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DISSERTATION ABSTRACT 
 
Alice T. Greenberg 
 
Doctor of Philosophy 
 
Department of Physics 
 
December 2020 
 
Title: The Application of Interferometric Electron Microscopy for Nanomagnetic 

Imaging 
 
 

The study of micromagnetics both yields important applications, like computer 

hard disks which enabled the creation of the internet, and continues to reveal surprising 

phenomena and open new scientific questions, like the search for the magnetic hopfion 

[1], a 3D topological soliton. An important trend in micromagnetics research is studying 

topological magnetic structures, with particular interest in their potential as nanoscale 

information carriers. For instance, the magnetic skyrmion, a topological soliton, can be as 

small as 1 nm and may enable new forms of data storage and computing due to its high 

mobility and topological protection [2]–[4]. However, this is pushing the resolution of 

imaging techniques. One of the few methods that can image magnetic materials at this 

scale is transmission electron microscopy (TEM). 

Here I will present the use of transmission electron microscopy to study nanoscale 

topological magnetic domains under an applied magnetic field in a novel thin film 

material in which both the dipole interaction and the Dzyaloshinskii-Moriya interaction 

determine the magnetic structure [5]. I demonstrate the first application of scanning TEM 

holography, a recently developed phase measurement technique, implemented with a 

diffraction grating to image magnetic materials. Lastly, I propose how this technique 
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could be used to perform the first experimental observation of a magnetic hopfion and 

show initial results. 
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CHAPTER I 

INTRODUCTION 

Magnetism is ubiquitous in modern life. It is responsible for the function of 

magnetic key cards and credit cards. It enables electric generators and motors, the key to 

increasingly popular electric cars. Computer hard disks, which store information in a 

material’s internal magnetic field, enabled the creation of the internet and are still how 

massive amounts of data are stored worldwide. The digitization of modern life has led to 

an ever-growing mountain of data. While solid state drives are more efficient, hard disk 

drives are cheaper and their use in data centers continues to grow [6]. The International 

Data Corporation reported that all data created, captured or replicated globally reached 18 

zettabytes in 2018 and predicts that in 2025 all internet-connected devices will generate 

79.4 zettabytes of data in that year alone [7], [8]. Toshiba noted that “the expectation had 

been that, while the proportion of data stored on flash and SSD increased, there would be 

a drop in the quantity of data stored on hard drives and magnetic tape. However, it is 

clear today that all three technologies continue to grow simply because there is so much 

data to be stored” [9]. One of the ways to increase magnetic memory efficiency and 

capacity under research is using smaller forms of magnetic memory, such as nanoscale 

topological magnetic domains or spintronic devices. However, magnetism at the 

nanoscale can heavily depend on the material’s local structure, making careful 

characterization at that length scale and below vital.  



 

2 

 

Transmission electron microscopy can be used to study the magnetic structure of 

a material with 5-10 nm resolution typically [10], although 2-10 Ångstrom resolution is 

becoming more common [11]–[18]. There are several other techniques that can image 

magnetic domains at the 10s or 100s of nanometers scale [10], [19], [20], but only one in 

addition to TEM, spin polarized scanning tunneling microscopy, can also reach the few 

nanometer to Ångstrom scale [21]. This technique measures the magnetic structure and 

topography of the surface. In comparison, TEM quantitatively measures the electrostatic 

and magnetostatic potentials of a sample by measuring the phase these potentials impart 

on the electron beam. In standard operation TEM measures the integrated signal through 

the sample, but it can also be used to measure the 3D electrostatic and magnetostatic 

potentials by tilting the sample. In addition, the TEM can be used to study responses of 

magnetic materials to an applied magnetic field, applied current, or changing 

temperature, which is crucial to understanding how they may behave in real-world 

devices. 

The most straightforward method to study magnetic structure in a TEM is called 

Lorentz TEM (LTEM). In this thesis, I will first present an LTEM study of magnetic 

domains in a perpendicularly magnetized novel thin film material responding to an 

applied field. This experiment revealed domain spacing doubling under a weak applied 

field and domain pattern rotation under higher applied fields. These results highlight the 

importance of LTEM and its ability to drive theoretical development, as neither 

phenomenon was expected. They also demonstrate the importance of combining LTEM 

studies with other magnetic imaging techniques, as LTEM can only reveal the in-plane 

components of the magnetization. 
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 While LTEM is a powerful tool for quickly and easily studying magnetic domains, it 

is an indirect measurement of the magnetic phase. Two direct phase measurement 

techniques, differential phase contrast and off-axis electron holography, are also 

frequently used to image magnetic materials in a TEM. Differential phase contrast 

measures the phase gradient across the sample [13], [22], [23]. A promising new 

microscope design employing differential phase contrast has enabled sub-Ångstrom 

resolution in a magnetic-field free environment, though they have not yet demonstrated a 

magnetic measurement [24]. In contrast, off-axis electron holography measures the phase 

of the sample [25]–[27], meaning it is sensitive to the electric and magnetic potentials 

rather than the electric and magnetic fields as with DPC and LTEM. However magnetic 

imaging in TEM holography mode has not broken 5 Å resolution [15], [18]. A new 

technique, scanning TEM holography (STEMH) [28]–[34], is a probe-based technique 

that allows over-sampling like DPC while also directly measuring the phase. STEMH 

could therefore be the perfect technique to study magnetic structure in this new 

generation of TEM with Ångstrom resolution in a magnetic field free environment.  

 Here, I present the implementation of STEMH to study magnetic structure. Two 

materials were imaged: patterned microstructures of Permalloy, a magnetic nickel-iron 

alloy, and topological magnetic domains in a perpendicularly magnetized multilayer thin 

film composed of iron and gadolinium. The results are compared to LTEM 

measurements. One of the complications that can arise in a STEMH experiment is 

ambiguity in the source of the measured phase. How that concern impacts the presented 

results is discussed. Additions to the STEMH experimental procedure that would 

eliminate this ambiguity are proposed. 
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Lastly, I will present how STEMH could be used in concert with other techniques 

to study the 3D structure of a topological magnetic domain, and potentially confirm the 

first experimental observation of a magnetic hopfion, a topological soliton characterized 

by a non-zero Hopf index. As mentioned above, TEM measures the integrated signal 

through the sample. Often the magnetization through a thin film is assumed to be uniform 

through the thickness. However, this is not the case for many materials [5], [35]–[37]. In 

particular, micromagnetic calculations of dipole skyrmions, topological circular magnetic 

domains, show that the magnetization varies through the film but this has not been 

confirmed experimentally [38]–[42]. Here I present simulated STEMH measurements of 

a skyrmion that is uniform through the film thickness and of a skyrmion that varies 

through the thickness as calculated. The simulations show that if these materials are 

tilted, the measured phases have distinctive features as the tilt angle increases, 

demonstrating that such a STEMH experiment could confirm the calculated structure of 

the dipole skyrmion. This structure has a non-zero Hopf index, meaning this would be the 

first observation of a magnetic hopfion. 

Background 

Louis de Broglie theorized that electrons act as waves in 1924. Shortly after, in 

1932, Max Knoll and Ernst Ruska created the first electron microscope [43]. Within a 

year it had beaten the resolution possible with visible light [44]. Dennis Gabor invented 

holography in 1948 originally with the context of providing phase contrast in electron 

microscopy [45]. Atomic resolution electron microscopy was achieved in 1970 [46]. 

Electron microscopy, with the power to image materials at the nm to Ångstrom scale, has 
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become a vital tool in a wide range of research fields, from the semiconductor industry 

[47], to biomedical research such as the recent imaging of the COVID-19 virus [48]. 

In addition to its resolution, one of the other powerful aspects of electron 

microscopy is the ability to image magnetic fields. First developed by Hale [49] and 

Boersch and Raith [50] in 1959, Lorentz transmission electron microscopy (LTEM) has 

been widely used to study magnetic domain structure and magnetization reversal 

mechanisms in magnetic thin films and microstructures. Magnetic domain structure 

depends on the local microstructure and composition; LTEM provides the ability to study 

all three at nanometer resolution [10], [51], [52]. 

Consider a thin film in which the magnetic field points up, down, and then up 

again across the film with domain walls where the magnetic field lies in the plane of the 

film, as in Figure 1. If we consider the electron beam interacting with this sample 

classically, we can see that only where the magnetic field lies in the plane of the film will 

it influence the electrons, as shown in Figure 1a. This is because the electrons interact 

with the sample via the Lorentz force �⃗�𝐹 = −𝑒𝑒�𝐸𝐸�⃗ + �⃗�𝑣 × 𝐵𝐵�⃗ �, where 𝑒𝑒 is the electron 

charge, 𝐸𝐸�⃗  is the electric field of the sample, 𝑣𝑣 is the electron velocity, and 𝐵𝐵�⃗  is the 

sample’s magnetic field. Because the electrons are traveling perpendicular to the film, the 

cross product �⃗�𝑣 × 𝐵𝐵�⃗  is nonzero only when 𝐵𝐵�⃗  points along the thin film. If the electron 

passes through that region of the film, it is deflected. 

While this classical picture is intuitive, it does not fully describe the electron 

beam-sample interaction. Each electron is in fact a plane wave, as shown in Figure 1b. 

When this wave interacts with the magnetic sample, it picks up a phase shift from the 

component of the magnetic vector potential parallel to the optic axis: 
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𝜙𝜙𝑚𝑚(𝑟𝑟⊥) =
−𝑒𝑒
ℏ
�𝐴𝐴𝑧𝑧𝑑𝑑𝑑𝑑 . (1.1) 

This phase shift deforms the electron wavefront, as shown in Figure 1b. From this phase 

shift, the magnetic field can be calculated: 

∇⊥(𝜙𝜙𝑚𝑚) = −
𝑒𝑒𝑒𝑒
ℏ

 𝐵𝐵�⃗ (𝑟𝑟⊥) × �̂�𝑒𝑧𝑧. (1.2) 

Therefore, the goal of magnetic TEM imaging is to measure the phase shift imparted on 

the electron wave. 

 In typical operation of conventional TEM, the sample sits within the objective 

lens, which is a magnetic field typically around 2 T. For many magnetic materials this 

field saturates the magnetization in the direction of that field, and the magnetic structure 

being imaged is destroyed. In LTEM, the objective lens is turned off so the sample is in a 

magnetic-field-free environment. A lens below the sample, called the Lorentz lens, forms 

the image of the sample instead of the objective lens.  

 In order to see the magnetic structure, the image of the sample must be defocused. 

This can be visualized if we return to the classical picture of the electron beam interacting 

with the sample, as in Figure 2. If the sample plane is being imaged, the electron beams 

Figure 1: Electron Beam Interaction with a Magnetic Thin Film 
Electron beam interacting with a magnetic thin film of thickness t from a) the classical 
picture and b) the quantum mechanical picture. The magnetic field of the thin film is 
indicated by red markers. In a) electron paths are indicated by green lines. In b) the 
electron wavefront is in green. This figure incorporates part of Figure 1 in 
"Determination of domain wall chirality using in situ Lorentz transmission electron 
microscopy" by Chess et al. in AIP Advances, used under CC BY. 

a) b) 
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have not deflected yet and there is no contrast. If instead a plane below the sample is 

imaged, the deflected paths cause an excess of electrons in one region and a dearth of 

electrons next to it. This creates contrast at domain walls in the material. 

Again, the classical picture provides useful intuition but is not quantitative. To 

consider this quantitatively, we must return to the quantum mechanical picture. Above 

the sample the electron is a plane wave, mathematically described as 

Ψ0(�⃗�𝑥) = 𝑒𝑒2𝜋𝜋𝜋𝜋𝑘𝑘𝑧𝑧𝑧𝑧 . (1.3) 

After interacting with a weak phase object, the electron acquires a phase from the 

magnetic structure 𝜙𝜙𝑚𝑚 and the wavefunction becomes 

Ψ𝑓𝑓(�⃗�𝑥) = 𝑒𝑒2𝜋𝜋𝜋𝜋𝑘𝑘𝑧𝑧𝑧𝑧𝑒𝑒𝜋𝜋𝜙𝜙𝑚𝑚 . (1.4) 

Here we have assumed the thin film is uniform so the electrostatic phase is uniform and 

can be ignored in this calculation. The wavefunction at the detector is the convolution of 

the wavefunction after the sample and the microscope’s point spread function, which 

Figure 2: Contrast Formation in Lorentz TEM 
This figure incorporates part of Figure 1 in "Determination of domain wall chirality 
using in situ Lorentz transmission electron microscopy" by Chess et al. in AIP 
Advances, used under CC BY. 
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accounts for the microscope’s optical aberrations and the defocus used. The image 

collected is the absolute value of this wavefunction squared, or 

𝐼𝐼(𝑟𝑟⊥,∆𝑓𝑓) = �Ψ𝑓𝑓(𝑟𝑟⊥)⊗ℎ(𝑟𝑟⊥,∆𝑓𝑓)�
2

, (1.5) 

where 𝑟𝑟⊥ is the coordinate vector in the plane of the image, ∆𝑓𝑓 is the defocus, and ℎ is the 

point spread function. Typically, to calculate the magnetic phase, an overfocused, 

underfocused, and focused image are taken. From the three, the transport of intensity 

equation (TIE) gives 

∇⊥2𝜙𝜙𝑚𝑚 = −
2𝜋𝜋
𝐼𝐼0𝜆𝜆

𝐼𝐼(𝑟𝑟⊥,∆𝑓𝑓) − 𝐼𝐼(𝑟𝑟⊥,−∆𝑓𝑓)
2∆𝑓𝑓

(1.6) 

where 𝐼𝐼0 is the in-focus image, 𝐼𝐼(𝑟𝑟⊥,∆𝑓𝑓) is the overfocused image, and 𝐼𝐼(𝑟𝑟⊥,−∆𝑓𝑓) is the 

underfocused image [53]. If the sample has uniform thickness and few features present in 

the in-focus image (𝐼𝐼0 is constant), the equation above can be simplified to 

∇⊥2𝜙𝜙𝑚𝑚 =
2𝜋𝜋
𝜆𝜆∆𝑓𝑓

�1 −
𝐼𝐼(𝑟𝑟⊥,∆𝑓𝑓)

𝐼𝐼0
� (1.7) 

and the phase can be calculated from a single defocused image [38]. This relation can be 

used to recover the phase from a single defocused image, an analysis method called the 

single image transport of intensity equation (SITIE). 

 In the next chapter, I will present domain wall evolution in response to an applied 

magnetic field studied via Lorentz TEM using SITIE analysis.  
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CHAPTER II 

THE EVOLUTION OF MAGNETIC SPIN TEXTURES IN BROKEN-SYMMETRY 

FILMS UNDER AN APPLIED MAGNETIC FIELD 

Introduction 

 Chiral spin structures in nanomagnetic systems are a timely research topic. These 

topologically-nontrivial magnetic structures challenge current analytical models and are 

potentially useful as spintronic information carriers due to their topological stability and 

high speed displacement under low threshold currents [54]–[58]. Bloch and Néel domain 

walls are examples of chiral spin structures [59], [60]. In a magnetic thin film possessing 

perpendicular magnetic anisotropy, magnetic domains point up or down with respect to 

the plane of the film. In these materials, Bloch-type domain walls separating up/down 

domains have a wall magnetization that lies along the wall. If the magnetization lies 

perpendicular to the wall, it is Néel-type. Both Néel and Bloch domain walls can have 

two chiralities corresponding to one of two directions in which the magnetization rotates 

in the transition from an “up” domain to a “down” domain. In materials with high 

symmetry, there is no preferred domain wall chirality, and one finds a statistically 

balanced mixture of left-handed and right-handed domain walls [58]. 

Spin structures with a preferred chirality are found in magnetic systems lacking 

inversion symmetry [61]. One effect that can cause this is the Dzyaloshinskii-Moriya 

interaction (DMI) [62]–[65]. In thin films, DMI is a result of spin-orbit coupling of 

interfacial atoms neighboring the magnetic layer. Chiral spin structures can also be 

created by dipolar interactions in thin films without DMI [38]–[42]. Only very recently 

has the interplay between the two effects been considered [5], [35]–[37]. 
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 In domain walls dominated by dipolar interactions, the magnetization changes 

from Néel-type at the surfaces to Bloch-type at the center of the film thickness [39]–[42]. 

Adding layers that induce interfacial DMI moves the Bloch wall part off-center in the 

thickness of the film [5], [36], [37]. Studies suggest that systems with significant DMI 

and dipolar interaction contributions have very different dynamics than DMI-dominated 

systems [36] and enhanced stability [35]. As few theoretical and computation studies 

[35]–[37] and even fewer experimental measurements [5] of these systems have been 

published, the effect of combining dipolar interactions and DMI is still relatively 

unknown. 

 Multilayer thin films composed of iron and gadolinium support dipolar chiral spin 

structures [39]–[42]. The effect of adding interfacial DMI is studied by adding platinum 

layers. The strength of the DMI was varied by varying the number of platinum layers; 

three samples were studied: [(Fe(3.4A)/Gd(4A))x20/Pt(1A)]x4 (FeGd80Pt4), 

[(Fe(3.4A)/Gd(4A))x10/Pt(1A)]x8 (FeGd80Pt8), [(Fe(3.4A)/Gd(4A))x5/Pt(1A)]x16] 

(FeGd80Pt16). Full-Field Transmission Soft X-ray measurements performed by 

collaborators at the Advanced Light Source, which is sensitive to the average thickness 

perpendicular magnetization, revealed that the stripe magnetic domains rotated under an 

applied magnetic field (S. Montoya, unpublished observations). In addition, simultaneous 

anisotropic magneto resistance and Hall resistivity field-dependent measurements 

performed by collaborators at UCSD show a topological Hall effect-like signal. This is 

typically associated with the existence of topological domain structures called skyrmions 

in the material, though that is not the case in this thin film material. Here, Lorentz TEM is 
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used to further characterize the evolution of the domain wall morphology under an 

applied magnetic field. 

Under weak applied fields (≤ 50 mT), the spatial frequency of the stripe domains 

appears to halve while the orientation remains the same. This does not appear in the X-

ray images (S. Montoya, unpublished observations), suggesting more variation in the 

domain wall structure than expected. Under a finite range of higher applied field values 

(50 – 150 mT), the domain walls rotate and stay in the new orientation when the field is 

turned off. This is true when the magnetic field is applied through any amount of that 

rotation. When a magnetic field is then applied in the opposite direction the domain walls 

return to the original orientation. If the magnetic field is applied up to a value before 

rotation occurs, and then applied to saturation in the opposite direction, the domains do 

not rotate. Both the weak field frequency halving and domain rotation are the result of the 

asymmetric domain walls and a preferred domain wall chirality, caused by the platinum 

layers in the film. These observations highlight the utility of LTEM in studying novel 

magnetic materials and the importance of using it in conjunction with other magnetic 

imaging techniques sensitive to the perpendicular magnetization. 

Methods 

Fe/Gd/Pt films were grown on 100 nm thick silicon nitride membranes via sputter 

deposition by Sergio Montoya at UCSD. The films are produced by alternating 

deposition of iron, gadolinium, and platinum. X-ray diffraction of Fe/Gd films with no 

platinum layers produced in the same way indicate that the layers intermix and form an 

amorphous structure [40], [66]. Three samples were produced with 80 layers of iron and 

gadolinium and varying numbers of platinum layers: [(Fe(3.4Å)/Gd(4Å))x20/Pt(1Å)]x4 
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(FeGd80Pt4), [(Fe(3.4Å)/Gd(4Å))x10/Pt(1Å)]x8 (FeGd80Pt8), and 

[(Fe(3.4Å)/Gd(4Å))x5/Pt(1Å)]x16] (FeGd80Pt16). The sample deposition and layer 

structure are summarized in Figure 3. The samples were imaged using Lorentz TEM in 

an 80-300 kV FEI Titan TEM in the Center for Advanced Material Characterization in 

Oregon to observe the magnetic domains as a magnetic field was applied to the sample 

via weak excitation of the objective lens. The silicon nitride membranes are supported by 

a silicon chip with a window in the center. The area imaged was roughly in the center of 

the chip window, found by locating two opposite corners of the square window and then 

moving to the middle point between them. Before each experiment a magnetic field was 

applied parallel to the optic axis until the magnetization saturated and then antiparallel to 

the optic axis until saturation so that each measurement would be directly comparable to 

each other as well as to the X-ray measurements.  

Figure 3: Fe/Gd/Pt film Growth 
a) The deposition order for each film. b) The approximate structure formed where grey 
indicates platinum and yellow indicates intermixed iron and gadolinium. 
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During the experiment, the external magnetic field is changed by adjusting the 

current to the electromagnetic objective lens. The lens current is expressed as a 

percentage of its maximum applied current. Over the relevant range (± 10% maximum 

lens current) the field of the lens is proportional to the applied current. The field at the 

sample is calculated from a linear regression of measurements of the objective lens field 

as a function of percent power in two other FEI Titans [67], [68]. Due to hysteresis in the 

lens, the relationship between the lens current and the produced magnetic field depends 

on the direction in which the current is being changed. Measurements of this effect in a 

different Titan found that the magnetic field value at 0% lens current changed by 6 mT 

[68]. The linear regression calculation used here does not account for this variation. 

Characterizing the objective lens of the specific Titan used will improve future 

experimental precision.  

LTEM is sensitive to the in-plane component of the sample’s magnetic field. The 

films imaged form stripes of out-of-plane magnetic domains separated by in-plane 

magnetic domain walls. In a Bloch-type domain wall, the magnetization points along the 

wall. In a Néel-type domain wall, the magnetization points perpendicular to the wall. In 

these Fe/Gd/Pt films, the domain walls contain both Bloch and Néel components that 

vary through the thickness of the film. However, the Néel component produces no LTEM 

contrast. This can be visualized classically; if the magnetization points perpendicular to 

the domain wall in the plane of the film, the electrons are kicked along the wall by the 

Lorentz force. As each neighboring spin does the same, no contrast is formed. Therefore, 

LTEM images of the Fe/Gd/Pt films reveal only the Bloch-component of the domain 
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walls integrated through the film thickness. This creates a pattern of alternating bright 

and dark stripes (Figure 4). 

The in-plane magnetic field is calculated from the LTEM images using the single 

image transport of intensity equation (SITIE) [38]. Before this can be done the images 

must be aligned. As the objective lens is weakly excited, it applies a magnetic field not 

only to the sample but also to the imaging electrons, causing the image to rotate and shift. 

Defects in the silicon nitride membrane appear as circular features and provide stable 

markers for alignment. Each set of images is aligned and cropped to the overlapping area 

[69]. While these defects are convenient for alignment, they create artifacts in the 

calculated magnetic field if not removed. In image sets where the film was saturated, the 

image at saturation contains only the defects. To remove them from the rest of the image 

set, the image at saturation is subtracted. In some of the experiments, the magnification 

changes slightly at saturation so the defects are not perfectly removed and leave small 

rings or bumps. Figure 4a includes examples of this effect in images of FeGd80Pt8. In 

experiments where a saturation image is not taken, an approximate background image is 

created by finding the defect pixels via thresholding and Gaussian smoothing the rest of 

the image to remove the magnetic features. That approximate background image is then 

subtracted to remove the silicon nitride defects. An example of this process done with 

images of FeGd80Pt8 is shown in Figure 4b. The in-plane magnetic field is calculated 

from these background-subtracted images. 

Another feature of interest is the domain wall spacing and orientation. These are 

calculated from the Fast Fourier Transform (FFT) of the aligned, background-subtracted 

image. Because the domains are not perfectly straight, rather than a sharp peak in the 
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FFT, an arc is created, as shown in Figure 5c. The pixel locations of the arc are found by 

thresholding the log of the FFT above 93% of its max value. For images with arcs at only 

one radius, corresponding to only one domain spacing in the image, the k-vector length is 

found by the average of the arc pixels’ radii weighted by their intensity. This is converted 

to the real space distance by 𝑑𝑑 = 𝑊𝑊/𝑟𝑟𝑘𝑘 where 𝑊𝑊 is the size of the field of view in 

Figure 4: Examples of Background Subtraction 
a) i) Underfocused LTEM image of FeGd80Pt8. Defects in supporting membrane are 
visible as dark circular features. ii) Same image with image at saturation subtracted. 
Defects are mostly removed. b) Underfocused LTEM image of FeGd80Pt8. ii) Same 
image with approximate background image subtracted. Defects are replaced with blank 
circles. Red arrows indicate the applied field is being increased. 
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microns and 𝑟𝑟𝑘𝑘 is the k-vector radius in pixels. For a given experiment these values are 

then averaged over the set of images containing only that k-vector. To determine the 

orientation, k-means clustering is used to separate the found arc pixels into two clusters 

[70]. This is done for images with one or two spacings present. For each cluster the 

angular center and standard deviation weighted by the pixel intensities on the range [0, 

360°) is found using circular statistics [71], [72]. The two clusters should be 180° apart, 

so the orientation in the first image is defined as 

�̅�𝜃 =
𝜃𝜃0 + (𝜃𝜃1 − 180°)

2
(2.1) 

where 𝜃𝜃0 is the circular mean of the cluster in the top half of the FFT and 𝜃𝜃1 is the 

circular mean of the cluster in the bottom half. In each subsequent image’s FFT, the 0th 

cluster is chosen as whichever is closest to the previous image’s 0th cluster. The angle of 

the first image is set to 0 so the orientation is relative to the first image in the set. 

Weak Field Evolution 

 LTEM images of the films show alternating bright and dark stripes, as shown in 

Figure 5a  (arrows in the field label indicate that the field strength is being increased). 

Using SITIE to compute the in-plane magnetic field shows this contrast variation is the 

result of alternating Bloch walls, shown in Figure 5b where the in-plane magnetic field  

direction and magnitude are indicated by the color hue and saturation respectively. Under 

an external magnetic field, the spatial frequency of the stripes halves as revealed by the 

Fast Fourier Transform of the LTEM images, shown in Figure 5c. This effect occurs 

gradually. At low field values only one set of peaks appears in the FFT. As the applied 

field increases, every other dark stripe is swallowed by its neighboring bright stripes 

while the remaining dark stripes expand. In Fourier space, a lower-frequency set of 
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Figure 5: LTEM Images of FeGd80Pt8 as a Magnetic Field is Applied 
a) Underfocused, background-subtracted LTEM images of FeGd80Pt8 as a magnetic 
field is applied parallel to the optic axis. b) The calculated in-plane magnetic field from 
each image (direction and magnitude are indicated by the hue and saturation 
respectively). c) The FFT of each LTEM image. Arrows in the field label on each image 
indicate that the applied field strength is being increased. 

a) b) c) 
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peaks appears as the field is increased. Close to saturation, the original higher-frequency 

set of peaks disappears and only the low-frequency set of peaks remain. To study this 

further, a small area of images of FeGd80Pt8 from the same experiment is shown in 

Figure 6. The bottom row of each image set is the same sub-area of the sample in the 

series of LTEM images. A line profile through the center of the sub area, summed in the 

y direction between the red lines on the LTEM image, is shown below each image. From 

image to image, every other trough in the line profile is raised until the neighboring peaks 

merge (an example is highlighted by a red arrow).  In the images of the reconstructed 

magnetic field (top images), this appears to be the result of every other Bloch wall 

pointing in the +y direction (red stripes) being swallowed by its neighboring Bloch walls 

pointing in the -y direction (blue stripes), while the remaining +y Bloch walls expand. 

 If one assumes that every apparent Bloch wall initially divides domains that point 

out of or into the page (in the +z and -z directions, respectively), this suggests that two 

neighboring domains are flipping to combine with their in-plane domain walls as a 

magnetic field is applied perpendicular to the film. However, full-field transmission X-

ray microscopy, which is sensitive to the out-of-plane magnetic field, shows no change in 

the domain frequency (S. Montoya, unpublished observations). The domain spacing 

measured by X-ray microscopy in the FeGd80Pt16 film is 153 ± 7 nm (S. Montoya, 

unpublished observations). The average domain spacing in LTEM images of all the 

samples under a weak applied field is 81 ± 1 nm, found from images with only a high-

frequency arc in the image’s FFT. The average domain spacing in higher applied fields is 

172 ± 7 nm, found from images with only a low-frequency arc in the image’s FFT. While 

this differs slightly from the spacing measured in the X-ray experiment, the value at 
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higher applied fields is much closer than that in weak applied field. This suggests the 

doubled frequency in LTEM images at low applied field is not actually due to a finer, 

Figure 6: Stripe Domain Spatial Frequency Halving with Applied Magnetic Field 
A small area of LTEM images of FeGd80Pt8 under a weak applied magnetic field 
(saturation image subtracted to reduce defects in the supporting SiN membrane) and the 
in-plane magnetic field calculated from the images (direction and magnitude are 
indicated by the hue and saturation respectively) as a magnetic field is applied parallel to 
the optic axis. The images are ordered left to right and top to bottom. Arrows in the field 
label indicate the field is being increased. 
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doubled set of uniform Bloch walls, but is instead a result of a projection through a 

domain wall with a more complicated 3D structure that varies asymmetrically through the 

thickness. As a field is applied, a small in-plane component could be removing this 

 Previous studies on other material systems have indicated that the domain walls 

have a hybrid structure varying from Néel-type at the surfaces to Bloch-type within the 

film thickness, narrowing at the center [5], [35]–[37]. In purely Fe/Gd films these Néel 

caps are symmetric [38]–[42]. With the Pt layers, the Néel caps become asymmetric [5], 

[36], [37], as shown in Figure 7. Through the middle of the domain wall the integrated 

signal is dominated by the Bloch center. However, through the edges of the domain wall, 

the integrated signal is dominated by the Bloch component of the larger asymmetric Néel 

cap. If the magnetic spin varied from purely Néel-type at the surfaces to the Bloch-center 

(Figure 7ai), the entire domain wall would appear Bloch-type in LTEM (Figure 7aii). If 

the caps possess a Bloch component in the same direction as the Bloch-center, again the 

entire wall would appear as a uniform Bloch wall. However, if the Bloch component of 

the Néel caps varies across the domain wall or through the film thickness, the single wall 

could appear as multiple domain walls in an LTEM projection. For example, consider if 

the larger Néel cap contained a Bloch component antiparallel to the Bloch center (Figure 

7bi).  While the middle of the wall would appear as the Bloch center, the edges would 

appear antiparallel to it. The single domain wall would appear as three alternating domain 

walls (Figure 7bii). The apparent frequency halving under an applied field could be the 

result of a small in-plane component of the external field forcing the Néel caps’ Bloch 

components to align. A Bloch component in the Néel caps is unexpected as it has not 
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been predicted by micromagnetic simulations of hybrid walls [5], [36], [37] nor observed 

experimentally [5].  

These results demonstrate the importance of using multiple magnetic imaging 

techniques, as they are frequently not sensitive to all three components of the 

magnetization. While the full magnetic structure cannot be determined by LTEM alone, 

comparing simulated LTEM images from micromagnetic calculations of the domain wall 

to the experimental images could further elucidate the cause of the apparent frequency 

halving. In addition, LTEM tomography may reveal depth-dependent detail. These results 

could also be combined with surface-sensitive measurements like scanning electron 

microscopy with polarization analysis (SEMPA) or magnetic force microscopy (MFM). 

Domain Rotation 

 Full-field soft transmission X-ray microscopy revealed that as an external 

magnetic field is applied perpendicular to the film, the stripe domains rotate (S. Montoya, 

unpublished observations). An example of this rotation in FeGd80Pt16 is shown in 

Figure 7: Schematic of Projected Bloch Component of Asymmetric Domain Walls 
i) x-z profile of domain wall extending in y-direction with a Bloch center and a) pure 
Néel caps or b) Néel caps with a Bloch component. The magnetization is indicated in 
red. The surfaces of the film and domain wall boundaries are indicated in black. ii) The 
Bloch component summed through the film thickness i.e. in z. 
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Figure 8, featuring a sequence of underfocused, background-subtracted LTEM images of 

the center of the film. An external magnetic field is increased until the film is saturated 

and then reduced back to 0 (images ordered left-to-right and top-to-bottom). A dashed red 

line indicates the approximate original orientation. As the field is increased, the domain 

patterns rotated counter-clockwise. After the film is saturated and the field is reduced the 

domains maintain the new orientation. This trend is observed in all three films. Similar 

experiments recording LTEM images of the center of the film as the external field is 

increased until the film saturated and then reduced to zero were conducted with the 

FeGd80Pt4 and FeGd80Pt8 films. By calculating the rotation as described in the Methods 

section, I found that the maximum rotation decreased with an increasing number of 

platinum layers in the film, and therefore increasing DMI strength, as summarized in  

Figure 9. The magnetic field value at which rotation begins also decreases with an 

increasing number of platinum layers in the film. 

 The measurements mentioned above show that if the magnetic field is applied 

until the film saturates and then turned off, the domains maintain their new orientation. 

Because the rotation occurs gradually over a range of applied field values, the next 

experiment conducted was to explore if the domain pattern would remain rotated if the 

field increased to a value below saturation. The domain morphology in the center of the 

FeGd80Pt8 film was recorded with LTEM as an external field was increased to a 

maximum value below saturation (33 ± 4 mT, 53 ± 4 mT, 65 ± 4 mT, 78 ± 4 mT, 98 ± 4 

mT, 104 ± 4 mT, 117 ± 4 mT, and 130 ± 4 mT) and then reduced to zero. In between 

each experiment, the domain structure was reset by saturating the sample with a large 
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Figure 8: Domain Wall Rotation Under an Applied Magnetic Field 
Underfocused, background-subtracted LTEM images of FeGd80Pt16 under an out-of-
plane applied magnetic field, ordered left-to-right and top-to-bottom. The applied field 
strength in mT is in the top left corner of each corner. A red arrow indicates if the field is 
being increased or decreased. The original domain wall orientation is shown by a red 
dashed line. 
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positive field, then a negative saturating field, and then returning the field to 0. The film 

was not moved between experiments. The domains did not rotate in the first four trials, in 

which the field was increased to 33 ± 4 mT, 53 ± 4 mT, 65 ± 4 mT, 78 ± 4 mT 

respectively, as shown in Figure 10a. The last four trials show an increasing rotation 

magnitude with increasing maximum applied field, (Figure 10b).  However, the last two 

trials, with max applied magnetic fields of 117 ± 4 mT and 130 ± 4 mT respectively, 

show clockwise rotation (negative) whereas the previous two show counterclockwise 

rotation (positive). In addition, the domains begin to rotate at a lower applied magnetic 

field value than in the experiments summarized in Figure 8. Clearly something about the 

local magnetic structure has changed. While, as described above, a large positive field  

Figure 9: Domain Rotation under an Applied Magnetic Field for all Three Films 
Domain rotation relative to the domain orientation in the first image of each experiment 
as a function of applied magnetic field. The results of this experiment conducted with 
FeGd80Pt4, FeGd80Pt8, and FeGd80Pt16 shown in blue, orange, and green lines 
respectively. Arrows indicate the order of the measurements in each experiment. 
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Figure 10: Domain Rotation Stability 
a) Domain rotation in FeGd80Pt8 under an applied magnetic field increased to different 
maximum values as given in the plot legend. b) Average domain rotation magnitude as 
a function of maximum applied magnetic field value. The average is taken over all the 
images after the maximum applied field is reached. 
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and then large negative field was applied to the sample between each experiment to 

ensure the magnetic structure would begin each trial in the same state, it is possible the 

applied field values were not high enough to truly saturate the film and reset the field 

history. It is also possible the maximum applied saturating field value inadvertently 

differed between trials. The difference in the energy at which rotation began in the 

different trials could be due to the domains being pinned in some cases, requiring a larger 

applied field before they move In all the trials, once the domains rotated, they maintained 

the new orientation as the field was reduced to zero. 

 The next experiment conducted was to explore what happens when the field is 

then applied antiparallel to the original direction. An external magnetic field applied to 

the FeGd80Pt8 film was increased to just before domain rotation, reduced to zero, and 

then applied antiparallel to the initial field until the film was saturated (the blue line in 

Figure 11). After resetting the magnetic history, the field was applied to saturation, 

decreased back to 0 and then applied antiparallel to saturation (the orange line in Figure 

11). These experiments are summarized in Figure 11, in which the domain orientation 

relative to that of the first image in each experiment is plotted against the applied 

magnetic field. Arrows along each line indicate the image order. In the first case, the 

domains did not rotate over the course of the trial. In second case, the domains rotated, 

maintained the new orientation as the field was reduced, and rotated back to the original 

orientation as the field is applied in the opposite direction. 

 This trend did not hold when the film was moved to a new imaging area after the 

field is reduced to zero, as shown in Figure 12. A positive field was applied to 

FeGd80Pt8 through saturation and then reduced to zero, over which the domains in the 
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center of the film rotated counterclockwise (orange line in Figure 12). The film was then 

moved 140 µms away from the center, where a negative field was applied through 

saturation and increased to zero (yellow line in Figure 12). The new location showed a 

different domain orientation before the negative field was applied. While it rotated 

clockwise as expected, given the domains rotated counterclockwise under a positive field, 

the rotation magnitude was not the same. When the same experiment was conducted in 

FeGd80Pt16 (dark blue and light blue lines in Figure 12), not only did the rotation 

magnitude change in the new imaging area, but it rotated the same direction rather than 

the opposite. These results imply the rotation is not uniform across the film. This could 

be connected to changes in strain across the window. Depending on the tension in the 

supporting silicon nitride membrane, the window may bow out. This could be 

Figure 11: Rotation Reversibility with Opposite Magnetic Field 
Plot of domain rotation as a function of applied magnetic field showing 1) in blue an 
experiment where the field was increased up to before domain rotation and then 
decreased to negative saturation and 2) in orange an experiment where the field was 
increased to positive saturation and then reduced to negative saturation. 
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exacerbated as a magnetic field is applied, such that a bowed membrane could give rise to 

an in-plane magnetic field component. Varying strain across the film can also affect the 

local magnetic domain morphology and microstructure [73], [74]. In order to minimize 

these effects during the experiments, the first area imaged was roughly in the center of 

the chip window, found by locating two opposite corners of the square window and then 

moving to the middle point between them. 

The Barkhausen effect, in which magnetic domains in a ferromagnetic material 

move suddenly under an applied field due to the existence of pinned configurations [75], 

was also observed. Some of the experiments showed that the domains did not rotate 

uniformly in the field of view. Instead the domains bent as they rotated, as shown in 

Figure 12: Rotation of Stripe Domains in Different Regions Across the Film 
Domain rotation as a function of applied magnetic field for FeGd80Pt8 (orange lines) and 
FeGd80Pt16 (blue lines). Dark blue and dark orange lines correspond to measurements 
taken in the center of the film. Light blue and light orange lines correspond to 
measurements taken after the dark line measurements after first moving the sample to a 
new imaging region. 
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Figure 13 and Figure 14. Figure 13 shows LTEM images of FeGd80Pt16 as a positive 

field is increased to saturation and then decreased to 0, ordered left-to-right and top-to-

bottom. The domains in the top left corner, highlighted by a red box, maintain their initial 

orientation as the rest of the field of view rotates, causing the domains to bend sharply 

until -87 ± 4 mT, at which point the stubborn domains rotate and align with the rest of the 

Figure 13: Non-Uniform Rotation Under an Applied Magnetic Field 
Underfocused, background-subtracted LTEM images of FeGd80Pt16 under an out-of-
plane applied magnetic field, ordered left-to-right and top-to-bottom. The applied field 
strength in mT is in the top right corner. A red arrow indicates if the field is being 
increased or decreased. The original domain wall orientation is shown by a red dashed 
line. An area of the sample that does not initially rotate with the rest of the field of view is 
indicated by a red square. 
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Figure 14: Non-Uniform Domain Wall Rotation under an Applied Magnetic Field 
Underfocused, background-subtracted LTEM images of FeGd80Pt8 under an out-of-
plane applied magnetic field, ordered left-to-right and top-to-bottom. The applied field 
strength in mT is in the top left corner. A red arrow indicates if the field is being 
increased or decreased. The original domain wall orientation is shown by a red dashed 
line. 
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field of view. Figure 14 shows LTEM images of FeGd80Pt8 as the external magnetic 

field was increased up to the beginning of rotation and then reduced. The original 

orientation is indicated by a red dashed line. Once the applied field reaches 98 ± 4 mT, 

the domains in the bottom half of the field of view rotate. As the field is reduced to zero, 

the domains in the top half maintain the original orientation while the domains in the 

bottom half maintain their new orientation. 

 As a field is applied, the magnetic system will rearrange into the lowest energetic 

configuration possible, which causes the domain wall motion. Varying the relative 

number of Pt interfaces introduces different strengths of DMI, causing the material to 

have asymmetric Néel caps and to favor one chirality. Under positive and negative 

applied fields, the chirality distribution will be the same. The rotation is connected to the 

film reorienting to preserve the chirality distribution while also occupying the ground 

state. The discrepancies in rotation in different areas of the film could be due to local 

variation in the film structure or in the strain. If it is due to strain, it should be symmetric 

about the center of the window, where the substrate curvature is minimized. Repeating 

this experiment with more areas of the film could further clarify the source of the rotation 

variation. The change in rotation direction in the same area of the film (Figure 10) could 

be due to experimental error, either because the saturating fields used to reset the 

magnetic history between trials was not strong enough or the saturating field strength was 

changed. Attempting to reproduce the effect by varying the saturating field strength and 

observing the rotation direction could improve future experimental procedure. A full 

understanding of this behavior is the subject of ongoing research. 
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Conclusion 

Fe/Gd/Pt films with varying numbers of Fe/Gd and Platinum layers were grown to 

explore the magnetic structure in broken symmetry films where ferromagnetic layers are 

interfaced with high spin-orbit coupling transition metals. We recorded the domain wall 

morphology as a function of applied magnetic field. We found that the domain walls 

rotate in-plane over a finite range of the applied field strength and stay in the new 

orientation when the field is brought back to zero. This rotation was found to be 

symmetric; if after bringing the applied field back to zero the field was then applied in the 

opposite direction, the domain walls rotated in the opposite direction and returned to their 

original orientation. However, while this rotation was observed across the film, it was not 

uniform, suggesting strain in the film or local variation in the film structure is affecting 

the magnetization.  

An aspect of these films that this study did not explore is the emergence of a 

domain wall chirality preference. To determine the chirality of a domain wall, the out-of-

plane component of the magnetization must be known. This typically cannot be measured 

by LTEM, but in studies of the evolution of magnetic domains in a film with 

perpendicular magnetic anisotropy under an applied magnetic field, the field history can 

be used to determine the out-of-plane component of the magnetization [76]. This was one 

of the goals of the experiment presented. However, rather than some domains obviously 

growing as a field was applied, the domains broke up into biskyrmions near saturation, 

making the identification of domains aligned with the applied field and those antiparallel 

to the applied field unclear. This issue might be resolved by imaging the sample at non-
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normal incidence, yet this will require a modified specimen holder that can maintain a 

perpendicular field at the sample. 

This study demonstrates the power of LTEM to drive theoretical understanding of 

micromagnetics. As one of only a few recent studies of materials with both dipolar 

interactions and DMI determining the magnetic structure, the measurements of 

unexpected variation within the domain wall and observation of the domain wall rotation 

are new pieces to this puzzle. These results also highlight that LTEM is complementary 

to other micromagnetic imaging techniques. X-ray measurements could not reveal 

variation within the domain wall Bloch component. At the same time, without X-ray 

measurements the LTEM results could have been misleading. Yet while Lorentz TEM is 

a useful technique and the simplest way to image magnetic materials in a TEM, it is an 

indirect measurement of the magnetic phase. There are two direct phase measurement 

techniques also used to image magnetic materials; differential phase contrast and off-axis 

electron holography. In the next chapter, I present the first use of diffraction-grating-

based STEM holography, a direct phase measurement technique, to image magnetic 

materials. As discussed in the previous chapter, STEM holography could combine the 

pros of both direct-phase measurement techniques and be a new tool in the TEM 

magnetic imaging kit. 
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CHAPTER III 

MAGNETIC PHASE IMAGING VIA STEM HOLOGRAPHY 

Introduction 

 While electron microscopy has been able to directly image the atomic structure of 

materials since 1970 [46], the ability to image magnetic and electric fields at nanometer 

length scales has lagged far behind. There are two reasons for this. First, in typical high-

resolution TEM imaging modes, the sample sits within the high magnetic field of the 

objective lens, and this alters the magnetic structure. A large segment of TEM 

development has focused on improving the objective lens and correcting for its 

aberrations as it contributes the highest aberrations to the optical system. As discussed in 

Chapter II, the objective lens is turned off to image magnetic materials. Without the 

objective lens, it is difficult to form a high-resolution TEM image or a high-resolution 

STEM probe at the sample. The second limitation to high resolution TEM imaging of 

magnetic fields is determined by the contrast mechanism. The most common magnetic 

TEM imaging modes, LTEM and DPC, are sensitive to gradients in the electron phase 

induced by internal fields within the sample. On short length scales, phase gradients can 

be quite small, resulting in low signal-to-noise. The resolution gap of TEM imaging set 

by these two factors limits the understanding and characterization of a magnetic 

material’s physical and magnetic structure. 

The first atomic resolution image of a sample in a magnetic-field free 

environment was accomplished in a STEM instrument using differential phase contrast 

(DPC) with a new objective lens design in 2019, although they did not report 

measurement of the magnetic field of the sample [24]. DPC measures the phase gradient 
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across the sample [13], [22], [23]. Because of this, DPC is inherently more sensitive to 

the larger and more rapidly varying changes in material structure than the comparatively 

smaller and more slowly varying changes in magnetic structure. In addition, the phase 

sensitivity worsens with higher spatial resolution [13], [77]. The other direct phase 

measurement technique used to image magnetic materials, off-axis electron holography 

[25]–[27], measures the phase of the sample, meaning it is sensitive to the electric and 

magnetic potentials rather than the electric and magnetic field as with DPC. However, 

magnetic imaging in TEM holography mode has not broken  5Å resolution [15], [18]. 

off-axis electron holography is also challenging to implement as it requires specialized 

and expensive instrumentation, extremely high coherence electron sources and very 

stable optics. STEM holography, on the other hand, is an interferometric probe-based 

technique that directly measures the phase. Unlike DPC, the phase sensitivity does not 

worsen with improved spatial resolution. Unlike TEM holography, STEM holography 

can be implemented using a modified aperture featuring a grating beamsplitter [32]–[34], 

[78], has loosened requirements on spatial resolution and optical stability, and has the 

additional advantage that it can be used simultaneously with other imaging modalities 

such as high-angle annular dark field, DPC, and energy dispersive spectroscopy imaging. 

Therefore, STEM holography could be the best of both worlds: a high resolution imaging 

technique for magnetic materials that measures the phase directly rather than the phase 

gradient, and thus the electromagnetic potentials instead of the fields. STEM holography 

was originally theorized and experimentally realized in the late 1980s through the early 

1990s [28]–[31] using an electrostatic biprism to divide the electron beam. In this chapter 
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I present the first measurements of magnetic materials using STEM holography 

implemented with an amplitude-dividing diffraction grating. 

Scanning Transmission Election Holography 

 In STEM holography, the electron beam is coherently divided into two beams by 

a diffraction grating installed in the aperture just below the 2nd condenser lens (C2 

aperture) [32]–[34], as shown in Figure 15. The 1st and 2nd condenser lenses (C1 and C2 

lenses) are represented by the first lens in Figure 15. The portion of the electron beam 

that passes through the diffraction grating is shown in blue. At the sample, the beams are 

focused to probes by the 3rd condenser lens (C3 

lens). The diffraction grating is a pattern milled 

into a silicon nitride membrane using a focused 

ion beam [79]–[82]. The entire silicon nitride 

membrane is transparent to the electron beam 

and not filled by the grating. Electrons that 

pass through the unpatterned membrane 

surrounding the grating, shown in green below 

the C2 aperture in Figure 15, are removed by 

the aperture below the 3rd condenser lens (C3 

aperture). The probes are scanned such that one 

of the probes, referred to as the interaction 

probe (the rightmost probe in Figure 15), 

interacts with the sample while the reference 

probe (the leftmost probe in Figure 15), passes 

Figure 15: STEMH Optical System 
The lenses are indicated by grey 
ellipsoids. The electron beam is shown 
in green and blue. 
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through vacuum. The projection lens system defocuses the beams such that they overlap 

and interfere at the detector. The phase that the sample imparts on the interaction probe is 

determined from the image of the interference. To form an image of the sample, the 

probes are scanned and for each point in the scan the phase is calculated from the 

interference image. 

The phase reconstruction from the interference images collected depends on the 

probe-producing grating, which creates multiple diffracted electron probe beams. The 

wavefunction of the electron immediately before interacting with the sample can be 

written as a coherent sum of each diffracted probe’s wavefunction 

Ψ𝜋𝜋(�⃗�𝑥; �⃗�𝑥0, �⃗�𝑥𝑠𝑠) = �𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚(�⃗�𝑥 − 𝑚𝑚�⃗�𝑥0 − �⃗�𝑥𝑠𝑠)
𝑚𝑚

(3.1) 

where 𝑚𝑚 is the diffraction order number, 𝑐𝑐𝑚𝑚 is the complex amplitude of each probe, 𝑎𝑎𝑚𝑚 

is the wavefunction of each probe, �⃗�𝑥0 is the separation between probes, and �⃗�𝑥𝑠𝑠 is the scan 

offset. Assuming the sample is a weak phase object, the electron wavefunction 

immediately after the sample is 

Ψ𝑓𝑓(�⃗�𝑥; �⃗�𝑥0, �⃗�𝑥𝑠𝑠) = �𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚(�⃗�𝑥 − 𝑚𝑚�⃗�𝑥0 − �⃗�𝑥𝑠𝑠)
𝑚𝑚

𝑒𝑒(�⃗�𝑥) (3.2) 

where 𝑒𝑒(�⃗�𝑥) is the sample’s transmission function. The interference pattern captured by 

the detector is written mathematically as the absolute value squared of the Fourier 

transform of the wavefunction after the sample: 

𝐼𝐼�𝑘𝑘�⃗ ; �⃗�𝑥0, �⃗�𝑥𝑠𝑠� = Ψ�𝑓𝑓∗ ∙ Ψ�𝑓𝑓 (3.3) 

where tilde indicates the 2D Fourier transform. The Fourier transform of this image then 

gives 
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𝐼𝐼(𝑢𝑢�⃗ ; �⃗�𝑥0, �⃗�𝑥𝑠𝑠) = �𝑐𝑐𝑚𝑚∗
𝑚𝑚,𝑛𝑛

𝑐𝑐𝑛𝑛[𝑎𝑎𝑚𝑚∗ (𝑢𝑢�⃗ + 𝑚𝑚�⃗�𝑥0 + �⃗�𝑥𝑠𝑠)𝑒𝑒∗(𝑢𝑢�⃗ )] ⊗ [𝑎𝑎𝑛𝑛(−𝑢𝑢�⃗ + 𝑛𝑛�⃗�𝑥0 + �⃗�𝑥𝑠𝑠)𝑒𝑒(−𝑢𝑢�⃗ )] (3.4) 

where ⊗ indicates a convolution. Assuming that the probe wavefunctions 𝑎𝑎𝑚𝑚 are Dirac 

delta functions 𝛿𝛿, this can be rewritten as 

𝐼𝐼(𝑢𝑢�⃗ ; �⃗�𝑥0, �⃗�𝑥𝑠𝑠) = �𝑐𝑐𝑚𝑚∗
𝑚𝑚,𝑛𝑛

𝑐𝑐𝑛𝑛𝛿𝛿(𝑢𝑢�⃗ + (𝑚𝑚− 𝑛𝑛)�⃗�𝑥0) 𝑒𝑒∗(𝑢𝑢�⃗ − 𝑛𝑛�⃗�𝑥0 − �⃗�𝑥𝑠𝑠) 𝑒𝑒(𝑛𝑛�⃗�𝑥0 + �⃗�𝑥𝑠𝑠) (3.5) 

Replacing 𝑚𝑚 − 𝑛𝑛 with 𝑙𝑙 so that the above equation becomes 

𝐼𝐼(𝑢𝑢�⃗ ; �⃗�𝑥0, �⃗�𝑥𝑠𝑠) = �𝑐𝑐𝑛𝑛−𝑙𝑙∗

𝑙𝑙,𝑛𝑛

𝑐𝑐𝑛𝑛𝛿𝛿(𝑢𝑢�⃗ − 𝑙𝑙�⃗�𝑥0) 𝑒𝑒∗(𝑢𝑢�⃗ − 𝑛𝑛�⃗�𝑥0 − �⃗�𝑥𝑠𝑠) 𝑒𝑒(𝑛𝑛�⃗�𝑥0 + �⃗�𝑥𝑠𝑠) (3.6) 

shows that the Fourier transform of the interference image produces a line of peaks at the 

same spacing as the probe spacing. The 𝑙𝑙th peak carries the sample transmission function 

information picked up by the probes that are 𝑙𝑙 diffraction orders apart. The diffraction 

gratings used are designed to maximize amplitude in two probes and minimize any 

others, but more than two probes are always present. These weaker probes must be 

accounted for in STEMH experiments. For instance, for a grating that produces 5 

diffraction orders (-2, -1, 0, +1, +2) the 1st order peak in the Fourier transform of the 

interference image carries the phase difference between the -2 and -1 probes, -1 and 0 

probes, 0 and +1 probes, and +1 and +2 probes. Crucially, the magnitude of each 

contribution is controlled by the amplitude of the probes. So, if +1 and -1 are the 

strongest probes, the 1st order peak in the Fourier transform of the interference image will 

carry comparable contributions of 0/+1 and 0/-1 but the second order peak will be 

dominated by +1/-1. Assuming the 𝑗𝑗th peak is dominated by the interaction and reference 

probes, the sample’s transfer function can be calculated via 
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𝑒𝑒(�⃗�𝑥0 + �⃗�𝑥𝑠𝑠) =
1
𝑐𝑐𝑟𝑟𝑐𝑐𝜋𝜋∗

ℱ𝒯𝒯−1 �
1

ℱ𝒯𝒯[|𝑎𝑎𝑟𝑟|2]� ⊗ ��𝑎𝑎𝑟𝑟∗(𝑢𝑢�⃗ )𝐼𝐼𝑗𝑗(𝑢𝑢�⃗ ; 𝑥𝑥𝑠𝑠)𝑑𝑑𝑢𝑢�⃗  
Ω

� (3.7) 

where 𝑐𝑐𝑟𝑟𝑎𝑎𝑟𝑟(�⃗�𝑥) and 𝑐𝑐𝜋𝜋𝑎𝑎𝜋𝜋(�⃗�𝑥) are the reference and interaction probes respectively and ∫Ω 

indicates integrating around 𝐼𝐼𝑗𝑗, the 𝑗𝑗th peak in the Fourier transform of the interference 

image [32]–[34], [78], [83]. This calculation finds the transfer function for a given scan 

point 𝑥𝑥𝑠𝑠. To form a phase image, the interference image must be collected for each scan 

location. In this chapter, I will discuss applying this STEM holography technique to 

phase imaging magnetic domains within thin films. 

Adapting STEM Holography to Image Magnetic Domains 

 The first demonstration of STEMH imaged a gold nanoparticle on amorphous 

carbon with 2.4 Å resolution [33]. To image magnetic materials, the objective lens must 

be turned off to minimize the magnetic field at the sample, a mode referred to as Low 

Mag STEM. This affects the optical system and experimental procedure in several ways. 

First, the beam forms a much smaller convergence angle at the sample, which places 

limits on spatial resolution. However, the TEAM I microscope at the Molecular Foundry, 

Lawrence Berkeley National Lab, the instrument used here and by Yasin et al, still 

achieves 8-10 nm resolution in this mode, estimated from the smallest features visible in 

the simultaneously-collected high-angle annular dark field image (HAADF). In addition, 

for a given diffraction grating periodicity, decreasing the strength of the main objective 

lens favorably creates a much larger probe spacing at the sample. In standard STEMH 

experiments using a full strength objective lens setting, a probe separation of 10s of nms 

is possible [33]. In Low Mag STEMH the probe separation can be as large as 2 µms. This 

allows larger scans of the sample to be taken. The width of the scan in the direction along 
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the line of the beams is limited by the probe separation because the phase reconstruction 

requires that while the interaction probe passes through the sample the reference probe 

must pass through vacuum. 

In standard STEM operation, the selected area aperture below the sample is in an 

image plane of the sample. The aperture can be used to block probes before the 

interference is formed at the detector. Yasin et al. used this to block high-order probes 

and high-angle scattering to reduce noise. In principle, the aperture could be used to limit 

the probes to only the interaction probe and one reference probe, eliminating concerns of 

multiple interferometer paths contributing to the reconstructed phase. However, in Low 

Mag STEM the selected area aperture is in a Fourier plane of the sample. An image of the 

interference is formed at the aperture, and it cannot be used to block some of the probes 

selectively.  

The inability to remove unwanted probes with an intermediate aperture requires 

the use of tailored phase gratings that produce just two diffraction orders. A focused ion 

beam provides a way to fabricate nanoscale diffraction gratings with engineered phase 

profiles [79], [80], [82], [84]. However, various factors of the milling process result in a 

tradeoff between lateral feature size and control over the depth of the feature. In many 

STEMH applications, the smallest possible grating period is desired to allow for a larger 

probe spacing and hence larger possible scan area, and this prioritization comes with the 

cost of reduced diffraction efficiency set by the depth of grooves in the grating. In Low 

Mag STEMH the prioritization is reversed – probe spacing is inherently so much larger 

that a larger grating periodicity can be used, allowing the fabrication of grating features 
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with tailored depths. This allows for more accurate gratings to be produced, especially 

when used in combination with gas-assisted etching [82]. 

Imaging Landau States in a Permalloy Square 

The first magnetic sample imaged with STEMH was a permalloy square. 

Permalloy is a nickel-iron magnetic alloy composed of approximately 80% nickel and 

20% iron invented in 1914 [85]. Due to its high magnetic permeability, low coercive 

force and low magnetic loss, it is useful in many applications, such as electrical current 

sensors, magnetic shields and cores of magnetic heads for card readers. The magnetic 

structures in nanoscale patterned Permalloy elements and their dynamics is a long-

standing and still active area of research [86]–[89]. In addition, Permalloy has become a 

frequent test subject for the demonstration of developments in magnetic imaging in a 

TEM [13], [53], [90], [91]. 

The sample was fabricated by first depositing approximately 20 nm of permalloy 

composed of 80% nickel, 15% iron, and 5% molybdenum onto a 100 nm thick silicon 

nitride membrane via thermal evaporation. Isolated squares approximately 1-1.5 µm wide 

attached to the surrounding membrane by 100-200 nm wide tethers at its corners were 

created by milling out the surrounding holes via focused ion beam, as shown in Figure 

16a and b. Isolated micron-scale squares of permalloy form Landau domains; Domain 

walls along the diagonals of the square break up four triangular domains in which the 

magnetization is parallel to the square edge [92]. Micromagnetic simulation using the 

Object Oriented Micromagnetic Framework [93] shows that in the tethered square, the 

domain walls do not follow the diagonals of the square but instead are offset to the side 

of the tether, as shown in Figure 16c. The magnetic phase, given by the integral over the 
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magnetic vector potential component parallel to the optic axis, can be written in terms of 

the magnetization using the following relation between the 3D Fourier transform of the 

vector potential and the magnetization [94]–[96]: 

ℱ3𝐷𝐷[𝐴𝐴𝑧𝑧]�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� = −
𝑖𝑖𝜇𝜇0𝑀𝑀𝑠𝑠

2𝜋𝜋
ℱ3𝐷𝐷[𝑚𝑚𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑑𝑑)]𝑘𝑘𝑦𝑦 − ℱ3𝐷𝐷�𝑚𝑚𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑑𝑑)�𝑘𝑘𝑥𝑥

𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2
(3.8) 

where 𝜇𝜇0 is the permeability of free space, 𝑀𝑀𝑠𝑠 is the saturation magnetization of the 

sample, and 𝑚𝑚𝑥𝑥 and 𝑚𝑚𝑦𝑦 are the normalized magnetization vector components. The 2D 

Fourier transform of the phase is then  

𝜙𝜙��𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦� = −
𝑖𝑖𝜇𝜇0𝑒𝑒𝑀𝑀𝑠𝑠

2𝜋𝜋ℏ
𝑘𝑘𝑦𝑦𝑚𝑚𝑥𝑥����� − 𝑘𝑘𝑥𝑥𝑚𝑚𝑦𝑦�����

𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2
(3.9) 

where 𝑚𝑚𝑥𝑥����� (𝑥𝑥,𝑦𝑦) and 𝑚𝑚𝑦𝑦����� (𝑥𝑥,𝑦𝑦) are the Fourier transform of the integrals of 𝑚𝑚𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑑𝑑) 

and 𝑚𝑚𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑑𝑑) over 𝑑𝑑. Assuming the magnetization is uniform in z and the sample 

thickness is 𝑒𝑒, this is simplified to  

𝜙𝜙��𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦� = −
𝑖𝑖𝜇𝜇0𝑒𝑒𝑒𝑒𝑀𝑀𝑠𝑠

2𝜋𝜋ℏ
𝑘𝑘𝑦𝑦𝑚𝑚�𝑥𝑥 − 𝑘𝑘𝑥𝑥𝑚𝑚�𝑦𝑦

𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2
(3.10) 

where 𝑚𝑚𝑥𝑥���� = 𝑒𝑒𝑚𝑚𝑥𝑥(𝑥𝑥,𝑦𝑦) and 𝑚𝑚𝑦𝑦���� = 𝑒𝑒𝑚𝑚𝑦𝑦(𝑥𝑥, 𝑦𝑦). The magnetic phase calculated from the 

magnetization simulation is shown in Figure 16d. The phase increases linearly from each 

edge to the crossing point of the magnetic domain walls. When a counter-clockwise-

winding Landau domain is imaged by LTEM in an underfocused condition, bright lines 

appear along the domain walls with a brighter spot at their crossing point, as shown by 

the simulated LTEM image in Figure 16e. If the magnetization winds clockwise instead, 

the phase decreases towards the center and dark lines are formed in an underfocused 

LTEM image.  
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 The magnetic structure of the fabricated tethered squares was confirmed by 

LTEM. The characteristic bright spot formed by a counter-clockwise-winding Landau 

domain (Figure 17a) can be seen in the experimental images of three different tethered 

squares (Figure 17b-d). The fainter domain walls are more difficult to see in the 

experimental images. Interestingly, while the center of the Landau domain appears off-

center as predicted by the micromagnetic calculation in two of the images (Figure 17b 

and d), it appears centered in the third (Figure 17c). This serves as an example that even 

simple magnetic systems can display many different metastable configurations. 

Figure 16: Tethered Permalloy Squares 
a) Scanning Electron Microscope image of a tethered square milled into a permalloy-
coated silicon nitride membrane viewed at an angle. The darker regions are areas where 
the film has been completely removed. b) An in-focus LTEM image of a tethered square. 
The lighter regions indicate holes in the sample. c) The magnetization in the tethered 
permalloy square calculated via OOMMF (direction and magnitude are indicated by the 
hue and saturation respectively). d) The electron phase imparted on the beam by the 
calculated magnetization. e) A simulated underfocused LTEM image of the calculated 
magnetization. 
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 The first STEMH measurement of a permalloy tethered square used a sinusoidal 

grating that produced three probes of almost equal intensity, shown in an image of the 

probe pattern (Figure 18a) and the intensity profile through the center of the probes 

(Figure 18b). A HAADF image (Figure 18c) shows the overlapping images formed by 

the three probes. (Unlike TEM images, brighter regions of a HAADF image correspond 

Figure 17: LTEM images of Tethered Permalloy Squares 
a) A simulated LTEM image of a Landau domain in a tethered square. b)-d) 
Experimental underfocused LTEM images of three different tethered permalloy squares 
showing contrast corresponding to a Landau domain. 
 

b) a) 

c) d) 
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to the beam interacting with the film and darker regions indicate it passing through 

vacuum.) The HAADF image is formed by scanning the probes left to right across the 

field of view. Therefore, the rightmost probe interacts with sample first and forms the 

leftmost image. While the +1 probe is interacting with the square, forming the leftmost 

image, the -1 probe is still interacting with the surrounding membrane, as shown by the 

edges of the rightmost image. Because of this the STEMH measurement was instead 

performed with the 0th order probe interacting with the sample while the +1 and -1 probes 

passed through vacuum. The scan area corresponding to this measurement is indicated by 

a red box in Figure 18c.  

The STEMH measurement of the phase of a tethered permalloy square is shown 

in Figure 19a. Because the ± 2 probes are negligible, the phase was calculated using the 

+1 peak in the FFT of the interference images. A line profile through the center of the 

measured phase (Figure 19b) shows that the phase decreases towards the center of the 

square, as expected from a Landau domain configuration that winds clockwise.  

Note that the magnetic phase appears to be stepped instead of continuous. A 

simulated LTEM image (Figure 19c) shows that this stepped phase would produce 

concentric bright and dark rings about the center of the square. This contrast could be 

formed by in-plane domain walls separating out-of-plane domains or the in-plane 

magnetization varying from pointing parallel to the square edge to pointing perpendicular 

to it. However, both scenarios would cost more energy than the Landau-domains 

observed by LTEM and are probably not physical. The SEM (Figure 16a) and 

simultaneously-collected HAADF (Figure 19e) images do not show any stepped 

variations in the thickness of the material, so it is unlikely that it is due to any  
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Figure 18: Sinusoidal Grating Probe Pattern Used in STEMH Measurement of a Tethered 
Permalloy Square 
a) A TEM image of the probes. The blue box indicates the area used to produce a line 
profile (b) of the intensity summed over the width of the box. c) A HAADF image 
showing the overlapping images formed by the three most prominent probes. The red box 
indicates the area over which a STEMH measurement was performed. 
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electrostatic phase variation. The stepped phase is likely an artifact caused by using the 

0th order beam as the interaction probe. The +1 and -1 probes could not be used in this 

instance due to insufficient vacuum space for the reference probes. The phase was 

calculated from the +1 peak in the FFT of the interference images, which contains 

contributions from both the +1/0 probe phase difference and the -1/0 probe phase 

difference. These are almost exactly equal and opposite, resulting in flat regions in the 

measured phase when the contributions cancel. If the phase is smoothed to reduce the 

step-like appearance, the calculated magnetic field appears to be a clockwise Landau 

domain (Figure 19d).  

Figure 19: STEMH Phase Measurement of a Tethered Permalloy Square 
a) The phase measured via STEMH in radians. b) The phase profile through the center of 
the phase pyramid, averaged in the y-direction between the red lines on the phase image. 
c) A simulated under-focused LTEM image of the measured phase. d) The magnetic field 
calculated from the measured phase after Gaussian smoothing (direction and magnitude 
are indicated by the hue and saturation respectively). e) Simultaneously acquired HAADF 
image. 
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A second STEMH measurement of a permalloy tethered square was performed 

using a binary grating that produced just two primary probes. Larger channels were cut 

out of the permalloy-coated membrane via FIB, extending the vacuum region around the 

tethered squares as shown in Figure 20c. The use of a binary phase grating caused the +1 

and -1 probes to have the largest intensity, as shown in an image of the probes (Figure 

20a) and the intensity profile through the center of the beams (Figure 20b). While the 0, 

±2, and ±3 probes are still visible in the image of the probes (Figure 20a), the +2 peak in 

the FFT of the interference images will be dominated by the +1/-1 probe phase 

difference, allowing for the calculation of the phase of the sample. The relative intensity 

difference is clear in the overlapping HAADF image (Figure 20c), in which the images 

formed by the ±1 probes are most clearly visible. The STEMH measurement was 

performed with the -1 probe interacting with the sample  (indicated by a red box in Figure 

20c). The expanded holes in the film allowed for the 0, +1, ±2, and ±3 probes to pass 

through vacuum during the scan. 

The flat intensity across the square in the simultaneously acquired HAADF image 

(Figure 21c) confirms that the permalloy square has uniform thickness and composition. 

Therefore, any phase variation in the square is assumed to be magnetic. The phase 

increases towards the center, shown in the phase image (Figure 21a) and the phase profile 

through the center of the square averaged between the red lines on the phase image 

(Figure 21b). This is expected from a counter-clockwise-winding Landau domain. 

However, there are less-than-2𝜋𝜋 discontinuities, visible as concentric lines in the phase 

image (Figure 21a).  The concurrently-collected HAADF image shows small features on 

the order of 10 nm across that are visible in the STEMH phase image (highlighted by a 
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red circle in Figure 21a and c but these do not appear to correlate spatially with the small 

discontinuities in the measured phase. The phase discontinuities are most likely artifacts 

due to the 0/+2 and 0/-2 phase differences interfering with the +1/-1 phase measurement. 

Figure 20: Binary Grating Probe Pattern Used in STEMH Measurement of a Tethered 
Permalloy Square 
a) A TEM image of the probes. The blue box indicates the area used to produce a line 
plot (b) of the intensity summed over the width of the box. c) A HAADF image showing 
the overlapping images formed by the probes. The red box indicates the area over which 
a STEMH measurement was performed. 
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If the phase is smoothed to reduce these discontinuities, the calculated magnetic field 

appears to be a counter-clockwise Landau domain (Figure 21d). Further optimization of 

the beamsplitting gratings is required to eliminate these discontinuities. 

These STEMH measurements of tethered permalloy squares serve as the first 

demonstration of an interferometric STEM image of the magnetic structure in a thin film. 

However, they also highlight how multiple reference probes can create artifacts in the 

reconstructed phase. The issue of ambiguity in the phase measured by STEMH will be 

further discussed later in the chapter. 

Figure 21: STEMH Phase Measurement of a Tethered Permalloy Square 
a) The phase measured via STEMH in radians. b) The phase profile through the center of 
the phase pyramid, averaged in the y-direction between the red lines on the phase image. 
c) Simultaneously acquired HAADF image. d) The magnetic field calculated from the 
measured phase after Gaussian smoothing (direction and magnitude are indicated by the 
hue and saturation respectively).  
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Imaging Skyrmions in Fe/Gd Multilayer Thin Films 

 Magnetic skyrmions are donut-shaped magnetic domains. An example of a Bloch-

type skyrmion, which has magnetization that points azimuthally in a circle, is shown in 

Figure 22a. This imparts a bump in the phase of the electron wave, as shown in Figure 

22b. The sign of this bump depends on which way the Bloch skyrmion winds, i.e. the 

handedness. In underfocused LTEM images this phase creates a dark spot surrounded by 

a bright ring, as shown in Figure 22c. If the Bloch skyrmion wound counterclockwise, the 

spot would be bright instead. Skrymions are topological solitons; they move and interact 

like particles. Because of this, their topological stability, and the low current threshold 

needed to move them through a material, there is interest in using skyrmions as nanoscale 

information carriers [2]–[4]. Subsequently, producing materials that support skyrmions 

and understanding their behavior has become a popular field of research. They also serve 

as an example for the need for improved spatial resolution and contrast in magnetic 

imaging as they can be as small as 1nm [97]. One of the materials that supports magnetic 

skyrmions is a thin film composed of 120 bilayers of iron and gadolinium. This 

multilayer thin film has been previously shown to produce a lattice of skyrmions under an 

Figure 22: Bloch-type Magnetic Skyrmion 
a) Visualization of the in-plane magnetization of a Bloch-type skyrmion (direction and 
magnitude are indicated by the hue and saturation respectively). b) The simulated phase 
imparted on an electron beam in a TEM by a Bloch-type skyrmion. c) A simulated 
underfocused LTEM image of a Bloch-type skyrmion. 
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applied magnetic field perpendicular to the film [39]. Here we image skyrmions in an 

Fe/Gd film via STEMH.  

To perform STEMH there must be a hole in the sample for the reference beam to 

pass through. To provide this, an Fe/Gd multilayer film with composition [Pt (3nm)\ 

[Fe(3.4A)/Gd(4A)]x120\ Pt (3nm)], with a nominal total thickness of 89 nm, was 

deposited on a 50 nm thick silicon nitride membrane pre-patterned with a grid of 20 µm 

holes by Sergio Montoya at UCSD using sputter deposition. These membranes, 

commonly used as electron-transparent support films for imaging TEM samples, are 

referred to as “holey” silicon nitride, and the hole-patterning process likely adds non-

uniform stress within the thin film. Lorentz TEM images of the Fe/Gd film deposited on 

these membranes show that the film forms stripe domains with no magnetic field applied. 

These remanent stripe domains tend to line up with local edges of the holes, likely due to 

surface effects and internal stress, and in between the holes these stripe domains meet and 

become frustrated. An example is shown in Figure 23a. The clearer white lines indicate 

there is an in-plane component of the magnetization. This is most likely due to the 

magnetic material being under strain as the nonuniform holey silicon nitride relaxed 

during the deposition process. Under an applied field, a mixture of skyrmions and other 

magnetic bubbles forms rather than a skyrmion lattice, as shown in Figure 23b. The low 

contrast makes these features difficult to identify. Near the edge of the holes, these 

magnetic domains become more sparse, as shown in a LTEM image of the film under an 

applied field next to an edge (Figure 23c). The edge is just outside the top left corner of 

the field of view.  
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Figure 23: LTEM images of Fe/Gd film Grown on Holey Membrane 
a) LTEM image of an area between 4 holes with no applied field. b) LTEM image of 
skyrmions, bubbles, and biskyrmions under an applied field. c) LTEM image of mixed 
states under an applied field close to an edge (just outside the top left corner of the field 
of view). 
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 The interaction probe must be scanned along one edge of the sample so that the 

reference can pass through vacuum. A blazed phase grating producing an asymmetric 

diffraction pattern was used as a beamsplitter. This eliminated the +1, +2 and +3 probes, 

as shown in the image of the probes (Figure 24a) and the intensity profile through the  

center of the probes (Figure 24b), making it possible to scan the sample with the most 

intense probe, the 0th order, while all other significant probes pass through vacuum.  

Unfortunately, imperfections in this grating aperture produced more than two distinctly 

predominant probes, which can lead to artifacts in the recorded phase as discussed above. 

The phase of the sample was measured using the +1 peak in the Fourier transform of the 

interference image, which is dominated by the -1/0 probe phase difference. The HAADF 

image (Figure 25a) shows the thickness varies at the film edge, but it does not appear to 

vary across the rest of the field of view. The sample was imaged under a magnetic field 

created by weakly exciting the objective lens to produce skyrmions. The formation of 

skyrmions was confirmed by defocusing the probe and forming an LTEM-like image. 

STEMH phase measurements of two different areas of the film are shown in 

Figure 25b. Both show a large-scale phase variation. This is potentially due to there being 

a remaining in-plane magnetization component, as discussed earlier. In both phase 

measurements there are also smaller features that are the size we expect of skyrmions in 

this sample. Subtracting out the large-scale variation to isolate these smaller features, as 

shown in Figure 25c, they appear to be phase bumps due to skyrmions. Calculating the 

magnetic field from these phase features, they have the skyrmion vortex-like Bloch 

structure, as shown in Figure 25d. We attribute the elongated shape of the structures to 

the effects of local stress in the membrane. While structural defects in the patterned 
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silicon nitride membrane are visible in the LTEM images as small dots (Figure 23), they 

are all 20-50 nm across so it is unlikely the phase variations in the STEMH measurement 

are electrostatic.  

Figure 24: Blazed Grating Probe Pattern Used in STEMH Measurement of a FeGd thin 
film 
a) A TEM image of the probes. The blue box indicates the area used to produce a line 
profile (b) of the intensity summed over the width of the box. c) A HAADF image 
showing the overlapping images of the edges of a hole in the film formed by the three 
most prominent probes. The red box indicates the area over which a STEMH 
measurement was performed. 
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Figure 25: STEMH measurement of Skyrmions in Fe/Gd film 
a) HAADF images collected concurrently with two STEMH scans. b) Phase measured by 
STEMH of two different regions. The line on the left in both images is the edge of the 
sample. c) Background subtracted phase cut to within the material. d) Magnetic field 
calculated from the background subtracted phase (direction and magnitude are indicated 
by the hue and saturation respectively). Outline colors indicate corresponding region of 
the phase image. 
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Accounting for Phase Ambiguity 

 With any phase measurement, the cause of the phase shift can be ambiguous. In 

TEM, magnetic materials will impart both the magnetic phase of interest and an 

electrostatic component from the atoms that make up the material. In addition, 

aberrations in the optical system could add a phase to the beam. As the beams are 

scanned to perform STEM holography, the path length changes, resulting in a geometric 

phase background. The sample phase must be isolated from the geometric phase and any 

aberration phase. Then the magnetic phase must be separated from the electrostatic phase.  

In the STEMH phase measurements above, the geometrical phase was removed 

by fitting a linear function to the area of the image where all the probes are in vacuum 

and then subtracting that fit. It is assumed that the optical system’s aberrations are not 

contributing significantly. In principle, these two sources of phase can be measured by 

removing the sample and performing the same scan. As discussed above, in these 

experiments the electrostatic phase is assumed to be flat and any phase variation is due to 

the magnetization of the sample. However, the two can be separated quantitatively by 

flipping the sample and performing the same scan. When the sample is flipped, the sign 

of the magnetic phase changes but the sign of electrostatic phase does not. The magnetic 

phase can then be extracted from the difference of the two whereas the electrostatic phase 

is given by the sum. This adds experimental complexity because the sample state cannot 

change and the two phase measurements must be aligned. In particular, this would be 

difficult with the Fe/Gd film, which has magnetic domains that are metastable under an 

applied field. In a standard TEM holder, the sample must be removed from the 

microscope (and the applied field) to flip it. A tomography sample holder would allow 
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for inverting the sample without removing it from the microscope. Alternatively, the 

electrostatic phase can be isolated by increasing perpendicular applied magnetic field 

until the sample’s magnetization is saturated. This adds its own experimental complexity 

because the applied field is created by the objective lens. As the strength of the objective 

lens increases, it affects the optical system and requires realignment. 

The last source of ambiguity in the STEMH measurement is the presence of more 

than two probes. As demonstrated earlier, the 𝑙𝑙th peak in the Fourier transform of the 

interference image carries the phase difference between each set of probes 𝑙𝑙 diffraction 

orders apart. To calculate the phase above, the peak dominated by the 

interaction/reference probes was used and the other contributions were assumed to be 

negligible. However, this assumption appears to be false in the permalloy square STEMH 

measurement. In all the experiments presented here, all but the interaction probe passed 

through vacuum. Collecting a background-phase measurement with the sample removed 

would include the phase accumulated by unwanted probes that create artifacts in the 

STEMH measurement. However, there may be fringing-fields around the sample that the 

probes passing through vacuum interact with that the background-phase measurement 

will not be able to identify. There may be a more complete method to separate each 

probe’s contribution. 

Assume there are 5 probes contributing, -2 through +2, and only the +1 probe 

interacts with the sample. At any point in the scan each probe acquires a phase 𝜙𝜙𝑛𝑛 and the 

+1 probe may also acquire an amplitude change 𝐴𝐴1, such that there are 6 unknowns. Each 

of the +1, +2, and +3 peaks in the Fourier transform of the interference image represents 

two equations, the real and imaginary components of the integral around that peak. 
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Therefore, for each scan point, there are 6 equations and 6 unknowns. Using all three 

peaks in the Fourier transform of the interference image, it should be possible to solve for 

the phase acquired by each probe as well as the amplitude loss of the interaction probe at 

each point in the scan. 

Conclusion 

 This chapter presented the first application of diffraction-grating-based STEM 

holography to magnetic materials. The magnetic phase of two samples, a Landau domain 

in a permalloy square and skyrmions in an Fe/Gd multilayer thin film, was measured. The 

issue of multiple potential sources of the measured phase and how to separate those 

experimentally in the future was discussed. One of the limitations of imaging magnetic 

materials in a TEM is that the beam is only sensitive to the component of the magnetic 

vector potential parallel to the optic axis, and consequently only the in-plane components 

of the magnetic field. In the next chapter, I will discuss how STEM holography can be 

used to elucidate the 3D structure of a skyrmion. In this chapter, the STEMH phase 

measurements were compared to Lorentz TEM images to establish accuracy. The next 

chapter is an example of a measurement that STEMH can make where Lorentz TEM falls 

short.  
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CHAPTER IV 

PROPOSAL OF STEM HOLOGRAPHY TOMOGRAPHY OF MAGNETIC 

SOLITONS 

Introduction 

Magnetic skyrmions are circular magnetic structures in which an in-plane domain 

wall separates two out-of-plane domains at the periphery and core of the skyrmion. 

Magnetic skyrmions were first observed in 2009 [62] and since then many systems that 

support them at room temperature have been found. They can be formed by long-ranged 

magnetic dipolar interactions [39]–[42], [98]–[101], the Dzyaloshinksii-Moriya 

Interaction (DMI) [62]–[65], frustrated exchange interactions [102], or four-spin 

exchange interactions[103]. Skyrmions are inherently stable because of their geometry; 

the magnetization cannot be unwound without breaking the continuity of the field. 

Because of this there has been interest in using skyrmions as information carriers in 

racetrack memory [2]–[4]. 

In this chapter I discuss the possibility that dipole skyrmions in multilayer thin 

films composed of iron and gadolinium [38]–[42] are in fact magnetic hopfions, which 

are 3D solitons. The magnetic structure in these materials is stabilized by dipolar 

interactions and so is referred to as a “dipole skyrmion.” Like skyrmions, hopfions have 

topological stability and are therefore of interest in memory applications [104]. While 

stable magnetic hopfions were first theoretically predicted in 1988 [105], [106], they have 

not been observed experimentally. Since 2017, the search for and theoretical study of 

magnetic hopfions has grown with micromagnetic simulation studies [107]–[109], 

simulations of their response to current or applied magnetic field [104], [109], [110], and 
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material parameter searches [1]. Hopfions are characterized by a nonzero topological 

number referred to as the Hopf index [111]. Micromagnetic simulations informed by bulk 

physical measurements of dipole skyrmions in an Fe/Gd film are best fit by a hopfion 

model with a Hopf index of 1/2 [112]. Interestingly, the studies mentioned above have 

assumed an integer Hopf index, but fractional hopfion models are theoretically supported 

[113]–[115]. The dipole skyrmions in Fe/Gd films have been imaged using LTEM [38], 

[40] and transmission X-ray microscopy [39], [41], [42]. Both techniques measure the 

magnetic structure integrated through the thickness of the film and neither can confirm 

the 3D magnetic structure calculated by micromagnetic simulation. Experimentally 

confirming the 3D structure of dipole skyrmions would be the first observation of a 

magnetic hopfion. 

3D micromagnetic structure information can be accessed in a few different ways. 

Recently, resonant elastic X-ray scattering (REXS) has been used to study the depth 

dependence of magnetic spins near the surface of a bulk material [116]–[118]. 

Transmissive techniques like S/TEM can be combined with surface sensitive 

measurements like scanning electron microscopy with polarization analysis (SEMPA) 

[119] for some added insight. To form a 3D reconstruction of a magnetic structure using 

transmissive techniques, tomography is used. In tomography, the reconstruction is 

computed from a set of 2D projections of the object viewed from different angles [120]. 

This method has been employed to image magnetic materials with neutron [121]–[123], 

X-ray [124]–[131], and electron microscopy techniques [22], [132]–[146] since 2008, 

2015, 1994 respectively. Electron microscopy leads the three in resolution, reaching sub-

10 nm, while the X-ray studies demonstrated 50 – 100s of nms resolution and the neutron 
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studies did not reach sub-micron resolution. After the first report of tomographic electron 

microscopy measuring the 3D distribution of one component of the magnetic field using 

electron holography [136], further progress was slow due to instrumental and 

computational limitations. Between 1994 and 2010, there were several demonstrations of 

tomographic differential phase contrast [143]–[146] and theoretical developments [147], 

[148]. The first use of LTEM for a tomographic reconstruction of a material’s magnetic 

field was published in 2010 [139]. These tomographic studies using either LTEM [140]–

[142] or off-axis electron holography [22], [132]–[135], [137], [138] started to become 

more common in 2014 along with further theoretical development [149]–[152]. Here, a 

combination of SEMPA, tomographic LTEM, and tomographic S/TEM is proposed to 

study the 3D structure of dipole skyrmions. 

SEMPA of the magnetization at the surface of an Fe/Gd film supports the 3D 

structure calculated by micromagnetic simulation [112]. Attempted tomographic Lorentz 

TEM studies of the film were inconclusive [112]. In this chapter, I present a simulation of 

tomographic STEM holography, which can be used to distinguish between a standard 

skyrmion (uniform through the thin film thickness) and the fractional hopfion. One of the 

distinguishing traits of the hopfion is a much lower average phase projected through the 

sample. I compare experimental STEMH measurements of dipole skyrmions in an Fe/Gd 

thin film to the phase of the hopfion and show they agree. 

Micromagnetic Simulation and Hopfion Model 

Skyrmions are often assumed to be essentially two-dimensional structures and 

uniform through the thickness of the magnetic material but in many cases this may not be 

true. The first experimental probe of the 3D structure of a magnetic skyrmion measured 



 

63 

 

the magnetic phase of DMI-stabilized skyrmions in a step-shaped sample using off-axis 

electron holography in 2014 [153]. They found that the phase varied linearly with the 

sample thickness and concluded the skyrmion was uniform throughout. Since 2018, 

several studies have further explored this question. Schneider et al. found that when 

imaging Bloch skyrmions in a magnetic thin film via LTEM, the reconstructed magnetic 

field was much lower than expected and proposed this was due to variations in the 

structure through the film thickness. Zhang et al. used REXS to show that skyrmions in 

different bulk materials can be uniform [118] or nonuniform [116], [117]. Most of these 

studies commented that their experimental observations could not be explained by 

preexisting spin structure models, highlighting the important of probing the 3D 

micromagnetic structure [116], [118], [140]. There has been no measurement of the 3D 

structure of a dipole skyrmion. 

Micromagnetic modeling of the Fe/Gd film shows that the magnetic structure 

changes through the film thickness [39]–[42], as shown in Figure 26. A micromagnetic 

simulation of a 4 µm2 area of an 89 nm thick film shows dipole skyrmions are formed, 

shown in Figure 26a. In the center of the film, the in-plane magnetization of these 

structures winds azimuthally, as in a Bloch-type skyrmion (Figure 26d). The 

magnetization changes through the thickness of the film to point radially at the surfaces, 

as in Néel-type skyrmions, shown in Figure 26c and e. These are referred to as Néel caps. 

A cross-section shows that both the magnetization orientation and domain wall width 

change through the film thickness (Figure 26b).  
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Chess fit the model:  

𝑚𝑚(𝜌𝜌,𝜙𝜙, 𝑑𝑑) = {sin[Θ(𝜌𝜌, 𝑑𝑑)] cos[𝜙𝜙 − 𝛾𝛾(𝑑𝑑)] , sin[Θ(𝜌𝜌, 𝑑𝑑)] sin[𝜙𝜙 − 𝛾𝛾(𝑑𝑑)] , cos[Θ(𝜌𝜌, 𝑑𝑑)]}  

Θ(𝜌𝜌, 𝑑𝑑) = 2 tan−1�𝑘𝑘(𝑑𝑑)𝜌𝜌𝛼𝛼(𝑧𝑧)� 

𝛾𝛾(𝑑𝑑) =
𝜋𝜋
2

tanh�𝑏𝑏𝛾𝛾𝑑𝑑� + 𝑐𝑐𝛾𝛾 (4.1) 

Figure 26: Micromagnetic Simulation of Dipole Skyrmions in Fe/Gd Film 
Colorplot of the magnetization in a) the xy-plane through the center of the micromagnetic 
simulation, b) the xz plane through the center of one of the skyrmions (indicated in a) by 
a white square), & the xy plane c) at the top of, d) in the center of and e) at the bottom of 
the skyrmion. Magnetization x and y components direction and magnitude are indicated 
by the hue and saturation respectively. 
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𝑘𝑘(𝑑𝑑) = 𝛼𝛼𝑘𝑘𝑒𝑒−𝑏𝑏𝑘𝑘𝑧𝑧
2 + 𝑐𝑐𝑘𝑘  

𝛼𝛼(𝑑𝑑) = 𝑎𝑎𝛼𝛼𝑒𝑒−𝑏𝑏𝛼𝛼𝑧𝑧
2 + 𝑐𝑐𝛼𝛼 

to the micromagnetic simulation [112]. Here the function 𝛾𝛾(𝑑𝑑) determines the helicity 

through the material thickness and produces the Néel caps and Bloch center. The size of 

inner core and domain wall thickness are set by 𝑘𝑘(𝑑𝑑) and 𝛼𝛼(𝑑𝑑) respectively. Hopfions are 

characterized by a nonzero Hopf index, which is calculated from 

𝐻𝐻 = −
1

(8𝜋𝜋)2 �𝑑𝑑3𝑥𝑥 �⃗�𝐹 ⋅ 𝐴𝐴 

𝐹𝐹𝜋𝜋 = 𝜖𝜖𝜋𝜋𝑗𝑗𝑘𝑘𝑚𝑚��⃗ ∙ �𝜕𝜕𝑥𝑥𝑗𝑗𝑚𝑚��⃗ × 𝜕𝜕𝑥𝑥𝑘𝑘𝑚𝑚��⃗ � (4.2) 

∇ × A��⃗ = �⃗�𝐹 

where 𝑚𝑚��⃗  is the magnetization unit vector. Using the parameterization described above, 

this simplifies to 

𝐻𝐻 =
𝑄𝑄

4𝜋𝜋
� � sin(Θ) (

∞

0
𝜕𝜕𝜌𝜌Θ∂z𝜙𝜙 − 𝜕𝜕𝑧𝑧Θ𝜕𝜕𝜌𝜌𝜙𝜙) 𝑑𝑑𝜌𝜌𝑑𝑑𝑑𝑑

∞

−∞
. (4.3) 

Chess found that using the parameter values determined by fitting the model to the 

micromagnetic simulation gives a hopf index of  

𝐻𝐻 =
tanh(112.613)

2
≈

1
2

. (4.4) 

The non-zero hopf index indicates that this magnetic structure is a hopfion. 

Previous Measurements 

When observing this structure in TEM, the Bloch center is visible, but the Néel 

caps are not. This is because the phase imparted on the electron beam is an integral over 

the out-of-plane component of the magnetic vector potential, which is an integral over the 

out-of-plane component of the curl of the magnetization [94]. In Néel-type skyrmions, 
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the magnetization is radial and therefore there is no out-of-plane component of the curl of 

the magnetization. As such, Néel-type skyrmions do not impart a phase on the electron 

beam and are not visible in a TEM unless the sample is tilted [154], [155]. Therefore, 

when imaged with LTEM at normal incidence to the thin film, the projection of the 

hopfion appears as a Bloch-type skyrmion. Experimental LTEM measurements of dipole 

skyrmions meet this expectation [40].  

The McMorran lab previously attempted to probe the thickness dependence of 

dipole skyrmions via two methods: SEMPA and tomographic LTEM [112]. SEMPA 

measures a material’s magnetization at the surface. With no applied field the Fe/Gd films 

form stripe domains, which micromagnetic simulations show have Néel caps and a Bloch 

center like the dipole skyrmion. The SEMPA measurements show that the stripe domains 

have Néel caps, as expected. While this supports the accuracy of the micromagnetic 

modeling, it is only a surface sensitive measurement. This also is not a measurement of 

the dipole skyrmion of interest. Chess recorded Tomographic LTEM measurements of 

the dipole skyrmion in an Fe/Gd film from zero tilt to 30° tilt in 5° increments, shown in 

the center column of Figure 27 [112]. Chess simulated tilt-series measurements of a 

hopfion and a standard uniform skyrmion, shown in the left and right columns of Figure 

27 respectively, in hopes that the experimental data could be clearly distinguished as one 

or the other. However, the differences in LTEM images are too subtle to clearly 

differentiate [112]. Here I show that the same tilt series imaged using STEM holography 

could distinguish between a standard skyrmion and a hopfion. 



 

67 

 

Tomographic STEM Holography Simulation Methods 

A diagram of the ideal STEM holography optical system is shown in Figure 28a. 

A diffraction grating creates two probes at the sample plane. The +1 order probe interacts 

with the sample. At the detector, the probes are defocused and overlapped so they 

interfere. The phase at that probe position is calculated from the image of the interference 

pattern. The components of the simulation are therefore the diffraction grating, magnetic 

sample, beam/sample interaction, and the interference image captured by the detector.  

Figure 27: Simulated and Experimental Tomographic LTEM 
This figure incorporates Figure 35 in "Mapping Topological Magnetization and Magnetic 
Skyrmions" by Jordan Chess, used under CC BY. 
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Figure 28:  STEM Holography Simulation Components 
a) Ideal STEMH optical system. b) STEMH simulation components including the 
electron wavefunction i) just after the diffraction grating, ii) just before and iv) just after 
the sample (iii) & v) the interference image collected. 
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The diffraction grating is a pattern milled into a silicon nitride membrane via 

focused ion beam [79]–[84]. Assuming the grating is illuminated with a plane wave, the 

electron wavefunction after interacting with the grating is  

Ψg�𝑘𝑘�⃗ � = 𝑒𝑒𝜋𝜋𝜂𝜂�𝑇𝑇�𝑘𝑘�⃗ � (4.5) 

where 𝜂𝜂�, which is complex valued, gives the longitudinal phase shift and amplitude 

attenuation per unit length of the material and 𝑇𝑇(𝑟𝑟) is the longitudinal thickness profile of 

the grating. The wavefunction is written in terms of Fourier space coordinates 𝑘𝑘�⃗  because 

this is the Fourier plane of the sample plane. A blazed grating (sawtooth groove profile) 

with 29.9 nm maximum mill depth in a silicon nitride membrane is simulated and the 

resulting electron wavefunction is calculated using 𝜂𝜂� = 𝜋𝜋
33 𝑛𝑛𝑚𝑚

(0.08𝑖𝑖 − 1), the value for 

silicon nitride and a 300keV electron beam [81]. Electrons that pass through the silicon 

nitride membrane outside the diffraction grating pattern are removed experimentally by 

an aperture between the grating and the sample. In the simulation this is accounted for by 

setting the electron wavefunction amplitude to 0 outside the radius of the grating. 

Assuming only spherical aberration and defocus are significant, the probes formed at the 

sample are given by 

Ψ𝑝𝑝(𝑟𝑟) = 𝐹𝐹𝐹𝐹𝑇𝑇 �𝑒𝑒𝜋𝜋𝑖𝑖�𝑘𝑘�⃗ �𝑒𝑒𝜋𝜋𝜂𝜂�𝑇𝑇�𝑘𝑘�⃗ �� 

𝜒𝜒�𝑘𝑘�⃗ � =
𝜋𝜋
2
𝐶𝐶𝑠𝑠𝜆𝜆3𝑘𝑘4 − 𝜋𝜋∆𝑓𝑓𝜆𝜆𝑘𝑘2 (4.6) 

where 𝐹𝐹𝐹𝐹𝑇𝑇 indicates the 2D fast Fourier transform, 𝐶𝐶𝑠𝑠 is the spherical aberration 

coefficient and ∆𝑓𝑓 is the defocus. The grating produces two significant probes: the 0th and 

1st order. The values of 𝐶𝐶𝑠𝑠 and ∆𝑓𝑓 were tuned so the probe diameter is approximately 

8nm. To determine the probe size, the diameter of the circle around the peak containing 
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50% of the probe intensity was found [156]. This was done for a 94nm by 94nm square 

around the interaction peak, shown in Figure 29a. The fractional intensity as a function of 

distance from the peak center is shown in Figure 29b. This probe size is comparable to 

what we have already achieved experimentally, approximately 10nm. This value is 

estimated from the smallest features visible in experimental images.  

The next piece of the simulation is the sample. To simulate the hopfion, the 3D 

analytical fit to the Fe/Gd micromagnetic simulation summarized in Equation 4.1 was 

constructed as a 3D array with voxel size 1.68 nm, extent 1 µm, and depth 89 nm. To 

simulate a 3D array of identical size featuring the standard uniform skyrmion, the Bloch-

type structure in the center of the simulated hopfion was assumed to be uniform 

throughout the entire thickness of the simulated film. As discussed in Chapter III, the 

magnetic phase can be calculated from the magnetization via the expression  

𝜙𝜙�𝑚𝑚�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦� = −
𝑖𝑖𝜇𝜇0𝑒𝑒𝑀𝑀𝑠𝑠

2𝜋𝜋ℏ
𝑘𝑘𝑦𝑦𝑚𝑚𝑥𝑥����� − 𝑘𝑘𝑥𝑥𝑚𝑚𝑦𝑦�����

𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2
(4.7) 

Figure 29: Simulated Interaction Probe 
a) Simulated interaction probe. b) Fractional intensity as a function of the distance from 
the peak in orange. The blue line is a hyperbolic fit. The horizontal red line indicates 0.5, 
the threshold which is used to define the size of the probe. The vertical black line 
indicates at what radius the hyperbolic fit reaches 0.5. 
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where 𝑚𝑚𝑥𝑥����(𝑥𝑥,𝑦𝑦) and 𝑚𝑚𝑦𝑦����(𝑥𝑥,𝑦𝑦) are the integrals of 𝑚𝑚𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑑𝑑) and 𝑚𝑚𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑑𝑑) over 𝑑𝑑 and 

the tilde indicates the 2D Fourier transform. From the simulated magnetization of the 

standard skyrmion and hopfion, the magnetic phase is calculated, shown in Figure 33a 

and Figure 34a respectively. Only the magnetic phase is included in the sample’s 

transmission function, i.e.  

𝑒𝑒(𝑟𝑟) = 𝑒𝑒𝜋𝜋𝜙𝜙𝑚𝑚 . (4.8) 

As discussed in Chapter III there are other potential sources of phase but the magnetic 

phase can be isolated experimentally. The wavefunction of the electron beam after 

interacting with the sample is  

Ψ𝑓𝑓�𝑟𝑟; �⃗�𝑥𝑝𝑝� = Ψ𝑝𝑝(𝑟𝑟; �⃗�𝑥𝑠𝑠)𝑒𝑒(𝑟𝑟) (4.9) 

where Ψ𝑝𝑝(𝑟𝑟; �⃗�𝑥𝑠𝑠) is the electron wavefunction just before the sample and �⃗�𝑥𝑠𝑠 is the scan 

offset. In the simulation, the area surrounding the 1st order probe is multiplied by a 

corresponding area of the transmission function. 

The interference image Ψ𝐼𝐼 is calculated by taking the modulus squared of the 

Fourier transform of Ψ𝑓𝑓, the electron wavefunction after interacting with the sample. The 

STEMH experiments reported in Chapter III were performed using the Gatan K2, a direct 

electron detector which produces much less noise than the standard scintillator-based 

cameras [157]. In actual experiments, the collected interference images are thresholded to 

find pixels with single electron events, creating a binary image from which the phase is 

calculated [158]. To simulate this process, the interference image was filled in 

probabilistically by choosing pixels using Ψ𝐼𝐼 as a discrete probability distribution [159], 

[160]. The number of pixels filled in was calculated using the average count per pixel in 

the grating and surrounding vacuum area in the experimental STEMH images. In the 
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simulated images, the grating was filled in first. Then random pixels were added as given 

by the average count per pixel in the vacuum region of the experimental images. Finally, 

the phase for that location in the simulated scan is calculated from the interference image 

as is done with experimental data. The 1st order probe is interacting with sample and the 

0th order probe is the reference, so the phase is calculated from the +1 peak in the FFT of 

the interference images. To form the complete phase image, this is repeated for an array 

of points across the sample. 

To simulate the tomographic experiment, the magnetization simulations for both 

the standard skyrmion model and the hopfion model are rotated about the y-axis using 

spline interpolation from 0° to 5° in 1° increments and from 10° to 40° in 10° increments 

[161]. A simulated STEMH scan is done for each rotation angle. 

Tomographic STEM Holography Simulation Results 

The first distinction that can be made between the standard skyrmion and the 

hopfion is the phase peak amplitude at zero tilt; the phase amplitude of the standard 

skyrmion is 0.39 ± 0.03 radians whereas in the hopfion case it is 0.29 ± 0.03 radians, 

found by averaging along the phase profiles shown in Figure 30b over 6 pixels, or 9.6 

nm. Each layer of the standard skyrmion is Bloch-type and contributes to the magnetic 

phase. In the hopfion, the Bloch-type center contributes most to the magnetic phase. 

However, the magnetization reorients into Néel caps at the surfaces, which do not 

contribute to the magnetic phase, resulting in a lower phase peak amplitude. These 

simulated measurements of the two models can then be compared to the experimental 

STEMH measurements of dipole skyrmions in an 89 nm thick Fe/Gd film deposited on a 
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silicon nitride membrane with a grid of 20um circular holes (Figure 24) originally 

presented in Chapter III.  

Each isolated phase feature and a phase profile through its center averaged over 3 

pixel columns, or 30 nm, are shown in Figure 32 and Figure 31. The measured phase 

profiles are plotted with the predicted hopfion and standard skyrmion phase profiles for  

comparison. The phase profiles in Figure 32a-c.ii. and Figure 31d agree more closely 

with the hopfion model than the standard skyrmion model. However, the phase profiles in 

Figure 30: Simulated STEMH Reconstruction of a Standard Skyrmion and a Hopfion at 
Zero Tilt 
a) Magnetic phase of a standard skyrmion and a hopfion reconstructed by a simulated 
STEMH experiment. The red lines indicate the columns averaged together to form b) a 
vertical phase profile through the center of each magnetic texture. 
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Figure 31b and Figure 31c have lower amplitudes than both models and the phase profile 

in Figure 32d.ii. has a larger amplitude than the hopfion model. This variation could be 

due to electrostatic phase contributions from the sample, which was not removed 

experimentally and was assumed to not contribute significantly. This variation could also 

be due to the geometry of the substrate altering the micromagnetic structure. As 

mentioned in Chapter III, this effect may also explain why some of the dipole skyrmions 

in the STEMH measurements appear elongated, as in Figure 32b-d.i. The dipole  

Figure 31: STEMH Measured Phase of Dipole Skyrmions 
a) The phase of dipole skyrmions measured via STEMH. A phase profile through 
the center of b) the leftmost skyrmion, c) the the central skyrmion, and d) the 
rightmost skyrmion averaged over the columns enclosed in each corresponding red 
box in the phase image. The predicted phase profiles for a hopfion and a standard 
skyrmion are shown in blue and orange respectively. 
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Figure 32: STEMH Measured Phase of Dipole Skyrmions 
a-d)i) The phase of dipole skyrmions measured via STEMH. a-d)ii) A phase profile 
through the center of the dipole skyrmions averaged between the red lines in the phase 
image. The predicted phase profiles for a hopfion and a standard skyrmion are shown as 
blue and orange lines respectively. 
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skyrmions in Figure 31a appear more circular and were farther from the edge of the 

sample. The initial experimental STEMH measurements appear to be better fit by the 

hopfion model but further experiments could provide more conclusive evidence.  

In the simulated STEMH measurements, the scan pixel size is 1.68 nm and the 

simulated probe size is 8.4 nm. Neighboring pixels were then averaged together to reduce 

noise. In the experimental STEMH measurements, the scan pixel size is 10 nm, the same 

as our estimate of the probe size. By replicating the process of oversampling the phase by 

setting the scan pixel size to less than the probe size, the noise in our experimental 

measurements could be reduced. In addition, further measurements could elucidate if 

there is a relationship between the location of the dipole skyrmion relative to the 20-um 

hole grid of the supporting membrane and the phase amplitude at zero tilt. Lastly, the 

electrostatic phase can be removed experimentally as described in Chapter III. 

A second distinction between the two models can be made as they are tilted. The 

reconstructed phase of the standard skyrmion and the hopfion at 0°, 10°, 20°, 30°, and 

40° are shown in Figure 33a and Figure 34a respectively. To further elucidate differences 

between the two cases, the phase profile in y through the center of the magnetic textures 

for each rotation is shown in Figure 33b and Figure 34b. To reduce noise, the phase 

profiles are averaged over 9 columns of pixels, or 15 nm. As the standard skyrmion and 

hopfion are tilted, the phase of both forms two lobes, as shown in Figure 33 and Figure 

34. The two trends look similar but the peak-to-peak height between the two lobes grows 

more relative to the initial amplitude in the hopfion case. In the hopfion case, at 40° the 

ratio of the peak-to-peak height to the amplitude at zero tilt is 2.8 ± 0.3. In the standard 

skyrmion case, this ratio is 2.2 ± 0.2. When both models are imaged at a tilt, the electron 
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beam passes through more material, creating a larger phase gradient across the domain 

wall. But, when the standard skyrmion is tilted, each Bloch-type layer contributes less 

phase. As the hopfion is tilted the Bloch-type center imparts less phase but the rest of the 

structure imparts more phase. This results in a measurably different amplitude change. 

Figure 33: STEMH Tomography of a Standard Skyrmion Simulation 
a) Magnetic phase of a simulated standard skyrmion for 0° to 30° tilt. b) The phase 
measured by STEMH at each tilt. c) The phase profile through the center of the skyrmion 
parallel to the axis of rotation. 
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A third distinction can be made between the magnetic phase of the standard 

skyrmion and hopfion as they are tilted between 0° and 5°, shown in Figure 35a and b. A 

phase profile through the center of the standard skyrmion model (green lines in Figure 

35c where increasing saturation indicates a higher tilt angle) shows that the peak in the 

phase flattens in the middle. This is further demonstrated by the curvature of the phase 

profile (green lines in Figure 35d), which goes to zero in the middle of the phase peak. 

Figure 34: STEMH Tomography of a Hopfion Simulation 
a) Magnetic phase of a simulated hopfion for 0° to 30° tilt. b) The phase measured by 
STEMH at each tilt. c) The phase profile through the center of the hopfion parallel to the 
axis of rotation. 
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The gradient of the phase is proportional to the in-plane magnetic field. In the standard 

skyrmion model, there is a wide area within the skyrmion where the magnetization points 

out-of-the-plane of the film throughout the thickness. Over that area the gradient of the 

magnetic phase must be zero, creating the flat phase peak at zero tilt. As the standard 

skyrmion is tilted, the curvature at the center of the phase peak remains zero. In the 

hopfion model, there is a much smaller region where the magnetization points out-of-the-

plane of the film throughout the thickness because the domain wall width varies, resulting 

in a more rounded phase peak. The curvature of the hopfion phase profile does not go to 

zero, as shown in Figure 35d in red. While this distinction was not clearly distinguishable 

Figure 35: Predicted Phase of a Standard Skyrmion and Hopfion at Small Tilt Angles 
a) Predicted phase of a standard skyrmion and b) of a hopfion at 0° - 5° tilt. c) Phase 
profile through the center of the standard skyrmion and hopfion shown in red and green 
respectively. Increasing saturation indicates a higher tilt angle. d) The curvature of the 
phase profiles in c). 
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in simulated STEMH reconstructions of the phase of the two models with a 8.4 nm probe, 

it was in reconstructions with a 3.0 nm probe, shown in Figure 36.  

When reconstructing the phase via STEMH, features at or below the length-scale 

of the probe size are not visible. Because of this, the difference in phase peak curvature 

was not detectable in simulated STEMH reconstructions of the phase of the two models 

with a 8.4 nm probe. However, the difference is visible in reconstructions with a 3.0 nm 

probe, shown in Figure 36. The phase profiles through the centers of the reconstructed 

uniform skyrmion (Figure 36a) and hopfion (Figure 36b) are shown in Figure 36c in blue 

and orange respectively. A curve was fit to the reconstructed phase profiles by univariate 

spline interpolation [161]. The curvature of the curves fit to the reconstructed phase 

Figure 36: STEMH Reconstructed Phase of a Standard Skyrmion and Hopfion at Small 
Tilt Angles 
a) Reconstructed phase of a standard skyrmion and b) of a hopfion at 0° - 5° tilt by a 
STEMH simulation. c) Phase profile through the center of the standard skyrmion and 
hopfion shown in red and green respectively. Increasing saturation indicates a higher tilt 
angle. d) The curvature of the spline-interpolated fits to the phase profiles in c). 
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profiles are shown in Figure 36d. Due to noise in the STEMH measurements and the 

finite probe size, the curvature of the predicted phase profiles are not exactly 

reconstructed. But the curvature at the center of the phase peaks is measurably different 

between the two models. Future experimental data can be comparted to these simulated 

results to further elucidate which model, the uniform skyrmion or the hopfion, better 

describes a dipole skyrmion in an Fe/Gd film. 

By simulating a tomographic STEMH experiment of a uniform skyrmion and a 

hopfion, three distinctions between the two models have been identified: at zero tilt, the 

hopfion has a smaller phase peak amplitude; over small tilt angles, the curvature at the 

center of the phase peak of a uniform skyrmion is lower; at larger tilt angles, the peak-to-

peak difference between the two lobes in the phase grows more relative to the initial 

amplitude in the hopfion model. Initial experimental measurements of dipole skyrmions 

suggest they are better fit by the hopfion model, but further investigation is needed. In 

addition to more experimental measurements of the phase through a dipole skyrmion at 

zero tilt, experimental STEMH measurements as the Fe/Gd film is tilted can be 

comparted to the simulated results for each model to demonstrate which is a better fit.  

Conclusion 

 Tomographic STEMH, in concert with LTEM and SEMPA [112], can be used to 

confirm that “dipole skyrmions” in Fe/Gd films have the depth-dependent structure 

predicted by micromagnetic simulation [39]–[42], which has a non-zero Hopf index, 

indicating they are in fact hopfions. Tomographic STEMH reconstructions of a uniform 

skyrmion and a hopfion were simulated. Three distinct trends in the measured phase as 

the sample is tilted can distinguish between a hopfion and a standard uniform skyrmion, 
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though sufficiently fine probe size is required. One of those trends is a lower phase 

amplitude at zero tilt; most of the experimental STEMH measurements of dipole 

skyrmions in an Fe/Gd thin film presented in Chapter III agree with the hopfion model 

more closely, but there are some outliers. The cause of this variation is the subject of 

further investigation. By comparing experimental STEMH reconstructions of dipole 

skyrmions in an Fe/Gd film to the simulated reconstructions of the two models, it can be 

determined which is a better description. Confirming that Fe/Gd dipole skyrmions are in 

fact hopfions would constitute the first experimental observation of a magnetic hopfion. 

This experiment is also an example of a situation in which Lorentz TEM, which makes an 

indirect phase measurement, is not sensitive enough. STEMH, which measures the phase 

directly, is much more effective in addressing this question. 
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CHAPTER V 

CONCLUSION AND FUTURE DIRECTIONS 

Transmission electron microscopy is a powerful tool for studying 

micromagnetics. We used Lorentz TEM to study the evolution of the in-plane magnetic 

domains in a multilayer thin film composed of ferromagnetic and normal metal layers, 

revealing unexpected behavior and demonstrating the importance of combining 

nanomagnetic imaging techniques that can access different components of the material’s 

magnetic structure. We then demonstrated the first application of diffraction-grating-

based scanning TEM holography, a new probe-based phase measurement technique, to 

magnetic materials. Finally, we discussed how this technique could be used to confirm 

the first observation of a magnetic hopfion and presented initial results. 

Topological magnetic domains like skyrmions and hopfions are of interest as 

information carriers in racetrack memory [2]–[4], [104]. The dynamics of these magnetic 

textures depends on their 3D structure, which has only recently been explored 

experimentally [116]–[118], [140], [153]. One way to do this is electron tomography 

using a direct phase measurement technique like off-axis electron holography or STEM 

holography. STEMH has fewer instrument requirements for implementation and is 

therefore more accessible. The small tilt series described in Chapter IV is the first step 

towards implementing scanning holographic vector field electron tomography.  

In vector field electron tomography, the phase is measured at multiple tilt angles 

to reconstruct the 3D vector field [134], [136], [148]. However, a tilt along a single axis 

only allows the magnetic field along that axis to be reconstructed; two tilt series must be 

collected along two orthogonal axes. Additionally, to separate the electrostatic phase 
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from the magnetic phase, for each tilt series one must also collect a complementary tilt 

series with the sample flipped. For all four tilt series the images collected must be 

aligned. This technique adds a huge amount of experimental difficulty. However, that is 

not the main obstacle to implementing this tomographic reconstruction with STEM 

holography. As described in Chapter III, for each point in the scan the phase is calculated 

from a recorded image of the interference pattern formed by the probes, forming a 2D 

scan of 2D datasets. A typical STEMH measurement can therefore require a few hundred 

gigabytes of data. A full 3D tomographic reconstruction of a magnetic feature would 

require a 4D dataset for each angle, and the 3D resolution is determined by the number of 

discrete angles in the tilt series. The amount of memory required to store all of the raw 

data for a full 3D tomographic STEMH image could quickly become untenable. 

Currently the images are collected on TEAM I at the National Center for Electron 

Microscopy and then transferred to TALAPAS, University of Oregon’s computing 

cluster, where the phase at each scan point is calculated. The bottleneck in this process is 

the memory limit of the TEAM I PC, which requires that all the data be moved 

intermittently. While this adds time to any STEMH experiment, this is particularly 

inconvenient for experiments requiring many images of the same sample region in which 

beam and sample drift are a concern. The second inconvenience of requiring a computing 

cluster to form the phase image is that the microscopist does not know the image they 

took until several days after it was recorded. Whereas HAADF can provide an image of 

electrostatic features and an LTEM image of the sample can be displayed immediately to 

help guide an imaging experiment, the success of a STEMH measurement currently 

cannot be known until days or weeks later.  
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 To make STEMH a much more user-friendly technique, and in particular to 

implement scanning holographic vector field electron tomography, the phase calculation 

must be integrated into the image collection. Efforts are underway to implement edge 

computing architecture into the data acquisition process of next-generation TEMs. For 

instance, the 4D Camera, developed at Lawrence Berkeley National Lab for STEM 

experiments that require 4D datasets like STEMH, incorporates four field programmable 

gate arrays and sends the collected data directly to the National Energy Research 

Computing Center for additional analysis [162]–[164]. This would address the issue 

discussed above but the detector has 576x576 pixels rather than 1792x1920 pixels of the 

detector typically used for STEMH. To use the 4D Camera, we would need to use smaller 

probe-forming diffraction gratings so that the entire interference image could be recorded 

while also being able to discern the grating periodicity. However, this would worsen 

spatial resolution at the sample. The 4D Camera is not the perfect STEMH detector but 

shows how future detectors better suited to collecting 4D datasets are developing. Rather 

than still relying on a computing cluster to post-process the STEMH data, one could 

imagine an FPGA and/or GPU placed between the detector and host computer to extract 

the phase information from the raw interference images at each point in the scan, and 

only store the relevant data. Future iterations of the STEMH system will allow this 

highspeed data extraction to be robust. The work described in this dissertation has 

identified a new path and taken a first step along it. 
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