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DISSERTATION ABSTRACT

Christophe Dethier

Doctor of Philosophy

Department of Mathematics

June 2020

Title: A Special Family of Binary Forms, Their Invariant Theory, and Related
Computations.

In this manuscript we study the family of diagonalizable forms, a special

family of integral binary forms. We begin with a summary of definitions and

known results relevant to binary forms, diagonalizable forms, Thue equations, and

reduction theory.

The Thue–Siegel method is applied to derive an upper bound on the number

of solutions to Thue’s equation F (x, y) = 1, where F is a quartic diagonalizable

form with negative discriminant. Computation is used in the argument to handle

forms whose discriminant is small in absolute value. These results are applied to

bound the number of integral points on a certain family of elliptic curves.

A proof is given for an alternative classification of diagonalizable forms using

the Hessian determinant. Algebraic restrictions are given on the coefficients of a

diagonalizable form and divisibility conditions are given on its discriminant. A

reduction theory for the family of diagonalizable forms is given. This theory is used

to computationally verify that F (x, y) = 1, where F is a quintic diagonalizable form

with small discriminant, has few solutions.
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CHAPTER I

INTRODUCTION

1.1. Binary Forms

A binary form of degree r is a homogenous polynomial of degree r in two

variables, perhaps

F (x, y) = a0x
r + a1x

r−1y + . . .+ ar−1xy
r−1 + ary

r,

with a0, a1, . . . , ar−1, ar ∈ C. In this manuscript we are particularly interested in

integral binary forms, those binary forms for which a0, a1, . . . , ar−1, ar ∈ Z. For

each binary form F (x, y) we associate a univariate polynomial f(x) = F (x, 1), and

for each univariate polynomial f(x) we associate a binary form yrf(x/y). These

associations are inverse and can be used to translate many definitions for univariate

polynomials to binary forms. The following two definitions are examples of this.

A binary form F splits into linear forms over the complex number as the

corresponding univariate polynomial f(x) = F (x, 1) splits over the complex

numbers. Thus F can be written as

F (x, y) = (x− α1y)(x− α2y) . . . (x− αry),

and these α1, . . . , αn are called the roots of F . The roots of F are the exactly the

roots of f(x) = F (x, 1). The discriminant of F is then given by

∆F = a2r−2
0

∏
i<j

(αi − αj)2,
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where a0 is the leading coefficient of F , as above. As the roots of F (x, y) are

exactly the roots of f(x) = F (x, 1), the discriminant of F is exactly the

discriminant of f(x) = F (x, 1).

An integral binary form F is said to be irreducible if there is no

decomposition of F as F (x, y) = G(x, y)H(x, y), where G and H are integral binary

forms of degree at least one. A binary integral form is irreducible over Z exactly

when the associated univariate polynomial F (x, 1) is irreducible over Z.

Suppose that F is an integral binary form and S is a subgroup GL2(C). If the

matrix a00 a10

a01 a11

 is in S,

then we say that the form

G(x, y) = F (a00x+ a10y, a01x+ a11y)

is an S-substitution of F , or that the forms F and G differ by an S-substitution. In

the special cases S = GL2(Z) and S = SL2(Z), we say that F and G are equivalent

or properly equivalent respectively.

An invariant I is a homogeneous integral polynomial in the coefficients of a

binary form which changes by a determinental factor under GL2(C) substitution.

That is, if a00, a10, a01, a11 ∈ C with a00a11 − a10a01 6= 0, and G(x, y) = F (a00x +

a10y, a01x+ a11y), then I satisfies

I(G) = (a00a11 − a10a01)kI(F ) (1.1)
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for some positive integer k, called the weight of I. The ring of such invariants was

famously shown to be finitely generated by Hilbert in his celebrated basis Theorem.

Generators for the invariant ring are known in small degree. The quadratic

and cubic invariant rings are generated by the quadratic and cubic discriminants

respectively. The quartic invariant ring is generated by two invariants, I and J of

weight 2 and 3 respectively. If F (x, y) has coefficients

F (x, y) = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3 + a4y
4,

then

IF = a2
2 − 3a1a3 + 12a0a4

and

JF = 2a3
2 − 9a1a2a3 + 27a2

1a4 − 72a0a2a4 + 27a0a
3
3.

The invariant ring for binary quintics is generated by the four invariants with one

relation. Not even the number of generators is known in high degree.

We conclude with an important definition. The Hessian determinant of F is

given by

H(x, y) = HF (x, y) =

(
∂2F

∂x2

)(
∂2F

∂y2

)
−
(
∂2F

∂xy

)2

.

1.2. Diagonalizable Forms

A diagonalizable form of degree r is an integral binary form which has the

shape

F (x, y) = (αx+ βy)r − (γx+ δy)r (1.2)

3



for some α, β, γ, δ ∈ C with

j = αδ − βγ 6= 0.

Furthermore, there is a constant χ such that

(αx+ βy)(γx+ δy) = χ(Ax2 +Bxy + Cy2).

The linear forms u(x, y) = αx + βy and v(x, y) = γx + δy are sometimes referred to

as the resolvent forms of F .

Sylvester’s canonical forms given in [1] and [2] show that every quadratic and

cubic form is diagonalizable. For this reason, we restrict ourselves to r ≥ 4.

We turn to the question of how one might determine whether an arbitrary

integral binary form is diagonalizable, and if so, what resolvent forms it may be

constructed from. A general method for answering the first question is through

Gundelfinger’s result, proved in [3], which has, as a special case, that F is

diagonalizable if and only if G2[F ] ≡ 0. Here G2[F ] is the second Gundelfinger

covariant, which is the 3× 3 determinant

G2[F ] = det

[(
∂4F

∂x4−i−jyi+j

)
0≤i,j≤2

]
.

Gundelfinger’s result in full generality allows one to determine when a form can be

expressed as a sum of a fixed number of rth powers of linear forms.

Although Gundelfinger’s result is sufficient for practical purposes, we pursue

this issue further. One should be able to describe restrictions like diagonalizability

on the shape of the form in terms of the vanishing of certain generators of the

invariant ring. For example, a quartic binary integral form F is diagonalizable if

4



and only if JF = 0. This result is stated in [4, p. 29], and shown explicitly in [5]. If

the Hessian HF of F is written

HF =
∂2F

∂x2

∂2F

∂y2
−
(
∂2F

∂x∂y

)2

= A0x
4 + A1x

3y + A2x
2y2 + A3xy

3 + A4y
4,

then in [5] it was shown that

F (x, y) =
1

8
√

3IFA4

(
ξ4(x, y)− η4(x, y)

)
, (1.3)

where ξ4 and η4 have coefficients in Q
(√

A0IF/3
)

. Furthermore if IF > 0 then ξ

and η are complex conjugates.

Every diagonalizable form is determined by a GL2(C)-substitution of the form

xr − yr. We see from (1.1) that the invariants which vanish are not altered by such

substitutions. Thus we may evaluate the generators of the invariant ring for the

form xr − yr to see that, for example, every quintic diagonalizable form has the

same three generating invariants vanish. Although we suspect that this vanishing is

a sufficient condition for diagonalizability, it has not been shown. One can perform

similar computations in every degree for which generators of the invariant ring are

known.

For the second question, determining the possible values of α, β, γ, and δ

in the diagonalization (1.2) of F , we turn to the Hessian. Computing the Hessian

of (1.2), we see that

HF (x, y) = r(r − 1)j2((αx+ βy)(γx+ δy))r−2. (1.4)
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Thus one can determine the resolvent forms of a diagonalizable form by factoring

the Hessian. Interestingly, the converse of this computation also holds.

Theorem 1.2.1. Suppose that F (x, y) ∈ Z[x, y] is an integral binary form of degree

r with nonzero discriminant. Then F is diagonalizable if and only if HF is the r− 2

power of a quadratic form with non-proportional linear factors.

1.3. Thue Equations

Suppose that F (x, y) is a binary integral form whose irreducible factors are of

degree at least three, and h ∈ Z is nonzero. Thue proved in [6] that the equation

F (x, y) = h (1.5)

has finitely many solutions (x, y) ∈ Z2. Such equations are called Thue equations.

It follows that inequalities of the form

0 < |F (x, y)| ≤ h (1.6)

also have finitely many solutions (x, y) ∈ Z2. Such inequalities are referred to as

Thue inequalities. We note that if F in any of these equations is replaced by an

equivalent form, then the number of solutions does not change.

Although Thue proved finiteness, giving bounds on the sizes of the solutions

or on the number of solutions is of particular interest. In Chapter II we pursue

the latter for a specific family of forms. To do this, we use the Thue–Siegel

method of approximating binomial functions using Padé approximation. This

method was developed by Thue, see for example [7]. The approximating functions

were identified by Siegel as hypergeometric functions in [8]. The specifics of our
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application of this method are derived from the work of Akhtari, Saradha, and

Sharma found in [9].

A primitive solution to Thue’s equation or inequality is a solution (x, y) for

which x ≥ 0 and gcd(x, y) = 1. Throughout this manuscript we only count

primitive solutions.

Akhtari applied the Thue–Siegel method in [5] to show that |F (x, y)| = 1

has at most 12 solutions when F is a diagonalizable quartic form with positive

discriminant. In [10], Akhtari gives further results concerning the diagonalizable

case with positive discriminant. In [11], Siegel shows that 0 < |F (x, y)| ≤ h, where

F is diagonalizable quartic with negative discriminant, has at most 16 solutions

when D < 0, at most 8 solutions when D > 0 and F is indefinite, and at most 1

solution when D > 0 and F is definite, all provided that |∆F | > 259h13.

Akhtari, Saradha, and Sharma applied similar methods in [9] to give similar

bounds on the number of solutions to |F (x, y)| = 1 when F is diagonalizable of

degree at least five. Quartic Thue inequalities have been studied by others, notably

Wakabayashi in [12] and [13].

Chapter II concerns the case when F is diagionalizable quartic with negative

discriminant using the methods of [5] and [9]. Using gap principles from [9] we

prove that 0 < |F (x, y)| ≤ h has at most 2k solutions under roughly the condition

h�k 2−10/7|j|10/7.

Theorem 1.3.1. Let F be a diagonalizable quartic form with negative discriminant,

and k an integer satisfying k ≥ 3. Suppose that h < 1
4
|j|2 and h <

C2(2, k, 0)|j|E2(2,k,0), where

E2(2, k, 0) =
110 · 3k − 1278

77 · 3k + 378

7



and C2(2, k, 0) = 2Θ, where

Θ =
108 log2(3)− 6066− 110 · 3k

378 + 77 · 3k
.

Given these assumptions on h, the Thue inequality 0 < |F (x, y)| ≤ h has at most 2k

primitive solutions.

We refer to the exposition preceeding Lemma 2.3.1 for the complete definition

of C2(n, k, g) and E2(n, k, g) where n, k, and g are integers satisfying n ≥ 2, k ≥ 3,

and g = 0, 1.

Applying Theorem 1.3.1 in the case when h = 1 and k = 4 yields the

following:

Theorem 1.3.2. Let F be a diagonalizable binary quartic form with negative

discriminant. The equation |F (x, y)| = 1 has at most eight primitive solutions.

Our method of proof for Theorem 1.3.2 is to use Theorem 1.3.1 when h = 1.

However this does not apply to forms with small |∆|, so we compute the solutions

to |F (x, y)| = 1 for the remaining forms. Using k = 4 instead of k = 3 results in

a more feasible computational problem. We refer the reader to Section 2.5 for the

details of the computational methods used and some remarks on the results of these

computations.

Diagonalizable forms are useful because if one can give an upper bound

on the number of solutions to the Thue equation (1.5) with h = 1 and F

diagonalizable, then one can give an upper bound on the number of solutions to

the equation (1.5) with h ∈ Z nonzero and F is diagonalizable using a reduction of

Bombieri and Schmidt found in [14]. See Proposition 2.7.1 for our specific version

8



of this. If given a diagonal form, that is one of type

F (x, y) = axn − byn, (1.7)

the Bombieri–Schmidt reduction will not necessarily return diagonal forms, but will

return diagonalizable forms.

Applying the Bombieri–Schmidt reduction to Theorem 1.3.2 gives the

following result:

Theorem 1.3.3. Let G be a diagonalizable quartic form with negative discriminant.

Then |G(x, y)| = h has at most 8 · 4ω(h) primitive solutions.

We finish this chapter by applying this result to give an upper bound on the

number of integral points on the elliptic curve

Y 2 = X3 +NX (1.8)

where N is a positive integer. We use the reduction found in [15]. In that paper,

Tzanakis uses norm-form equations to give a method of finding the integral points

on (1.8) but does not give an explicit upper bound on the number of such points.

Tzanakis also gives a reduction for the same family of elliptic curves with N a

negative integer (corresponding to a positive discriminant of the resulting forms),

which Akhtari applied in [10] using the results from [5]. We have shown the

following result using these methods:

Theorem 1.3.4. Let N be a positive square-free integer. The equation (1.8) has at

most

215/2
√
N
∑
d|N

2ω(N/d)ε
3/2
d

d

9



integral points, where εd is a minimal unit in the ring Z[
√
d].

Reducing questions about integral points on an elliptic curve to solving

a number of quartic Thue equations is a classical idea. See [16] for a recent

computational example which uses the correspondence between integral points on a

Mordell curve and the solutions to certain cubic Thue equations.

1.4. Reduction Theory

A reduction theory for a family of binary forms should consist of three things,

a definition of what it means for a form to be reduced, a reduction algorithm

which takes an arbitrary form and gives a properly equivalent reduced form, and

a generating algorithm for producing all reduced forms up to equivalence with

prescribed values for the generators of the invariant ring. That is, a reduction

theory should describe a convenient family of forms, the reduced forms, to

serve as a fundamental domain for proper equivelance of binary forms, and all

computational methods required to work with this family of reduced forms.

The reduction theory of binary quadratic forms is classical, dating back

to Gauss. A reduction theory for binary quartic forms was given by Birch and

Swinnerton-Dyer in [17]. A reduction theory for binary cubic forms and an

improved reduction theory for binary quartic forms was given by Cremona in [18].

However, we note that a small family of forms is not produced by the generating

algorithm of these reduction theories, those whose reduced proper equivalent has

vanishing leading coefficient. A convenient notion of reduced and a reduction

algorithm was given for forms of higher degree by Julia in his treatise [19] although

his definition is not explicit. More recent and explicit results are due to Cremona

and Stoll in [20]. A generating algorithm is not known in degree five and higher.

10



In Chapter III we give a generating algorithm for the family of diagonalizable

forms, Algorithm 3.5.1. Although generators of the invariant ring for all forms

in arbitrary degree are not known, the invariant ring for diagonalizable forms

is determined by the discriminant. Thus our algorithm instead produces all

diagonalizable forms up to equivalence with a given discriminant.

An implementation of this algorithm in Sage can be found on the author’s

website:

https://cdethier.github.io.

We end Chapter III with some computational examples that were produced using

this code. In particular, we have verified that Theorem 1.4 in [9] holds with r = 5,

h = 1, and m = 5 if the assumption on the discriminant is dropped. The results of

these computations can also be found on the author’s website.

11



CHAPTER II

DIAGONALIZABLE QUARTIC THUE EQUATIONS WITH NEGATIVE

DISCRIMINANT

2.1. Gap Principles

Suppose that F (x, y) ∈ Z[x, y] is a binary integral quartic form with resolvent

forms ξ and η which satisfy (1.3). There are multiple choices for ξ and η, for

example if ξ, η is one choice then −ξ, iη is another. For the remainder of this

chapter we fix a pair with real coefficients and define the corresponding scaled

forms u and v so that F = u4 + v4 and (1.3) both hold. Again there are multiple

ways to do this, so we fix a pair u and v with real coefficients.

We define

Z = Z(x, y) = max{|u(x, y)|, |v(x, y)|}.

and

ζ = ζ(x, y) =
|F (x, y)|
Z4(x, y)

.

When we are considering multiple solutions (xi, yi) indexed by i, for convenience

we will frequently use the notation ζi = ζ(xi, yi), Zi = Z(xi, yi), ξi = ξ(xi, yi),

etc. Furthermore, we will denote the solution to the inequality 0 < |F (x, y)| ≤ h

for which ζ is largest by (x0, y0). We also treat (x, y) and (−x,−y) as the same

solution, because Z only depends on |u| and |v|.

The following is a result from [9], see the remark in that paper following

Definition 5.3. We recall the proof here:

12



Lemma 2.1.1. If |j| > 2
√
h and the primitive integer pair (xi, yi) 6= (x0, y0)

satisfies 0 < |F (xi, yi)| ≤ h, then ζ(xi, yi) < 1.

Proof. Suppose to the contrary that (xi, yi) 6= (x0, y0) is a solution to this equation

with ζi ≥ 1. Then

u0vi − uiv0 = (αδ − βγ)(x0yi − xiy0) = j(x0yi − xiy0) 6= 0.

From this we conclude that

|j| ≤ |u0vi|+ |uiv0| ≤ 2Z0Zi.

which we can use as follows:

|j| ≤ 2Z0Zi = 2
|F0|1/4

ζ
1/4
0

|Fi|1/4

ζ
1/4
i

≤ 2
√
h

because ζ0, ζi ≥ 1. It follows by contraposition that |j| > 2
√
h and (xi, yi) 6=

(x0, y0), then ζ(xi, yi) < 1.

Suppose that ω is a fourth root of unity. For our fixed pair of resolvent forms

η and ξ, we say that the solution (x, y) to 0 < |F (x, y)| ≤ h is related to ω if

∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤k≤3

∣∣∣∣e2kπi/4 − η(x, y)

ξ(x, y)

∣∣∣∣ .
As ξ and η were assumed to have real coefficients, any solution must be related to

one of the real fourth roots of unity.

Motivated by the previous lemma, we exclude the solution with largest ζ. We

define Sω to be the set of solutions related to ω, and S ′ω the collection of solutions

13



related to ω, excluding the solution whose ζ-value is largest. We index the elements

of S ′ω as (x1, y1), . . . , (xk, yk) and once again adopt the notation Zi, ζi, ui, etc.

Further, we may order the solutions in S ′ω to have decreasing ζ-values. That is,

ζi+1 ≤ ζi for all 1 ≤ i ≤ k − 1.

The following lemma originates in [11] and provides useful gap principles. We

use the statements found in [9, Lemma 5.6] and [9, Lemma 5.7]

Lemma 2.1.2. Assume that |S ′ω| ≥ 2 and h < 1
4
|j|2. Let (x0, y0) ∈ S ′ω with largest

ζ-value and (x, y) ∈ S ′ω a different solution. Then

Z(x, y) ≥ |j|
2h1/4

. (2.1)

and

Zi ≥
|j|
2h
Z3
i−1. (2.2)

Under the assumption h < 1
4
|j|2, it follows that all elements of S ′ω have ζ-

value less than 1 by Lemma 2.1.1, so we used that assumption rather than the

assumption ζi−1 < 1 given in [9].

Lemma 2.1.3. By convention, we label the elements of S ′ω as (x1, y1), . . . , (xk, yk)

and order them by decreasing ζ-value. Suppose that |S ′ω| ≥ 2 and h < 1
4
|j|2. Under

these assumptions

Zk ≥
|j|a1(k)

2a1(k)ha2(k)
, (2.3)

where the constants a1(k) and a2(k) are defined as follows:

a1(k) :=
3k − 1

2
+ 3k−1

a2(k) :=
3k − 1

2
+

3k−1

4
.

14



Proof. We begin by applying (2.2) repeatedly to Zk:

Zk ≥
|j|
2h
Z3
k−1 ≥

(
|j|
2h

)4

Z9
k−2 ≥ . . . ≥

(
|j|
2h

)b(k)

Z3k−1

1 ,

where

b(k) =
k−1∑
i=0

3i =
3k − 1

2
.

Finally, we apply (2.1) to Z1 to obtain

Zk ≥
(
|j|
2h

)b(k)( |j|
2h1/4

)3k−1

=
|j|b(k)+3k−1

2b(k)+3k−1hb(k)+ 3k−1

4

=
|j|a1(k)

2a1(k)ha2(k)
.

2.2. Some Constants and Lemmas

Following [9], we define the constants cn,g, c1(n, g) and c2(n, g) for n ∈ N and

g ∈ {0, 1} as follows:

cn,g := 4n
(

12
√
D
)n+g

(
2

χ

)1−g

c1(n, g) := 23n+2|cn,g|

c2(n, g) := 2n+1−g|cn,g|
(

1− 2h

Z4
1

)− 1
2

(2n+1−g)
∣∣∣(n−g+1/4

n+1−g

)(
n−1/4
n

)∣∣∣(
2n+1−g

n

) .

We state some bounds for c1(n, g) and c2(n, g) given in [9] which we will use:

|c1(n, g)| ≤ 23n+242(2g+3n)+1|j|2(g+n)+1 (2.4)

|c2(n, g)| ≤ 2n+342(2g+3n)+1|j|2(g+n)+1. (2.5)
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These can be found in equations (60) and (61) in that paper.

We need some further results from [9] which explain the significance of

c1(n, g) and c2(n, g). The following is [9, Lemma 7.3].

Lemma 2.2.1. Let F be a diagonalizable binary quartic form. Let (x1, y1) and

(x2, y2) be two solutions related to a fixed fourth root of unity, say ω, with ζ2 ≤ ζ1.

Assume that Z4
1 > 2h and Σn,g 6= 0. Then

c1(n, g)hZ4n+1−g
1 Z−3

2 + c2(n, g)h2n+1−gZ
−4(n+1−g)+1−g
1 Z2 > 1. (2.6)

And this is Lemma 7.4 from that paper.

Lemma 2.2.2. If n ∈ N and I ∈ {0, 1}, then at most one of {Σn,0,Σn+I,1} can

vanish.

2.3. Strengthening the Gap Principle

Throughout this section, we assume that S ′ω has k elements, indexed as

(x1, y1), . . . , (xk, yk). Our aim is to show that under certain conditions this is a

contradiction, in order to conclude that |S ′ω| ≤ k − 1.

We begin by defining the constants Ci and Ei for i = 0, 1, 2. Throughout

these definitions, n ≥ 2 and k ≥ 3. The E’s are given as follows:

E0(k) :=
4a1(k − 1)

1 + 4a2(k − 1)

E1(k, g) :=
−2g + (4 + g)a1(k − 1)

4 + (4 + g)a2(k − 1)

E2(n, k, g) :=
−8n− 14 + 2g + (8n− 5 + g)a1(k − 1)

6n+ 4 + (8n− 5 + g)a2(k − 1)
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and the C’s are given as Ci = 2Θi , where

Θ0 :=
−1− 4a1(k − 1)

1 + 4a2(k − 1)

Θ1 :=
−24− 8g − (4 + g)a1(k − 1)

4 + (4 + g)a2(k − 1)

Θ2 :=
3 log2(3)− 54n− 66− 8g − (8n− 5 + g)a1(k − 1)

6n+ 4 + (8n− 5 + g)a2(k − 1)
.

Lemma 2.3.1. Suppose that k ≥ 3 is fixed integer, and that h satisfies

h <
1

4
|j|2 (2.7)

as well as

h ≤ min
0≤i≤2

Ci|j|Ei (2.8)

for all n ≥ 2 and g = 0, 1. Then

Zk ≥ (0.75)2−13n−13|j|−2n−3h−2n−1Z4n
k−1 (2.9)

for all n ∈ N.

Proof. During this proof we will frequently use Lemma 2.2.1 applied to Zk−1 and

Zk. This Lemma requires the assumption that Z4
k−1 > 2h. This is always the case,

as

Z4
k−1 ≥

(
|j|a1(k−1)

2a1(k−1)ha2(k−1)

)4

> 2h

using (2.3) and our assumption in (2.8) that h < C0(k)|j|E0(k).
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This argument is a proof by induction. Beginning with the base case, n = 1,

we cube (2.2) and rearrange to fit the first term of the left side of (2.6):

Z3
k ≥

(
|j|
2h

)3

Z9
k−1

hc1(1, g)Z−3
k Z5−g

k−1 ≤ c1(1, g)|j|−323h4Z−4−g
k−1 .

Now we apply (2.4) to c1(1, g) and (2.3) to Zk−1:

hc1(1, g)Z−3
k Z5−g

k−1 ≤ h423|j|−3
(
2544g+7|j|2g+3

)( |j|a1(k−1)

2a1(k−1)ha2(k−1)

)−4−g

= 2d1|j|d2hd3 ,

where the exponents d1, d2, and d3 are given as follows:

d1 = 22 + 8g + (4 + g)a1(k − 1)

d2 = 2g − (4 + g)a1(k − 1)

d3 = 4 + (4 + g)a2(k − 1).

Because of our assumption in (2.8) that h < C1(k, g)|j|E1(k,g), it follows that

c1(1, g)hZ−3
k Z5−g

k−1 < 0.25.
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According to Lemma 2.2.2, Σ1,0 and Σ1,1 cannot both be zero. We choose whichever

Σ1,g is nonzero and apply Lemma 2.2.1 to Zk and Zk−1 to conclude that1

c2(1, g)h3−gZ3g−7
k−1 Zk > 0.75.

Rearranging and applying (2.5) to c2(1, g), we see that

Zk > (0.75)2−18−8g|j|−2g−3hg−3Z7−3g
k−1

≥ (0.75)2−26|j|−5h−3Z4
k−1

This last inequality required that h ≥ 1, |j| ≥ 1, which follows from h < 1
4
|j|2

in (2.8), and Zk−1 ≥ 1, which follows from (2.1) and h < 1
4
|j|2. Since this is (2.9)

with n = 1, this completes the base case.

We begin the induction argument by cubing the induction assumption and

rearranging towards the first term of the left side of (2.6) with n+ 1:

Z3
k ≥ (0.75)32−39n−39|j|−6n−9h−6n−3Z12n

k−1

hc1(n+ 1, g)Z−3
k Z4n+5

k−1 ≤ (0.75)−3c1(n+ 1, g)239n+39|j|6n+9h6n+4Z5−8n+g
k−1 .

The left hand side is now the first term in (2.6), so we attempt to show that the

right hand side is less than 0.25. To do this, we first make use of (2.4) applied

to c1(n + 1, g), then (2.3) applied to Zk−1. Doing this second step requires the

1It is possible to make these arguments with 0.25 replaced by any 0 < α < 1. However, α =
0.25 maximizes the expression α(1− α)3 which appears in our C2 constant.
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assumption h < 1
4
|j|2.

c1(n+ 1, g)hZ−3
k Z4n+5−g

k−1 ≤ (0.75)−3254n+8g+58|j|8n+2g+12h6n+4Z−8n−4
k−1

≤ (0.75)−32d4 |j|d5hd6 ,

where the exponents d4, d5, and d6 are given as follows:

d4 = 54n+ 8g + 58 + (8n+ g − 5)a1(k − 1)

d5 = 8n+ 2g + 12 + (5− 8n− g)a1(k − 1)

d6 = 6n+ 4 + (8n+ g − 5)a2(k − 1).

By our assumption (2.8) that h ≤ C2(n, k, g)|j|E2(n,k,g), it follows that

c1(n+ 1, g)hZ−3
k Z4n+5−g

k−2 < 0.25.

According to Lemma 2.2.2, Σn+1,0 and Σn+1,1 cannot both be zero. We choose

whichever Σn+1,g is nonzero and apply Lemma 2.2.1 to Zk and Zk−1 to conclude

that

c2(n+ 1, g)h2n+3−gZ−4n−7+3g
k−1 Zk > 0.75.

Rearranging and applying (2.5), we see that

Zk > (0.75)2−13n−8g−18|j|−2n−2g−3hg−2n−3Z4n+7−3g
k−1

≥ (0.75)2−13n−26|j|−2n−5h−2n−3Z4n+4
k−1
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Once again, we have used h ≥ 1, |j| ≥ 1 and Zk−1 ≥ 1. These follow from h <

1
4
|j|2 in (2.8) and (2.1). Since this is (2.9) with n → n + 1, we have completed the

induction argument.

We will show that the value of k for S ′ω leads to a contradiction. Before doing

this, we first define two more constants, E3(k) given as follows:

E3(k) :=
−2 + 4a1(k − 1)

2 + 4a2(k − 1)
.

and C3(k) given as C3(k) = 2Θ3 where

Θ3 :=
−13− 4a1(k − 1)

2 + 4a2(k − 1)
.

Lemma 2.3.2. Suppose that, in addition to (2.7) and (2.8), we also assume that

h < C3(k)|j|E3(k). (2.10)

Then then inequality

0 < |F (x, y)| ≤ h

has at most 2k solutions.

Proof. It suffices to show that under (2.10) that Lemma 2.3.1 leads to a

contradiction, as we built that Lemma assuming that |S ′ω| = k, and S ′ω contains

all solutions related to a particular fourth root of unity except the one with largest

ζ-value. As we have noted, solutions can only be related to two of the fourth roots

of unity because u and v have real coefficients, as IF < 0.
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To derive a contradiction, we will show that the right side of (2.9) goes to ∞

as n→∞. To do this, we rearrange (2.10):

h < C3(k)|j|E5(k)

h2+4a2(k−1) < 213−4a1(k−1)|j|−2+4a1(k−1)

1 < 2−13|j|−2h−2

(
|j|a1(k−1)

2a1(k−1)ha2(k−1)

)4

1 < 2−13|j|−2h−2Z4
k−1.

In the right side of (2.9) this quantity is being raised to the nth power, which will

go to ∞.

2.4. Reduction of Coefficients

Proof of Theorem 1.3.1. We complete the proof of Theorem 1.3.1 by

comparing the constants Ci and Ei. We aim to show that for a fixed k ≥ 3,

E2(2, k, 0) is minimal among the Ei and C2(2, k, 0) is minimal among the Ci with

i = 0, 1, 2, 3, n ≥ 2, and g = 0, 1. This will show that h < C2(2, k, 0)|j|E2(2,k,0) is the

most restrictive constraint between (2.8) and (2.10), hence the only necessary one.

To do this we need to show several inqualities of the form Ei(n1, k, g2) ≤

Ej(n2, k, g2) and similar with the exponents of the Ci. This amounts to verifying

several inequalities of the form

ξ1 + η1a1(k − 1)

θ1 ± η1a2(k − 1)
≤ ξ2 + η2a1(k − 1)

θ2 ± η2a2(k − 1)
. (2.11)

Where ± is taken to be + for the E’s and − for the C’s. The constants ξ1, η1, θ1,

ξ2, η2, and θ2 may depend on n or g, but not k. To do this, we clear denominators
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and organize by the coefficients of 1, a1(k−1), and a2(k−1). Noticing that the a1a2

term always cancels, we define Φ as

Φ = (ξ2θ1 − ξ1θ2) + (η2θ1 − η1θ2)a1(k − 1) + (ξ2η1 − ξ1η2)a2(k − 1)

and check that Φ ≥ 0 because this implies (2.11). For notation, we use ΦE,i when

checking the inequality E2(2, k, 0) ≤ Ei and ΦC,i when checking the inequality

C2(2, k, 0) ≤ Ci. We use the notation ` = log2(3) and expand in terms of 3k to

obtain the following expressions for Φ:

18ΦE,0 = 685 · 3k − 1017

9
2
ΦE,1 = 225− 198g + (130 + 27g)3k

ΦE,2 = 110− 55n− 2g + (−842 + 421n+ 131g)3k−2

18
7

ΦE,3 = −108 + 79 · 3k

36ΦC,0 = −5688 + 108`+ (4265− 841`) 3k

36ΦC,1 = 3816− 216`− 5868g + 54`g + (2824− 84`+ 442g − 21`) 3k

36ΦC,2 = 13536 + 432`− 6768n− 216n`− 5868g + 54g`+

+ (−9932 + 336`+ 4966n− 168n`+ 442g − 21g`) 3k

36
7

ΦC,3 = −598 + (493− 12`) 3k.

One may verify that each of these expressions is non-negative, using the restrictions

n ≥ 2, g = 0, 1, and k ≥ 3 where appropriate. �
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2.5. Proof of Theorem 1.3.2, Forms with Small Discriminant

The method for this proof is to apply Theorem 1.3.1 with h = 1. The bounds

on h in terms of j lead to upper bounds on ∆ using ∆ = −44j12. These in turn

lead to upper bounds on IF using 27∆ = 4I3 − J2. We then find all forms F with

JF = 0 and IF down to this bound and solve |F (x, y)| = 1 for each form.

Unfortunately, using k = 3 requires that we solve |F (x, y)| = 1 for all forms

with (approximately)

0 > IF > −2.4× 109.

which far exceeds our computational resources. Using k = 4 gives more reasonable

bounds, (approximately)

0 > IF > −2600.

Of course, this gives a weaker result. We see no reason why Theorem 1.3.2 should

be false with eight replaced by six, but showing that statement is out of reach of

our computational resources using this method.

Our presentation of these methods was inspired by [16].

Proof of Theorem 1.3.2. Applying Theorem 1.3.1 with k = 4 and h = 1 shows

that |F (x, y)| = 1 has at most eight solutions for forms F with IF < −2593. The

remaining forms are handled by direct computation.

To find all such forms, we use an algorithm given by Cremona in [18,

Section 4.6]. This algorithm misses the family of forms whose leading coefficient

is zero when reduced. This issue is explicitly highlighed in [17] where Birch and

Swinnerton-Dyer describe a similar algorithm.

These forms can be handled separately. If F (x, y) has a leading coefficient

of zero, then F (x, y) = yC(x, y), where C(x, y) is a cubic form. The equation
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yC(x, y) = ±1 requires y = ±1 and C(x, y) = ±1 with the same sign, as y and

C(x, y) are both integers. Putting these together, we arrive at C(x,±1) = ±1,

which describes the roots of two cubic polynomials. Thus, F (x, y) = ±1 has at

most six solutions.

Here we give a brief description of Cremona’s algorithm for the case I < 0

and J = 0. To find all forms

F (x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4,

with JF = 0 and a given negative value for IF , we loop on a, b, and c using the

bounds for a and b given by

|a| ≤ 2

3
√

3

√
−I

−2|a| < b ≤ 2

and the bounds on c derived from the definition of the seminvariant H:

H = 8ac− 3b2 (2.12)

and the following bounds on H:

max

{
4

3
I,−Ba

}
≤ H ≤ min{0, Ba}

where Ba is given by

Ba =
2

3

√
−4I
√
−4I − 27a2.
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These can be found in [18, Proposition 14]. Given a, b, and c one can find the

seminvariant H using (2.12) and the seminvariant R using the identity

H3 − 48Ia2H + 64Ja3 = −27R2.

Then one can calculate d and e using the definition of R:

R = b3 + 8a2d− 4abc

and the definition of I:

I = 12ae− 3bd+ c2,

checking for integrality of R, d, and e after calculating each. Note that this

algorithm is simplified by observing that when J = 0 it follows that I is divisible by

three.

The results of these computations can be found on the author’s website:

https://cdethier.github.io.

The file forms.pdf contains a list of forms with JF = 0 and 0 > IF > −3000,

organized in descending order of IF . We claim that the list of forms in this pdf

contains at least one form in each SL2(Z) orbit, however we do not claim that these

forms are distinct up to SL2(Z) action.

Now that we have obtained a presentation of all forms of interest, we compute

the solutions to F (x, y) = 1 and F (x, y) = −1 using PARI. The solutions of each

equation are also given in the file forms.pdf. Table 1 lists the number of forms
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TABLE 1 The number of Forms with a given number of solutions to the Thue
equations F (x, y) = 1 and F (x, y) = −1.

F (x, y) = 1 F (x, y) = −1 # Forms
0 0 7346
0 1 1003
0 2 97
0 3 5
1 0 1003
1 1 146
1 2 3
2 0 97
2 1 3
3 0 5

with JF = 0 and 0 > IF > −3000 with a given number of solutions to F (x, y) = 1

and F (x, y) = −1:

Crucially, none of these forms have more that eight primitive solutions to

|F (x, y)| = 1, which completes the proof. �

We continue with some remarks about our computations. None of the forms

discovered have more than three primitive solutions. These computations are

consistent with observations, for example in [5], that most upper bounds for the

number of solutions to a Thue equation are not sharp. Furthermore, all forms

which have exactly three primitive solutions are diagonal, that is, they have shape

ax4 + by4. The fact that these forms have more solutions than the rest is due to the

fact that we count (x, y) and (x,−y) as separate solutions, which we would not do

when studying the family of diagonal forms in even degree.

This upper bound on the number of solutions with a diagonal form is not

unexpected, see [21] for example. However, it is unexpected that this bound would

hold for all quartic diagonalizable forms with negative discriminant.
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2.6. Reduction of Elliptic Curves

Now we show how to bound the number of integral points on the elliptic

curve

Y 2 = X3 +NX = X(X2 +N) (1.8)

by bounding the number of solutions of a certain family of quartic Thue’s

inequalities. This reduction is due to Tzanakis and can be found in [15]. The case

with N < 0 can be found in [9]. We recall it here to establish notation and to be

self-contained.

Let N be a positive square-free integer. We consider the integral points on the

elliptic curve (1.8). As X and X2 +NX are integers and Y 2 is a square integer, the

square-free parts of X and X2 + N must be the same. Conversely, and X with X

and X2 +N having identical square-free parts will lead to an integral point on (1.8).

We will use the notation

X = dy2, and X2 −N = dx2.

From their definition x and y satisfy the equation x2 − dy4 = N
d

. We may now focus

on the quartic equation

X2 − dY 4 = k, (2.13)

where N and k are positive integers, and d > 1 is a positive square-free integer.

Conversely, a solution to (2.13) also produces an integral point on (1.8) with N =

kd.

Since it was assumed that N is square-free, the integer k is also square-free

and is relatively prime to d. Let Ud be the number of solutions to equation (2.13).
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Then the summation ∑
d|N

Ud (2.14)

provides an upper bound for the number of solutions to (1.8). We calculate these

upper bounds by counting integral solutions to the equation

X2 − dY 2 = k (2.15)

and detect those where Y is a square.

We begin by studying the structure of the solutions of this equation. Suppose

that (X, Y ) ∈ Z2 with XY 6= 0 is a solution to (2.15). Define

α = X + Y
√
d,

and for i ∈ Z, define Xi, Yi ∈ Z as follows:

Xi + Yi
√
d = αεid

where εd is the fundamental unit in the order Z[
√
d].

Defined in this way, (Xi, Yi) ∈ Z2 is also a solution to (2.15). We refer to

the set of all such (Xi, Yi) as the class of solutions of (2.15) associated to (X, Y ).

Walsh in [22] showed that there are at most 2ω classes of solutions to (2.15) under

the assumption that k is square-free and D > 0, see Corollary 3.1 in that paper.

So we concern ourselves with bounding the number of solutions in a fixed class of

solutions, C.
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Let Y0 be the least positive value of Y which occurs in C and let X0 be the

corresponding integer from C so that X2
0 − dY 2

0 = k. We call X0 + Y0

√
d the

fundamental solution of the class C.

Now suppose that (X, Y ) is a solution to (2.13), so that (X, Y 2) is a solution

to (2.15). If X0 + Y0

√
d is the fundmental solution of the class of solutions of X +

Y 2
√
d, then

X + Y 2
√
d =

(
X0 + Y0

√
d
)
εid (2.16)

for some i. Then there are integers j, s, t such that

X + Y 2
√
d =

(
s+ t

√
d
)
ε2jd (2.17)

by taking either

s+ t
√
d = X0 + Y0

√
d when i is even, or

s+ t
√
d =

(
X0 + Y0

√
d
)
εd when i is odd.

Now suppose εjd = m + n
√
d. Then we have m2 − dn2 = 1 and expanding (2.17) we

see that

Y 2 = tm2 + 2smn+ tDn2.

Multiplying this identity by t, completing the square, and using the fact that s2 −

dt2 = k, we obtain

−(tm+ sn)2 + kn2 + tY 2 = 0. (2.18)

The following is [15, Lemma].
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Lemma 2.6.1. Let a, b, c be nonzero integers with gcd(a, b, c) = 1, and such that

the equation

aX2 + bY2 + cZ2 = 0 (2.19)

has a solution in integers X,Y,Z not all zero. Then there are integers R1, S1, T1,

R2, S2, T2, and z1 depending only on a, b, c satisfying the relations

R1T2 +R2T1 = 2S1S2,

S2
2 −R2T2 = −acz2

1

S2
1 −R1T1 = −bcz2

1

and a nonzero integer δ, also depending only on a, b, c such that for every nonzero

solution (X,Y,Z) of (2.19), there exist integers Q, x, y, and a divisor P of δ so that

PX = Q(R1x
2 − S1xy + T1y

2)

PY = Q(R2x
2 − 2S2xy + T2y

2).

Moreover if gcd (X,Y,Z) is bounded, then an upper bound for Q can be found.

Furthermore, Walsh showed in [22] that the integers R1, T1, R2, T2 satisfy

R1T2 −R2T1 = 0.

Applying Lemma 2.6.1 to (2.18) with a = −1, b = k, and c = t, we conclude

that producing a solution to (2.18) is equivalent to producing a primitive solution

to

F (u, v) = (Pt/Q)2, (2.20)
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where F (x, y) = A2
1(x, y)− A2

2(x, y) if we define A1 and A2 as

A1(x, y) := (R1 − sR2)x2 − 2(S1 − sS2)xy + (T1 − sT2)y2

A2(x, y) := R2tx
2 − 2S2txy + T2ty

2.

We summarize some properties of this particular Thue equation in the

following proposition:

Proposition 2.6.2. Let F (x, y) be the quartic form with coefficients given above.

Then

1. F (x, 1) has exactly two real roots and no repeated roots,

2. JF = 0,

3. IF = 48kt3T2R2z
2
1d,

4. IF < 0.

Proof. 1) Solving F (x, 1) = 0 is equivalent to solving

A1(x, 1) = ±
√
dA2(x, 1).

We make the substitution w = s± t
√
d, and this becomes

p(x) := (R1 − wR2)x2 − 2(S1 − wS2)x+ (T1 − wT2) = 0.
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To check if the roots of this polynomial are real, we must check positivity of the

discriminant of p(x). We do this using the identities from Lemma 2.6.1.

1

4
∆p = (S1 − wS2)2 − (R1 − wR2)(T1 − wT2)

= S2
1 − 2wS1S2 + w2S2 −R1T1 + wR1T2 + wR2T1 − w2R2T2

= −ktz2
1 + wtz2

1

= tz2
1(w2 − k).

As t and z2
1 are both positive, we must determine whether w2 − k is positive,

negative, or zero:

w2 − k = S2 ± 2st
√
d+ t2d− s2 + t2d

= 2t2d± 2st
√
d

= 2t
√
d(t
√
d± s).

Now we must determine whether t
√
d ± s is positive, negative, or zero. To do this,

we note that

(s+ t
√
d)(−s+ t

√
d) = −s2 + dt2 = −k < 0,

which implies that exactly one of s + t
√
d and −s + t

√
d is negative, the other is

positive, and neither are zero. In fact, −s + t
√
d < 0 as s, t > 0. Thus we see that

F (x, 1) has two real roots and two non-real roots, as well as no repeated roots.

2) is proved in [22], while 3) is shown in [9].

4) It follows from 1) that ∆F < 0, which implies that IF < 0 from the identity

27∆F = 4I3
F − J2

F
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2.7. Bombieri-Schmidt Reduction

Proposition 2.7.1. Let G be the set of quartic forms F (x, y) ∈ Z[x, y] that are

irreducible over Q with IF < 0 and JF = 0. Let N be an upper bound for the

number of solutions of quartic Thue equations

F (x, y) = 1

as F varies over the elements of G. Then for h ∈ N and G(x, y) ∈ G, the equation

G(x, y) = h (2.21)

has at most

N4ω(h)

primitive solutions.

Proof. This is a special case of [14, Lemma 7]. In that proof (2.21) is reduced to

certain other Thue equations with other forms in G by reducing G(x, y) through

the action of certain matrices from GL2(Z). These new forms will have JF = 0

because applying this action to a diagonalized form clearly yields a diagonalized

form. Furthermore, the matrix a b

c d


will act on a root α by

α 7→ a · α + b

c · α + d
.
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From this it is clear that real roots will map to real roots and nonreal roots will

map to nonreal roots. Thus these new forms will also have I < 0.

2.8. Proof of Theorem 1.3.4

Proof of Theorem 1.3.4. Tracing back through our reduction of the elliptic

curve, the number of integral points on (1.8) is at most

∑
d|N

Ud,

where Ud is an upper bound for the number of solutions to the Thue

equation (2.13). Every two of these solutions is derived from one solution to (2.15)

as Y is squared. The solutions to (2.15) split into classes of solutions. As k is

square-free, Walsh showed in [22] that there are at most 2ω(k) such classes. The

number of solutions in each class is the number of solutions to the quartic Thue

equation (2.20), which is at most 8 · 4ω(P 2t2/Q2), applying Theorem 1.3.3. Akhtari in

[9] gives the following upper bound for ω(P 2t2/Q2) (see the proof of Corollary 5.1):

ω

(
P 2t2

Q2

)
≤ 2 +

log
(
ε

3/2
d

√
|K|/2d

)
log 4

where K = N/d. Hence it follows that (1.8) has at most

∑
d|N

Ud ≤ 215/2
√
N
∑
d|N

2ω(N/d)ε
3/2
d

d

integral points. �
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CHAPTER III

COMPUTATIONAL THEORY OF DIAGONALIZABLE FORMS

3.1. Proof of Theorem 1.2.1

Proof. If F is a diagonalizable form of degree r, then it follows from the

computation in (1.4) that HF = (L1(x, y)L2(x, y))r−2, where L1 and L2 are linear

forms proportional to the resolvent forms of F , aαx+ βy and γx+ δy. If L1 and L2

were proportional, then the resolvent forms of F would be proportional, implying

that ∆F = 0, which contradicts the assumption ∆F 6= 0 for diagonalizable forms.

Conversely, suppose that F (x, y) ∈ Z[x, y] is a binary integral form with

nonzero discriminant whose Hessian HF is the r − 2 power of a quadratic form with

non-proportional linear factors. We will prove that F is diagonalizable. Suppose

that the two linear factors are ξ(x, y) and η(x, y), given by

ξ(x, y) = αx+ βy and η(x, y) = γx+ δy.

Since ξ and η are not proportional, one may write

x = pξ + qη

y = sξ + tη

for some p, q, s, t ∈ C. In fact, these can be given explicitly by inverting the implicit

linear substitution matrix. We use a0, a1, . . . , ar for the coefficients of F in ξ and η,
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and Φ the form F viewed with this perspective:

F (x, y) = F (pξ + qη, sξ + tη)

= a0ξ
r + a1ξ

r−1η + . . .+ ar−1ξη
r−1 + arη

r

= Φ(ξ, η).

We use A0, A1, . . . , A2r−2 for the coefficients of the Hessian of F in ξ and η. We

note that it satisfies

HΦ(ξ, η) = A0ξ
2r−2 + A1ξ

2r−3η + . . .+ A2r−3ξη
2r−3 + A2r−2η

2r−2

= (pt− sq)2HF (x, y) = (pt− sq)2(ξη)r−2,

as the Hessian is a degree two covariant. Thus we conclude that

A0 = . . . = Ar−3 = Ar−1 = . . . = Ar = 0 and Ar−2 = (pt− sq)2.

We will use explicit calculation of the Hessian coefficients of Φ (the Ak) in terms of

the coefficients of Φ (the am) to show that a1 = a2 = . . . = ar−1 = 0. This will show

that F is diagonalizable. We begin with

Φ(ξ, η) =
r∑
i=0

aiξ
r−iηi,
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from which we calculate the second order partial derivatives of Φ:

∂2Φ

∂ξ2
=

r−2∑
i=0

(r − i)(r − i− 1)aiξ
r−i−2ηi

∂2Φ

∂η2
=

r∑
i=2

(i)(i− 1)aiξ
r−iηi−2 =

r−2∑
i=0

(i+ 2)(i+ 1)ai+2ξ
r−i−2ηi

∂2Φ

∂ξη
=

r−1∑
i=1

(r − i)(i)aiξr−i−1ηi−1 =
r−2∑
i=0

(r − i− 1)(i+ 1)ai+1ξ
r−i−2ηi.

We have reindexed these sums so that each summand has the same power of ξ and

η. This leaves us with the following expression for the HΦ:

HΦ =

(
r−2∑
i=0

(r − i)(r − i− 1)aiξ
r−i−2ηi

)(
r−2∑
j=0

(j + 2)(j + 1)aj+2ξ
r−j−2ηj

)

−

(
r−2∑
i=0

(r − i− 1)(i+ 1)ai+1ξ
r−i−2ηi

)2

.

We now collect terms by the resulting powers of ξ and η, because Ak is the

coefficient of ηk in HΦ. This yields the following identity:

Ak =
∑
i+j=k

0≤i,j≤r−2

[(r − i)(r − i− 1)(j + 1)(j + 2)aiaj+2

−(r − i− 1)(i+ 1)(r − j − 1)(j + 1)ai+1aj+1].

(3.1)

It will be convenient for the rest of this argument to assume that a0 6= 0 or

ar 6= 0. First we assume that a0 = 0 and ar = 0 to arrive at a contradiction. First

we assume r is odd, then (3.1) with k = 0 is

0 = 2r(r − 1)a0a2 − (r − 1)2a2
1
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which shows that a0 = 0 forces a1 = 0. Using a0 = a1 = 0 in (3.1) with k = 2 is

0 = 12r(r − 1)a0a4 + (6r − 6)a1a3 + 4(r − 2)2a2
2 + 2(r − 2)(r − 3)a2

2

which shows that a2 = 0. One may inductively show that am = 0 using the identity

A2m−2 = 0 up to 2m − 2 = r − 3 (one must be sure that the coefficient of a2
m is

nonzero — this can be checked explicitly in general). Similarly, (3.1) with k = 2r−4

shows that ar = 0 forces ar−1 = 0. One may also inductively build downwards to

show that am = 0 using A2m−2 = 0 down to 2m − 2 = r − 1 (again, checking that

the coefficient of am is nonzero). Thus, if r is odd and a0 = ar = 0, then am = 0 for

0 ≤ m ≤ r. This means F = 0, so HF = 0 which contradicts our assumptions.

If r is even, the same argument applies. However, it fails to show that ar/2 =

0, as Ar−2 6= 0. This implies that F has the form F (x, y) = ar/2(ξη)r/2. However,

this form has ∆F = 0, so it is ignored by our assumptions.

So we may thus assume that a0 6= 0 or ar 6= 0. As (3.1) is symmetric under

the permutation m 7→ r − m of the subscripts of the am, we will only make

our argument in the case where a0 6= 0. The case where ar 6= 0 can be argued

symmetrically.

We will use (3.1) to solve for successive values of am in terms of a1 and a0,

starting with solving A0 = 0 for a2, and proceeding inductively by solving Ak = 0

for ak+2. We claim that this leads to the following presentation of am for 2 ≤ m ≤

r − 1:

am =
(r − 1) . . . (r −m+ 1)

rm−1m!

am1
am−1

0

. (3.2)

Before arguing this claim, we begin by showing that if ai, ai+1, aj+1, aj+2 all have

this presentation, then the i, j term of the sum in (3.1) is equal to 0. This will be
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useful in the proof of (3.2) and after. To show the i, j, term of the sum is 0, we

compute both expressions directly. Here is the first:

(r − i)(r − i− 1)(j + 1)(j + 1)aiaj+2 =

= (r − i)(r − i− 1)(j + 1)(j + 2)
(r − 1) . . . (r − i+ 1)

ri−1i!

ai1
ai−1

0

·

· (r − 1) . . . (r − j − 1)

rj+1(j + 2)!

aj+2
1

aj+1
0

=
(r − 1) . . . (r − i− 1)(r − 1) . . . (r − j − 1)

ri+ji!j!

ai+j+2
1

ai+j0

.

And the second:

− (r − i− 1)(i+ 1)(r − j − 1)(j + 1)ai+1aj+1 =

= −(r − i− 1)(i+ 1)(r − j − 1)(j + 1)
(r − 1) . . . (r − i)

ri(i+ 1)!

ai+1
1

ai0
·

· (r − 1) . . . (r − j)
nj(j + 1)!

aj+1
1

aj0

=
−(r − 1) . . . (r − j − 1)(r − 1) . . . (r − j − 1)

ri+ji!j!

ai+j+2
1

ai+j0

.

These expressions cancel, showing that the i, j term of the sum is 0, provided

a2, . . . , ak+1 have the presentation given in (3.2).

Now we can show that (3.2) is the case. Of course we will argue this claim by

induction. For the base case, A0 = 0 is the identity

2r(r − 1)a0a2 − (r − 1)2a2
1 = 0,

which we solve to obtain

a2 =
r − 1

2r

a2
1

a0

,
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which is (3.2) when m = 2.

For the induction step, suppose that we have used the equations up to Ak−1 =

0 to solve for a1, . . . , ak+1 and we are now proceeding to solve Ak = 0 for ak+2. The

first term of the sum in (3.1), the term with i = 0, contains the only value of am

which we have not solved for, ak+2. The remaining terms of the sum contain only

values of am that we have solved for. Hence, as we have shown, all terms except the

first are 0. Now that the first term of the sum is the only one remaining, we may

solve for ak+2:

r(k + 2)a0ak+2 = (r − k − 1)a1ak−1

r(k + 2)a0ak+2 = (r − k − 1)a1
(r − 1) . . . (r − k)

rk(k + 1)!

ak+1
1

ak1

ak+2 =
(r − 1) . . . (r − k − 1)

rk+1(k + 2)!

ak+2
1

ak+1
0

.

Hence by induction the am all have this presentation. We may continue this

induction argument up to solving for ar−1 in the equation Ar−3 = 0.

Now we assume that a1 6= 0 and hope to reach a contradiction. We skip

k = r − 2 for the moment and proceed to solve Ar−1 = 0 for ar. As we have shown,

all terms with values of am given in (3.2) are 0. The only remaining term is the

one containing ar, which we use to solve for ar. Note that this requires a1 6= 0 for

cancellation:

r(r − 1)(r − 2)a1ar = 2a2ar−1

r(r − 1)(r − 2)a1ar = 2
r − 1

2r

a2
1

a0

(r − 1) . . . (2)

rr−2(r − 1)!

ar−1
1

ar−2
0

ar =
1

rr
ar1
ar−1

0

.
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This we have shown that am has the shape given in (3.2). However, moving

back to Ar−2 = (pt − sq)2 shows that (pt − sq)2 = 0 as every am in (3.1) has the

shape given in (3.2).

Hence we have contradicted the assumption that Q(x, y) has non-proportional

linear factors, showing that in fact we must have a1 = 0. Examining (3.2), we see

that in fact a1 = . . . = ar−1 = 0. This shows that F is diagonalizable.

3.2. Preliminaries

This section further introduces the notation of diagonalizable forms and

covers some known results concerning the coefficients which are required for our

reduction theory. Where possible we have used the notation of [9].

A diagonalizable form may also be presented as

F (x, y) = α1(x− β1y)r − γ1(x− δ1y)r, (3.3)

with the corresponding restriction

jr = α1γ1(δ1 − β1)r 6= 0.

If F is to have integral (or rational) coefficients, then α, β, γ, δ or alternatively

α1, β1, γ1, δ1 must satisfy certain algebraic conditions. The following lemma gives

such conditions for (3.3).

Lemma 3.2.1. Suppose that F is a diagonalizable form with rational coefficients

that has been diagonalized as in (3.3). Then one of the following must be the case:

a) α1, β1, γ1, δ1 ∈ Q
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b) [Q(β1) : Q] = 2 and δ1 is the algebraic conjugate of β1. Furthermore α1,−γ1 ∈

Q(β1) and are also algebraic conjugates.

Suppose that F (x, y) has integral coefficients and Q(β1) = Q(
√
D). Let O = OQ(

√
D)

be the ring of integers in Q(
√
D). Then the coefficients of

r(r − 1)
√
Dα1(x− β1y)r and r(r − 1)

√
Dγ1(x− δ1y)r

are in O. In particular, r(r − 1)
√
Dα1, r(r − 1)

√
Dγ1 ∈ O.

The first part of this lemma is due to Voutier, and can be found as Lemma

4.1 in [23]. The second part of this lemma is due to Akhtari, Saradha, and Sharma,

and can be found as Lemma 3.2 in [9].

We also note that j is similar to the discriminant of F , which we notate ∆ =

∆F . Explicitly,

∆ = (−1)
(r−1)(r−2)

2 rrjr(r−1). (3.4)

This can be found as equation (17) in [9]. Furthermore, there is a constant χ ∈ C

such that

(αx+ βy)(γx+ δy) = χ(Ax2 +Bxy + Cy2), (3.5)

where A,B,C ∈ Z. The discriminant of this integral quadratic form we will call D,

D = DF = B2 − 4AC.

We may further assume that gcd(A,B,C) = 1 as otherwise their greatest common

divisor could be included in χ. This assumption ensures that A, B, C, D, and χ

are uniquely defined. To be explicitly clear, we follow this convention even in the

special case that two of A, B, and C are zero, which ensures that the third is ±1.

43



Computing the quadratic discriminant of both sides of (3.5) gives

j2 = χ2D. (3.6)

Choosing arbitrary rth roots of α1 and γ1, we see that

χ(Ax2 +Bxy + Cy2) = α
1/r
1 γ

1/r
1 (x− β1)(x− δ1), (3.7)

it follows that β1, δ1 ∈ Q(
√
D) which justifies our repeated use of D from

Lemma 3.2.1. We note that all of this information can be found in [9].

The Hessian of F is a covariant of F defined as

H(x, y) =

(
∂2F

∂x2

)(
∂2F

∂y2

)
−
(
∂2F

∂xy

)2

.

When defined this way, it is clear that the Hessian of a binary integral form will

itself have integral coefficients. Computing the Hessian of the diagonalizable form

F (x, y) = (αx+ βy)r − (γx+ δy)r (1.2)

and using the definition of χ in (3.5), we see that

H = −r2(r − 1)2j2χr−2(Ax2 +Bxy + Cy2)r−2. (3.8)

As A, B, and C are relatively prime and (Ax2 +Bxy + Cy2)r−2 includes terms with

coefficients Ar−2, Br−2, and Cr−2, we must have

r2(r − 1)2j2χr−2 ∈ Z (3.9)
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for the Hessian of F to have integral coefficients. This observation is originally due

to Gauss, as noted by Siegel in [11].

3.3. The Discriminant of a Diagonalizable Form

Suppose that F (x, y) ∈ Z[x, y] is a diagonalizable form of degree r. Not every

integer is a possible value for the discriminant ∆F . One can give restrictions on the

value of ∆F which we discuss in this section.

Suppose that r is even, we consider the expression

r2(r − 1)2χr−2j2D(r−2)/2 = r2(r − 1)2jr. (3.10)

As D ∈ Z, it follows from (3.9) that

r2(r − 1)2jr ∈ Z. (3.11)

When r is odd, we consider the expression

r4(r − 1)4χ2r−2j4Dr−2 = r4(r − 1)4j2r. (3.12)

Again, as D ∈ Z, it follows that from (3.9) that

r4(r − 1)4j2r ∈ Z. (3.13)

From (3.11) and (3.13) we build the following result, which is a useful

necessary condition for diagonalizability.
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Lemma 3.3.1. Suppose that F is a diagonalizable form of degree r ≥ 4 with

integral coefficients. Then χr ∈ Q.

When r is even there is an integer D such that ∆ = rDr−1. In addition, j

must satisfy rjr ∈ Z. In fact, D can be taken to be

D = (−1)(r+2)/2rjr,

and conversely these two identities uniquely determine D and jr for a given ∆.

When r is odd there is an integer D such that ∆2 = r2Dr−1. In addition, j

must satisfy r2j2r ∈ Z. In fact, D can be taken to satisfy

|D| =
∣∣r2j2r

∣∣ ,
and conversely these two identities uniquely determine D and j2r up to sign for a

given ∆. Furthermore j2r and D have the same sign. If r ≡ 1 mod 4 then ∆ > 0

and if r ≡ 3 mod 4 then ∆ and D have opposite signs.

Proof. We will verify each of these statements in order. For the first statement, it

follows from (3.7) that

−(χA)r = −α1γ1.

According to Lemma 3.2.1, there are two possibilities. If α1, γ1 ∈ Q, then χr ∈ Q as

A ∈ Z. If [Q(β1) : Q] = 2 with α1,−γ1 conjugates in Q(β1), then

−(χA)r = −α1γ1 = Nm(α1) ∈ Q,

from which it follows that χr ∈ Q.
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We proceed with r even. We define D by

D = (−1)(r+2)/2rjr. (3.14)

It follows from (3.11) that D ∈ Q. It also follows from (3.4) that ∆ = rmDr−1.

Let D = p/q with p, q ∈ Z and q > 0. Then ∆ = rDr−1 ∈ Z implies that qr−1|r.

However, q ≥ 2 and 2r−1 > r for r ≥ 4 give a contradiction, showing that D ∈ Z.

The proof when r is odd is similar. We again define D by

D = r2j2r. (3.15)

It follows from (3.13) that D ∈ Q. It also follows from (3.4) that ∆2 = r2Dr−1. Let

D = p/q with p, q ∈ Z, and q > 0. Then ∆2 = r2Dr−1 ∈ Z implies that qr−1|r2. As

r is odd, we must have q ≥ 3. However, 3r−1 > r2 for r ≥ 5, so it must be the case

that D ∈ Z.

For the final statements, we note that when r is odd (3.13) shows that j2r ∈

Q. Furthermore, taking rth powers of (3.6) gives j2r = χ2rDr which shows that j2r

and D have the same sign, as χr is rational and r is odd.

If r ≡ 1 mod 4, then (3.4) becomes

∆ = rr(j2r)(r−1)/2,

from which we conclude that ∆ > 0 as (r − 1)/2 is even. When r ≡ 3 mod 4,

then (3.4) becomes

∆ = −rr(j2r)(r−1)/2,
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from which we conclude that ∆ and D have opposite signs, as (r − 1)/2 is odd and

j2r and D have the same sign.

Lemma 3.3.2. Suppose that F is a diagonalizable form of degree r. Then D = 1 if

and only if F is properly equivalent to a diagonal form, see (1.7).

Suppose r is even. If r(r − 1)2D is not divisible by any (r − 2)/2 powers, then

F is diagonal. Furthermore, if F is diagonal with coefficients as in (1.7), then

D = (−1)r/2rab.

Suppose r is odd. If r2(r − 1)4D is not divisibile by any r − 2 powers, then F

is diagonal. Furthermore, if F is diagonal with coefficients as in (1.7), then

D = r2a2b2.

Proof. For the very first statement, if F is a diagonal form, then (3.5) shows that

A = C = 0. By our convention in the definitions of χ and D, we have B = ±1,

hence D = 1. Conversely, suppose that D = 1. By the classical reduction theory of

quadratic forms, if D is square, then the collection of quadratic forms given by

Q(x, y) = Ax2 +Bxy,

where B = ±
√
D and 0 ≤ A < |B| is a set of representatives for the family of

quadratic forms with discriminant D up to equivalence. As D = 1 we may assume

up to equivalence that A = 0 and B = ±1. However, examining (3.5) shows that

this is clearly only possible if α = δ = 0 or if β = γ = 0. In either case F is

diagonal.
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Suppose that r is even. Then according to (3.10) and (3.11), it follows

that D(r−2)/2 divides r2(r − 1)2jr. According to Lemma 3.3.1 however, D =

(−1)(r+2)/2rjr. Combining these shows that D(r−2)/2 divides r(r − 1)2D, so if

r(r − 1)2D is free of (r − 2)/2 powers, then D = 1 implying that F is equivalence

to a diagonal form by the first statement. The proof when r is odd is similar, using

the corresponding identities for when r is odd.

The remaining two statements about the discriminant of a diagonal form may

be computed directly from the identities relating ∆ and D in Lemma 3.3.1 and the

following well-known identity for the discriminant of f ∈ Z[x],

∆f = (−1)r(r−1)/2a−1
0 Res (f, f ′)

where Res indicates the resultant of two polynomials, and a0 is the leading

coefficient of f .

3.4. Reduction Lemmas

Lemma 3.4.1. Suppose that D is a positive non-square integer, and u = a1 + b1

√
D

is a unit in OQ(
√
D). Let

un = an + bn
√
D.

Then for any m ∈ Z, there is an s ∈ Z≥1 such that as, bs ∈ Z and m|bs.

Proof. We consider the sequences an and bn. These sequences can be defined

recursively, in the sense that an and bn satisfy the following pair of recursive
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identities:

an = an−1a0 + bn−1b0D

bn = an−1b0 + bn−1a0,

as well as the following pair of descending recursive identities:

an−1 = ana0 − bnb0D

bn−1 = −anb0 + bna0.

When we say these pairs of recursive identities are inverse, we mean that replacing

an−1 and bn−1 in the first pair of identities with the second pair of identities yields

an = an and bn = bn. Specifically,

an = (ana0 − bnb0D)a0 + (−anb0 + bna0)b0D = an(a2
0 − b2

0D) = an

bn = (ana0 − bnb0D)b0 + (−anb0 + bna0)a0 = bn(a2
0 − b2

0D) = bn,

as a0 + b0

√
D is a unit.

These sequences take values in 1
2
Z, so we may consider their values in the

additive group 1
2
Z/Z. (Note that, although these recursive sequences are defined

with multiplication which 1
2
Z isn’t closed under, we may still reduce the values of

the sequence modulo m.) Suppose that an and bn have values [an] and [br] in the

group 1
2
Z/Z. We define cn = ([an], [bn]). Using our relations, cn can be calculated

from cn−1 as well as from cn+1.

As cn = (an mod m, bn mod m) can only take on (2m)2 possible values,

cn eventually contains a repeat, after which point it is periodic. Then, as cn−1 is
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determined by cn, we deduce that cn is not just eventually periodic, but completely

periodic. Because c0 = (1, 0), there must be another power s ∈ Z≥0 such that

cs = (1, 0). For this s we have as ∈ Z and bs ∈ Z with m|bs.

Lemma 3.4.2. Suppose that we have a diagonalizable form F which has been

diagonalized as

F (x, y) = α1(x− β1)r − γ1(x− δ1)r.

Further suppose that for this F , one has that D is a positive non-square integer and

u = a0 + b0

√
D is the fundamental unit in Q(

√
D). We adopt the notation

Fn(x, y) = unα1(x− β1y)r − u−nγ1(x− δ1y)r.

Then there is a power s ∈ Z≥0 of u such that the forms Fn and Fn+s are properly

equivalent for all n ≥ 0.

Proof. To show this, we produce an SL2(Z) matrix and an s′ ∈ Z≥0 which has the

effect of multiplying the linear forms of F by us
′
. That is, we show that there are

a, b, c, d ∈ Z and an s′ ∈ Z such that the substitution

x = aX + bY

y = cX + dY

satisfies ad− bc = 1 and yields

x− β1y = us
′
(X − β1Y )

x− δ1y = u−s
′
(X − δ1Y ).
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Then the statement will follow for s = rs′. We may further assume that u has

positive norm, as replacing u by u2 may be accomplished by doubling s′.

Before producing this substitution, we must establish some notation. We

know from Lemma 3.2.1 that β1, δ1 ∈ Q(
√
D). We also know from (3.7) that β1

and δ1 are algebraic conjugates, and the roots of Ax2 + Bxy + Cy2. So there are

µ, ν ∈ Q such that

β1 = µ+ ν
√
D

δ1 = µ− ν
√
D,

and 2Aµ, 2Aν ∈ Z by the quadratic formula. So there are µ′, ν ′ ∈ Z such that

µ = µ′

2A
and ν = ν′

2A
.

We choose s′ using Lemma 3.4.1. It follows from this Lemma that there is an

s′ ∈ Z≥0 such that us
′

= as′ + bs′
√
D satisfies as′ , bs′ ∈ Z as well as 2Aν ′|bs′ . For our

linear substitution we use the matrixas′ −
bs′µ

ν

bs′µ
2

ν
− bs′νD

−bs′
ν

bs′µ

ν
+ as′

 . (3.16)

This matrix has determinant one as u is a unit with positive norm:

(
as′ −

bs′µ

ν

)(
bs′µ

ν
+ as′

)
−
(
bs′µ

2

ν
− bs′νD

)(
−bs′
ν

)
= (as′)

2 −
(
bs′µ

ν

)2

+

(
bs′µ

ν

)2

− (bs′)
2D = 1.
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Furthermore, this matrix has integer entries. To see this,

as′ ,
bs′

ν
=

2Abs′

ν ′
,
bs′µ

ν
=
bs′µ

′

ν ′
,
bs′µ

2

ν2
=
bs′(µ

′)2

2Aν ′
∈ Z

which all follow from the conditions on as′ and bs′ guarranteed to us by

Lemma 3.4.1. This shows that our substitution represents an equivalence of binary

forms.

Finally, this matrix represents multiplication by us
′

and u−s
′
:

x− β1y =

(
as′ −

bs′µ

ν

)
X +

(
bs′µ

2

ν
− bs′νD

)
Y

−
(
µ+ ν

√
D
)[(−bs′

ν

)
X +

(
bs′µ

ν
+ as′

)
Y

]
=
(
as′ + bs′

√
D
)
X −

(
as′ + bs′

√
D
)(

µ+ ν
√
D
)
Y

= us
′
(X − β1Y )

x− γ1y =

(
as′ −

bs′µ

ν

)
X +

(
bs′µ

2

ν
− bs′νD

)
Y

−
(
µ− ν

√
D
)[(−bs′

ν

)
X +

(
bs′µ

ν
+ as′

)
Y

]
=
(
as′ − bs′

√
D
)
X −

(
as′ − bs′

√
D
)(

µ− ν
√
D
)
Y

= u−s
′
(X − γ1Y ) .

This completes the proof.

3.5. Reduction Theory

This section gives an algorithm for producing all diagonalizable forms up to

(proper) equivalence with a given discriminant. A summary of this algorithm is

given in Algorithm 3.5.1. One should first find D using the identities with ∆ given
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in Lemma 3.3.1. Note that when r is odd D is assumed to be positive. One should

now find all diagonal forms (if any) with this D. Working towards a diagonal form

F (x, y) = axr + byr,

one must simply use the identities relating D, a, and b given in Lemma 3.3.2 to find

a complete list of possibilities for a and b. Note that when r is even the following

forms are properly equivalent:

axr + byr ∼ bxr + ayr.

When r is odd the following forms are properly equivalent:

axr + byr ∼ −bxr + ayr ∼ −axr − byr ∼ bxr − ayr.

Now that we have obtained the family of diagonal forms, we proceed to find

the forms which are not properly equivalent to a diagonal form. One should follow

the identities in Lemma 3.3.1 to find jr when r is even, and j2r when r is odd.

Note that when r is odd, j2r is only determined up to sign by these identities, so

one must proceed with both possibilities.

Next one should find a list of possibilities for D. In doing this, treat r even

and r odd separately. When r is even, note from (3.10), (3.11), and Lemma 3.3.1

that D(r−2)/2 divides r(r − 1)2D. When r is odd, we note from (3.12), (3.13), and

Lemma 3.3.1 that Dr−2 is a divisor of r2(r − 1)4D. This gives a complete list of

possibilities for D. Furthermore, one may ignore the case D = 1 as such forms are

properly equivalent to diagonal forms by Lemma 3.3.2, and one may assume that
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D ≡ 0, 1 mod 4 as D = B2 − 4AC. Finally, when r is odd Lemma 3.3.1 gives

information on the sign of D in terms of the sign of j2n. However, for r even one

must consider positive and negative values for D.

One should next solve for χr by taking j2 = χ2D to the r/2 or r depending

on the parity of r. The specific values of χ and j are not needed for this algorithm.

In fact, jr or j2r is not even needed beyond this step. This simplifies calculations

greatly, as χr is rational and jr or j2r is rational while χ and j are not necessarily

real.

Given D nonzero, one can produce a finite list of quadratic forms Q(x, y) =

Ax2 + Bxy + Cy2 up to equivalence with discriminant D. As the case when D is

square is not often included in the literature, we simply note that the list of forms

F (x, y) = Ax2 + Bxy with B = ±
√
D and 0 ≤ A < |B| suffices. Furthermore,

for square D one may ignore the possibility A = 0, as such forms are properly

equivalent to diagonal forms.

By (3.7), we may take β1 and δ1 to be the roots of Q. In the search for a list

of possibilities for α1 and γ1, there are now three meaningful cases which one must

treat separately. Ordered by complexity, they are:

i) D is square with A 6= 0.

ii) D < 0.

iii) D > 0 and D is not a perfect square.

We note that D is square with A = 0 does not need to be considered, as this would

give one A = C = 0, hence a diagonal form.

First we consider the case when D is a square but A 6= 0. It follows from

Lemma 3.2.1 that α1 and γ1 are rational, and r(r − 1)
√
Dα1 and r(r − 1)

√
Dγ1
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are integral. Furthermore, it follows from (3.7) that α1γ1 = (χA)r, from which we

conclude that the divisors of

r2(r − 1)2Dα1γ1 = r2(r − 1)2D(χA)r ∈ Z

gives a complete list of possibilities for n(n− 1)
√
Dα1 and r(r − 1)

√
Dγ1.

In the two remaining cases, it follows from Lemma 3.2.1 that α1,−γ1 are

conjugates in Q(
√
D), and that

r(r − 1)
√
Dα, r(r − 1)

√
Dγ1 ∈ OQ(

√
D).

It follows that
√
Dα1 and

√
Dγ1 are conjugates, and hence that

Nm(r(r − 1)
√
Dα1) = r2(r − 1)2Dα1γ1 = r2(r − 1)2D(χA)r ∈ Z.

A complete list of possibilities for n(n− 1)
√
Dα1 can thus be found by searching for

a complete list of integers in OQ(
√
D) with the norm given above. Fortunately, PARI

has the function

bnfisintnorm(bnfinit(x^2 - D),N)

which gives the elements of OQ(
√
D) which have norm N up to multiplication by

units in OQ(
√
D). If one would like to do this manually, the Lagrange–Matthews–

Mollin algorithm may be applied. This algorithm is described in [24].

When D < 0, the unit group of OQ(
√
D) is {±1}, which, along with this PARI

command, allows one to give a complete list of possibilities for r(r − 1)
√
Dα1.

Taking the conjugate of α1 then gives −γ1.

56



In the remaining case, when D < 0, the unit group of OQ(
√
D) is generated by

−1 and some fundamental unit u, which can be found using either PARI or Sage.

To find a complete list of possibilities for r(r − 1)
√
Dα1, one must therefore only

indicate the highest power s of the fundamental unit necessary. Then multiplying

the output of the PARI code by ±ut for 0 ≤ t ≤ s gives a full list of possibilities

for r(r − 1)
√
Dα1. To do this, find the smallest positive integer s′ which makes the

matrix given in (3.16) have integer coordinates and determinant +1. Then rs′− 1 is

the largest power of u that one must consider.

Finally, one should check that all forms generated have integer coefficients

and the appropriate discriminant. Multiplication by units when D < 0 in the

previous step frequently yields forms with incorrect discriminant.

This algorithm is summarized in the following:

Algorithm 3.5.1. To find an exhaustive list of diagonalizable forms with a

given discriminant, follow the following algorithm. For further explanations and

justifications for any of these steps, we refer the reader to the preceding exposition.

(1) Find D using Lemma 3.3.1.

(2) Find all diagonal forms using Lemma 3.3.2.

(3) If r is even find jr, and if r is odd find j2r, both using Lemma 3.3.1.

(4) When r is even D(r−2)/2 is a divisor of the integer expression r(r − 1)2D. When

r is odd Dr−2 is a divisor of the integral expression r2(r − 1)4D. Ignore D = 1

in both cases.

(5) Find χr using j2 = χ2D.

57



(6) Find all possible quadratic forms Q(x, y) = Ax2 + Bxy + Cy2 with discriminant

D using classical quadratic reduction theory. For square D ignore A = 0.

(7) The roots of Q are β1 and δ1.

(8) If D is square then r(r− 1)
√
Dα1 and r(r− 1)

√
Dγ1 are integers whose product

is r2(r − 1)2DχrAr, completing the algorithm for these D.

(9) Otherwise, use the PARI code

bnfisintnorm(bnfinit(x^2 - D),N)

with N = r2(r − 1)2D(χA)r.

(10) If D < 0, multiply the results of this PARI code by ±1 to obtain a complete

list of possibilities for r(r − 1)
√
Dα1. Then −γ1 is the conjugate of α1,

completing the algorithm for these D.

(11) If D > 0, find the smallest positive integer s′ for which the matrix (3.16) has

integer coordinates and determinant +1. Multiplying the output of the PARI

code by ±ut for 0 ≤ t < rs′, where u is the fundamental unit in Q(
√
D), gives a

complete list of possibilities for r(r− 1)
√
Dα1. Then −γ1 is the conjugate of α1,

completing the algorithm for these D.

(12) Check that all forms have integer coefficients and the correct discriminant.

We finish with some remarks which can reduce the computation time

necessary for running this algorithm. First, if the discriminant does not satisfy

the conditions in Lemma 3.3.1, then there are are no diagonalizable forms with that

discriminant.
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Furthermore, in step 2, diagonal forms are not possible if r - D when r is

even, or r2 - D when r is odd by Lemma 3.3.2.

When finding D, we note that as

D = B2 − 4AC

for integers A, B, and C, reducing modulo four implies that D ≡ 0, 1 mod 4.

Furthermore, according to Lemma 3.3.1 if r ≡ 3 mod 4, then the sign of D is

opposite that of the discriminant and if r ≡ 1 mod 4, then the sign of D is the

same as that of j2r.

One may require the the coefficients of Q = Ax2 + Bxy + Cy2 are relatively

prime, as a common factor in 3.5 could be included in χ. In particular, this means

that if D is square and A = 0, one only need consider the quadratics xy and −xy.

When one is carrying out this algorithm for a large number of discriminants

in the same degree, it can help to handle values of D which come up often in

Algorithm 3.5.1. This is exemplified by Lemma 3.3.2 and Lemma 3.6.1.

Finally, as most applications involve Thue equations, we note that the number

of solutions to the equation F (x, y) = h with x, y ∈ Z does not change if F is

replaced by an equivalent form. Hence for such applications, one does not need to

verify that the matrix in (3.16) has determinant +1. In addition, one ignore B < 0

when producing a list of quadratic forms with discriminant D. Lastly, the following

diagonal forms are equivalent when r is odd for every choice in each ±,

±axr ± byr ∼ ±bxr ± ayr.
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3.6. Computational Example

In this section, we use our algorithm to verify that a special case of one

theorem in [9] holds when the assumption on the size of the discriminant is

removed. Before proceeding with this computation, we prove a Lemma.

Lemma 3.6.1. Suppose that F is a quintic diagonalizable form. If DF = 4 then F

is equivalent to the form

(
a

2
+
b

2

)
x5 + 5bx4y + 20bx3y2 + 40bx2y3 + 40bxy4 + 16by5

for some choice of a, b ∈ Z. This form has

D = 25600a2b2.

If DF = −4 then F is properly equivalent to the form

ax5 − 5bx4y − 10ax3y2 + 10bx2y3 + 5axy4 − by5

for some choice of a, b ∈ Z. This form has

D = 1600(a2 + b2)2.
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If DF = 8 then F is properly equivalent to one of the following forms:

F1(x, y) = ax5 + (5a+ 5b)x4y + (30a+ 20b)x3y2 + (70a+ 50b)x2y3

+ (85a+ 60b)xy4 + (41a+ 29b)y5

F2(x, y) = ax5 − (5a− 5b)x4y + (30a− 20b)x3y2 − (70a− 50b)x2y3

+ (85a− 60b)xy4 − (41a+ 29b)y5

for some choice of a, b ∈ Z. Both of these forms have

D = 12800(2a2 − b2)2.

If DF = −8 then F is properly equivalent to the form

ax5 − 5bx4 − 20ax3 + 20bx2 + 20ax− 4b

for some choice of a, b ∈ Z. This form has

D = 12800(2a2 + b2)2.

Proof. To obtain each of these, we used the classical reduction theory of quadratic

forms to produce a list of possibilities for Ax2 + Bxy + Cy2. From this we obtained

β1 and δ1. We then let α′1 = a′ + b′
√
d and −γ′1 = a′ − b′

√
d, where d is the square-

free part of D. We then expanded

α′1(x− β1)5 − γ′1(x− δ1)5
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and used integrality of the coefficients to obtain bounds of the denominators of a′

and b′. Using these denominators, we let a and b be the numerators of a′ and b′,

then let α1 = a+ b
√
d and −γ1 = a− b

√
d, and finally expanded

α1(x− β1)5 − γ1(x− δ1)5.

Improper equivalence is stated as otherwise there other forms with D = 4.

The purpose of this Lemma is to demonstrate that certain values of D which

commonly as a possibility in Algorithm 3.5.1 with n = 5 in fact do not lead

to diagonalizable forms very frequently. Thus one may frequently ignore these

possibilities.

We used Algorithm 3.5.1 to produce a complete list of quintic diagonalizable

forms up to improper equivalence with D < 255137. We were able to ignore several

choices of D for most values of m using Lemmas 3.3.2 and 3.6.1. We proceeded to

solve the Thue equation |F (x, y)| = 1 for each form, and considered the solutions

(x, y) and (−x,−y) as the same. The results of these computations can be found in

the file QuinticForms.pdf on the author’s website:

https://cdethier.github.io/research.html.

Crucially, none of these equations have more than four solutions. Thus we have

verified that Theorem 1.4 in [9] holds with r = 5, m = 5, and h = 1 in

the indefinite case if the assumption on the size of the discriminant is removed.

Checking this theorem for r = 5 and h = 1 with m = 3 or m = 4 appears to

be out of computational reach. For example, m = 4 would require one to check

approximately all forms with D < 1.05× 109.
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