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DISSERTATION ABSTRACT

Gabriel Montes de Oca

Doctor of Philosophy

Department of Mathematics

September 2020

Title: An Odd Analog of Plamenevskaya’s Invariant of Transverse Knots

Plamenevskaya defined an invariant of transverse links as a distinguished class

in the even Khovanov homology of a link. We define an analog of Plamenevskaya’s

invariant in the odd Khovanov homology of Ozsváth, Rasmussen, and Szabó.

We show that the analog is also an invariant of transverse links and has similar

properties to Plamenevskaya’s invariant. We also show that the analog invariant

can be identified with an equivalent invariant in the reduced odd Khovanov

homology. We demonstrate computations of the invariant on various transverse

knot pairs with the same topological knot type and self-linking number.
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CHAPTER I

INTRODUCTION

1.1. Knots and Braids

A knot is a smooth embedding of a circle in R3 (or in S3). Two knots K and

K ′ are isotopic if there is a smooth one-parameter family of embeddings containing

both. We consider knots up to isotopy. A knot diagram is a projection of a knot

onto the plane that is an immersion arranged so that no more than two points of

the knot are in the preimage of a point in the projection and at such double points

(called crossings), the two segments in a neighborhood of that point intersect

transversely. Relative to the projection, one segment of the knot crosses “over”

the other at a crossing. In a knot diagram, this segment is drawn with a solid line

crossing over a broken segment, which passes under. See Figure 1.

FIGURE 1. A projection of a trefoil knot to a knot diagram.
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Theorem 1 (Alexander-Briggs [AB27], Reidemeister [Rei27]). Two knot diagrams

D and D′ are diagrams of the same knot if they are related by isotopies of R2 and a

finite sequence of the three Reidemeister Moves: RI, RII, and RIII. See Figure 2.

RI RII RIII

FIGURE 2. The three Reidemeister moves.

A multi-component knot is called a link. That is, a link is an embedding of a

disjoint union of circles in R3 (or S3). Link isotopy and link diagrams are defined

similarly to knot isotopy and knot diagrams, and Theorem 1 holds for links as well.

An oriented knot is a knot that has been given an orientation. Equivalently,

if we view a knot as a smooth closed path with nonvanishing derivative, an

orientation on the knot comes from the direction of its derivative. In diagrams,

we will denote the orientation of a knot with an arrow. An oriented link is a link

whose components are oriented.

We can give signs to the crossing of an oriented link according to Figure 3. In

a knot, the sign of a crossing is independent of the orientation since reversing the

orientation of a knot reverses both of the arrows and thus produces a 180-degree

rotation of the crossings in Figure 3. However, since crossings in a link diagram

could have segments from two different components, if we change the orientation on

only one of those components, we change the sign of the crossing. An alternating
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knot is a knot that has a diagram such that along its path, the curve strictly

alternates between passing over and under itself at each crossing.

− +

FIGURE 3. Crossing signs.

The inverse of an oriented knot K, denoted K is the oriented knot with

the same image but opposite orientation. A knot is called reversible if there is an

isotopy from K to K. Given a knot K, its mirror mK is a knot such that there

is an orientation-reversing homeomorphism between (R3, K) and (R3,mK). In a

diagram, the mirror of a knot arises from switching which segment goes over and

which goes under at every crossing. To be clear, the inverse of the knot reverses

the intrinsic one-dimensional orientation of the knot, while the mirror of the knot

reverses the ambient three-dimensional orientation. A knot is called amphichiral if

it is isotopic to its mirror, and chiral if it is not.

Given two oriented knots K1 and K2 we can produce a new oriented knot,

their connected sum K1#K2, by removing a segment from each K1 and K2 and

then gluing the ends together according to their orientations. See Figure 4. The

connected sum of knots is both associative and commutative. Without specifying

components, the connected sum of two links is not well defined. A knot K is prime

if K = K1#K2 implies either K1 or K2 is the unknot.

# =

FIGURE 4. The connected sum of the left and right trefoil knots.
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Given two knot diagrams, it is not necessarily obvious if they represent

the same knot. To distinguish knots, a number of algebraic invariants have been

defined. Some invariants are easy to define but not easy to compute. For example,

the crossing number of a knot is the minimal number of crossings needed in a

diagram representing that knot. However, given a diagram of a knot, it is not

always clear if some sequences of Reidemeister moves will produce a diagram with

fewer crossings. A knot invariant is called effective if there is a pair of knots that it

distinguishes.

The Kaufmann bracket is an invariant of link diagrams, which assigns to each

diagram a Laurent polynomial in q. The Kauffman bracket of the empty link is

defined to be

〈∅〉 = 1.

The Kaufmann bracket of the disjoint union of the trivial unknot diagram O and a

diagram D is defined to be

〈O tD〉 = (q + q−1)〈D〉.

Fixing a crossing in D, we can produce two related diagrams D0 and D1, where

the fixed crossing in D is replaced by the smoothings as shown in Figure 5. We can

then define the Kaufmann bracket on D recursively by the following skein relation,

〈D〉 = 〈D0〉 − q〈D1〉.

The Kauffman bracket fails to be a link invariant because it is not invariant under

type I and II Reidemeister moves. The difference is a factor of a power of q and a
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sign. However, the RI move also introduces either a positive or a negative crossing,

and the RII move introduces both one positive and one negative crossing. The

crossings are added in such a way that we can compensate for the differences these

moves introduce.

Given a link L with diagram D that has n+ positive crossings and n−

negative crossings, the (unreduced) Jones polynomial, defined as

Ĵ(L) = (−1)n−qn+−2n−〈D〉,

is a link invariant. The Jones polynomial is useful because, in addition to being

an effective link invariant, its value provides a necessary condition for a link to be

chiral, and it puts a lower bound on a link’s crossing number.

D D0 D1

FIGURE 5. The smoothings for defining the Kauffman bracket.

A braid on b strands is a type of diagram of segments (or strands) where all b

strands are arranged to start from the bottom of the diagram and move strictly

monotonically to the top. See Figure 6. Formally, we can view a braid as the

projection of embeddings

B :
b⊔
i=1

Ii −→ R2 × I,

where for each i we have smooth functions xi, yi : Ii → R such that for zi ∈ Ii,

we have B(zi) = (xi(zi), yi(zi), zi) with xi(0) = xσ(i)(1) = i for some permutation

σ, and yi(0) = yi(1) = 0. We consider braids up to isotopies of such embeddings

relative to the boundary of
⊔
Ii.

5



FIGURE 6. A braid diagram.

We can arrange the diagram for a braid so that each crossing occurs at a

distinct height in the diagram. See Figure 7. Then we can describe braids by

elements in a non-commutative group generated by elements σi, for 1 ≤ i < b,

as shown in Figure 8. This group is called the b-braid group.

FIGURE 7. An extended version of the braid diagram from Figure 6. Each
crossing is moved to a different height.

The moves of braid diagrams that do not change the isotopy class of the braid

can be encoded as the following relations among the generators:

σiσi+1σi = σi+1σiσi+1,

for i ≤ b− 2, and

σiσj = σjσi

6



1 2

· · ·
i

σi

· · ·
b

1 2

· · ·
i

σ−1
i

· · ·
b

FIGURE 8. Braid group generators.

if |i− j| ≥ 2. See Figure 9. The group element corresponding to a braid is called its

braid word. We use the convention of writing a braid’s generators in the order they

appear in the braid diagram from top to bottom.

σiσ
−1
i = 1 σi+1σiσi+1 = σiσi+1σi σiσj =

if |i− j| ≥ 2

σjσi

FIGURE 9. Braid group relations.

To each braid there is an associated oriented link called its closure, which we

obtain in the diagram from attaching the top of each segment to the corresponding

location at the bottom of the diagram in such a way that we do not introduce new

crossings. We take the orientation so that the strands point upward in the braid

subset of the diagram. See Figure 10.

Along with the braid group relations, there are two additional moves that

preserve the isotopy class of a braid’s closure, which all together are called Markov

moves. The first is braid conjugation. If B is a braid word on b strands, then braid

7



FIGURE 10. A braid and its closure.

conjugation is the equivalence

B ↔ σiBσ
−1
i

for all 1 ≤ i < b. This is equivalent to moving a crossing around the closure

from the top to the bottom. See Figure 11. The second additional move is

called stabilization, which comes in two forms: positive stabilization and negative

stabilization. This is equivalent to a Reidemeister move of type I that is arranged

to occur on the rightmost strand of the braid so that an additional strand is

added, which is connected to the rest of the braid with either a positive or negative

crossing. Stabilization takes a b-braid to a (b+ 1)-braid. We can summarize positive

stabilization by

B ↔ Bσb

and negative stabilization by

B ↔ Bσ−1
b .

See Figure 12.
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A

B

A

A

B

A

A

B

A

B

FIGURE 11. Braid conjugation.

Negative stabilization. Positive stabilization.

FIGURE 12. Braid stabilization.

1.2. Contact Geometry and Transverse Links

A contact structure on an odd-dimensional manifold is a hyperplane field in

the tangent bundle that is “completely non-integrable.” By the Frobenius theorem,

we can represent all such hyperplane fields locally by the kernel of a non-degenerate

one-form α, and in a 2n + 1-dimensional manifold, the non-integrability condition

translates to α ∧ (dα)n 6= 0 everywhere. The standard contact structure on R3 is

defined as the plane field kerα where α = dz − y dx. A manifold with a contact

structure is called a contact manifold.

9



A typical first-order differential equation

F (x, z, z′) = 0

can be realized as a surface in R3

{(x, z, y) ∈ R3 |F (x, z, y) = 0}.

Given a solution of the differential equation z(x), at each point x with z = z(x),

if the slope y = z′(x) is finite, then dz − y dx = 0. Thus, viewed as a surface in

R3, the solutions of the differential equation are the curves in the surface that are

everywhere tangent to the planes ker(dz − y dx). A contact transformation is a

transformation of R3,

(x, z, y) 7→ (x̂, ẑ, ŷ)

such that there is a nowhere-zero function ρ : R3 −→ R so that

dz − y dx = (dẑ − ŷ dx̂)ρ.

These are precisely the transformations of R3 that map the integral curves of F

to the transformed differential equation F̂ . Contact geometry was first studied by

Sophus Lie in the form of these contact transformations [Gei01].

The discussion above deals with an ordinary first-order differential equation

with unknown function z : R −→ R. This generalizes to partial first-order

differential equations with unknown function z : Rn −→ R by viewing

F (x, z, z′) = 0

10



as a hypersurface in R2n+1. Thus, this view of contact structures coming from

differential equations can generalize to all odd dimensions. The complete non-

integrability condition limits all contact manifolds to odd-dimensional manifolds.

In fact, we can view contact manifolds as an odd-dimensional counterpart to

symplectic manifolds: manifolds with a closed, non-degenerate 2-form. We can reify

this relationship through the construction of symplectic manifolds out of certain

nice contact manifolds in which the contact manifold is an embedded hypersurface.

Conversely, there are certain symplectic manifolds (X,ω) with hypersurface M ,

i : M ↪−→ X,

where (M, ξ) is a contact manifold such that ξ = kerα and dα = i∗ω [Etn06,

Theorem 5.1]. Such pairs of manifolds often arise when we consider a symplectic

manifold coming from an even-dimensional phase space of a mechanical system and

an embedded constant-energy hypersurface.

There are many applications of contact geometry in physics: in Hamiltonian

mechanics and geometric optics, for example. Their applications have elevated

contact manifolds to objects worthy of study in their own right. All closed compact

3-manifolds admit contact structures [Mar71, Théorème 5], though not all admit

so-called tight contact structures [EH01, Theorem 1].

A direct way to study contact manifolds is to examine their embedded

submanifolds. In the case of hypersurfaces, as we saw earlier, examining the

integral curves to the contact structure on the hypersurfaces can be reformulated

as a solution to a first-order differential equation. Another important class of

submanifolds is curves in the contact manifold. Restricting the curves by the

contact structure, we can examine curves that are everywhere tangent to that

11



structure or curves that are everywhere transverse. It is this latter case that we

examine in this dissertation.

A transverse link is a link embedded in S3 that is everywhere transverse to

the standard contact structure. Two transverse links are transversely isotopic if

they are isotopic through a one-parameter family of transverse links. There are

two “classical invariants” for transverse knots: the smooth knot type and the

self-linking number. In the early 2000s, Etnyre-Honda [EH05, Theorem 1.7] and

Birman-Menasco [BM06, Theorem 3] found the first examples of pairs of transverse

knots that had the same classical invariants but were not isotopic as transverse

knots. Topological knots that have distinct transverse knot representatives with the

same classical invariants are called transversely non-simple.

Every link can be represented as the closure of some braid, and every

braid can be associated to a transverse link; conversely, every transverse link

is transversely isotopic to a closed braid [Ben83, Théorèm 8]. The Markov

theorem gives conditions under which two braids have closures that are isotopic

as links [Mar36, theorem on p. 75]. There is a transverse version of the Markov

theorem that gives conditions under which two braids have closures that are

isotopic as transverse links [Wri02, Theorem 1] [OS03, theorem on p. 1].

There are now a number of transverse invariants coming from modern

techniques in knot theory, particularly gauge theory and holomorphic curves.

These include invariants in Heegaard Floer homology [LOSSz09, OSzT08, Kan18],

monopole Floer homology [BS18], and knot contact homology [Ng11].

Closely related to these is Khovanov homology [Kho05], a categorization of

the Jones polynomial, i.e, its graded Euler characteristic is the Jones polynomial.

Khovanov homology is a bigraded abelian group that is computed from the

12



hypercube of resolutions of a planar diagram of a link. In [Pla06], Plamenevskaya

defined an invariant of transverse links as a distinguished element in Khovanov

homology. Unlike the invariants above, it is not known to be effective. That is,

there is no known pair of transverse links that have the same classical invariants

but are distinguished by Plamenevskaya’s invariant. Lipshitz, Ng, and Sarkar

further studied and refined this invariant and showed it is the same in pairs of

transverse links related by negative flypes and pairs related by SZ moves [LNS15,

Theorem 4.15].

With Z/2-coefficients, Ozsvath and Szabó constructed a spectral sequence

from Khovanov homology to the Heegaard Floer homology group ĤF of the

branched double cover [OSz05, Theorem 1.1]. In attempting to lift this spectral

sequence to Z coefficients, Ozsváth, Rasmussen, and Szabó defined a variant

of Khovanov homology, called odd Khovanov homology, and conjectured there

is a spectral sequence from it to ĤF (Σ(K)) with Z-coefficients [ORSz13,

Conjecture 1.9]. In spite of a similar definition, odd Khovanov homology has

different properties from even Khovanov homology. The unreduced and reduced

odd Khovanov homologies have a simpler relationship than in the even case.

Shumakovitch showed there is more torsion in reduced odd Khovanov homology

than reduced even Khovanov homology [Shu11, Subsection 3.A]. Although

odd Khovanov homology is an effective invariant, it does not distinguish knots

related by a Conway mutation [Blo10, Theorem 1]. There is no known analogue

of the Lee spectral sequence, an object defined in [Lee03, Lee05] (cf. [Ras10]).

This last observation is notable given that there is a close relationship between

Plamenevskaya’s invariant and the Lee spectral sequence [LNS15, Theorem 4.2].
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1.3. The Results

In this paper, we take a diagram D of a transverse link L, and construct an

analogue of Plamenevskaya’s invariant in odd Khovanov homology, ψ(D).

Theorem 2. The element ψ(D) ∈ Kh′(L) is a transverse link invariant, which is

well defined up to a sign.

This theorem is restated more precisely as Theorem 7 in Chapter III. In

Proposition 13, we show that the odd Plamenevskaya invariant of the negative

stabilization of another transverse link is zero. In Proposition 14, we show that

if L′ can be obtained from L by replacing a single positive crossing with a 0-

smoothing, then the invariants of each are related by the associated homomorphism

Kh′(L) −→ Kh′(L′). Unlike even Khovanov homology [Kho06, Theorem 1], it is

not known if odd Khovanov homology is natural (cf. [Put10]), so this identification

is weaker than the analogous identification in the even case [Pla06, Theorem 4].

1.4. Organization

This paper begins by giving a deeper exposition on transverse links in

Section 2.1. In Section 2.2, we define grid diagrams: a useful tool for specifying

and studying transversely non-simple knots. We explain the construction of odd

Khovanov homology in Section 2.4. The odd analog of Plamenevskaya’s invariant

is defined in Chapter III, and, using the transverse Markov theorem, we prove

it to be invariant in Theorem 7. In Chapter IV, we investigate the reduced odd

Khovanov homology. There, we define a reduced version of the invariant, and

in Proposition 11, prove that the unreduced invariant can be identified with the

reduced invariant via the isomorphism between full odd Khovanov homology

14



and reduced odd Khovanov homology. In Chapter V, we investigate the odd

invariant’s properties analogous to those of the even Plamenevskaya invariant. In

Chapter VI, we discuss the author’s computer program for studying the invariant

and observations made using it.
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CHAPTER II

BACKGROUND

2.1. Transverse Knots

A contact structure on a 3-manifold M is a plane field ξ that is generic at

each point. Heuristically, the generic condition means that, locally, there is no

surface that is tangent to the plane field at each point of the surface. Since a plane

field can be represented locally by the kernel of a 1-form, the generic condition can

be specified in terms of the 1-form. Namely, by the Frobenius theorem, if ξ = kerα,

then ξ is generic if α ∧ dα 6= 0 everywhere.

An important example is the contact structure (R3, ξstd) defined by ξstd =

kerα where

α = dz − y dx.

See Figure 13.

Two contact structures (M, ξ) and (M, ξ′) are contactomorphic if there

is a diffeomorphism f : M −→ M such that f∗(ξ) = ξ′. Darboux’s

theorem [Dar82, Section X] states that given any contact structure (M, ξ) and any

point p ∈ M , there is a neighborhood N of p, a neighborhood U of 0 ∈ R3, and a

contactomorphism,

f : (N, ξ|N) −→ (U, ξstd|U).

That is to say, there is nothing interesting in a contact structure locally, as all

contact structures look the same near a point.
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FIGURE 13. The standard contact structure in R3. Given by ξsym = ker(dz −
y dx).

Viewing S3 as the unit 3-sphere in R4, we can define a 1-form along S3,

α = (x dy − y dx+ z dw − w dz)|S3 ,

and define ξ′std := kerα. We can show that, via stereographic projection, (R3, ξstd) is

contactomorphic to

(S3\{p}, ξ′std|S3\{p}).

There is a global contactomorphism f : (R3, ξstd) −→ (R3, ξsym), where ξsym is

defined in cylindrical coordinates (r, θ, z) by

ξsym = ker(dz + r2 dθ).

See Figure 14.
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FIGURE 14. The standard symmetric contact structure in R3. Given by
ξsym = ker(dz + r2 dθ).

A curve, γ : I −→M in a contact structure (M, ξ) is transverse to ξ if at each

point p in the curve, we have

Tpγ ⊕ ξp = TpM.

A transverse link in (M, ξ) is a link whose components are all transverse to ξ when

viewed as curves. Without specifying the contact structure, we mean a link that is

transverse with respect to (R3, ξstd) or (R3, ξsym). Two transverse links are isotopic

if they are isotopic through a family of transverse links.

Theorem 3 (Alexander, [Ale23]). Each topological link is topologically isotopic to

the closure of a braid.

If we take a neighborhood of a circle in the xy-plane with a large enough

radius, the contact planes become steep enough so that any braid closure can be

transversely embedded in the standard symmetric contact structure. Thus, for each
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topological link, we can produce a transverse link. Conversely, every transverse link

is transversely isotopic to a braid closure [Ben83, Théorème 8].

Theorem 4 (Markov, [Mar36, Theorem p. 75]). Two braids B and B′ have

isotopic closures if and only if they are related by a finite number of the following

moves:

– braid group relations,

– braid conjugation,

– positive and negative braid stabilizations and destabilizations.

“Transversely isotopic” is a refinement of “isotopic,” thus it is not surprising

that the transverse analog of Theorem 4 permits a reduced number of moves. In

particular, it removes negative braid stabilizations and destabilizations from the list

of moves that preserve transverse isotopy.

Theorem 5 (Transverse Markov Theorem, Wrinkle and Orevkov-Shevchushin,

[Wri02, Theorem 1],[OS03, theorem on p.1]). Two tranverse links L and L′ are

transversely isotopic if and only if they are related by a finite number of the

following moves:

– braid group relations,

– braid conjugations,

– positive braid stabilizations and destabilizations.

Throughout this paper, transverse links will be represented by braids,

oriented vertically. For example, a right-handed trefoil would be represented as

in Figure 15 (left), where it is understood that the diagram stands in for the braid’s
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closure (right). With this convention, every positive and negative crossing has a

fixed representation, with a positive crossing coming from the left strand crossing

over the right strand as we travel up the braid, and a negative crossing from the

right strand crossing over the left strand, as shown in Figure 16.

FIGURE 15. A braid and its closure.

+ −

FIGURE 16. Crossing signs in vertically oriented braids.

There are two classical invariants of transverse knots: the smooth knot type

and the self-linking number. If a transverse knot K has a braid diagram with

b strands, n− negative crossings, and n+ positive crossings, then its self-linking

number is

sl(K) = −b+ n+ − n−.

Since the transverse Markov theorem removes negative braid stabilizations from its

list of moves between braid diagrams representing the same transverse knot, it is

easy to see this is a transverse knot invariant.

A smooth knot type is called transversely non-simple if there is more than

one transverse representative that has that smooth knot type and each transverse
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representative has the same self-linking number. The first transversely non-simple

knots were found by [EH05, BM06]. A transverse knot invariant is called effective

if it can distinguish a pair of different transverse knots with the same smooth knot

type and self-linking number.

Just as transverse links are links whose components are everywhere transverse

to the standard contact structure, a Legendrian link is a link that is everywhere

tangent to the standard contact structure. There is a notion of Legendrian isotopy

analogous to the notion of transverse isotopy. The front projection of a Legendrian

link is the projection

Π : (x, y, z) 7→ (x, z).

If we let θ 7→ (x(θ), y(θ), z(θ)) be the embedding of a Legendrian knot, since it is

everywhere tangent to the contact structure, it follows that

z′(θ)− y(θ)x′(θ) = 0,

and thus

y(θ) =
z′(θ)

x′(θ)
.

And so, in the front projection, the slope of the curve corresponds to the value

of y(θ). In particular, given two segments that cross, the segment with a steeper

slope is behind the segment with a shallower slope. Example front projections are

shown in Figures 17 and 18. Each Legendrian link can be described with such a

front projection with the only limitation being that, instead of vertical tangent

lines, we have cusps that represent parts of the curve where x(θ) reaches a local

extremum, and thus x′(θ) = 0.
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x

y

FIGURE 17. Two Legendrian unknots that are not Legendrian isotopic.

FIGURE 18. A Legendrian figure-eight knot.

Legendrian links are useful when studying transverse links because Legendrian

links can be specified by their front projection. There is also a set of moves, called

the Legendrian Reidemeister moves, which classify front projections of Legendrian

links up to Legendrian isotopy. There is not a projection for transverse links that

provides an analogous property. Furthermore, there is a well-defined map from

Legendrian links to transverse links, called the positive transverse push off, which

can be specified from the front projection following Figure 19. For a more complete

discussion of Legendrian knots, see [Etn05].

FIGURE 19. Defining the positive transverse push off of a Legendrian
knot.
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2.2. Grid Diagrams

As we have begun to see, there is a rich set of relations between links,

braids, transverse links, and Legendrian links. Grid diagrams are a useful tool

for making the maps between these sets of equivalence classes well-defined. See

Figure 20 (left). A grid diagram is an n × n board or grid on which there is one X

and one O in each column and row.

FIGURE 20. A grid diagram.

A grid diagram specifies an oriented knot diagram: in each row we connect

the X and O in that row with a segment oriented from O to X, and in each column

we have a similar segment oriented from X to O. When a vertical segment meets

a horizontal segment, the vertical segment crosses over the horizontal one. See

Figure 20 (right). This gives us a well-defined map from grid diagrams to links. In

this section, we highlight the key points in the relationship between grids and links,

braids, Legendrian links, and transverse links. For a more complete discussion, see

[NT09].

There is a small set of moves between grid diagrams that preserve the isotopy

class of the links they produce. Defining an equivalence relation under these moves,

we get a correspondence between equivalence classes of grid diagrams and links.

Furthermore, for each oriented link diagram there is a set of grid diagrams that

produce isotopic oriented link diagrams. One such grid diagram can be produced
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first by twisting each of the crossings so the overpassing segment is vertically

oriented. Next, we approximate the segments of the knots with straight segments

that are vertical or horizontal. Then, we shift segments as needed so that no two

horizontal segments and no two vertical segments are colinear. Finally, we assign

each corner in the diagram with an X or an O according to the orientations and use

the vertical and horizontal orders to place each corresponding X and O in a grid

diagram. See Figure 21.

FIGURE 21. Generating a grid diagram from a knot.

A grid diagram also can be used to specify a braid. To produce a braid, we

start with the link diagram from the grid diagram. Then we take every row in

which the X is to the left of the O, and replace the leftward-oriented segment with

one coming into the X from the left side, and one coming out of the O to the right

side. See Figure 22(b).
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(a) Generating a knot from a grid diagram.

(c) Generating a Legendrian knot from a grid diagram.

(b) Generating a braid from a grid diagram.

FIGURE 22. Generating knots, Legendrian knots, and braids from grid
diagrams.

Now, every horizontal segment is oriented rightward. If we twist every

downward-oriented segment a little counterclockwise, and every upward oriented

segment clockwise, the result is a braid.

From each grid diagram, we can produce four braids. The one described

above is the rightward braid for the grid diagram, and a similar procedure can also
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be adapted to produce upward, leftward, and downward braids. We can restrict the

set of grid moves producing isotopic links to one that produces equivalent braids.

The restriction depends on the direction of the braid we are producing.

Since for each braid there is a well-defined transverse link, this mapping from

grid diagrams to braids gives us a mapping from grid diagrams to transverse links.

It is also worth mentioning that if we take the knot diagram from a grid, rotate it

clockwise 45 degrees, smooth top and bottom corners, and replace left and right

corners with cusps, we can produce a well-defined Legendrian front projection

from a grid diagram. See Figure 22(c). There is also a restriction of the set of link-

isotopy moves that produces equivalent Legendrian links. Furthermore, it is proven

in [KN10, Propositions 3 and 4] that the map from grid diagrams to transverse

links via the positive pushoff of a Legendrian knot produces the same transverse

link as the map via the rightward braid (the conventions used here match the

conventions of [NT09] and are rotated by 90 degrees from the conventions in

[KN10]).

Grid diagrams provide a strong tool for studying transversely non-simple

knots. They are used in the combinatorial definition of knot Floer homology

[MOS09], which was used in [NOT08] to distinguish transversely non-simple

pairs. They are also useful because the above process of producing a grid diagram

from a knot diagram together with the process of producing a braid from a grid

diagram provides a constructive proof of Alexander’s theorem (Theorem 3). This is

important for us because the definition of the transverse knot invariant central to

this dissertation, given in Chapter III, depends on having a braid diagram.
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2.3. Cube Complexes

Let C be a category, and let I be a finite set. An I-cube in C consists of a

collection of objects and morphisms of C as follows. For an I-cube C∗, the vertices

of the cube are objects corresponding to elements of α ∈ {0, 1}I . The height of a

vertex Cα is defined

|α| =
∑
i∈I

α(i).

The edges are morphisms e? : Cα0 −→ Cα1 where α0, α1 ∈ {0, 1}I differ only at

a single index i′ ∈ I with α0(i′) = 0 and α1(i′) = 1. The faces correspond to

quadruples a00, a01, a10, a11 ∈ {0, 1}I that agree except on a pair of indices, i1, i2 ∈ I

where ajk(i1) = j and ajk(i2) = k for i, j = 0, 1.

Cα01

Cα00 ◦ Cα11

Cα10

e?1e0?

e?0 e1?

A commutative I-cube in C is a I-cube where all faces are required to commute.

Thus, with edges labeled as above, faces satisfy e?1 ◦ e0? = e1? ◦ e?0. A skew I-cube

in C where C is an abelian category is defined similarly, with the condition on faces

changed so that all faces are required to anti-commute.

For a (skew) cube C∗, its set of edges is denoted E(C∗) and for any α ∈

{0, 1}I the subset of edges with Cα as its source is denoted E(α). Similarly, the

set of faces (or squares) is denoted S(C∗). Note our convention that ? denotes a

change from 0 to 1 in the indices of its vertex labels.

A homomorphism between (skew) I-cubes in C f∗ : C∗ −→ C ′∗, which is called

a (skew) cube map, consists of a collection of morphisms fα : Cα −→ C ′α, such that
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for each pair of corresponding edges e[C∗] : Cα0 −→ Cα1 and e[C ′∗] : C ′α0
−→ C ′α1

, we

have

fα1 ◦ e?[C∗] = e?[C
′
∗] ◦ fα0 .

I-cubes in C with cube maps form the category of I-cubes CubeI(C). Commutative

I-cubes in C with cube maps for the category of I-cubes CCubeI(C). Skew I-cubes

in C with cube maps form the category of skew I-cubes SCubeI(C). Note,

Cube∅(C) ∼= SCube∅(C) ∼= C.

For any abelian category C, SCubeI(C) is itself an abelian category. For C∗, D∗ ∈

SCubeI(C), we define

E∗ = C∗ ⊕D∗

such that for each α ∈ {0, 1}I , we define

Eα = Cα ⊕Dα,

and for each edge e : α0 −→ α1, we define

e[E∗] = e[C∗]⊕ e[D∗].

Given a skew cube map f∗ : C∗ −→ C ′∗, the mapping cone Cone(f∗) is a skew

J -cube where J = I t {ı̂}. Vertices α ∈ {0, 1}J with α(̂ı) = 0 all correspond to the

vertices of C∗,

Cone(f∗)α = Cα
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with edges between such vertices also coming from C∗. Similarly, vertices with

α(̂ı) = 1 all correspond to the vertices of C ′∗,

Cone(f∗)α = C ′α,

however the edges between such vertices are the negatives of the edges in C ′∗. For

edge e? : α0 −→ α1 with α0 and α1 differing only at ı̂, for α = α0|I = α1|I , we have

e? := fα.

For each m ∈ Z there is a functor from skew cubes to (co)chain complexes,

Chm : SCube(C) −→ Ch(C),

where for an object C∗ in SCube(C),

Chm(C∗)r :=
⊕
|α|+m=r

Cα,

and

dr :=
⊕

|α|+m=r,e∈E(α)

e.

For a cube map f∗ : C∗ −→ C ′∗, Chm(f∗) is the chain map g∗ where

gr :=
⊕
|α|+m=r

fα.
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Note, given a skew cube map f∗ : C∗ −→ C ′∗,

Chm(Cone(f∗)) = Cone(Chm(f∗)).

A skew cube map f∗ : C∗ −→ C ′∗ is a quasi-isomorphism if Chm(f∗) is a quasi-

isomorphism. In skew cubes for which we their associated chain complexes are the

prime object of study, we will often use d? to denote edges in place of e?.

2.4. Odd Khovanov Homology

We define C to be the subcategory of the (1 + 1)-dimensional cobordism

category.

Let D be a link diagram and X be the set of crossings of D. We define n =

|X |, and n− (resp. n+) as the number of negative (resp. positive) crossings. So,

n = n− + n+. Each crossing has two possible smoothings, which we will label the 0-

and 1-smoothings, defined by Figure 23.

0-smoothing 1-smoothing

FIGURE 23. 0- and 1-smoothings of a crossing.

Which is the 0-smoothing and which is the 1-smoothing is independent

of the sign of the crossing. However, in the braid representations of a link, the

orientation of the crossing immediately makes its sign clear. Thus, for a braid

diagram (oriented vertically) we can represent the 0- and 1-smoothings for positive
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and negative crossings according to Figure 24. We note that for a positive crossing,

the 0-smoothing separates two adjacent strands, whereas the 1-smoothing joins

them. On the other hand, for a negative crossing, the 1-smoothing separates

adjacent strands, and the 0-smoothing joins them.

0-smoothing

1-smoothing

+ −

FIGURE 24. 0- and 1-smoothings of a crossing in a vertically oriented
braid diagram.

If each crossing in D is resolved by either a 0- or 1- smoothing, the result

is a collection of disjoint circles in the plane, called a resolution of D. There is a

resolution cube R(D) ∈ CCubeX (C), where the vertex corresponding to each α ∈

{0, 1}X is the resolution obtained by replacing each crossing x ∈ X by its α(x)-

smoothing. The edges correspond to either a merge or a split of a pair of circles as

well as the identity cobordism on all other circles.

We describe the elementary cobordisms pictorially with figures where the

source of the morphism is the set of circles at the bottom of the figure, and the

target is the set of circles at the top. See Figure 25. To preserve the skew structure

later, we fix a sign convention by labeling each crossing with an arrow that induces

an arrow on the smoothings of this crossing as in Figure 26. There are two possible

choices at each crossing.
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(a) M : the merge cobordism.

a0 a1

a0 ∼ a1

(b) S: the split cobordism.

a1

a0 a1

FIGURE 25. Elementary (1 + 1)-Cobordisms.

crossing 0-smoothing 1-smoothing

FIGURE 26. Crossing arrows for orienting the cobordisms in the
resolution cube. The arrows in a single crossing in the knot diagram (left),
its 0-smoothing (middle), and its 1-smoothing (right). The arrow in the middle
diagram can also be viewed as the 1-handle attached in the cobordism connecting
resolutions, which differ by a 0- and 1-smoothing at this crossing.

Each face of the diagram corresponds to one of the four types as depicted in

Figure 27. There is a function

sgnS : S(R(D)) −→ {±1},

where a square is mapped to +1 if it is type C or type Y, and −1 if it is type A or

type X.

Our construction of the odd Khovanov homology of a link L with diagram

D starts with a skew cube C(D) ∈ SCubeX (ModgrR ) where ModgrR is the category

of graded R-modules. Each vertex module is the exterior algebra on the free R-
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Type A Type C

Type X Type Y

FIGURE 27. Face types in the resolution cube. There are four types of faces
in the resolution cube depending on the one-handles corresponding to the face’s
edges. The thicker solid lines represent the relevant circles in the resolution before
the cobordisms, and the dotted lines (or arrows) correspond to the one-handles.

module generated by {v1, . . . , vk}

Λ∗〈v1, · · · , vk〉

where each generator vi corresponds with a circle ai in the corresponding vertex

of the resolution cube R(D). The construction of the skew cube is inductive on

the number of crossings n. At each stage, for a diagram D with n crossings we

construct a pair of a skew cube C(D) and a function

sgnE(C(D)) : E(C(D)) −→ {±1}
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with the following properties:

1. For a face C(D) of type A or X (resp. C or Y) there are an odd (resp. even)

number of edges around the face labeled −1 by sgnE(C(D)).

2. The maps in the skew cube C(D) are obtained by multiplying the maps from

Formulas 2.4.1 and 2.4.2. below by sgnE(C(D))(e).

For the base case |E(C(D))| = 1 we define

sgnE(C(D))(e) = 1.

If the edge e corresponds to the merge cobordism, the corresponding map is defined

by

v0, v1 7→ v0 ∼ v1 (2.4.1)

(see Figure 25(a)). If e corresponds to the split cobordism, the map is defined by

1 7→ (v0 − v1) (2.4.2)

(see Figure 25(b)) where the arrow in α0 (as given in Figure 26) points from a0 to

a1.

In the inductive step, consider a diagram with n+ 1 crossings. Let x̂ be one of

the crossings, and D0 and D1 the diagrams obtained from the 0- and 1-smoothings

at x̂. By induction, we have a skew cub C(D0) and a function

sgnE(C(D0)) : E(C(D0)) −→ {±1},
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satisfying Properties 1 and 2. Let Ĉ(D1) be the (not necessarily skew) X\{x̂}-

cube where the maps on the edges are defined by (2.4.1) if the edge corresponds

to a merge cobordism, and (2.4.2) if the edge corresponds to a split cobordism.

Note, for a face S ∈ S(Ĉ(D1)), it is type A (according to Figure 26) if the face

anti-commutes, type C if it commutes, and type X or Y if it both commutes and

anti-commutes (i.e., the composition of two consecutive edges on the face is the

zero map). So sgnE is motivated by the need for a sign assignment that guarantees

that each face S ∈ S(C(D1)) is skew. We define the X\{x̂}-cube C(D1) to have

the same vertices as Ĉ(D1). For each edge e1 ∈ E(C(D1)), there is a corresponding

edge ê1 ∈ E(Ĉ(D1)) and a corresponding edge e0 ∈ E(C(D0)). The pair e0 and e1

correspond to edges in R(D), and there, they specify a unique face S ∈ S(R(D)).

We define

e1 = sgnE(C(D0))(e0) sgnS(S)ê1.

Lemma 1. Defined as above, C(D1) is a skew cube.

Proof. Let S1 ∈ S(Ĉ(D1)). There is a corresponding face S0 ∈ C(D0), and together,

these faces specify a 3-cube in R(D) with S0 as the top face, S1 as the bottom face,

and an additional four lateral faces. By [ORSz13, Lemma 2.1], this cube has an

even number of faces of type A and X. We have two cases. In the first case S0 and

S1 are either both type A or X, or both type C or Y. Thus, by [ORSz13, Lemma

2.1], there are an even number of lateral faces of type A or X. Therefore, by the

sign assignment of S1, there are an even number of negative signs introduced on the

edges of S1. It follows that the parity of the number of edges that map to −1 in S0

matches the parity for S1. Since S0 is skew, and S1 is of a matching type, then S1

is skew too.
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In the second case, S0 and S1 are not of a matching type. That is, one is of

type A or X, and the other is of type C or Y. In this case, there is an odd number

of lateral faces of type A or X. If S0 is type C or Y (and thus S1 is type A or X),

by the sign assignment of S1, there are an even number of negative signs introduced

on the edges of S1. If S0 is type A or X (and thus S1 is type C or Y), by the sign

assignment of S1, there are an odd number of negative signs introduced on the

edges of S1. Therefore, we have the number of negative signs introduced on S1 to

guarantee it is skew.

We define f x̂∗ : C(D0) −→ C(D1) where for α ∈ {0, 1}X\{x̂}, f x̂α is

defined by (2.4.1) or (2.4.2) if the corresponding edge in R(D) is a merge or a split

respectively.

Lemma 2. Defined as above, f x̂∗ is a cube map.

Proof. Let e0 ∈ E(C(D0)) with corresponding e1 ∈ E(C(D1))

ei : C(Di)α0 −→ C(Di)α1

for i = 0, 1. In R(D), there is a unique face S specified by e0 and e1. By

construction, e1 has the opposite sign assignment of e0 if S is type A or X, and the

same sign assignment if S is type C or Y. Thus, the definition of C(D1) guarantees

that

f x̂α1
◦ e0 = e1 ◦ f x̂α0

.

Hence, we define the skew cube

C(D) = Cone(f x̂∗ ).
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This gives us the next skew cube in the induction step. It remains to be shown that

there is a well-defined sign assignment function at this level.

We define

sgnE(C(D)) : E(C(D)) −→ {±1}

as follows. If e corresponds to an edge e0 ∈ C(D0), then

sgnE(C(D))(e) = sgnE(C(D0))(e0).

If e corresponds to an edge e1 ∈ C(D1), e0 is the corresponding edge in C(D0) and

S is the unique square connecting their correspondents in R(D), then

sgnE(C(D))(e) = − sgnE(C(D0))(e0) sgnS(S).

Note, the negative sign here corresponds to the negative sign in the mapping cone

on edges coming from the target of the cone map. On all other edges e (the edges

that connect C(D0) to C(D1)),

sgnE(C(D))(e) = 1.

Lemma 3. With sgnE(C(D)) defined as above, for each face S ∈ S(C(D)), S has an

even number of edges that map to −1 if it is type A or X, and an odd number if it

is type C or Y.

Proof. Since C(D) is the mapping cone of f x̂∗ : C(D0) −→ C(D1), where the faces

of C(D0) are already assumed to satisfy this property, and the faces of C(D1) are

constructed to do so, it remains only to look at the faces S which connect an edge
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e0 that came from C(D0) to the edge e1 that comes an edge in C(D1). We note the

other two edges—obtained from the mapping cone—each map to +1.

In the first case, let S be type A or X. In this case

sgnE(C(D1))(e1) = − sgnE(C(D0))(e0) sgnS(S)

= sgnE(C(D0))(e0).

Thus, there are exactly zero or two edges that map to −1 in S.

In the second case, let S be type C or Y. Then,

sgnE(C(D1))(e1) = − sgnE(C(D0))(e0) sgnS(S)

= − sgnE(C(D0))(e0).

Thus, there is exactly one edge that maps to −1 in S.

Note that the maps are R-module homomorphisms, not R-algebra

homomorphisms. That is, even though the vertices in C(D) are exterior algebras,

it is not necessarily the case that the image of the morphisms respects the

product structure. In particular, f x̂α corresponding to a split is not an R-algebra

homomorphism. This map also has a non-trivial degree with respect to the natural

grading on the exterior algebras:

f x̂α : ΛkV −→ Λk+1V.

Thus, to produce a bigraded homology of our chain complex, we will define a

quantum grading on the vertex vector spaces with respect to which the edge

homomorphisms are homogeneous. The quantum grading Q is defined such that
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the grading of ΛkVα is

Q = (dimVα)− 2k + n+ − 2n− + |α|.

We define the odd Khovanov homology, Kh′(D), to be the homology of

Ch−n−(C(D)).

Theorem 6 (Ozsváth-Rasmussen-Szabó, [ORSz13, Theorem 1.3]). If L is a link

and D is a diagram of L, then Kh′(D) is independent of choice of diagram.

Thus, we can write unambiguously Kh′(L) in place of Kh′(D). If we want to

specify homogenous elements with respect to the bigrading, we can write Kh′r,q(L).

Even Khovanov homology Kh(L) is defined similarly. It uses a different

functor, and is natural in the sense that if there is any cobordism between a pair

of links, then there is a morphism that is well defined up to sign between their even

Khovanov homologies [Jac04, Theorem 2]. An analogous result has not been proven

for odd Khovanov homology, but it is conjectured to be true.

We will often take an abstract diagram, usually called D, and focus on one

part of that diagram. That is, a braid diagram will often be restricted so as to not

show all of the diagram; there may be additional crossings and strands unseen.

If the highlighted part of the diagram has only one crossing x′ we can think of

D0 as the (X\{x′})-cube with the 0-smoothing at x′. Likewise, we think of D1 as

the cube with the 1-smoothing at x′.

If the highlighted part of the diagram has more than one crossing, we

number the crossings from top to bottom and then use subscripts to denote which

smoothings are used in the resolution in the order corresponding to the subscripts.

For example, if we highlight two crossings, x′ ∈ X at the top of the diagram and

39



x′′ ∈ X below it, then D10 is the (X\{x′, x′′})-cube that has the 1-smoothing at

x′ and the 0-smoothing at x′′. This continues analogously for diagrams with more

highlighted crossings.

Likewise, for the skew cube complex C(D), there are related subquotients

such as C(D01) and C(D11). From the large complex, we inherit R-module

homomorphisms Fe on each of these edges. In resolutions of highlighted diagrams,

this leads to a chain map between them given by the edges between corresponding

resolutions. For example, between C(D010) and C(D110), there is a skew cube map

e?10 : C(D010) −→ C(D110).

We will often abuse notation and use C(D) to refer to both the skew cube

complex and the chain complex Ch−n−(C(D)).
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CHAPTER III

THE INVARIANT

3.1. Definition of the Invariant

Definition 1. Let L be a transverse link and D be a braid diagram of L. In the

resolution cube associated to D, let α′ be the unique resolution where the braid

representation is separated into b parallel bands. This resolution corresponds to

the vector space Λ∗Vα′, where Vα′ = 〈v1, . . . , vb〉. We define ψ(D) first on the level

of the chain complex to be a generator of ΛbVα′,

ψ(D) := v1 ∧ · · · ∧ vb.

From the braid representation, it is easy to see that this resolution is the one

in which there is a 0-smoothing for every positive crossing and a 1-smoothing for

every negative crossing.

3.2. The Invariant as Seen in Homology

Proposition 1. ψ(D) is a cycle.

Proof. There are two cases. If the resolution corresponding to the vertex in which

ψ(D) resides is one with a 1-smoothing at every crossing (that is, every crossing in

D is a negative crossing), then the next vector space in the chain complex is the 0

vector space, so the differential from the vector space containing ψ(D) is the zero

map. Thus every element of Λ∗Vα′ is trivially a cycle, ψ(D) included.

In the second case, there is at least one 0-smoothing in the corresponding

resolution. The differential that maps out of Λ∗Vα′ in this case is a sum of maps,
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each corresponding to a merge cobordism, one for each 0-smoothing. This is

because at each 0-smoothing, the parallel strings on either side of the smoothing

merge into a single circle after becoming the 1-smoothing. See Figure 28. We will

show that for any one of these maps ψ(D) is mapped to 0, thus d(ψ(D)) = 0 and is

therefore a cycle.

FIGURE 28. Edge maps out of the invariant’s resolution. The diagrams of
the 0-smoothing (left) and 1-smoothing (right) of a single positive braid crossing.
The two circles (blue and red) in the 0-smoothing on the left merge into a single
circle (purple) on the right.

If the merging components in the diagram are ai0 and ai1 , corresponding to

generators vi0 and vi1 resp., the merge map on the vector spaces is induced by the

quotient map,

q : Vα′ −→ Vα′/(vi0 − vi1).
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The image of the quotient map Vα′/(vi0 − vi1) is isomorphic to the vector space

generated by the elements corresponding to the components in the target resolution

〈v1, . . . , (vi0 ∼ vi1), . . . , vb〉 since there will be one fewer component there after the

merge. Since q(vi0) = q(vi1), then q̃(ψ(D)) = 0 under the induced map because two

of the factors in the wedge product map to the same vector.

Thus, ψ(D) defines an element of homology. We will abuse our notation and

refer to both the cycle and its class in homology by ψ(D).

Proposition 2. The distinguished element ψ(D) is in Kh′0,sl(L)(L).

Proof. Let ψ(D) be the distinguished element of the homology defined above

corresponding to the diagram D. In the chain complex, ψ(D) is an element of

Λ∗Vα′ where Vα′ = 〈v1, . . . , vb〉 is the vector space with a generator associated to

each of the b parallel strands. In particular, the Q grading on ΛbVα′ is given by

Q = (dimVα′)− 2b+ n+ − 2n− + |α′|

and because of the choice of α′, the number of 1-smoothings is the number of

negative crossings in D. Thus, we have |α′| = n−, so

Q = −b+ n+ − n−

= sl(L).

For each resolution α, the homological grading r on Vα is defined such that

|α| = r+ n−. Thus, since |α′| = n−, then r = 0. Therefore, ψ(D) ∈ Kh′0,sl(L)(L).
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3.3. Invariance

In this section, we will show that ψ(D) is an invariant of transverse links. To

do this, we rely upon the transverse Markov theorem—Theorem 5—and show that

ψ(D) is invariant under braid group relations and positive braid stabilizations. It

is trivially the case that ψ(D) is unchanged by braid conjugations since two braids

related by braid conjugation have closures whose diagrams are isotopic in the plane.

Thus, their chain complexes are also canonically isomorphic, and that isomorphism

clearly identifies ψ(D). Positive braid stabilization and destabilization corresponds

to a Reidemeister move of type I that introduces or removes a single positive

crossing. We refer to such a move as a transverse type I Reidemeister move, and

we prove invariance of ψ(D) under this move in Proposition 3. The braid group

moves can be generated from Reidemeister moves of types II and III. We show the

invariance of ψ(D) under these moves in Propositions 4 and 5.

Proposition 3. Let D and D̂ be two braid diagrams for a transverse link L related

by a single transverse type I Reidemeister move (R1), where D̂ is the diagram with

the additional positive crossing. There is a quasi-isomorphism ρ : C(D) −→ C(D̂)

such that ρ(ψ(D)) = ψ(D̂).

Proof. Let D and D̂ be as described above. Focusing on the additional positive

crossing, D̂ has two associated diagrams, D0 (resp. D1) where the 0-smoothing

(resp. 1-smoothing) resolves the additional crossing. The resolution cube of D1

is isotopic to the resolution cube of D at corresponding vertices, thus there is a

natural identification of ψ(D) and ψ(D1). On the other hand, the resolution cube

of D0 is isotopic to the resolution cube of D t a0. See Figure 29.
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D̂

d?

D0 D1

FIGURE 29. The Resolution Cube for D̂: diagram after a transverse RI
move.

In their respective chain complexes, we will use the same generators for

equivalent circles. In particular, in each vertex in the resolution cube we will always

label the circle to which a0 attaches as a1. We associate a0 to the generator v0, and

a1 to v1. We also note, by using the same generators for equivalent circles, since

C(D1)⊕ (v0 ∧ C(D1)) ∼= C(D)⊕ (v0 ∧ C(D)) ∼= C(D t a0) ∼= C(D0),

there is a natural inclusion of the first summand, ı : C(D1) ↪−→ C(D0). If we

define w : C(D0) −→ C(D0) by w(ω) = (v0 − v1) ∧ ω, the composition w ◦ ı :

C(D1) −→ C(D0) induces an isomorphism of chain complexes between C(D1) and

(v0 − v1) ∧ C(D0). In particular, if we let b be the braid index of D and thus the

braid index of D1, we have

w ◦ ı(ψ(D1)) = w ◦ ı(v1 ∧ · · · ∧ vb)

= (v0 − v1) ∧ (v1 ∧ · · · ∧ vb)

= v0 ∧ v1 ∧ · · · ∧ vb.

Now, we consider the chain map d? : C(D0) −→ C(D1), which is the map

induced by the cobordism merging a0 and a1. This map is the quotient map given
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by the identification of v0 with v1. With this setup, the chain complex C(D̂) is

isomorphic to the mapping cone Cone(d?).

On the chain complex level, ker d? is isomorphic to (v0 − v1) ∧ C(D0). Since

d? is surjective, it follows that C(D̂) ∼= Cone(d?) is quasi-isomorphic to ker d∗ ∼=

(v0 − v1) ∧ C(D0) via j : ker d? ↪−→ Cone(d?). Thus, we have a quasi-isomorphism

 : (v0 − v1) ∧ C(D0) ∼= ker d? −→ C(D̂),

with

(v0 ∧ v1 ∧ · · · ∧ vb) = v0 ∧ v1 ∧ · · · ∧ vb = ψ(D̂).

Letting ρ : C(D) −→ C(D̂) be the composition ̄ after w ◦ ı, it follows that ρ

is a quasi-isomorphism such that

ρ(ψ(D)) = ψ(D̂).

Proposition 4. Let D and D̂ be two braid diagrams of a transverse link L

related by a single type II Reidemeister move (R2), where D is the diagram with

more crossings. There is a quasi-isomorphism ρ : C(D) −→ C(D̂) such that

ρ(ψ(D)) = ψ(D̂).

Proof. Let D and D̂ be as described above. The resolution cube for D is illustrated

in Figure 30. We note C(D) can be represented by the diagram below as a

mapping cone of a map between two mapping cones.
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C(D01)

C(D00) C(D11)

C(D10)

d?1d0?

∧(v2−v1) v2∼v3

By the arrangement in Figure 30, it follows that ψ(D) ∈ C(D01).

D

.

D00

D01

D10

D11

FIGURE 30. The resolution cube for D: the diagram after an RII move.

We let X ⊂ C(D10) be the kernel of the contraction with v∗2, the dual of the

generator associated to the disjoint circle in D10. Note, since X and C(D11) are

isomorphic via the quotient map v2 ∼ v3, it follows that the subquotient complex

corresponding to the isomorphism’s mapping cone A =

C(D11)

X

v2∼v3

is acyclic. Thus, C(D)/A, represented in the diagram below, is quasi-isomorphic to

C(D).
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C(D01)

C(D00)

C(D10)/X.

d0,?

∧(v2−v1)

Let q : C(D) −→ C(D)/A be that quotient map, which is a quasi-

isomorphism. Since ψ(D) ∈ C(D01) is the sole representative in its equivalence class

in the quotient, then q(ψ(D)) = ψ(D). Furthermore, since C(D00) and C(D10)/X

are isomorphic under the map generated from 1 7→ (v1−v2), then (C(D)/A)/C(D01)

is acyclic. Thus C(D01) is quasi-isomorphic to C(D)/A, and the map is the natural

inclusion map. Under this map, we have that ψ(D) ∈ C(D01) ⊂ C(D) is

unchanged. Finally, since there is a trivial isomorphism between C(D̂) and C(D01),

it follows that ψ(D̂) = ρ(ψ(D)), where ρ is the quasi-isomorphism between C(D)

and C(D̂) obtained from the compositions of the quotient maps above and the

trivial isomorphism from C(D01) to C(D̂).

Proposition 5. Let D and D̂ be two braid diagrams of a transverse link L related

by a single type III Reidemeister move (R3). There is a chain complex C and

quasi-isomorphisms,

ρ : C(D) −→ C and ρ̂ : C(D̂) −→ C,

such that ρ(ψ(D)) = ρ̂(ψ(D̂)).

Proof. Let D and D̂ be two link diagrams that are related by a single Reidemeister

move of type 3, (R3). Focusing on the three crossings involved in the (R3) move,

we can represent C(D) via the cube depicted in Figure 31. From the blue map in
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Figure 31

d0?0 : C(D000) −→ C(D010)

we define

d̃0?0 : ω 7→ d0?0(ω) ∧ v0,

where v0 is the generator associated to the sole circle entirely shown in D010. Thus,

if we denote the complex from the mapping cone of d̃0?0 : C(D000) −→ C(D010) ∧ v0

by C(D̃0?0), it follows that there is a quasi-isomorphism between C(D) and

C(D)/C(D̃0?0). We also note that this quasi-isomorphism is the identity map on

parts of the cube uninvolved in the quotient, namely on C(D111).

D

D000

D001

D010

D100

D011

D101

D110

D111

FIGURE 31. The resolution cube for D: the diagram before an RIII
move.

We define C̊ to be the complex from the mapping cone of the identification

of C(D010)/v0 with C(D011) ∼= C(D110), shown in Figure 32. Since the map is an
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isomorphism, this complex is acyclic. It can be identified with either green arrow in

C(D) in Figure 31. There is a chain map Ψ : C̊ −→ C(D)/C(D̃0?0), given by the

identification of C(D010)/v0 in C̊ with C(D010)/(C(D010) ∧ v0) in C(D)/C(D̃0?0),

and the map from the codomain in C̊ to the quotient via the diagonal identification

of C(D011) and C(D110).

C

( )
/v0 C

( )

FIGURE 32. The resolution cube for C̊.

There is a further chain map Φ from C(D)/C(D̃0?0) to the complex from

the diagram in Figure 33, which we call C. Up to signs, this map is given by

identifying C(D001) with C(A), C(D100) with C(B), C(D011) and C(D110) with

C(Γ), C(D111) with C(∆), and the map from C(D010) being trivial. It is important

to note that these signs can be arranged so that they do not impact the mapping

between C(D111) and C(E) or adjacent maps. So defined, these chain maps form a

short exact sequence,

0 −→ C̊
Ψ−→ C(D)/C(D̃0?0)

Φ−→ C −→ 0.

Since C̊ is acyclic, Φ is a quasi-isomorphism. Furthermore, we note that Φ is the

identity on C(D111). Thus, there is a quasi-isomorphism ρ : C(D) −→ C, which is

the identity when restricted to C(D111).

For clarity, we simplify the diagram of C to the diagram in Figure 34. This

will make the identification of C with the contracted version of C(D̂) more visually

obvious.
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A

B

Γ

∆

E

FIGURE 33. The resolution complex for C: the reduced resolution
complex of D.

A

B

Γ

∆

E

FIGURE 34. A simplified presentation of D0: the reduced resolution
complex of D.

In the diagram for C(D), we can think of C as the contraction of the two

thick edges. This works because C(D000) ∼= C(D110) (∼= C(D011)), and C(D010)

comes from D010, which is D000 tO.

Now, we represent C(D̂) by the diagram in Figure 35. Note, like with C(D),

we have C(D̂000) ∼= C(D̂110) ∼= C(D̂011), and C(D̂010) comes from D̂010, which

is D̂000 t O. Thus, just as with C(D), we can contract the two thick edges in the

diagram, giving us Ĉ.
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D̂

D̂000

D̂001

D̂010

D̂100

D̂011

D̂101

D̂011

D̂111

FIGURE 35. The resolution cube for D̂: the diagram after an RIII move.

The contracted diagram is given in Figure 36 and labeled according to how

vertices will correspond with C.

B̂

Â

Γ̂

∆̂

E ′

FIGURE 36. The resolution complex of the contracted version of D̂.
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These relations give us a quasi-isomorphism ρ̂ : C(D̂) −→ Ĉ and as before,

the quasi-isomorphism is the identity on C(D̂111). The simplified diagram for

C(D̂1) is presented in Figure 37. We note that, except for swapping the position

of the leftmost nodes, this corresponds exactly with the simplified diagram of C,

thus, C ∼= Ĉ.

B̂

Â

Γ̂

∆̂

Ê

FIGURE 37. A simplified presentation of the resolution complex for the
contracted version of D̂.

Since the chain complexes are bounded, having proved Propositions 3-5,

by Theorem 5, we have a more precise formulation of Theorem 2 from Chapter I

below.

Theorem 7. Given two diagrams D and D′ of the same transverse link L, there is

an isomorphism ρ : Kh′(D) −→ Kh′(D′) such that ψ(D′) = ρ(ψ(D)).

Hence, we can unambiguously write ψ(L) instead of ψ(D).

Since Kh′(L) is not known to be natural, Kh′(L) is only (currently) known

to be well-defined up to automorphism. Above, we have shown that there is a well-

defined map ρ that takes ψ(D) to ±ψ(D′) associated to any sequence of transverse

Markov moves from D to D′. In particular, whether ψ(D) vanishes, whether ψ(D)
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is n-torsion, or whether ψ(D) is divisible by n are all well-defined invariants of the

transverse link type.
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CHAPTER IV

REDUCED HOMOLOGY

In this chapter, we examine the invariant ψ(L) in the reduced homology. In

Section 4.1, we define the groups of the chain complex for the reduced homology

C(D) as first defined in [ORSz13, Section 4]. The relationship between this

chain complex and the full chain complex of odd Khovanov homology is stated in

Proposition 7, and is extended to their homologies in Corollary 2. In Section 4.2,

we define the differential for this chain complex.

There is a simple relationship between the full and reduced odd Khovanov

homologies, and in Section 4.3 we will see conditions that restrict the image of the

invariant under this relationship. This restriction yields Corollary 3, which relates

to the minimality of a transverse knot. (A related result is given in Chapter V as

Proposition 13.)

In Section 4.4, we define a reduced version of the odd Plamenevskaya

invariant, a class in the reduced homology ψ(D) ∈ Kh′(L). With our maps

defined explicitly, it will be possible to identify ψ(D) in the full homology with

the reduced version of the invariant under the relationship between the full and

reduced homologies, which we state precisely in Proposition 11. From this, it

follows that ψ(D) is a transverse link invariant, stated as Corollary 5. Thus, we

can unambiguously write ψ(L).

4.1. The Reduced Chain Complex

The reduced odd Khovanov homology is defined first on the level of complexes

of a link diagram D. There are two definitions for the reduced chain complex:
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a base-point-dependent definition, and an independent definition. They are

isomorphic, and the base-point-dependent definition is useful for proving properties

of the reduced odd Khovanov homology. For the base-point-dependent one, we take

a point, p ∈ D not at one of the crossings. In each resolution, this point will belong

to a particular circle. Choose labelings of the circles so that in every resolution this

circle is labelled ap, and define

C
(p)

(D) = vp ∧ C(D) ⊂ C(D).

As a consequence of Proposition 8, we will see for p, q ∈ D, that C
(p)

(D) ∼= C
(q)

(D).

The base-point-independent definition comes from the exterior algebras Λ∗Vα

that make up the direct sum that defines C(D). For each resolution α with Vα =

〈v1, . . . , vn〉, we define ϕα : Vα −→ R by

ϕα :
∑

rivi 7→
∑

ri.

We define Λ∗◦Vα to be the subalgebra generated by the kernel of ϕα. That is,

Λ∗◦Vα = Λ∗(kerϕα). Then, we define C(D) to be the subcomplex of C(D)

corresponding to sum of all Λ∗◦Vα. That this is a subcomplex is a consequence of

the following proposition.

Proposition 6. For each r, d(C
r
(D)) ⊂ C

r+1
(D). That is, C(D) is a subcomplex

of C(D).

Recall that an edge e in the X -cube of resolutions corresponds to a pair of

resolutions, α0, α1, which differ at a single crossing x such that α0(x) = 0 and
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α1(x) = 1. In the cube of R-modules, we have a map

Fe : Λ∗Vα0 −→ Λ∗Vα1 .

To prove Proposition 6, we will show for any such edge e,

Fe(Λ
∗
◦Vα0) ⊂ Λ∗◦Vα1 .

Proposition 6 follows immediately. The proof that the Fe(Λ
∗
◦Vα0) ⊂ Λ∗◦Vα1 is given

in parts as the lemmas in Section 4.2.

Proposition 7. There is an isomorphism

C(D) ∼= C(D)⊕ C(D).

4.2. The Induced Differential

Lemma 4. Let V and W be free R-modules with bases {vi} and {wj}. Suppose

T : V −→ W is given by T (vi) =
∑

j A
j
iwj, and for all i,

m∑
j=0

Aji = 1.

Then the map induced on the exterior algebras

T̂ : Λ∗V −→ Λ∗W,

satisfies

T̂ (Λ∗◦V ) ⊂ Λ∗◦W.
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Proof. Let ϕV : V −→ R, be the map given by

∑
rivi 7→

∑
ri,

and ϕW : W −→ R by ∑
riwi 7→

∑
ri.

Thus, Λ∗◦V = Λ∗ kerϕV , and Λ∗◦W = Λ∗ kerϕW . It suffices to show T (kerϕV ) ⊂

kerϕW . Let v =
∑
rivi ∈ kerϕV . Then

T (v) =
∑
i

riT (vi)

=
∑
i

ri
∑
j

Ajiwj

=
∑
j

(∑
i

riAji

)
wj.

Therefore,

ϕW (T (v)) =
∑
j

(∑
i

riAji

)

=
∑
i

ri

(∑
j

Aji

)
.

The internal summand is 1 by our assumption on T , thus

ϕW (T (v)) =
∑
i

ri.
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Since v =
∑
rivi ∈ kerϕV , then

ϕW (T (v)) = 0.

Corollary 1. Let W be a cobordism between disjoint collections of circles α0 and

α1 entirely made up from a disjoint union of any combination of: the identity

cobordism, I; or the merge cobordism, M . Then

FW (Λ∗◦Vα0) ⊂ Λ∗◦Vα1 .

Lemma 5. Let S be the split cobordism (possibly with the identity cobordism on

other components) between α0 and α1. Then

FS(Λ∗◦Vα0) ⊂ Λ∗◦Vα1 .

Proof. We can label the circles of α0 and α1 so that FS(ω) = (v0 − v1) ∧ ω. Since

(v0 − v1) ∈ kerϕα1 , it follows that if ω ∈ Λ∗◦Vα0 , then FS(ω) ∈ Λ∗◦Vα1 .

Thus, it follows that C(D) is a chain subcomplex of C(D).

Proposition 8. For any p ∈ D, there is an isomorphism

Xp
D : C

(p)
(D) −→ C(D).

Proof. We first define the map on the level of exterior algebras corresponding to

resolutions α. Without loss of generality, we take a labeling of D so that in the

resolutions p ∈ a0.
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Thus, we will define

χpD : v0 ∧ Λ∗Vα −→ Λ∗◦Vα = Λ∗ kerϕα.

If V = 〈v0, · · · , vn〉, then we define

V̂ := 〈v1, · · · , vn〉.

We will show χpD = θ2 ◦ θ1 where

θ1 : v0 ∧ Λ∗Vα −→ Λ∗V̂

and

θ2 : Λ∗V̂ −→ Λ∗◦Vα.

Every element of v0 ∧ Λ∗Vα can be expressed as v0 ∧ ω for ω ∈ Λ∗V̂ . So, define

θ1 to be

v0 ∧ ω 7→ ω.

Next, we observe that there is a basis of kerϕα,

kerϕα = 〈v0 − vi | 1 ≤ i ≤ n〉.

We define θ2 on the generators of Λ∗V̂ , by

vi 7→ v0 − vi

for 1 ≤ i ≤ n. This induces an isomorphism of exterior algebras.
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Thus, χPD = θ2 ◦ θ1 is an isomorphism of exterior algebras. This extends to a

map

Xp
D : C

(p) −→ C(D),

which is an isomorphism on the modules of each homological degree. It remains to

be shown that Xp
D is a chain map.

It suffices to show that for a map d̃ corresponding to any edge in the cube of

exterior algebras,

d̃ : Λ∗Vα0 −→ Λ∗Vα1 ,

the following diagram commutes.

v0 ∧ Λ∗Vα0 v0 ∧ Λ∗Vα1

Λ∗◦Vα0 Λ∗◦Vα1

d̃

χpD χpD

d̃

If the edge corresponds to a split cobordism, then we have

d̃ : Λ∗Vα0 −→ Λ∗Vα1 .

Since the split introduces exactly one additional circle, we label the circles so that

Vα1 = Vα0 ⊕ 〈vn+1〉 = 〈v0, . . . , vn+1〉,

and that one of the circles from the split is an+1. Appropriately restricted, d̃ defines

maps on Λ∗◦Vα and v0 ∧Λ∗Vα as well. Thus, we have d̃(η) = (vi − vn+1)∧ η, where ai

is the circle that splits.
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First, we take the case where i = 0.

χpD ◦ d̃(v0 ∧ ω) = χpD((v0 − vn+1) ∧ v0 ∧ ω)

= χpD(v0 ∧ vn+1 ∧ ω)

= (v0 − vn+1) ∧ θ2(ω)

= d̃θ2(ω)

= d̃ ◦ χpD(v0 ∧ ω).

Then we look at the case where 1 ≤ i ≤ n.

χpD ◦ d̃(v0 ∧ ω) = χpD((vi − vn+1) ∧ v0 ∧ ω)

= χpD(v0 ∧ vn+1 ∧ ω − v0 ∧ vi ∧ ω)

= (v0 − vn+1) ∧ θ2(ω)− (v0 − vi) ∧ θ2(ω)

= (vi − vn+1) ∧ θ2(ω)

= d̃(θ2(ω))

= d̃ ◦ χpD(v0 ∧ ω).

Now, we turn our attention to when the edge corresponds to a merge

cobordism. Since there is one fewer circle in a resolution after a merge cobordism, if

d̃ : Λ∗Vα0 −→ Λ∗Vα1 ,

then we label our circles so that

Vα0 = Vα1 ⊕ 〈vn+1〉 = 〈v0, . . . , vn+1〉,
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and vn+1 is one of the two circles involved in the merge. Note, this means that if vj

and vn+1 are merged by the cobordism, then

vj, vn+1 7→ vj

and for 1 ≤ i ≤ n, i 6= j, vi 7→ vi. This implies, regardless of whether j = 0 or not,

that

d̃(v0 ∧ ω) = v0 ∧ d̃ω.

In the merge case, both θ2 and d̃ are defined on the generators, so if they

commute on their generators it follows that they commute on the full exterior

algebras.

If 1 ≤ i ≤ n,

θ2 ◦ d̃(vi) = θ2(vi) = (v0 − vi) = d̃(v0 − vi) = d̃ ◦ θ2(vi).

If i = n+ 1,

θ2 ◦ d̃(vn+1) = θ2(vj) = (v0 − vj) = d̃(v0 − vn+1) = d̃ ◦ θ2(vn+1).

Thus, for all ω ∈ Λ∗〈v1, · · · , vn+1〉,

θ2 ◦ d̃(ω) = d̃ ◦ θ2(ω).

This completes the proof.

Definition 2. The reduced odd Khovanov homology Kh′(L) is defined to be the

homology of C(D).
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Corollary 2 (Ozsváth-Rasmussen-Szabó, [ORSz13, Proposition 1.7]).

Kh′m,s(L) = Kh′m,s−1(L)⊕Kh′m,s+1(L).

In Section 4.4, we define ψ(D) and prove it to be invariant, and we identify it

with ψ(L).

4.3. The Invariant for Alternating Knots

Before we define a reduced version of ψ(L), we will examine the case of

alternating transverse knots. Here, there is a simple condition involving the self-

linking number of a transverse knot and its signature, which is sufficient to show

the invariant is zero.

Proposition 9. If K is an alternating, transverse knot then, with respect to the

isomorphism in Corollary 2, the odd Plamenevskaya invariant is an element of

Kh′0,sl(K)+1(K) in the reduced odd Khovanov homology.

Proof. By Corollary 2, there exists a bigraded abelian group Kh′(K) such that

Kh′m,s(K) ∼= Kh′m,s−1(K)⊕Kh′m,s+1(K).

Thus, in particular, we have

Kh′0,sl(K)(K) ∼= Kh′0,sl(K)−1(K)⊕Kh′0,sl(K)+1(K).

Furthermore, since K is alternating, by [ORSz13, Proposition 5.2] Kh′m,s(K) = 0

whenever s− 2m 6= σ(K). By [Pla06, Corollary 3], for any transverse knot, we have
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sl(K) ≤ σ(K)− 1, thus sl(K)− 1 < σ(K). Therefore, sl(K)− 1 6= σ(K), and hence

Kh′0,sl(K)−1(K) = 0.

Thus, it follows that

Kh′0,sl(K)(K) = Kh′0,sl(K)+1(K).

Since ψ(K) ∈ Kh′0,sl(K)(K), the result follows.

Corollary 3. For transverse, alternating knot, K, if sl(K) + 1 6= σ(K), then

ψ(K) = 0.

Proof. By the previous proposition, ψ(K) ∈ Kh′0,sl(K)+1(K). As in the previous

proof, since K is alternating, by [ORSz13, Proposition 5.2], then Kh′m,s(K) = 0

whenever s − 2m 6= σ(K), and thus, since we assume sl(K) + 1 6= σ(K), it follows

that

Kh′0,sl(K)+1(K) = 0.

Thus, ψ(K) = 0.

4.4. The Reduced Odd Plamenevskaya Invariant

Definition 3. As in definition 1, we let α′ be the resolution in which the braid

representation is separated into b parallel bands. Again, this is the resolution in

which there is a 0-smoothing for every positive crossing and a 1-smoothing for every

negative crossing. The reduced odd Plamanevskaya invariant ψ(D) is a generator of

Λb−1
◦ Vα′.
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As with the unreduced invariant, we will abuse notation to refer to both the

element in the chain complex and its class in homology (shown to be well-defined in

Proposition 10) by ψ(D).

Proposition 10. ψ(D) is a cycle.

Proof. As in showing the unreduced invariant was a cycle, the differential out of

Λ∗◦Vα′ is 0 or a sum of merges. Without loss of generality, we take a labeling of α′

so that the merged circles are a1 and a2, and we use

{vi−1 − vi | 2 ≤ i ≤ b}

as the basis for kerϕα′ , generating a basis for Λ∗◦Vα′ . Then

ψ(D) =
b∧
i=2

(vi−1 − vi).

Thus

FM(ψ(D)) = FM

(
(v1 − v2) ∧

b∧
i=3

(vi−1 − vi)

)

= 0 ∧
b∧
i=3

(vi−1 − vi)

= 0.

Since ψ(D) is a cycle, it induces an element in the reduced homology Kh′(L).

To identify the invariant with the reduced version, we will follow it in the chain

complexes explicitly though the identification of C(D) and C(D) ⊕ C(D). We do

this below in a series of lemmas. Our proof will use both C(D) and C(D t O)

where O is an additional unknot labeled a0. As a braid, the diagram for D t O is

66



the diagram for D with an additional strand that is not connected by any crossings.

For the vector spaces from which the exterior algebras forming C(D) are built, we

will use the notation

Vα = 〈v1, . . . , vn〉.

Each resolution in C(D) corresponds to a resolution in C(D t O), which will be

built out of vector spaces

V ′α = 〈v0, v1 . . . , vn〉.

We will often use the fact that if V ′ = V ⊕ 〈v0〉, then

Λ∗V ′ = 〈ω, v0 ∧ ω |ω ∈ Λ∗V 〉.

In Proposition 11, we focus on the invariant defined in the exterior algebra

constructed from the resolution α′.

Lemma 6. There is an isomorphism, Φ1 between C(D) and C
(p)

(D t O), where we

take p ∈ O.

Proof. We take a sign assignment on the resolution cube for C(D) and choose the

same sign assignment on C(D t O). This is possible because the squares of each

have the same commutativity types. This induces the differential on C
(p)

(D t O).

On the level of the exterior algebras corresponding to each resolution, this comes

from a map

φ1 : Λ∗Vα −→ v0 ∧ Λ∗V ′α.

Since Λ∗V ′α = 〈ω, v0 ∧ ω |ω ∈ Λ∗Vα〉, then

v0 ∧ Λ∗V ′α = 〈v0 ∧ ω, v0 ∧ ω |ω ∈ Λ∗Vα〉 = 〈v0 ∧ ω |ω ∈ Λ∗Vα〉.
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Thus, φ1, for ω ∈ Λ∗Vα, is given by

ω 7→ v0 ∧ ω.

This extends to all resolutions as a map Φ1.

Since v0 is unmodified by the differentials as it corresponds to a circle O

which is unaffected by any merges or splits in the corresponding cobordisms, then

d(v0 ∧ ω) = v0 ∧ dω.

Thus, Φ1 is a chain map.

Lemma 7. There is an isomorphism Φ2 between C
(p)

(DtO) and C
(q)

(DtO) where

p is a point in O and q is a point in D.

Proof. This is a consequence of Proposition 8. We have

Φ2 = (Xq
DtO)−1 ◦Xp

DtO.

Lemma 8. There is an isomorphism, Φ3 between C
(q)

(D t O) and C
(q)

(D) ⊕

C
(q)

(D).

Proof. From the exterior algebras, we define

φ3 : v1 ∧ Λ∗V ′α −→ (v1 ∧ Λ∗Vα)⊕ (v1 ∧ Λ∗Vα),

by observing

v1 ∧ Λ∗V ′α = 〈v1 ∧ η, v0 ∧ v1 ∧ η | η ∈ Λ∗V̂ 〉 = 〈ω, v0 ∧ ω |ω ∈ v1 ∧ Λ∗Vα〉,
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so the map is given by

ω 7→ (ω, 0) ω ∈ v1 ∧ Λ∗Vα ⊂ v1 ∧ Λ∗V ′α

v0 ∧ ω 7→ (0, ω) ω ∈ v1 ∧ Λ∗Vα ⊂ v1 ∧ Λ∗V ′α.

It is clear that Φ3 is a chain map.

Lemma 9. There is an isomorphism Φ4 between C
(q)

(D) ⊕ C
(q)

(D) and C(D) ⊕

C(D).

Proof. This is a consequence of Proposition 8. We have

Φ4 := Xq
D ⊕X

q
D.

Corollary 4. There is an isomorphism, Φ : C(D) −→ C(D)⊕ C(D), given by

Φ := Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1.

Note, on the level of the exterior algebras, this corresponds to a map

φ : Λ∗Vα −→ Λ∗◦Vα ⊕ Λ∗◦Vα

given by

φ = (φ4 ⊕ φ4) ◦ φ3 ◦ φ2 ◦ φ1.

Proposition 11. The inclusion map Kh′(L) ↪−→ Kh′(L) sends the reduced

odd Plamenevskaya invariant ψ(D) ∈ Kh′0,sl(L)+1(L) to the odd Plamenevskaya

invariant ±ψ(D) ∈ Kh′0,sl(L).
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Proof. Let α′ be the resolution corresponding to the invariant, and let V ′α′ be the

vector space corresponding to the same resolution in D t O, labeled as before. As

given in Proposition 8, we define

φ2 = (χqDtO)−1 ◦ χpDtO : v0 ∧ Λ∗V ′α′ −→ vi ∧ Λ∗V ′α′ ,

and

φ4 = χqD : v0 ∧ Λ∗Vα′ : Λ∗◦Vα′ .

Then,

φ(ψ̃(D)) = (φ4 ⊕ φ4) ◦ φ3 ◦ φ2 ◦ φ1(ψ̃(D)).

We note that since φ2 is an isomorphism of R-modules that is degree 0 with respect

to the natural grading of the exterior algebra, and v0 ∧ ψ̃(D) has top degree in the

exterior algebra, it follows that

φ2(v0 ∧ ψ̃(D)) = ±v0 ∧ ψ̃(D).

Note, φ4 = χqD is an isomorphism of R-modules that is degree −1 with respect to

the exterior algebra. Furthermore, ψ̃(D) ∈ vi ∧ Λ∗Vα′ has top degree in the exterior

algebra, degk ψ̃(D) = b, and ψ̃(D) has top degree in Λ∗◦Vα′ , degk ψ̃(D) = b − 1.

Thus, it follows that

φ4(ψ̃(D)) = ±ψ̃(D).
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Thus, we have

φ1 : φ̃(D) 7→ v0 ∧ ψ̃(D)

φ2 : v0 ∧ ψ̃(D) 7→ ±v0 ∧ ψ̃(D)

φ3 : ±v0 ∧ ψ̃(D) 7→ (0, ψ̃(D))

φ4 : ψ̃(D) 7→ ψ̃(D).

Therefore,

φ(ψ̃(D)) = (φ4 ⊕ φ4) ◦ φ3 ◦ φ2 ◦ φ1(ψ̃(D))

= (φ4 ⊕ φ4)(0, ψ̃(D))

= (0,±ψ̃(D)),

and thus on the chain complex, we have Φ(ψ̃(D)) = (0,±ψ̃(D)).

Note that ψ̃(D) ∈ ΛbVα′ and Φ(ψ̃(D)) ∈ Λb−1(kerϕα′). Thus

degQ Φ(ψ̃(D)) = (dim kerϕα′)− 2(b− 1) + n+ − 2n− + |α′|

= (dimVα′ − 1)− 2(b− 1) + n+ − 2n− + |α′|

= (dimVα′)− 2b+ n+ − 2n− + |α′|+ 1

= degQ ψ̃(D) + 1

= sl(L) + 1.

Therefore, ψ(D) ∈ Kh′0,sl(L)+1(D).
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Corollary 5. ψ(D) is a transverse link invariant. More precisely, if D and D′ are

diagrams for a transverse link L, there is a quasi-isomorphism

ρ : C(D) −→ C(D′)

such that

ρ(ψ(D)) = ±ψ(D′).

Proof. Let D and D′ both be diagrams for the same transverse link, L. Let

Φ : C(D) −→ C(D)⊕ C(D)

and

Φ′ : C(D′) −→ C(D′)⊕ C(D′)

be the isomorphisms defined in Corollary 4 for D and D′ respectively. Let ρ :

C(D) −→ C(D′) be the quasi-isomorphism on the chain complexes given by the

invariance of odd Khovanov homology. We have a quasi-isomorphism,

Φ′ ◦ ρ ◦ Φ−1 : C(D)⊕ C(D) −→ C(D) −→ C(D′) −→ C(D′)⊕ C(D′)

with

Φ′ ◦ ρ ◦ Φ−1(0, ψ(D)) = (0,±ψ(D′)).
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CHAPTER V

PROPERTIES

Proposition 12. For the standard transverse unknot, O, up to a sign, ψ(O) is a

generator of Kh′0,−1(O) ∼= R.

Proof. We take the trivial diagram of O. Thus, there are no crossings, and there is

only one resolution corresponding to the unique function in {0, 1}∅. The one circle

in this resolution is exactly our presentation of O, and it has generator v0. Thus,

we have chain complex

0 −→ Λ∗〈v0〉 −→ 0,

and Kh′0 = R[−1]⊕ R[1]. Since ψ(O) = v0 ∈ Λ1〈v0〉 = 〈v0〉 = R · v0 and its grading

is (0,−1), the proof is complete.

Although trivial, the previous proposition is important to note because ψ is

defined first on the level of being a cycle ψ̃ in the chain complex. Thus, it is not

immediate that there are links in which ψ̃ is not also a boundary. The following

proposition, which is analogous to [Pla06, Propostion 3] however, gives us one

condition in which we can guarantee that ψ is a boundary.

Proposition 13. If L is the negative stabilization of another transverse link, then

ψ(L) = 0.

Proof. Assume L is the negative stabilization of another transverse link. Thus for

an appropriate choice of braid representation, there is a part of the diagram of L

that contains just the negative stabilization with a single negative crossing, and in

the chain complex there are two cubes of resolutions corresponding to the 0- and
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1-smoothings at this crossing. We will call the diagram D, shown in Figure 38. We

note that d? here is given by the split cobordism. If we label the circles of D0 and

D1 that extend beyond the diagram a1, with corresponding generator v1, and the

circle entirely contained in the diagram of D1 by a0, with corresponding generator

v0, then the map d? : D0 −→ D1 is given by ω 7→ (v0 − v1) ∧ ω. Note that

ψ̃(L) ∈ C(D1).

D D0 D1

FIGURE 38. A diagram of D focused on an added negative stabilzation of
L, and its resolution cube.

It suffices to show that ψ̃ is a boundary, so we construct φ̃ ∈ C(D0) such that

dφ̃ = ψ̃. We note that in the cube of resolutions D1, there is a specific resolution

in which ψ̃ resides. We consider the corresponding resolution in D0. That is, the

resolution that has a 0-smoothing at every positive crossing and a 1-smoothing at

every negative crossing except the one added by the negative stabilization. If there

are n generators v1, . . . , vn in the vector space corresponding to this resolution, then

we let φ̃ = v1 ∧ · · · ∧ vn. Note, there is a natural isomorphism between C(D0),

and the chain complex associated to the link L′ to which a negative stabilization

was added. Up to a sign, our constructed element is the image of ψ(L′) under this

isomorphism.
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Computing dφ̃, we note there are two sources where the resolution for L has

0-smoothings: the positive crossings of L and the negative crossing introduced by

the negative stabilization. On the positive crossings, given our braid representation,

a change from a 0-smoothing to a 1-smoothing corresponds to a merge cobordism.

Thus, on each summand in the differential φ̃ 7→ 0, as two factors in the wedge

product would be identified. Hence,

dφ̃ = d?φ̃ = (v0 − v1) ∧ φ̃ = v0 ∧ v1 ∧ · · · ∧ vn = ψ̃.

The following proposition is an analog of [Pla06, Theorem 4]. However, as it

is not yet know if the odd Khovanov homology is functorial, the proposition below

is necessarily weaker.

Proposition 14. Suppose we have a transverse link L with diagram D, and L0 is

the transverse link with diagram D0 obtained by replacing a positive crossing in L

with the 0-smoothing. There is a homomorphism,

p : Kh′(L) −→ Kh′(L0)

such that p(ψ(L)) = ±ψ(L0).

Proof. In Figure 39, we have the composition of the cobordism from attaching a 1-

handle on one side of the positive crossing, and the (R1) move to undo the twist.

We examine the diagram of the cobordism in the vertex of the resolution cube

in which ψ(D) resides (Figure 39: top), and the corresponding resolutions of D0

(Figure 39: bottom) both with and without the extra twist by (R1).
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D

1-handle (R1)

D′0 D0

v1 v2

FS

(v1 − v0)∧

v1

v0

v2

FM

v1 v2

FIGURE 39. Diagram in vertex for ψ(D). Top: the cobordism of the 0-
smoothing to remove a positive crossing. Bottom: the corresponding resolution
complex.

Since the first part of the composition comes from the split cobordism, we

have

FS(ψ(D)) = FS(v1 ∧ v2 ∧ . . . )

= (v1 − v0) ∧ (v1 ∧ v2 ∧ . . . )

= −v0 ∧ v1 ∧ v2 ∧ . . .

= −ψ(D′0)
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and, as we have already seen in Proposition 3

= ±ψ(D0).

Corollary 6. If L can be represented by a quasi-positive braid, then ψ(L) 6= 0.
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CHAPTER VI

COMPUTATIONS

6.1. The Computer Program

To investigate the invariant, the author has written a suite of modules in

Python. First, there is the module braid.py, with a Braid class that represents

braids by their braid word as a list of signed integers where the absolute value of

each integer represents the left strand of the crossing, and the sign of the integer is

the sign of the crossing. For example, the knot 932 is the closure of the braid with

braid word

σ2
3σ
−1
2 σ3σ

−1
2 σ1σ3σ

−1
2 σ1.

In the Braid class, this is represented as the list [3,3,-2,3,-2,1,3,-2,1].

Below, we have an interaction running python3 on the command line from the

folder containing the modules.

>>> import braid

>>> chiral_knot = braid.Braid([3,3,-2,3,-2,1,3,-2,1])

>>> mirror_chiral_knot = chiral_knot.mirror()

>>> reverse_chiral_knot = chiral_knot.reverse()

>>> chiral_knot.self_linking_number()

0

The class also uses the author’s braidresolution.sty package to produce

braid diagrams for LATEX documents. Continuing from above, the command below

produces TEX for the diagram in Figure 40.

>>> chiral_knot.tex_braid()
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FIGURE 40. The diagram of chiral knot produced by the Braid class.

The class also has the addition operator overloaded to compute the connect

sum of the closure of two braids.

>>> right_trefoil = braid.Braid([1,1,1])

>>> left_trefoil = right_trefoil.mirror()

>>> left_trefoil.get_word()

[-1,-1,-1]

>>> connect_sum = right_trefoil + left_trefoil

>>> connect_sum.get_word()

[1,1,1,-2,-2,-2]

The grid.py module has a Grid class that represents grid diagrams as

a pair of lists of integers. The first list gives the column index of the X positions

row by row, and the second gives the O positions indexed from 0. By default, the

class creates the braid object for the right-heading braid, but it can do so for any

direction in the diagram.

>>> import grid

>>> trefoil_grid = grid.Grid([3,1,0,4,5,2],[0,5,2,1,3,4])

>>> trefoil_braid = trefoil_grid.braid()

>>> trefoil_braid.get_word()
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[-1, -2, 1, 2, 2, -1]

>>> trefoil_leftward_braid = trefoil_grid.braid(’left’)

>>> trefoil_leftward_braid.get_word()

[1, -2, 1, -2]

The Grid class also has methods to produce TEX for the grid diagram,

(e.g., trefoil braid.tex grid(), see Figure 41(a)), the corresponding

knot diagram (e.g., trefoil braid.tex knot(), see Figure 41(b)), and the

Legendrian front of the grid (e.g., trefoil braid.tex Legendrian front(),

see Figure 41(c)).

Corresponding to a diagram with n indexed crossings, there is a resolution

cube with 2n vertices. In the program, these vertices are represented as an integer

whose binary representation has ith digit bi. Thus, a vertex then has the resolution

with the bi-smoothing at the ith crossing for all i, and data corresponding to the

vertices is stored in lists whose indices correspond directly to vertices. For the

additional information in the resolution cube, we have the cube.py module, which

contains three classes: the EdgeStruct class, the SquareStruct class, and the

Vertical class.

The EdgeStuct class is a container for the edges of the resolution cube.

In memory, edges are stored as a pair of integers: the vertex of the start of the

edge as described above, and the crossing index (indexed from 0), which changes

from 0 to 1. This container is used to store both the maps between vertices and the

sign assignment, which makes the faces anticommutative. An EdgeStruct object

also provides an iterator that iterates through the edges primarily in order of the

vertices and secondarily in order of the crossing index.
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.

(a) the grid diagram.

.

(b) the knot diagram.
.

(c) the Legendrian front.

FIGURE 41. The diagrams of chiral knot produced by the Grid class.

The SquareStruct class is a container for the faces (or squares) of the

resolution cube. In memory, squares are stored as a triple of integers: the leftmost

vertex in the square, and the two integers representing the two edges in the square

that adjoin the leftmost vertex. In the program, there is one SquareStruct

object that is used as an iterator, but it also acts as a container that stores
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information about the commutativity type of the square. The order in which

it iterates through the squares is fundamentally different from the EdgeStuct

class. Since any (n + 1)-dimensional cube can be represented as two n-dimensional

subcubes (one shifted over to the right one spot) connected by 2n additional edges,

the edges’ signs are computed inductively from squares on the subcubes. The

iterator provided by an EdgeStruct objector encodes this inductive order.

The Vertical class provides an iterator through all of the generators of the

vertex modules that sum to each module in the chain complex. This class is used to

produce the matrices from which the homology and the invariant are computed.

There is also the khovanovhomology.py module, which contains the

KhovanovHomology class. This class is both a container that stores the

homological information and contains a collection of the methods necessary to

compute it. The methods include those which can compute the even and odd

Khovanov homologies over Z and any field, as well as Plamenevskaya’s invariant

and its odd analog defined in Chapter III. As even and odd Khovanov Homology

are categorifications of the Jones polynomial, in the process of computing the

resolutions, the KhovanovHomology class can calculate the Jones polynomial.

To support these, there are two more modules: fields.py and

algebra.py. The fields.py module contains a class FE that handles

elements in Q or Z/p. The benefit of having a single class for field elements of

all characteristics is that only a single number needs to be changed to compute

the even and odd Khovanov homologies and invariants over different fields. The

algebra.py module contains a variety of basic supporting functions as well as

implementations of different algorithms necessary for computational homology. For

an integer matrix A, there is a function that computes its Smith normal form: a
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matrix D that is zero except on its diagonal and Di,i divides Di+1,i+1, as well as the

unimodular matrices S and T such that

SAT = D.

These output can be used for the inputs of another function that finds the smallest

positive n such that

Ax = ny

if such an n exists. The former function, along with another function that handles

row reduction over a field, provide the computations necessary to compute the

homology. The latter is used to compute if the invariant is zero and if it is torsion.

In the next example, we show how to generate the odd Khovanov homology

for a knot for its grid diagram. Below, we compute the odd Khovanov homology for

819.

>>> import grid

>>> G = grid.Grid([0,1,6,2,5,7,8,3,4,9],[6,7,8,9,1,4,5,0,2,3])

>>> G.comp_full_graded_homology()

>>> B = G.braid()

>>> B.comp_full_graded_homology()

KH’_( 0)(L) = Zˆ1[ 7] + Zˆ1[ 5]

KH’_( 1)(L) = 0

KH’_( 2)(L) = Zˆ1[11] + Zˆ1[ 9]

KH’_( 3)(L) = 0

KH’_( 4)(L) = Z/2[13] + Z/2[11]

KH’_( 5)(L) = Zˆ1[17] + (Zˆ1 + Z/3)[15] + Z/3[13]

Wide knot, sigma = 6, sl = 5.
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While computing the invariant, the code checks if the invariant is zero in

homology, and if not, if it is torsion. Below, we have the computation that shows

that the invariant does not distinguish the pair of knots in [BM06, m10140]

>>> import grid

>>> L1 = grid.Grid([8,7,1,3,5,4,2,6,0],[3,2,4,6,8,7,0,1,5])

>>> B1 = L1.braid()

>>> B1.comp_inv()

Inv NonZero

>>> L2 = grid.Grid([8,7,0,3,5,4,6,1,2],[3,1,4,6,8,7,2,5,0])

>>> B2 = L2.braid()

>>> B2.comp_inv()

Inv NonZero

6.2. Computational Observations

If σ(K) is the signature of a knot, then in the knots that have been examined

so far, the knots in which the invariant is nonzero correspond exactly with knots in

which

sl(K) = σ(K)− 1.

As seen before, if K is alternating, then

sl(K) ≤ σ(K)− 1,

thus the invariant is nonzero in the cases where this maximum is reached. This is

supported by Proposition 13, which implies of ψ(K) 6= 0 then K is not the negative

stabilization of another knot. If it were, there would be a knot K ′ which had the

same topological knot type as K, but sl(K ′) = sl(K) + 2.
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The even and odd Plamenevskaya invariants are zero and nonzero in the same

knots for knots examined.

If n is the length of the braid used in the computation (the number of

crossings), and n− is the number of negative crossings, the invariant is usually zero

if n−/n > 0.25, and usually nonzero if n−/n < 0.25. There are a limited number of

exceptions, namely the following, which are zero,

911 : [3, 3, 3, 3,−2, 1, 3,−2, 1] n−/n = 0.2,

m920 : [3, 3, 3,−2, 1, 3,−2, 1, 1] n−/n = 0.2,

and this one, which is nonzero,

m935 : [4, 4, 3,−4, 3, 3, 2, 1,−3,−3,−2, 1, 3, 2] n−/n = 0.285714.

Note, for all braids computed, at least one of ψ(B) or ψ(mB) is zero.

So far, the invariant has not been shown to be effective. The Plamenevskaya

invariant has not been shown to be effective either, and there is also evidence

that it might not be. However, among the reasons why an odd analog of

Plamenevskaya’s invariant could be effective even if Plamenevskaya’s invariant is

not is the construction of odd Khovanov homology. Ozsváth and Szabó constructed

a spectral sequence whose E2 term is KH(L;Z/2), which converges to ĤF (L)

[OSz05]. Attempts to lift the spectral sequence to Z failed, but inspired the

definition of the odd Khovanov homology, where it is conjectured that there is a

spectral sequence whose E2 term is KH ′(L;Z) that converges to ĤF (Σ(mL)). Ng,

Ozsváth and Thurston showed the filtered homotopy type of ĤF , called knot Floer
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homology, could be used to distinguish pairs of transverse knots with the same

classical transverse invariants. Tracing the Plamenevskaya invariant through to the

knot Floer homology is limited by the Z/2 coefficients, however the even analogue

is not. We can also compare this to a similar spectral sequence from odd Khovanov

homology to the framed instanton homology of the branched double cover of a link

[Sca15] and the contact invariant in instanton Floer homology [BS16].
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