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DISSERTATION ABSTRACT

Naida Hewa Nisansa Dilushan de Silva

Doctor of Philosophy

Department of Computer and Information Science

December 2020

Title: Semantic Oppositeness for Inconsistency and Disagreement Detection in
Natural Language

Semantic oppositeness is the natural counterpart of the rather more popular

natural language processing concept, semantic similarity. Much like how semantic

similarity is a measure of the degree to which two concepts are similar, semantic

oppositeness yields the degree to which two concepts would oppose each other.

This complementary nature has resulted in most applications and studies incorrectly

assuming semantic oppositeness to be the inverse of semantic similarity. In other

trivializations, “semantic oppositeness” is used interchangeably with “antonymy,”

which is as inaccurate as replacing semantic similarity with simple synonymy. These

erroneous assumptions and over-simplifications exist due, mainly, to either a lack of

information, or the computational complexity of calculation of semantic oppositeness.

This dissertation considers the following question: How can we convert the linguistic

concept of semantic oppositeness to the computing domain? To answer this question,

we follow the linguistic definition of oppositeness and develop a novel methodology

based on antonymy as well as similarity. We also propose a novel method to embed

the obtained semantic oppositeness in a vector space for increased generalization

and efficiency. We then consider two realms of applications: inconsistency and

disagreements. The inconsistency application helped us track changes in a medical

iv



research domain. The disagreement application accentuated the ability to detect

rumours in the social media domain. Finally, we extract the commonalities and

patterns in these methodologies to provide a comprehensive summary and a set of

recommendations and future work. This dissertation is a culmination of previously

published, co-authored material.

v



CURRICULUM VITAE

NAME OF AUTHOR: Naida Hewa Nisansa Dilushan de Silva

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
University of Moratuwa, Katubedda, Sri Lanka

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2020, University of
Oregon

Master of Science, Computer and Information Science, 2016, University of Oregon
Bachelor of Science, Computer Science Engineering, 2011, University of Moratuwa

AREAS OF SPECIAL INTEREST:

Natural Language Processing, Machine Learning

PROFESSIONAL EXPERIENCE:

Graduate Research Teaching Assistant, Department of Computer and Information
Science, University of Oregon, 2014 to present

Givens Associate, Argonne National Laboratory, Department of Energy, USA,
2018

Lecturer, Department of Computer Science and Engineering, University of
Moratuwa, Sri Lanka, 2011 to present (On study leave since September
2014)

Researcher, LIRNEasia, Sri Lanka, 2013 to 2014

GRANTS, AWARDS AND HONORS:

Graduate Teaching Research Fellowship, Computer and Information Science,
2014 to present

vi



SELECTED PUBLICATIONS:

de Silva, N., Dou, D. & Huang, J. (2017). Discovering Inconsistencies in
PubMed Abstracts through Ontology-Based Information Extraction. In
Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics (pp. 362–371). ACM

de Silva, N. & Dou, D. (2019). Semantic Oppositeness Embedding Using an
Autoencoder-based Learning Model. International Conference on Database
and Expert Systems Applications (pp. 159–174). Springer. doi:10.1007/
978-3-030-27615-7 12

de Silva, N., Dou, D. (2020). Semantic Oppositeness Assisted Deep Contextual
Modeling for Automatic Rumor Detection in Social Networks. (under
review).

de Silva, N., Dou, D. Huang, J. (2020). Discovering Inconsistencies and
Similarities in PubMed Abstracts through Ontology-Based Information
Extraction. (under review).

Huang, J., Gutierrez, F., Strachan, H. J., Dou, D., Huang, W., Smith, B., . . .
de Silva, N. et al. (2016b). OmniSearch: a semantic search system based
on the Ontology for MIcroRNA Target (OMIT) for microRNA-target gene
interaction data. Journal of Biomedical Semantics, 7 (1), 1

Huang, J., Eilbeck, K., Smith, B., Blake, J. A., Dou, D., Huang, W., . . .
de Silva, N. et al. (2016a). The development of non-coding RNA ontology.
International Journal of Data Mining and Bioinformatics, 15 (3), 214–232

de Silva, N. H. N. D. (2015a). SAFS3 Algorithm: Frequency Statistic and
Semantic Similarity Based Semantic Classification Use Case. Proceedings
of Advances in ICT for Emerging Regions (ICTer), 2015 Fifteenth
International Conference on (pp. 77–83). IEEE

de Silva, N. H. N. D., Perera, A. S. & Maldeniya, M. K. D. T. (2013). Semi-
Supervised Algorithm for Concept Ontology Based Word Set Expansion.
Proceedings of Advances in ICT for Emerging Regions (ICTer), 2013
International Conference on (pp. 125–131). IEEE

de Silva, N. H. N. D. (2017b). Relational Databases and Biomedical Big Data.
Bioinformatics in MicroRNA Research, 69–81

vii

https://dx.doi.org/10.1007/978-3-030-27615-7_12
https://dx.doi.org/10.1007/978-3-030-27615-7_12


Ratnayaka, G., Rupasinghe, T., de Silva, N., Warushavithana, M., Gamage, V.,
Perera, M. & Perera, A. S. (2019a). Classifying Sentences in Court Case
Transcripts using Discourse and Argumentative Properties. ICTer, 12 (1)

Jayawardana, V., Lakmal, D., de Silva, N., Perera, A. S., Sugathadasa, K.,
Ayesha, B. & Perera, M. (2017a). Word Vector Embeddings and Domain
Specific Semantic based Semi-Supervised Ontology Instance Population.
International Journal on Advances in ICT for Emerging Regions, 10 (1), 1

Wang, P., Ji, L., Yan, J., Dou, D., de Silva, N., Zhang, Y. & Jin, L. (2018a).
Concept and Attention-Based CNN for Question Retrieval in Multi-View
Learning. ACM Transactions on Intelligent Systems and Technology
(TIST), 9 (4), 41

Gutierrez, F., Dou, D., de Silva, N. & Fickas, S. (2017). Online Reasoning for
Semantic Error Detection in Text. Journal on Data Semantics. doi:10.
1007/s13740-017-0079-6

Lokanathan, S., Kreindler, G. E., de Silva, N. H. N., Miyauchi, Y., Dhananjaya, D.
& Samarajiva, R. (2016). The Potential of Mobile Network Big Data as
a Tool in Colombo’s Transportation and Urban Planning. Information
Technologies & International Development, 12 (2), pp–63

Ratnayaka, G., Rupasinghe, T., de Silva, N., Warushavithana, M., Gamage, V.
& Perera, A. S. (2018). Identifying Relationships Among Sentences in
Court Case Transcripts Using Discourse Relations. 2018 18th International
Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 13–20)

Sugathadasa, K., Ayesha, B., de Silva, N., Perera, A. S., Jayawardana, V.,
Lakmal, D. & Perera, M. (2018). Legal Document Retrieval
using Document Vector Embeddings and Deep Learning. Science and
Information Conference (pp. 160–175). Springer

Sugathadasa, K., Ayesha, B., de Silva, N., Perera, A. S., Jayawardana, V.,
Lakmal, D. & Perera, M. (2017). Synergistic Union of Word2Vec and
Lexicon for Domain Specific Semantic Similarity. IEEE International
Conference on Industrial and Information Systems (ICIIS), 1–6

Upeksha, D., Wijayarathna, C., Siriwardena, M., Lasandun, L., Wimalasuriya, C.,
de Silva, N. H. N. D. & Dias, G. (2015). Comparison Between Performance
of Various Database Systems for Implementing a Language Corpus.
International Conference: Beyond Databases, Architectures and Structures
(pp. 82–91). Springer

viii

https://dx.doi.org/10.1007/s13740-017-0079-6
https://dx.doi.org/10.1007/s13740-017-0079-6


ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Dejing Dou, for his

continuous guidance, unwavering support, and encouragement throughout the Ph.D.

process. Dr. Dou is an excellent advisor who patiently guided me to develop the

essential skills for a PhD student: how to be a better researcher, how to identify

and define an important and influential research problem, how to review papers, how

to write better research papers, and how to give effective presentations. This work

would not have been possible without his guidance and many insightful discussions

with him.

I would like to thank the members of my committee, Dr. Stephen Fickas,

Dr. Christopher Wilson, and Dr. Heidi Kaufman, for their timely feedback and

suggestions which steered my research, and thus this dissertation, toward better

outcomes.

I thank my family for the selfless support they provided for me to pursue this

degree. Especially, I am grateful to my parents for everything they have done for me,

and to my sister for her love and never-ending support. They have always encouraged

me to follow my dreams and explore the world, even though this meant that we have

been separated by a great distance and a 12-hour time difference while I have been

pursuing this degree.

I spent a Summer working for the Argonne National Laboratory under the

supervision of wonderful mentors. I would like to thank Dr. Boyana Norris for

supporting me in securing the internship and then mentoring me throughout its

duration. I also thank Dr. Anshu Dubey, my on-site mentor, for making my internship

experience productive and welcoming.

ix



I wish to thank Dr. Amal Shehan Perera for introducing me to academic research

when I was an undergraduate. Dr. Amal Shehan Perera, Dr. Chandana Gamage, Ms.

Vishaka Nanayakkara, Dr. Shahani Markus, and Dr. Daya Chinthana Wimalasuriya

were instrumental in my deciding to pursue a graduate degree. Thank you for pushing

me beyond my comfort zone and for providing opportunities for my professional

development.

During my years in Oregon, I met friends who became integral in both my

academic and personal life. I have enjoyed their company throughout the years at

many joyous occasions and savoured their support many sour days. Especially at the

very end of the degree, while I was writing this dissertation and I lost my apartment:

Shravan Kale and Abhishek Yenpure helped me with transporting my belongings and

myself to the residence of Manish Mathai, who graciously agreed to let me stay at

his place while I finished the dissertation. All of them did this while a pandemic

was happening. Without their help and kindness, this dissertation would not have

finished on time. Sam Pollard helped me in contacting the appropriate authorities

and legal officers to hear my plea. I would also like to thank my friend Ellen Klowden,

who helped me with editing this dissertation, as well as most of the papers that make

up the basis of this dissertation.

Finally, my fellow friends in the AIM Lab and the CBL research group, the

Computer and Information Science department, and the University of Oregon made

my Ph.D. life excellent; many thanks to all of you for your support, feedback, and

friendship.

x



TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Co-Authored Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A Techniques 6

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Semantic Oppositeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Minimal Difference with Maximal Similarity Principle . . . . . . 10

2.1.2 Irrelevancy Principle . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Semantic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Ontologies and OBIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Ontology for MIcroRNA Targets (OMIT) . . . . . . . . . . . . . 18

2.5.2 Ontology-Based Information Extraction . . . . . . . . . . . . . . 19

2.6 Open Information Extraction . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Inconsistency Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



Chapter Page

2.12 Rumour Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

III SEMANTIC OPPOSITENESS MEASURE . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Semantic Oppositeness in Light of Semantic Similarity . . . . . . . . . 32

3.3 Basic Oppositeness Measure . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Improving the Calculating of Oppositeness . . . . . . . . . . . . . . . . 40

3.5 Alterations to the Original Measure . . . . . . . . . . . . . . . . . . . . 40

3.6 Antonym Dependency of the Original Oppositeness Measure . . . . . . 43
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CHAPTER I

INTRODUCTION

Semantic similarity measures are widely used in Natural Language Processing

(NLP) applications (Gomaa & Fahmy, 2013; Stavrianou, Andritsos & Nicoloyannis,

2007; Turney, 2001). The reason for this popularity is the fact that mining methods

built around the simple exact match approach would yield results with a weaker recall

in comparison with the golden standard. Free text has a tendency to use synonyms

and similar text in substitution, which may go unnoticed if a direct match method is

used in text mining.

Semantic oppositeness is the natural counterpart of the semantic similarity

function (de Silva et al., 2017). While semantic similarity yields the degree to which

two concepts are similar in a given domain, to be used for the purpose of confidence

calculation in text mining applications, semantic oppositeness yields the degree to

which two concepts oppose each other in a given domain, for the same purpose.

The use of an oppositeness measure in text mining is especially relevant in the

case of contradiction finding or in the case of mining for negative (negation) rules

from a corpus. This, in turn, helps in building reasoning chains and other utilities

for various front-end applications, such as question-answer systems and chat bots. It

can also be used in text mining applications that concern fake news or propaganda,

given that the candidate text that is being analyzed would contain opposing concepts

to the generally accepted corpus of knowledge.

An important point to note in the case of semantic oppositeness is its relation to

antonymy. The discussion provided by Jones, Murphy, Paradis and Willners (2012)

on the differences in the definitions of antonymy and oppositeness is an important

perspective. They define antonymy as a pair-wise relation of lexical items, following
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the earlier work by Murphy (2003), which specifically labelled these words as canonical

antonyms. On the other hand, oppositeness is defined as a semantic relation between

word pairs which are understood to have meanings that are opposed to one another

in a given context.

The importance of oppositeness as a linguistic feature is supported by many

studies. Ye (2014) states that oppositeness is a fundamental part of language, even

more so than synonymy. They bring up the claim by Murphy (2003), which comments,

“[u]nlike synonymy, everyone agrees that antonymy exists, and it is robustly evident

in natural language.” Miko lajczak-Matyja (2018) claims oppositeness is a universal

feature of language structure which obtains its role from thinking and culture,

emphasising the structuralist approaches to language. The relevance of oppositeness

to the organisation of text and discourse in natural languages is discussed in a number

of works (Cruse, 1986; Jones, 2003; Jones et al., 2012; Justeson & Katz, 1991; Lyons,

1987; Murphy, 2003; van de Weijer, Paradis, Willners & Lindgren, 2014; Willners,

2001). In contrast, in the language acquisition perspective, oppositeness is considered

cognitively primary (Cruse, 2011; Cruse, 1986; Phillips & Pexman, 2015). The lack of

a proper oppositeness measure, in fact, is the reason for most text mining tasks engage

the wrong generalization of reducing semantic oppositeness to antonymy (Paradis,

Goldblum & Abidi, 1982) or to the inverse of semantic similarity (de Silva et al.,

2017).

In this dissertation, we answer the following question: How can we convert the

linguistic concept of semantic oppositeness to the computing domain? To answer this

question, we need to develop a novel methodology based on antonymy as well as

similarity. Additionally, we propose a novel method to embed the obtained semantic

oppositeness in a vector space for better generalization and efficiency.
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Then, we consider two realms of application: inconsistency and disagreements.

Inconsistency finding helped us track changes in a medical research domain, as well

as it helped us suggest enrichment for an associated ontology. The disagreement

detection accentuated the ability to distinguish true rumours and false rumours in

the social media domain. Finally, we look for commonalities and patterns in these

methodologies, and synthesize our findings with a set of recommendations and future

directions.

The culmination of this work answers our dissertation question, How can we

convert the linguistic concept of semantic oppositeness to the computing domain?,

by creating a methodology for calculating semantic oppositeness and embedding it in

a vector space for generalized usage.

1.1 Dissertation Outline

This dissertation is organized into the following three parts:

A. Techniques: Chapters II through IV.

B. Applications (Use Cases): Chapters V and VI.

C. Summary and Future Work: Chapters VII and VIII.

Part A first surveys the resources and techniques in both linguistic and computing

domains, which are utilised in the rest of this dissertation. Then it introduces the new

semantic oppositeness measure, as well as its more generalized and efficient embedded

form. Part B incorporates the techniques of Part A into two important use cases:

inconsistency detection and disagreement detection. Part C synthesizes the findings

of Parts A and B and gives recommendations for future work.

In particular, the content of the individual dissertation chapters is as follows.

Chapter II provides a background to the linguistic base of semantic oppositeness,

as well as the computing resources and techniques that we employ to convert
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semantic oppositeness to the computational linguistics domain and test on subsequent

use cases. Chapter III introduces the new semantic oppositeness measure in

a formal mathematical setting, with computerized implementations following the

linguistic observations and principals of Chapter II. Chapter IV takes the formalized

computational model of semantic oppositeness from Chapter III and embeds the

measure in a vector space to attain better generalizability and efficiency. Chapter V

applies the basic semantic oppositeness measure of Chapter III to find inconsistencies

between research paper abstracts, as well as to find potential strong relationships to

enrich an ontology in a relevant domain. Chapter VI applies the embedded semantic

oppositeness measure of Chapter IV to detect rumors in social networks by means

of discovering disagreements. Chapter VII synthesizes findings and best practices

of the previous chapters; and Chapter VIII concludes this dissertation by offering

recommendations for the future research.

1.2 Co-Authored Material

A significant portion of the content in this dissertation is adopted from

collaborative research work and manuscripts that I have completed, as leading author,

during my PhD program. Each manuscript either has been already published

or is currently under review by a conference or a journal. The content of each

manuscript includes the text, figures, and experimental results, all of which are

primarily composed by myself. The following listing indicates the chapters that

contain manuscript content and the authors who contributed to the manuscript (i.e.,

myself and co-authors); note that a detailed division of labour for each manuscript is

provided at the beginning of its corresponding chapter.
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– Chapter II is an amalgamation of backgrounds and related work for all the

subsequent Chapters. As such, it is a collaboration between myself, Dejing

Dou, and Jingshan Huang.

– Chapter III is based on two published conference publications and one journal

paper under review. The first conference paper and the journal paper are a

collaboration between myself, Dejing Dou, and Jingshan Huang. The second

conference paper is a collaboration between myself and Dejing Dou.

– Chapter IV is based on a published conference publication and is a collaboration

between myself and Dejing Dou.

– Chapter V is based on a published conference publication and is a collaboration

between myself, Dejing Dou, and Jingshan Huang.

– Chapter VI is based on a conference publication under review and is a

collaboration between myself and Dejing Dou.
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Part A

Techniques
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In this part of the dissertation, we provide a background on semantic oppositeness

and other relevant concepts, and then we introduce our computational modelling of

the linguistic concept of semantic oppositeness, followed by a methodology to embed

it in a vector space for increased generalization and efficiency.
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CHAPTER II

BACKGROUND

2.1 Semantic Oppositeness

Albeit not as extensively as its counterpart, semantic similarity (Jiang & Conrath,

1997; Wu & Palmer, 1994), there have been a few studies on the derivation and uses

of semantic oppositeness (de Silva et al., 2017; Mettinger, 1994; Paradis et al., 1982;

Rothman & Parker, 2009; Schimmack, 2001). However, almost all of these studies

reduce oppositeness from a continuous scale to bipolar scales (Rothman & Parker,

2009; Schimmack, 2001) or anonymity (Jones et al., 2012; Paradis et al., 1982).

Lobanova (2012) claim that antonymy, and by extension oppositeness, as a relation

causes a great amount of confusion and disagreement among scholars. As mentioned

in Section I, Jones et al. (2012) builds on the fundamentals laid by Murphy (2003) to

claim that antonymy is a pair-wise relation of lexical items, as opposed to oppositeness

being defined as a semantic relation between word pairs which are are understood to

have meanings that are opposed to one another in a given context. Murphy, Jones and

Koskela (2015) study the presence of oppositeness and a few other linguistic features

in parallel contexts. Miko lajczak-Matyja (2018) describes two types of oppositeness

from genesis: logical necessity (e.g., top/bottom) and accidental or pragmatic contrast

(e.g. coffee/tea). They further claim that the later is felt by the language user, only

due to the frequency of the use of a choice between the two options (Cruse, 2011;

Cruse, 1986). In this work, we encompass the entirety of the oppositeness concept,

regardless of genesis, because this work is focused on the computational application

of the linguistic phenomenon, rather than analysing the phenomenon in a linguistic

perspective.
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One extremely important aspect of this study is presenting oppositeness as a

continuous scale. This perspective of oppositeness is supported by, Miko lajczak-

Matyja (2018) who claim that oppositeness exists in various degrees and scales, where

some pairs are more opposite than others. They support this claim with the analysis

of the opposite pairs huge-tiny and large-small, following an example from Cruse

(1994). With linguistic analysis, they show that the pair huge-tiny is symmetrical

but does not exhaust the dimension to the same degree as large-small does. Thus, on

an oppositeness scale, huge-tiny would appear closer to each other than large-small

would. The scale difference of opposite pairs is discussed by Lehrer and Lehrer (1982)

where they distinguish symmetrically placed opposite pairs as perfect opposites.

This approach is also supported by Lobanova (2012) who define the oppositeness

scale as broad sense antonymy and traditional antonymy as narrow sense antonymy.

Despite the difference in the name, the explanation in the text makes it clear

that broad sense antonymy refers to the oppositeness scale and that the authors

support the adaptation of it over traditional antonymy, which they dub as narrow

sense antonymy. Further, under the analysis by Lobanova (2012), the pairs that

fall on an oppositeness scale are further described as gradable opposites, given that

there are degrees of oppositeness achievable on the scale. This is supported by

literature (Cruse, 1986; Lyons, 1987) while rejecting the older non-gradable opposites

concept by Kempson (1977). Not confining oppositeness to canonical pairs is the

recommendation of Jones (2003) as well.

Jones (2003) further claim that oppositeness transcends grammatical category,

given that corpus studies have not yielded a relevant link between the grammatical

category of an opposing word pair and the grammatical category which that pair
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fulfills in the text. In our study, following this observation, we do not distinguish

among the grammatical categories of words.

In defining and discovering semantic oppositeness, the literature gives us two

main principles to follow. These are the Minimal difference with maximal similarity

principle and the Irrelevancy principle. We discuss the background and support for

these principles in Section 2.1.1 and Section 2.1.2 respectively.

2.1.1 Minimal Difference with Maximal Similarity Principle. The

minimal difference with maximal similarity principle is commonly explained using

Act 3 Scene 1 from Julius Caesar by Shakespeare (1955). In this classic scene, Julius

Caesar is attacked by the senators, such as Casssius, Casca, and Cinna, with the

intent of assassinating him. He stands amidst multiple stabbings, but it is when

Brutus, an individual who is akin to a son to him, stabs him, that he falls at the end.

This is used to explain the idea of the minimal difference with maximal similarity

principle, given a candidate word W1 which is akin to Caesar in the example, the

oppositeness against other words W2,W3,W4,W5 needs to be determined (Casssius,

Casca, Cinna, and Brutus). Given thatW1 (Caesar) shares very little in common with

W2 (Casssius), W3 (Casca), W4 (Cinna), the impact or the degree of oppositeness W1

has with them is minimal. But when W1 (Caesar) is considered against W5 (Brutus),

the shared commonalities between W1 and W5 magnify the impact, or the degree of

oppositeness which exists between them, to be beyond what it was with W2,W3,W4.

The words that are to be put on the scale are to follow the minimal difference

with maximal similarity principle as established by fundamental studies in the

literature (Clark, 1972; Cruse, 1986; Lyons, 1987; Murphy, 2003). The property

of minimal difference with maximal similarity in semantic oppositeness which results

in simultaneous proximity and distance between words distinguishes it from other
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semantic relations by giving it an exceptional status according to some studies (Cruse,

1986; Muehleisen & Isono, 2009). While the idea is unequivocally supported, different

linguistic studies rationalize the principle with different arguments. Nevertheless, all

of them come to the same conclusion on the validity of the principle. In this section

we discuss such support of this key principle.

Jones (2003) argue that in an opposite pair, it is not enough to have opposition of

meaning. The pair must also have a strong and established lexical relationship. They

provide the example that on the idea of height, an expected relationship exists in

the pair tall-short, but it does not in lofty-petite. Thus, they propose a methodology

based on observed-to-expected ratio of co-occurrence. This idea is also supported

by Muehleisen and Isono (2009), by the emphasis they put on the context in the

task of semantic oppositeness. They propose that the goodness of the suggestion in

adjectival opposition is increased when there is similarity in the collocation profile of

the relevant pair. This follows that both words in question are describing concepts of

the same type.

Phillips and Pexman (2015) define oppositeness as a function when two words

“differ maximally but only on a single dimension,” thus rendering the meaning

simultaneously similar and different. Yet again, this claim is supported by

literature (Clark, 1970a; Jones, 2003; Murphy, 2003; Owens Jr, 2015). Miko lajczak-

Matyja (2018) note that for oppositeness, minimal semantic contrast between units is

important. The definition of incompatibility of meanings is given as “the existence of

at least one feature contrasting those meanings in describing the narrower category

of opposition the emphasis is on the smallest difference between units” (Leech, 1990).

The minimal contrast rule is claimed to be an evolution of the contrast principle

proposed by Clark (1970b), which Miko lajczak-Matyja (2018) formulates from Kostić
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(2015) as: “For two words to be minimally different, they must share all their crucial

semantic properties but one, i.e., they differ in only one relevant criterion”. Thus,

they postulate that the work on semantic oppositeness should start on the focus

of significant similarity rather than that of the maximal difference first. These

similarities are argued to be able to be found using:

– Hyponym-Hypernym structure (Mettinger, 1994)1.

– Being in a common semantic domain (Jones, 2003; Muehleisen & Isono, 2009).

– Having a set of common features (Murphy, 2003).

– Exhibiting a plan of equivalence (Davies, 2012).

Once the similarity is established, the contrast needs to be brought forward. These

differences can be emphasised using:

– Having values that are distant from each other in a given semantic

dimension (Mettinger, 1994).

– A single feature (componential) being distinct (Murphy, 2003).

– Exhibiting a plan of difference (Davies, 2012).

On the question of balancing minimal difference against maximal similarity, Murphy

(2003) states, “The best antonyms are those that [...] extend their similarities to as

many properties as possible while maintaining a single relevant difference”. This idea

is explained with the example pairs yesterday-tomorrow and Monday-Wednesday.

The yesterday-tomorrow pair is shaped by the shared bound definition to today, while

Monday-Wednesday is not shaped by such a bound definition to Tuesday (Cruse,

2011; Miko lajczak-Matyja, 2018). The latter has to be inferred. This type of

oppositeness is defined as latent (Cruse, 2011; Cruse, 1986).

1Note that Mettinger (1994) uses the French words archisememe/archilexeme to mean hyponym-
hypernym.
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Miko lajczak-Matyja (2018) further discusses encapsulated oppositeness in the

context of minimal difference and maximal similarity. The provided example is that

the pair giant-dwarf has encapsulated the oppositeness basis of the pair large-small.

This encapsulation brings the abstract pair large-small to the concrete pair giant-

dwarf by means of adding dimensions such as humanoid, living organism, and others.

Nevertheless, note that in all these encapsulating new dimensions, the pair stay

similar preserving the maximal similarity property. This follows the rule laid by Cruse

(1986) that, “proportional participation of the differentiating feature in the totality

of meaning of the units” is the most important factor in determining oppositeness

while being relevant. This also fulfills the criterion of “a number of opposed values of

features contributing to the dimension of opposition” set by Hermann, Conti, Peters,

Robbins and Chaffin (1979).

These observations in the literature on maximal similarity being both compulsory

and primal over the more obvious minimal difference translates to a nonlinear

mapping function in computing terms.

2.1.2 Irrelevancy Principle. The irrelevancy principle states that all

words which exist in the vocabulary V will not feature on the oppositeness scale

of a given word W . Only a subset S of V will feature on the oppositeness scale

of the word W . The rest of the words in V are deemed irrelevant or orthogonal.

An important point to note is that this irrelevancy does not reduce oppositeness to

antonymy. It still remains a scale with words within a certain threshold. Without

violating this principle, Jones et al. (2012) provides examples of such pairs being

used in British newspapers in an opposite context, to show how words that are not

traditional antonyms are used in opposite contexts.
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Miko lajczak-Matyja (2018) claims that when the amount of differences in

similarity approaches one, the oppositeness approaches a state which they call

prototypical. The definition of prototypical is built from Murphy (2003), which states:

“The most prototypical examples of contrast relations involve items that differ on one

point of meaning”. This oppositeness property is then described with the examples

of male-female and ivy-mystery. The argument raised by Miko lajczak-Matyja (2018)

on grounds of Murphy et al. (2015) is that, male-female marks distant points in a

singular gender dimension, whilst being equal in all other aspects. In contrast, ivy-

mystery differs in multiple dimensions, including and not limited to concrete-abstract

and living organism-not a living organism.

Jones et al. (2012) further point out, with the example limerick and pencil, that

the given pair is unlikely to be construed as opposites. They postulate that the reason

for this is the fact that semantic opposition is defined in tandem with similarities as

much as it is with differences. Therefore the oppositeness of these words is undefined.

Here we observe how this principle is tied with arguments in Section 2.1.1.

On the question of irrelevancy, Lobanova (2012) discusses the Substitutability

Hypothesis as tested by Charles and Miller (1989). The basic idea is that if the

candidate opposite pair is relevant, one word in the pair can be seamlessly replaced

by the other in a sentence taken from a corpus. They further discuss the biases

where the probability of one word being substituted by the other is different when

considered the other way round. But nonetheless, it stands that as long as the pair

is relevant, the substitution can be made.

These observations in literature on the irrelevancy principle, which preserves the

oppositeness scale property by not reducing oppositeness to anonymity, while still

defining a limit to which the words of the vocabulary can be admitted to a scale
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of oppositeness with respect to a given word, translates to a threshold function, in

computing terms.

2.2 WordNet

WordNet (Princeton University [Princeton], 2020) is a well-known, large, lexical,

ontological (Arvidsson & Flycht-Eriksson, 2016; Gruber, 1993) database. It

was created by the Cognitive Science Laboratory of Princeton University, United

States (Miller, Beckwith, Fellbaum, Gross & Miller, 1990). By grouping words

together into sets of synonyms called synsets, it represents semantic relationships

between words. In total, the database consists of 150,000 different words. Each of

the words is coupled with a short description, for the applications that need the

system to function as a Dictionary in addition to as a Thesaurus. The accompanying

software tools, as well as the database, are released under a BSD-type license. Out of

the various semantic mappings present in WordNet, this study utilizes the Hyponym -

Hypernym mapping and the Antonym mapping. Fig. 1 shows an example of an extract

of the Hyponym – Hypernym tree present in WordNet. (Adapted from de Silva et al.

(2013))

2.3 Semantic Similarity

Semantic similarity of two entities is a measure of the likeness of the semantic

content of the said two entities (Li, Bandar & McLean, 2003; Lord, Stevens, Brass &

Goble, 2002). It is common to define semantic similarity using topological similarity

by means of ontologies. Using WordNet (Miller et al., 1990), Wu and Palmer (1994)

proposed a method to derive the similarity between two words in the 0 to 1 range.

The approach proposed by Jiang and Conrath (1997) measures the semantic similarity

between word pairs using corpus statistics and lexical taxonomy. By means of Shima

(2016), the strengths of these algorithms were evaluated by de Silva (2015a). In
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Vehicle

Figure 1. Hyponym – Hypernym graph

accord with that evaluation, we selected the implementation by Wu and Palmer for

the purposes of this work.

A set of examples of word similarities are shown in Table 1 of de Silva (2015a).

For the similarity with Car, the same word gets the perfect score of 1. Truck gets a

higher score than Ship, because a Truck too, is a land vehicle, like a Car. However,

Ship gets a higher score than Book because a Ship is a vehicle and a Book is not.

Book gets a higher score than Air because the Book is solid and Air is not. Air gets

a higher score than Thought because Air is a physical entity and a Thought is not.

Table 1. Word Similarities Using Wu and Palmer Method

Word 1 Word 2 Similarity
Car Car 1.0000
Car Truck 0.9231
Car Ship 0.7200
Car Book 0.5217
Car Air 0.3158
Car Thought 0.2105
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A useful observation from this is the fact that, no matter how dissimilar two words

are, if both of those words exist in WordNet, this method will return a greater-than-

zero value. Thus, there exists an inherent bias towards declaring that two words have

a non-zero similarity; rather than declaring that there exists a difference. Thus, in

the Sections 3.3, 3.5, and 5.4.4, we use dissimilar weights named “yes weight” (Wyes)

and “no weight” (Wno), where Wno is larger than Wyes by a considerable amount.

2.4 Information Extraction

Information extraction is a process, in the domain of Artificial Intelligence (AI),

for acquiring knowledge by looking for occurrences of a particular class of objects,

and looking for relationships among objects, in a given domain. The objective

of information extraction is to find and retrieve certain types of information

from text. However, it does not attempt to comprehend natural language.

Comprehending natural language is handled by the research area, natural language

understanding. Natural language understanding is what chat bot AIs or personal

assistant AIs attempt to do. Information extraction is also different from information

retrieval, which retrieves documents, or parts of documents, related to a user query

from a large collection of documents. Information retrieval is what search engines do.

The main difference between information retrieval and information extraction is that

the latter goes one step further by providing the required information itself, instead

of providing a pointer to a document.

In an information extraction task, the input is text which is either unstructured,

or slightly structured, such as HTML or XML. Usually the output is a template

set, filled in with various information that the system was supposed to find. Thus,

the information extraction process is a matter of analyzing document(s) and filling

template slots with values extracted from document(s).
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There are two main methods of information extraction in literature: (a) attribute-

based extraction; and (b) relation extraction. In attribute-based extraction, the

system assumes the entire text to be referring to a single object. Thus, the task is

to extract attributes of said object. This is typically done using regular expressions.

Relation extraction, on the other hand, extracts multiple objects, and relationships

among them, from a document. One famously efficient way to do this is the FASTUS

method by Hobbs, Appelt, Bear, Israel et al. (1993).

2.5 Ontologies and OBIE

An ontology is defined in information science as “formal, explicit specification

of a shared conceptualisation” (Gruber, 1993). Ontologies are used to organize

information in many areas as a form of knowledge representation (Gruber,

1995). These areas include: artificial intelligence (Maynard, Yankova, Kourakis

& Kokossis, 2005), linguistics (de Silva, 2015a; Wijesiri et al., 2014), biomedical

informatics (Huang et al., 2016b; Pisanelli, Gangemi & Steve, 1999), law (Bruckschen

et al., 2010; Jayawardana et al., 2017b; Letia & Cornoiu, 2010; Wyner, 2010), library

science, enterprise bookmarking, and information architecture (Vargas-Vera et al.,

2002). In each of these use cases, the ontology may model either the world, or a part

of it, through the said area’s lens (de Silva et al., 2013).

2.5.1 Ontology for MIcroRNA Targets (OMIT). The Ontology for

MIcroRNA Targets (OMIT) was created by Huang et al. (2016b) with the purpose of

establishing data exchange standards and common data elements in the microRNA

(miRNA) domain. Biologists and bioinformaticians can make use of OMIT to

leverage emerging semantic technologies in knowledge acquisition and discovery for

more effective identification of important roles performed by miRNAs (through their

respective target genes) in humans’ various diseases and biological processes. The
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OMIT has reused and extended a set of well-established concepts from existing

bio-ontologies; e.g., Gene Ontology (Ashburner, Ball, Blake, Botstein et al., 2000),

Sequence Ontology (Eilbeck, Lewis, Mungall, Yandell et al., 2005), PRotein Ontology

(PRO) (Natale, Arighi, Barker, Blake et al., 2011), and Non-Coding RNA Ontology

(NCRO) (Huang et al., 2016a). Metrics of OMIT are shown in table 2.

Table 2. Metrics of OMIT

Number of classes: 2226
Number of individuals: 1158
Number of properties: 126
Maximum depth: 35
Maximum number of children: 316
Average number of children: 14
Classes with a single child: 280
Classes with more than 25 children: 104
Classes with no definition: 2226

2.5.2 Ontology-Based Information Extraction. Ontology-Based

Information Extraction (OBIE) is a sub-field of information extraction. In this,

ontologies are used to make the information extraction process more efficient and

effective. In most cases, the output is also presented through an ontology. But

that is not a requirement. As mentioned in 2.5, generally, ontologies are specified

for particular domains. Given that information extraction is essentially concerned

with the task of retrieving information for a particular domain (as mentioned in the

first paragraphs of Section 2.4), it is rational to conclude that an ontology that has

formally and explicitly specified the concepts in that domain would be helpful in this

process.

A more formal definition of OBIE was given by Wimalasuriya and Dou (2010): “a

system that processes unstructured or semi-structured natural language text through

a mechanism guided by ontologies to extract certain types of information and presents
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the output using ontologies.” Following is a brief introduction as to how an ontology

can improve the information extraction process.

Consider the short paragraph about hormones given in Fig. 2. It can

be observed that a named entity recognition process would extract the proper

nouns; Insulin, Testosterone, beta cells, Sertoli cells. But a general information

extraction system would not know what each of these proper nouns are. A human

with enough bio-medical knowledge, on the other hand, would know that Insulin

is a peptide hormone, while Testosterone is an anabolic steroid. This exactly is

the problem solved by OBIE. For the hormone domain, a simple ontology can be

introduced, as shown in Fig 3.

Hormones are a class of signaling molecules, found in multicellular organisms,
which regulates various functions. One of the most commonly known hormones
is Insulin, which regulates the metabolism of carbohydrates, fats, and protein. It
is produced at the pancreatic islets by beta cells. Another well-known hormone,
Testosterone, has various functions, such as activating genes in Sertoli cells.

Figure 2. A short paragraph about hormones

Figure 3. A simple ontology for Hormones

20



Now with the is a relationship, the OBIE system can tag the proper nouns Insulin

and Testosterone to be of type hormone in Fig 3. Next, with the activates

relationship, the OBIE system can tag Sertoli cells as of type Cell, as well as

refining the tag of Testosterone to the more granular Steroid hormone. Similarly, the

relationship produces can be used to tag beta cells as of type Cell as well as refining

the tag of Insulin to the more granular peptide hormone. Thus, OBIE successfully

tags all the proper nouns that were extracted.

OBIE systems that use the GATE architecture rely, at least partly, on Linguistic

rules represented by regular expressions such as this. Another way that an ontology

can facilitate information extraction is by creating gazetteer lists. The process of

creating a gazetteer list from an ontology is rather straightforward: The tree of the

concept hierarchy that is rooted at the desired concept is selected, and all the instances

that occur in the said rooted tree are then added to the gazetteer list.

When information extraction is performed with machine learning algorithms, it

is possible to use ontologies in several ways. Classification algorithms can be used to

recognize instances and property values from the ontology. Maximum entropy models

can be used to predict attribute values in a sentence. Similarly, Conditional Random

Fields (CRF) can be used to identify attribute values in a sentence. The above-

described methodologies make up the Information Extraction Module of a typical

Ontology-Based Information Extraction system.

Other than the Ontology and the above-described Information Extraction Module,

there are two other main components in an OBIE system. The first one is

the Preprocessor. The text input of an OBIE system first goes through a preprocessor

component, which converts the text to a format that can be handled by the IE module.

For example, tags from an HTML file can be removed in this component. Thus,
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the Information Extraction Module would be receiving pure text content. A semantic

lexicon for the language is usually used as a helper for the Information Extraction

Module. As mentioned in section 2.2, for the general English language-based

information extraction tasks, it is most common to use the WordNet (Princeton, 2020)

lexical database and the toolkit thereof. One of the most important components of an

ontology for an OBIE system is the set of relationships present in the ontology. Those

are the ones that can be used to build extraction rules for the information extraction

system. This is exactly the problem with OMIT. Even though it has a very extensive

hierarchy of concepts and instances, it contains few or no relationships between the

said entities, other than the is a relationship compulsory for the Hyponym–Hypernym

tree. Thus, some of the most powerful conventional OBIE methods cannot be used

alongside OMIT.

2.6 Open Information Extraction

The requirement of having pre-specified relations of interest is the main drawback

of the traditional information extraction systems. Open Information Extraction

systems (Etzioni, Banko, Soderland & Weld, 2008; Etzioni, Fader, Christensen,

Soderland & Mausam, 2011; Fader, Soderland & Etzioni, 2011; Levy, Dagan &

Goldberger, 2014; Mausam, Schmitz, Soderland, Bart & Etzioni, 2012; Wu & Weld,

2010) solve this problem by extracting relational triples from text, by identifying

relation phrases and associated arguments in arbitrary sentences without requiring a

pre-specified vocabulary. Thus, it is possible to discover important relationships that

are not pre-specified.

Usually, Open Information Extraction systems automatically identify and extract

binary relationships from sentences given the parsed text of the target language.

The parsed text provides the dependency relationships among the various phrases
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of the sentence. The Open Information Extraction system used in this study,

OLLIE (Mausam et al., 2012), is different from others in its genre, due to the fact

that it works on a tree-like representation (a graph with only small cycles) of the

dependencies of the sentence, based on the Stanford compression of the dependencies,

while other Open Information Extraction systems operate on flat sequences of tokens.

Thus, OLLIE is uniquely qualified to capture even long-range relations. Given that

open information extraction does not depend on pre-configured rules, we are using

Open Information Extraction as a bridge between OMIT, which is an ontology with

few or no relations as described in section 2.5.1, and the conventional OBIE methods

described in 2.5.2. (More information on this is discussed in Section 5.9.)

2.7 TF-IDF

In information retrieval tasks, to indicate how important a given word is in a

document within the context of a certain corpus, the TF-IDF (term frequency–inverse

document frequency) (de Silva, 2015b; Leskovec, Rajaraman & Ullman, 2014) can be

used as a statistic. There are two components in the TF-IDF statistic. The first

component is the term frequency (tf), which indicates how important the given word

is in the given document. Usually, it is used with 0.5 double normalization, where

f(T, d) is the frequency of term t in document d as follows in Equation 2.1.

tf(t, d) = 0.5 +
0.5 ∗ f(T, d)

max{f(w, d) : w ∈ id}
(2.1)

Second component of the statistic is the inverse document frequency (idf), where

N is the total number of documents in the corpus and d is the number of documents

in which t appears. The formula is as follows in Equation 2.2.
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idf(t,D) = log
N

1 + |{d ∈ D : t ∈ d}|
(2.2)

2.8 Word Embedding

Embedding has recently risen as an emerging field in the domain of Natural

Language Processing (NLP), parallel to its rise in popularity in other domains such

as knowledge representation (Wang, Dou, Wu, de Silva & Jin, 2019). As defined

by Mikolov, Sutskever, Chen, Corrado and Dean (2013a), a word embedding system

consists of a set of techniques for modeling a selected natural language and learning

features thereof. The objective of these systems is to map the words in the domain

to vectors so that a model which has a distributed representation of words is created

in a multi-dimensional vector space. It has been shown that applying vector calculus

on the vectors would yield semantic or linguistic relationships among them as shown

in Fig 4.

Some examples for the leading algorithms for this task are; Word2vec (Mikolov,

Sutskever, Chen, Corrado & Dean, 2013b), GloVe (Pennington, Socher & Manning,

2014), BERT (Devlin, Chang, Lee & Toutanova, 2018), XLNet (Yang et al., 2019),

and Latent Dirichlet Allocation (LDA) (Das, Zaheer & Dyer, 2015). In considering the

flexibility, the ease of customization, and the wide usage, in this study we use word2vec

as the starting point for our embedding system. Even-though this study is focused

on embedding oppositeness, rather than embedding words, given that oppositeness is

an emergent property between pairs of words, the points of embedding in this study

remain as words. This is the reason it is possible to use word2vec as a reasonable

starting point.
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Figure 4. Uses of Word Embedding

2.9 Autoencoders

Autoencoders are the simplest form of the representation learning algorithms.

They consist of two components, an encoder and a decoder. The encoder takes an

unlabeled input and derives a latent representation of the input. The decoder takes

the said latent representation and attempts to reconstruct the input. Hence, the error

of an autoencoder is defined as the difference between the input to the encoder and

the output of the decoder. A basic autoencoder is shown in Fig 5.
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Figure 5. A basic autoencoder

While autoencoders are trained to preserve as much information as possible,

special steps are taken to prevent them from learning the identity function (Goodfellow,

Bengio & Courville, 2016). Autoencoders are fairly common in the contemporary

research (Alsheikh, Niyato, Lin, Tan & Han, 2016; Hinton & Salakhutdinov, 2006;

Lv, Duan, Kang, Li & Wang, 2015). A study by Lv et al. (2015) proved that

stacked autoencoders can out perform Backpropagation NN (BP NN), Random Walk

(RW), Support Vector Machine (SVM), and Radial Basis Function (RBF) models.

Traditionally, autoencoders are mostly used in the image domain, with data sets

such as hand-written digit recognition MNIST training set (LeCun, Bottou, Bengio
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& Haffner, 1998) and the Olivetti face data set2. However implementations in

the language domain, such as studies based on the Reuter Corpus3, bilingual word

representations (Chandar et al., 2014), and word meta-embeddings (Bollegala & Bao,

2018) do exist.

2.10 Transfer Learning

Transfer learning is a machine learning technique, mainly employed when there

is a classification task in a domain of interest with a scarcity of data, while another

related domain exists containing sufficient training data (Pan & Yang, 2010). It is

possible for these data sets to be in different feature spaces or follow different data

distributions. The basic transfer learning process is shown in Fig 6.

Sufficient
Training	Data

Scarce	Training
Data

Model	1

Model	2

Predictions	1

Predictions	2

Knowledge Transfer

Task 1

Task 2

Figure 6. Basic Autoencoder Transfer Learning Process

The task employed in this work uses transfer learning in such a way that source

and target domains are the same, while the source and target tasks are different but

related, by the definition given by Pan and Yang (2010); given this, it is possible to

declare that this methodology is based on the principals of inductive transfer learning.

In the NLP domain, transfer learning is commonly used for the task of document

2http://www.cs.nyu.edu/∼roweis/data.html

3http://trec.nist.gov/data/reuters/reuters.html
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classification (Fung, Yu, Lu & Yu, 2006; Al-Mubaid & Umair, 2006; Sarinnapakorn

& Kubat, 2007) and sentiment analysis (Blitzer, Dredze & Pereira, 2007; Gamage

et al., 2018).

2.11 Inconsistency Detection

Inconsistency finding in text is mostly a field researched within NLP for the

education domain. This has brought to light a number of methods. The first

among them is based on the identification of coincident words and n-grams (Lin,

2004). While this method is adequate for automatic text grading, which is based on

evaluating characteristics such as the fluency of the text, it is not suitable for the

application in Chapter V, due to each of the abstracts being independent documents

and not descriptions of nor summarizations of a source document. The second method

is the popular NLP technique, Latent Semantic Analysis (LSA) (Foltz, Laham &

Landauer, 1999; Franzke & Streeter, 2006). Here also, the vector representations of

the students’ documents are matched against those of a gold standard (i.e., a correct

text). This approach would have been very difficult to scale for the use case in

Chapter V, where all abstracts are compared against each other. The third method

is based on Information Extraction (IE) (Brent, Atkisson & Green, 2010; Gutierrez,

Dou, Fickas, Wimalasuriya & Zong, 2016; Mitchell, Russell, Broomhead & Aldridge,

2002). It intends to capture the underlying semantics of the text. Given that the

objective of the use case in Chapter V matches well with that intention, we move in

that direction. Out of the IE studies, the closest one to the use case in Chapter V is

the one proposed by Gutierrez et al. (2016).

But in many ways, our methodology is significantly different than that of Gutierrez

et al. (2016). That difference exists even though both approaches have inconsistency

finding in common. The main difference is the fact that in Gutierrez et al. (2016), the
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inconsistencies were found by adding the discovered triplets to the existing ontology

and running reasoners on it, to see if the ontology has become inconsistent. Our

method in Chapter V, on the other hand, uses the ontology as a tool in information

extraction, as per the concept of OBIE, and does the inconsistency detection outside.

2.12 Rumour Detection

The rumour detection task has been approached on three fronts, according to Cao

et al. (2018): feature engineering, propagation-based, and deep learning. In the

feature engineering approach, posts are transformed into feature representations by

hand-designed features, and they are sent to a statistical model to be classified. In

addition to textual information, structural evidences (Castillo, Mendoza & Poblete,

2011; Yang, Liu, Yu & Yang, 2012) and media content (Gupta, Zhao & Han, 2012) are

also utilized. Given that this approach depends heavily on the quality of the hand-

designed feature sets, it is neither scalable, nor transferable to other domains. The

propagation-based approach is built on the assumption that the propagation pattern

of a rumour is significantly different to that of a non-rumour. It has been deployed to

detect rumours in social networks (Ma, Gao & Wong, 2017). However, this method

does not pay any heed to the information in the post content, itself. As expected,

the deep learning approach automatically learns effective features (Ma et al., 2016;

Ma, Gao & Wong, 2018b; Veyseh, Thai, Nguyen & Dou, 2019). Ma et al. (2016)

claim that these discovered features capture the underlying representations of the

posts, and hence, improve the generalization performance, while making it easy to be

adapted into a new domain or a social medium for the purpose of rumour detection.

Our work in Chapter VI is most related to the rumour detection model on

Twitter by means of deep learning to capture contextual information (Veyseh

et al., 2019). However, we also derive inspiration from earlier work on the same
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topic (Ma et al., 2018b), which utilized the tree-like structures of the posts, and

the work in Chapter IV, which introduced the oppositeness embedding model. The

early work by Ma et al. (2018b) uses Recursive Neural Networks (RvNN) for the

construction of the aforementioned tree-like structures of the posts, based on their

tf-idf representations. The following work by Veyseh et al. (2019) acknowledges the

usefulness of considering the innate similarities among replies, but further claims that

only considering the replies along the tree-like structure only exploits the explicit

relations between the main posts and their replies, and thus ignores the implicit

relations among the posts from different branches based on their semantics. Under

this claim, they disregard the tree-like structure entirely. In our work, we preserve the

idea of considering semantic similarities to discover the implicit relationships among

posts, as proposed by Veyseh et al. (2019). However, we augment the model and

re-introduce the explicit relationships proposed by Ma et al. (2018b), in a balancing

of information between implicit and explicit. Further, we note that all these prior

works have been solely focused on the similarity among the posts and have ignored

the oppositeness metric. To the best of our knowledge, we are the first to utilize

oppositeness information in the rumour detection task.
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CHAPTER III

SEMANTIC OPPOSITENESS MEASURE

3.1 Introduction

Semantic oppositeness, as discussed in Chapter I, is the natural counterpart of

the semantic similarity function. It yields the degree to which two concepts oppose

each other in a given domain for the same purpose of confidence calculation in text

mining. In this chapter, we introduce a new semantic oppositeness measure to be

used to calculate the oppositeness between two words. We illustrate how this novel

semantic oppositeness measure is superior to the antonym method and to the näıve

similarity inverse method. The work of this chapter is adopted primarily from two

collaborative papers that were published at two conferences and one collaborative

journal paper under review.

The first conference paper, de Silva et al. (2017), was published at the 8th ACM

International Conference on Bioinformatics, Computational Biology, and Health

Informatics and was composed by myself, Dejing Dou, and Jingshan Huang. The

journal paper currently under review is an extension of the conference paper. As such,

it too was composed by myself, Dejing Dou, and Jingshan Huang. The contributions

of these papers are covered in Section 3.2 and Section 3.3 of this chapter. As lead

author, I developed and implemented the contributed techniques, and I wrote the

majority of the text contained in this chapter. Dejing Dou provided valuable guidance

towards the motivation and application of this work. Jingshan Huang helped verify

the results obtained using the proposed Semantic Oppositeness model on the OMIT

project (Huang, Dang, Borchert, Eilbeck et al., 2014), on which he is working, and

which is covered in other publications of which I was a co-author (Huang et al., 2016a;

Huang et al., 2016b). This chapter only discusses the formalization of the Semantic
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Oppositeness measure discussed in the study (de Silva et al., 2017). The concrete

use-case which was involved in that study is discussed in Chapter V.

The second conference paper, de Silva and Dou (2019), was published at the

30th International Conference on Database and Expert Systems Applications and

was composed by myself and Dejing Dou. The contributions of this paper are

covered in Section 3.4 to Section 3.8 of this chapter. As lead author, I developed

and implemented the contributed techniques, and I wrote the majority of the

text contained in this chapter. Dejing Dou provided valuable guidance towards

the motivation and application of this work. This chapter only discusses the

extensions and adaptations of the Semantic Oppositeness measure discussed in the

study (de Silva & Dou, 2019). The semantic oppositeness embedding introduced in

that paper is discussed in Chapter IV.

There is also a fundamental contribution to this chapter and the two above works

from my earlier paper (de Silva, 2015a), in which I have conducted a semantic

similarity measure comparison. The published result of this comparison is utilized in

the above two papers and in extension, this chapter.

3.2 Semantic Oppositeness in Light of Semantic Similarity

First, the word pair is checked for similarity by Wu and Palmer (1994) semantic

similarity measure (sim), as shown in Equation 3.1, where c1 and c2 are variables

which can be utilized for applications of phrases, as discussed in Chapter V. However,

for an application of similarity between two words, c1 and c2 can be set to the same

constant, such as 1. The reasoning for selecting of Wu and Palmer (1994) for semantic

similarity, over the other methods, stems from the earlier work (de Silva, 2015a), in

which we comprehensively compared various semantic similarity measures.
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simil =
sim(w1, w2)

c1 + c2
(3.1)

Checking for oppositeness is not as straightforward as finding similarity. First, it

should be noted that a simple antonym system, to be used in lieu of oppositeness,

would be ill-suited for the requirement. This is because, while all words that are

antonyms to a given word are, in fact, indicating an oppositeness, all words that

indicate an oppositeness are not necessarily antonyms of each other. To overcome

this, we need a value on a continuous scale, similar to that of the similarity measure

discussed above. Given that the word similarity is between 0 to 1, as mentioned in the

Section 2.3, it is possible to näıvely assume that just finding whatever the similarity

value would be, and taking its complement, suffices for finding the oppositeness.

This, sadly, is not the case. What this means is, semantic difference is not the same

as semantic oppositeness.

We demonstrate this with the following example. Assume we have the word

increase, in one hand, and the words expand, decrease, change, and cat on the other

hand, to be checked against increase to see which one of the given words is the most

contradictory in nature to the word increase. A simple antonym system will report

decrease to be the antonym of increase. But it will report all the rest of the words

under the umbrella term; not-antonym. Obviously, that is not an adequate result.

In comparison, a human would look at these words and see that the word cat

is irrelevant here. It is neither similar to nor different from increase. In fact, the

meaning of cat is orthogonal to the meaning of increase. Next, the human might

point out that the word expand is semantically similar to the word increase. Both

words are discussing adding to an amount that already exists. The word decrease,

the human might say, is the antonym of the word increase. Finally, the human would
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argue that, change should sit somewhere between increase and decrease, because it

can go either way; given that a change can mean a increase or a decrease depending

upon the context in which it was used. Therefore, change is not completely irrelevant

to the meaning of increase, like cat is. Thus, it is possible to use this as the golden

standard, to order these words in a way that each of these (or at least the opposite

words) are easily identifiable. We demonstrate this expected optimal word order with

demarcations in Fig 7.

Figure 7. Expected optimal word order of expand, decrease, change, and cat in respect
to the word increase

If one decides to use the näıve approach and take the inverse of the calculated

similarities, one would get the result shown in Table 3.

Table 3. Näıve Method to Find Oppositeness

expand decrease change cat
Similarity to increase 0.80 0.75 0.46 0.25
1−Similarity 0.20 0.25 0.54 0.75

If the words are sorted by increasing difference, according to the calculated values

in Table 3, the word order is expand, decrease, change, and cat. This is not the

desired outcome. If this method is used, and a threshold is introduced to determine

decrease as an opposite of increase, automatically change and cat also become
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opposites of increase, rendering an erroneous result. Given this issue, instead of the

näıve approach, we introduce the Basic Oppositeness Measure as shown is section 3.3.

3.3 Basic Oppositeness Measure

First, for each of the pair of words, the lemmas are extracted. The concrete lemma

extraction process by means of Manning, Surdeanu, Bauer, Finkel et al. (2014) is

discussed in Chapter V, with the first use-case. But in this chapter where we discuss

the theory of the process, word-to-lemma conversion is taken as done by the function

shown in the simple Equation 3.2 where Wi is the word and Li is the obtained lemma.

Li = lemma(Wi) (3.2)

Following the convention in Equation 3.2, let us call the lemmas of the words W1

and W2, as L1 and L2 respectively. In the cases where the word does not yield a

lemma, the word itself is used as its own lemma. For each lemma, all the synsets

relevant for each of the word senses are extracted from English WordNet. We have

discussed the structure of Synsets in Section 2.2. Given that a word might have many

senses, this is a one-to-many mapping.

Next, for each synset, the list of antonym synsets is collected using the antonym

feature of WordNet. Given that a word sense can have many antonyms in various

contexts, this is, yet again, a one-to-many mapping. All the retrieved antonym synsets

for one original lemma are put into a single list. Each of the words in each of the

synsets in the said list are then taken out, to make a word list. Yet again, this is

a one-to-many mapping, given that each synset has one or many words in it.

The resultant word list is then run through a duplicate-remover. This is the first

reduction step in the antonym process so far. We name the antonym list of L1 as

a1, and the antonym list of L2 as a2. The number of items in a1 is n, while the
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number of items in a2 is m. Next, each antonym of L1 is checked for similarity

against the original L2, and the maximum difference is extracted as dif 1 as shown

in equation 3.10. Similarly, each antonym of L2 is checked for similarity against the

original L1, and the maximum difference is extracted as dif 2, as shown in equation 3.4.

dif 1 = max(sim(L2, a1(1)), sim(L2, a1(2)), ..., sim(L2, a1(n))) (3.3)

dif 2 = max(sim(L1, a2(1)), sim(L1, a2(2)), ..., sim(L1, a2(m))) (3.4)

Once dif 1 and dif 2 are calculated, the overall difference, dif is calculated using

Equation 3.5. Note here that c1 and c2 discussed in Equation 3.1 are present in

Equation 3.5 for the purpose of consistency in cases where phrases are considered.

But in any other application, as mentioned in Section 3.2, they would be set to the

same constant, such as 1. Table 4 shows the results of the dif values for the same

example as Table 3 by extending the latter.

dif =

dif1
c1

+ dif2
c1

2
(3.5)

Table 4. Oppositeness With dif

expand decrease change cat
Similarity to increase 0.80 0.75 0.46 0.25
1−Similarity 0.20 0.25 0.54 0.75
dif to increase 0.63 1.00 0.72 0.25

If the words are sorted using dif in the increasing order, they would be cat,

expand, change, decrease. We have reached the expected order, where first we have

the irrelevant word, then the most similar word, next the neutral word, and finally

the opposite word. However, still, the spread of words is not the optimum. This can
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be seen from the gap between each pair of words in the above sorted order. It is 0.38,

0.09, 0.28 in order. What is needed is a way to magnify the difference values of the

relevant opposite words, while shrinking the space taken up by irrelevant words, so

that the threshold line can be comfortably drawn.

With both the dif and simil values at hand, it is possible to calculate the

oppositeness, fulfilling the above condition. Before moving on to the equation, it

is prudent to look at the example on the first row of Table 4, once more. The words

there are being compared to the word increase. As per the above discussion on

the golden standard for this, the similarity measure correctly shows that expand and

decrease are in the shared context of increase. Semantically, this implies that entities

that can increase can also expand or decrease. They can also change; hence, the

value for change comes next. But it is not as close as the previous two, because the

word change can apply in a context that is very different from a context which is valid

for increase just the same as it could appear in the same context. Finally, there is the

value for cat, which is an irrelevant concept. What is observed from this is the fact

that, as suggested in Section 2.1.1, the more semantically similar the two words are,

the difference value has to be magnified proportional to that closeness. When the two

words become less similar, the difference value has to be penalized. The equation 3.6

is introduced to calculate oppositeness where Wno and Wyes are hyper-parameters

chosen to mitigate the inherent bias towards declaring that any existing two words

have a considerable non-zero similarity, as observed in Section 2.3. As such, it should

be noted here that the hyper-parameter Wno is always several degrees larger than the

hyper-parameter Wyes. Figure 8 shows the 3D plot for the equation, and Figure 9

shows the Contour plot for the same. The power relationship between similT and

difT still upholds the minimal difference with maximal similarity principle which
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was discussed in the literature in Section 2.1.1 while also supporting the Irrelevancy

principle which was discussed in the literature in Section 2.1.2.

oppo = dif

(
0.5∗ Wno

Wyes
∗similT+1

)
T (3.6)
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Figure 8. Oppositeness function: 3D plot

As evident by Fig 8 and Fig 9, in higher word similarities (similT ), the differences

(difT ) also have to be very high for the final oppo value to be high. In lower similT

range, oppo becomes closer and closer to being directly proportional to difT and

achieves it when similT becomes zero. This quality, in this example, effectively pushes

decrease farther away from increase than others. Values after this transformation

are shown in Table 5.

Again, in Table 5, the word order, in increasing oppositeness, is; cat, expand,

change, decrease, just as it was in Table 4. However, the scaled gaps between the
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Figure 9. Oppositeness function: Contour plot

Table 5. Oppositeness With oppo

expand decrease change cat
oppo to increase 0.050 0.200 0.098 0.022
max scaled to 1 0.250 1.000 0.490 0.110

words are respectively 0.14, 0.24, 0.51. Thus, now, the antonym word is placed clearly

apart from the rest of the words. The difference between the near-synonym expand

and neutral word change is more prominent (distance 0.25 and 0.49 from increase

compared to 0.63 and 0.72 in the case shown in Table 4). The irrelevant word cat has

been pushed further downwards. The pushing of the irrelevant words serves well to

further enhance the utility of the result by widening the gap between the relevant and

irrelevant words, and thus making potential errors at a decided irrelevancy threshold

to be scarce, as discussed above.
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3.4 Improving the Calculating of Oppositeness

In this section we will discuss further enhancement of the oppositeness measure

which was built in Section 3.2 and Section 3.3. The said oppositeness measure will

here-onward be referred to as the original oppositeness measure or as OOM. In the

following subsections, we will show how the original oppositeness measure can be

enhanced to handle words which do not have direct antonyms to query and factor-in

to the oppositeness calculation.

3.5 Alterations to the Original Measure

Before moving on to altering the original oppositeness measure, we introduce a

few alterations to notation and equations established in Section 3.2 and Section 3.3.

Further, we overlay the candidate words of the running example, cat, expand, change,

decrease on the contour plot, for the benefit of the demonstration of subsequent

alterations and comparisons. However, given that the intricacies of the functionality

of original oppositeness measure have been adequately discussed in Section 3.2 and

Section 3.3, in this subsection, we only discuss what components have been brought

forward as they were and what components have been altered or redefined. The

functionalities of these components are the same as they were in Section 3.2 and

Section 3.3.

The first component, which is needed to calculate the oppositeness between two

given words, w1 and w2, in the algorithm proposed by the original oppositeness

measure, is the weighted semantic similarity as shown by Equation 3.1. Here, we

introduce minor alterations to the notation to accommodate future extensions and

define Equation 3.7. On the case of concrete functionality, among the various semantic

similarity measures available as the sim function, the original oppositeness measure

picks the method proposed by Wu and Palmer (1994), which gives the similarity
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between two words in the 0 to 1 range. Here, we follow the same progression

and use the Wu and Palmer method as the semantic similarity measure. The

argument for collapsing the length constant values, c1 and c2 to the value 1, in

equation for similw1,w2 and all subsequent equations, and there by trivially simplifying

Equation 3.7 to sim(w1, w2) of Wu and Palmer (1994) still holds true. As does the

rationale of showing the said variables on the Equation for the purpose of utilities

which extend beyond words.

similw1,w2 =
sim(w1, w2)

c1 + c2
(3.7)

For the difference component of the oppositeness calculation, it is needed to

calculate the lemma of the given words and then obtain the antonym set of all the

possible senses of the given word. We redefine Equation 3.2 to Equation 3.8, which

reflects the obtaining of the lemma set better.

Lw =
{
lemma(w)

}
(3.8)

Further, we define Equation 3.9 to show obtaining of the antonym set, which was

not mathematically expressed in the process of derivation of the original oppositeness

measure. But since such representation is needed for the subsequent steps, we

introduce it here.

Aw =
{
antonyms(w)

}
(3.9)

With the formal definitions of obtaining antonyms in equation 3.8 and

equation 3.9, we redefine the Equation 3.5 for calculating difference used in

the original study, as shown in Equation 3.10.
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difw1,w2
= arg max

ai∈A1

(
sim(L2, ai)

)
(3.10)

The final relative difference equation we use is conceptually almost identical to

the Equation 3.5 proposed in the original oppositeness measure. However, a few

alterations are made, to accommodate the cumulative changes we have enacted up to

the Equation 3.10. The final relative difference calculation is performed as shown in

Equation 3.11, where P = {(w1, w2), (w2, w1)}.

reldifw1,w2
= avg

(i,j)∈P

[
arg max
ak∈Ai

(
sim(Lj, ak)

)]
(3.11)

The original oppositeness model of de Silva et al. (2017) is built on the principle

that the oppositeness value of two words that are highly similar should be more

correlated with their difference value than that of two words that are less similar. This

property is preserved by the Equation 3.6. In this step, we incorporate the alterations

that we have have obtained from Equation 3.7 to Equation 3.11 into Equation 3.6

and obtain Equation 3.12. A notable difference at this point is the power scaling

constant K, which is determined by the previous hyper-parameters Wno and Wyes

along with the other constants that were in Equation 3.6. Note that the efforts taken

in Section 3.3, to circumvent the bias observed in Section 2.3, are brought forward to

this equation as well.

oppo oriw1,w2
= reldif

(
K∗similw1,w2+1

)
w1,w2 (3.12)

Further, we bring forward the contour plot visualization as used by the original

oppositeness model in Fig 9 and add an overlay of the placement of the four example

words (expand, decrease, change, and cat) in relation to the word increase taken
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from Table 5, for the ease of explanation of the subsequent alterations and additions

we enact upon the basic algorithm. The altered contour plot visualization is shown

in Fig 10.
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Figure 10. Oppositeness function: OOM Contour plot with example overlay

3.6 Antonym Dependency of the Original Oppositeness Measure

The weakness of the original model is the heavy dependence on the antonym

property of the candidate words to calculate the difference. This weakness did not

affect the performance of the application discussed by de Silva et al. (2017), because

that study was comparing the oppositeness between the relationship component

extracted from triples from medical abstracts as discussed in Chapter V. In that

application, the relationship component always returns one or more action verbs.

Coupled with the fact that the relevant use-case was comparing relationship strings
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which contain more than one word, most of the instances translate to a high

probability of encountering words with antonyms.

But in the generalized application of the algorithm, not only should the algorithm

handle single-word instances; it also has to handle the possibility of that word not

having an antonym. In such cases, where one or both considered words do not have

antonyms, the difference value calculated by Equation 3.11 collapses to zero. This

in turn further collapses the final oppositeness value calculated by Equation 3.12 to

zero in cases where neither of them have antonyms; thus effectively rendering the

particular data point obtained by the word pair in question, unusable. The methods

we used to overcome this problem are discussed in section 3.7.

3.7 Näıve Oppositeness Measure

In the attempt to solve the problem of incalculable difference values, we turn

to the näıve oppositeness measure that was replaced by the oppositeness measure

proposed by the original oppositeness model. This näıve oppositeness measure is

the simple operation of declaring the complement of similarity as oppositeness.

The Equation 3.13 shows the definition of this measure. The Table 6 contains a

comparative analysis of the original oppositeness model and the näıve method with

the relevant rows brought forward from Table 4 and Table 5.

oppo naiw1,w2
= (1− similw1,w2) (3.13)

Table 6. oppo oriw1,w2
and oppo naiw1,w2

with w1 = increase

expand decrease change cat
Similarity to increase 0.80 0.75 0.46 0.25
oppo oriw1,w2

0.25 1.00 0.49 0.11
oppo naiw1,w2

0.20 0.25 0.54 0.75
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It is obvious from this data that the näıve method on its own does not achieve the

desired properties of an oppositeness scale, as stipulated in the Section 3.2. While

it is obvious that the näıve oppositeness measure is independent of the difference

measure, we plot it on the same axis as the above oppositeness measure for the

sake of comparison in Fig 11. The overlay of the example words in Fig 12 provides a

clearer picture of the undesirability of this measure when used alone. However, at this

point it should be noted that this model does not suffer from the weakness to words

without antonyms that impacts the improved model proposed by the original study.

This invulnerability stems from the similarity bias which was initially discussed in

Section 2.3 and later pointed out to be a detrimental factor to the original oppositeness

model in Section 3.3. But in the context of the näıve oppositeness measure, this bias

proves to be a strength rather than a weakness.
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Figure 11. Naive Oppositeness function: 3D plot
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Figure 12. Naive Oppositeness function: Contour plot

3.8 Combined oppositeness model

In Section 3.7, we discussed how the näıve oppositeness model is invulnerable to

the antonym dependency of the Original Oppositeness Model as raised in Section 3.6.

However, given that the original oppositeness model is far superior to the näıve model,

and that the original model is weak only at the specific instance where the difference

measure is valued zero, it is vital that the two models are combined in a way that

the näıve model would only take over at points where the original oppositeness model

is weak. We achieved this by multiplying the naive oppositeness function with the

term (1 − reldif). Note here that there is no need to further multiply the original

oppositeness measure with reldif , given that it is already positively correlated with

reldif as shown by Equation 3.12. If we do multiply the original oppositeness measure

with reldif , the only alteration is the change of the constant 1 to 2. Given that the
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only function of the constant 1 was to prevent powers of 0 and the oppositeness is

always a relative measure, this change ultimately cancels itself. Thus, we do not

perform this multiplication and unnecessarily complicate our equation.

To further fine-tune the balance between the original oppositeness measure and the

näıve oppositeness measure, we introduced a hyper parameter, α. The final combined

oppositeness measure is shown in Equation 3.14. Finally, we show the subtle alteration

brought about by this improvement in the familiar visualization in Fig 13. In the

example visualization, we have set α to 0.9. While it was needed to set α to this value

for the purpose of showing a difference in the graphs discernible to the human eye, in

practice, it was observed that the α value should be kept at 0.99 or higher, to prevent

the näıve oppositeness measure from negatively affecting the overall calculation at

points where the difference value is greater than zero. Note that the compliance to the

minimal difference with maximal similarity principle and Irrelevancy Principle which

was present in Equation 3.6 has been brought forward without harm to Equation 3.14.

Thus, our methodology still conforms to the observations in the literature discussed

in Sections 2.1.1 and 2.1.2.

oppo
(
w1, w2

)
= α ∗ oppo ori+ (1− α)(1− reldif) ∗ oppo nai (3.14)

At this point it should be noted that the reason for employing this continuous

method to aggregate the two methods, rather than using a case-based approach, where

the näıve oppositeness measure is only used at points where the difference measure

is zero, is to make sure that the active surface of the oppositeness curve would be

continuous and smooth at all points. This is important so that there would not be

jarring differences in the produced oppositeness value in the comparative analysis of
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Figure 13. Oppositeness function with α = 0.9: 3D plot

an edge case and a near edge case. On this idea, note the slight curvature present in

Fig 14 in comparison with Fig 10, due to this addition.

3.9 Irrelevancy Threshold

We introduce the irrelevancy threshold to conform with the irrelevancy principle

of oppositeness scale discussed in literature in Section 2.1.2. The irrelevancy threshold

for w1, Iw1 is defined as shown in Equation 3.15, whereW is the set of words considered

(which in most practical cases is equivalent to the entire vocabulary). similw1,wi

follows the definition in Equation 3.7, and oppo(w1, wi) follows the definition in

Equation 3.14. The idea is that any word that has smaller oppositeness against a

given word w1 than that of wi, the most similar word to w1, would be in the irrelevant

range. This is because the relevance of oppositeness is defined only beyond the value

of the most similar word.
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Figure 14. Oppositeness function with α = 0.9: Contour plot

Iw1 = arg max
similw1,wi ,wi∈W

(
oppo(w1, wi)

)
(3.15)
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CHAPTER IV

SEMANTIC OPPOSITENESS EMBEDDING

4.1 Introduction

Despite being both innovative and useful, the oppositeness calculation algorithm

we created in Chapter III is very computationally intensive. Therefore, in large text

mining tasks it would significantly slow down the process. It is in an attempt to

avoid such computational complexity that most Natural Language Processing (NLP)

tasks involve the incorrect generalization of reducing semantic oppositeness to

antonymy (Paradis et al., 1982) or inverse of semantic similarity (de Silva et al.,

2017).

In the case of semantic similarity, this problem was overcome with the rise of

the word embedding systems as discussed in Section 2.8. Tasks which used to be a

complex set of word similarity calculations (Jiang & Conrath, 1997; Wu & Palmer,

1994) were reduced to simple K-NN look-ups in vector spaces (Mikolov et al., 2013b;

Pennington et al., 2014). The objective of this chapter is to formulate obtaining

such an embedding for semantic oppositeness, so that text mining applications that

involve semantic oppositeness can become more efficient, akin to the transformation

undergone by semantic similarity.

The method introduced in this chapter first autoencodes word vectors, then it

transfer-learns the decoder half of the deep neural network by using values obtained

by the oppositeness algorithm discussed in Chapter III as the target. Hence, at the

end, the trained deep neural network can generate oppositeness values for given word

pairs faster and using fewer resources than the original oppositeness algorithm, with

the added benefit of the possibility of handling word pairs that could not be handled

by the original oppositeness algorithm due to its limitations.
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In addition to the main research contribution of introducing an embedding for the

semantic oppositeness function, in this chapter we also introduce a novel unanchored

vector embedding approach and a novel inductive transfer learning (Pan & Yang,

2010) process based on autoencoders (Goodfellow et al., 2016), which utilizes both

the learnt embeddings and the learnt latent representation as discussed in Section 2.9.

The work of this chapter is adopted primarily from a collaborative paper that was

published at a conference. The paper, de Silva and Dou (2019), was published at the

30th International Conference on Database and Expert Systems Applications and was

composed by myself and Dejing Dou. As lead author, I developed and implemented

the contributed techniques, and I wrote the majority of the text contained in

this chapter. Dejing Dou provided valuable guidance towards the motivation and

application of this work. This chapter only discusses the semantic oppositeness

embedding process introduced in the paper, along with the relevant experiments

and results. The extensions and adaptations of the Semantic Oppositeness measure

discussed in the study (de Silva & Dou, 2019), which lay the groundwork for the

semantic oppositeness embedding process of this chapter, were covered in Section 3.4

to Section 3.8 of Chapter III.

4.2 Semantic Oppositeness Embedding Process

Once the algorithm described in Chapter III is used to calculate the oppositeness

measures for word pairs, the next step of the process is to embed them in a vector

space. Embedding the oppositeness gives applications the ability to do simple K-NN

queries on the vector space, instead of running the costly algorithm OOM each time.

This section discusses the process of embedding the said oppositeness values in a

vector space.
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4.2.1 Minimization constraint. In an embedding process, it is important

to first define what the minimization constraint is. In almost all cases, it is defined

as a function to calculate the distance between the vector currently obtained by the

embedded object and the vector expected to be obtained by the embedded object.

However, in this study our objective is novel in the sense that for this algorithm, it

does not matter where the individual word vectors map to. All that matters is the

difference between two given embedded word vectors approaching the oppositeness

value calculated above. Therefore, in the learning process, instead of anchoring a

vector (or a context) and trying to move the target vector close to it, we can employ

an algorithm to push both vectors together with no contextual attachments. Thus

the minimization constraint becomes a matching of two distance scalars, rather than

a minimization of the distance between two vectors. The proposed minimization

constraint is given in Equation 4.1, where ||a − b|| denotes the Euclidean distance

between vectors a and b, ws and wt are input words, yt and ys are the outputs

of the neural network, and the oppo function returns the linguistically calculated

oppositeness value, as proposed in Equation 3.14. Note that we need to preserve

the sign of the difference to use the unanchored training. Thus, the absolute value

function (abs) is deconstructed into three cases in later steps.

min
[
abs
(
oppo

(
wt, ws

)
− ||yt − ys||

)]
(4.1)

4.2.2 Expected Vector Calculation. The range of the minimization

constraint given in Equation 4.1 is unbound. Which means that it can arguably

obtain values ranging from −∞ to +∞. In practice, this is bounded by the upper

and lower limits of the values obtained by the embedded vectors. However, in either

case, this large range is undesirable for the embedding task. Therefore, we define f as
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shown in Equation 4.2, where f would be limited to a range of +1 and −1, depending

on the placement of the embedded vectors in relation to the expected value, and σ

indicates the standard Sigmoid function.

f = 2 ∗ σ
[
oppo

(
wt, ws

)
− ||yt − ys||

]
− 1 (4.2)

4.2.3 Target update rule. As mentioned in Section 4.2.2, the embedding

in this study does not conform to the idea of anchoring one vector (or context) and

pushing the candidate to match the expected vector. Instead, both the vectors in

question are moved to make sure the oppositeness is defined by the distance between

the said embedded vectors. It should be noted that to the best of our knowledge, this

work was the first to utilize such an unanchored approach to word vector embedding.

In this section we derive the update rule for each of the two vectors. For the simplicity

of subsequent calculations, we define ∆Y as yt−ys, while the expected shifts are yt′−yt

and ys′ − ys.

There are three possible cases of vector placement as shown by Fig 15, Fig 16,

and Fig 17. Each of these cases are uniquely identifiable by the f value calculated

by equation 4.2. First, there is the case where the current embedding places the

word vectors farther apart than the linguistic calculation of the oppositeness measure

indicates is needed. These need to be pushed together. In these scenarios, the value

of f would always evaluate as less than zero. This situation is visualized in fig 15.

The notation in red shows the current embedding of the vectors, while the notation

in blue shows the expected embedding.

The equation 4.3 shows the suitable update rule to calculate the embedding target

yt′ , while the equation 4.4 shows the suitable update rule to calculate the embedding
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Figure 15. Case: f < 0

target ys′ . η1 is the learning rate. Note how there are update rules for both vectors,

rather than anchor one and push the other vector as embedding convention dictates.

yt′ = yt − η1∆Y (4.3)

ys′ = ys + η1∆Y (4.4)

The second case as shown by Fig 16 occurs when the current embedding of the

vectors places them closer than the linguistic calculation of the oppositeness measure

would indicate is expected. Similar to the above, the notation in red shows the current

embedding of the vectors, while the notation in blue shows the expected embedding.

These vectors need to be pushed apart. In these scenarios, the value of f would

always evaluate as more than zero.

The equation 4.5 shows the suitable update rule to calculate the embedding target

yt′ , while the equation 4.6 shows the suitable update rule to calculate the embedding

target ys′ .
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Figure 16. Case: f > 0

yt′ = yt + η2∆Y (4.5)

ys′ = ys − η2∆Y (4.6)

The final case covers the scenarios where f would evaluate to exactly zero.

This case is shown by the fig 17. This occurs when the embedded vectors have

obtained the expected outcome of being embedded with a distance equal to the value

dictated by the linguistic calculation of the oppositeness measure, which was given

by Equation 3.14.

None of the vectors need updating in this scenario. But for the sake of consistency

and subsequent generalization, we declare the equation 4.7 to show the suitable update

rule to calculate the embedding target yt′ and the equation 4.8 to show the suitable

update rule to calculate the embedding target ys′ .
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Figure 17. Case: f = 0

yt′ = yt (4.7)

ys′ = ys (4.8)

The Table 7 summarizes all update cases we have discussed with Fig 15, Fig 16,

and Fig 17 for each of the vectors against the various value ranges of f .

Table 7. Case-based update rules

f < 0 f > 0 f = 0

yt′ − yt −η1∆Y +η2∆Y 0

ys′ − ys +η1∆Y −η2∆Y 0

Finally, it is possible to combine all the above embedding target update rules

together, based on the fact that they are uniquely mapped to the value of f . Thus,

with consideration of the sign of f , it is possible to combine the Equation 4.3,

Equation 4.5, and Equation 4.7 to obtain the generalized Equation 4.9. Similarly,
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it is possible to combine the Equation 4.4, Equation 4.6, and Equation 4.8 to obtain

the generalized Equation 4.10.

yt′ = yt + fη∆Y (4.9)

ys′ = ys − fη∆Y (4.10)

This translates to two forward propagation steps per each backpropagation of a

word pair in the neural network. In the first forward pass, forward propagation is

activated with xt as the input, yt as the output, and yt′ as the expected output. In

the second forward pass, forward propagation is activated with xs as the input, ys as

the output, and ys′ as the expected output. Then the difference between (yt−ys) and

(yt′ − ys′) is calculated as the error and is used in the single backpropagation pass.

4.2.4 Autoencoder-based Transfer Learning. While the above

algorithm is sound as a solution to embed words in a vector space guided by the

oppositeness values, starting with fully empty or fully randomized word vectors would

be counter-productive. In such an approach, our system will implicitly have to

learn the word embeddings that are achieved by word embedding systems such as

word2vec (Mikolov et al., 2013b) or GloVe (Pennington et al., 2014). Further, there

is the initial hurdle of declaring the input (xs, xt) in an unambiguous manner. The

solution to both of these problems is to involve an already trained word embedding

model as the starting point. In this juncture, we decided to use word2vec (Mikolov

et al., 2013b). This solves the second problem outright. The declaration of input

(xs, xt) in an unambiguous manner is now a simple matter of querying the trained

Word2vec model with the expectant word string.
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Figure 18. Overall Autoencoder-based Transfer Learning Model

Solving the first problem is not so straightforward. The objective of this step is

to utilize the already existing embedding of words in word2vec to make oppositeness

embedding faster. The rationale here is the fact that word2vec already clusters words

by similarity; and thus, following the näıve method we discussed in above sections, it is

reasonable to predict that the oppositeness embedding would be comparatively easier

to achieve starting from a similarity embedding than by a random embedding or by

a zero embedding. Here, note the fact that the näıve assumption was to assume that

the similarity embedding trivially translates to the oppositeness embedding. We do

not conform to that näıve assumption. We only claim that the similarity embedding

would be reasonably closer to the expected oppositeness embedding, rather than to

a zero or a random starting point. Therefore we propose the novel idea of applying

transfer learning (Pan & Yang, 2010) on the decoder portion of the autoencoder, as

introduced in Section 2.10. The proposed full learning model is shown in Fig 18.
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First of all, to employ the proposed model, we should obtain a mapping from

words to vectors. Among the various algorithms and models available to map words

to vectors, such as Word2Vec (Mikolov et al., 2013b) and GloVe (Pennington et al.,

2014), we propose to use Word2Vec based on the wider support (especially the

availability of large Google-trained data set1). This component of the ensemble would

map a given word to a vector. Incidentally, this would become the input of our neural

network. Thus, the encoder of the neural network model has as a similar number of

input neurons to that of the feature length of the selected word embedding. Next

the hidden layer of the encoder has a smaller number of nodes, while the latent

representation layer of the encoder has yet an even small number of nodes.

This architecture is proposed to prevent the hidden layer and the latent

representation layer from learning the identity function when the autoencoder is

trained. Then by definition, the input layer size of the decoder is similar to the

size of the latent representation layer of the encoder, and the hidden layer of the

decoder has a similar number of nodes to that of the encoder. Finally, the output

layer of the decoder has a number of nodes similar to that of the input layer of the

encoder for the purpose of reconstructing the input.

The proposed model has two learning phases. The first phase of the proposed

model is called the Autoencoding Phase. In this, we keep the word2vec model locked

and the weights of the encoder and the decoder unlocked. The formal representation

of an autoencoder is given in Equation 4.11, where the section σ(W1xi+b1) correlates

to the encode(X) function where the W1 and b1 are weights and biases of the encode

function. The σ(W ′
1l) + b′1 portion, where l represents σ(W1xi + b1) discussed above,

correlates to the decode(l) function, where the W ′
1 and b′1 are weights and biases of the

1https://goo.gl/yV57W3
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decode function and l is a latent representation output by the encode(X) function.

The learning objective of the autoencoder is to minimize(||X − Y ||) where X is the

input vector of the encoder and Y is the output vector of the decoder. Note here

that in the literature, Y is commonly referred to as X ′ to showcase the fact that it is

supposed to be a reconstruction of the original X. However, in this work we opted to

use Y for the sake of clarity of the subsequent steps where we use transfer learning

instead of reconstruction (autoencoding).

Yi =

(
σ
(
W ′

1σ(W1Xi + b1)
)

+ b′1

)
(4.11)

In summary, during the Autoencoding Phase of the proposed model, the neural

network learns to reconstruct a given word vector. As mentioned above, this is an

attempt to utilize the learnt artifacts of a word embedding system, where related

words are clustered together while unrelated words are embedded far apart.

The second phase of the proposed model is the Transfer Learning Phase. The

transfer learning proposed in this work differs from prior work in the literature by

three facts. Firstly, the transfer process applied on the autoencoder is applied, not

to train yet another autoencoder model, but to map the same inputs to a different

vector space. Thereby, at the end of the training process, the trained neural network

is not an autoencoder. However, for the sake of readability of the chapter, we would

continue to refer to the two components of the neural network as encoder and decoder.

It is imperative that after the training, the output of the decoder no longer tries

to reconstruct the input to the encoder. However, as mentioned above, given the

linguistic properties, that vector will still be reasonably close to the input vector.

The second difference is the fact that we lock the weights of the encoder along with

the word2vec model in the training process of this phase. While it is a given property
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of transfer learning applications to lock a certain number of initial layers and train

only a certain number of layers close to the output layer, usually, that choice is open-

ended and unrestricted. In this study, however, we specifically lock all the layers that

were previously in the encoder and keep the layers that were previously in the decoder

unlocked. The rationale for this decision is as follows: The autoencoder has already

learnt a latent representation of the word vectors, by using the autoencoding process,

where the output is the input itself. Therefore, we can be sure of the accuracy of the

learnt latent representation. The latent representation of a given vector need not be

altered when the application is changed. To the best of our knowledge, this work is

the first to propose this autoencoder-based inductive transfer learning (Pan & Yang,

2010) process to utilize both learnt embeddings and the learnt latent representation.

The third aspect that distinguishes this model from the traditional learning

processes is the fact that this phase uses two forward passes to calculate the error for a

single back-propagation pass. This is due to the fact that, as discussed in Section 4.2.1,

the learning objective of the neural network is to achieve the minimization proposed

in Equation 4.1. The mechanics of this process were further explained in Section 4.2.3.

4.2.5 Optimizations and Parallelization. We employed a number of

optimization steps to minimize the word pair data set at hand to remove data points

that would either slow down or hinder the oppositeness learning process. These

optimizations are discussed in detail in Section 4.3.1. For the purpose of efficient

training, and as a means for handling the over-fitting problem, we introduced a

parallelized training model for the transfer learning portion of the methodology. This

parallelization process is discussed in Section 4.3.3. The reason for discussing these

components in the experiments and results section is the fact that these tweaks are

introduced in more of a practicality perspective rather than a theoretical perspective.
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Arguably, a person with infinite computing resources and infinite time would be able

to duplicate the above discussed methodology without the proposed optimizations

and the parallelization process.

4.3 Experiments and Results

4.3.1 Calculating the Oppositeness Data. For the purpose of obtaining

an adequate collection of words for experimentation, we used the list available in the

Linux dictionary2. The dictionary contained 72,186 total strings. However, it was

observed that a certain portion of the strings were non-words. Further, for the sake

of preserving the variety of the sample set, it was decided to replace words with their

lemmas in cases where there are multiple morphological forms. This process was

achieved by passing the potential word strings through the WordNet (Miller et al.,

1990) lemmatizer. This yielded a reduced word list of 65,167.

Next the methodology discussed in Section 3.5 was used on the 65,167 words taken

as pairs. Given that each word was considered against all other words, this resulted

in 4,246,737,889 pairs of words. For each pair of words, the similarity, difference, and

oppositeness were calculated. A few sample lines from the file of the word increase are

shown in Example 4.1. Note the minimal value of the similarity slot for advents. This

implies that the similarity measure could not give a similarity value to the pair (i.e.,

The pair is disjoint). Logically, this file, like all other files at this stage, has 65,167

lines.

Example 4.1 Sample Oppositeness Lines

increase ,adrian :0.125 ,0.1 ,0.0313516

increase ,adriatic :0.125 ,0.1 ,0.0313516

2/usr/share/dict/words
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increase ,advent :0.1875 ,0.2777778 ,0.088623986

increase ,adventist :0.11764706 ,0.10526316 ,0.03561389

increase ,advents :1.4E-45 ,1.4E-45 ,0.01

The above files were then processed by applying the Irrelevancy Threshold

proposed in Section 3.9. Thus, following Equation 3.15, for each word, all pairs

with oppositeness value less than the oppositeness value of the most similar pair

were eliminated. After this reduction step, only 76,084,553 pairs out of the

original 4,246,737,889 were left. This means, on average, each word contained 1168

pairs after this step, showing a reduction of 98.21%. As an example, the corresponding

file of the word increase has only 1107 lines. This is a significant reduction in the case

of potential computational load. Given that the file format stays the same as shown in

Example 4.1, we do not provide a separate example here. Instead, we add the words

lion, zucchini, good, and bad to the running example of increase, decrease, expand,

change, and cat for the purpose of extended explanation. The mention map of this

expanded word list after applying the irrelevancy threshold is shown in Fig 19. Here,

note that some mentions are bidirectional and others are unidirectional. Obviously,

before applying this threshold, it was a complete graph.

At this step, it should be noted that there may exist instances where it is discovered

when considering the word pair (w1, w2), in the case of w1, the oppositeness value

of the pair clears the w1 specific threshold, but in the case of w2, the oppositeness

value of the pair does not clear the w2 specific threshold. This should effectively

mean that the (w1, w2) pair should be invalidated. Thus, to further simplify the data

set by reducing such redundant data points, the bidirectional filter was introduced.

The bidirectional filter checked each word pair for the condition discussed above and
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Figure 19. Mention map of the example set of words after applying the irrelevancy
threshold.

removed orphaned members from the pair list of the remaining word. By the end

of this reducing step, there were only 52,294,500 word pairs left. This reduced the

average pair count per word to 802. In summary, this is a percentage reduction of

31.27% from the above step. For the purpose of comparison, here we report that the

corresponding file of the word increase has only 1057 lines after this process. The
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mention map of the expanded word list after applying the bi-directional threshold is

shown in Fig 20.

It is evident how the words have started to break in to semi-cohesive clusters.

Following that, note here that zucchini is no longer connected to any of the other

words. This is an example of an obscure word that has lost all pairs but the self-

referential pair at this point. The only entry that would remain for such a word, w,

takes the constant form, as shown in Example 4.2.

Example 4.2 Only remaining line in the example obscure word w

w,w:1.0 ,0.0 ,0.0

As discussed in section 4.2.4, we used the Word2Vec (Mikolov et al., 2013b) model

trained by Google3. This model contains 3,000,000 strings embedded to vectors

with 300 features. However, these strings are not purely words; some of the strings

embedded in this model are HTML tags. Further, it was observed that neither the

word set mentioned above for calculating oppositeness nor the word set in the Google

news Word2Vec model were a subset of the other. Hence, it was necessary to remove

words that do not occur in one model from the other model for the sake of saving

computational time and space. At the same time, it was decided to drop words that

are only left with the self-referential pair as described above.

For the purposes of resource management, the Google-trained Word2Vec model

was queried with the reduced word list of 65,167 words in 100 word batches. This is

resulted in 652 batch files. Thus the word2vec embedding is reduced well below from

the initial 3,000,000.

3https://goo.gl/yV57W3
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Figure 20. Mention map of the example set of words after applying the bi-directional
threshold

Next, the words in these batch files which do not carry a vector were dropped

from the word list. This reduction removes words that do not have a Google word2vec

embedding from the system. If we were to use an untrained neural network to do the

oppositeness embedding, instead of using transfer learning, we would not have had

to drop these words from the experiment. But compared to the training time and

resource benefits that are gained by using transfer learning, it was decided that this
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is an acceptable compromise which only costs obscure words that were not captured

by the Google word2vec model. As mentioned above, the purely self-referential pair

words were also dropped from the word list. It is to be noted that these would be

dropped regardless of whether the model is trained using transfer learning or started

from scratch.

This step further reduced the word count to a more manageable count of 24,730.

The total potential pair count at this point is 49,148,652, which implies that the

average pair count per word has increased to 1987 from its previous value of 802.

The reason for this increase of average pair count is the fact that this reduction

step removed words which are disjointed or poorly connected to the oppositeness

word clusters; and thus, the remaining words are the ones that are more cohesively

connected to each other.

4.3.2 Autoencoding on Word2Vec Data. We used a TensorFlow (Abadi

et al., 2016; Martın Abadi et al., 2015) based implementation of the two layer

autoencoder proposed by Damien (2017) for the purpose of training on the MNIST

Dataset (LeCun et al., 1998). The input layer was altered to have the size of 300

to match the trained model of the Google’s word2vec embedding. The middle layer

was of size 256, and the latent layer was of size 128. By definition, the decoder layer

had an input size of 128 to match the latent layer of the encoder, then a middle layer

of size 256 and finally an output layer of size 300 to match the input of the encoder

layer. Following the precedent set by Damien (2017) for this particular configuration

of autoencoder, we found 30,000 epochs to balance accuracy against the threat of

over-fitting. By employing the multiple random restart method, we obtained a trained

autoencoder with a validation accuracy of 94.83%. This is the model that we used

for the next step of transfer learning.
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4.3.3 Learning of Oppositeness Data. Here it was decided to use a 3 : 2

split for the training-validation set vs. test set for the transfer learning of oppositeness

data. As such, the training-validation set contained 14,820 words, and the test set

contained 9910 words. With the average oppositeness pair count calculated above,

this yields 29,447,340 oppositeness pairs for the training-validation set and 19,691,170

oppositeness pairs to be in the test set. As mentioned in section 4.2.4, we locked the

weights in the encoding layer for this step. The training was done only on the weights

of the decoder layer. In this, we achieve two gains on the account of transfer learning.

First and foremost, we already have the latent representation of the word2vec vectors

learnt at the end of the encoder. This does not need to be re-learnt and can be

transferred unaltered. Secondly, we have the decoder weights to take in a latent

representation of a vector and re-construct the word2vec vector. As discussed in

Section 4.2.4, it is reasonable to assume that the word2vec vector and the expected

oppositeness vector will be close in the vector space. Thus, transferring the decoder

weights to the system gives a more efficient starting point, compared to initiating

with zero weights or random weights.

Given the large amount of training data, we decided to parallelize the training

process. First the training-validation set was divided into 30 equal parts. The trained

autoencoder was then cloned 30 times as well. Each of the cloned autoencoders was

given the word2vec embedding as the input, along with the relevant portion of the

training data to train on. This resulted in each cloned model producing a unique

embedding. This parallelization architecture is shown in Fig 21.

This approach helped us in two ways. Firstly, as mentioned above, it helped us

with managing the computational load. Secondly, it helped us overcome the problem

of over-fitting by applying rigorous validation. In the common n-fold cross-validation
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Figure 21. Parallelization architecture

method, the model is trained using n − 1 portion of samples and is then validated

using the remaining sample. But considering the fact that we intend to directly

merge the results of the clones and the heavy computational workload, we opted to

involve inverse-n-fold cross validation. As such, a single portion of data is used as the

training data, and then the remaining n− 1 portions of data are used for validation.

This way, the validation process is both more rigorous and mutually independent.

We report the accuracy of each of the separate clones in Fig 22. The Y axis (rows)

of the Matrix corresponds to each transfer learning clone, and the x axis (columns)
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corresponds to the portion of data-set. Hence, the 30 entries on the diagonal of the

matrix correspond to the training accuracies, and the 870 entries on the remainder

of the matrix correspond to the validation accuracies. It is observable that, while the

diagonal is sightly distinguishable, some clones seem to be performing better than the

others across the board. We claim that this is because of the linguistic property that

some words are more central in a lexicon than others. These words might distinguish

themselves by having more synonyms or by having polysemy (Apresjan, 1974; Tuggy,

1993). When the data set given to a clone has a majority of such words, it is possible

to claim that the trained model would generalize better than in the case where the

data set given to a clone has a minority of such words.
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Figure 22. Training/Validation Matrix of the Clones
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Finally, the relevant vectors from the 30 separate embeddings were averaged

together to produce the final singular embedding. For that combined singular

embedding, on the complete 14,820 training-word set (i.e., all 30 portions together),

we obtained a mean training accuracy of 97.91% with a standard deviation of

0.379092. The reason for this re-calculation is the fact that we anticipated that

since we merged the trained models, the performance of merged model would not be

the average of the separate components. The observable change in accuracy is proof

that the said assumption is justified. Also, it is possible to note here that the above

rigorous validation has cleared, in the case of the merged model, any possibility of

over-fitting which may have threatened individual transfer learning clones. Further,

note how the accuracy here is higher than the autoencoder accuracy. This is a

result of the accuracy of oppositeness embedding being dependent on the distance

between word embedding pairs regardless of where they map in vector space, while

the autoencoder was attempting to recreate the exact vector given as input. Following

that, on the 9910 test words, we obtained a mean test accuracy of 97.82% with a

standard deviation of 0.4316496. Yet again, we present the closeness of the training

accuracy and test accuracy as proof that the system has not over-fitted to the data,

despite obtaining very good training accuracy, which is higher than 97%. Note that

all accuracy values at this point are calculated by taking the output of Equation 3.14

as the gold standard.

4.4 Conclusion

The main research contribution of this Chapter was the introduction of semantic

oppositeness embedding. This Chapter successfully proposed and demonstrated an

embedding methodology on 49,148,652 pairs of words, to obtain a training accuracy

of 97.91% and a testing accuracy of 97.82%.
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In addition to this main research contribution, this Chapter also introduced a

novel, unanchored vector-embedding approach and a novel, inductive transfer learning

process based on autoencoders, which utilizes both learnt embeddings and the learnt

latent representation.

With experiments carried out with 30 instances of transfer learning, which yield 30

cases of training accuracy tests and 870 different cases of validation accuracy tests,

it was observed that the linguistic property that some words may be more central

in a lexicon than others, by having more synonyms or by having polysemy, is more

crucial for the final overall accuracy on both training and validation sets, rather than

an arbitrary stopping criterion for training.
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Part B

Applications (Use Cases)
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In this part of the dissertation, we apply the semantic oppositeness measurement

and its embedding of Part A to two problems in the natural language processing

domain. In particular, we introduce our new semantic oppositeness-based algorithms

for the following three applications:

1. Inconsistency detection in PubMed abstracts in the MicroRNA domain.

(Chapter V: Section 5.5)

2. Using semantic oppositeness in tandem with semantic similarity to propose new

relationships for the OMIT ontology. (Chapter V: Section 5.6)

3. Disagreement detection in social media posts to discover rumours. (Chapter VI)

Each of these applications is unique and requires non-trivial alterations to how

semantic oppositeness measurement is utilized.
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CHAPTER V

INCONSISTENCY: DISCOVERING INCONSISTENCIES AND SIMILARITIES

IN PUBMED ABSTRACTS

5.1 Introduction

Second only to cardiovascular diseases in the rates of mortality caused by

noncommunicable diseases, cancers claim 8.2 million lives worldwide each year (World

Health Organization [WHO], 2020). Thus, research that could contribute to

preventing or curing cancer is imperative. As the growth of cancer involves abnormal

cell division, it is important to look at the agents that get involved in that

process. MicroRNA (miRNA) is a small, non-coding RNA molecule that plays a

complementary role to mRNAs (messenger RNAs) in the gene regulation step of cell

division (Exiqon, 2016). It is possible to observe the presence of miRNA in plants,

animals, and some viruses. Mainly, they are involved in RNA silencing and post-

transcriptional regulation of gene expression. This vital role played by miRNAs in

gene expression is what makes them relevant and interesting for the pursuit of a cure

for cancer.

The work of this chapter is adopted primarily from a collaborative conference

paper (de Silva et al., 2017) that was published at the 8th ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics and

a collaborative journal paper currently under review. The journal paper is an

extension of the conference paper. Both papers were composed by myself, Dejing

Dou, and Jingshan Huang. The contributions of the conference paper are covered

in Section 3.2 and Section 3.3 of this chapter while the unique contributions of

the journal paper are covered in Section 5.6 and Section 5.8.2. As lead author, I

developed and implemented the contributed techniques, and I wrote the majority of
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the text contained in this chapter. Dejing Dou provided valuable guidance towards

the motivation and application of this work. Jingshan Huang helped verify the

results obtained using the proposed Semantic Oppositeness model on the OMIT

project (Huang et al., 2014).

In light of the potential importance of miRNA, an increasing quantity of research

is being engaged upon its domain, albeit that not all studies are confirming studies.

As such, some of the new studies about miRNA might either alter, or even completely

disprove, some of the prior knowledge. Recognizing how this knowledge evolves over

the course of time is important for various analytical tasks. It is also vital to note these

changes, so that forthcoming studies would not mistakenly base their assumptions

and their start conditions on conclusions in a prior body of work that has since been

disproved. Logically, when there are changes in the foundations upon which any

later research is based, and from which any later research draws its conclusions, that

later research will also need to be re-evaluated, especially if the conclusions of the

foundational work(s) were found to be no longer valid.

The first objective of this chapter is to find such alterations in knowledge in the

miRNA domain. For this, we need to have a source from which we obtain details

of research about miRNA. The best source for details about scientific research is

through research papers, which are the common means used in all sciences to publish

new findings. In a research paper, the abstract is a fair summarization of both the

area of focus and the conclusions driven by the research described therein. Given that

miRNA falls in the medical domain, an ideal source for searchable medical abstracts is

PubMed (National Center for Biotechnology Information [NCBI], 2020), a free search

engine, accessing primarily the MEDLINE database of references and abstracts on

life sciences and biomedical topics. It is maintained by the United States National
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Library of Medicine (NLM) at the National Institutes of Health (NIH) as part of the

Entrez system of information retrieval. As of 31st October 2020, PubMed has over

30 million records going back to 1966. Of those, 13.1 million of PubMed’s records are

listed with their abstracts.

In addition to keeping records of research papers, PubMed also provides free access

to a Medical Subject Headings (MeSH) (U.S. National Library of Medicine [NLM],

2020) database. MeSH is a comprehensive, controlled vocabulary for the purpose of

indexing journal articles and books in the life sciences. Thus, it facilitates searching

for a particular subject within the medical domain. MeSH is created and updated by

the United States National Library of Medicine (NLM).

Based on the above observations and resources, we propose an ontology-based

information extraction model to discover inconsistencies in PubMed abstracts as

discussed in Section 2.11. These inconsistencies are found when the knowledge

extracted from one abstract disagrees with the knowledge extracted from another

abstract. Thus, the inconsistencies our model discovers are an indication of the

aforementioned shifts and improvements in the study of the focal subject, which for

our present purposes will be miRNAs. While important, research about extracting

information from the abstracts of biomedical papers is limited to a very narrow

area of topics (de Silva, 2017b). An example is the seminal work by Kulick, Bies,

Liberman, Mandel et al. (2004) that extracted information on drug development

and cancer genomics. As introduced in Section 2.5.2, Ontology-Based Information

Extraction (OBIE) is a subfield of information extraction, in which an ontology

is used to guide the information extraction process (Wimalasuriya & Dou, 2010).

Given that this study is focusing on the miRNA domain, we used the Ontology for

MIcroRNA Targets (OMIT) (Huang et al., 2016b) as the guiding ontology for the
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OBIE process as discussed in Section 2.5.1. Because OMIT lacks relationship data,

such that traditional OBIE methods were not applicable, we used the Open Language

Learning for Information Extraction (OLLIE) (Mausam et al., 2012) discussed in

Section 2.6. OLLIE is unique in utilizing tree-like representations of the dependencies

of the sentence, such that it is able to capture long-range relations. Once relationship

information is extracted from the abstracts in the form of triples, we use our novel

method to calculate the oppositeness between the said relationships on the basis of

the semantic similarity measure of Wu and Palmer (1994) as discussed in Chapter III.

The key idea of our methodology is that the information in the PubMed abstracts

in the miRNA domain is expressed in terms of (a) concepts, and (b) relationships

that exist between those concepts. An inconsistency would arise if the relationship

that was extracted between two given concepts in a certain abstract is opposite to the

relationship that was extracted between the same two concepts in a different abstract.

As mentioned above, we use OBIE methods, utilizing the OMIT ontology, to extract

the said concepts from the abstracts. In order to discover the relationships between

the extracted concepts, we use the OLLIE information extraction system.

The second objective of this chapter stems from the aforementioned lack of

relationship data in OLLIE. We take the triples that were created in the previous step

and send them through an optimized comparison scheme with dynamic thresholds.

The resultant relationships are then output as suggestions, to be added to OMIT

after domain expert approval.

Our main contributions are as follows:

– We introduce an ontology-based information extraction model to discover

inconsistencies in PubMed abstracts.

78



– We propose a new methodology to incorporate open information extraction into

the ontology-based information extraction process, in order to compensate for

the lack of relationships in the domain ontology.

– We propose a semantic oppositeness measure, to be used to calculate the

oppositeness between two relationships. We illustrate how this novel semantic

oppositeness measure is superior, both to the antonym method and to the näıve

similarity inverse method.

– We propose an ontology-based information extraction model to discover

similarities in PubMed abstracts, which then leads to compiling possible updates

to OMIT, in order to fix its problem of lack of relationships.

This chapter provides an in-depth explanation of the algorithms that we used,

created, and adapted. All the code for the implementations of this chapter1 and

collected data2 are available to download.

The rest of the chapter is organized as follows: We describe our methodology from

Section 5.2 to Section 5.6. The configuration of the computer on which we did our

experiments is introduced in Section 5.7. Then the Results and discussion follow that

in Section 5.8. The work is concluded in Section 5.9.

5.2 Data Preparation

5.2.1 Obtaining PubMed Abstracts. The first step was to obtain a list

of relevant PubMedIDs. This was done by querying the on-line PubMed site3 with

the header, “miRNA”. The PubMedIDs were then processed to remove duplicates,

and they were then separated into easily manageable files, with a maximum of 1000

IDs each.

1https://github.com/OMIT-PubMed-Project

2http://aimlab.cs.uoregon.edu/obie/OMIT/PubMedInconsistencies/01 Abstracts.tar.gz

3https://pubmed.ncbi.nlm.nih.gov/
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These IDs are then used to extract the abstracts out of the PubMed system.

One important thing to note here is the fact that, even though PubMed has an

option to query its system with an ID to supposedly return the relevant abstract, we

found it to be inefficient for this study. More often than not, the formatting of the

free text was done in different ways, as shown in Fig. A.34a (Kuzmenko, Smirnova,

Ivanov, Starodubova & Karpov, 2016) and Fig. A.34b (Yang, Yi, Wang & Wang,

2016) in Appendix A. Thus, it proved that extracting the pure abstract out of this

output would require some unnecessary effort. Instead, it was decided to use the

XML interface provided by PubMed and extract the abstracts locally. This step

corresponds to the “preprocessor” component of OBIE (Wimalasuriya & Dou, 2010).

5.2.2 Creating OLLIE triples. The downloaded free text is then subjected

to the open information extraction system introduced by Mausam et al. (2012), which

was described in Section 2.6 by the name OLLIE. This process extracts triples, in

the form of binary relations, from the free text and creates a set of possible triples as

shown in Example 5.1 with a sentence taken from Hu et al. (2015). From this point

onward, this chapter will refer to these triples as “OLLIE triples”.

Example 5.1 Open Information Extraction Example

Nevertheless , we found that miR -31 was particularly up-

regulated in HSCs but not in hepatocytes during

fibrogenesis.

0.689: (miR -31; was particularly; up-regulated)

0.661: (miR -31; was particularly up-regulated in; HSCs)
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The first line of the example shows the original sentence itself. Then each line has

an extracted triple. The number leading the triple is the confidence that the OLLIE

algorithm has of the triple being valid.

The remainder of the triple is of the format (A;R;B) where A is the subject of

the relation R, and B is the object of the relation R. Typically, in regular information

extraction processes, which were explained in the leading paragraphs of Section 2.4,

these relations (R) are fairly simple and would contain one to a few words. Similarly,

the Subject (A) and Object (B) are set out to be clear-cut singular concepts. However,

due to the openness of this methodology, which does not depend on any subject context

specific rule but the grammar rules of the language itself, the output of this step does

not have those properties. Typically, the relation name is just the text linking the

subject and the object. Subject and object, themselves, are more often phrases, rather

than the coherent concepts expected. This is an issue that we rectify in a later step.

5.2.3 Creating Stanford XML files. The same free text obtained in

Section 5.2.1 is sent through a system to extract other linguistic information. In this

case, we are using the methodology developed by Manning et al. (2014). The objective

of this step is to extract the parse tree, get the lemmatized forms of each word, and

get each sentence element separated. The parse tree of the same sentence (Hu et al.,

2015) shown in Example 5.1 (“Nevertheless, we found that miR-31 was particularly

up-regulated in HSCs but not in hepatocytes during fibrogenesis.”) is given in Fig 23.

The result of lemmatization and PoS tagging of three words of the same sentence is

given in Example A.1 and Example A.2 respectively in Appendix A. From this point

onward, this paper will refer to these outputs for each abstract as “Stanford XML”.

5.2.4 Creating medical term dictionary. Before moving on to the next

part of this study, some background data have to be generated, pertaining to the
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Figure 23. Parse tree of the sentence

abstracts. A very important part in an ontology-based information extraction system

is the semantic lexicon (Wimalasuriya & Dou, 2010). WordNet is the primary lexicon

in this system, as discussed in Section 2.2. But due to medical domain language being

specific, a general lexicon such as WordNet is not enough to serve as the Semantic

Lexicon for this system (Sugathadasa et al., 2017). Thus, a complementary lexicon

must be created, with information specific to the medical domain. That is what is

done in this step.

A good indication of how important a given term is in a certain domain is the

frequency in which it is used within the domain. Therefore, the semantic information

of term usage is vital to the following information extraction task, and it is not

something that can be obtained via a generic lexicon, such as WordNet. Given that

the semantic information that is to be extracted is of the format of term frequencies,

it was decided to follow the structure of the famous information retrieval algorithm,

TF-IDF (Leskovec et al., 2014) discussed in Section 2.7.
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Each abstract is considered a separate document, and the term frequency of each

term in the abstract is calculated. Then the inverse document frequency is calculated

across abstracts. These two statistics are combined to calculate a semantic weight

for each of the terms. Using the Stanford XML, the lemma of each term is extracted.

Next, a triple consisting of the term (word), the lemma of the term, and its semantic

weight is created for each term. Finally, the triples for each term (word) are output

into a dictionary file as an intermediate output. Example 5.2 shows some typical lines

from the dictionary file.

Example 5.2 Dictionary lines example

illuminators illuminator 0.045435406

twisting twist 0.0238714

lowering -drugs lowering -drug 0.049106136

mir -362 mir -362 0.03663714

mir -374 mir -374 0.07645514

mir -373 mir -373 0.1492043

mir -372 mir -372 0.13382968

ellas ellas 0.025369484

scavenges scavenge 0.013151284

architectures architecture 0.050796155

5.3 Creating Final Triples

With the above intermediary outputs ready, we move on to the next step of

creating triples. Triples are created based on separate abstracts. Each of the OLLIE

triple sets for a given abstract is read alongside the corresponding Stanford XML. Each

triple carries the triple information (Subject;Relationship;Object), the confidence

value, the relevant original sentence from the text abstract, and the sentence ID.

5.3.1 Triple building. The first information extraction step is a gazetteer

list approach, as described by Wimalasuriya and Dou (2010). In this stage, a gazetteer

list of MESH terms is derived from the OMIT ontology by extracting the concept tree
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rooted at the MESH term concept, and adding all the individuals present in that tree

to the gazetteer list. One important thing to note here is the fact that some of the

strings in the OMIT ontology are not in the same format that one would use in a

text. An example would be Technology, Pharmaceutical. Entries such as this were

changed to the normalized form; for example, Pharmaceutical Technology. Next, the

subject and the object of the triple are tested for occurrences of an individual now

present in the gazetteer list. If any were present, the node list corresponding to the

relevant subject or object is updated by appending the returned OMIT concept node

to the end of the said list.

Next, Regular Expression (REGEX)-based information extraction is used. A base

REGEX is built on the common usages of miRNA in abstracts and is matched to the

counterparts in OMIT, as per the descriptions by Wimalasuriya and Dou (2010). The

base REGEX is then expanded to cover all common forms of mentions of miRNA in

literature. This is further enhanced by adding other pairings of REGEX and OMIT

concepts. All of these REGEXes are then used to find the corresponding OMIT

concept nodes for each of the words that exist in the subject or the object of the

triple (depending on which one is being examined at the time.) These results, too,

are then added to the node list as explained above.

The relationship in the OLLIE triple is then analyzed against the corresponding

elements in the Stanford XML. In the case of the relationship being a single word,

the lemmatized form of the said word is extracted from the Stanford XML, and the

relationship is replaced with that lemmatized form. This simplification is not done

when the relationship is a phrase.

The above steps are reduction steps, in the sense that out of all the concepts in

the English language, only the ones that are directly relevant to the miRNA domain
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are present in the OMIT ontology. Thus, the subject and/or object of some of the

OLLIE triples will have empty node lists.

Next, a triple of each is created, using every node in the object list, for every node

in subject list, utilizing the reduced or pure relationship from the original OLLIE

triple. (As mentioned above, the relationship is only reduced when it is comprised of

a single word.) This is an increment step, given the fact that the resulting number

of triples is the multiplication of the number of elements in the subject list and the

object list of the original OLLIE triple. Thus, this also means that any OLLIE triple

that was reduced to have an empty subject list or an empty object list will produce

no triples in this step.

5.3.2 Triple simplification. Newly created triples are then sent through

two simplification processes. An important point to note is the fact that these

simplifications happen on a sentence-by-sentence basis here. In this step, triples

corresponding to one sentence have no effect on the triples corresponding to a different

sentence.

The first simplification step goes through all the given triples and analyses the

subject, the object, and the relationship. In the case where all three of them are equal

for two given triples, a new merged triple is created with the same subject, object,

and relationship, along with the average value for the confidence.

The second simplification uses the concept hierarchical information from OMIT.

Thus, it belongs to the ideas of Ontology-Based Information Extraction discussed

in 2.5.2. Here, the triple list is simplified, on the fact that some triples in the list are

ancestors of other triples in the list, as defined in Definition 5.3.1.

Definition 5.3.1 (Triple Ancestor). A triple X is defined as the ancestor of another

triple Y if and only if the following two conditions are satisfied: both triples have
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the same relationship; and the subject node and the object node of X are respectively

ancestors of the subject node and object node of Y , as defined by Definition 5.3.2.

Definition 5.3.2 (Node Ancestor). The ancestor relationship for nodes W and Z

are defined as follows: A node W is the ancestor of a node Z if and only if, the node

W is the same as node Z, or the OMIT node of W is an ancestor of OMIT node of

Z in the concept hierarchy of the OMIT ontology.

First, the triple list is scanned from left to right, to see if any triple would be the

ancestor of one that is listed left of it. In the case where an ancestor is found, the

ancestor is discarded, and the descendant’s confidence is set to the average of that

of the original confidence value of the descendant and the confidence value of the

ancestor. Then, the triple list is scanned from right to left, to see if any triple would

be the ancestor of one that is listed right of it. The same simplification process used

in the left-to-right scan is applied on the ancestors and descendants that are found.

The rationale of this process is the following: In the step in which we created

the new triples out of OLLIE triples, we were doing string REGEX matching on the

subjects and objects of the OLLIE triples and assigning nodes that correspond to a

concept in OMIT. There are many cases in OMIT ontology where the name of an

ancestor node is a substring of a descendant node. An example is shown in Fig. 24,

where the concept node with the name “Cells” has descendants with names such

as “Goblet Cells” and “Dendritic Cells”. Thus a sentence that mentioned “Goblet

Cells,” such as “The goblet cells are found in the intestinal tract,” which is expected

to produce the triple (Goblet Cells ; are found in ; Intestinal Tract), will also produce

the triple (Cells ; are found in; Intestinal Tract). From definition 5.3.1, it is evident

that the latter triple is an ancestor of the former triple. Thus, by the simplification

process discussed above, the latter triple is removed, and the confidence of the former
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triple is updated, using the current confidence values of the former and latter triples.

This makes sense, because such sentences are always relevant to the concept with the

smaller granularity, as shown in the above example.

Figure 24. Part of OMIT hierarchy

Once the simplification process is finished for each sentence, all the resultant

triples are added to a single list. Then that list is passed to a simplification process

similar to that of the first step, but with a slight change. Just like in the per-sentence

simplification, the process goes through all the given triples and analyses the subject,

the object, and the relationship; but this time, it is done over the entire abstract. It

should be noted that the second simplification, i.e., ancestor-based simplification, is

not done here. This is because of the possibility of losing a generalized claim when
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it exists in an abstract that also makes a specific claim. In the case where all three –

subject, object and relationship – are equal for given triples, a new, merged triple is

created. But this time, the new triple will carry both sentences (if they are different),

and the confidence value is updated to the new value Cnew according to Equation 5.1,

where: the confidence in triple i is given by Ci (Such that 0 < Ci < 1); the sentence

count in triple i is given by Si. Sentence count is never zero.

Cnew =

∑
iCi ∗ Si∑

i Si
(5.1)

The resultant triples of the above process are put into a list. These are the final

triples. The final triples are then written to a set of files as an intermediate output. A

separate file is written for each separate abstract. By this point, some abstracts will

have empty lists, because none of the OLLIE triples of those abstracts have survived

the conversion to the final triples form, if the OLLIE triples from those abstracts

lacked any information relevant to be extracted using the OMIT ontology. These

abstracts will have empty files in their name.

5.4 Facilitating the Inconsistency Detection

From here onward, we discuss the methodology used to find inconsistencies using

the final triples, other resources, and intermediate files created in the previous

sections.

5.4.1 Preparing to Compare Relationship Strings. The first order of

business for finding inconsistencies is to load the intermediate files created at 5.3

and 5.2.4, for new triples and the dictionary, respectively. Abstracts are read, and

data are loaded, next. But instead of storing data with the distinct unit per abstract,

as we have been doing so far, a new minimum unit is introduced, which has a unique
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entry for each triple. Which means a sentence with multiple candidate triples will be

represented in corresponding multiple entries.

All the triple entries are loaded to a list. Each triple entry i is compared with

each triple entry j, such that i goes from 1 to the length of triple entry list, while for

each i, j goes from i+ 1 to the length of triple entry list. This way, the triple entries

are compared with the triple entries that follow them; thus, each pair of triple entries

only gets compared once.

5.4.2 Initial filtering. Before the analysis begins, a couple of filters are

applied. The first filter makes sure that triple entries of the same abstract are not

compared to each other, because finding inconsistencies within the same abstract

is not the objective of this work. The second filter is applied to handle the cases in

which a redacted article is found to have the exact same content as another legitimate

article. In this case, one is dropped from the consistency checking. For the purpose of

this study, it does not matter which one is dropped, for the simple reason that if the

legitimate article is dropped, and the system ends up finding an inconsistency with

the redacted article against some third article, it is a simple matter of re-consulting

the PubMed database to find the relevant legitimate article by way of the redacted

article.

5.4.3 Cleaning the strings. The relation value of triple entry pairs that

pass the filtering process is then put through a cleaning process. Special contractions

such as “can’t”, “won’t” are explicitly handled, and simple contractions such as

“don’t”, “hadn’t” are scripturally handled. Next, the relationship is split to the

terms, and when there exists a “not”, it is handled as the negation of the following

term. Following that, all the stop words are removed from the list; and finally, using
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the lemmatization results loaded from the dictionary created at section 5.2.4, all

words are stemmed to their basic lemma.

5.4.4 Calculating oppositeness of relationships. The two lists of

cleaned strings that were created from the triple relationships are then evaluated

against each other, word-by-word. We define the item count of these lists as c1 and

c2. Before going into the oppositeness function, some simple comparisons are made

to lighten the computing load.

When both the comparing words are exactly the same, the weight of the word

is extracted from the dictionary that was created at section 5.2.4 and loaded at the

beginning of section 5.4.1. This is raised to the power of two, then multiplied by the

constant “yes weight” (Wyes). The resultant value is added to the similarity amount

(similT ); the similarity number counter (sn) is increased by one.

When either of the words is the direct simple negation of the other by the keyword

“not”, (i.e.: “increased”-“not increased”, “found”-“not found”), again the weight of

the non-negated word is extracted from the dictionary and raised to the power of

two. The resultant value is then multiplied by the constant “no weight” (Wno). This

value is added to the difference amount (difT ); the difference number counter (dn) is

increased by one.

For every other pair of words, the lemma is extracted using the dictionary created

at section 5.2.4. Let us call them L1 and L2. When the word does not exist in the

dictionary, the word itself is used as its own lemma. Next, the oppo value for each

pair is calculated using the methodology described in Section 3.2 to Section 3.3 in

Chapter III by means of Equation 3.6. Note that for the use-case in this chapter we

used the oppomeasure of Equation 3.6 rather than that of Equation 3.14 given that the
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research for this chapter was conducted in de Silva et al. (2017) prior to the changes

introduced in de Silva and Dou (2019) which included the updated Equation 3.14.

The final oppo value, after the threshold is applied, is multiplied by −1 and is

returned as the oppositeness measure of the two words. The returned value is then

multiplied by the weights of the two words extracted from the dictionary. If the value

is greater than zero, the value is multiplied by the constant “yes weight” (Wyes). The

resultant value is added to the similarity amount (similT ); the similarity number

counter (sn) is increased by one.

If it is less than zero, the value is then multiplied by the constant “no weight”

(Wno) and −1. This value is added to the difference amount (difT ); the difference

number counter (dn) is increased by one. Thus, when the value is zero, no change

happens to any similarity/difference values or counters.

5.4.5 Finalizing the oppositeness of relationship strings. Once all

the words in the two relationship strings have finished going through the above steps,

both similT and difT are normalized using a small constant ε with sn and dn as

shown in equations 5.2 and 5.3.

similT =
similT ∗ (dn + ε) ∗Wyes

sn + dn + 2 ∗ ε
(5.2)

difT =
difT ∗ (sn + ε) ∗Wno

sn + dn + 2 ∗ ε
(5.3)

Finally, if similT is greater than difT , similT is returned as the similarity value

of the two relationship strings. Otherwise difT multiplied by −1 is returned as the

difference value of the two relationship strings.
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5.5 Discovering inconsistencies

5.5.1 Registering inconsistencies. The value returned by the above step

for a given pair of relationship strings is then multiplied by −1 and put through a

threshold test. If it passes the threshold, it is registered as an inconsistency.

For each abstract that gets involved in a potential inconsistency, PubMed is

queried again, to obtain the publication date and other relevant details. The reason

for doing this at this stage is the fact that only a small portion of all abstracts are

relevant for this stage; and thus, we can do a lesser amount of processing and data

storage for the bearable cost trade-off of a few instances of XML fetching over the

Internet.

Each of the inconsistencies that are found are written to an intermediate result

file, where a line holds; confidence (the difference value returned); PubMedIds of the

contradicting abstracts, along with the publication dates; subject and object of the

relevant triple; the relationship present in the triple in the first abstract; the relevant

sentence ID from the first abstract; the relationship present in the triple in the second

abstract; and the relevant sentence ID from the second abstract. An example of some

lines from the said intermediate result file is shown at Example 5.3.

Example 5.3 Intermediate inconsistency result example

0 .8333333 ;24969691 ;2014/9/1 ;27601936 ;2016/9/7 ; C e l l s ; Vimentin ; i n c r e a s e ; 3 ;

dec r ea se ; 7

0 .8333333 ;25435961 ;2015/1/1 ;26632856 ;2015/12/1 ;DNA; C e l l s ; promote ; 7 ;

breaks in ; 12

0 .625 ;25004396 ;2014/6/15 ;26257392 ;2015/11/1 ; MIR152 ; C e l l s ; were decreased

in ; 3 ; be I n t e r e s t i n g l y i n c r e a s e d in ;10
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5.5.2 Preparing inconsistency for analysis. This is the final stage of the

methodology for finding inconsistencies. First, the intermediate result file written in

the previous step is read. Then the Subject and Object of the inconsistent triples are

checked against OMIT, to see if either or both of them are of the type miRNA. The

reason we pushed this check to this final step is that, this way, the intermediate file

created before this step can potentially be used for other research on inconsistencies

in the medical abstracts, in domains other than miRNA, as well.

If either or both the subject and the object are, indeed, of the type of miRNA, then

for each such inconsistency, the relevant OLLIE files are read, and the contributing

actual sentences are extracted using the sentence IDs. Then, the information gained

from the intermediate result file and extracted sentences is reformatted to be more

readable by humans. Here, finally, the original OLLIE confidences are used. The final

confidence Confin is calculated using the inconsistency confidence Concont calculated

above, OLLIE confidence of triple 1 Con1, OLLIE confidence of triple 2 Con2, and

the constant C as shown in Equation 5.4. C is selected C > 1.

Confin = C ∗ Concont ∗ Con1 ∗ Con2 (5.4)

The reformatted inconsistencies are then written to the final result file, to be read

and analyzed by human experts. An example of some lines from the final result file

is shown in Example 5.4. The lines in the example are from Wang, Lv, Liu, Zhu and

Qiu (2015) and Liu et al. (2016). All the results up to this point can be downloaded

from the project website4.

4http://aimlab.cs.uoregon.edu/obie/OMIT/
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Example 5.4 Final result file example

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 .056045435

25738546
2015/5/1
( MIR214 ; was s i g n i f i c a n t l y i n c r e a s e d in ; T i s sues )
4
Our r e s u l t s r evea l ed that miR−214 exp r e s s i on was s i g n i f i c a n t l y i n c r e a s e d

in the BC t i s s u e s compared with the adjacent benign t i s s u e s , and
that the upregu la t i on o f miR−214 was s i g n i f i c a n t l y a s s o c i a t e d with
the inva s i on a b i l i t y o f the BC c e l l s .

27109339
2016/6/1
( MIR214 ; were s i g n i f i c a n t l y decreased in ; T i s sues )
4
Our r e s u l t s r evea l ed that the expr e s s i on o f miR−214 and miR−218 were

s i g n i f i c a n t l y decreased in brea s t cancer t i s s u e s compared with
adjacent t i s s u e s .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Discovering Potential Relationships for OMIT

The second application of the relationship data that were generated in Section 5.4

is suggesting relationships for OMIT. As mentioned in the Section 2.5.2, the lack

of relationships is the greatest weakness of OMIT. Thus, it was suggested that this

research attempt to remedy this problem. Before getting on to the relationship-

finding algorithm from Section 5.6.2 onward, it is important to discuss the optimized

relationship comparison scheme that was used in this task. The rationale and

intricacies of the said scheme are described in Section 5.6.1.

5.6.1 Optimized Relationship Comparing Scheme. Given that the

objective of this step is to find the best relationship to suggest for the given pair

of entities, the relationship-comparing scheme of this step is fundamentally different

from that of Section 5.5.1. In Section 5.5.1, the inconsistencies could be obtained by
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comparing each relationship once. The reason for this is the fact that the inconsistency

threshold was global. Thus, if the relationship R1 was deemed inconsistent against

relationship R2, there was no need to check and see if relationship R2 is inconsistent

against relationship R1 or not. The inconsistency property was symmetric around the

common global threshold. But here, the relationships are measured over a relative

threshold, solely dictated by the semantic properties of R1. This asymmetrical

behaviour of oppositeness is further discussed by Miko lajczak-Matyja (2018) with

Polish use cases (Bednarek & Grochowski, 1993; Grochowski, 1982). In the case of

computational complexity, this does not alter anything, given that both the processes

are of O(n2) complexity. However, in actual execution, the comparison step described

here takes twice the time that it takes for the comparisons in Section 5.5.1.

Consider the case of six relationships R1, R2, R3, R4, R5, and R6. The instances

where each relationship has to calculate the semantic similarity-oppositeness using the

algorithm described in Section 5.4 are given in matrices in Fig 25. If a relationship

named in a row label has to be calculated using the semantic similarity-oppositeness

against a relationship named in a column label, that particular cell is shaded and

carries the number 1. Otherwise, the particular cell is not shaded, and it carries the

number 0. The Fig 25a shows the instances where similarity-oppositeness calculation

had to be done in the case of Section 5.5.1. The Fig 25b shows the instances where

similarity-oppositeness calculation has to be done in the case of this section. As

mentioned above, it is obvious that the computational workload has now doubled

from what it was before (15 instances versus 30 instances).

To solve this issue, we introduced a testing step of lexical similarity before the

semantic similarity test is carried out. The idea is that before two relationships

R1 and R2 are compared using the semantic similarity measures described in the
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R1 R2 R3 R4 R5 R6

R1 0 1 1 1 1 1
R2 0 0 1 1 1 1
R3 0 0 0 1 1 1
R4 0 0 0 0 1 1
R5 0 0 0 0 0 1
R6 0 0 0 0 0 0

(a) Matrix A

R1 R2 R3 R4 R5 R6

R1 0 1 1 1 1 1
R2 1 0 1 1 1 1
R3 1 1 0 1 1 1
R4 1 1 1 0 1 1
R5 1 1 1 1 0 1
R6 1 1 1 1 1 0

(b) Matrix B

Figure 25. Matrix A and B

algorithm described in Section 5.4, we do a simple lexical similarity test between

relationships R1 and R2. If the lexical similarity test is deemed successful, we forgo

the calculation of semantic similarity. Otherwise, the semantic similarity calculation

happens as described above.

Consider the case of the same six relationships we mentioned above: R1, R2, R3,

R4, R5, and R6 where (R1, R3)lexical, (R1, R6)lexical, and (R2, R5)lexical, all equal to 1

(TRUE)5. Now, with dropping of lexically similar pairs from having to be compared

for semantic similarity, we can obtain what is shown in Fig 26a. This reduces the

number of needed semantic comparisons to 22 instances. Even though this is a step

up from the 30 instances in Fig 25b, it is still behind the situation in Fig 25a which

only had 15 instances.

The introduction of the lexical similarity section allowed us to further reduce the

computation cost by having the ability to prevent any relationship, which was in a

successful lexical similarity test in the role of the sink against any other relationship,

from being considered as the source for future comparisons. The reason for this is the

fact that all the acts of comparison on them will be mirroring what happened with

the relevant previous source relationship. The Fig 26b shows this situation. Now the

5By transitive property of the lexical similarity, we can trivially claim that (R3, R6)lexical = 1 as
well
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number of comparisons needed for our example case has been reduced to 12 instances.

Note here that this result is not only better than the result shown in Fig 26a, but also

better than the situation shown in Fig 25a. Further, it can be claimed that when the

relationship count is n, and the unique relationship count is m, where uniqueness is

defined as the property of being dissimilar under the lexical similarity property. The

number of needed semantic comparisons have changed from n(n − 1) to n(m − 1).

Given that m ≤ n, we can claim that in practical applications, the algorithm runs

faster now.

R1 R2 R3 R4 R5 R6

R1 0 1 0 1 1 0
R2 1 0 1 1 0 1
R3 0 1 0 1 1 0
R4 1 1 1 0 1 1
R5 1 0 1 1 0 1
R6 0 1 0 1 1 0

(a) Matrix C

R1 R2 R3 R4 R5 R6

R1 0 1 0 1 1 0
R2 1 0 1 1 0 1
R3 0 0 0 0 0 0
R4 1 1 1 0 1 1
R5 0 0 0 0 0 0
R6 0 0 0 0 0 0

(b) Matrix D
R1 R2 R3 R4 R5 R6

R1 0 1 0 1 0 0
R2 1 0 0 1 0 0
R3 0 0 0 0 0 0
R4 1 1 0 0 0 0
R5 0 0 0 0 0 0
R6 0 0 0 0 0 0

(c) Matrix E

Figure 26. Matrix C, D, and E

The above measures paved the way to further reduce computation by

eliminating comparisons such as (Rx, Rz)semantic when we already know the value of

(Ry, Rz)semantic and the fact that (Rx, Ry)lexical = 1. Instead of doing a recalculation,

we use a hash map to store the already calculated data, allowing us to apply dynamic

computing principals to the system. Thus, we reduce the number of costly semantic

comparisons drastically. The Fig 26c shows this arrangement for our running example.
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The need to do semantic similarity calculations has been reduced to a staggering 6

instances. This further enhancement alters the needed semantic comparisons to be

m(m − 1). Again, by the same previous fact m ≤ n, we can claim that in practical

applications, the algorithm runs even faster than it did when the needed semantic

comparisons were at n(m− 1).

5.6.2 Calculating Relationship Value. The basics on registering

relationships is the same as what we used to find inconsistencies above. For each

pair of entities, we have an initial set of relationships (P ). These relationships need

to be compared within each other. As mentioned in Section 5.6.1, if the lexical

similarity test is deemed successful between two relationships, we increase a lexical

similarity counter (Nl,i) and forgo the calculation of semantic similarity. Otherwise,

the semantic similarity calculation happens.

The semantic similarity calculation is yielded by the steps in Section 5.4. This, as

described above, is a dual test that analyses both semantic similarity and semantic

oppositeness. Here the relationship pair is selected as an initial candidate only if the

result of the above proves to be partial to similarity rather than oppositeness. The

membership condition for the sink relationship j in respect to the initial candidate

set Ci for a source relationship i is given by Equation 5.5.

Ci = {j|similT (i, j) > difT (i, j)} (5.5)

The most important point to note here is the fact that this works as a dynamic

threshold to filter candidate membership. This proves to be a much more effective

methodology than using a simple direct threshold on similarity, for the simple reason

that this method allows for a relative threshold unique to each pair of relationships,

rather than a common global threshold. Each time a semantic similarity calculation
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happens that yields a non-zero result after applying the threshold, we increase a

semantic similarity counter (Ns,i) and add semantic similarity value to a cumulative

sum (Semi).

The reason to maintain separate counters for the lexical similarity and semantic

similarity is to make sure the two values can be separately normalized. Each

time a lexical similarity counter or the semantic similarity counter is updated, the

corresponding abstract ID and sentence number are added to lists. The elements that

were added along with lexical similarity are later used to build the Matches list, and

the elements that were added along with semantic similarity are later used to build

the Close Matches list. That process is described in Section 5.6.3. Each relationship

pairing that passes either through lexical similarity or semantic similarity contributes

to the confidence value SimConRi following the Equation 5.6 where ConRi is the

confidence of Ri which is the source relationship, ConRj is the confidence of Rj which

is the sink relationship, and C is a scaling constant.

SimConRi =
∑
j∈Ci

C ∗ ConRi ∗ ConRj (5.6)

The final confidence value finConi of relationship Ri is calculated using

Equation 5.7, where Nl,i is the lexical similarity counter value, Ns,i is the

semantic similarity counter value, and SimConRi is the relevant value calculated

in Equation 5.6.

finConi =
SimConRi
Nl,i +Ns,i

(5.7)

Finally, the overall value Vi of the relationship Ri is calculated using Equation 5.8,

where finConi is the confidence calculated in Equation 5.7, Nl,i is the lexical
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similarity counter value, Ns,i is the semantic similarity counter value, and Semi is the

cumulative semantic similarity value calculated above.

Vi =
finConi ∗ (Nl,i + Semi)

Nl,i +Ns,i

(5.8)

At this point it is important to understand what exactly the value Vi of a

relationship Ri indicates. It is an evaluation of Ri’s placement within the set P .

Assume we were to place all relationship elements in P on an arbitrary vector space

such that elements that are:

1. Similar to each other with high confidence are placed very close to each other.

2. Similar to each other with low confidence are placed moderately close to each

other.

3. Dissimilar to each other with low confidence are placed moderately far from

each other.

4. Dissimilar to each other with high confidence are placed very far from each

other.

In such a vector space, the elements with high Vi values will be placed closer to

the center of the cluster. Thus, a high Vi value is an indication of the fact that the

said relationship Ri is representative of the considered relationship set P .

5.6.3 Registering Relationships. As mentioned in the Section 5.6.2, the

calculated Vi values indicate how representative of the set P the relationship Ri

is. Thus, the next step was to sort all relationships according to their Vi values.

At this point it was decided to retain at least the top two suggested relationships,

when data allowed such a selection. The reason for this decision was the fact that

the final objective of this part of the research was to suggest relationships to be
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added to the OMIT. Thus, the results are only added at the discretion of the domain

experts. It is not a black-box process of automatically adding the relationship with

the highest score. This human component implied that it is better to give the

human experts some freedom of choice, by providing them with multiple choices

for relationships when possible. Therefore, in the cases where there were tied Vi

values at the top, relationships were permitted until we arrive at a situation where

we have at most two unique Vi values. This further implies that when there were ties,

the total number of accepted relationships is bounded above only by the cardinality

of set P . The extracted data is set in the format shown in Example A.3. Each

< Relationship Data i > item is further represented as shown in Example A.4. Both

< Matches List > and < Close Matches List > follow the list data format shown

in Example A.5 where < ID j > refers to the abstract id of the jth abstract and

< Sentence Number j > refers to the sentence index of the relevant sentence in the

context of abstract j. An example of a data line that got by executing this step is

shown in Example A.6. An intermediate output of such data lines was created. The

intermediate results for this section are available to download6.

5.6.4 Preparing relationships for analysis. This is the final stage of the

methodology for suggesting relationships for OMIT. First, the intermediate result file

written in the previous step is read. Then the Subject and Object of the inconsistent

triples are checked against OMIT, to see if either or both of them are of the type

miRNA, as in Section 5.5.2. Yet again, the reason we pushed this check to this final

step is to preserve the potential of the created intermediate file being used for other

research activities that may or may not align with the task of suggesting relationships

for OMIT.

6http://aimlab.cs.uoregon.edu/obie/OMIT/PubMedInconsistencies/results Sim.txt
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Yet again, similar to the process in Section 5.5.2, if either or both the subject

and the object are, indeed, of the type of miRNA, then for each such suggested

relationship, the relevant OLLIE files are read, and the contributing actual sentences

for the Matches list and the Close Matches list are extracted using the abstract IDs

and sentence IDs. The subject and the object in the original line and the suggested

relationship are put together to re-create the potential triple. The sentences in the

Matches list and the Close Matches list are added, to help the expert make an

informed decision. Section breaks are introduced to increase the readability of the

output for the benefit of the experts. The reformatted suggested relationships are

then written to the final result file, to be read and analyzed by human experts. An

example of some lines from the final result file is shown in Example A.7 (Sentences

are from Sun et al. (2012) and Chen et al. (2015)). Note how the sentence under

matches of one relationship is in the close matches of the other relationship and visa-

versa. This is because the top relationships that are extracted for the subject-object

pair we have selected for the example in this paper are highly co-related. Further,

it is possible to make a case that the second suggested triple (MIR320A;inhibit;Cell

Proliferation) seems more suitable than the first suggested triple (MIR320A;Moreover

inhibits;Cell Proliferation), in the aspects of brevity and accuracy. We showcase this

as supporting proof for our earlier decision in Section 5.6.3 to provide the experts

with the top few options instead of just returning the top scoring relationship. The

final results for this section are available to download7.

7http://aimlab.cs.uoregon.edu/obie/OMIT/PubMedInconsistencies/simReduResults.txt
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5.7 Configuration

All steps of the methodology were implemented in Java (jdk1.8) and were run on

a computer with Windows 10 Home 64-bit, Intel(R) Core(TM) i7-6700HQ CPU @

2.60 GHz, 16GB (15.9GB Usable) RAM.

5.8 Results and Discussion

In the PMID-extraction step, we obtained 39,149 relevant abstract IDs, from

which 36,877 were processed and downloaded as text files containing abstracts.

Around 5.8% of extracted PubMed entries did not have an abstract section, and

there were three possible situations:

1. When an entry had some graphs instead of an entire research paper, e.g., PMIDs

24324220, 24318653, 24311611, and 24303553.

2. When there was only a comment about the entry rather than a complete entry,

e.g., PMIDs 24311611 and 24303553.

3. When the entry was empty except for the entry name, author names, and other

metadata, e.g., PMID 24313780.

Other than these three situations, each and every abstract from the remaining 94.2%

of relevant IDs were downloaded for analysis. All 36,877 downloaded abstracts were

processed to yield OLLIE triple files and Stanford XML files. These intermediate

files were used to create the intermediate result file, where a total of 67,481 unique

subject-object pairs were detected.

5.8.1 Inconsistency Detection Results. 503 total inconsistencies were

discovered from these subject-object pairs, involving 224 out of 36,877 abstracts.

This observation indicated that the percentage of abstracts that contributed to

inconsistencies was only 0.61% out of all considered.
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After the reduction step (detailed in Section 5.5.2) was performed to keep only

the inconsistencies that involved at least one miRNA entry, we ended up with 102

inconsistencies involving 95 abstracts. This outcome revealed that, out of 503 total

inconsistencies, only 20.28% were relevant to miRNA. Abstracts participating in

inconsistencies involving miRNA consisted of 0.26% of all downloaded abstracts, and

42.41% of those abstracts that were found to be involved in inconsistencies of any

kind.

The very miniature nature of these numbers is the best justification of this

research. When contradictions are at low percentages, such as 0.26%, asking experts

to find them by manually reading 36,877 downloaded abstracts is an extremely

unreasonable demand. But by using our methodology, we not only pinpoint the

95 abstracts that are relevant; we also extract the exact sentences that contribute to

the inconsistencies.

5.8.2 OMIT relationship extraction Results. 4443 subject-object pairs

yielded potential relationships in Section 5.6.3. Thus, in comparison with the

total 67,481 unique subject-object pairs, it can be claimed that 6.58% of the subject-

object pairs have displayed strong enough potential to be considered to be added as

relationships. After the miRNA filtering done in Section 5.6.4, 1636 subject-object

pair base relationships were deemed to be relevant to the miRNA domain. This is, in

fact, 36.82% of the total subject-object pairs with relationship potential found above.

In accordance to the same, this is related to 2.42% of the total subject-object pairs.

After the relationship preparation of Section 5.6.4, 3065 relationship suggestion

blocks, such as the one shown in Example A.7 were created. Thus, in comparison

to the 1636 subject-object pair base relationships that were found, this implies an

average of 1.87 blocks per subject-object pair. That this result is less than 2 proves
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that our methodology, by which we handle value ties, in Section 5.6.3, by listing

them, has not adversely affected the result set by listing exponentially large counts of

suggestions. Further, the fact that the number 1.87 is close enough to 2 proves that,

in most cases, the objective of providing the experts with two suggestions, whenever

there is sufficient data, has been successful.

5.9 Conclusion

One of the primary research contributions of this chapter was to use ontology-

based information extraction to observe how inconsistencies rise in the literature

in relation to previously established knowledge in a scientific field. This study

successfully proposed a method by which to conduct that observation, and we

succeeded in finding 503 such inconsistencies in a corpus of 39,149 research paper

abstracts. Since these inconsistencies are rooted in very domain-specific medical

jargon, they need to be analyzed by medical experts before getting incorporated

into future studies.

This study had to face the problem that the ontology that was being used did not

have the relationship rules that most of the established OBIE systems use. Thus, this

study came up with a novel way to solve this problem, by involving open information

extraction systems to extract the relationships and then using the conventional OBIE

systems to do the information extraction. This methodology can be considered as

a new way of doing OBIE, in addition to the traditional and established methods

discussed in Wimalasuriya and Dou (2010).

Another primary contribution of this study was the use of the above mixture of

ontology-based information extraction and open information extraction, along with

a semantic similarity and oppositeness measuring algorithm, to suggest relationships

for an ontology that lacks the relationships. In this particular case, it was focused
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on OMIT, itself, given that we discussed how OMIT lacks this key component. We

found 4443 relationship groups, and we were able to suggest 3065 relationship options

for the further development of the OMIT ontology.

For future work, one most basic thing that can be improved is in the preprocessing

stage, to include common medical acronyms that are used but are not defined in

the first use. It is also possible to investigate the redacted articles mentioned in

Section 5.4.2 to see if the redaction was a result of an inconsistency. It is also possible

to extend the cleaning the strings step (Section 5.4.3) and the creation of final triples

step (Section 5.3) using the already generated Stanford XML.

Funding for this research was provided by the National Cancer Institute (NCI) at

the National Institutes of Health (NIH), under the Award Number U01CA180982.
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CHAPTER VI

DISAGREEMENT: RUMOUR DETECTION IN SOCIAL NETWORKS

6.1 Introduction

Social media changed the ecosystem of the World Wide Web by making it possible

for any individual, regardless of their level of knowledge of web technologies, to create

and maintain profiles online. At the same time, various social media provided these

individuals with means to tap into the information disseminated by others (e.g.,

Facebook by adding friends, Twitter by following). By virtue of other mechanisms,

such as Facebook pages and Twitter lists, the reach of each individual was then

extended to the range of thousands-to-millions of users. New content, in the form of

posts, is created on social media sites each passing second. The rapidity of this post

creation is such, that it is possible to claim that social media reflect a near real-time

view of the events in the real world (Veyseh et al., 2019). While it was, indeed,

beneficial in terms of volume of data, to have private individuals be content creators

and propagators of information, this created significant issues, from the perspective

of the veracity of the data. This gave rise to a challenge of detecting fake news

and rumours (which, in this chapter, we refer to as the task of rumour detection as

discussed in Section 2.12). The need for rumour detection has come to the forefront,

in light of its momentous impacts on political events (Jin et al., 2017) and social (Jin,

Cao, Jiang & Zhang, 2014) or economic (Domm, 2013) trends. Manual intervention

on this task would require extensive analysis of and reasoning about various sources

of information, resulting in long response times, which are intolerable, given the

impact of these rumours, and the rate at which they spread. Thus, automatic rumour

detection, toward which we contribute in this chapter, has become an important area

of contemporary research.
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The work of this chapter is adopted primarily from a collaborative paper that

is under review and was composed by myself and Dejing Dou. As lead author, I

developed and implemented the contributed techniques, and I wrote the majority of

the text contained in this chapter. Dejing Dou provided valuable guidance towards

the motivation and application of this work. This chapter discusses how the Semantic

Oppositeness measure can be used in the use-case of automatic rumour detection in

social networks where the Semantic Oppositeness is used to detect disagreements in

reply threads, rooted at a potential rumour or non-rumour tweet, paving way to

identify rumours.

Cao et al. (2018) define “any piece of information, of which the veracity status

was questionable at the time of posting”, as a rumour. They further claim that a

rumour may later be verified to be true or false by other authorized sources. We

follow their definition in this work; thus, we also define the task of rumour detection

as: “Given a piece of information from a social network, predict whether the piece of

information is a rumour or not using the conversations which were induced by the

said piece of information”. The initial piece of information could be a tweet or a user

post, and the induced conversation would be the replies from other users (which we

use as contextual information). Following the conventions in the literature, in this

work, we refer to a main post and its replies as a thread.

In this Chapter, we utilize the semantic oppositeness embeddings created in

Chapter IV to improve the rumour detection task, which has so far been restricted to

only considering semantic similarity. We further prove that semantic oppositeness is

well-suited to be applied to this domain, under the observation that rumour threads

are more discordant than those of non-rumours. We further observe that, within

rumour threads, false rumour threads continue to be clamorous; while true rumour

108



threads settle into inevitable acquiescence. We claim that semantic oppositeness can

help in distinguishing this behavior as well. We propose word-level self-attention

mechanism for the semantic oppositeness to augment the tweet level self-attention

mechanism for the semantic similarity. We model the explicit and implicit connections

within a thread, using a relevancy matrix. Unlike a regular adjacency matrix, our

relevancy matrix recognizes the coherence of each sub-tree of conversation rooted

at the main post, while acknowledging that, by definition, for this task, the main

tweet must be directly related to all the rest of the tweets, regardless of the degrees

of separation that may exist between them. We conduct extensive experiments

to compare our proposed model with the state-of-the-art studies conducted on the

same topic. To the best of our knowledge, this work is the first to utilize semantic

oppositeness in rumour detection. In summary, our contributions in this Chapter

include:

– We introduce a novel method for rumour detection, based on both semantic

similarity and semantic oppositeness, utilizing the main post and the contextual

replies.

– We model the explicit and implicit connections within a thread, using a

relevancy matrix, which is then used to balance the impact semantic similarity

and semantic oppositeness have on the overall prediction.

– We conduct experiments on recent rumour detection data sets and compare

with numerous state-of-the-art baseline models to show that we achieve superior

performance.

The remainder of this chapter is organized as follows: Section 6.2 provides a

formal definition of the problem, along with our solution. It is followed by Section 6.3

discussing experiments and results. Finally the Section 6.4 concludes the chapter.
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6.2 Methodology

We use a recent work (Veyseh et al., 2019) on rumour detection as our baseline.

Their work, in turn, was heavily influenced by the earlier work on rumour detection

in Twitter (Ma et al., 2018b). A tweet set I is defined as shown in Equation 6.1,

where R0 is the initial tweet and R1, R2, . . . , RT are replies, such that T is the count

of replies. Each tweet Ri is a sequence of words W1,W2, . . . ,Wn, such that n is the

count of words. We tokenize the tweets; and in this work, tokens and words are used

interchangeably. We also define the relevance matrix M , which carries the information

of the tree structure of the tweet tree in Equation 6.2, where A ? B denotes that A

and B belong to the same tree in the forest obtained by eliminating the initial tweet.

We show the process in Fig 27 as well. Our input is the pair P = (I,M), which differs

from Veyseh et al. (2019), where only I was used as the input. The entire data set is

represented by D. The steps shown in Fig 27 are as follows:

1. Original tweet reply tree.

2. Obtain the forest by temporarily removing the root (main tweet).

3. Consider each tree in the forest to be fully connected graphs, and obtain the

relevance matrices.

4. Obtain the full Relevance matrix by putting together the matrices from the

previous step and considering the main tweet to be connected to all the other

tweets.
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Figure 27. Relevance matrix building

I = (R0, R1, R2, . . . , RT ) (6.1)

mi,j =



1 if Ri = R0 ∨Rj = R0

1 if Ri ? Rj

0 otherwise

(6.2)

Following the convention of Veyseh et al. (2019) which is our baseline, we classify

each pair (I,M) into four labels:

1. Not a Rumour (NR)

2. False Rumour (FR)

3. True Rumour (TR)

4. Unrecognizable (UR)

It should be noted that the distinction between “False Rumour” and “True Rumour”

is drawn from the truthfulness of R0.

Baseline works prior to Veyseh et al. (2019) have used RvNN to utilize the

structural information in social networks, which bars the network from finding new

relations among replies which are not explicitly connected. They have relaxed this

constraint entirely, in hopes that the model would learn the relation among different
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replies. In this work, we alter the dense adjacency matrix used for the self-attention

based model to have the the constraint released in sub-trees but held among the

aforementioned sub-trees.

This renders the work in this Chapter more general and able to capture different

aspects of data than the baselines (Ma et al., 2018b), while being more efficient in

computing than Veyseh et al. (2019). The computational speedup S of this work is

given by the simple Equation 6.3, where n is the number of nodes in the thread, k is

the sub-tree count, and mi is the number of nodes in the i-th sub-tree excluding the

global root.

S =
n2(∑k

i=1m
2
i

)
+ 2n− 1

(6.3)

The overall rumour detection model configuration is shown in Fig 28, where red

vectors and node represent the main (root) tweet, and green vectors and nodes

represent replies. Pooling operations are shown in boxes with dashed lines. The

conventions and functionality of the model and its various components will be

discussed in Section 6.2.1 to Section 6.2.5.

6.2.1 Formal Definition of Tweet Representation. Each tweet will

have a different number of words n; thus, we pad the short tweets with a special

token, until all the tweets have the same word length N as defined by 6.4.

N = argmax
Pi∈D

(ni) (6.4)

We build the representative oppositeness list O using the semantic oppositeness

embeddings created in Chapter IV such that, for the i-th tweet Ri, with words

Wi1,Wi2, ...,WiN , the oppositeness vector Oi is created as oi1, oi2, ..., oim where oij
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Figure 28. The overall rumour detection model configuration

is the embedding of Wij. Note that m ≤ N where all tokens might not have

corresponding oppositeness embeddings.

Each word in each tweet is then converted to a representative vector by means

of a set of pre-trained word embeddings, such that for the i-th tweet Ri, with words

Wi1,Wi2, ...,WiN is converted ei1, ei2, ..., eiN . We then apply a max-pooling operation

over the word embeddings along each dimension, resulting in a representative vector

hi coupled to Ri, as shown in Equation 6.5. At this point, note that the tweet set

I of each pair P , which used to be I = (R0, R1, R2, . . . , RT ), has been replaced by

I = (h0, h1, h2, . . . , hT ). It is this new representation which is passed to the following

steps.

hi = Elementwise Max(ei1, ei2, ..., eiN) (6.5)

6.2.2 Similarity-Based Contextualization. As discussed earlier, the

Twitter data is organized as a tree rooted at the main tweet R0 in each instance.
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The earlier work by Ma et al. (2018b) proved that, in rumour detection, it is helpful

to capture these relations among the main tweet and the replies. The subsequent work

by Veyseh et al. (2019) noted that only considering explicit reply relation between

the main tweet and other tweets neglects the the implicit relations among the tweets,

arising from their semantic similarities (i.e., by the virtue of discussing the same topic,

tweets in two separate branches may carry mutually useful information). Following

this hypothesis, they exploited such implicit semantic relations for the purpose of

improving the performance of the rumour detection task. However, in doing so, they

abandoned the information garnered from the tree structure. In this work we propose

to continue to use the implicit information, but to augment it with the information

derived from the tree structure.

We initially follow the self-attention mechanism of Veyseh et al. (2019), which

was inspired by the transformer architecture in Vaswani et al. (2017), to learn the

pairwise similarities among tweets for capturing the semantic relations between the

tweets. The process starts with calculating the key (ki) and query (qi) vectors for

each tweet, based on its representation hi, as shown in Equation 6.6.

ki = Wk ∗ hi + bk

qi = Wq ∗ hi + bq

(6.6)

With the key and query vectors, we calculate the similarity aij between i-th and j-

th tweets, using the dot product as shown in Equation 6.7, where γ is a normalization

factor.

ai,j = ki · qj/γ (6.7)
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6.2.3 Oppositeness-Based Contextualization. Unlike in the case of

similarity vectors, which were reduced to a single dimension at this point, the

oppositeness representations are still at two dimensions. Thus the self-attention of

oppositeness between tweets is handled at a word level, rather than at the tweet level.

We build key (k
′
i) and query (q

′
i) vectors for each word based on its representation oi,

as shown in Equation 6.8.

k
′

i = Wk ∗ oi + bk

q
′

i = Wq ∗ oi + bq

(6.8)

Since the oppositeness embedding of Chapter IV is based on Euclidean distance,

with the key and query vectors, we calculate the oppositeness opix,jy between x-th

word of i-th tweet and y-th word of j-th tweet using the Euclidean distance, as shown

in Equation 6.9 where k
′
ix is the key vector for x-th word of i-th tweet, q

′
jy is the query

vector for y-th word of j-th tweet, and Euclidean distance d(, ) is calculated across

the size of the oppositeness embedding vector.

opix,jy = d(k
′

ix , q
′

jy) (6.9)

To obtain the abstract tweet-level oppositeness, we apply element-wise average-

pooling on the OPi,j matrix, as shown in Equation 6.10, to create the oppositeness

matrix O”, where δ is the oppositeness vector count of the i-th tweet, and % is

the oppositeness vector count of the j-th tweet. Note that the dimensions of the

oppositeness matrix O” are the same as the relevance matrix M .
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o”i,j = Elementwise Average

(


opi0,j0 opi1,j0 . . . opiδ,j0

opi0,j1 opi1,j1 . . . opiδ,j1

. . . . . . . . . . . .

opi0,j% opi1,j% . . . opiδ,j%


)

(6.10)

Next we create the oppositeness mask Ω by average-pooling O” along rows and

columns, as shown in Equation 6.11, where similar to Equation 6.4, ni and nj are

natural lengths of the i-th and j-th tweets respectively.

ωi,j = 1− Elementwise Average(o”i,0, o”i,1, ..., o”i,nj)

−Elementwise Average(o”0,j, o”1,j, ..., o”ni,j)
(6.11)

6.2.4 Deriving Overall Thread Representations. Similar to the

oppositeness mask Ω, we create the relevance mask Ψ by sum-pooling M along rows

and columns, as shown in Equation 6.12, where similar to Equation 6.4, ni and nj

are natural lengths of the i-th and j-th tweets respectively.

ψi,j = Elementwise Sum(mi,0,mi,1, ...,mi,nj)

+Elementwise Sum(m0,j,m1,j, ...,mni,j)

(6.12)

At this point we diverge from Veyseh et al. (2019) in two ways, and we utilize

the related relevance mask M as a weighting mechanism, with proportion constant

α (where 0 < α < 1), as well as the oppositeness mask OM , to obtain augmented

attention a
′
i,j as shown in Equation 6.13.

a
′

i,j = ai,jωi,j

[
(ψi,j − α)2 + αψi,j

]
(6.13)
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We utilize the augmented similarity values a
′
i,j for each tweet pair in the thread

to compute abstract representations for the tweets based on the weighted sums, as

shown in Equation 6.14.

h′i = Σja
′

i,j ∗ hj (6.14)

Next, we apply the max-pooling operation over the processed tweet representation

vectors h′i to obtain the overall representation vector h′ for the input pair P as shown

in Equation 6.15.

h′ = Elementwise Max(h′0, h
′
1, h
′
2, ..., h

′
T ) (6.15)

Finally, the result is sent through a 2-layer feed-forward neural network capped

with a softmax layer, producing the probability distribution P (y|R0, R1, R2, . . . , RT ; θ)

over the four possible labels, where θ is the model parameter. On this, we optimize

the negative log-likelihood function, in order to train the model, as shown in

Equation 6.16, where y∗ is the expected (correct) label for I.

Llabel = − logP (y∗|R0, R1, R2, . . . , RT ; θ) (6.16)

6.2.5 Main Tweet Information Preservation. The Veyseh et al. (2019)

study noted that the model by Ma et al. (2018b) treats all tweets equally. This was

deemed undesirable, given that the main tweet of each thread incites the conversation,

and thus, arguably, carries the most important content in the conversation, which

should be emphasized, to produce good performance. To achieve this end, it was

proposed to bring forward the information in the main tweet independently of and

117



separately from that of the collective Twitter thread, in order to provide a check. We,

in this work, also provide this sanctity check, to enhance the obtained results.

The basic idea is that, by virtue of definition, if a main tweet is a rumour (or not),

unique trait and information pertaining to that class should be in the main tweet itself.

Thus, the latent label (Lthread) obtained by processing the thread representation h′

above should be the same as a potential latent label (Lmain) obtained by processing

the representation of the main tweet h0. To calculate Lmain, we use a 2-layer feed-

forward neural network with a softmax layer in the end, where it assigns the latent

labels drawn from K possible latent labels. Next, we use another 2-layer feed-forward

neural network with a softmax layer in the end, assigning the same K number of

possible latent labels as shown in the negative log-likelihood function to match it

with the thread.

Lmain = argmaxLP (L|R0) (6.17)

Lthread = − logP ′(Lmain|R0, R1, R2, . . . , RT ) (6.18)

Finally, the loss function to train the entire model is defined as in Equation 6.19,

where the Llabel is obtained from Equation 6.16, and β is a hyper-parameter which

controls the contribution of the main tweet information preservation loss to final loss.

Loss = Llabel + βLthread (6.19)

6.3 Experiments

We use the Twitter 15 and Twitter 16 data sets introduced by Ma, Gao and Wong

(2018a) for the task of rumour detection. Respectively, there are 1381 and 1118 tweet

threads in each data set. We use Glove (Pennington et al., 2014) embedding to

118



initialize the word vectors and oppositeness embedding from Chapter IV to initialize

the oppositeness vectors. Both embedding vectors are of size 300. Key and query

vectors in Equations 6.6 and Equations 6.8 employ 300 hidden units. The rumour

classifier feed-forward network has two layers of 200 hidden units. The feed-forward

layer in the main tweet information preservation component has two layers, each with

100 hidden units, and it maps to three latent labels. The proportion constant α, which

balances the explicit and implicit information, is set at 0.1. The loss function uses

a trade-off parameter of β = 1, with an initial learning rate of 0.3 on the Adagrad

optimizer. For the purpose of fair results comparison, we follow the convention of

using 5-fold cross validation procedure to tune the parameters set by Ma et al. (2018b).

6.3.1 Comparison to the State-of-the-Art Models. We compare the

proposed model against the state-of-the-art models on the same data sets. The

performance is compared by means of overall accuracy and F1 score per class. We

observe that there are two types of models against which we compare. The first

type are the feature-based models, which used feature engineering to extract features

for Decision Trees (Castillo et al., 2011; Zhao, Resnick & Mei, 2015), Random

Forest (Kwon, Cha, Jung, Chen & Wang, 2013), and SVM (Ma, Gao, Wei, Lu &

Wong, 2015; Ma et al., 2017; Wu, Yang & Zhu, 2015). The second type of models

are deep learning models, which used Recurrent Neural Networks or Recursive Neural

Networks to learn features for rumour detection. We compare our model to GRU-

RNN proposed by Ma et al. (2016), BU-RvNN and TD-RvNN proposed by Ma et al.

(2018b), and Semantic Graph proposed by Veyseh et al. (2019). Results for Twitter

15 and Twitter 16 are shown in Tables 8 and 9, respectively.

It is evident from these tables that, in the rumour detection task, the

deep learning models outperform feature-based models, proving that automatically
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Table 8. Model Performance on Twitter 15.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR (Zhao, Resnick & Mei, 2015) 0.409 0.501 0.311 0.364 0.473
DTC (Castillo, Mendoza & Poblete, 2011) 0.454 0.733 0.355 0.317 0.415
RFC (Kwon, Cha, Jung, Chen & Wang, 2013) 0.565 0.810 0.422 0.401 0.543
SVM-TS (Ma, Gao, Wei, Lu & Wong, 2015) 0.544 0.796 0.472 0.404 0.483
SVM-BOW (Ma, Gao & Wong, 2018b) 0.548 0.564 0.524 0.582 0.512
SVM-HK (Wu, Yang & Zhu, 2015) 0.493 0.650 0.439 0.342 0.336
SVM-TK (Ma, Gao & Wong, 2017) 0.667 0.619 0.669 0.772 0.645
GRU-RNN (Ma et al., 2016) 0.641 0.684 0.634 0.688 0.571
BU-RvNN (Ma, Gao & Wong, 2018b) 0.708 0.695 0.728 0.759 0.653
TD-RvNN (Ma, Gao & Wong, 2018b) 0.723 0.682 0.758 0.821 0.654
SG (Veyseh, Thai, Nguyen & Dou, 2019) 0.770 0.814 0.764 0.775 0.743
Semantic Oppositeness Graph (SOG) 0.796 0.825 0.820 0.814 0.742

Table 9. Model Performance on Twitter 16.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR (Zhao, Resnick & Mei, 2015) 0.414 0.394 0.273 0.630 0.344
DTC (Castillo, Mendoza & Poblete, 2011) 0.465 0.643 0.393 0.419 0.403
RFC (Kwon, Cha, Jung, Chen & Wang, 2013) 0.585 0.752 0.415 0.547 0.563
SVM-TS (Ma, Gao, Wei, Lu & Wong, 2015) 0.574 0.755 0.420 0.571 0.526
SVM-BOW (Ma, Gao & Wong, 2018b) 0.585 0.553 0.655 0.582 0.578
SVM-HK (Wu, Yang & Zhu, 2015) 0.511 0.648 0.434 0.473 0.451
SVM-TK (Ma, Gao & Wong, 2017) 0.662 0.643 0.623 0.783 0.655
GRU-RNN (Ma et al., 2016) 0.633 0.617 0.715 0.577 0.527
BU-RvNN (Ma, Gao & Wong, 2018b) 0.718 0.723 0.712 0.779 0.659
TD-RvNN (Ma, Gao & Wong, 2018b) 0.737 0.662 0.743 0.835 0.708
SG (Veyseh, Thai, Nguyen & Dou, 2019) 0.768 0.825 0.751 0.768 0.789
Semantic Oppositeness Graph (SOG) 0.826 0.843 0.843 0.878 0.774

learning effective features from data is superior to hand-crafting features. We also

note that the Semantic Oppositeness Graph, along with the Semantic Graph, and

other RvNN models with GRU-RNN, generally do well, which attests to the utility

of structural information, be it in the form of reply structure or be it in the

form of semantic relations, in helping to improve performance. We further notice

that Veyseh et al. (2019), which uses implicit information, outperforms TD-RvNN Ma

et al. (2018b), which only uses explicit information. Semantic Oppositeness Graph,

which uses explicit information, implicit information, and semantic oppositeness,

outperforms all the other models in accuracy, while outperforming all the other
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models in three out of four classes, in terms of F1 Score. The one class in which

Semantic Oppositeness Graph loses out to Veyseh et al. (2019) is in the case of

the Unrecognizable (UR) class. We argue that this is not an issue, given that

the unrecognizable class consists of tweets which were too ambiguous for human

annotators to tag as one of: not a rumour (NR), false rumour (FR), or true rumour

(TR). We assert that Tables 8 and 9 clearly demonstrate the effectiveness of the

proposed Semantic Oppositeness Graph method in the task of rumour detection.

6.3.2 Model Stability Analysis. While comparing our system with Veyseh

et al. (2019), which we use as our main baseline, we noticed that their system has

a high variance in results, depending on the random weight initialization. This was

impactful in such a way that in some random weight initializations, the accuracy of

their system could fall as low as 24% from the reported high 70% results in their

paper. Given that we use their system as our baseline and the basis for our model,

we decided to do a stability analysis between their system and ours. For this purpose,

we created 100 random seeds and trained four models with each seed, resulting in a

total of 400 models. The models were:

1. Veyseh et al. (2019) on Twitter 15

2. Veyseh et al. (2019) on Twitter 16

3. Semantic Oppositeness Graph on Twitter 15

4. Semantic Oppositeness Graph on Twitter 16

Then we normalized the results of the Veyseh et al. (2019) models to the values

reported their paper (also shown in the relevant row on Tables 8 and 9). Each result

is reported in the format of µ
σ .

From the results in Tables 10 and 11, it is evident that our Semantic Oppositeness

Graph has higher mean values for accuracy, not a rumour (NR), false rumour (FR),

121



Table 10. Model Variance Performance on Twitter 15.

Model Accuracy F1 NR F1 FR F1 TR F1 UR

Semantic Graph
(Veyseh, Thai, Nguyen & Dou, 2019)

0.770
0.138

0.814
0.133

0.764
0.198

0.775
0.118

0.743
0.129

Semantic Oppositeness Graph
(SOG)

0.796
0.089

0.825
0.080

0.820
0.109

0.814
0.093

0.742
0.100

Table 11. Model Variance Performance on Twitter 16.

Model Accuracy F1 NR F1 FR F1 TR F1 UR

Semantic Graph
(Veyseh, Thai, Nguyen & Dou, 2019)

0.768
0.103

0.825
0.226

0.751
0.103

0.768
0.096

0.789
0.184

Semantic Oppositeness Graph
(SOG)

0.826
0.082

0.843
0.153

0.843
0.091

0.878
0.074

0.774
0.114

and true rumour (TR), while having comparably reasonable values for Unrecognizable

(UR) class. But more interesting are the standard deviation values. It is evident that

in all cases, our model has smaller standard deviation values than that of Veyseh

et al. (2019). This is proof that our system is comparatively more stable in the

face of random weight initialization. We argue that this stability comes from the

introduction of the oppositeness component, which augments the decision-making

process with the oppositeness information, as a counterpart for the already existing

similarity information, preventing the predictions from having a swinging bias.

For a demonstration, consider the subset of three words increase, decrease, and

expand from the example used in Chapter III. If the main tweet (R0) were to say

“A will increase B”, R1 replied with “A will decrease B”, and R2 replied with “A

will expand B”, then the purely semantic similarity based model will position R0

and R1 closer than R0 and R2, given that the word contexts in which increase

and decrease are found are more similar than the word contexts in which increase

and expand are found. This would result in the neural network having to learn the

opposite semantics between increase and expand by itself, during the training, making
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it more vulnerable to issues of bad initial weight selection. This, in turn, will result in

greater variance among the trained models. However, a system with an oppositeness

component will already have the opposite semantics between increase and decrease,

as well as increase and expand already calculated. Thus, such a system would have

pre-knowledge that the word pair increase and decrease, despite being used in more

common contexts, is more semantically opposite than the word pair increase and

expand, which is used in less common contexts. Hence the neural network does not

have to learn that information from scratch during the training, resulting in it being

less vulnerable to issues of bad initial weight selection. Analogously, this, in turn,

will result in lesser variance among the trained models; hence, explaining the better

stability demonstrated by Semantic Oppositeness Graph in comparison to Veyseh

et al. (2019) in Tables 10 and 11.

6.3.3 Impact of the Oppositeness Component. Finally, to emphasize

the effect the oppositeness component has on the model, we draw the t-SNE

diagrams (Linderman & Steinerberger, 2019; Maaten & Hinton, 2008) for the final

representations of the threads. Figure 29a shows the data points clustering when

the model is trained without the oppositeness component, and Fig. 29b shows the

data points clustering when the model is trained with the oppositeness component.

Note that all other variables, including the seed for the weight initializer, are the

same in the two models. These diagrams prove that the oppositeness component

helps improve the separability of the classes. Specially note how the False Rumour

and True Rumour classes are now more clearly separated. We postulate that this

derives from the fact that the oppositeness component would help in distinguishing

the continuous discord happening in a False Rumour thread from the subsequent

general agreement in a True Rumour thread.
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(a) Without the Oppositeness Component

(b) With the Oppositeness Component

Figure 29. t-SNE diagrams for thread representations.
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6.4 Conclusion

Rumours and fake news are a significant problem in social networks, due to their

intrinsic nature of connecting users to millions of others and giving any individual

the power to post anything. We introduced a novel method for rumour detection,

based on semantic oppositeness, in this chapter. We demonstrated the effectiveness

of our method using data sets from Twitter. Compared to previous work, which

only used explicit structures in the reply relations or implicit relations for semantic

similarity, our model learns both explicit and implicit relations between a main tweet

and its replies, by utilizing both semantic similarity and semantic oppositeness. We

proved, with extensive experiments, that our proposed model achieves state-of-the-art

performance, while being more resistant to the variances in performance introduced

by randomness.
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Part C

Summary and Future Work
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In this part of the dissertation, we discover, synthesize, recommend best practices

on, and make observations on the usage of semantic oppositeness measurement of

Parts A and B.
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CHAPTER VII

SUMMARY

The overarching goal of this dissertation work is to investigate and address

the dissertation question: How can we convert the linguistic concept of semantic

oppositeness to the computing domain? This summarising chapter addresses the

dissertation question by synthesizing the findings and best practices of the previous

chapters.

Under the dissertation question, we investigated four problems related to semantic

oppositeness. First, given the linguistic definition of semantic oppositeness and the

two principles under which it works, (Minimal difference with maximal similarity

principle and Irrelevancy principle), how can we convert the idea into a computational

metric? Second, how can we overcome, using embedding, the limitations of the

semantic oppositeness measure that we inherited from the restrictions of antonymy

present in language and reflected in WordNet? Third, we applied our knowledge to the

target of PubMed abstracts to answer the question, how can we find inconsistencies

that arise on the path to scientific progress when new knowledge supplants old

knowledge? In this step, we also explored how the same inconsistency finding can be

leveraged against semantic similarity to suggest relationships to an ontology. Fourth,

we applied our knowledge to the target of social media posts to answer the question,

how can we find disagreement in social media discussion threads, and thereby classify

which posts constitute a rumour and which do not? Further, at this point we

discovered that the nature of semantic oppositeness grants us the ability to specifically

distinguish between true-rumours and false-rumours, by the virtue that true-rumour

threads settle into acquiescence, while false-rumor threads continue ad infinitum, to

the clamour of disagreement.
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This dissertation consisted of six chapters, each based primarily on original

research by myself and various co-authors, either previously published, or under

review. The content of each chapter is summarized as follows. Chapter I introduced

and described the motivation for the dissertation question, as well as outlining the

contents of the dissertation. Chapter II reviewed fundamental concepts and related

work for the linguistic base of semantic oppositeness, as well as the computing

resources and techniques that we employ to convert semantic oppositeness to the

computational linguistics domain and to test on subsequent use cases. Chapter III

introduced the new semantic oppositeness measure in a formal, mathematical

setting, with computerized implementations following the linguistic observations

and principals of Chapter II. Chapter IV took the formalized computational model

of semantic oppositeness from Chapter III and embedded it in a vector space to

attain better generalizability and efficiency. Chapter V applied the basic semantic

oppositeness measure of Chapter III to find inconsistencies among research paper

abstracts, as well as to find potential strong relationships to be added to an ontology

in a relevant domain. Chapter VI applied the embedded semantic oppositeness

measure of Chapter IV to detect rumours in social networks by means of discovering

disagreements.

The main contributions of the dissertation are summarized as follows:

1. We introduce a novel metric by which semantic oppositeness can be

calculated, adhering to the Minimal difference with maximal similarity principle

and Irrelevancy principle in linguistics. For this purpose, we utilize the semantic

similarity measures, as well as antonymy relationships.

2. We introduce a semantic oppositeness embedding which takes the above

metric and embeds it in a vector space to obtain better generalizability and
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efficiency. In the process of this, we also introduce a novel, unanchored vector-

embedding approach and a novel, inductive transfer learning process based on

auto encoders, which utilizes both learnt embeddings and the learnt latent

representation.

3. We utilize our semantic oppositeness measure on the question of finding

inconsistencies with PubMed abstracts as a use case, where we show the

effectiveness of our methodology in the given question. We illustrate how this

novel semantic oppositeness measure is superior to the antonym method and to

the näıve similarity inverse method. While working on this use case, we produce

the following sub-contributions:

(a) We introduce an ontology-based information extraction model to discover

inconsistencies in PubMed abstracts.

(b) We propose a new methodology to incorporate open information extraction

into an ontology-based information extraction process, in order to

compensate for the lack of relationships in the domain ontology.

(c) We propose an ontology-based information extraction model to discover

similarities in PubMed abstracts, which then leads to compiling possible

updates to OMIT in order to fix its problem of lack of relationships.

4. We utilize our embedded semantic oppositeness measure on the question of

finding disagreement in social media threads as a use case, where we show

the effectiveness of our methodology in the given question under the following

aspects:

(a) We introduce a novel method for rumour detection, based on both semantic

similarity and semantic oppositeness, utilizing the main post and the

contextual replies.
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(b) We model the explicit and implicit connections within a thread, using

a relevancy matrix, which is then used to balance the impact semantic

similarity and semantic oppositeness have on the overall prediction.

(c) We conduct experiments on recent rumour detection data sets and compare

with numerous state-of-the-art baseline models to show that we achieve

superior performance.

The experiments validate the effectiveness of the semantic oppositeness measure

for these problems.
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CHAPTER VIII

FUTURE WORK

This concluding chapter presents our recommendations for future research that

would build upon and further substantiate the work presented in this dissertation.

Before getting on to the recommendations, we can make observations on the current

usage of our semantic oppositeness model. From the citations to our papers, we

observe that our semantic oppositeness has been considered in a number of domains

so far:

1. Biomedical domain: Given that our initial use case publication was in this

domain, it is understandable that relevant work in this area would try to utilize

the metric. Under this, we observe topics such as: pattern discovery (Li et al.,

2018; Wang, Zhang, Li, Chen & Han, 2018b), textual entailment (Tawfik &

Spruit, 2019a; Tawfik & Spruit, 2019b), contradiction detection (Tawfik &

Spruit, 2018), automated labeling (Teng, Bai & Li, 2019).

2. Legal domain: The legal domain works with arguments and disagreements.

Therefore, NLP tasks in the legal domain benefit from working with semantic

oppositeness. In the legal domain, we see research referring to semantic

oppositeness on: domain-specific semantic similarity (Sugathadasa et al., 2017),

and shift-of-perspective identification (Ratnayaka et al., 2019b).

3. Knowledge/Ontology domain: Ontology representation (Jayawardana et al.,

2017b) and population (Jayawardana et al., 2017a; Jayawardana et al., 2017c)

are two tasks in which our semantic oppositeness has been cited.

We provide a number of recommendations for future studies in Sections 8.1

through 8.6. They range from altering the fundamental method of oppositeness
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calculation discussed in Section 8.1, to extending the oppositeness calculation and

embedding process discussed in Sections 8.2, 8.3, and 8.4, to some further use cases

where oppositeness measure can be utilised, as discussed in Sections 8.5 and 8.6.

8.1 Alternate Oppositeness Calculations

Future studies may explore the possibility of modelling the Minimal difference

with maximal similarity principle (Section 2.1.1) and the Irrelevancy principle

(Section 2.1.2) differently from to how we have done in Chapter III and compare. We

have released code, intermediate outputs, and final outputs of our work, as mentioned

throughout the dissertation. Consider the Equation 3.12, and consider the variant in

Equation 8.1 where the result has been scaled back to 0 to 1 range. This would yield

Fig. 30 and Fig. 31. As it can be observed, this setting reinforces Minimal Difference

with Maximal Similarity Principle of Section 2.1.1, but it does not improve our ability

to support the Irrelevancy Principle of Section 2.1.2 as much as our Equation 3.12

does. But for a future study with that flavour of leaning, this variant may be valid.

oppo oriw1,w2
=

(reldifw1,w2
+ 1)

(
K∗similw1,w2+1

)
2K+1

(8.1)

By replacing the constant 1 in Equation 8.1 with a very small constant ε, it is

possible to obtain the Equation 8.2. As shown in Fig 32 and Fig 33, this approximates

the combined oppositeness of Equation 3.14 but without the fine control granted by

α. In our work, we considered this option first, but we later opted for Equation 3.14,

for the flexibility of α control. But a future implementation willing to reduce the

computational complexity at the cost of fine control can utilize this version. It would

perhaps be suitable for a situation where a large number of approximate oppositeness

values needs to be calculated with low resources and then go into a few short-

listed instances to obtain more accurate results. In that case, we can recommend
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Figure 30. Variant Oppositeness function: 3D plot

Equation 8.2 for the mass scale approximation step and Equation 3.14 for the short-

listed precise step.

oppo oriw1,w2
=

(reldifw1,w2
+ ε)

(
K∗similw1,w2+ε

)
2K+ε

(8.2)

Another useful suggestion with regard to this is to use the semantic similarity

values obtained from a word embedding system to alter or replace Equation 3.7.

Given that antonymy would stay as a static one-to-many relationship in the generic

domain, there is no need to replace the functionality of Equation 3.9. However, the

latter assessment becomes invalid in the situation discussed in Section 8.4, given that

the antonymy property being valid for a word pair in the generic domain does not

necessarily imply that it is valid in a specialized or specific domain. In that situation, a

large corpus of words annotated by a human expert of the domain would be needed, in
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Figure 31. Variant Oppositeness function: Contour plot

order to proceed. This is because antonyms do not necessarily carry a shared linguistic

root. Regardless of the fact that the considered pair of antonyms are canonical (Cruse,

1986) or otherwise (Jones, 2003), this situation may arise. (Naturally, a majority of

canonical antonyms do share linguistic roots, while diversity is more apparent in non-

canonical antonyms.) This burden on the process of learning required antonyms to

be used in the oppositeness measure may be lightened or augmented by corpus-driven

methods, as suggested by Lobanova (2012); but for the sake of precision, a significant

amount of manual tagging has to be done by an expert.

8.2 Phrase and Sentence Level Oppositeness

Our work has been focused mainly on word-level oppositeness, other than in the

case of Chapter V, where relationships of triples were compared. But even at that

implementation, the minute comparison was among words. Therefore, a future study
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Figure 32. Oppositeness function with small ε: 3D plot

may look into calculating semantic oppositeness at the level of phrases and sentences.

This may also reveal whether the whole has emergent properties that go beyond the

sum of its parts. However, this would exponentially increase the number of instances

to be regarded, while decreasing the support for each unique entry. That would result

in a demand for larger corpi, as well as possibly causing a deficiency in areas where

the phrases or sentences tend to run long. Nevertheless, for a reasonably large corpus

consisting of short sentences and phrases, this application should be viable. However,

the greatest hurdle of such an application would be the translation of Equation 3.9

to the higher level. A näıve solution would be a pairwise comparison of each word

in the two phrases (or sentences). However, this would run into the issue of most

word pairs not being natural antonyms of each other and thus producing a very

sparsely populated matrix as the calculated values. This, in turn, can deteriorate the

quality of the final oppositeness value. A solution for this would come from either
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Figure 33. Oppositeness function with small ε: Contour plot

an attention approach, which learns the relative importance of each word, or a parse

tree-based approach, where the trees are aligned before word-level comparisons, which

are restricted by the local connections of words and phrases discovered along the parse

tree. Of course, it is also possible to merge the above two solutions and attempt a

hybrid approach. Regardless of the approach selected, future work on this direction

will heavily depend on obtaining or creating large human-annotated data sets.

8.3 Higher-Level Oppositeness Embedding

Related to the direction in Section 8.2 and with the advent of embedding

systems for phrases (Mikolov et al., 2013a; Wu, Zhao & Li, 2020; Yin & Schütze,

2016), sentences (Lin et al., 2017; Palangi et al., 2016), paragraphs (Kawamura,

Watanabe, Matsumoto, Egami & Jibu, 2018; Wang, Zhang, Ding & Zou, 2017), and

documents (Dai, Olah & Le, 2015; Lau & Baldwin, 2016) it is possible to extend
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our word-level oppositeness embedding to higher levels of text such as phrases or

sentences. This may even shed a light on the illusive sarcasm problem in NLP (Cai,

Cai & Wan, 2019; Castro et al., 2019; Pan, Lin, Fu, Qi & Wang, 2020). However,

as discussed in Section 8.2, the issue of the thinning-out of support would come into

play here, as well. When the phrases and sentences become longer, they become more

unique; and thus, the probability of them reoccurring in a given corpus becomes low.

This would result embeddings that are, at best, imperfect, and at worst, incorrect. As

a solution to this, it might be possible to incorporate a layered embedding, where the

embedding of phrases is derived from that of words, and the embedding of sentences

is derived from that of phrases. It may also be possible to obtain already-embedded

phrase or sentence models and use a transfer learning method similar to what we

have discussed in Section 4.2.4. However, given that this step is largely dependant

on the successful implantation of the methodologies we have discussed in Section 8.2,

by the virtue of transitive property, this extension too will be heavily dependant on

human-annotated large corpi.

8.4 Domain Dependent Oppositeness Embedding

Word embedding is moving towards higher context sensitivity, with implementations

such as BERT (Devlin et al., 2018) and XLNet (Yang et al., 2019), which embed

words with consideration to various senses that they carry. We also observed proof

of such word senses altering depending on domain in the case of Section 5.2.4 for the

medical domain. Further proof of this phenomenon in the legal domain is discussed

by Sugathadasa et al. (2017). Thus it is arguable that, if semantic similarity, which

can be derived by word embeddings, is capable of being altered on the basis of domain,

the same should be true for oppositeness. The same linguistic forces which have

robbery and burglary play synonym roles in common vernacular while being drastically
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different in the legal domain will play the mirrored role in the case of oppositeness. As

such, we postulate that semantic oppositeness embedding with context clues from the

domain would prove to be better in the context of that particular domain. However,

this task is not currently achievable with the oppositeness calculation methodology

proposed in this dissertation, and it would need a massive corpus of expert annotated

data, for any domain on which one wishes to implement this. Once such a system

is in place, it could be utilised for applications such as: domain specific sentence

classification using discourse and argumentative properties (Ratnayaka et al., 2019a),

question retrieval (Wang et al., 2018a), domain specific sentiment analysis (Gamage

et al., 2018; Mudalige et al., 2020; Rajapaksha et al., 2020; Ratnayaka, de Silva,

Perera & Pathirana, 2020).

8.5 Use Case: Hate Speech Detection

Extending on our rumour detection use case in Chapter VI, we suggest that the

semantic oppositeness measure can be effectively utilized in detecting and suppressing

hate speech, given that hate speech, by nature, goes opposite to the regular accepted

speech on social media. However, this extension heavily leans on an assumption of

online morality (Shin, 2008) having a benevolent bias, given that the expected clamour

of the hate speech threads will rise from a shared distaste of such statements. This

sweeping assumption is not always held true. For example one could point out the

alleged toxicity of platforms such as 4chan (Bernstein et al., 2011; Nagle, 2017). In

such a scenario, hate speech might not raise an opposite response but instead raise

approval. This problem in the analysis will have to be overcome by collaborating with

anthropologists and social scientists. On platforms which are not such edge cases,

using the oppositeness measure to detect hate speech should work under the same

principles as rumour detection. A second obstacle that might need to be overcome
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in this use case, as well as in any future extension of the rumour detection use case

in Chapter VI, would be the handling of slang (Mapa et al., 2012). Given the purely

academic and theoretical root of our methodology, the basis of our system does not

cover the modern slang. The fact that new slang words would appear from time

to time, as well as the fact that slang words may change meaning as the time goes,

introduces unique challenges for an implementation of an oppositeness measure. Then

there is the issue of slang slowly becoming accepted into mainstream usage. Consider

the following examples:

1. The original definition of the word “awesome” was inspiring awe. However, in

current usage, it is used to mean terrific or extraordinary1.

2. The case of the word “literally” is even more extreme. It has the original

meaning of literal sense or manner. However, in current usage, it is also used

to indicate the very opposite of its original meaning: virtually or figuratively2.

Such shifts and changes in opposite behaviour will have a great impact on both the

designing as well as the effectiveness of the oppositeness measure on this use case.

The solution to this problem may lie in the discussion we presented in Section 8.4

where it is possible to register varying oppositeness values without conflict, akin to

how word senses are being handled by models such as BERT (Devlin et al., 2018)

or XLNet (Yang et al., 2019). It would also be important to see how this can be

applied to languages other than English (de Silva, 2019; Wijeratne & de Silva, 2020;

Wijeratne, de Silva & Shanmugarajah, 2019).

1https://www.merriam-webster.com/dictionary/awesome

2https://www.merriam-webster.com/dictionary/literally
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8.6 Use Case: Paronomasia Detection

In my work towards this dissertation, I briefly explored (de Silva, 2017a) the

possibility of using semantic oppositeness to detect paronomasia (puns) in text.

However, due to time constraints and scoping, this use case was not explored further.

I believe that this use case can yield good results, given that puns, similar to

sarcasm (Pan et al., 2020), are heavily dependent on incongruity, which is related

to oppositeness. As per Valitutti, Strapparava and Stock (2008), the incongruity

resolution model claims that a punning text induces two different interpretations,

where one is incoherent and the other is coherent. Thus, by this model, the coherent

interpretation is expected to be funny. The varied word in the pun is what causes

the incongruity in the first interpretation. At the same time, it is also the trigger of

coherence which does the restoration in the second interpretation. Delabastita (2016)

observed that the features of a pun are mutually independent, as such a pun can be

homographic, homophonic, both, or neither. But in all types of puns, the common

thread is the fact that there needs to be some form of incongruity. That incongruity

is where the oppositeness measure can be used for detection. For example, in the

case of homographic puns, incongruity exists with different linguistic morphs of two

roots ending up with the same string of graphemes. In such a situation, measuring the

contextual oppositeness between the two lemmas (or other similar standardized forms)

would give a score to the shift in sense between the two competing interpretations.

Similarly, semantic oppositeness can be used to detect incongruity triggers in other

types of puns, as well.
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APPENDIX

SUPPLEMENTARY FIGURES AND EXAMPLES

(a) Sample abstract 1

(b) Sample abstract 2

Figure A.34. Sample PubMed text abstracts
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Example A.1 Lemmatization example

<token id=”4”>

<word>found</word>

<lemma>f i n d</lemma>

<CharacterOf f se tBeg in>504</ CharacterOf f se tBeg in>

<CharacterOffsetEnd>509</ CharacterOffsetEnd>

<POS>VBD</POS>

<NER>O</NER>

<Speaker>PER0</ Speaker>

</ token>

<token id=”7”>

<word>was</word>

<lemma>be</lemma>

<CharacterOf f se tBeg in>522</ CharacterOf f se tBeg in>

<CharacterOffsetEnd>525</ CharacterOffsetEnd>

<POS>VBD</POS>

<NER>O</NER>

<Speaker>PER0</ Speaker>

</ token>

<token id=”12”>

<word>but</word>

<lemma>but</lemma>

<CharacterOf f se tBeg in>560</ CharacterOf f se tBeg in>

<CharacterOffsetEnd>563</ CharacterOffsetEnd>

<POS>CC</POS>

<NER>O</NER>

<Speaker>PER0</ Speaker>

</ token>
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Example A.2 Parse tree example

(ROOT

(S

(ADVP (RB Neve r the l e s s ) )

( , , )

(NP (PRP we) )

(VP (VBD found )

(SBAR (IN that )

(S

(NP (NN miR−31) )

(VP (VBD was )

(ADVP (RB p a r t i c u l a r l y ) )

(VP (VBN up−r egu l a t ed )

(PP

(PP ( IN in )

(NP (NNS HSCs) ) )

(CONJP (CC but )

(RB not ) )

(PP ( IN in )

(NP (NNS hepatocytes ) ) ) )

(PP ( IN during )

(NP (NN f i b r o g e n e s i s ) ) ) ) ) ) ) )

( . . ) ) )

Example A.3 High level data format

<e n t i t y 1>;< e n t i t y 2>;<Re la t i on sh ip Data 1>;<Re la t i on sh ip Data 2 > ; . . . ; <

Re la t i on sh ip Data N>
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Example A.4 Relationship data format

<Re la t i on sh ip Str ing>:<Value>:<Matches Lis t>:<Close Matches Lis t>

Example A.5 List data format

<ID 1>,<Sentence Number 1>.<ID 2>,<Sentence Number 2 > . . . . . < ID M>,<

Sentence Number M>

Example A.6 Example data line

MIR320A ; Ce l l P r o l i f e r a t i o n ;

Moreover i n h i b i t s : 1 . 7 1 5 1 4 3 7 : 2 5 7 2 8 8 4 0 , 6 : 2 2 4 5 9 4 5 0 , 6 : ;

i n h i b i t : 1 . 7057567 : 22459450 , 6 : 25728840 , 6 :

Example A.7 Final result file example

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

(MIR320A ; Moreover i n h i b i t s ; Ce l l P r o l i f e r a t i o n )

Matches

Moreover , miR−320a expr e s s i on i n h i b i t s human−der ived endothel ium c e l l p r o l i f e r a t i o n

and induces apopto s i s .

Close Matches

And we demonstrated that miR−320a r e s t o r a t i o n i nh i b i t e d co lon cancer c e l l

p r o l i f e r a t i o n and β−catenin , a f u n c t i o n a l l y oncogenic molecule was a d i r e c t

t a r g e t gene o f miR−320a .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

145



(MIR320A ; i n h i b i t ; Ce l l P r o l i f e r a t i o n )

Matches

And we demonstrated that miR−320a r e s t o r a t i o n i nh i b i t e d co lon cancer c e l l

p r o l i f e r a t i o n and β−catenin , a f u n c t i o n a l l y oncogenic molecule was a d i r e c t

t a r g e t gene o f miR−320a .

Close Matches

Moreover , miR−320a expr e s s i on i n h i b i t s human−der ived endothel ium c e l l p r o l i f e r a t i o n

and induces apopto s i s .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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