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DISSERTATION ABSTRACT 

 

Ngoc Minh Phan 

 

Doctor of Philosophy 

 

Department of Chemistry and Biochemistry 

 

September 2020 

 

Title: Synthesis of Disulfide, Thioether, and Hydrocarbon Cyclophanes Using Self-

Assembly, Covalent Capture, and Photochemical Sulfur Extrusion 
 
 

Self-assembly involves the self-driven incorporation of smaller components into 

large molecules, a process analogous to a puzzle programmed to put itself together. Nature 

has made use of self-assembly in biological processes such as the formation of double 

helical DNA. In chemical synthesis, the importance of disulfide bridges in proteins has 

spurred the development of processes that can direct thiols to self-assemble into disulfides. 

The DWJ laboratory has introduced the use of metalloids as an additive that enables the 

rapid and selective self-assembly of thiols into complex disulfide structures. We are able to 

trap these disulfides as the more stable thioethers in high yield, with the process taking 

under two days as compared to lengthy syntheses (several weeks) with traditional methods.  

 This Dissertation describes an effort to improve our previously published method. 

The study on the role of the Group 15 elements (or pnictogens) in the self-assembly process 

has led to the discovery of copper(II) as an alternative directing group. While both the 

pnictogens and copper(II) are important reagents in the self-assembly reaction, the latter 

additive is a more environmentally benign option, and its directing ability has been 

demonstrated by the synthesis of 13 new disulfides and thioethers in two steps.  

 Expanding the scope of our method, new unsymmetrical disulfides and thioethers 
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have been made by mixing two different thiols. Instead of a statistical distribution of 

products, different-sized disulfides (dimers, trimers, tetramers) have been amplified 

through various reaction conditions. For instance, the yield of the unsymmetrical trimers 

could be amplified to 65% from the statistical yield of 20%. The ability to selectively 

prepare unsymmetrical disulfide and thioether species can have a significant impact on the 

current synthetic field, which is dominated by symmetrical, dimeric species constructed 

from traditional methods.  

 Finally, photochemical sulfur extrusion has been applied on the thioether 

cyclophanes to give hydrocarbon cyclophanes. The four new hydrocarbon cyclophanes 

synthesized using our new method are very challenging to obtain with traditional methods. 

These new hydrocarbon structures will be great targets for fundamental studies and may 

lead to potential new monomers for insulating plastics in the $1B US polymerization 

market.  
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CHAPTER I 

INTRODUCTION 

 

Recent Dynamic Motifs and Insights into Factors Modulating their Reversibility 

Thiol-disulfide exchange is a chemical reaction in which a thiolate group (R−S–) attacks a 

sulfur atom in a disulfide bond (R−S−S−R’).1 The original disulfide bond is broken, and 

a new disulfide bond forms between the attacking thiolate and the original sulfur atom. 

Meanwhile, the other sulfur atom in the original disulfide bond is released as a new 

thiolate, now carrying the negative charge (Figure 1.1a). Thiol–disulfide exchange is 

observed in many proteins, in which the rearrangement of disulfide bonds occurs when a 

thiolate group of a cysteine residue attacks a disulfide bond in a protein.2 This process of 

disulfide rearrangement does not change the number of disulfide bonds within a protein, 

merely their location, as is observed in the process of hair curling (Figure 1.1b).3 

Chemical reduction of the disulfide bonds in the keratin proteins of hair is followed by 

shuffling the thiol groups to “curl” the hair, which is then made “permanent” by re-

oxidizing the thiols to form new disulfide bonds. 

 
 

Figure 1.1. (a) Figurative representation of a thiol-disulfide exchange reaction, with 

attacking thiolate S-atom depicted in blue. The sulfur atom depicted in yellow remains in 

the new disulfide bond.  (b) The process of hair curling involves multiple thiol-disulfide 

exchanges taken place on the keratin fiber of the hair.  

https://en.wikipedia.org/wiki/Cysteine
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 Since disulfide bonds possess the ability to form and break reversibly under 

thermodynamic control, they are of significant interest in the field of dynamic covalent 

chemistry (DCC), which takes advantage of the rapidly equilibrating coexistence of 

multiple species to access highly complex assemblies.4 For instance, thiol–disulfide 

exchange was utilized to make a dynamic combinatorial library (DCL) of macrocyclic 

disulfides in water, which features 45 different species formed spontaneously upon 

stirring a mixture of dithiols in basic solution with O2 from the air.5 This DCL is shown 

to respond to external stimuli to amplify specific components of equilibrating mixtures, 

also known as the templating effect. Upon adding a template, the equilibrium will shift in 

the direction of the receptor that binds this template with high affinity. Manifestation of 

templating effect has been observed in the optimization of multiple receptors from 

complex DCLs, such as a 400x amplification of a diastereomer that binds cations, or a 

selection of a neutral receptor that binds inorganic anions in water, among many other 

examples.6  

 Since the 1980s, DCC has proved to be a powerful way to synthesize 

mechanically interlocked compounds.7 Specifically, the reversible nature of disulfide 

linkages was first utilized to synthesize a disulfide-based rotaxane in 2000.8 A 

symmetrical dumbbell-shaped compound with two ammonium centers and a central 

disulfide bond was prepared as a dynamic covalent component for rotaxane synthesis 

(Figure 1.2a). This dumbbell and a crown ether react to afford [2] and [3]rotaxanes in 

good yields. This transformation does not occur in the absence of benzenethiol, which 

initiates the thiol-disulfide exchange process to break the dumbbell into two halves, 

forming two open sites for threading the crown ether. The dynamic nature of the disulfide 
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bond allows for the two pieces to reform and give rise to the rotaxanes. Different 

thermodynamic conditions, such as temperature, solvent, initial ratios of substrates, and 

concentrations are all shown to play a role in affecting the yields of the two rotaxanes 

species, highlighting the reversible nature of disulfide linkages. 

 

 
 

Figure 1.2. Recent selected studies utilizing dynamic covalent disulfide bonds. Synthesis 

of disulfide-based (a) rotaxanes and (b) catenanes. Adapted with permission from J. Am. 

Chem. Soc. 2012, 134, 19129–19135. Copyright 2012 American Chemical Society 

 

 Thiol-disulfide exchange has also been used to synthesize catenanes, another 

important mechanically interlocked molecular structure. The first dynamic combinatorial 

synthesis in water of an all-acceptor [2]catenane and multiple donor–acceptor [2] and 

[3]catenanes was reported (Figure 1.2b).9 The authors synthesized a DCL using a series 

of dithiols containing two electron-poor naphthalenediimide (NDI) groups held apart by 

alkyl spacers (Figure 1.2b, green blocks, acceptors). In the DCLs in which the number of 

alkyl linkers (defined as n) is ≥ 8, an all-acceptor [2]catenane is formed. This formation is 

driven by hydrophobic effect in which the hydrophobic side of each NDI is buried inside 

the catenane pocket, and the more hydrophilic side is exposed to water. Addition of 

dithiols containing electron-rich groups (Figure 1.2b, purple blocks, donors) gives rise to 
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donor–acceptor [2]catenanes when 6 < n < 9. When n ≤ 6, an odd−even effect with 

respect to n is observed: an even n will result in [3]catenanes while an odd n will give 

giant macrocycles (Figure 1.2b). The odd–even effect arises from differences in the 

stability of intermediates along the kinetic pathway to the [3]catenanes, which is strongly 

expressed with smaller n. The authors conclude, “when disulfide DCC is conducted in 

water, supramolecular interactions affecting equilibrium positions may arise along with 

kinetic limitations, leading to complex behavior, not unlike biological systems.” This 

study has also inspired additional research on complex disulfide DCC chemistry in 

water.10 

 Disulfide bonds are certainly not the only moieties that are used in DCC. 

Undoubtedly, DCC is a judicious choice to facilitate the construction of complex 

assemblies both in modular fashion and high yields, since it combines the robustness of 

covalent bonding with the self-correcting attributes of supramolecular chemistry. The 

“proof reading and editing” property via repeated bond dissociation–recombination 

processes ensures that side products are recyclable, allowing theoretically complete 

conversion into the desired product. The amplification of a desired component via 

internal/external stimuli also simplifies the process of forming otherwise unfavored 

structures. Therefore, multiple novel dynamic motifs have been identified and greater 

insights into the factors modulating their reversibility are under investigation. Some key 

DCC motifs include formals,11 quinoidal radicals,12 cyclobenzoins,13 alkynes,14 

orthoesters,15 and imines,16 among other functional groups.  
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Self-assembly as a Tool for Supramolecular Architectures  

A contemporary tool to access complex supramolecular architectures is self-assembly, a 

process in which building blocks, facilitated and bound by one or more secondary 

interactions, link together to form larger aggregates of repeating units.17 Beautiful 

examples of self-assembled systems can be found in nature (Figure 1.3a). For example, 

the double helix of DNA is constructed via the self-assembly of two single-stranded 

DNA chains held together primarily by hydrogen bonding between the base pairs.18 

Another example of self-assembly occurs in the formation of phospholipid bilayers, in 

which the hydrophobic effect drives the self-assembly of two-layered structures that point 

hydrophobic tails internally and hydrophilic heads externally to generate the bilayer 

structure.19 Viral self-assembly is a more complicated process in which replicated viral 

proteins, RNA, and lipids self-assemble into a new virus.20 Because these 

biomacromolecular building blocks are combined in the most efficient way to assist the 

virus with its spread and cellular invasion, obliterating some viruses has been a challenging 

task, as observed with the current COVID-19 pandemic.21  

 Viruses often make mistakes in self-assembly, for instance they may fail to 

include all the necessary components into the enclosed volume.22 Learning from 

biological specimens, when translating to making biological mimics, chemists typically 

utilize metals in their synthetic schemes since metal-ligand bonds are labile and can thus  
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Figure 1.3. Selected self-assembly systems: (a) in nature – DNA double helix held 

together by hydrogen bonds and phospholipid bilayers held together by hydrophobic 

effect; (b) in current synthetic chemistry – a ZnII
4L4 coordination cage. Adapted from 

NDB ZD0012 and lipidbuilder.epfl.ch/home.  

  

allow for the correction of “kinetic mistakes.”23 Metal-directed self-assembly has allowed 

chemists to access a variety of elegant thermodynamic products over kinetic side 

products.24 As such, with careful ligand design, binding elements that enable directional 

self-assembly can be incorporated in the system, imposing the stereochemical preference 

and symmetry of metal coordination onto the self-assembling system of interest.25 Many 

research laboratories have used the well-defined coordination geometry of transition 

metals as a directional tool for their self-assembled systems. For example, a ZnII
4L4 

coordination cage was assembled from 12 components (Figure 1.3b). This cage binds 

tightly to ReO4
–, an anion of great physicochemical similarity to pertechnetate, both of 

which have uses in nuclear medicine.26 In a follow-up report, a similar FeII
4L4 
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coordination cage is shown to transport 1-fluoroadamantane from water into an ionic 

liquid with a simple counter-anion exchange.27 Other recent spectacular supramolecular 

architectures constructed from metal-directed self-assembly include an O-symmetric 

coordination cage with eight chiral vertices self-assembled from 62 components;28 two 

46-membered [2+2] macrocyclic dinuclear Zn(II) complexes,29 and monometallic 

cryptates self-assembled from orthoester bridgeheads,15 among many other examples.  

 

Research Conducted in the DWJ Laboratory: Combining Dynamic Covalent 

Chemistry and Metal-Directed Self-Assembly 

Rigid linear, square-planar, tetrahedral, or octahedral coordination geometries of 

transition metal ions can allow for predictable and unequivocal programming of the shape 

and size of assembly products.30 On the other hand, metals with more unpredictable and 

flexible coordination geometries have been typically avoided due to the challenges of 

controlling the molecular composition and structure of products. This difficulty first 

motivated Darren W. Johnson’s (DWJ) laboratory to investigate and design strategies for 

facile preparation of pnictogen (Pn)-containing assemblies. Early work in the laboratory 

featured metal/metalloid-containing organic compounds formed via coordination-directed 

self-assembly routes, which is a simple synthesis and guarantees access to novel 

structures in exceptional yields. Despite its known toxicity and carcinogenicity in 

humans, our laboratory first selected arsenic(III) as a design component because of its 

unusual coordination geometry and well-known affinity to thiolates. AsCl3 was allowed 

to react with dithiol H2L (1) (α,α’-dimercapto-para-xylene) in KOH, yielding the 

cryptand As2L3 (2) in 52% yield (Scheme 1.1).31 The simplicity of the 1H and 13C NMR 
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spectra evidenced a highly symmetrical product and the presence of a [H{As2L3}]+ 

species in the mass spectrum supported an As2L3 molecular composition. Short As–Caryl 

distances were observed from the crystal structure of As2L3 product (3.18–3.33 Å), 

suggesting the existence of attractive and stabilizing interactions between the phenyl 

rings of the ligands and the AsIII ions (Scheme 1.1).  

 

 
 

Scheme 1.1. Synthesis of arsenic(III)-thiolate assemblies. The reaction of AsCl3 and 

dithiol (1) in the presence of base affords the As2L3 cryptand (2) as the main product. 

Crystal structure of (2) shown at right.  

 

Having a general framework in hand to synthesize self-assembled arsenic-thiol 

complexes, many other thiol ligands (dithiol, trithiol, tetrathiol)32 and Pn ions (SbIII, BiIII, 

PIII)33 were investigated. During these studies, 1,5-dimercaptomethylnaphthalene was 

found to crystallize as a disulfide trimer under slow atmospheric oxidation, seemingly 

only when a Pn ion is present.34 An intentional oxidation of ligand (1) with iodine (I2) 

and a small amount of Pn salts was found to form a library of dynamic disulfide 

assemblies (Figure 1.4). In this case, the directing behavior of the Pn salts enabled 

selective syntheses of discrete disulfide assemblies of macrocycles/cages over competing 

oligomers/polymers. The usually low yielding cyclization step was replaced by a self-

assembly performed under thermodynamic control in the presence of SbCl3. This self-

assembly approach has many advantages over traditional stepwise syntheses, which often 

suffer from very long reaction times, extensive purifications, and poor yields.  
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Figure 1.4. Pn-activated iodine oxidation of thiol ligand (1) to form disulfides of different 

sizes, including dimer D12, trimer D13, tetramer D14, pentamer D15, and hexamer D16. 

GPC and/or selective crystallization isolates each species, allowing for solution and solid-

state characterization.  

 

Since this initial discovery, we have established a “DWJ cocktail” to form 

traditionally elusive disulfide cyclophanes. This protocol combines the motif of metal-

directed self-assembly and dynamic disulfide covalent chemistry in a single system. The 

mercaptomethyl substituents is used as a preorganizing binding motif to accommodate 

the trigonal pyramidal geometry and thiophilicity of the templating Pn ion. This system 

works really well because the formed thiol-Pn complex is supported by electron density 

from the aromatic ring of the ligand, which acts as a non-covalent stabilizing force 

through Pn-π interactions.35 Using this method, a variety of disulfide structures are 

accessible, such as those shown in Figure 1.4. Traditionally elusive structures like trimer 

D13 and unknown larger macrocycles like hexamer D16 can be formed in the same 

reaction flask from a single 2-fold symmetric building block (1). Gel permeation 

chromatography (GPC) cleanly separates each disulfide by size, followed by 1H NMR 
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spectroscopy and single crystal X-ray diffraction to confirm the identity of this family of 

compounds. We were able to grow crystals for all disulfides D12 – D16 and their 

structures are shown in Figure 1.4. To minimize the unfavorable void space formed by 

the extended pores, the larger macrocycles D14, D15 and D16 all co-crystallize with 

solvent chloroform molecules.  

We also found that 3D cages are accessible through 3-fold symmetric ligands. 

One example of such a cage is D34, constructed from the self-assembly of four molecules 

of (3) (Scheme 1.2). This disulfide cage can be contracted through sulfur extrusion with 

hexamethylphosphoroustriamide (HMPT) resulting in thioether T34 (Scheme 1.2).36 This 

process requires the extrusion of six sulfur atoms from the tetrahedron, representing a 

total of 24 bonds broken and formed in a single step. The reaction proceeds smoothly at 

ambient temperature in 94% yield. T34 co-crystallizes with a chloroform solvent although 

its small cavity remains empty; instead, T34  collapses in on itself, avoiding unfavorable 

void space. The C–S–C angles within the cyclophane are in the expected range for cyclic 

thioethers (~ 100 – 105o).37 

 
 

Scheme 1.2. Pn-activated iodine oxidation of thiol ligand (3) to form disulfide tetrahedral 

cage D34. Sulfur extrusion on D34 gives thioether cage T34. The crystal structure of T34 

is shown on the right.  

 

Translating the basic science developed by the DWJ group into application-based 

research has been an ongoing broader impact goal in our laboratory. One way we 
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envision accomplishing this goal is to extrude the final sulfur atoms of thioethers to yield 

hydrocarbon cyclophanes. These hydrocarbon derivatives can have unusual properties 

and serve as precursors for sensing molecules, organic materials, insulating plastics, and 

as new precursors for conjugated polymers.38 Most recently, Mastalerz has published a 

method to generate large cages constructed of only C – C bonds from imine precursors 

(Scheme 1.3).39 This is one of the rare examples that incorporate DCC bond formation in 

the first step to generate large hydrocarbon cages, including derivatives of C72H72, an 

unknown cage suggested by Vögtle 50 years ago.40 With the goal of making new C – C 

based macrocycles and cages, we proposed to use disulfide and thioether cyclophanes as 

the precursors, especially since we have now established an efficient protocol to 

synthesize these structures. Access into unsymmetrical cyclophanes has also been a 

highly desired goal of the field; to this end, we realized that a facile route to 

unsymmetrical disulfide, thioether and hydrocarbon cyclophanes is an important next 

step for our research. We proposed to utilize self-sorting behavior to achieve this goal.  

 

 
 

Scheme 1.3. Masterlez’s method to synthesize hydrocarbon cages from imine cages. 

Transformation of imine functionalities into amine, followed by nitrosoamine, allows for 

the ultimate formation of hydrocarbon functionalities. Crystal structure of the derivative 

of C84H84 shown at right.  
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Self-sorting as a Route to Access Unsymmetrical Cyclophanes 

The tobacco mosaic virus, which is composed of 2130 identical protein building blocks, 

requires each building block to be programmed similarly to ensure that the next building 

block is attached correctly.41 Contrast this behavior to the enzyme ATP synthase, which 

is constructed from many different subunits that all need to find their correct positions for 

a functional assembly. Therefore, these building blocks need many different binding sites 

to ensure that only the correct building block attaches. The difference in binding sites 

thus leads to a selection process known as self-sorting.41 Different types of self-sorting 

can be distinguished: narcissistic self-sorting,42 which provides homomeric assemblies, or 

social self-sorting,43 which leads to heteromeric assemblies. The field of 

bionanotechnology has drawn inspiration from self-sorting in nature. For example, by 

engineering teal fluorescent protein (red fragments in Figure 1.5a) to have a sequence 

compatible with a bacterial encapsulin (purple fragments in Figure 1.5a), the fluorescent 

protein will be selectively packaged inside the encapsulin upon bacterial self-assembly 

into stable icosahedral structure.44 Similar self-assembling systems equipped with self-

sorting capabilities would open up exciting opportunities for molecular storage and/or 

detoxification.  

 Supramolecular chemists have also utilized self-sorting to induce reconstitutions 

within a DCL. A DCL mixture of seven cages (with blue and red components in Figure  
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Figure 1.5. (a) Self-sorting of foreign proteins (red fragment) in a bacterial 

nanocompartment (purple fragment), an example of a self-assembling systems equipped 

with self-sorting capabilities with high fidelity and exceptional loading capacity. 

Reprinted (adapted) with permission from J. Am. Chem. Soc. 2014, 136, 3828–3832. 

Copyright 2014 American Chemical Society. (b) Encapsulation of the guest C70 (black 

ball) induces reconstitutions within a DCL mixed-ligand Zn4L6 cages, resulting in the 

formation of only two homoleptic cages (all-red and all-blue). Reproduced with 

permission from Chem. Sci. 2016, 7, 2614–2620 - Published by The Royal Society of 

Chemistry. 

 

1.5b) can self-sort into two homoleptic cages (all-red and all-blue) when C70 (black ball) 

is introduced as a guest to the DCL. In this case, the all-blue cage encapsulates C70 to 

form a thermodynamically stable host-guest complex, removing all the blue fragments 

from DCL while leaving only the all-red cage as the residual product.45 Self-sorting 

behavior has also been widely exploited and has demonstrated its utility to undertake 

other challenging experiments such as construction of multi-component cage 

complexes,46 maintaining high homo- or hetero- selectivity behavior in chiral 

environment,47 and separating libraries of discrete products.48  

 After working on multiple self-assembly systems from different thiol ligands, we 

were curious if we could observe self-sorting behavior in our “mixed” ligand system. The 

lack of traditional methods49 to synthesize unsymmetrical structures might explain why 

these species remain unknown despite active cyclophane R&D in academic and industrial 
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laboratories.50 In this Dissertation, we summarize the recent observation of self-sorting in 

our systems, in which combination of two different thiol ligands – with carefully chosen 

reaction conditions – gives rise to traditionally elusive lower-symmetry cyclophanes as 

the dominant products (Chapter IV). We were also able to access unsymmetrical 

thioether and hydrocarbon cyclophanes through unsymmetrical disulfide precursors 

(Chapter V). These unsymmetrical structures are extremely challenging to synthesize 

using traditional methods and have now been successfully constructed using our 3-step 

strategy.  

 

Overview of the Next Chapters 

This Dissertation summarizes an effort to understand the fundamental role of the SbIII 

additive in the self-assembly of thiols into disulfide cyclophanes and discovering other 

metals that can substitute for the SbIII additive (Figure 1.6). A better understanding of 

how the metal additives work as directing elements in the self-assembly step allows for a 

thorough investigation of how other DCC conditions can affect disulfide product 

distribution from multiple ligand systems. Adding self-sorting behavior to the self-

assembly system increases the complexity of the study. Nonetheless, the information we 

acquired during the studies of a single thiol system has given us great insight into the 

studies of “mixed” systems, giving us access to traditionally elusive unsymmetrical 

structures. The pinnacle of this study is the complete extrusion of all sulfur atoms to give 

unsymmetrical hydrocarbon cyclophanes, a highly desirable target for classical 

cyclophane synthesis with promising materials application (Figure 1.6).  
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Figure 1.6. Overview of the structure of this Dissertation: the knowledge we acquired 

from fundamental studies of the metal additives and simple thiol systems allows us a 

deeper understanding of more complex unsymmetrical structures (disulfides, thioethers, 

hydrocarbons), which possess promising optoelectronic and host/guest properties.  
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CHAPTER II 

STUDYING THE EFFECT OF THE SbIII ADDITIVE AND THE SEARCH  

FOR AN ALTERNATIVE METAL CENTER FOR THE SELF-ASSEMBLY  

OF THIOLS INTO DISCRETE DISULFIDE CYCLOPHANES 

 

Introduction  

Metal-directed self-assembly has shown its use in the construction of many complex 

supramolecular structures.1 One way metal ions assist in the process of self-assembly is 

through complexing with the ligand(s) present in the supramolecular scaffold. For 

instance, CuI is known to form a strong complex with phenanthroline, a useful ligand for 

building catenanes, rotaxanes, and knots.2 The main function of CuI is to hold the two 

phenanthroline ligands together in the perpendicular arrangement required for the 

preparation of interlocked molecules such as the [2]catenane in Scheme 2.1a. Once the 

desired framework is established, the CuI ion template is removed, either by demetalating 

with KCN3 or the more recently discovered method of using NH4OH solution (Scheme 

2.1a).4 

 Another class of well-known metal ions used as templates for the formation of 

complex supramolecular structures is alkali metals, which are capable of forming 

complexes with oxygen-containing ligands such as crown ethers.5 While complexes 

formed via alkali metals typically demonstrate weaker binding affinity than those with 

transition metals, it has been shown that counter anions (such as tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate or TFPB) can strengthen the interactions between 

alkali metal ions and the ligands.6 The lower toxicity of alkali metals is another desirable 



 

 

17 

 

 

trait for their use as templates in the synthesis of interlocked molecules. One example of 

such structures is shown in Scheme 2.1b. The rotaxane synthesis involves dynamic imine 

bond formation between a diamine and a dialdehyde. In the presence of 0.5 equiv of 

NaTFPB, a [2]catenane . [Na] complex forms as the dominant product. The imine bonds 

are reduced to amine bonds with benzeneselenol (PhSeH), and no extra reaction is needed 

to remove the Na+ ion from the [2]catenanes – it is lost during the workup and 

purification process.  

 

 

 

Scheme 2.1. Figurative representation of using metal ions to template the synthesis of 

interlocked molecular structures. (a) After templating the synthesis of a [2]catenane, CuI 

was removed from solution with NH4OH. (b) After templating the synthesis of a 

[2]rotaxane, Na+ was lost during work up conditions, giving a metal-free [2]rotaxane.   
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 As mentioned in the Introduction chapter, metal-directed self-assembly is utilized 

in our laboratory to synthesize strained cyclophanes and high-ordered species. While 

investigating the reactivity of a 1,5-naphthalene-based arsenic-thiolate self-assembled 

complexes constructed from ligand (4), we discovered that in the presence of oxygen in 

the air, the arsenic-thiolate complex was oxidized into a discrete trimeric disulfide-

bridged macrocycle D43 (Scheme 2.2).7 A subsequent study showed that the arsenic-

thiolate cryptand is not a prerequisite for the formation of the disulfide cyclophanes; 

since this report, we have routinely oxidized thiol ligands with I2 in the presence of SbIII 

as the directing element. Our method facilely forms libraries of discrete disulfide-bridged 

cyclophanes, ranging from small and strained macrocycles to large and multifaceted 3D 

cages, as opposed to unspecific polymerization typically observed in dithiol oxidation 

without a directing group (Scheme 2.3). The SbIII additive is also easily lost when the 

reaction is quenched with Na2SO3, giving the metalloid-free disulfide complexes. The 

disulfide structures are isolable by size through gel permeation chromatography (GPC) 

and are confirmed structurally via 1H NMR spectroscopy, MS, and single crystal X-ray 

diffraction crystallography. The disulfides can be kinetically trapped into the more stable 

thioethers using hexamethylphosphorous triamide (HMPT).8   

 

 
 

Scheme 2.2. Serendipitous oxidation of (4) forms macrocyclic disulfide trimer D43. 

Crystal structure of D43 shown at right.  
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 Since the exact role of the SbIII additive was unknown, we investigated its role in 

the self-assembly reaction. A quantitative study of Sb-assisted iodine oxidation of ligand 

(1) (Scheme 2.3) revealed that SbIII is most likely a stoichiometric reagent. Since the use 

of toxic pnictogen (Pn) metalloids would be undesirable in potential large-scale 

production of the desired disulfide cyclophanes, we investigated if less toxic additives, 

specifically AgI, ZnII, CaII, BiIII and CuII, could replace AsIII and SbIII. The most 

promising additive was CuII, as it was used as the directing element in our method to 

successfully prepare 7 known cyclophanes and 11 new naphthalene-bridged compounds, 

including 9 disulfides and 2 thioethers.  

 

 

 

Scheme 2.3. This chapter discusses the study of the role of the SbIII additive on the self-

assembly of thiol (1) into disulfide dimer – hexamer cyclophanes D12–6. The search for 

other metal ions that can replicate the behavior of the SbIII additive is also discussed. 
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Results and Discussion  

Studying the effect of SbIII in the self-assembly of thiol ligands into disulfide macrocycles 

Since the exact role of the SbIII additive was unknown, a quantitative study of Sb-assisted 

iodine oxidation was conducted with 1 equiv. of thiol (1) and 2 equiv. I2. Experiments 

elucidated that the rate of consumption of dithiol increased as the concentration of SbIII 

increased (Figure 2.1). At 0.0 equiv. SbCl3, we observed almost no consumption of 

starting material even after 2 days of reaction. At 0.3 equiv. SbCl3, the disulfide products 

started appearing as the reaction progressed even though unreacted starting material was 

still present after 2 days. We observed only a small amount of starting materials remained 

with higher equiv. of SbCl3 (0.4 – 0.6 equiv.), indicating that we were slowly 

approaching the required amount of SbCl3. Finally, at 0.7 equiv. SbCl3, complete 

conversion into macrocycles was observed after only 5 minutes of reaction. The 0.7 

equiv. value aligns with the stoichiometric formation of SbI3 as a side product, supporting 

the hypothesis that SbIII serves as a stoichiometric reagent for our self-assembling 

reaction.9  

 We postulate that SbIII likely participates in Pn bonding, an attractive interaction 

between the electron accepting Pn and an electron donor (i.e., thiolate, iodide, or arene π 

system).10 Early work in our laboratory has shown that Pn···π interactions can assist in  
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Figure 2.1. Quantitative study on the role of SbCl3. The blue triangle symbolizes starting 

material (1) and the blue square symbolizes the products D12 – D15 observable with 

NMR spectroscopy (CDCl3 – 7.26 ppm). 

 

the self-assembly of Pn coordination complexes, and this interaction structurally 

supported in crystallographic examples where the arsenic lone pair is oriented at a 

preferred angle relative to the aromatic ring (Figure 2.2) to participate in what appears to 

be a form of “pnictogen bonding”.11 Control reactions on ligand (1) using solely I2 

yielded very broad disulfide peaks, suggesting slow, nonselective conversion, in 

comparison to the sharp, defined resonances that corresponded to the mixtures of discrete 

disulfide products in experiments containing SbCl3 (Figure 2.1). This data shows that 

SbIII is required for the selectivity and rapid reaction rate and to avoid unwanted 

polymerization side products from overactive iodine species. We concluded that in 
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forming discrete self-assembled disulfide structures, the SbIII additive, as a stoichiometric 

reagent, could be assisting in organizing and converging the ligands to form a cyclic 

product. 

  

Figure 2.2. Pn···π interaction as a component in the supramolecular assembly design. 

Carbon atoms are colored in grey; arsenic atoms are colored in purple; sulfur atoms are 

colored in yellow; chlorine atoms are colored in green and hydrogen atoms are colored in 

white. Reprinted (adapted) with permission from Crystal Growth & Design 2010, 10, 

3531–3536. Copyright 2010 American Chemical Society. 

 

Finding alternative metals to substitute for AsIII and SbIII additives 

Although the Pn-based protocol has been highlighted as a powerful method in 

supramolecular chemistry, the known toxicity of AsIII and SbIII hinder the scalability and 

scope of this self-assembly process. This led to an investigation of alternative additives, 

divided into four groups of candidates: (a) AgI and ZnII due to their well-known 

thiophilicity,12 which could assist in the formation of the metal-thiolate complex 

intermediate; (b) CaII due to its encapsulation in many macrocyclic systems;13 (c) BiIII  

since it is also a member of the Pn family;14 and (d) CuII since metal complexes of this  

ion with thiols have substantial literature precedent.15 Table 2.1 reports the relative yield 

of each member of the assembled disulfide library D12 – D16 and the yield of the 

undesired intermediate metal-thiol complex. While all of the metal ions tested are capable  

of yielding the desired macrocycles, they have very different activities, as evident in their  
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reaction times. Upon the addition of 1 equiv. (1), 2 equiv. I2 and 2 equiv. of M (M = 

metal ion), the NMR spectra of group (a) and (b) metal ions (AgI, ZnII and CaII) showed 

the slowest conversion to disulfide macrocycles, along with the formation of many 

undesirable oligomeric/polymeric species and the thiol-metal complex intermediates. 

Even after 2 days, complete conversion to disulfide products was not observed in these 

systems. On the other hand, group (c) and (d) metal ions (BiIII and CuII) showed complete 

conversion into macrocycles after 5 minutes.16 The fact that BiIII could be a substitute for 

AsIII and SbIII was not surprising since BiIII is a member of the Pn family. We were more 

interested in understanding how CuII can assist in the formation of discrete disulfide 

structures since its preferred coordination geometry and coordination number are very 

different from those of the Pn ions. 

Salt 
Dimer 

(D12) 

Trimer 

(D13) 

Tetramer 

(D14) 

Pentamer 

(D15) 

Hexamer 

(D16) 

Intermediate 

Complex 

No salt 33 8 9 3 3 44 

AgOAC 30 19 12 8 5 26 

Zn(acac)
2
 19 32 8 4 6 31 

ZnCl
2
 25 25 8 7 5 30 

Ca(NO
3
)
2
 14 16 5 11 10 44 

Ca(ClO
4
)
2
 22 13 8 2 2 53 

BiCl
3
 27 55 11 3 4 0 

CuCl2 32 30 21 6 7 0 

 

Table 2.1. Product distribution of the library of disulfides D12 – D16 from the oxidation of 

(1) using different metal salts additives. The number in each cell shows the relative yield 

of each species. 
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 We attempted to demonstrate the directing behavior of CuII in the self-assembly 

reaction by oxidizing a different ligand in the presence of this additive. We chose ligand 

(3) since disulfide derivatives from this system have been previously reported with SbCl3 

as the additive.8  Upon the addition of I2 and CuCl2 to (3), both dimer D32 and 

tetrahedron D34 formed as the main products, similar to the previously published results 

(Figure 2.3). However, we observed that the product distribution was different, 

depending on the additive that was used. For instance, keeping the equivalents of the 

reagents constant (1 equiv. ligand to 3 equiv. I2 to 1.5 equiv. salt),  the ratio of D32 and 

D34 was quantified as 3:1 in the system with SbIII and 1.8:1 in the system with CuII. This 

data demonstrated that the identity of the additive could be another way to control 

product distribution during macrocyclic disulfide synthesis, in addition to the well-known 

and commonly used factors, such as solvent and concentration.17 D34 has traditionally 

been a harder target to synthesize than D32 due to entropic effects; therefore, our ability 

to increase the yield of D34 by 1.5-fold just by substituting the additives highlights the 

role of CuII in “templating” the formation of this large 3D cage.  

 

 

Figure 2.3. Synthesis of D34 and D32 along with respective yields from the oxidation of 

(3) with two different metal ion additives. While the total yield does not change 

significantly with the choice of additive, CuII favors the more elusive tetrahedron D34.  
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 Knowing that CuII can replicate the behavior of the Pn additives in our protocol, 

we turned to the self-assembly of naphthalene-based thiols due to the absence of 

cyclophanes formed from these building blocks. Previously, the crystal structure of trimer 

D43 was reported from the serendipitous oxidizing reaction shown in Scheme 2.2, but a 

directed synthesis was not yet reported. We thus oxidized (4) with I2 in the presence of 

CuCl2 in acetonitrile. The CuII additive was lost during reaction work-up with Na2SO3, 

giving D43 as a dominant product in ~80% yield (Scheme 2.4).  

 

 

Scheme 2.4. Oxidation of thiols (4), (5) and (6) to give a library of different-sized 

naphthalene-based disulfide macrocycles. Same reaction condition for all three thiols 

result in different types of macrocycle: (4) gives mostly trimer disulfide while (5) gives 

dimer to pentamer disulfides, and (6) gives dimer to hexamer disulfides.  

 

 The straight-forward synthesis of D43 with CuII encouraged us to try oxidizing 

other thiols that are isomers of (4). We experimented on the self-assembly of thiols (5) 

and (6) using our newly discovered CuII additives while keeping the same reaction 

condition as that for the oxidation of (4) (Scheme 2.4). We observed different product 

distributions when (5) and (6) were the starting materials. While in all three cases trimer 

disulfide cyclophanes still formed in the highest yield, the secondary products had very 
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different distributions. Instead of the highly selective formation of D43 as observed with 

the system with (4), trimer D53 formed in 43% yield along with a product distribution 

from dimer to pentamer D52 – D55  and trimer D63 formed in 45% yield along with the 

remainder of products ranging from dimer to hexamer D62 – D66.    

 Single crystals suitable for X-ray diffraction for D52 and D62 were obtained, 

confirming the success of our method (Figure 2.4). There are significant differences 

between the single crystals of these two isomers. While D52 crystallizes in the P21/n 

space group, D62 crystallizes in the Aba2 space group. D52 experiences less strain than 

D62, as the naphthalene groups in D52 only bend 2.25o from planarity compared to the 

7.82o bend angle observed in D62. Both structures possess C–S–S–C torsion angles 

deviating substantially from ideality (90°): 69.44o for D52 and 79.78o and 68.70o for D62. 

We observe π···π stacking in D52, where one aromatic ring of one naphthalene unit is in 

close contact with another aromatic ring of a naphthalene unit adjacent to it, resulting in 

multiple parallel π···π patterns in the crystal. The π···π stacking distance is 3.65 Å 

between aromatic rings. On the other hand, we do not observe any similar interactions in 

the stacking pattern of D62, perhaps because the aromatic rings cannot be perfectly 

angled in such a strained structure. 

 

Figure 2.4. Single crystal structure of naphthalene-based dimer disulfide structures (a) 

D52 (1,4-substitution) and (b) D26 (2,6-substitution).  
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 Due to the dominance of dimeric and tetrameric species resulting from traditional 

stepwise approaches, we conducted sulfur extrusion on the trimeric disulfides D53 and 

D63 to give trimeric thioethers T53 and T63. These are the first examples of symmetrical 

naphthalene-bridged thioether cyclophanes, and one of the rare non-dimeric cyclophane 

structures in the literature. Each thioether shows only one singlet in the methylene region 

(~ 3 – 4 ppm) of the NMR spectra, indicating complete sulfur extrusion on all three 

sulfurs of each trimer cyclophane. The aromatic region of T53, featuring two multiplets 

and one singlet, supports the 1,4-isomer naphthalene core, whereas the spectrum of T63 

features two doublets and one singlet, confirming the 2,6-isomer naphthalene core 

(Figure 2.5). 

 

 

Figure 2.5. 1H NMR spectra of two new naphthalene-based trimer thioether cyclophanes: 

(top) T53 and (bottom) T63 (CDCl3 – 7.26 ppm). 
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Conclusions 

This chapter reported NMR spectroscopic evidence that the SbIII additive serves as a 

stoichiometric reagent in the self-assembly reaction of thiol ligands into discrete disulfide 

macrocycles. NMR spectroscopy was successfully utilized for the screening of metal 

additives that could replicate the behavior of SbIII, in which BiIII and CuII arose as good 

candidates to substitute for the mildly toxic SbIII additive. Further studies with CuII   

revealed that this metal ion is an excellent choice to assist in the formation of both known 

and new cyclophanes from simple thiol building blocks. Single crystal structures 

confirmed the formation of new families of naphthalene-based disulfide and thioether 

cyclophanes synthesized from this new metal additive. The ease of removing CuII from 

the reaction and its solubility in polar solvents like acetonitrile suggest future possibility 

for scale-up self-assembly reactions in such solvent systems.  

 

Experiment section 

1H NMR spectra were measured using Varian INOVA and Bruker 500 and 600 MHz 

spectrometers and 13C Bruker-600 spectrometer in CDCl3 and C6D6. Spectra were 

referenced using the residual solvent resonances as internal standards and reported in 

ppm. Single crystal X-ray diffraction studies were performed on a Bruker SMART APEX 

diffractometer. Commercially available reagents were used as received. The reported 

yields are for isolated samples.  
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Quantitative Study of the Role of SbCl3 

A quantitative study of Pn-assisted iodine oxidation was performed. First, stock solutions 

of (1) and I2 were made. In a 20 mL scintillation vial, (1) (11.6 mg, 0.068 mmol) was 

dissolved in 2.5 mL of CDCl3. In a separate 20 mL scintillation vial, I2 (35 mg, 0.136 

mmol) was dissolved in 2.5 mL of CDCl3. Each NMR experiment contained 0.5 mL from 

the (1) stock and 0.5 mL from the I2 stock. A stock solution of SbCl3 was then made with 

7.7 mg in 2.5 mL of CDCl3. The amount of SbCl3 was varied from 0.3 to 0.7 equiv. For 

each reaction, NMR spectra was recorded as a function of time: 1 min after all of the 

reagents were added, 5 min, 15 min, 30 min, 1 h, 3 h, 5 h, overnight, and over 2 days. 

 

Quantitative Study for Alternative Thiophilic Metals.  

In separate NMR tubes, 0.85 mg of (1) (0.005 mmol) and 2.54 mg of I2 (0.010 mmol) 

along with 0.010 mmol of each salt were added to acetone-d6. The salts tested were 

AgOAC, Zn(acac)2, ZnCl2, Ca(NO3)2, Ca(ClO4)2, BiCl3 and CuCl2. Each reaction was 

monitored via NMR spectroscopy. The methylene protons corresponding to the discrete 

disulfide macrocycles were integrated in comparison to unreacted starting material and 

intermediate metal-thiol complex.  

 

General Conditions for CuII additive in the oxidation of dithiol ligand to produce 

disulfides  

In a 100 mL round bottom flask, (1) (25.5 mg, 0.30 mmol) and I2 (51.2 mg, 0.30 mmol) 

were added in 50 mL acetonitrile. CuCl2
.2H2O (51.2 mg, 0.30 mmol) was added in the 

flask and the solution was stirred for two hours. The reaction was quenched with 
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saturated sodium sulfite and extracted with ethyl acetate. The organic layer was washed 

with deionized water (2X). The solution was dried with MgSO4, filtered and 

concentrated. The powder was then redissolved in 3 mL of chloroform and purified by 

GPC (96% combined yield: 32% dimer; 30% trimer, 21% tetramer; 6% pentamer; 7% 

hexamer).  

 

Synthesis D34 and D32 using CuII and SbIII 

In two separate NMR tubes, (3) (0.54 mg, 0.0025 mmol) and I2 (1.90 mg, 0.0075 mmol) 

were added in 1.6 mL acetonitrile-d3. CuCl2
.2H2O (0.638 mg, 0.0038 mmol) was added 

to the first tube and SbCl3 (0.85 mg, 0.0038 mmol) was added to the second tube. NMR 

spectra were taken immediately after all the reagents were added in. 

 

Synthesis of naphthyl thiacyclophane D43 

In two separate NMR tubes, (4) (0.55 mg, 0.0025 mmol) and I2 (1.27 mg, 0.0050 mmol) 

were added in 1.6 mL acetonitrile-d3. CuCl2
.2H2O (0.341 mg, 0.0020 mmol) was added 

to the first tube and SbCl3 (0.454 mg, 0.0020 mmol) was added to the second tube. NMR 

spectra were taken immediately after all the reagents were added in.  

 

Synthesis of 1,4-naphthalene disulfide structures (D52 – D56)  

In a 50 mL round bottom flask, 1,4-naphthalene dithiol (5) (11 mg, 0.050 mmol) and I2 

(38 mg, 0.15 mmol) were added in 15 mL acetonitrile. CuCl2
.2H2O (6.8 mg, 0.040 mmol) 

was added to the flask. The solution was stirred for 30 minutes. Reaction was quenched 

with saturated sodium sulfite and diluted with toluene. The organic layer was washed 
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with deionized water (2X). The solution was dried with MgSO4, filtered and 

concentrated. The powder was then redissolved in 3 mL of chloroform and purified by 

GPC (96% combined yield: 26% dimer; 43% trimer, 16% tetramer; 8% pentamer; 3% 

hexamer). 1H NMR (500 MHz, C6D6, 70oC): dimer: δ 7.76-7.78 (m, 4H, C10H2), 7.29-

7.31 (m, 4H, C10H2), 6.10 (s, 4H, C10H2), 3.65 (s, 8H, CH2); 
13C{1H} NMR (125 MHz, 

CDCl3): δ 134.63, 131.65, 126.62, 125.79, 124.59, 43.16 ppm; trimer: δ 8.03-8.05 (m, 

6H, C10H2), 7.52-7.54 (m, 6H, C10H2), 6.89 (s, 6H, C10H2), 4.02 (s, 12H, CH2); 
13C{1H} 

NMR (125 MHz, CDCl3): δ 133.06, 131.75, 128.00, 126.27, 124.89, 41.72 ppm; 

tetramer: δ 7.96-7.98 (m, 8H, C10H2), 7.51-7.53 (m, 8H, C10H2), 6.92 (s, 8H, C10H2), 3.85 

(s, 16H, CH2); 
13C{1H} NMR (125 MHz, CDCl3): δ = 133.28, 131.70, 127.56, 126.27, 

124.97, 41.85 ppm; pentamer: δ 7.88-7.90 (m, 10H, C10H2), 7.47-7.49 (m, 10H, C10H2), 

6.86 (s, 10H, C10H2), 3.83 (s, 20H, CH2); 
13C{1H} NMR (125 MHz, CDCl3): δ 133.20, 

131.68, 127.59, 126.23, 124.93, 41.51 ppm. Single crystals of D52 were grown by slow 

evaporation of a concentrated of D52 solution in chloroform. 

 

Synthesis of thioether T53 

An oven-dried NMR tube was charged with 1,4-naphthalene trimer disulfide D53 (5.0 

mg, 0.008 mmol) in dried chloroform-d (1 mL). Under a cone of nitrogen, HMPT (9 µL, 

0.049 mmol) was added to the NMR tube and the tube was inverted gently several times 

to mix. The reaction was allowed to sit at ambient temperature for 2 hours. The solution 

was then concentrated, and the crude solid was sonicated with 30 mL of deionized water 

giving a cloudy white solution. The solid was separated from its aqueous counterpart by 

centrifugation and washed a second time with fresh deionized water. 1H NMR (500 MHz, 
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CDCl3): δ 7.73-7.74 (m, 6H, C10H2), 7.23-7.25 (m, 6H, C10H2), 6.55 (s, 6H, C10H2), 3.99 

(s, 12H, CH2); 
13C{1H} NMR (125 MHz, CDCl3): δ 33.50, 131.73, 126.06, 125.63, 

124.62, 34.36 ppm. 

 

Synthesis of 2,6-naphthalene disulfide structures (D62 – D65)  

In a 50 mL round bottom flask, 2,6-naphthalene dithiol (6) (10 mg, 0.045 mmol) and I2 

(34.6 mg, 0.136 mmol) were added in 15 mL acetonitrile. CuCl2
.2H2O (6.2 mg, 0.036 

mmol) was added to the flask. The solution was stirred for 30 minutes. The reaction was 

quenched with saturated sodium sulfite and diluted with toluene. The organic layer was 

washed with deionized water (2X). The solution was dried with MgSO4, filtered, and 

concentrated. The powder was then redissolved in 3 mL of chloroform and purified by 

GPC (90% combined yield: 30% dimer; 45% trimer, 10% tetramer, 5% pentamer). 1H 

NMR: dimer: δ 7.27 (d, 4H, C10H2), 7.16 (d, 4H, C10H2, J = 8.5 Hz), 6.92 (s, 4H, C10H2), 

3.86 (d, 4H, CH2, J = 15.0 Hz), 3.57 (d, 4H, CH2, J = 15.0 Hz); 
13C{1H} NMR (125 MHz, 

CDCl3): δ 136.29, 131.33, 127.68, 127.18, 126.55, 45.45 ppm; trimer: δ 7.58 (d, 6H, 

C10H2, J = 8.0 Hz), 7.38 (s, 6H, C10H2), 7.18 (d, 6H, C10H2, J = 8.5 Hz), 3.69 (s, 12H, 

CH2); 
13C{1H} NMR (125 MHz, CDCl3): δ 134.45, 132.51, 128.41, 128.24, 127.94, 

43.52 ppm; tetramer: δ 7.51 (d, 8H, C10H2, J = 8.5 Hz), 7.47 (s, 8H, C10H2), 7.18 (d, 8H, 

C10H2, J = 8.0 Hz), 3.54 (s, 16H, CH2). Single crystals of D62 were grown by slow 

evaporation of a concentrated of D62 solution in chloroform. 
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Synthesis of thioether T63 

An oven-dried NMR tube was charged with 2,6-naphthalene trimer disulfide D63 (4.5 

mg, 0.007 mmol) in dried chloroform-d (1 mL). Under a cone of nitrogen, HMPT (8 µL, 

0.044 mmol) was added to the NMR tube and the tube was inverted gently several times 

to mix. The reaction was allowed to sit at ambient temperature for 2 hours. The solution 

was then concentrated, and the crude solid was sonicated with 30 mL of deionized water 

giving a cloudy white solution. The solid was separated from its aqueous counterpart by 

centrifugation and washed a second time with fresh deionized water, giving a white solid 

in 70% yield. 1H NMR (500 MHz, CDCl3): δ 7.31 (d, 6H, C10H2, J = 7.0 Hz), 7.14 (s, 6H, 

C10H2), 6.98 (d, 6H, C10H2, J = 7.0 Hz), 3.84 (s, 12H, CH2); 
13C{1H} NMR (125 MHz, 

CDCl3): δ 136.23, 132.05, 128.29, 127.47, 127.44, 36.99 ppm. 
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CHAPTER III 

SYNTHESIS AND PRODUCT DISTRIBUTION OF A LIBRARY OF  

BIPHENYL-BASED MACROCYCLIC CYCLOPHANES: A CLOSER LOOK AT 

HOW DYNAMIC COVALENT CHEMISTRY IS A GREAT ASSET  

FOR CYCLOPHANE SYNTHESIS 

 

Introduction 

The search for bioactive compounds can be understood as searching for a molecular key 

for a biological lock.1 Traditionally, there are two approaches to identify the right 

compound: (a) rational design, which looks for a single correct key or (b) combinatorial 

chemistry, which generates a vast collection of keys that are assayed by high throughput 

screening to determine which one is the right fit. A third approach, dynamic covalent 

chemistry (DCC), generates interconverting keys resulting from all the possible 

combinations of fragments. Contrasting to approach (b), which is based on extensive 

libraries of pre-synthesized keys, DCC implements the reversible connection of 

components to give “virtual” libraries, which comprise all possible keys that may be 

generated. The overall process thus bypasses the need to actually synthesize all possible 

compounds by letting the target act as a template and perform the assembly of the 

optimal compound from a virtual set of components. This approach reveals the key 

composition that has the strongest interaction with the lock (thermodynamic control) or 

the key that forms fastest within the lock (kinetic control) (Figure 3.1).  
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Figure 3.1. Representation of the principle of DCC as applied to the discovery of 

bioactive compounds. A dynamic library of keys is generated from reversibly connecting 

fragments. * Denotes a virtual dynamic library. Reproduced with permission from Chem. 

Soc. Rev. 2007, 36 , 151–160 - Published by The Royal Society of Chemistry. 

 

 DCC has been utilized not only in the search for bioactive substances but also in 

the field of supramolecular synthetic chemistry. While traditional syntheses have 

provided many elegant examples of 2D and 3D cyclophanes,2 stepwise syntheses have 

been a bottleneck to new synthetic discoveries. Particularly, many classical macrocycles 

were not accessible without the use of the high dilution principle,3 which is necessary to 

minimize the formation of competing polymerization reactions from cross-couping of 

reactive precursors. DCC, on the other hand, has provided a powerful new route for 

synthesis of macrocycles by generating multiple equilibrating products and semi-stable 

intermediates. Reactions can proceed along kinetic or thermodynamic pathways, 

depending on chosen reaction conditions. This feature of DCC is an improvement over 

the high dilution principle, which among many disadvantages, limits the possibility of 

using concentration as a factor to control product distribution. A recently published 3D 

adaptive cage, for instance, was synthesized through the combination of multiple 

reversible chemistries.4 Incorporating three different functional groups (thiols, aldehydes 



 

 

36 

 

 

and hydrazides) into two building blocks led to strongly fluorescent hydrazone- and 

disulfide-based tripodal and tetrapodal aromatic cage-type architectures (Figure 3.2). 

While various polymeric, macrocyclic and cage constituents could be expressed in the 

system, the cage was the only constituent formed predominantly due to favorable π-π 

stacking and hydrogen bonds. The cage could also deliberately disassemble through 

controlled component exchange, highlighting the desirable repeated bond 

breaking/forming property of DCC.    

 

 

 

Figure 3.2. Generation of dynamic combinatorial libraries from aromatic aldehyde, thiol 

and hydrazide using hydrazone and disulfide reversible covalent reactions. The highly 

fluorescent cage arises as a thermodynamically stable product.  

 

 Besides understanding the reversible behavior of DCC bonds to prepare new 

architectures with unusual topologies, controlling product distribution is another main 

interest of the DCC field. A system in which self-assembly can direct DCC bond 

formation towards two different types of products was recently reported (Figure 3.3).5 

The authors designed an amphiphilic building block functionalized with two thiol groups. 

Under basic conditions, thiol-disulfide exchange occurred, enabling the formation of 

cyclic oligomers. Without stirring, self-assembly of cyclic trimers and tetramers into a 
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mixture of large macrocycles (up to 51mers) was observed (Figure 3.3, left). With 

stirring, the autocatalytic emergence of a single species of hexamers occurred (Figure 3.3, 

right). Such behavior is reminiscent of theories on the origin of life and the role of 

autocatalysis in the emergence of specific molecules.6  

 

 

 

 

 

Figure 3.3. Dynamic combinatorial chemistry of one building block leading to two 

different pathways: specificity or diversity.  

 

 As discussed in chapter II, the promising behavior of our pnictogen ions within 

thiol disulfide exchange environments led our laboratory to apply dynamic covalent 

reactivity toward synthesizing cyclophanes.7 The disulfide products are formed under 

thermodynamic control, where dithiols yield 2D macrocycles and trithiols yield more 

complex 3D cages.  These disulfide derivatives can be covalently captured as their more 

stable thioether analogs, and the overall two-step process proceeds in very high yields  in 

less than two days.8 We wanted to see these approaches applied to the preparation of 
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other unknown cyclophane structures for both fundamental study and applications in 

organic and/or fluorescent materials. We will show in this chapter that our tandem 

approach of dynamic covalent self-assembly and sulfur extrusion can synthesize new 

symmetrical biphenyl-linked disulfide and thioether macrocycles, which are variants of 

the venerable phenyl-bridged paracyclophane “nanohoops” (Scheme 3.1).  

 

 

 

Scheme 3.1. Proposed metal-directed self-assembly of ligand (7) into different-sized 

macrocycles and manipulation of disulfide product distribution based on small changes in 

DCC reaction conditions. Red asterisks denote conditions that are varied in the study.  
 

 In both DCC and metal-directed self-assembly, the various interactions between 

ligands, metal ions – solvent, ligands – metal ions, and ligands – solvent are under 

dynamic exchange, leading us to hypothesize that the nature of our equilibrating 

disulfides is sensitive to reaction conditions; therefore, we expect that by tuning the 

reaction conditions, we can favor targeted members of the associated libraries in high 

yield. This chapter will also highlight multiple studies on different thermodynamic 

conditions (such as solvent, reagent equivalents, and concentration – denoted as asterisks 

in Scheme 3.1) that can affect the yield of each species in the library. 
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Results and Discussion 

Synthesis of a new library of disulfide and thioether macrocyclic cyclophanes from thiol 

building block (7) 

We decided to investigate a new thiol ligand to form a library of 2D macrocycles. Self-

assembly of ligand (7) gave a collection of different-sized disulfide macrocycles (Scheme 

3.2).9 Gel permeation chromatography (GPC) separated the mixture of disulfides into 

four different species, which we categorized as dimeric to pentameric disulfide 

macrocycles D72 – D75. 1H NMR spectra of disulfide compounds D72 – D75 showed 

identical signals: each features a set of doublets in the aromatic region and one single 

methylene signal, confirming the repetitive biphenyl units.  

 

 
 

Scheme 3.2. Self-assembly of thiol (7) to give a library of new disulfide macrocycles D27 

– D75. 

  

 Macrocycles larger than the pentamer D75 were not observed in any reaction 

conditions, in contrast to the presence of the hexamer in the oxidation reaction of thiol (6) 

and heptamer in the oxidation reaction of thiol (1) (Figure 3.4). Self-assembly reaction of 

thiol (8), on the other hand, only gives dimeric and trimeric disulfide macrocycles, 

regardless of reaction conditions. Experimental data from these four self-assembly 
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reactions suggests that the more rigid thiols tend to give a more diverse library of 

disulfide macrocycles, such as in the case of (1) and (6). Moderately flexible thiols like 

(7) give higher-ordered species, though the reaction tends to favor smaller-sized rings due 

to entropic effects. Flexible thiols like (8) seems to only give lower-ordered species like 

dimers and trimers. Previous studies in our laboratory on As2L3 and Sb2L3 cryptands 

(where L is a dithiolate ligand) revealed that small differences in ligand geometries can 

result in significant differences in the helicity of the metal–ligand cryptands and the 

stereochemistry of the metal coordination within the assembled complexes.10 We are thus 

not surprised that small differences in ligand flexibility can now also have a significant 

effect on the type of self-assembled macrocycles that can form in solution. Future studies 

will incorporate other thiols of different degrees of flexibility to verify this hypothesis. 

 

 
 

Figure 3.4. Some dithiols that have been oxidized using our metal-directed self-assembly 

approach. More flexible thiols tend to give lower-ordered species such as dimeric or 

trimeric disulfide macrocycles. 

 

 The disulfide species D72 – D75 are under dynamic equilibrium, but they can be 

covalently trapped via sulfur extrusion to generate the more stable thioethers T72 – T75.  

Similar types of signals are observed in the spectra for the thioethers (two doublets and 
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one singlet) with the methylene signals shifting downfield going from disulfide to 

thioether macrocycles. We were able to grow single crystals of thioethers T72, T73 and 

T74 (Figure 3.5). While both compound T72 and T73 crystallize in space group P21/c, 

T74 crystallizes in space group P-1. A closer study of the crystal structures suggests that 

T72 is structurally more similar to T74 than T73, which is reasonable since T74 can be 

viewed as two molecules of T72.  For example, the dihedral angles in the biphenyl units 

of T72 and T74 are similar to each other and both show deviation from the typical 32° 

dihedral angle11 found in unstrained biphenyls (36.68° and 49.94° for T72 and 36.30o and 

48.66o for T74).  T73, on the other hand, possesses very different dihedral angles of 3.40°, 

6.52° and 46.90°. While the thioether motifs of T74 twist outward to allow the biphenyl 

units to fold-in to minimize the cavity volume, T73 crystalizes with a molecule of 

chloroform solvent to occupy the empty pore. The C–S–C angles within the cyclophanes 

are all in the expected range 100 – 105o for cyclic thioethers.12 

 

 
 

Figure 3.5. Sulfur extrusion of disulfides D72 – D75 gives rise to thioethers T72 – T75. 

Crystal structures of T72, T73 and T74 are shown at the bottom.  
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Controlling product distribution D72 – D75 

Although reaction time, solvent, and concentration effects are all well-known to affect 

distributions in dynamic covalent mixtures13, they are not well-studied in the context of 

pnictogen additives to disulfide libraries. We sought to investigate these effects on our 

self-assembling systems of thiol (7). The first condition that we chose to modify is 

solvent since we have observed that the ability of the solvent to solubilize any oligomeric 

reaction intermediates is an important property in limiting the precipitation of insoluble 

oligomers.14 Self-assembly of thiol (7) produces four disulfide species of different sizes 

(D72 – D75). We found that at 3 mM of (7), 2 equiv. I2 and 2 equiv. SbCl3, D73 is the 

dominant species across all solvents (Table 3.1). The yield of D73 is ~50% in reaction 

with chloroform or benzene while the yield of this compound can be optimized to 75% 

with tetrachloroethane (TCE) as the solvent, suggesting that TCE may interact with D73 

and increase the relative stability of this compound over D72, D74, and D75. In general, at 

3 mM solution, D72 and D74 form in ~15 – 30% while D75 is the least dominant species 

across all systems, which is reasonable due to entropic effects.  

 

Solvent D72 D73 D74 D75 

Chloroform 33 47 15 4 

Dichloromethane 11 64 17 6 

Benzene 21 56 17 5 

Toluene 30 66 3 - 

Tetrachloroethane 12 75 13 - 

 

Table 3.1. Solvent effect observed in the oxidation reaction of thiol (7). D73 is the 

dominant species across all solvents. Reactions ran at 3 mM solution. 
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 We next investigated the effect of concentration on the product distribution of D72 

– D75. We ran NMR scale reactions on 1 equiv. (7), 2 equiv. I2 and 2 equiv. SbCl3 in the 

solvent systems listed in Table 3.1. For each solvent, we ran the reaction in a range of 

0.125 mM to 6 mM thiol concentration (Figure 3.6). We hypothesized that at lower 

concentrations, the formation of higher-ordered macrocycles will be prevented, as it is 

harder for one building block to have access to multiple others due to the presence of 

many interfering solvent molecules. In this case, we expect ligand–solvent interactions to 

dominate over ligand–ligand interactions, favoring the formation of lower-ordered 

species such as dimers and trimers. Our experimental data aligns with our hypothesis, as 

seen in Figure 3.6. As concentration decreases, the yields of D74 and D75  decrease and 

these two compounds stop forming at ~ 1 mM solution. D73 is the dominant species in 

the range of 2 – 6 mM solution, but totally disappear at 0.125 mM. This concentration is 

where D72 becomes the only species in solution (Figure 3.6, top spectrum). We conclude 

that the reaction’s concentration has a profound effect on the amount of each disulfide 

species. 

 We were curious if the dominance of D72 at low concentration can be replicated 

using a different amount of I2. We repeated the reactions with 1 equiv. (7), 2 equiv. SbCl3 

and increased the amount of I2 to 4 equiv. To our surprise, the yield of each disulfide 

species hardly changes, even at highly diluted conditions (Table 3.2). D72, which is 
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Figure 3.6. Product distribution of D72 to D76 as the concentration of (7) is changed from 

6 mM to 0.125 mM in C6D6. Reaction condition: 1 equiv. (7), 2 equiv. I2, 2 equiv. SbCl3. 

Circle denotes D72, triangle denotes D73, star denotes D74, and square denotes D75. 

 

expected to be the dominant species at low concentration, only has its yield increase by 

1.2 times with a 24-fold dilution. D73 continues to form in high yield across all 

concentrations, similar to the behavior observed in Table 3.1. It appears that at high 

equivalents of I2, the reaction is not very dependent on ligand–solvent interactions and 

instead, favors other interactions such as ligand–I2 interactions. This behavior is 

replicated across other solvent systems, suggesting that concentration effects do not play 

a significant role on the distribution of disulfide products at high equivalents of I2. These 

studies show that our equilibrating disulfide species are very sensitive to changes in 

reaction conditions and can be interesting targets for future adaptive chemistry studies.  
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Concentration D72 D73 D74 D75 

3 38 47 12 3 

1 41 43 12 4 

0.5 43 41 11 4 

0.25 49 40 11 - 

0.125 48 44 8 - 

 

Table 3.2. Product distribution of D72 to D76 as the concentration of (7) is changed from 6 

mM to 0.125 mM in CDCl3. Reaction condition: 1 equiv. (7), 4 equiv. I2, 2 equiv. SbCl3.  

 

Conclusions 

 We have shown the synthesis of a new family of 8 biphenyl-based disulfide and 

thioether macrocycles. Solution and solid-state characterization tools confirmed the 

identity of these new macrocycles, which are promising targets for fundamental studies 

and materials chemistry application. By changing the internal handles (reagent 

equivalents, concentration, and solvent), we were able to regulate the disulfide 

distribution. These studies suggest that our equilibrating disulfides are very sensitive to 

reaction conditions. Further work will explore the external handles such as guests that 

might also affect the product distribution and utilize “Design of Experiments” (DOE) to 

optimize individual members of our equilibrating disulfides.15 

 

Experimental procedure 

1H NMR spectra were measured using Varian INOVA and Bruker 500 and 600 MHz 

spectrometers and 13C Bruker-600 spectrometer in CDCl3 and C6D6. Spectra were 

referenced using the residual solvent resonances as internal standards and reported in 

ppm. Single crystal X-ray diffraction studies were performed on a Bruker SMART APEX 
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diffractometer. Commercially available reagents were used as received. The reported 

yields are for isolated samples.  

 

Synthesis of biphenyl-based disulfides structures D72 – D75 

In a 250 mL round bottom flask, (7) (148 mg, 0.60 mmol) and I2 (427 mg, 1.68 mmol) 

were added in 100 mL chloroform. SbCl3 (109 mg, 0.48 mmol) was added to the flask 

and the dark purple solution was stirred for 16 hours at room temperature. Reaction was 

quenched with saturated sodium sulfite and the organic layer was washed with deionized 

water (2X). The solution was dried with MgSO4, filtered and concentrated. The powder 

was then redissolved in 3 mL of chloroform and purified by GPC (65% combined yield: 

20% dimer; 32% trimer, 11% tetramer; 2% pentamer). 1H NMR (500 MHz, CDCl3): D72: 

δ = 7.13 (s, 8H, C6H2), 7.06 (d, 4H, C6H2), 6.96 (d, 4H, C6H2) 3.68 (s, CH2), 3.61(s, 

CH2); 
13C{1H}NMR (125 MHz, CDCl3): δ = 138.60, 137.46, 129.00, 126.27, 43.49 ppm; 

D73: δ = 7.50 (d, 12H, C6H2), 7.22 (d, 12H, C6H2), 3.60 (s, 12H, CH2); 
13C{1H}NMR 

(125 MHz, CDCl3): δ = 139.42, 136.06, 130.03, 126.83, 42.85 ppm; D74: δ = 7.50 (d, 

16H, C6H2), 7.28 (d, 16H, C6H2), 3.59 (s, 16H, CH2); 
13C{1H}NMR (125 MHz, CDCl3): 

δ = 139.47, 136.41, 129.83, 126.94, 42.70 ppm; D75: δ = 7.49 (d, 20H, C6H2), 7.27 (d, 

20H, C6H2), 3.63 (s, 12H, CH2); 
13C{1H}NMR (125 MHz, CDCl3): δ = 139.41, 136.38, 

129.79, 126.91, 42.82 ppm. 

 

Synthesis of biphenyl-based thioethers structures T72 – T75 

An oven-dried 250 mL round bottom flask was charged with the mixture of compound 

D72 – D75 in dried chloroform (100 mL). The solution was sparged with N2 for 25 
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minutes. HMPT (240 µL, 1.30 mmol) was added to the flask and the reaction was 

allowed to go for 2 days at 60oC with gentle stirring. The solution was then washed with 

deionized water and concentrated to give a slightly yellow solid. The solid was sonicated 

in methanol and filtered through a filter paper. The solid was dissolved in 3 mL of 

chloroform and purified by GPC (50% combined yield: 10% dimer; 28% trimer, 10% 

tetramer; 2% pentamer). 1H NMR (500 MHz, CDCl3): T72: δ = 6.97 (d, 8H, C6H2), 6.95 

(d, 8H, C6H2), 3.86 (s, 8H, CH2), 
13C{1H}NMR (500 MHz, CDCl3): δ = 138.92, 137.08, 

129.17, 126.48, 38.71 ppm; T73: δ = 7.38 (d, 12H, C6H2), 7.06 (d, 12H, C6H2), 3.75 (s, 

12H, CH2); 
13C{1H}NMR (500 MHz, CDCl3): δ = 139.56, 138.25, 129.61, 127.05, 36.20 

ppm; T74: δ = 7.39 (d, 16H, C6H2), 7.22 (d, 16H, C6H2), 3.70 (s, 16H, CH2); T75: δ = 

7.55 (d, 20H, C6H2), 7.35 (d, 20H, C6H2), 3.65 (s, 12H, CH2); 
13C{1H}NMR (500 MHz, 

CDCl3): δ = 139.53, 137.20, 129.71, 127.14, 35.08 ppm. Crystal of T72, T73 and T74 were 

grown by slow evaporation from a saturated solution of each compound in chloroform.  

 

Product distribution of D72 – D75 in different solvents and concentrations 

In a 20 mL scintillation vial, 6.6 mg of (7) (0.027 mmol) was added to 13.63 mg of I2 

(0.054 mmol) and 12.18 mg of SbCl3 (0.054 mmol) in 4.47 mL CDCl3 (6 mM solution). 

Serial dilutions were conducted until a concentration of 0.125 mM was reached. 

The reactions were allowed to proceed overnight and the solutions in each vial were 

analyzed through 1H NMR spectroscopy to determine the product distribution. 

This procedure was repeated using C6D6, CD2Cl2, C2D2Cl4, and C6D6CD3.  
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* The same experiments were repeated using 27.26 mg of I2 as the starting amount before 

serial dilutions. This amount represented 4 equiv. I2. Experiment conducted in all 

deuterated solvents listed above. 
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CHAPTER IV 

SYNTHESIS OF UNSYMMETRICAL 2D MACROCYCLES AND  

3D “BASKET” CAGES: SELF-SORTING AS AN IMPORTANT ASSET  

FOR CYCLOPHANE SYNTHESIS   

 

Introduction 

Nature uses selective methods to construct complex biomolecular structures, often 

exploiting multiple weak interactions to direct the outcome.1 This high selectivity 

depends on the information encoded in the species responsible for every recognition 

event.2 For instance, the self-assembly of the DNA double helix requires the highly 

precise base-pairing of only complementary nitrogenous bases (adenine – thymine and 

cytosine – guanine).3 Other small molecules of life such as carbohydrates, amino acids 

and fatty acids, are able to not only self-assemble to form macromolecules, but also to 

self-sort into a cell, where multiple levels of compartmentalization allow the coexistence 

of several different functional architectures.4 

 A popular method of mimicking complex biomolecular machines exploits the 

self-sorting5 of different sets of molecules into a small number of well-defined molecular 

aggregates. By letting multiple individual components assemble into the final product, 

many challenging multi-component complexes have been reported.6 In many cases, the 

mixture of different components leads to formation of homo-supramolecular assemblies, 

which is known as the process of narcissistic self-sorting.7 Social self-sorting8 is 

comparatively rare in supramolecular assemblies due to the difficulty of incorporating 

different components into a single unsymmetrical complex. In recent years, there has 
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been much research focusing on social self-sorted complexes through favorable 

secondary interactions. One example of such system is the first hetero-alternating 

supramolecular oligomer from two isomers of cinnamoyl α-cyclodextrin (red and yellow 

components in Figure 4.1).9 In this case, hydrophobic interactions, π···π stacking and 

hydrogen bonding interactions function cooperatively to create an alternating oligomer, 

reminiscent of biological materials such as hemoglobin10 that are composed of two kinds 

of building blocks. Self-sorting has also been efficiently utilized for the construction of 

other architectures such as 3D cages11 and “meso-helicates”.12   

 

 
 

Figure 4.1. Social self-sorting of two isomers of cinnamoyl α-cyclodextrin to give 

alternating oligomer. Reprinted (adapted) with permission from J. Am. Chem. Soc. 2009, 

131, 12339–12343. Copyright 2009 American Chemical Society 

 

 Self-sorting behavior has been introduced to materials science to increase the 

performance of organic materials.13 For instance, the transcription of 2D information 

encoded in a monolayer on the surface of 3D supramolecular architectures has been 

described. The reactive monolayers are immersed in solutions containing propagators and 

a base catalyst to activate the thiol nucleophiles. Thiol-disulfide exchange then covalently 

captures the propagator and reproduces new thiolates on the surface for continuing 
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polymerization, giving self-sorted structures on the surfaces. This template-directed 

synthesis is shown to increase the activity of multicomponent photosystems by more than 

a factor of 12. 

 Besides utilizing self-sorting behavior to prepare new architectures with unusual 

topologies and properties, understanding the factors that can direct the formation of one 

type of self-sorted product is another main interest of the field. For instance, self-

assembled imine-based macrobicyclic cryptand-type organic cages can display 

remarkable self-sorting behavior with high selectivity (Scheme 4.1).14 In a mixture 

containing an amine and two different aldehydes differing by only one atom (a benzene 

core versus a pyridine core), only the pyridine-core aldehyde reacts with the amine to 

give an imine-based cage, leaving 100% of the benzene-core aldehyde unreacted by the 

end of the reaction. The exclusive formation of the pyridine cage is supported by 

attractive interactions between the pyridine N atom in one cage arm and two imine C–H 

bonds of the adjacent cage arm. This experiment explains the effect of the presence of a 

heteroatom on the self-sorting process. Other amines and aldehydes in this study help 

elucidate the effect of electrostatic interaction, delocalization, and the flexibility of the 

building blocks to form a macrobicyclic cage.  

 As highlighted in the previous three chapters, self-assembly has been a powerful 

process for synthetic chemists to assemble large, complex organic molecules.15 Our 

  



 

 

52 

 

 

 

 

Scheme 4.1. Self-sorting experiment between one amine and two different aldehydes. 

Only one imine-based cage arises as the dominant product. 

  

laboratory has utilized self-assembly to develop highly efficient routes to complex 2D 

and 3D organic cyclophanes by a simple treatment of thiol ligands and a pnictogen source 

with iodine (Scheme 4.2, left).16 The equilibrating thermodynamic mixtures of discrete 

disulfides can be "kinetically trapped" via sulfur-extrusion chemistry to yield complex 

thioether cyclophanes.17 This efficient two-step process of self-assembly and kinetic 

capture provides cyclophanes in scalable, high-yielding reactions. Despite being a useful 

tool, self-assembly typically only uses one type of building block and is thus not widely 

employed for constructing a multi-component assembly. This chapter will highlight our 

efforts at incorporating self-sorting behavior to gain access to lower-symmetry 

cyclophanes by mixing different types of oligothiol ligands.18 We attempted self-sorting 

in two different systems: (a) combination of two dithiol building blocks leading to 2D 
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unsymmetrical macrocycles of different sizes and (b) combination of a dithiol and a 

trithiol building blocks leading to 3D “basket” cages.  

 

 
 

Scheme 4.2. (Left): Self-assembly of thiol building blocks leads to multiple disulfide-

based cyclophanes of different sizes. (Right): Mixing two different thiol building blocks 

can lead to different unsymmetrical disulfide-based products.  

 

 The dynamic nature of the disulfide linkages in our cyclophanes allow the 

macrocycles/cages to break and reform rapidly until the most stable product arises within  

a chosen reaction condition.16 In the same way, we expect to adjust the yield of each 

member of the library in our “mixed” system by tuning different experimental conditions, 

such as solvent, initial ratios of substrates, and concentrations. With the right condition, 

we hypothesize that it is possible to bias the reaction towards preferentially forming the 

elusive unsymmetrical macrocycles. These compounds have been desirable targets of 

traditional stepwise synthetic methods for decades and would serve as great samples to 

study host-guest chemistry, optoelectronic properties, and use as monomers for new 

polymeric materials.  
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Results and Discussion 

Synthesis of a new library of disulfide and thioether 2D unsymmetrical cyclophanes from 

thiol building blocks (1) and (7) 

As discussed in the previous chapters, our metal-directed self-assembly method is able to 

synthesize known, hard-to-make cyclophanes in improved yields and in far shorter times 

than in using traditional synthetic methods (Scheme 4.2, left).16 We have also proven the 

efficiency of our approach by synthesizing multiple libraries of previously unknown 

cyclophanes.19 We imagined that self-sorting can be introduced to our approach as a tool 

to prepare unsymmetrical macrocycles and cages featuring a combination of different di- 

and tri-thiols. Different thiol building blocks can lead to symmetrical assemblies in which 

one ligand finds another copy of itself (narcissistic self-sorting), or unsymmetrical 

species featuring different ligands (social self-sorting), or a combination of both. This 

study would showcase how dynamic covalent chemistry, self-assembly, self-sorting, and 

covalent capture are efficiently combined to assist us in the formation of new, complex 

organic structures.  

 We started by allowing the phenyl-based ligand (1) to assemble with the 

biphenyl-based ligand (7). Upon mixing 1 equiv. of each ligand, 2 equiv. I2 and 2 equiv. 

SbCl3 in chloroform (3 mM solution), we observed a complex mixture of products 

consisting of known symmetrical macrocycles (such as D13, D72, D73) and unknown 

structures with multiple signals in the 1H NMR spectra. By comparing the sizes of the 

macrocycles based on gel permeation chromatography, we were certain that the two new 

compounds must be unsymmetrical trimers D1271 and D1172 (structures in Scheme 4.3). 

These two compounds were synthesized in 40% yield, which is much higher than the 
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expected statistical yield of 19%, suggesting a moderately self-sorted system, in this case 

favoring the formation of social self-sorted products. We were able to grow the crystals 

of D1271, confirming the presence of this compound (Figure 4.2). The compound features 

C–S–S–C torsion angles near the ideal 90° with angles of 87.62°, 88.98° and 90.18°. The 

crystal crystalizes in the P21/c space group, and each adjacent D1271 molecule is rotated  

180o along the a axis, perhaps to shrink the size of the unoccupied pore (Figure 4.2b). 

 
 

Scheme 4.3. Self-sorting of two different building blocks, bis(mercaptomethyl) phenyl 

(1) and bis(mercaptomethyl) biphenyl (7), leads to a variety of self-sorted products. 

Conditions: 4 mM (1), 3 mM (7), 8 equiv. I2 (to thiols), 2 equiv. SbCl3 (to thiols) in 

chloroform.   

  

 Tuning the condition to 4 mM of (1) and 3 mM of (7) with 8 equiv. I2 and 2 

equiv. SbCl3 in chloroform gave us D1271 and D1172 in 65% yield, a >3-fold optimization 

over statistical yield. These conditions also provided three of the possible six tetramers 

D1371, D1272 and D1173, bringing the ratio of social: narcissistic products to 85:12 (with 

3% oligomers, Scheme 4.3). Since we repeatedly observed the formation of the five 

species shown in Scheme 4.3 (out of a statistical mixture of 21 different macrocycles), we 
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arrived at two conclusions. First, the self-sorting reaction of (1) and (7) favors the 

formation of social self-sorted products. Second, we are capable of tuning the reaction 

conditions to bias the formation of the social self-sorted products, as observed in the 

optimization of two unsymmetrical trimers. These two advantages make our approach 

highly desirable for the synthesis of traditionally elusive unsymmetrical structures, which 

are curiously absent in cyclophane literature.  We did not observe the formation of the 

unsymmetrical dimer D1171 in any of our conditions; we attributed this result to the 

significant size difference between the two building blocks (1) and (7), which made 

bending these rigid motifs into a single structure of dimer challenging. Our experimental 

design in choosing two thiols of similar shape and coordination motifs – but different 

sizes – simplified the formation of our desired unsymmetrical trimers and tetramers, at 

the expense of the unsymmetrical dimer. 

 

 

Figure 4.2. Crystal structures of disulfide D1271 and thioethers T1172 and T1272. (a) Front 

view of each crystal. (b) Crystal packing pattern of each structure. Hydrogen atoms 

omitted for clarity. 
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 Sulfur extrusion with HMPT was conducted on all unsymmetrical disulfide 

species (Scheme 4.4). Each thioether features three protons (in the case of the trimers) or 

four protons (in the case of the tetramers) in the methylene region (~3 – 4 ppm) of the 

NMR spectra. T1272 is the only tetramer that features two methylene protons, suggesting 

the presence of two C2 symmetry axes in the compound, compared to the presence of 

only one C2 symmetry axis in others. The aromatic region (~6.5 – 8 ppm) of each 

compound matches the methylene region: with the exception of the more symmetrical 

T1272, each compound features multiple pairs of doublets arising from the adjacent 

protons on the biphenyl units of the (7) fragments and the inequivalent protons from the 

phenyl units of the (1) fragments. We were able to grow single crystals of T1172 and T1-

272 (Figure 4.2), confirming the successful transformation from unsymmetrical disulfide 

cyclophanes into unsymmetrical thioether cyclophanes. The C–S–C angles within the 

cyclophanes are in the expected range for cyclic thioethers (~100 – 105o). The dihedral 

angles in the biphenyl units of the (7) fragments are only 3.73o for T1272, in contrast to 

8.36o and 32.11o in T1172, indicating the need for smaller macrocycles to bend their 

biphenyl rings to alleviate the strain. The angle difference between the two biphenyl 

groups in T1172 probably helps relieve some of the strain in the molecule as well. In the 

crystal packing column, each thioether molecule settles right on top of another, unlike the 

180o alternating pattern as observed in the case of D1271 (Figure 4.2b). While T1272 has a 

solvent molecule of dichloromethane in the pore, T1172 leaves its pore empty, suggesting 

possibility of future host/guest studies. 
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Scheme 4.4. 1H NMR of unsymmetrical thioether cyclophanes, resulting from the sulfur 

extrusion reaction of unsymmetrical disulfide cyclophanes with HMPT (CDCl3 – 7.26 

ppm). 

 

Synthesis of a new disulfide 3D “basket” unsymmetrical cage from thiol building blocks 

(7) and (9) 

We wanted to apply self-sorting methods to synthesize new unsymmetrical variants of the 

cages and macrocycles comprising a mixture of thiols. This section focuses on an effort 

to extend our design strategy for self-assembling new structures, with a focus on 

geometrically unusual and synthetically challenging disulfides through a combination of 

two-fold and three-fold symmetric thiols. Due to the mismatch in the number of 

disulfides that can be made by each thiol, an unsymmetrical disulfide dimer between a 
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dithiol and a trithiol cannot be formed. The smallest unsymmetrical structure should be a 

trimeric “basket” with one dithiol and two trithiols, followed by a tetrameric “basket” of 

two dithiols and two trithiols, and so on. These structures do not possess the same high 

level of symmetry as earlier assemblies; therefore, the complexity of the 1H NMR 

spectra, coupled with X-ray crystallography and mass spectrometry were used 

complementarily to determine the identity of each species in solution. These 

unsymmetrical species can also serve as precursors to unsymmetrical thioethers through 

covalent capture with HMPT. 

 Scheme 4.5 shows our attempt at self-sorting dithiol (7) and trithiol (9). Upon 

mixing the two thiols together, we observed the formation of narcissistic self-sorted 

macrocycles such as D72, D73, D74, a narcissistic self-sorted cage D92, and a new social 

self-sorted cage. The 1H NMR spectrum in Scheme 4.5 features two doublets in the 

aromatic region, corresponding to the signals on the biphenyl units of fragment (7) of the 

cage. There are two singlets in the methylene region (~3 – 4 ppm) and two singlets in the 

methyl region (~1 – 3 ppm). We decided to heat the sample to 65o so that the broad peaks 

could sharpen, allowing for the correct integration of each signal. It is interesting that the 

methylene signals associated with the (9) fragments are equivalent (peak d in the NMR 

spectrum) but the methyl signals split into two different groups (peak e and f in the NMR 

spectrum), suggesting that one of the methyl groups becomes chemically inequivalent to 

the remaining two methyl groups upon cage formation.  
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Scheme 4.5. (Top): Self-sorting of a dithiol (7) and a trithiol (9) to give “basket” – like 

cage D7292. (Bottom): 1H NMR spectra of the “basket” D7292 at 25oC and at 65oC 

(CDCl3 – 7.26 ppm). 

 

 We were able to grow single crystals suitable for X-ray diffraction of D7292 and 

the  structure confirmed our hypothesis (Figure 4.3). The C–S–S–C torsion angles in 

D7292 deviate substantially from ideality (90°), adopting highly strained conformations 

(88.94o, 86.30o, 82.32o, 77.23o and 76.37o). The two (9) fragments of the “basket” are 

almost perpendicular to each other with an angle of 82.46o, perhaps to relieve some of the 

strain in the “basket”. Similar to what is observed with D1271, the crystals of D7292 pack 
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in an alternating pattern, where adjacent molecules in the crystal column are 180o
 offset 

from each other, occupying the cavity to avoid unfavorably empty space. The 

unsymmetrical trimeric “basket” D7192 was not favored and has not been observed yet, 

perhaps due to steric hindrance contributed by the methyl groups. Therefore, similar to 

the previous section on self-sorting of two dithiols, our choice of building blocks can 

dictate what products will form; in this case, the tetrameric “basket” is biased at the 

expense of the trimeric “basket”. Future sulfur extrusion on D7292 should give a novel 

thioether “basket”.  

 

 
 

Figure 4.3. Crystal structure of D7292. (a) Front view. (b) Crystal packing pattern shows 

alternating pattern where adjacent molecules in the crystal column are 180o offset from 

each other to avoid an empty cavity. 

 

Conclusions 

 This chapter advances the previous metal-directed self-assembly strategy by using 

two different thiols in tandem to provide new, elusive unsymmetrical disulfides. Two 

different dithiols can give multiple “mixed” macrocycles of different sizes and a dithiol –

trithiol pair can give a “basket” in a single step. This approach enables substantial 

amplification of the unsymmetrical macrocycles/cages with small changes in reaction 

conditions. Covalent capture can give rise to novel unsymmetrical thioether “nanohoops” 



 

 

62 

 

 

in high yield. These collections of unsymmetrical macrocyclic cyclophanes, which aside 

from their pleasing aesthetics, may feature emerging properties in organic electronics, 

host-guest chemistry, and as monomers for new ring-opened polymerizations.  

 

Experimental Section  

1H NMR spectra were measured using Varian INOVA and Bruker 500 and 600 

spectrometers and 13C Bruker-600 spectrometer in CDCl3 and C6D6. Spectra were 

referenced using the residual solvent resonances as internal standards and reported in 

ppm. Single crystal X-ray diffraction studies were performed on a Bruker SMART APEX 

diffractometer. Commercially available reagents were used as received. The reported 

yields are for isolated samples.  

Synthesis of a library of disulfides from thiols (1) and (7)  

 In a 250 mL round bottom flask, thiol (1) (68 mg, 0.40 mmol), thiol (7) (73.8 mg, 

0.30 mmol) and I2 (1.42 g, 5.60 mmol) were added in 100 mL chloroform. SbCl3 (319 

mg, 1.40 mmol) was added to the flask and the black solution was stirred for 4 hours at 

room temperature. The reaction was quenched with saturated sodium sulfite and the 

organic layer was washed with deionized water (2X). The solution was dried with 

MgSO4, filtered and concentrated. The powder was then redissolved in 3 mL of 

chloroform (some insoluble solids that were probably polymers), filtered through a 0.45 

µm PTFE membrane and purified by GPC (quantitative yield: 2% D1173, 5% D1272, 11% 

D1371, 28% D1172, 37% D1271, 14% D13). 1H NMR (500 MHz, CDCl3):  

- Compound D1271: δ 7.71 (d, 4H, C6H2, J = 8.0 Hz), 7.51 (d, 4H, C6H2, J = 8.0 

Hz), 6.90 (d, 4H, C6H2, J = 8.0 Hz), 6.79 (d, 4H, C6H2, J = 8.0 Hz), 3.92 (s, 4H, CH2), 
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3.42 (s, 4H, CH2), 3.19 (s, 4H, CH2); 
13C{1H} NMR (150 MHz, CDCl3): δ = 139.93, 

137.34, 136.32, 135.54, 130.83, 129.84, 129.57, 127.08, 43.36, 42.90, 42.81 ppm. Single 

crystals were grown by diffusion of pentane into a concentrated chloroform solution of 

D1271.  

- Compound D1172: δ 7.49 (d, 4H, C6H2, J = 8.0 Hz), 7.46 (d, 4H, C6H2, J = 8.0 

Hz), 7.28 (d, 4H, C6H2, J = 8.0 Hz), 7.14 (d, 4H, C6H2, J = 8.0 Hz), 7.09 (s, 4H, CH2), 

3.68 (s, 4H, CH2), 3.63 (s, 4H, CH2), 3.45 (s, 4H, CH2); 
13C{1H} NMR (150 MHz, 

CDCl3): δ = 140.14, 139.99, 136.66, 136.52, 136.12, 130.38, 130.26, 129.72, 127.20, 

127.14, 43.53, 43.12, 42.77 ppm. 

- Compound D1371: δ 7.53 (d, 4H, C6H2, J = 8.2 Hz), 7.30 (d, 4H, C6H2, J = 8.2 

Hz), 7.13 (d, 4H, C6H2, J = 8.1 Hz), 7.10 (s, 4H, CH2), 7.08 (d, 4H, C6H2, J = 8.1 Hz), 

3.66 (s, 4H, CH2), 3.56 (s, 4H, CH2), 3.52 (s, 4H, CH2), 3.45 (s, 4H, CH2); 
13C{1H} NMR 

(125 MHz, CDCl3): δ = 140.05, 139.97, 136.91, 136.55, 136.41, 130.27, 130.24, 129.67, 

127.20, 127.15, 43.22, 43.19, 43.17, 42.96 ppm. 

- Compound D1272: δ 7.51 (dd, 8H, C6H2, J = 8.1 Hz), 7.41 (d, 4H, C6H2, J = 8.1 

Hz), 7.29 (d, 4H, C6H2, J = 8.0 Hz), 7.23 (d, 4H, C6H2, J = 8.0 Hz), 7.19 (s, 4H, C6H4), 

7.15 (d, 4H, C6H4, J = 8.5 Hz), 3.67 (s, 2H, CH2), 3.65 (s, 4H, CH2), 3.61 (s, 4H, CH2), 

3.60 (s, 2H, CH2), 3.56 (s, 2H, CH2), 3.51 (s, 2H, CH2); 
13C{1H} NMR (125 MHz, TCE-

d2): δ = 139.45, 139.40, 139.30, 136.77, 136.52, 136.48, 136.41, 136.24, 136.14, 129.99, 

129.90, 129.66, 129.49, 129.41, 129.32, 126.86, 126.80, 42.85, 42.78, 42.74, 42.69 ppm. 

- Compound D1173: δ 7.52 (d, 4H, C6H2, J = 8.2 Hz), 7.48 (dd, 4H, C6H2, J = 8.2 

Hz), 7.29 (d, 4H, C6H2, J = 8.3 Hz), 7.25 (d, 4H, C6H2, J = 8.2 Hz), 7.22 (d, 4H, C6H2, J 

= 8.2 Hz), 7.18 (s, 4H, C6H2), 7.14 (d, 4H, C6H2, J = 8.3 Hz), 3.63 (s, 4H, CH2), 3.61 (s, 
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4H, CH2), 3.57 (s, 4H, CH2), 3.52 (s, 4H, CH2); 
13C{1H} NMR (125 MHz, TCE-d2): δ = 

139.51, 139.45, 139.37, 136.54, 136.48, 136.40, 136.21, 129.94, 129.85, 129.74, 129.41, 

129.38, 126.93, 126.89, 42.82, 42.74, 42.70, 42.68 ppm. 

 

Synthesis of thioether T1271 

An oven-dried NMR tube was charged with D1271 (28.7 mg, 0.049 mmol) in dried CDCl3 

(1 mL). Under a cone of nitrogen, HMPT (120 µL, 0.652 mmol) was added to the NMR 

tube and the tube was inverted gently several times to mix. The reaction was allowed to 

sit at ambient temperature for 2 hours. The solution was then washed with deionized 

water and concentrated to give a white solid. The solid was sonicated in methanol and 

filtered through a filter paper. The undissolved solid was retrieved from the paper by 

chloroform giving 10 mg of the product T1271  (42% yield). 1H NMR (600 MHz, 

CDCl3): δ 7.08 (d, 4H, C6H2, J = 8.4 Hz), 6.91-6.95 (m, 12H, C6H2), 3.83 (s, 4H, CH2), 

3.78 (s, 4H, CH2), 3.48 (s, 4H, CH2); 
13C{1H} NMR (150 MHz, CDCl3): δ 138.85, 

138.52, 138.38, 135.96, 128.95, 128.86, 128.63, 126.45, 38.44, 38.24, 35.94 ppm. 

 

Synthesis of thioether T1172 

An oven-dried NMR tube was charged with D1172 (14.6 mg, 0.022 mmol) in dried CDCl3 

(800 µL). Under a cone of nitrogen, HMPT (54 µL, 0.294 mmol) was added to the NMR 

tube and the tube was inverted gently several times to mix. The reaction was allowed to 

sit at ambient temperature for 2 hours. The solution was then washed with deionized 

water and concentrated to give a white solid. The solid was sonicated in methanol and 

filtered through a filter paper. The undissolved solid was retrieved from the paper by 
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chloroform, giving 5.7 mg of the product T1172 (46% yield). 1H NMR (600 MHz, 

CDCl3): δ 7.24 (s, 4H, C6H4), 7.15 (d, 4H, C6H2, J = 8.4 Hz), 7.04 (d, 4H, C6H2, J = 8.4 

Hz), 6.97 (d, 4H, C6H2, J = 7.8 Hz), 6.95 (d, 4H, C6H2, J = 7.8 Hz), 3.82 (s, 4H, CH2), 

3.72 (s, 4H, CH2), 3.59 (s, 4H, CH2); 
13C{1H} NMR (150 MHz, CDCl3): δ 139.66, 

138.75, 138.33, 137.37, 136.92, 129.45, 129.25, 129.00, 127.20, 126.37, 38.15, 36.23, 

34.61 ppm. Single crystals were grown by slow evaporation of a concentrated of T1172 

solution in chloroform. 

 

Synthesis of thioether T1371 

An oven-dried NMR tube was charged with D1371 (4 mg, 0.006 mmol) in dried CDCl3 

(500 µL). Under a cone of nitrogen, HMPT (9 µL, 0.048 mmol) was added to the NMR 

tube and the tube was inverted gently several times to mix. The reaction was allowed to 

sit at ambient temperature for 2 hours. The solution was then washed with deionized 

water and concentrated to give a white solid. The solid was sonicated in methanol and 

filtered through a filter paper. The undissolved solid was retrieved from the paper by 

chloroform, giving 3.0 mg of the product T1371 (80% yield). 1H NMR (500 MHz, 

CDCl3): δ 7.36 (d, 4H, C6H2, J = 6.6 Hz), 7.13 (d, 4H, C6H2, J = 6.6 Hz), 7.09 (s, 4H, 

CH2), 7.08 (d, 4H, C6H2, J = 6.6 Hz), 6.99 (d, 4H, C6H2, J = 6.6 Hz), 3.69 (s, 4H, CH2), 

3.67 (s, 4H, CH2), 3.55 (s, 4H, CH2), 3.49 (s, 4H, CH2). 
13C{1H} NMR (125 MHz, 

CDCl3): δ 139.52, 137.54, 137.46, 136.90, 136.63, 129.27, 129.22, 129.17, 129.13, 

127.02, 35.99, 35.87, 35.55, 35.06 ppm.   
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Synthesis of thioether T1272 

An oven-dried NMR tube was charged with D1272 (7.1 mg, 0.009 mmol) in dried CDCl3. 

Under a cone of nitrogen, HMPT (13 µL, 0.070 mmol) was added to the NMR tube and 

the tube was inverted gently several times to mix. The reaction was allowed to sit at 

ambient temperature for 2 hours. The solution was then washed with deionized water and 

concentrated to give a white solid. The solid was sonicated in methanol and filtered 

through a filter paper. The undissolved solid was retrieved from the paper by chloroform, 

giving 5.2 mg of the product T1272 (83% yield). 1H NMR (500 MHz, CDCl3): δ 7.43 (d, 

8H, C6H2, J = 6.6 Hz), 7.17 (d, 8H, C6H2, J = 6.6 Hz), 7.09 (s, 8H, C6H2), 3.63 (s, 8H, 

CH2), 3.62 (s, 8H, CH2). 
13C{1H} NMR (125 MHz, CDCl3): δ 137.47, 137.00, 129.59, 

129.57, 129.26, 126.99, 35.72, 35.41 ppm. A solution of T1272 in dichloromethane was 

layered under benzene and allowed to slowly diffuse to obtain single crystals suitable for 

XRD. 

 

Synthesis of thioether T1173 

An oven-dried NMR tube was charged with D1173 (7.5 mg, 0.008 mmol) in dried CDCl3 

(500 µL). Under a cone of nitrogen, HMPT (6 µL, 0.033 mmol) was added to the NMR 

tube and the tube was inverted gently several times to mix. The reaction was allowed to 

sit at ambient temperature for 2 hours. The solution was then washed with deionized 

water and concentrated to give a white solid. The solid was sonicated in methanol and 

filtered through a filter paper. The undissolved solid was retrieved from the paper by 

chloroform, giving 5.3 mg of the product T1173 (85% yield). 1H NMR (500 MHz, 

CDCl3): δ 7.44 (d, 4H, C6H2, J = 4.2 Hz),  7.43 (d, 4H, C6H2, J = 4.2 Hz), 7.38 (d, 4H, 
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C6H2, J = 8.0 Hz), 7.24 (d, 4H, C6H2, J = 8.0 Hz), 7.18 (d, 4H, C6H2, J = 8.0 Hz), 7.17 (d, 

4H, CH2, J = 8.0 Hz), 7.08 (s, 4H, C6H2), 3.71 (s, 4H, CH2), 3.70 (s, 4H, CH2), 3.61 (s, 

4H, CH2), 3.57 (s, 4H, CH2). 
13C{1H} NMR (125 MHz, CDCl3): δ 139.53, 139.44, 

139.34, 137.64, 137.44, 136.82, 129.63, 129.57, 129.55, 129.13, 128.98, 127.04, 126.98, 

126.95, 35.85, 35.62, 35.42, 34.72 ppm.   

 

Synthesis of D7292 from thiols (7) and (9)  

In a 250 mL round bottom flask, thiol (7) (24.6 mg, 0.40 mmol), thiol (9) (51.5 mg, 0.30 

mmol) and I2 (152 mg, 5.60 mmol) were added in 70 mL chloroform. SbCl3 (136 mg, 

1.40 mmol) was added to the flask and the solution was stirred overnight at room 

temperature. Reaction was quenched with saturated sodium sulfite and the organic layer 

was washed with deionized water (2X). The solution was dried with MgSO4, filtered and 

concentrated. The powder was then redissolved in 3 mL of chloroform (some insoluble 

solids that were probably polymers), filtered through a 0.45 µm PTFE membrane and 

purified by GPC, giving D7292 in 15% yield.  
1H NMR (500 MHz, CDCl3): δ 7.66 (d, 8H, 

C6H2, J = 7.9 Hz), 7.48 (d, 8H, C6H2, J = 7.9 Hz), 3.93 (s, 8H, CH2), 3.30 (s, 12, CH2), 

2.23 (s, 6H, CH3), 1.87 (s, 12H, CH3). Single crystals were grown by slow evaporation of 

a concentrated of D7292 solution in chloroform. 
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CHAPTER V 

SYNTHESIS OF SYMMETRICAL AND UNSYMMETRICAL HYDROCARBON 

MACROCYCLES: A 3-STEP APPROACH TOWARDS NEW CYCLOPHANES 

 

Introduction 

The intrinsic interest in cyclophanes first began in 1899 with the synthesis of 

metacyclophane by Pellegrin,1 and that excitement blossomed among synthetic chemists 

with the discovery of paracyclophane in 1951 by Cram.2 In 1969, Vögtle revolutionized 

the field by introducing the concept of preparing dithiacyclophanes (or thioether 

cyclophanes), followed by oxidation and extrusion of sulfur dioxide (SO2) (Route 1 or R1 

in Scheme 5.1) as a method of preparing [2.2]-metacyclophanes (10).3 The extrusion of 

SO2 has involved both pyrolyses4 and photolyses.5 UO’s own Virgil Boekelheide 

subjected dithiacyclophanes to the Stevens rearrangement (later extended to include the 

Wittig rearrangement), followed by a Hofmann elimination as a method of preparing 

[2.2]-metacyclophane-l,9-dienes (11) (R2, Scheme 5.1).6 Subsequently, the method of 

ring contraction of dithiacyclophanes has also made use of the benzyne Stevens 

rearrangement (R3, Scheme 5.1)7 and the elimination step has involved sulfoxide (S=O) 

pyrolyses and the use of Raney nickel.7 Finally, the sulfur extrusion step has been 

extended to include photolyses of dithiacyclophanes (R4, Scheme 5.1).8 

 

 

 

 



 

 

69 

 

 

 
 

Scheme 5.1. Four main routes to synthesize [2.2]-metacyclophane (10) and [2.2]-

metacyclophane-l,9-diene (11) from a thioether cyclophane precursor.  

 

 In a review on cyclophanes in 1972, Vögtle stated, “the ultimate achievement of 

work in the cyclophane field would be the synthesis of the fully bridged [2.2.2.2.2.2]- 

(1,2,3,4,5,6) cyclophane and its hexaene.”9 In 1979, Boekelheide was able to synthesize 

the former compound in 2.8% total yield, for which he proposed the trivial name 

“superphane” (Scheme 5.2).10 The multi-step synthetic scheme required many high-

temperature reactions for sequential addition of each bridging unit: pyrolysis of 2,4,5-

trimethylbenzyl chloride and dimerization of the product gave intermediate (12). 

Formylation, reduction, and chlorination were used to install benzyl chloride functional 

groups, to which  pyrolysis gave the desired tetrabridged cyclophane (13). A second 

round of formylation, reduction, and chlorination installed two more benzyl chloride 

functional groups. Finally, pyrolysis gave “superphane” (14). Since all positions in 

“superphane” are in bridged conformations, distortion of the benzene rings does not 
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relieve strain to any appreciable extent. Therefore, studies of the physical and chemical 

properties of this “holy grail” has given interesting insights on the effects of severe strain 

with planar benzene rings.11  

 

 

 

Scheme 5.2. Stepwise synthesis of “superphane” (14) requires sequential addition of each 

bridging unit.  

  

 Another “holy grail” of the cyclophane field is Vögtle’s tetrahedral hydrocarbon 

cage C36H36, in which four benzene rings are connected by ethylene units (Figure 5.1a). 

This cage was synthesized after 7 steps in about 3% yield .12 The limiting step was the 

final macrocyclization, which was achieved in only 11% yield despite using high‐dilution 

conditions. Fifty years after the synthesis of this cage, chemists are still actively trying to 

find better synthetic approaches, since Vögtle pointed out that the scaffold of this 

hydrocarbon cage is a cut‐out structure of C60 and therefore attractive as a synthetic 

target.12  In 2019 the Mastalerz’s laboratory successfully simplified the synthetic method 

to access C36H36 by utilizing the high yielding dynamic covalent imine bond formation in 

the first step.13 After only 4 steps, they were able to synthesize C36H36 and other larger, 

previously unknown cages such as derivatives of C72H72 and C84H84 (Figure 5.1b). The 
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overall yield for the 4‐step synthesis of the C72H72 derivative is already 1.4 % higher than 

that reported for a smaller C60H60 (which Vögtle reported in 0.8 % after 20 steps).13 

Mastalerz’ work showcases the importance of incorporating DCC in the synthetic scheme 

to replace some traditional methods in making complex cyclophanes.  

 

 

 

Figure 5.1. (a) Vögtle’s stepwise approach requires 7 steps to synthesize the C36H36 cage. 

(b) Mastalerz’s approach using DCC requires only 4 steps to synthesize the larger, 

previous unknown derivative of C72H72 cage.  

  

 As seen in the previous chapters, our approach in the DWJ laboratory eliminates 

the need for caustic, high-temperature methods and avoids low yields that result from the 

rapid formation of unfavorable insoluble oligomers (Scheme 5.3).14 The key SbIII additive 

during the self-assembly step avoids the formation of disulfide polymers that plagued 

early efforts aimed at synthesizing discrete disulfides.15 We observe multiple 

thermodynamically stable macrocycles ranging from dimers through pentamers (and 

sometimes up to heptamers) and 3D cages such as tetrahedra. Our method also 

complements modern research on DCC disulfide chemistry by providing a method to 
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isolate and kinetically capture individual members of such equilibrating systems via 

sulfur extrusion with HMPT (Scheme 5.3).16  

 

 
 

Scheme 5.3. Two-step approach to synthesize thioether cyclophanes through disulfide 

cyclophane intermediates. The overarching goal of this project is to extend our method 

into a three-step approach to access hydrocarbon cyclophanes. 

 

 Because the synthesis of disulfide cyclophanes and the kinetically trapped 

thioether cyclophanes is simple and quick, we are mindful of exploring the potential of 

these cyclophanes in applications as well. Our overarching goal has been to successfully 

synthesize strained hydrocarbon cyclophanes which are known products from thioether 

precursors via multiple routes as shown in Scheme 5.1. We are mindful of the fact that 

many challenging geometries, such as large pentameric and hexameric macrocycles, 

unsymmetrical macrocycles, and tetrahedra can be set up and “locked’ in position by the 

formation of stable thioether bonds. Therefore, hydrocarbon cyclophanes possessing 

these unique topologies are approachable if we can standardize a method to remove the 

final sulfur atoms in the thioethers. Due to the confined geometries of the often-distorted 

aromatic rings in these systems, we expect to observe fundamentally interesting physical 

and chemical properties of this new class of compounds. Some of the studies can 

investigate the degrees of strain, degrees of aromaticity, metal capture capabilities, 

fluorescent properties, and optoelectronic properties. In particular, our research can also 

have broader impacts in the polymer community if the proposed cyclophanes can serve as 
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new precursors in the “parylene process” and related polymer market sub-segments 

(Scheme 5.4).17 The parylene process, which uses substituted [2.2]-paracyclophanes as 

single source precursors, has been a rapidly growing $200M/year industry within the $2B 

conformal/insulating coating market, with its growth attributed mainly to its use in 

medical devices (a $40B market). Therefore, new classes of strained hydrocarbon 

cyclophanes can be promising monomers for the parylene process. 

 

 
 

Scheme 5.4. The steps in the parylene process: [2.2]-paracyclophane is heated under 

vacuum and vaporized into a dimeric gas. The gas is then pyrolyzed to cleave the dimer 

to its monomeric form p-xylylene. In the deposition chamber, the monomer gas deposits 

on the surfaces as thin, transparent parylene film.  

 

 This chapter will discuss our first four hydrocarbon cyclophanes using a tandem 

approach of self-assembly/self-sorting, covalent capture, and sulfur photoextrusion with 

triethylphosphite [P(OEt)3]. We were able to form new hydrocarbon cyclophanes, which 

are congeners of [2.2] and [2.2.2]-paracyclophane. With the new approach, we have 

successfully addressed a bottleneck in classical cyclophane syntheses, which, as 

previously discussed in this chapter, are low-yielding, stepwise, and lengthy syntheses. 
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Results and Discussion 

Synthesis of Biphenyl-based Symmetrical Hydrocarbon Macrocyclic Cyclophanes from 

Biphenyl-based Disulfide Macrocyclic Cyclophanes  

Our supramolecular approach has served as a powerful strategy in which new disulfide 

and thioether cyclophanes can be made in cases where strain and complex design are 

difficult to conceive or do not possess selectivity to be formed via classical coupling 

techniques (Chapter II).18 We have commented on a few factors influencing the self-

assembly method and provide a more in-depth investigation of the assembly of the larger-

sized macrocycles and cages (Chapter III).19 We are thus encouraged to come up with a 

more general method to synthesize hydrocarbon cyclophanes, taking advantage of the 

well-studied four main routes for extruding the final sulfur atoms (Scheme 5.1). This 

work would be a great addition to the field of cyclophane chemistry, which despite 

numerous exotic and spectacular 3D cyclophanes, has been impeded by lengthy and 

tedious syntheses requiring stepwise modification and lack of functional group 

tolerances. 

 Route 1 (R1) in Scheme 5.1 was first attempted on T73 since this thioether formed 

in highest yield after the 2-step self-assembly/covalent capture from thiol (7) building 

block. Oxidation of T73 with mCPBA yielded a new sulfone cyclophane S73 in 60% yield 

(Scheme 5.5a). 1H NMR shows two doublets in the aromatic region and one singlet in the 

methylene region, confirming the symmetry equivalence of the repeating biphenyl units 

in the macrocycles (Scheme 5.5c). The methylene signal shows up at 4.4 ppm, which is 

shifted further downfield compared to δ observed for T73 at 3.5 ppm, consistent with the 

withdrawing nature of the SO2 groups. We were able to grow a single crystal of S73, 
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which confirmed the identity of this compound. Analysis shows that S73 possesses very 

strained dihedral angles in the biphenyl unit: 22.76o, 27.75o and 50.00o compared to the 

typical 32o found in unstrained biphenyls. Nonetheless, this strain was not sufficient to 

facilitate complete sulfur extrusion from this structure. While such sulfones may hold 

interest as hosts and novel macrocycles (which are interesting studies in their own right), 

we sought a more reliable method to synthesize hydrocarbon cyclophanes in these 

systems. R2 in Scheme 5.1 was also attempted with no success. Methylation on T73 at the 

sulfur atom position proved to be very challenging since the putative methylated 

cyclophane was not soluble in either organic or aqueous solvent. Furthermore, the 

synthesis of the methylating reagent is highly hazardous, making this an undesirable 

approach for both research and industry. 

 

 

Scheme 5.5. (a) Synthesis of sulfone macrocyclic cyclophane S73 from thioether 

macrocyclic cyclophane T73. (b) Crystal structure of S73. Solvent molecules are omitted 

for clarity. Carbon atoms shown in grey, hydrogen atoms shown in white, sulfur atoms 

shown in yellow and oxygen atoms shown in red. (c) 1H NMR spectrum of  compound 

S73 (CDCl3 – 7.26 ppm).  
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 We were finally able to form hydrocarbon cyclophanes by photochemical sulfur 

extrusion as seen in R4, Scheme 5.1.8 Subjecting the mixture of thioether cyclophanes 

T72 – T75 (which has been obtained from HMPT reaction with disulfide mixture D72 – 

D75) to P(OEt)3 under UV light irradiation gave us predominantly hydrocarbons H72 and 

H73 in combined 70% yield (Scheme 5.6). These two hydrocarbon cyclophanes have not 

been previously observed in literature and would have been very challenging to obtain 

using traditional methods. GPC easily separated the two species, giving a 30% and 40% 

yield after 3 steps, respectively. Both compounds feature the typical two aromatic 

doublets and one methylene singlet at ~3 ppm (Scheme 5.6). With our 3-step approach, 

we have successfully solved the low-yielding aspect of classical methods by 

incorporating DCC disulfide bond formation in the first step, which guarantees 

quantitative yield of the key disulfide intermediates. UV light irradiation is also mild 

compared to the use of reagents such as the Borch reagent to methylate the thioethers 

(R2, Scheme 5.1) or in-situ benzyne formation (R3, Scheme 5.1). Our 3-step approach 

(self-assembly, covalent capture, photochemistry) takes several days to a week, compared 

to much lengthier traditional approaches using cross-coupling reactions. 
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Scheme 5.6. A 3-step approach from thiol (7) to disulfide D72 – D75, thioether T72 – T75 

and hydrocarbon H72 – H73 cyclophanes. 1H NMR spectra of two new symmetrical 

hydrocarbon cyclophanes H72 and H73 (CDCl3 – 7.26 ppm). 

 

Synthesis of Phenyl- and Biphenyl-“Mixed” Unsymmetrical Hydrocarbon Macrocyclic 

Cyclophanes from A Mixture of Two Thiols  

Alternative methods to synthesize hydrocarbon cyclophanes exist. For instance, alkyne 

metathesis20 can be utilized to synthesize hydrocarbon cages in higher yields, but it does 

not allow the synthesis of less symmetrical compounds from more than one building 

block. Mastalerz’s protocol, therefore, is a very attractive approach as it provides large 

unsymmetrical 3D cages in yields as much as 10x higher than those obtained from 

original stepwise approach. For instance, the reaction of a diamine and a trialdehyde (or a 
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triamine and a dialdehyde) can give the necessary unsymmetrical imine building blocks 

to generate the cage scaffold. Mastalerz’s approach (reduction and nitrosylation of the 

imine bonds, followed by the Overberger reaction) has yielded unsymmetrical derivatives 

of large cages like the “cubic” C72H72, the synthesis of which has not been previously 

reported.13 

 In a similar fashion, self-sorting of two different thiols has provided us with a 

library of different-sized unsymmetrical disulfide macrocyclic cyclophanes in good 

yields (Chapter IV).19 These unsymmetrical disulfide macrocycles have also been 

efficiently converted into their corresponding unsymmetrical thioether macrocycles via 

reaction with HMPT. We were curious to see if our photochemical sulfur extrusion 

approach would give rise to unsymmetrical hydrocarbon cyclophanes. We thus subjected 

two unsymmetrical trimer thioethers T1271 and T1172 to react with P(OEt)3 under UV 

light irradiation (Scheme 5.7), giving two unsymmetrical trimer hydrocarbons H1271 and 

H1172 in around 60 – 70% yield for each compound. 

 Scheme 5.7, bottom shows the 1H NMR spectra of two unsymmetrical species 

post-synthetic reaction workup. Each compound features one singlet (a, a’) and two 

triplets (b, b’, c, c’) in the methylene region, which is the most convincing evidence that 

complete sulfur extrusion has occurred (the presence of the thioether bridge prevents 

coupling between the inequivalent methylene protons otherwise). The aromatic region of  
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Scheme 5.7. (Top): Photochemical sulfur extrusion of unsymmetrical thioether 

cyclophanes to give unsymmetrical hydrocarbon cyclophanes. (Bottom): 1H NMR spectra 

of two new unsymmetrical hydrocarbon cyclophanes H1271 and H1172 (CDCl3 – 7.26 

ppm). 

 

the top spectrum featuring 4 doublets confirms the structure H1271, whereas H1172 

features 4 doublets for the inequivalent rings of the (7) fragment and 1 singlet for the 

equivalent protons on the (1) fragment. To the best of our knowledge, these are the first 

examples of unsymmetrical hydrocarbon cyclophanes synthesized with self-sorting in the 

first step to ensure the high-yielding formation of the right macrocyclic backbone.  

 Our ability to form unsymmetrical hydrocarbon cyclophanes from unsymmetrical 

thioether cyclophanes is quite remarkable since photochemical sulfur extrusion 
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undergoes a multistep radical mechanism, beginning with the formation of a R–CH2
. 

radical, followed by self-dimerization to form the hydrocarbon (Scheme 5.8).21 Since our 

thioethers are unsymmetrical, we would expect two different types of radical species R–

CH2
. and R’–CH2

.. Nonetheless, we observed no formation of symmetrical hydrocarbons, 

such as H1x or H7y (where x and y are integers) that would result when similar radicals 

recombine. Therefore, the complete sulfur extrusion with no side reaction may render our 

approach an excellent general strategy to form new classes of unsymmetrical 

hydrocarbon cyclophanes. 

 

 

 

Scheme 5.8. Simplified mechanism of photochemical sulfur extrusion. We observed no 

formation of symmetrical hydrocarbons (RCH2)2 or (R’CH2)2 despite starting with 2 

different thioethers (RCH2)S and (R’CH2)S. 

 

Conclusions 

The hydrocarbon cyclophanes reported in this chapter have proven inaccessible by 

traditional cyclophane syntheses. Using self-assembly or self-sorting in the first step has 

allowed us to access different disulfide macrocycles/cages that have unique geometry in 

high yield. Stepwise sulfur extrusion, first with HMPT, then with P(OEt)3 under UV light 

irradiation, can efficiently remove the sulfur atoms with no side reaction. The merit of 

our new approach lies in its promise to deliver previously unattainable cyclophanes and 

to study the emergent properties of these compounds, as targets to enrich the cyclophane 

field and as potential feedstock for the parylene process.  
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Experimental Section  

1H NMR spectra were measured using Varian INOVA and Bruker 500 and 600 MHz 

spectrometers and 13C Bruker-600 spectrometer in CDCl3 and C6D6. Spectra were 

referenced using the residual solvent resonances as internal standards and reported in 

ppm. Single crystal X-ray diffraction studies were performed on a Bruker SMART APEX 

diffractometer. Commercially available reagents were used as received. The reported 

yields are for isolated samples.  

Synthesis of sulfone S73 from thioether T73 

In a 20 mL scintillation vial, thioether T73 (40 mg, 0.063 mmol) and mCPBA 75% by wt. 

(30.4 mg, 0.132 mmol) were added in 2 mL of dried dichloromethane. Solution was 

stirred at 0°C and slowly warmed to room temperature overnight. Reaction was diluted 

with CH2Cl2 and washed twice with saturated sodium bicarbonate and the organic layer 

was washed with deionized water (2X). The solution was dried with MgSO4, filtered and 

concentrated, giving 20 mg of the sulfone product S73 (60 % yield). 1H NMR (500 MHz, 

CDCl3): δ  7.45 (d, 12H, C6H2, J = 6.8 Hz), 7.10 (d, 12H, C6H2, J = 6.8 Hz), 4.35 (s, 12H, 

CH2) ); 
13C{1H} NMR (125 MHz, CDCl3): δ  140.95, 131.23, 127.94, 127.49, 60.42. A 

solution of the S73 in chloroform was layered under benzene and allowed to slowly 

diffuse to obtain single crystals suitable for XRD.  

 

General procedure for the 3-step approach to disulfide, thioether and hydrocarbon 

cyclophanes 

In an NMR tube, thiol (7) (15 mg, 0.06 mmol) and I2 (31 mg, 0.12 mmol) were added in 1 

mL CDCl3. SbCl3 (28 mg, 0.12 mmol) was added to the tube and the reaction was shown 
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to complete rapidly through 1H NMR spectroscopy. The reaction was allowed to run for 8 

hours to ensure the most stable disulfides would form. After 8 hours, the solution was 

diluted with chloroform and quenched with saturated sodium sulfite and the organic layer 

was washed with deionized water (2X). The solution was dried with MgSO4, filtered and 

concentrated to yield a white powder. The powder was redissolved in 1 mL CDCl3. 

Under a cone of nitrogen, HMPT (90 µL, 0.48 mmol) was added to the NMR tube and 

the tube was inverted gently several times to mix. The reaction was left to sit at ambient 

temperature for 2 hours, at which point NMR spectroscopy indicated complete 

conversion to the thioethers. The solution was washed with deionized water and 

concentrated to give a white solid. The solid was sonicated in methanol and filtered 

through a filter paper. The undissolved solid was retrieved from the paper by chloroform, 

giving a mixture of thioether dimer – pentamer T72 –  T75. The powder was redissolved 

in 1 mL C6D6. P(OEt)3 (90 µL, 0.48 mmol) was added to the NMR tube and the tube was 

inverted gently several times to mix. The sample was irradiated with a medium-pressure 

Hg lamp for 14 hours. The reaction was quenched with water and washed multiple times 

with deionized water. GPC was utilized to separate the samples, giving 30% and 40% 

yield (overall yield after 3 steps) of H72 and H73. 1H NMR (500 MHz, CDCl3): H72: δ  

6.79 (d, 4H, C6H2, J = 6.7 Hz), 6.65 (d, 4H, C6H2, J = 6.7 Hz), 2.98 (s, CH2); MS (m/z), 

calculated for C28H25 (M+H)+ 361.1956, found 361.2054; H73: δ 7.22 (d, 12H, C6H2, J = 

6.8 Hz), 6.87 (d, 12H, C6H2, J = 6.8 Hz), 3.01 (s, 12H, CH2); 
13C{1H}NMR (125 MHz): δ 

138.97, 138.17, 129.52, 126.25, 35.97 ppm. MS (m/z), calculated for C42H37 (M+H)+ 

541.2895, found 541.2990. 
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Synthesis of compound H1271 

An oven-dried NMR tube was charged with T1271 (10 mg, 0.017 mmol) in dried C6D6 (1 

mL). Under a cone of nitrogen, P(OEt)3 (200 µL, 1.17 mmol) was added to the NMR 

tube and the tube was inverted gently several times to mix. The reaction was irradiated 

with a medium-pressure Hg lamp at ambient temperature for 6 hours. The solution was 

then concentrated to give a light-yellow liquid. A silica plug (20% EtOAc: 80% hexane) 

was run to give 4.6 mg of product H1271 (70% yield). 1H NMR (600 MHz, CDCl3): δ 

7.00 (d, 4H, C6H2, J = 8.0 Hz), 6.83 (d, 4H, C6H2, J = 7.8 Hz), 6.65 (d, 4H, C6H2, J = 7.8 

Hz), 6.44 (d, 4H, C6H2, J = 8.0 Hz), 2.95 (t, 4H, CH2), 2.93 (s, 4H, CH2), 2.81 (t, 4H, 

CH2). 
13C{1H} NMR (150 MHz, CDCl3): δ 140.04, 139.04, 137.95, 137.16, 129.56, 

128.92, 127.12, 126.90, 37.72, 36.43, 31.18 ppm. MS (m/z), calculated for C30H39 

(M+H)+ 389.2269, found 389.2249. 

 

Synthesis of compound H1172 

 An oven-dried NMR tube was charged with T1172 (8.4 mg, 0.015 mmol) in dried C6D6 

(1 mL). Under a cone of nitrogen, P(OEt)3 (190 µL, 1.15 mmol) was added to the NMR 

tube and the tube was inverted gently several times to mix. The reaction was irradiated 

with a medium-pressure Hg lamp at ambient temperature for 8 hours. The solution was 

then concentrated to give a light-yellow liquid. A silica plug (20% EtOAc: 80% hexane) 

was run to give 4.1 mg of product H1172 (60% yield). 1H NMR (500 MHz, 4CDCl3): δ 

7.04 (d, 4H, C6H2, J = 8.2 Hz), 6.98 (d, 4H, C6H2, J = 8.2 Hz), 6.77 (d, 4H, C6H2, J = 8.0 

Hz), 6.76 (s, 4H, CH2), 6.73 (d, 4H, C6H2, J = 8.0 Hz), 3.02 (s, 4H, CH2), 2.96 – 2.94 (m, 

4H, CH2), 2.91 – 2.89 (m, 4H, CH2). 
13C{1H} NMR (150 MHz, CDCl3): δ 139.21, 
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139.19, 138.75, 138.18, 129.94, 129.27, 129.23, 129.08, 126.69, 126.44, 36.86, 36.64, 

35.40 ppm. MS (m/z), calculated for C36H33 (M+H) + 465.2582, found 465.2680. 
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APPENDIX:  

CRYSTALLOGRAPHY 

X-ray Crystallography.  Diffraction intensities were collected at 173 K on a Bruker 

Apex2 DUO CCD diffractometer using CuK radiation, = 1.54178 Å. Absorption 

corrections were applied by SADABS.1 Structures were solved by direct methods and 

Fourier techniques and refined on F2 using full matrix least-squares procedures. All non-

H atoms were refined with anisotropic thermal parameters. H atoms in all structures were 

refined in calculated positions in a rigid group model. Space groups were determined 

based on systematic absences. These disordered solvent molecules were treated by 

SQUEEZE.2 All calculations were performed by the Bruker SHELXL-2014 package.3 

 

Chapter II 

- Crystallographic Data for D52 (CCDC 1859804): C24H20S4, M = 436.64, 0.13 x 

0.10 x 0.03 mm, T = 173(2) K, Monoclinic, space group  P21/n, a = 7.1311(2) Å, b = 

8.3942(3) Å, c = 17.2693(6) Å,  = 95.931(2), V = 1028.20(6) Å3, Z = 2, Dc = 1.410 

Mg/m3, μ(Cu) = 4.289 mm-1, F(000) = 456, 2θmax = 133.14°, 6792 reflections, 1808 

independent reflections [Rint = 0.0438],  R1 = 0.0323, wR2 = 0.0859 and GOF = 1.040 

for 1808 reflections (127 parameters) with I>2(I), R1 = 0.0345, wR2 = 0.0881 and GOF 

= 1.040 for all reflections, max/min residual electron density +0.311/-0.217  eÅ-3.  

 

- Crystallographic Data for D62 (CCDC 1859805): C24H20S4, M = 436.64, 0.09 x 

0.08 x 0.02 mm, T = 173(2) K, Orthorhombic, space group  Aba2, a = 10.8663(5) Å, b = 
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8.5571(3) Å, c = 22.5617(10) Å, V = 2097.88(15) Å3, Z = 4, Dc = 1.382 Mg/m3, μ(Cu) = 

4.204 mm-1, F(000) = 912, 2θmax = 133.09°, 7433 reflections, 1802 independent 

reflections [Rint = 0.0521],  R1 = 0.0705, wR2 = 0.1777 and GOF = 1.020 for 1802 

reflections (127 parameters) with I>2(I), R1 = 0.0799, wR2 = 0.1885 and GOF = 1.021 

for all reflections, max/min residual electron density +0.582/-0.257  eÅ-3. The structure of 

D62 was determined in orthorombic (Cmca and Aba2) and monoclinic (P21/c and Pc) 

space groups. In centro-symmetrical space groups the ligand is disordered over two 

positions related to two possible orientations of the molecule in the crystal structure. In 

non-centrosymmetrical space groups there is no such the disorder. The Flack parameter is 

0.43(2) in Aba2 and 0.46(2) in Pc. The structure of D62 refined in space group Aba2 is 

given as the final in the paper as having the highest symmetry but without the mentioned 

disorder. The C-C bond distances in D62 have been determined with limited precision due 

to the disorder.  All calculations were performed by the Bruker SHELXL-2014/7 

package.3 

 

Chapter III 

- Crystallographic Data for T72 (CCDC 1884077): C28H24S2, M = 424.59, 0.07 x 

0.04 x 0.04 mm, T = 173(2) K, Monoclinic, space group  P21/c, a = 20.9413(14) Å, b = 

13.7902(11) Å, c = 14.7593(12) Å,  = 90.050(6), V = 4262.3(6) Å3, Z = 8, Z’=2, Dc = 

1.323 Mg/m3, μ(Cu) = 2.341 mm-1, F(000) = 1792, 2θmax = 133.14°, 35340 reflections, 

7416 independent reflections [Rint = 0.0761],  R1 = 0.0646, wR2 = 0.1558 and GOF = 

1.026 for 7416 reflections (542 parameters) with I>2(I), R1 = 0.0804, wR2 = 0.1681 

and GOF = 1.026 for all reflections, max/min residual electron density +0.853/-0.299  
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eÅ-3. It was found that the needle crystal of 1884077 used for data collection is a twin 

consisting of two domains with ratio 0.31/0.69. 

 

- Crystallographic Data for T73 (CCDC 1884075): C44H38Cl6S3, M = 875.62, 0.12 x 

0.02 x 0.015 mm, T = 120(2) K, Monoclinic, space group  P21/c, a = 20.8036(11) Å, b = 

5.6365(4) Å, c = 35.382(2) Å,  = 93.946(4), V = 4139.0(4) Å3, Z = 4, Dc = 1.405 

Mg/m3, μ(Cu) = 5.444 mm-1, F(000) = 1808, 2θmax = 89.06°, 11110 reflections, 3149 

independent reflections [Rint = 0.0651],  R1 = 0.1221, wR2 = 0.3368 and GOF = 1.043 

for 3149 reflections (450 parameters) with I>2(I), R1 = 0.1637, wR2 = 0.3632 and GOF 

= 1.075 for all reflections, max/min residual electron density +0.416/-0.382  eÅ-3.  

Crystals of the investigated compounds are formed as small thin needles and give weak 

X-ray diffraction at high angles. Even using a strong Incoatec IµS Cu source for 

1884075, it was possible to collected data only up to 2θmax = 89.06° and 99.56°, 

respectively. Thus resolution for these structures is low, but the found structures clear 

shown the structure and composition of the compound. One of two solvent molecules 

CHCl3 in 1884075 is highly disordered in a general position and around an inversion 

center, respectively. The corrections of the X-ray data by SQUEEZE are 228 

electron/cell; the required values are 232 electron/cell for four CHCl3 molecules in 

1884075. 

 

- Crystallographic Data for T74: (CCDC 1979193): C56H48S4, M = 849.18, 0.08 x 

0.04 x 0.01 mm, T = 173(2) K, Triclinic, space group  P-1, a = 5.6965(3) Å, b = 

14.1754(7) Å, c = 14.6313(6) Å, α = 99.998(4),  = 100.933(4), γ = 99.669(4), V = 
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1117.49(10) Å3, Z = 1, Z’=0.5, Dc = 1.262 Mg/m3, μ(Cu) = 2.232 mm-1, F(000) = 448, 

2θmax = 148.43°, 10071 reflections, 4272 independent reflections [Rint = 0.0322],  R1 = 

0.0473, wR2 = 0.1222 and GOF = 0.955 for 4272 reflections (367 parameters) with 

I>2(I), R1 = 0.0522, wR2 = 0.1290 and GOF = 0.955 for all reflections, max/min 

residual electron density +0.517/-0.266  eÅ-3. H atoms in 1979193 were found on the 

residual density map and refined with isotropic thermal parameters. 

 

Chapter IV 

- Crystallographic Data for D1271 (CCDC 1884078): C30H28S6, M = 580.88, 0.06 x 

0.04 x 0.02 mm, T = 173(2) K, Triclinic, space group  P-1, a = 10.1303(4) Å, b = 

12.8333(5) Å, c = 22.9283(11) Å, α = 77.847(3),  = 83.562(4), γ = 78.309(2), V = 

2846.0(2) Å3, Z = 4, Z’=2, Dc = 1.356 Mg/m3, μ(Cu) = 4.573 mm-1, F(000) = 1216, 

2θmax = 133.70°, 41027 reflections, 9869 independent reflections [Rint = 0.0623],  R1 = 

0.0561, wR2 = 0.1562 and GOF = 1.033 for 9869 reflections (674 parameters) with 

I>2(I), R1 = 0.0755, wR2 = 0.1698 and GOF = 1.044 for all reflections, max/min 

residual electron density +0.987/-0.651  eÅ-3. Space groups were determined based on 

systematic absences and intensity statistics. 

 

- Crystallographic Data for T1172 (CCDC 1884076): C36H32S3, M = 560.79, 0.18 x 

0.02 x 0.02 mm, T = 173(2) K, Monoclinic, space group  P212121, a = 5.9598(3) Å, b = 

12.9349(7) Å, c = 37.287(2) Å, V = 2874.4(3) Å3, Z = 4, Dc = 1.296 Mg/m3, μ(Cu) = 

2.528 mm-1, F(000) = 1184, 2θmax = 133.14°, 12589 reflections, 4927 independent 

reflections [Rint = 0.0652],  R1 = 0.0504, wR2 = 0.1190 and GOF = 0.924 for 4927 
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reflections (352 parameters) with I>2(I), R1 = 0.0722, wR2 = 0.1335 and GOF = 0.924 

for all reflections, the Flack = 0.04(2), max/min residual electron density +0.205/-0.212  

eÅ-3. The structure of 1884076 was determined in chiral space group symmetry P212121 

with the Flack parameter is 0.04(2) 

 

-  Crystallographic Data for T1272 (CCDC 1884074): C45H42Cl2S4, M = 781.92, 0.08 

x 0.01 x 0.01 mm, T = 173(2) K, Monoclinic, space group  P21/n, a = 16.152(4) Å, b = 

5.5339(12) Å, c = 22.599(5) Å,  = 107.429(15), V = 1927.2(7) Å3, Z = 2, Z’ = 0.5, Dc = 

1.347 Mg/m3, μ(Cu) = 3.781 mm-1, F(000) = 820, 2θmax = 99.56°, 10516 reflections, 

1960 independent reflections [Rint = 0.1651],  R1 = 0.0864, wR2 = 0.1787 and GOF = 

0.972 for 1960 reflections (217 parameters) with I>2(I), R1 = 0.1667, wR2 = 0.2086 

and GOF = 1.004 for all reflections, max/min residual electron density +0.262/-0.251  

eÅ-3.  Crystals of the investigated compounds are formed as small thin needles and give 

weak X-ray diffraction at high angles. Even using a strong Incoatec IµS Cu source for 

1884074 it was possible to collected data only up to 2θmax = 99.56°. Thus resolution for 

these structures is low, but the found structures clear shown the structure and composition 

of the compound. A solvent molecule CH2Cl2 in 1884074 are highly disordered in a 

general position and around an inversion center, respectively. The corrections of the X-

ray data by SQUEEZE are 88 electron/cell; the required values are 84 electron/cell for 

two CH2Cl2 molecules respectively in 1884074.  
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Chapter V 

- Crystallographic Data for S73 (CCDC 1979192): C47H41Cl6O6S3, M = 1010.68, 

0.17 x 0.04 x 0.04 mm, T = 173(2) K, Triclinic, space group  P-1, a = 10.0586(4) Å, b = 

15.3902(6) Å, c = 15.5730(5) Å, α = 84.844(2),  = 83.235(2), γ = 78.415(3), V = 

2339.77(15) Å3, Z = 2, Z’=1, Dc = 1.435 Mg/m3, μ(Cu) = 4.994 mm-1, F(000) = 1042, 

2θmax = 133.19°, 29750 reflections, 8193 independent reflections [Rint = 0.0663],  R1 = 

0.0527, wR2 = 0.1371 and GOF = 1.029 for 8193 reflections (523 parameters) with 

I>2(I), R1 = 0.0701, wR2 = 0.1469 and GOF = 1.029 for all reflections, max/min 

residual electron density +0.682/-0.453  eÅ-3. One of two solvent molecules CHCl3 in 

1979192 is highly disordered in a general position around an inversion center and was 

treated by SQUEEZE.2 The correction of the X-ray data by SQUEEZE is 105 

electron/cell; the required value is 116 electron/cell for two solvent molecules CHCl3 in 

the full unit cell. 

 

-  Crystallographic Data for D1292: C52H54S10. 0.75 (CHCl3) M = 4356.31, T = 

173(2) K, Monoclinic, space group P21/c, a = 11.3540(6) Å, b = 29.3205(18) Å, c = 

31.4598(18) Å, α = 90,  = 91.709(4), γ = 90, V = 10468.5(10) Å3, Z = 8, Z’=0, Dc = 

1.382 Mg/m3, μ(Cu) = 5.236 mm-1, F(000) = 4556.0, 2θmax = 99.642°, 10071 reflections, 

4272 independent reflections [Rint = 0.0322],  R1 = 0.0732, and GOF = 0.979 for 10621 

reflections (1186 parameters) with I>2(I), wR2 = 0.2000 and GOF = 0.979 for all 

reflections. In the structure there are two symmetrically independent molecules. One of 

solvent molecules is disordered over two positions. Diffraction at high angles is weak. 

Data have been collected only to 100 degrees (vs. 133 degrees needed). 
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