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Histamine is a molecular transducer of physical activity responses in humans, 

namely endurance exercise. Research shows that H1/H2-receptors mediate exercise 

responses, such as post-exercise vasodilation and hypotension. Histamine is produced 

and released within skeletal muscle in response to exercise; however, the intramuscular 

trigger of histamine release that mediates this response to dynamic exercise has not 

been identified. Exercise factors, such as an acidic pH, could favor increased histadine 

decarboxylase enzyme activity and mast cell degranulation and thus heightened de novo

histamine formation as a response to exercise. Using sodium bicarbonate (SB) to buffer 

the acidosis in the skeletal muscle may help clarify the relationship, if any, between 

histamine release and blood pH. The overall goal of the project was to determine if 

histamine-mediated vasodilation in skeletal muscle is mediated by a decrease in pH that

occurs in response to exercise. 

This was a double-blind placebo-controlled study to access the concentration of 

histamine release before and after an exercise bout. The experiment included three 

subjects participated in three separate sessions. An hour prior to exercise, the subject 

blindly ingested either 0.3g/kg body mass of NaCl (control) or 0.3 g/kg body mass of 
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sodium bicarbonate to prevent acidosis. The subject then performed 60-minutes of one-

legged knee extension exercise at 60% of their maximum resistance determined prior. 

Blood flow velocity and diameter in the femoral artery were bilaterally measured via 

ultrasound at the end of the rest period, and at minutes 0, 30 and 60 of the post-exercise 

period. I hypothesized that bicarbonate would decrease the post-exercise histamine-

mediated vasodilation.  

Results demonstrated femoral blood flow at minute 0 post-exercise was 

significantly increased compared to resting conditions within both placebo and 

bicarbonate conditions. There was a significant increase in vascular conductance as well

as blood flow within the active leg from pre-exercise to minute 0 post-exercise 

compared to resting in both placebo and bicarbonate groups. The acute increase in 

blood flow and vascular conductance in the active leg were unexpectedly not 

significantly sustained at minutes 30 and 60 post-exercise. There were no group 

differences in femoral blood flow and vascular conductance within the active or inactive

leg, suggesting that the given concentration of sodium bicarbonate may not have a 

significant effect on post-exercise vasodilation. Further studies should be done with  an 

appropriate tool to ascertain the  efficacy of  sodium bicarbonate as a buffer, such as a 

near-infrared spectroscopy tool.
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Introduction

Recovery from Exercise & Post-Exercise Hypotension

Exercise physiology has long been focused on the physiological adaptations and 

changes in the body that occur during an exercise period; however, the physiology of 

recovery from exercise is a more recent realm of study. “Recovery” from exercise is 

temporally defined by Dr. Halliwill and Dr. Luttrell as the time to return your body 

back to resting levels, which they explain can be minutes of lowering your elevated 

heart to normal or it can be weeks to heal damaged skeletal muscle from prior 

activation. Physiologically, “recovery” can describe the biological processes taken to 

transition from exercise to the resting state (Luttrell & Halliwill 2015). The body has 

cardiovascular changes during a resting state, during exercise and during recovery, 

which is attributed to alterations in distributionsof blood flow to vascular beds. After an 

exercise period, blood flow to previously-active skeletal muscle is elevated due to 

vessel dilation increasing its diameter. This increase in blood flow decreases vascular 

resistance and ultimately leads to hypotension (lowered blood pressure) that can last 

several hours to days. A 30 to 60-minute exercise bout of moderate-intensity dynamic 

exercise in the supine position has been shown to decrease post-exercise blood pressure 

approximately 5–10 mm Hg in the supine position, which can be sustained for several 

hours in young, healthy and normotensive subjects. In those with hypertension, post-

exercise vasodilation is more notably seen with blood pressures decreasing as low as 20 

mm Hg that can be sustained for up to 12 hours (Hagberg et al. 1987; Kenny & Seals 

1993; Forjaz et al. 2000).



Dr. Halliwill describes the post-exercise period as a “window of opportunity” 

that may be clinically relevant because the physiology of recovery may be altered or 

strategically utilized to improve resting or exercise conditions. Exercise is already well-

depended on by health and athletic professionals for chronic disease intervention, 

including those associated withhypertension, elevated lipid levels and age-related 

sarcopenia (Nagi 2006; Waters 2010). Further studies of the histaminergic signals that 

lead to vasodilation during the recovery period may illuminate a clearer physiological 

environment for possible exercise and pharmacological dual intervention for patients 

with chronic vascular disease. 

Histamine Found to Locally Mediate Post-Exercise Vasodilation

As noted, blood flow increases to active skeletal muscle in response to exercise. 

Immediate vasodilation after exercise is due to multiple local and systemic factors. 

Reduced sympathetic activation decreases vascular resistance, leading to hyperemia that

may last up to 90 minutes (Halliwill et al. 1996). Increased blood flow can also be 

locally achieved by multiple vasodilators, namely nitric oxide (NO) and prostacyclin 

(PGI2), which were previously thought to be the major contributors of sustained 

vasodilation after exercise. More recent research has demonstrated other vasodilatory 

substances may be involved, namely histamine, which has been associated with NO and

PGI2 release (Lockwood et al. 2005; Halliwill et al. 2001; Halliwill et al. 2000; 

Hellsten et al. 2012; Li et al. 2003; Baenziger et al. 1980). This molecule has 

successfully been shown to have a significantly sustained or long-term vasodilatory 

effect on previously-active skeletal muscle, in which its trigger during exercise remains 

unknown and well-researched currently.
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Histamine is a

molecular transducer of

physical activity

responses in humans,

namely endurance

exercise (Luttrell & Halliwill

2017). The compound is

commonly known for its role in immune and inflammatory reactions, but research 

shows that activated histamine receptors, namely H1 and H2, also mediate exercise 

responses after exercise, including post-exercise vasodilation (Pellinger et. al, 2013). As

seen in Figure 1, histamine is produced by the enzyme histidine decarboxylase (HDC), 

and can also be released via mast cell degranulation (Hegyesi et al. 1999; Romero et. al 

2017). Mast cells are located within the connective tissue layer that surrounds skeletal 

muscle as well as near blood vessels, both within proximity to release histamine locally 

to specifically active skeletal muscle vessels (Metcalfe et al. 1997). Histamine can bind 

to type H1 and H2receptors within vessels, leading to signaling cascades for 

physiological effects. 

Dr. Halliwill and others have discovered that at specific times after exercise, 

different histamine receptors are activated – H1 receptors are active at 30 minutes after 

and H2 receptors are active at 60-90 minutes (McCord and Halliwill, 2006). Post-

exercise vasodilation of the previously-active skeletal muscle results in about a 50% 

increase in femoral artery blood flow above resting levels. This vasodilatory effect can 

be reduced by introducing histamine receptor antagonists, or molecules that bind to the 
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Figure 1: Histamine Release and Effects in Skeletal Muscle 
Vasculature.Histamine can be formed via histidine 
decarboxylation by histidine decarboxylase protein (HDC) or 
released locally by mast cell degranulation. (Halliwill, Buck, 
Lacewell, & Romero, 2013).  



receptor without activating it. Antagonists used include fexofenadine (Allegra, a 

selective H1-receptor blockade)(Lockwood, Wilkins& Halliwill 2005) or ranitidine 

(Zantac, a selective H2-receptor blockade) (McCord et. al. 2006). Researchers 

investigated these signaling pathways by utilizing both Allegra and Zantac to block 

activation of both H1 and H2 receptors to thus prevent approximately 80% of the post-

exercise vasodilation during recovery from moderate-duration whole-body exercise.  

This response indicates a significant role for histaminergic signaling in the post-exercise

vasodilatory response.

Physiological measures, such as femoral vascular conductance and mean arterial

pressure (MAP), indicate vascular tone.  Vascular conductance is the change in blood 

flow in response to the change in pressure during vessel construction or dilation. Mean 

arterial pressure is the average pressure within arteries throughout one cardiac cycle. 

Vascular conductance and MAP were found to be within normal range 30 minutes after 

60 min bout of cycling at 60% of maximal oxygen consumption with the ingestion of 

Allegra (Lockwood, Wilkins& Halliwill 2005). Similarly, femoral and systemic 

vascular conductance were not elevated after 90 minutes with intake of ranitidine after 

the same whole-body cycling exercise. This signifies that H1 and H2 receptor activation 

has demonstrated to be the essential vascular mechanism of sustaining post-exercise 

vasodilation. The mechanistic processes of this are not clear to date; however, it is 

suspected a pH reduction that occurs from metabolic processes during exercise may be 

related to the release of histamine on skeletal muscle endothelium.
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Exercise-Induced Acidosis and Metabolism

A brief overview of metabolism during exercise should be held regarding its 

relation to exercise-induced acidosis, or pH reduction. Humans store energy as 

adenosine triphosphate (ATP), a molecule that releases energy upon its breakdown into 

adenosine diphosphate (ADP), as illustrated in Figure 2. As indicated in their chemical 

names, ATP has three phosphate groups that carry a high amount of energy released to 

skeletal muscle when needed for increased physical activity, such as exercise. Ingested 

carbohydrates are broken down into glucose that may be formed into ATP for more 

immediate utilization or glycogen molecules for future energy storage. Some ATP may 

be attached to creatine to create phosphocreatine for immediate use, as it can be rapidly 

and easily broken down in the first 5-10 seconds of maximum performance (Hall 2013).

After phosphocreatine is used up, the body then depends on free glucose and the stored 

glycogen for energy during endurance exercise. Glucose and glycogen are transformed 

into pyruvate, a reaction that produces two ATP molecules. From this step, pyruvate 

may be metabolized either anaerobically or aerobically. Anaerobic respiration is ideal 

for rapid and high-resistance exercise bouts, such as sprinting. It begins by turning 

pyruvate into lactate, resulting in 1-2 ATP molecules. Lactate can turn back into 

glucose and used again for energy.

5

Figure 2. Adenosine triphosphate (ATP) is hydrolyzed into adenosine
diphosphate.Byproducts include a phosphate ion and energy release.



The body then depends on aerobic respiration, much more suitable for steady-

state endurance exercise, by turning pyruvate into acetyl-CoA derived from glucose, 

amino acids or lipids. Acetyl-CoA undergoes multiple reactions in a process called the 

Krebs cycle. Generally, the Krebs cycle results in production of NADH and FADH2 

molecules that sustain an ATP-producing process called the electron transport chain. 

Although the process involves more reactions and takes more time than anaerobic 

respiration, aerobic processes are much more efficient and appropriate for constant 

endurance exercise versus short-term high-performance exercise bouts. 

The metabolic processes described are relevant to the pH conditions of skeletal 

muscle. A slight decrease in blood pH in active skeletal muscle, or acidosis, occurs due 

to an increased concentrationof hydrogen ions stimulated by metabolic changes during 

exercise.The phenomenon of acidosis had previously been attributed to increased 

production of the byproduct lactic acid during anaerobic respiration, which results in a 

proton (hydrogen ion) release (Robergs et al., 2004; Hall 2013); however, it is now 

known that aerobic respiration produces hydrogen ions in the previously-described 

Krebs cycle and electron transport chain (Robergs et al., 2004; Hall 2013). A proton is 

released when an ATP is broken down into ADP + phosphate group within the 

mitochondria, the part of a cell that biochemically processes energy production using 

oxygen. At the point of what is named the steady-state of exercise, protons are utilized 

in the mitochondria at a pace that does not result in proton accumulation due to the 

demand of ATP-utilization matching the rate of mitochondrial metabolic reactions.  If 

exercise intensity increases above steady-state, then metabolism depends more on 

anaerobic metabolic processes of the glycolytic and phosphocreatine systems, as noted 
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before. The use of these faster non-oxidative systems consequently leads to proton 

accumulation and thus acidosis of active skeletal muscle. Overall, it is well-known that 

blood pH decreases during exercise conditions due to non-oxidative metabolism. The 

bigger question is, can post-exercise histamine release be related to this exercise-

induced acidosis? 
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Importance of Project

Exercise-induced acidosis when isolated may be a primary trigger to initiate the 

signaling cascade leading to post-exercise vasodilation. Histamine is produced and 

released within skeletal muscle in response to exercise; however, the intramuscular 

trigger of histamine release that mediates this response to dynamic exercise has not 

been identified (Romero et. al, 2017). It has been suggested that physical stimuli may 

increase histamine levels, such as vibration and heat that the exercise condition elevates 

(Atkinson TP, White MV, and Kaliner MA, 1992) as well as reactive oxygen species 

(Son et al. 2006). Exercise-induced acidosis is another exercise factor that could favor 

increased HDC enzyme activity and mast cell degranulation and thus increased de novo 

histamine formation as a response to exercise. 

Using sodium bicarbonate (SB), or NaHCO3,to buffer the acidosisin the skeletal 

muscle may help clarify the relationship, if any, between histamine release and blood 

pH. Many studies have investigated the effects of SB ingestion during endurance and 

acute exercise conditions. There is limited evidence suggesting that bicarbonate can 

increase performance, namely time to exhaustion (TTE), exercise tolerance, RPE and 

work (Gough 2017; Freis 2016; Deb et al. 2018). This is important due to the popularity

of antihistamines used as common allergy drugs to reduce allergic reactions. 

Furthermore, there is a possibility that bicarbonate may improve athletic performance of

endurance events by preventing a reduction in pH. The question is, does using SB to 

inhibit an acidic pH alter the histamine mediated post-exercise vasodilatory response?

Using a single-leg dynamic knee extension (“leg kicking”) exercise model can 

reproduce vascular responses from whole-body exercise, which can be used to explore 
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potential pathways involved in H1 and H2 activation. Vasodilation can be measured via 

ultrasound (US) on the femoral artery, a vessel appropriately sized to indicate 

physiological changes in diameter.

Determining Sodium Bicarbonate Dose for Acidosis Attenuation

What had to be determined prior to the experiment was the optimal 

concentration of sodium bicarbonate to successfully prevent the typical exercise-

induced reduction in blood pH. Previous studies reported a positive effect of sodium 

bicarbonate under resistance and endurance exercise conditions at concentration of 

0.3 g/kg body mass. Six trained male subjects ingested 0.3 g/kg body mass 105 minutes

before completing four sets of 12 repetitions, followed by a fifth set to fatigue on a 

Universal leg press machine set to approximately 70% of the subjects’ individual 

maximum resistance. SB ingestion was shown to increase resting pH and bicarbonate 

levels, and the SB condition was found significantly more basic than the placebo group 

after each exercise set (Webster et. al, 1993).Similar to this study, a 2002 project had 

subjects ingest the same concentration of SB two hours prior to completing 30-min 

cycling exercise at 77 ± 1% peak oxygen consumption (V̇O2peak) followed by completion

of 469 ± 21 kJ as quickly as possible (∼30 min, ∼80% V̇O2peak). Plasma and muscle 

proton concentrations were significantly lower in SB group before and during exercise 

conditions, demonstrating acidosis was attenuated (Stephens et.al, 2002).In a later study

conducted in 2017, pH levels and sodium bicarbonate concentrations were significantly 

higher 1.5 hours before, during and after a performance of two exhaustive graded 

exercise tests and two constant load tests (30 min at 95% individual anaerobic threshold

followed by 110% IAT until exhaustion) following ingestion of SB or 4 g placebo 
9



(sodium chloride dissolved in 0.7 l water) (Freis et.al, 2017).These studies suggest that 

the ingested concentration 0.3 g/kg body mass of SB was successful in attenuating the 

exercise-induced pH decrease in high-intensity endurance and resistance exercise.This 

makes this an effective and optimal dose for attenuating acidosis during exercise for this

project.

Purpose

The specific purpose of this study was to compare the effect of 0.3 g/kg body mass 

sodium bicarbonate vs placebo on post-exercise vasodilation.

Hypothesis

It was hypothesized that 0.3 g/kg body mass of sodium bicarbonate ingestion will 

reduce the histamine-mediated post-exercise vasodilatory response following 

performance of 60 minutes of single-leg dynamic knee-extension at 60% of maximal 

work rate.
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Methods

This study was approved by the Institutional Review Board of the University of Oregon.

Each subject gave informed and written consent before participation in the study. 

Experimental Design

This project was a double-blind, placebo-controlled crossover study approved by the 

Institutional National Review Board (IRB) at the University of Oregon. The main 

question this project aimed to answer is if the histamine-mediated post-exercise 

vasodilation within previously-active skeletal muscle can be attributed to an exercise-

induced decrease in pH (acidosis) following 60 minutes of single-leg dynamic knee-

extension at 60% of maximal work rate.

Subjects

A total of three 18 to 40-year-old men and women were recruited from Eugene, 

OR. They were informed verbally and through written consent forms of our 

experimental procedures. Ideal subjects were chosen if they had no known allergies to 

drugs or medication, as well as if they refrained from using over-the-counter or 

prescription medications (except for oral contraceptives), herbal remedies, dietary 

supplements, or illegal or recreational drugs during the study. Enrolled subjects were 

informed that they could withdraw from the study at any point. Each subject was 

assigned a 3-digit number to protect their privacy throughout the study.   

Endothelium-dependent vascular relaxation, the endothelium being the inner-

most layer of skeletal muscle where histamine receptors reside, has been shown to be 

induced by both estrogen and progesterone. The grade of endothelium-dependent 
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vascular relaxation is greater in female than male hypertensive rats (Kauser & Rubanyi, 

1995). It is possible hormones could cause vascular relaxation by modifying or 

synthesizing certain relaxing factors released by the endothelium; thus, female subjects 

participated during their menstrual cycle’s early follicular phase or during the placebo 

phase of their oral contraceptive when estrogen and progesterone are both low. 

Ensuring females were tested during the early follicular phase decreases confounding 

factor of sex hormones on vasodilation, and attempted to set up comparable hormone 

levels between men and women through the project.

Screening

The initial visit with subjects consistent of familiarization with the experimental 

protocol and completion of a medical questionnaire screening for medical conditions, 

which determined their eligibility for the experiment. Once determined eligible, 

subjects’ height and body weight were measured, and they were informed they must 

avoid caffeine, alcohol and exercise for 24 hours and food for 2 hours prior to each 

study visit. Female subjects underwent a pregnancy test prior to beginning each study 

visit as well, in which a negative result was required to continue.

Next, to assess individual maximal performance, the eligible subject performed 

a single-leg knee extension peak test on a right-leg extension ergometer to fatigue to 

assess their maximal performance. They performed a seated repeated kicking exercise 

to exercise the quad muscles at a rate of 60 kicks/minute. The ergometer is computer-

controlled for resistance and incrementally increased 3 W/min against the subject’s 

lower leg. The computer screen demonstrated visual feedback for the subject to 

maintain the appropriate cadence and power, as supervised by the investigator. 
12



Experimental Protocol

Eligible subjects arrived for a second and third study visit, and were set up with 

electrocardiogram electrodes and a blood pressure cuff to record heart rate (HR) and 

blood pressure (BP) every ten minutes through the entire study visit. An hour before 

beginning exercise, subject would intake a randomly assigned sodium bicarbonate (0.3 

g/kg body mass) or a placebo (3g/kg body mass of sodium chloride)mixed in 30 oz 

water, which would take effect during an hour of rest. At the 60-minute mark of rest, 

blood flow velocity and diameter in the femoral artery were bilaterally measured via 

ultrasound. Then subjects underwent 60 minutes of single leg extension knee exercise at

60% maximum performance. At 60-minute mark of exercise period, blood flow velocity

and diameter were again measured. Subject then had a 10-minute cooldown at wattage 

reduced to 10W. This was followed by 60 minutes of rest laid in a supine position, with 

blood flow velocity and diameter measured at the 30 and 60-minute marks. 

Figure 3: Study visit experimental design.The subject initially is administered a beverage with sodium 
bicarbonate or sodium chloride, followed by 60 minutes of rest. Heart rate and blood pressure are taken 
every ten minutes. After the rest period, US-guided measurements are collected and followed by a 60-
minute performance of a single leg knee extension ergometer at 60% maximum performance. Post-
exercise US measurements are taken again in 30-minute intervals at 120, 150 and 180-minute marks.
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Measurements

Heart Rate and Blood Pressure.HR and BP were monitored and collected every ten 

minutes during every procedure. A five-lead electrocardiogram (Q710, Quinton 

Instruments, Bothell, WA, USA) was utilized to measure HR. A blood-pressure cuff 

was used on the arm to measure BP.

Leg Blood Flow and Conductance. Pressure cuffs (Hokanson E20 Rapid Cuff Inflator; 

D. E. Hokanson, Inc., Bellevue, WA, United States) around the ankle of each leg were 

inflated to 250 mmHg to occlude the foot circulation 1 min prior to and during 

measurements, to avoid interference from blood flowing in arteriovenous anastomoses 

of the feet. Femoral artery blood flow velocity was determined 2–3 cm proximal to the 

common femoral artery bifurcation via duplex ultrasonography using a linear-array 

ultrasound transducer (L9-3 probe, Philips iE33, Andover, MA, United States) with an 

insonation angle of 60°. Custom ultrasound software was used to capture the forward 

and reverse Doppler-shifted signals from the ultrasound system. Recordings were 

subsequently analyzed with an intensity-weighted algorithm to determine mean blood 

velocity following standard methods for quantification (Buck et al., 2014). Velocity 

measurements were assessed at an average depth of 1.91 ± 0.48 cm and were corrected 

for beam-width of 3.13 ± 0.24 mm, which resulted in an average correction factor of 

0.790 ± 0.011 (Buck et al., 2014). Average femoral artery diameter was determined by 

automated edge-detection software (Vascular Research Tools 5 – Version 6.1.1. 

Medical Imaging Application LLC, Coralville, IA, United States). Leg blood flow (ml 

min−1) was calculated as the product of femoral artery cross-sectional area and mean 
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femoral blood velocity. Leg vascular conductance (ml min−1 mmHg−1) was calculated by

dividing leg blood flow by mean arterial pressure.

Data Analysis

The individual analyzing data was blind regarding drug condition for each study 

day. There were no discernible differences between male and female subjects, thus data 

from the two sex groups were combined for statistical analysis. We used a two-way 

repeated-measures ANOVA for heart rate, mean arterial pressure, blood flow and 

vascular conductance.
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Results

The results consist of data from 3 subjects that participated in this study. Time points at 

pre- and post-exercise periods were compared, as well as the conditions of placebo vs 

bicarbonate.

Femoral blood flow. In the active leg, post-exercise blood flow was significantly 

elevated above pre-exercise period at minute 0 in both placebo and bicarbonate 

conditions, seen in Figure 4.  There was no difference between placebo and bicarbonate 

conditions in the inactive leg, seen in Figure 5.
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Vascular conductance. Similar to the change in blood flow, there was a significant 

increase in vascular conductance from pre exercise to minute 0 in both placebo and 

bicarbonate conditions, seen in figure 6. There were no differences between the two 

conditions.  Vascular conductance was unchanged in the inactive leg and no differences 

between placebo and bicarbonate conditions, seen in figure 7.
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Figure 4. Change in blood flow (ml/min) 
within active leg throughout pre-exercise 
and post-exercise periods under placebo and
barbonate conditions.

Figure 5. Change in blood flow (ml/min)
within the inactive leg throughout pre-
exercise and post-exercise periods under 
placebo and barbonate conditions.



Pre 0 30 60
0

2

4

6

Time Post Exercise (min)

Placebo

Bicarbonate

Active Leg

*

Heart rate and Mean Arterial Pressure. Heart rate throughout pre- and post-exercise 

time points was comparatively stable in both placebo and bicarbonate conditions, 

demonstrated in Figure 8. Mean arterial pressure (MAP) was decreased following 

exercise, p=.08 at 0 minutes. There was no statistical difference at 30 or 60 minutes 

post-exercise compared to pre-exercise regardless of condition, seen in Figure 9.  There 

were no statistical differences between conditions in heart rate or MAP.
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Figure 6. Change in vascular conductance 
(ml/min) within the inactive leg 
throughout pre-exercise and post-exercise 
periods during placebo and barbonate 
conditions.

Figure 8. Heart rate (beats per minute) 
throughout pre-exercise and post-exercise 
periods during placebo and barbonate 
conditions.
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Figure 9. Mean arterial pressure 
(mmHg) throughout pre-exercise to 
post-exercise periods.
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Figure 7. Change in vascular conductance 
(ml/min) within the inactive leg 
throughout pre-exercise and post-exercise 
periods during placebo and barbonate 
conditions.



Discussion

This study ultimately endeavored to determine the effect of sodium bicarbonate 

on post-exercise vasodilation after 60 minutes of single leg knee extension exercise bout

at 60% maximum performance. Comparisons between the pre- and post-exercise 

conditions within both placebo and bicarbonate conditions were made, as well as 

comparisons between the two conditions. As expected, femoral blood flow at minute 0 

post-exercise was significantly increased compared to resting conditions within both 

placebo and bicarbonate conditions. Similarly, there was a significant increase in 

vascular conductance within the active leg from pre exercise to minute 0 post-exercise 

compared to resting in both placebo and bicarbonate groups. As noted, these expected 

acute responses are accredited to impaired sympathetic outflow and local vasodilatory 

factors including NO and PGI2.The acute increase in blood flow and vascular 

conductance in the active leg were unexpectedly not significantly sustained at minute 30

and 60, seen in figures 5 and 7. This is likely due to one of three subjects did not 

demonstrate the typical hypotensive response, decreasing the overall trend of blood 

flow and vascular conductance. There were no group differences in femoral blood flow 

and vascular conductance within the active or inactive leg, suggesting that the given 

concentration of sodium bicarbonate did not have an effect on post-exercise 

vasodilation. 

Heart rate was not significantly changed between pre-exercise and post-exercise 

periods. Heart rate decreases as sympathetic activation decreases with post-exercise 

rest. Subjects were given a five-minute cooldown immediately after exercise at 10 W to 

avoid risk of syncope, which increased some time for heart rate to return to baseline. 
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MAP was decreased insignificantly post-exercise at minute 0, and there was no 

difference at the 30- and 60-minute time points compared to pre-exercise MAP. MAP is

equal to the product of cardiac output (Q) and total peripheral resistance (TPR), which 

increases above resting conditions during exercise as an increased Q outweighs the 

decrease in TPR. At the onset of post-exercise period, MAP reduces below pre-exercise 

baseline for up to 60 minutes as vasodilation lowers TPR and the reduced sympathetic 

activity decreases Q (Raine 2001). The lack of suppressed MAP is likely due to one of 

the three subjects lacking the typical robust MAP response, which increased the overall 

MAP trend.

A Limitation and Possible Future Method with NIRS

The methods taken had aimed to shed light on this relationship between blood 

pH and post-exercise vasodilation; however, a notable limitation other than low 

participation (n=3)included the absence of an instrument to accurately measure blood 

pH alterations, which would confirm the effectiveness of 0.3 g/kg body mass SB as a 

buffer. Thus, it remains unknown if pH certainly has a role in histamine-mediated post-

exercise vasodilation if it was indeed altered with the bicarbonate supplement. 

Preliminary data suggest that NIRS unit (near-infrared spectroscopy) is a reliable, 

uncomplicated and minimally-invasive tool in continuously monitoring both 

intramuscular pH and tissue oxygenation (HbO2). Given pH and skeletal muscle 

oxygenation both decreases with exercise, and this effect is exacerbated with 

intensity,then NIRS can be a convenient tool to demonstrate the efficacy of SB as a 

buffer as well as indicate the primary aerobic or anaerobic metabolic pathways being 

utilized. (Belardinelli et. al, 1995; Martin et.al, 2009). Our protocol had originally 
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included the NIRS device to monitor and collect intramuscular pH and HbO2 values via 

a single probe placement on the surface of the working vastus muscle. The initial 

protocol had subjects connected to the NIRS unit prior to consuming the SB or placebo 

solution, which would be ingested an hour before initiating the exercise protocol. 

Values would be collected during the pre-exercise period, throughoutexercise and the 

60-minute post-exercise period. Due to technical issues and the outdated NIRS 

software, the device was not available for use. An NIRS unit with updated software 

with the ability to read intramuscular pH and HbO2 in real time should be strongly 

considered for future related projects, which may demand an alternative buffer 

depending on results.
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Conclusion

What was consistent in previous methodology was the use ofthe single-leg 

dynamic knee extension exercise to exhibit histamine-mediated post-exercise 

hypotension, which marks this exercise model reliable for future investigations into 

other potential exercise factors involved with histamine release. The seated position 

allows the study to focus on one exercising muscle group (the right vastus muscles) and 

compare this to a non-active muscle group in the left leg.Importantly, the size of the 

femoral artery diameter at rest relative to other smaller vessels make this an ideal and 

standard vascular to observe vasodilatory changes. Although mechanisms behind 

histamine release remains unclear, the findings steer future experiments to continue 

utilizing the single-knee extension exercise model as a standard. On a broader 

perspective, this study continues to contribute to a goal of understanding exercise-

mediated vascular responses to improve the health of those with hypertensive or aging-

related disease.
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