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THESIS ABSTRACT 
 
Alexis Klimasewski 
 
Master of Science 
 
Department of Earth Sciences 
 
December 2020 
 
Title: Comparing Artificial Neural Networks with Traditional Ground-Motion Models for 
Small Magnitude Earthquakes in Southern California 
 
 

Traditional, empirical ground-motion models (GMMs) are developed by 

prescribing a functional form between predictive parameters and ground-motion intensity 

measures. Machine learning techniques may serve as a fully data-driven alternative to 

regression techniques as they do not require explicitly defining these relationships; 

however, there are few studies that assess performance of the methods side-by-side. We 

compare these two approaches: a mixed-effects maximum-likelihood (MEML) model, 

and a feed-forward artificial neural network (ANN). We develop both models on the 

same dataset from Southern California and test on the 2019 Ridgecrest sequence to 

examine model portability. We find that with our small set of input parameters, the ANN 

shows more site-specific predictions than the MEML model and performs better than 

their corresponding MEML model when applied “blind” to our testing dataset. 

This thesis is co-authored by Valerie Sahakian and Amanda Thomas and is 

accepted at the Bulletin of The Seismological Society of America. 



 

v 

CURRICULUM VITAE 
 
NAME OF AUTHOR:  Alexis Klimasewski 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 
 University of Oregon, Eugene, OR 
 University of Rochester, Rochester, NY 
 
 
DEGREES AWARDED: 
 
 Master of Sciences, Earth Sciences, 2020, University of Oregon 
 Bachelor of Sciences, Physics and Astronomy, 2017, University of Rochester 
 
 
AREAS OF SPECIAL INTEREST: 
 
 Seismology 
 Ground-Motion Modeling  
 
 
PROFESSIONAL EXPERIENCE: 
 
 Research Assistant, US Geological Survey Golden, CO, June – September 2020 
 

Graduate Employee, Department of Earth Sciences, University of Oregon, 
September 2018 – December 2020 

 
 Student Researcher, US Geological Survey Menlo Park, CA, March-July 2018 
 
 
GRANTS, AWARDS, AND HONORS: 
 
 Department of Earth Sciences Research Grant, University of Oregon, 2020 
 
 Raymund Graduate Fellowship, University of Oregon, 2018 
 
 Promising Scholar Award, University of Oregon, 2018 
 
 
PUBLICATIONS: 
 
Klimasewski, A., Sahakian, V., Thomas, A., Comparing artificial neural networks with 

traditional ground-motion models for small magnitude earthquakes in Southern 



 

vi 

California. (under second review at the Bulletin of the Seismological Society of 

America). 
 
Klimasewski, A., Sahakian, V., Baltay, A., Boatwright, J., Fletcher, J. B., Baker, L. M., 

Broadband site spectra in Southern California from source model-constrained 
inversion. Bulletin of the Seismological Society of America, (2019).109, no. 5 
1878– 1889, doi: 10.1785/0120190037. 



 

vii 

ACKNOWLEDGMENTS 
 

I would like to thank my advisor Valerie Sahakian and my committee members 

Amanda Thomas and Brittany Erickson. I also want to thank my partner, Gabriel 

Ferragut, and my family for their support  

Funding for this work was supported in part by a University of Oregon Raymund 

Graduate Fellowship, the USGS Earthquake Hazards Program award #G19AP00071, and 

SCEC award #18119. 

  



 

viii 

TABLE OF CONTENTS 

Chapter Page 
 
 
I. INTRODUCTION .................................................................................................... 1 

II. DATA AND METHODS ........................................................................................ 3 

 Data ........................................................................................................................ 3 

 Mixed-Effects Maximum Likelihood Method ....................................................... 6 

 ANN Method ......................................................................................................... 8 

III. RESULTS .............................................................................................................. 12 

 Performance/fit of MEML models......................................................................... 12 

 Performance/fit of ANN models ............................................................................ 12 

 Performance/fit between methods.......................................................................... 13 

 Site Residuals vs. κ0 and VS30 ................................................................................ 16 

 Performance/fit of the models on Ridgecrest testing data ..................................... 17 

IV. DISCUSSION ........................................................................................................ 20 

 MEML vs. ANN Methods ..................................................................................... 20 

 Performance with κ0 and VS30 ................................................................................ 21 

 Capturing region- and path-specific effects ........................................................... 22 

 ANN and MEML on unseen Ridgecrest data ........................................................ 24 

V. CONCLUSION ....................................................................................................... 26 

 



 

ix 

Chapter Page 
 

APPENDIX: SUPPLEMENTAL TABLES AND FIGURES ..................................... 28 

REFERENCES CITED ................................................................................................ 40 



 

x 

LIST OF FIGURES 
 
Figure Page 
 
1. Study regions with event locations and stations labeled with station name .......... 4 
 
2. a) Magnitude vs. distance, b) PGA vs. distance, and c) magnitude vs. PGA for  
 the entire dataset .................................................................................................... 4 
 
3.   Details of the no site term models. AIC and standard deviation of residuals, 
 residuals vs. distance, residuals vs. magnitude ...................................................... 11 

4. PGA vs distance and PGA vs magnitude for station WMC .................................. 14 

5. PGA vs distance and PGA vs magnitude for station SWS .................................... 15 

6. Comparing average residuals per site from ANN models and mixed-effects 
 maximum-likelihood models ................................................................................. 17 
 
7. Performance of the no site term models with the Ridgecrest test data and 

comparison with study testing data. ....................................................................... 19 
 
S1. Contour plots of predicted PGA as a function of magnitude and distance (testing 

data)........................................................................................................................ 29 
 
S2. Median observed PGA values gridded in distance and magnitude and colored by 

value of PGA for testing data................................................................................. 30 
 
S3. Average residuals between observed and predicted ground motions for each site 

plotted vs. site. ....................................................................................................... 31 
 
S4. Average residuals between observed and predicted ground motions for each site 

plotted vs. site VS30 ................................................................................................ 32 
 
S5. Histogram of residuals between observed and predicted PGA for training, 

validation, and testing data .................................................................................... 33 
 
S6. Details of the VS30 models ...................................................................................... 34 
 
S7. Details of the κ0 models ......................................................................................... 35 
 
S8. Model predictions vs. distance and magnitude for the top 10 performing models 

of each configuration ............................................................................................. 36 
 
S9. Performance of the VS30 models with the Ridgecrest test data and comparison 

with study testing data. .......................................................................................... 37 



 

xi 

Figure Page 
 
S10. Performance of the κ0 models with the Ridgecrest test data and comparison 

with study testing data. .......................................................................................... 38 
 
S11. Map of events recorded on SWS with log10(PGA) < -5 at distances between 16 

and 100 kilometers. ................................................................................................ 39 
 
  



 

xii 

LIST OF TABLES 
 
Table Page 
 
 
1.   Mixed-Effects Maximum-Likelihood model performance, standard deviation of 
 residuals between observed and predicted PGA for testing data ........................... 12 

S1. Mixed-Effects Maximum-Likelihood model performance, standard deviation of 
 residuals between observed and predicted PGA for testing data ........................... 28 

 

 
 
 
 
 
 
 
 
 
 
 



 

   1 

CHAPTER I 

INTRODUCTION 

Empirical ground-motion models (GMMs) are one of the key components of 

seismic hazard assessment. Traditional models are developed by regressing existing 

seismic observations to obtain coefficients for a prescribed functional form, describing 

the relationship between ground-motion intensity measures, and other earthquake 

parameters. Regression models have traditionally relied on an “average” regional or 

global physical description for the functional form, along with observational 

amplification terms (i.e., for site effects). These models can include a large number of 

coefficients, and as the number of dependent variables increases, the regression process 

becomes more complicated and the risk of overfitting becomes greater. Recently, the 

availability of larger datasets allows for data-driven, region-specific, fully non-ergodic, 

and non-parametric models (Landwehr et al., 2016; Kuehn, Abrahamson, Walling, 2019; 

Douglas and Edwards, 2016). 

In recent years, machine learning methods have become more common in 

seismology for a variety of applications from earthquake phase picking to seismic 

tomography (see Kong et al., 2018 for a recent review). Artificial neural networks 

(ANNs) have been used in developing a non-parametric, data-driven alternative to 

regression GMMs. Unlike traditional regression methods, machine learning allows for 

fully non-parameterized models without having to specify complex physical 

relationships, or fix parameters. While machine learning methods are often considered to 

be “black box” algorithms, they are helpful in informing human understanding of 

relationships between input parameters and ground motions. Machine learning techniques 



 

2 

like ANNs have been used to predict peak ground motions with data from Western North 

America (Emami, Iwao, Harada 1996; Trugman and Shearer, 2018), the Next Generation 

Attenuation of Ground Motion (NGA) database (Alavi and Gandomi 2011; Aagaard, 

2017; Dhanya and Rachukanth, 2018), Europe (Derras, Bard, Cotton, 2014), Japan 

(Derras, Bard, Cotton, 2012), Central and Eastern North America (Khosravikia et al., 

2018), and Northwest Turkey (Günaydın and Günaydın, 2008). While many of these 

papers compare their ANN GMMs to existing GMMs, they do not develop and compare 

their ANN model to a regression GMM developed with the exact same dataset. 

The main aim of this work is to compare the performance and behavior of two 

methods of creating GMMs: a more traditional, regression based mixed-effects maximum 

likelihood (MEML) method, and a feed-forward neural network (ANN) method. Both 

models are simple, and created with the same input parameters and developed and tested 

with the same datasets. With both methods, we create models with three sets of input 

parameters. All sets include moment magnitude (M) and hypocentral distance (Rhyp). In 

some cases, we include a site parameter, (VS30 or κ0) to test the efficacy of these 

parameters and to compare our ANN models to MEML models formulated both with and 

without a site parameter. The differences and similarities between models and methods 

can elucidate regional differences in observed and predicted ground motions, and inform 

future region-specific models. 

We also test our models with an independent dataset of main events and 

aftershocks from the Ridgecrest sequence. We do so to evaluate the relatability of our 

models with unseen events and stations and in a new region of Southern California, as 

well as data leakage that may be present in our original dataset and models.   
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CHAPTER II 

DATA AND METHODS 

Data 

We create our models using the same dataset from Southern California in order to 

directly compare the two methods, and subsequently evaluate the models on unseen 

events and stations with a dataset from the 2019 Ridgecrest sequence. Our overall 

Southern California dataset is from a previous paper (Klimasewski et al., 2019) where we 

calculated κ0 for the 16 stations. This first dataset consists of 3,357 crustal earthquakes M 

2.8-5.7 recorded on 16 stations in Southern California for a total of 52,297 records (Fig. 

1, 2). Our stations include 13 ANZA network stations: BZN, CPE, CRY, FRD, KNW, 

LVA2, PFO, RDM, SMER, SND, SOL, TRO, WMC and three Southern California 

Seismic Network (CI) network stations: ERR, PMD, SWS (California Institute of 

Technology [Caltech], 1926; Berger et al., 1984; Vernon, 1989; Southern California 

Earthquake Data Center [SCEDC], 2013). Due to the time period of our catalog, many of 

our events are aftershocks of the 2010 M7.2 El Mayor-Cucapah earthquake (Wei et al., 

2011). While Although our data consists of small magnitude events, they can help us 

understand region-specific seismology (Baltay et al., 2017; Sahakian et al., 2019). This is 

because there are no effects from a globally determined set of coefficients, which may 

not represent physical properties in this region, or complicated source effects from large 

ruptures. 

We use the horizontal components of broadband velocity seismograms and cut 

each record to start 2 s before and 60 s after the theoretical shear-wave arrival to capture 

the shear-wave signal, calculated using event time, propagation distance, and a regional 
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average crustal velocity of 3.5 km/s. We correct for instrument response and apply an 

antialiasing band-pass, cosine-tapered filter from 0 to 0.001 Hz and 35 to 50 Hz. We 

calculate PGA by taking the gradient of the velocity time series and finding the largest 

absolute value in the acceleration time series.      

Figure 1:  Study regions with event locations (dots), stations (triangles) labeled with 
station name, and U.S. Geological Survey mapped Holocene to Latest Pleistocene faults 
(lines) (USGS, 2020) a) main study region b) Ridgecrest region. The stars on the inset 
globe show the two regions. 

Fig 2: a) Magnitude vs. distance, b) PGA vs. distance, and c) magnitude vs. PGA for the 
entire dataset. 
 

The events and stations in our Ridgecrest dataset are also in Southern California, 

but outside our study area (Figure 1b). We select earthquakes with M > 2.8 occurring in 
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July 2019 with hypocenter latitude between 35°N and 36.25°N and  -118.9°E and  -

116.5°E (~2400 earthquakes), including the July 2019 M6.4 and M7.1 events (Goldberg 

et al., 2020). Similar to the Southern California dataset, we convert reported ML to M for 

events smaller than M3.5 using the relationship from Ross et al. (2016). We chose four 

Southern California Seismic Network (CI) network stations MWC, CWC, GMR, and 

GSC with measured VS30. The records are preprocessed in the same manner of our main 

study data. We calculate a simple signal-to-noise (SNR) ratio and select all records with 

SNR > 3. We set a maximum Rhyp of 235 km (maximum of study data). Site VS30 values 

are from Yong et al., (2013) and κ0 is computed from VS30 with the relationship from Van 

Houtte et al. (2011), equation 6. Because we do not have independently calculated κ0 for 

these four stations, the Ridgecrest dataset is not ideal for testing our κ0 models; however, 

it should be representative to other two models since we do have measured values of 

VS30. Our final Ridgecrest dataset consists of 1,335 events and a total of 1,894 records. 

Our models predict peak ground acceleration (PGA) as our dependent variable. We 

consider the input parameters: moment magnitude (M), hypocentral distance (Rhyp), and 

either VS30, defined as the time-averaged shear-wave velocity in the top 30 meters of the 

crust, or κ0, the near site attenuation of high frequency energy (Anderson and Hough, 

1984). We convert events with local magnitude to moment magnitude using Ross et al., 

(2016).  Site effects on PGA are often parameterized by VS30; however, some studies 

have found that the inclusion of VS30 does not always help predict ground motions 

(Gallipoli and Mucciarelli, 2009; Yong et al., 2012; Derras et al., 2016, 2017; Thompson 

and Wald, 2016; Sahakian et al., 2018; Klimasewski et al., 2019). κ0, the near site 

attenuation of high frequency energy (Anderson and Hough, 1984), has been suggested as 
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a predictor of site effects on ground motions (van Houtte et al, 2014; Laurendeau et al., 

2016). For this reason, we test sets of input parameters with no site term, a VS30 site term, 

and a κ0 site term. VS30 for each site is reported by (Sahakian et al., 2018) from the 

MASW and terrain-based proxy method from Yong et al. (2012). Only four of our 16 

stations have a measured VS30: ERR, PFO, PMD, and SWS. κ0 is calculated for each site 

with a modified version of the Andrews (1986) spectral decomposition method from 

Klimasewski et al. (2019). 

ANNs are created by training the model on a subset of the dataset, the training 

data. The model hyperparameters and architecture are tuned using a separate subset of the 

data, the validation data. The final, tuned models are evaluated with the test data. Unlike 

machine learning models, regression models are typically created and evaluated with one 

dataset, leading to possible bias in the model. In this study, we use the same training, 

validation, and testing data with both methods. We randomly split all of our events into 

60% training, 20% validation, and 20% testing data using the same random split for each 

method and set of input parameters. Splitting our data by event prevents leakage of 

individual event information between the three data splits. With only 16 stations in our 

dataset, preventing station leakage is difficult so we include records from all 16 stations 

in each split. Each model, regardless of method, is created using the training data, tuned 

with the validation data, and evaluated with the testing data.       

Mixed-Effects Maximum-Likelihood method 

Our regression method is a mixed-effects maximum-likelihood (MEML) 

technique similar to Sahakian et al. (2018), which we justify as a simple but good 

approximation because of similarity between datasets, and the small magnitude nature of 
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our events. The functional form has either six coefficients (a1 – a6), or five coefficients 

excluding the VS30 term (a1 – a5).  

���, ����	
� =  �� + ��� +  ���8.5 − ��� + �� ln�����	 + �� + �� �� �!�"#$% �1�  
For our set of inputs with κ0, we chose the functional form of the κ0 term after 

Laurendeau et al., 2013; Van Houtte et al., 2011. We also tested both a κ0 scaling linearly 

with ln(PGA) and ln(κ0) scaling with ln(PGA) by comparing the standard deviation of 

residuals on the validation data without the random site term added for various reference 

κ0 values (0.02, 0.03, 0.04, 0.05, 0.06). We found that all models had similar fits, but the 

best model had a sixth term similar to a reference VS30 term, 

�� ln � '!'"#$%,     '"#$ = 0.06 �2� 

The MEML model is a combination of the fixed effects (���, �"+�	
�� (effects 

and relationships that exist regardless of the dataset selection), random effects (,-
 +
,.�� (effects that exist due to bias from dataset selection), and aleatory residuals 

(,/
��. Here we include the event and site as random effects, for any event i and any site 

j:                    

0
�  =   ���, �"+�	
� + ,-
 + ,.�  + ,/
�  �3�  
In order to sufficiently compare methods, we fit the random effects (event and site terms) 

to the training data and add the event and site terms to the function. When comparing the 

validation and testing data, we report our results both without including any random 

effects, as well as by adding the site term. This assumes that in an unseen dataset, event 

terms would be unknown but site terms might be known a priori. However, if we were to 
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apply the model to different sites or a different geographic region, we would not add 

either event terms or site terms.  

Sahakian et al. (2018) created a five-coefficient and six-coefficient models for 

small magnitude earthquakes in Southern California (different than our dataset, but with 

some overlap). In some of their models, coefficients are explored and prescribed to 

prevent unrealistic values that come from correlated terms, such as a4 and a5. They found 

an absence of correlation between VS30 and site terms for all of their models, and 

therefore chose a five-coefficient model with no VS30 term and a4 set to -1.2 as their 

preferred model. 

We create both five and six-coefficient models with no prescribed coefficients as 

our initial coefficient values were realistic (Table S1). To verify, however, we created 

models prescribing a4 to both -1 and -1.2 and found model fit and behavior almost 

identical between models with prescribed a4 and those without. Our six-coefficient 

models include either VS30 or κ0 as the a6 parameter. We label our five-coefficient as 

MEMLns. We label our six-coefficient models with either MEMLVS30 and MEMLκ0. 

ANN method 

Over the past decade, artificial neural networks have gained popularity as an 

alternative to regression methods of creating ground motion models (Alavi & Gandomi, 

2011; Derras et al., 2012; Derras et al., 2014; Aagard, 2017; Dhanya and Rachukanth, 

2018; Khosravikia et al., 2018). An artificial neural network is a collection of weights 

and biases that represent the connections between neurons, which connect an input layer 

of dependent variables and an output layer of independent variables. The weights and 

biases are initialized as small values around zero (e.g. Glorot initialization using a 
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gaussian distribution centered around zero), and then refined during training using 

optimizers (such as gradient descent). The contribution from each node is found with 

iterative forward and back propagation of error (Geron, 2017). The process continues for 

a number of epochs until the optimal configuration of weights and biases is found. We 

use keras with the tensorflow backend to build our models (Adabi et al., 2015). Features 

are often normalized or standardized so that the scale and distribution of each feature is 

similar. We use the standard scaler method from Scikit-learn to standardize our input 

features (Pedregosa et al., 2011). The mean of each feature column is removed and is 

scaled by unit variance as fit to the training data. Our standardized input features are in 

linear and the model predicts PGA(g) in natural log space. 

After an initial grid search with a subset of model layer and unit architectures, we 

determined (x) = tanh(x) was the best activation function for the input layer as well as the 

hidden layers. We use a linear activation function for the output layer as is common for 

regression models. We use the gradient descent optimizer with a learning rate of 0.01. 

We use a batch size of 32 to speed up training and stabilize the model. The model is 

compiled with a mean squared error loss function, but evaluated with a mean absolute 

error loss metric because we look at residuals (not residuals squared). We choose this in 

an attempt to have the best model fit possible. We test models with one, two, and three 

hidden layers in order to capture complex source, path, and site phenomena. We prevent 

overtraining by comparing training error to validation error and ensuring that as the 

training error decreases the validation error does as well. 

We choose our best models using the Akaike information criterion (AIC) 

computed on the validation data (equation 3) where n = number of data points, m= 
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number of model hyperparameters (weights and biases), mse = mean squared error of 

validation data (Derras et al., 2012):            

234 = 5 × �789�  + 2 × 7 �4�  
The AIC represents the tradeoff between model fit and simplicity. Using the AIC ensures 

that between two models with similar fits, the simpler model is preferred over the more 

complex model.  

We choose our number of hidden layers and hidden units per layer with a 

hyperparameter grid search. We search models with one, two, and three hidden layers 

with between 1 and 14 units per layer for a total of 326 models for each set of input 

parameters. After the initial model runs, we choose the number of epochs by finding the 

point when validation error reaches an asymptote. We choose 200 epochs for our models 

with no site and VS30, and 400 epochs for our model with κ0. Compared to other GMMs, 

this is a large number of epochs, but we found that our deeper models required more 

training and we ensured that validation error was not increasing. 

Figure 3 shows that for our model with no site term, the standard deviation of 

residuals plateaus with more than ~100 hyperparameters, while the AIC plateaus around 

~140 hyperparameters. The lowest AIC model has 3 layers of 8, 6, and 8 hidden units, 

and we label it ANNns. The model with VS30 shows standard deviations of residuals that 

plateau around 0.87 and an AIC that also reaches a minimum value around 100 

hyperparameters (figure S6 a,d). The final VS30 model, ANNVS30, has 3 layers with 10, 4, 

and 3 hidden units. The κ0 model has a standard deviation of residuals that decreases with 

the number of hyperparameters to ~0.82 and an AIC that reaches a minimum around 100 
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hyperparameters and then slightly increases past ~300 hyperparameters (figure S7a,d). 

The final κ0 model, ANNκ0, has 2 layers of size 12 and 10 units. 

Fig 3: Details of the no site term models. a,d) AIC and standard deviation of residuals for 
the validation data in the hyperparameter grid search for ANN model, b) residuals vs. 
distance of testing data for mixed-effects maximum-likelihood model, c) residuals vs. 
distance of testing data for ANN model, e)  residuals vs. magnitude of testing data for 
mixed-effects maximum-likelihood model, f)  residuals vs. magnitude of testing data for 
ANN model. 
 

All ANN models implement 5-fold cross-validation. The training data is split into 

5 subsets by event and one instance of the model (sub-model) is trained for each subset. 

For each of the five sub-models, four of the data splits are used for training and the last 

split is used for validation, with the validation set changing with each run. We find that 

the sub-models perform similarly on each data split showing that our data folds and sub-

models are relatively consistent. The final model is a generalized model created by 

averaging the five sub-model predictions to minimize overfitting (Diamantidis et al., 

2000; Baykan and Yılmaz et al., 2011). 
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CHAPTER III 

RESULTS 
 

We compare the standard deviation of residuals between observed and predicted 

ground motions of the test data for all models (Table 1). Residuals are in natural log 

space. The distribution of residuals shows a normal shape and are centered around zero 

for all models (Fig. S5). The residuals show no trend with magnitude or distance (Fig. 3, 

S6, S7). 

Table 1: Mixed-Effects Maximum-Likelihood model performance, standard deviation of 
residuals between observed and predicted PGA for testing data. 

Performance/fit of the MEML models 

For the Southern California dataset, we find that the three MEML models have 

very similar standard deviations of residuals for all data splits for fixed effects only 

without the random effect site term added (MEMLns: σ = 0.9680, MEMLVS30: σ = 0.9615, 

MEMLκ0: σ = 0.9673). With the random effect site term, the vs30 and kappa models are 

nearly identical with the only difference after 4 significant digits (MEMLns: σ = 0.8340, 

MEMLVS30: σ = 0.8261, MEMLκ0: σ =0.8261).  

Performance/fit of ANN models 

The uncertainty of the ANN model developed and tested on the Southern 

California dataset shows more variation between sets of input parameters than the nearly 

identical MEML models. We find that ANNns has a larger standard deviation of residuals 
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than the two ANNs including a site parameter, and ANNκ0 has slightly better fit than 

ANNVS30. (ANNns: σ = 0.9547, ANNVS30: σ = 0.8455, ANNκ0: σ = 0.8137).  

Performance/fit between methods 

ANNns has similar performance to the MEML models without the random effect 

site term added to the residuals, but with the random effect site term considered in the 

residuals, the MEML model has a better fit (ANNns: σ = 0.9547 vs. MEMLns: σ = 

0.8340). ANNVS30 and ANNκ0 have significantly better performance than the MEMLVS30 

and MEMLκ0 models without the random effect site term. ANNVS30 and ANNκ0 have 

similar uncertainty to the MEML models including the random effect site terms 

(ANNVS30: σ = 0.8455, ANNκ0: σ = 0.8137, MEMLVS30: σ =  0.8261, MEMLκ0: σ = 

0.8261).  

While the MEML method results in a coefficient for each variable 

parameterization, the ANN model is non-parametric and allows for much more freedom 

in the underlying relationships between parameters, but is also more complex and 

difficult for human interpretation. We examine the behavior of the ANN and MEML 

methods by plotting both GMM curves against distance and magnitude for each site and 

set of input parameters. Here we look in detail at two sites; WMC located in the center of 

the Anza network which represents a site in our dataset with a relatively smooth model in 

distance and magnitude, and SWS, a Southern California Seismic Network (CI) station 

located south of the Salton Sea on Superstition Mountain which shows anomalous site 

behavior compared with other sites (Fig. 4,5). 

In general, the ANNns curves show larger deviation from the MEML models 

because, without a term to differentiate between sites, they are the same for every site 
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while the MEMLns curves are linear with a constant shift up or down from the random 

effects site residual (Fig. 4b, 5b). The ANNns curves show changes in slope at various 

distances, and to some degree, magnitudes (Fig 4,5). From 40-60 km and 110 km – 140 

km, the smaller magnitude ANNns curves show a shallower slope than the MEML curves. 

At other distances, 79 – 100 km and 140-200 km, the ANNns curves show a steeper slope 

than the MEMLns curves. 

Figure 4:  PGA vs distance and PGA vs magnitude for station WMC. Observations of test 
data (points) and model predictions for various magnitudes and distances with the mixed-
effects maximum-likelihood models (dashed lines) and artificial neural networks (solid 
lines). a,d) with no site term, b,e) with VS30 site term, c,f) and with κ0 site term. 
 

The ANN models with κ0 or VS30 show variations with each site. Since they 

contain a parameter to differentiate between sites, the neural network is essentially able to 

create a different model with varying relationships between parameters for each site. For 
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WMC, both ANNVS30 and ANNκ0 (Fig. 4c,d) follow the MEML curves fairly well. The 

larger deviations are at the smallest and largest distances where there are limited data.  

Figure 5:  PGA vs distance and PGA vs magnitude for station SWS. Observations of test 
data (points) and model predictions for various magnitudes and distances with the mixed-
effects maximum-likelihood models (dashed lines) and artificial neural networks (solid 
lines). a,d) with no site term, b,e) with VS30 site term, c,f) and with κ0 site term. 
 

SWS has a group of anomalously low ground motions from 25-100 km (101.4-

102.0) from events from a range of azimuths, but particularly a group of El Mayor-

Cucapah aftershocks. These low ground motions are not captured in the MEML models 

or ANNns, but they are captured to some extent in ANNVS30 and ANNκ0. The ANNκ0 

curves show strong deviation from MEMLκ0 with the distance curves dipping steeply 

from about 20-50 km and then either sloping upward (M=3.8, 4.3, 3.8) or flattening from 

about 50-160 km (M=2.8, 3.3) with the exact distances varying slightly with magnitude. 

At distances past 160 km, the curves slope downward with similar slopes to MEMLκ0.  
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Site residuals vs. κ0 and VS30 

To understand the role of site parameters in our models, we compare our three 

MEML site residuals to both site parameters (VS30, and κ0). We define site residuals for 

MEML models as the random effect site term, ,.�, for any site j. Sahakian et al. (2018) 

found none of their 5 or 6-coefficient MEML models show a correlation between random 

effect site residuals and VS30. Similarly, we find that none of our three MEML models 

show a correlation with VS30 (MEMLns: R= -0.2018, 6-coefficient MEMLVS30: R= 

0.0180, MEMLκ0: R= -0.2405) (Fig. S3). While a few studies have implemented random 

effects into their ANN method in order to capture event and site residuals (Derras et al., 

2014; Derras et al., 2016), we simply compute site residuals for the ANN models as the 

average of the residuals for all records at a given station, to represent its un-modeled 

contributions to ground-motions.  The MEML random effect site terms are inverted for 

simultaneously with the model coefficients (fixed effects) and are technically included in 

model predictions. The ANN site residuals are not included in the predictions because 

they are calculated after the models are finalized and not during the model development 

step like the random effect residuals.  We also find no evidence of a correlation between 

the average site residuals from our three ANN models and VS30 (ANNns: R= -0.1959, 

ANNVS30: R= -0.0192, ANNκ0: R= -0.3815) (Fig. S3). 

Klimasewski et al. (2019) found a correlation between 5-coefficient site residuals 

of Sahakian et al. (2018) and κ0. The correlation suggested that including κ0 could help 

improve the model. However, for the site residuals computed with our data, we see no 

correlation between κ0 and the MEML site residuals (MEMLns: R= -0.0866, MEMLVS30: 

R= -0.1978, MEMLκ0: R= -0.0070), which implies no correlation between κ0 and each 
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sites’ contributions to the observed ground-motion. We also see no correlation between 

κ0 and any of the ANN models site residuals (ANNns: R= -0.0857, ANNVS30: R= -0.0293, 

ANNκ0: R= -0.0371) (Fig. S4). 

  Between ANN vs. MEML models with the same input parameters, we compare 

residuals per site (Fig. 6). We find strong correlation between residuals from MEMLns 

and ANNns. Residuals are nearly one-to-one (Fig. 6a: R=0.9978, p=0.0000, power = 

0.9612). Site residuals are quite consistent for all three MEML models, but including a 

site input parameter to the ANN models results in a narrower distribution of site 

residuals. The models with site parameters show site residuals that are also correlated, but 

less strongly (Fig. 6b, ANNVS30: R=0.6292, p=0.0090, power = 0.6531; Fig. 6c, ANNκ0: 

R=0.8216, p=0.0001, power = 0.8665). 

Figure 6:  Comparing average residuals per site from ANN models and mixed-effects 
maximum-likelihood models for a) models with no site term b) models with VS30 c) 
models with κ0. 
 
Performance/fit of the models on Ridgecrest testing data 

We find that the mixed-effects maximum-likelihood models perform very well 

with the Ridgecrest earthquakes and aftershock dataset. All three MEML models have 

better fit on the Ridgecrest dataset than the study testing dataset (σRidge =~ 0.71). Figures 

7, S6, and S7, show histograms of both ANN and MEML models on the testing data and 
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Ridgecrest data. ANNns demonstrates a better fit on Ridgecrest data than the testing 

dataset (σRidge = 0.8195 vs. σTest = 9619). ANNVS30 exhibits a worse fit on Ridgecrest data 

than testing data ( σRidge = 1.1543 vs. σTest  = 8556). ANNκ0 has a very similar fit on 

Ridgecrest data and testing data (σRidge =8195 vs. σTest  = 8112). The residuals vs. 

magnitude and distance plots show some trends with distance, but it may be related to 

only 4 stations and each station has records from a narrow range of distances. The 

MEML residuals from the M6.4 and M7.1 earthquakes are centered around zero while 

the ANN models have positive residuals except for CWC (Fig. 7g,h, S6g,h, S7g,h). 

Because the ANN is trained on smaller magnitude earthquakes, the model appears to be 

underpredicting PGA for the larger earthquakes outside the training domain. Finally, we 

find an average of zero for bins of residuals for earthquakes of M<3.5, indicating that the 

local to moment magnitude conversion of Ross et al. (2016) is sufficiently applicable in 

this region. 
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Fig 7: Performance of the no site term models with the Ridgecrest test data and 
comparison with study testing data. Histogram of residuals between observed and 
predicted PGA for a) study testing data with ANN no site model, e)  study testing data 
with mixed-effects maximum-likelihood with no site term model, b) Ridgecrest data with 
ANN no site model, f) Ridgecrest data with mixed-effects maximum-likelihood with no 
site term model. c) residuals vs. distance and g) residuals vs. magnitude of Ridgecrest 
data for mixed-effects maximum-likelihood no site term model, d) residuals vs. distance 
and h) residuals vs. magnitude of Ridgecrest data for ANN no site term model. 
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CHAPTER IV 

DISCUSSION 

MEML vs. ANN Methods 

We first compare, with regards to performance (standard deviation), the MEML 

models to the ANN models with the same input parameters. Between models with no site 

input parameter, the MEML method performs much better than the ANN. This is likely 

because the MEML includes the random effects site residual, while the ANN has no way 

to differentiate between sites. Interestingly, MEMLns without the site residuals added 

(without considering the effects of the random effect site term when computing model 

residual standard deviations) has very similar performance to the ANNns model (σ  = 

0.9680 and σ  = 0.9547; Table 1). ANNVS30 and ANNκ0 have significantly smaller 

uncertainties than MEMLVS30 and MEMLκ0 without the random effect site terms 

included, but including the random effect site terms performance is comparable. 

Next, we compare the resulting distributions of site residuals, with respect to how well 

the ANN vs. MEML methods integrate site properties into their ground-motion 

estimations. Site residuals between the two methods correlate well, between models 

created with the same parameters (i.e., between MEMLns and ANNns), but to varying 

degrees (Fig. 6a). The random effect site terms from MEMLns are very close in value to 

the ANNns site residuals, despite being calculated differently. While we add the random 

site term to the MEML predictions, we do not add it to the ANN predictions. Between 

our three MEML models, the distribution of site residuals is consistent (see x-axis 

histograms on Fig. 6a-c). The site residuals from MEMLVS30 have a narrower distribution 

than the MEMLns and MEMLκ0 residuals (Fig. 6). The site residuals resulting from 
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MEMLκ0 are less correlated with the site residuals from ANNκ0; site residuals between 

MEMLVS30 and ANNVS30 are even less correlated. This indicates that including VS30 

captures some of the site effects on PGA so that the site uncertainty is decreased for the 

ANN model, but the MEML model stays the same. The MEML site residuals are 

systematically slightly higher than the ANN site residuals for the models with VS30. 

MEMLκ0 site residuals correlate well with the ANNκ0 site residuals, but follow less of a 

one-to-one trend compared to the models with no site term.  

Together, these observations indicate that without explicit identification of the site 

within the ANN model (i.e., one-hot encoding, Potdar et al., 2017), the ANN models 

learn relationships between these site parameters, and ground-motion effects. This 

suggests that the non-parameterization in the ANN could be promising for its predictive 

power, and for better understanding the relationship between site parameters and ground 

motions when compared to the current prescribed form between PGA, and κ0 or VS30 

(equations 1, 2). However, with our relatively small number of stations, the κ0 model may 

effectively be differentiating between sites by unique κ0 values instead of finding a 

physical relationship between κ0 and site effects. The ANN models are able to capture 

linear and nonlinear site effects while the MEML models must follow the prescribed 

relationship ln(PGA) ∝ ln(VS30) or ln(κ0) (equation 1).  

Performance with κ0 and VS30 

Including an input site parameter greatly improves the ANN models, but does not 

appreciably affect the fit of the MEML model. However, there is no evidence of a 

correlation between either input site terms and the site residuals for any of our models 

(Fig. S3, S4). This means that differentiating between sites in the ANN is important, but 
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that the physical relationship given by a particular site parameter (VS30, κ0) in the 

functional form is not well-constrained or defined. 

A previous study found that κ0 correlated well (R = −0.6128, p-value = 0.0116, 

power = 0.6302) with MEML site residuals (Klimasewski et al., 2019). Sites with larger 

κ0 values generally had negative site residuals indicating that the more attenuating sites 

tended to have lower ground motions than predicted, while sites with smaller κ0 values 

tended to have positive site residuals indicating that the less attenuating sites had larger 

observed ground motions that predicted. The same site residuals showed no evidence of a 

correlation with VS30 values, although since most VS30 values for these sites are proxy 

values, they may not represent the actual VS30 values at the sites. 

The lack of a correlation between site residuals and both VS30 and κ0 suggests that 

we may not have the correct parameterization in the MEML model or that κ0 and VS30 are 

not important in predicting for PGA in our data set, but would be important to Fourier 

amplitude spectra (FAS, Abrahamson and Bayless, 2018) or other independent ground-

motion parameters. 

Capturing region- and path-specific effects  

In GMMs, the path is often represented only by geometric spreading term and 

anelastic attenuation terms. Epistemic path uncertainty is a significant contributor to 

overall uncertainty (Lin et al., 2010; Kuehn, Abrahamson, Walling, 2019). Fortunately, 

path effects can be studied with data from small magnitude events and applied in the 

prediction of ground motions for larger magnitude events (Baltay et al., 2017; 

Abrahamson et al., 2018; Sahakian et al., 2019). Capturing spatial variability in path 

effects is important for non-ergodic models. Deviations in the ANN models from the 
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MEML predictions communicate information about potential path and site effects that are 

not captured in the functional form of the MEML model. As seen in figures 3 and 5, our 

ANN models are very dataset specific; however, they are not over-trained since the 

training, validation, and testing data all show consistent fits. Our ANN GMMs are not 

models that would be used in practice for hazard applications, because they are specific 

to our narrow distribution of events and stations both in space and time. Figures 4 and 5 

show that in domains where we do not have a lot of data (large magnitudes and close 

distances), model curves are not consistent. In domains where we have many data points, 

such as El Mayor-Cucapah aftershocks recorded on Anza stations (distances ~112-

140km) we see shallower slopes between model predicted PGA and distance in many of 

the ANN models. This could be caused by a common source, path, or site effect. 

We seek to use the ANN models to 1) compare fit to the more traditional 

regression based MEML method 2) harness the complexities found in the ANN models to 

learn about path- and site-specific effects in our study region, and their potential 

contributions to developing non-ergodic models.  

The dip seen in the SWS curves (Fig. 5b,c) for the ANN models with a site term 

is not seen at any other stations. These low ground motions are seen in the training, 

validation, and testing data. It is not obvious what causes these low ground motions. SWS 

has an average VS30 (measured) and κ0. Figure S11 shows all earthquakes recorded on 

SWS with PGA less than 10-5 m/s2 with event to station distances between 16 and 100 

km. Most of the lower than expected ground motions recorded on SWS are small 

magnitude El Mayor-Cucupah aftershocks. They are relatively shallow, and most events 

are located at a less than 10 km depth. (Fig. S11). They could be due to raypaths traveling 
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in shallow metamorphosed ancient Lake Cahuilla and Gulf of California rift sediments, 

with lower velocity, and/or more attenuating (Hauksson et al., 2006; Han et al., 2016; 

Sahakian et al., 2016). While we do not further explore these observations, we expect that 

they may be useful for informing studies that seek to incorporate physical properties into 

fully non-ergodic ground-motion models (Baltay et al., 2017; Sahakian et al., 2019), for 

both seismic hazard and earthquake early warning applications.  

ANN and MEML on unseen Ridgecrest data 

While our results have demonstrated that the ANN appears to be a better model 

for our dataset with respect to model fit, as well as representation of non-ergodic 

behavior not represented in the MEML model, several questions remain regarding the 

model applicability to new regions with different crustal properties, new stations (for 

which there were no random effect site term to include in estimating ground-motion), and 

earthquake magnitudes outside the original models’ range. To test this, we evaluate our 

models on an independent dataset of Ridgecrest earthquakes. For this dataset, we have no 

random effects terms in the MEML because these are new events and stations. We find 

that the MEML models have a better fit than the ANNs, but ANNns and ANNκ0 perform 

well on the new data. ANNVS30 has a worse fit than MEMLVS30. VS30 may not accurately 

represent site effects for these four sites. Interestingly, ANNκ0 has much better 

performance on the new data than ANNVS30 despite the kappa values being a function of 

VS30.We note, however, that we apply hypocentral distance (Rhyp) instead of closest 

distance to rupture (Rrup) in our original models. This was a valid assumption for the 

original, small-magnitude Southern California dataset, however the larger events in the 

Ridgecrest sequence do not behave as point sources. The difference between Rhyp and 
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Rrup is Between 0.8% and 11.7% difference for the M6.4 earthquake and between 11.4% 

and 44.8% difference for the M7.1 earthquake (Goldberg et al., 2020). This distance 

assumption may alter and bias our results in applying these models, and future studies 

should incorporate more representative distance metrics such as Rrup. 

These results indicate that while the ANN models are generally similar or 

outperform the MEML models on the original training dataset, they may not be 

applicable in a new region without additional constraints. For example, our study has 

demonstrated that the ANN seems to learn more complex, non-ergodic path and site 

effects not represented in the MEML functional form. However, when applied to a new 

region, these original effects learned by the ANN are no longer applicable. ANN models 

developed with a more balanced dataset of stations and events may be more portable to 

new regions. Although advantageous for region-specific studies in areas with many 

seismic observations, an ANN approach would likely be deficient for regions with a 

dearth of seismic data to use in a training dataset. In these cases, a MEML model may be 

preferred, or numerical simulations of earthquakes could be used to fill this “data gap” in 

an ANN. 
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CHAPTER V 

CONCLUSION 

This study compares two methods of creating GMMs for small magnitude 

earthquakes in Southern California: (1) a more traditional, statistically-based, maximum 

likelihood mixed effects regression, and (2) a machine learning, nonparametric artificial 

neural net. This work shows that the methods perform similarly on identical testing data, 

but that the ANN may learn more detailed behavior without the need to predefine 

relationships between parameters. When applied to an unseen dataset, the MEML model 

generally outperforms the ANN model, indicating that the detailed regional behavior 

learned by the ANN model is not applicable to new regions without additional 

constraints. 

Our models only include two or three input parameters, but our results indicate 

that machine learning methods will be more effective for datasets with many more 

dependent parameters – particularly those that are less physics-based in their prescribed 

functional form (i.e., faulting type terms, hanging wall terms, etc.). Studies such as 

Derras et al., (2014) and Aagaard et al., (2017) show that including more input variables 

generally increases model performance. Unlike a regression model where the functional 

form and potential tradeoffs must be determined before include a new input parameter, it 

is easy to add more parameters to an ANN model compared to a regression method.  

In the future, using one-hot encoding to differentiate between sites may help 

illuminate and quantify the physical basis that other site parameters contribute to 

predicted ground motions, as well as expanding to larger databases with a wider variety 

of magnitudes. Including further dependent parameters and intensity measures beyond 
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PGA, such as Fourier amplitude spectrum, will also be important for evaluating the 

effectiveness of machine learning models (Abrahamson & Bayless, 2018). 
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APPENDIX 
 

SUPPLEMENTAL TABLES AND FIGURES 
 
This appendix contains a table of the mixed-effects maximum-likelihood model 
coefficients. Figures S1 and S2 show contour and gridded plots of PGA for our test 
dataset. Figures S3-S5 show the distribution of model residuals and with κ0, and VS30. 
Figures S6 and S7 give details of the VS30 and κ0 models hyperparameter grid search and 
both MEML and ANN residuals vs. magnitude and distance (similar figure 3 for the no 
site term models). Figure 8 is a plot of the top 10 best performing models as determined 
by the AIC for the three neural network models. Figures S9 and S10 are similar to figure 
7, but they show the Ridgecrest test for the VS30 and κ0 models. 
 
Table S1: Table with mixed-effects maximum-likelihood model coefficient values. 
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Figure S1: Contour plots of predicted PGA as a function of magnitude and distance 
(testing data) for a) 5-coefficient mixed-effects maximum-likelihood model b) artificial 
neural network with no site term c) 6 coefficient VS30 mixed-effects maximum-likelihood 
model d) artificial neural network with no site term with VS30 e) 6-coefficient κ0 mixed-
effects maximum-likelihood model f) artificial neural network with no site term with κ0. 
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Figure S2: Median observed PGA values gridded in distance and magnitude and colored 
by value of PGA for testing data. 
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Figure S3: Average residuals between observed and predicted ground motions for each 
site plotted vs. site VS30 for mixed-effects maximum-likelihood models with a) 5-
coefficient model with no site term b) 6- coefficient model with VS30 site term c) 6-
coefficient model with κ0 site term d) ANN model with no site term e) ANN model with 
VS30 site term f) ANN model with κ0 site term. 
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Figure S4: Average residuals between observed and predicted ground motions for each 
site plotted vs. site κ0 for mixed-effects maximum-likelihood models with a) 5-coefficient 
model with no site term b) 6-coefficient model with VS30 site term c) 6-coefficient model 
with κ0 site term d) ANN model with no site term e) ANN model with VS30 site term f) 
ANN model with κ0 site term. 
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Figure S5: Histogram of residuals between observed and predicted PGA for training, 
validation, and testing data for a) 5-coefficient mixed-effects maximum-likelihood model 
b) 6-coefficient VS30 mixed-effects maximum-likelihood model c) 6-coefficient κ0 mixed-
effects maximum-likelihood model d) Artificial Neural Network with no site parameter 
e) Artificial Neural Network with VS30 site parameter f) Artificial Neural Network with 
κ0 site parameter. 
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Figure S6: Details of the VS30 models. a,d) AIC and standard deviation of residuals for 
the validation data in the hyperparameter grid search for ANN model, b) residuals vs. 
distance of testing data for mixed-effects maximum-likelihood model, c) residuals vs. 
distance of testing data for ANN model, e) residuals vs. magnitude of testing data for 
mixed-effects maximum-likelihood model, f) residuals vs. magnitude of testing data for 
ANN model. 
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Figure S7: Details of the κ0 models. a,d) AIC and standard deviation of residuals for the 
validation data in the hyperparameter grid search for ANN model, b) residuals vs. 
distance of testing data for mixed-effects maximum-likelihood model, c) residuals vs. 
distance of testing data for ANN model, e) residuals vs. magnitude of testing data for 
mixed-effects maximum-likelihood model, f) residuals vs. magnitude of testing data for 
ANN model. 
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Figure S8: Model predictions vs. distance and magnitude for the top 10 performing 
models of each configuration a,d) no site parameter b,e) VS30 site parameter c,f) κ0 *note 
consistency (small variance) between models and narrow spread. 
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Fig S9: Performance of the VS30 models with the Ridgecrest test data and comparison 
with study testing data. Histogram of residuals between observed and predicted PGA for 
a) study testing data with ANN VS30 model, e) study testing data with mixed-effects 
maximum-likelihood VS30 model, b) Ridgecrest data with ANN VS30 model, f) Ridgecrest 
data with mixed-effects maximum-likelihood VS30 model. c) residuals vs. distance and g) 
residuals vs. magnitude of Ridgecrest data for mixed-effects maximum-likelihood VS30 
model, d) residuals vs. distance and h) residuals vs. magnitude of Ridgecrest data for 
ANN VS30 model. 
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Fig S10: Performance of the κ0 models with the Ridgecrest test data and comparison with 
study testing data. Histogram of residuals between observed and predicted PGA for a) 
study testing data with ANN κ0 model, e) study testing data with mixed-effects 
maximum-likelihood κ0 model, b) Ridgecrest data with ANN κ0 model, f) Ridgecrest data 
with mixed-effects maximum-likelihood κ0 model. c) residuals vs. distance and g) 
residuals vs. magnitude of Ridgecrest data for mixed-effects maximum-likelihood κ0 
model, d) residuals vs. distance and h) residuals vs. magnitude of Ridgecrest data for 
ANN κ0 model. 
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Figure S11: Map of events recorded on SWS with log10(PGA) < -5 at distances between 
16 and 100 kilometers. 
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