations. Furthermore, this process would 

allow for multi-resolution simulations to be conducted, further improving the power of 

MD simulations. These abilities would also extend the versatility of IECG theory.
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Glossary

Artificial Intelligence (AI): Is a branch of computer science that is concerned with 

developing machines that can mimic and reproduce certain task that usually require 

human intelligence.

Bond Angle: The angle formed between three adjacent sites, whether they are atoms, 

monomers, or CG sites.

Bond Length: The distance between two adjacent sites, whether they are atoms, 

monomers, or CG sites.

Categorical Cross-Entropy: Is a measure of the similarity between two probability 

distributions that correspond to single label categorization. This form of categorization 

is applicable when only one category applies to each data point.

Convolution: A convolution of two functions gives a third function that describes how 

one function changes with respect to the other.

Convolution Theorem: States that under certain conditions the Fourier transform of a 

convolution of two functions is the pointwise product of their Fourier transforms.

Degrees of Freedom (DOFs): The number of independent ways by which a dynamic 

system can move without violating any constraint imposed on it.

Dihedral Angle: Is a relationship between four adjacent sites, whether they are atoms, 

monomers, or CG sites. The relationship is the angle between two planes, where the 

first plane is defined by sites 1, 2, and 3 and the second plane is defined by sites 2, 3, 

and 4.

End-to-End Distance: The distance between the two terminal sites in a chain.

Ensemble: Collection of all the possible configurations of a given state of a system.
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Equation of State: A thermodynamic equation relating the state variables that describe 

the system under a set of conditions.

Molecular Fluids: A molecular fluid refers to any kind of flowing or deforming system

of colloidal or aggregate structures. This includes molecules in the gas and liquid phase.

Force Field: Is the functional form and parameters sets used to calculate the potential 

energy of a system.

Fourier Transform (FT): Decomposes a function of time (or space) into its principle 

temporal frequencies (or spatial frequencies).

Gaussian Distribution: Often called a bell curve or normal distribution. A Gaussian 

distribution is just a probability distribution of a random variable.

Gradient: Simplistically, a gradient is the direction and magnitude of the steepest 

increase at a given point.

Isotropic: Refers to a system with radial, angular, and azimuthal symmetry. It is 

essentially symmetric in all directions. In the context of a distribution function it is 

referring to radial symmetry as it is purely a function of radial distance.

Intramolecular: Corresponds to the interactions within a single molecule.

Intermolecular: Corresponds to the interactions between molecules.

Loss Function: Is a method for evaluating how well specific algorithms or models 

learn the given data and produce the desired output.

Mean-Square Internal Distance (MSID): Is the averaged square distance between two

sites as a function of the number of sites separating those two sites. This quantity can be

thought of as describing the internal structure of a chain.
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Monomer: A single repeating unit that, when continuously added together, make up a 

polymer.

Newtonian (Classical) Mechanics: Is the branch of mechanics that is completely 

derived from Newton’s equations of motion. i.e. position and momentum.

NVT Ensemble: Is the set of parameters that represent the possible states of a system in

equilibrium with constant temperature, volume, and number of molecules.

Polymer: A large molecule that is composed of a single repeating unit, known as a 

monomer. Types of polymers include homopolymers, which are composed of a single 

repeating monomer; and copolymers, which are composed of two repeating units 

alternating in any order.

Potential: See definition for “Force Field”.

Potential Energy: Is the energy stored within an atom or molecule. In the case of an 

atom, the potential energy would correspond to the various interactions that it has with 

the nearby atoms, such as bond length, bond angle, etc.

Spatial Frequency: Is the measure of the frequency of oscillation over a given unit of 

distance.

Quantum Mechanics: Is the branch of mechanics that investigates and describes the 

world at an atomic level. Quantum mechanics is based around the solutions to the 

Schrödinger Equation.
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