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DISSERTATION ABSTRACT 

Maria Soledad Bañuelos 

Doctor of Philosophy 

Department of Biology 

September 2020 

Title: Autoinducer-2 Quorum Sensing Regulation of Bacterial Colonization and Population 
Distribution in the Zebrafish Intestine 
 

Quorum sensing is a mode of bacterial communication that relies on the 

production and secretion of signaling molecules known as autoinducers. Group-wide 

detection of autoinducers gives rise to collective gene expression patterns that make 

coordinated group behaviors possible. Behaviors vary across bacterial species but often 

include: secretion of virulence factors, changes in motility, and biofilm formation. While 

many autoinducers exhibit high specificity and are used to foster intraspecies 

communication, one molecule known as Autoinducer-2 (AI-2) is produced and detected 

by numerous bacterial species. Interestingly, while AI-2 is known to mediate aggregation 

and biofilm formation of bacteria through the traditional gene regulatory mechanisms, it 

uniquely can also do so through the use of chemotaxis signaling. For example, 

Helicobacter pylori perceives AI-2 as a chemorepellent and in turn this chemorepulsion 

response results in cell dispersal from biofilms. Conversely, in Escherichia coli AI-2 

induces cell aggregation via gene expression changes and by serving as a chemoattractant 

that recruits cells to aggregates. Currently much of the research involving AI-2 has been 

carried out in monoculture in vitro biofilms and has focused on the role of AI-2 as a 

mediator of biofilm formation and biofilm membership. Here we investigate the role of 
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AI-2 in colonization and spatial distribution of bacterial communities inside an animal 

host. To address this we colonized larval zebrafish with wild type E. coli, an AI-2 

synthesis mutant ∆luxS, or an AI-2 signaling mutant ∆lsrR. We then used a combination 

of plate based assays and live imaging to determine the abundance and spatial 

distribution of the gut bacteria. We observed that in a mono-association, E. coli mutants 

lacking the ability to produce or detect AI-2 showed increased intestinal abundance. 

Additionally, we observed differing spatial localizations between populations of ∆luxS 

bacteria that had been untreated or treated with AI-2. Populations exposed to AI-2 

localized more distally along the axis of the intestine, consistent with increased 

displacement. Further, we showed that native gut bacteria of the zebrafish exhibit 

analogous responses to AI-2, indicating that interspecies AI-2 signaling could play an 

important role in microbiome composition and biogeography.  

This dissertation includes previously unpublished co-authored material. 
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CHAPTER I 

INTRODUCTION 

Quorum Sensing: Communication in the bacterial world 

For many years it was believed that bacteria functioned solely as individual 

organisms that competed with one another for resources. It was not until the 1970’s that 

evidence suggestive of bacterial collective behaviors came to light. In a seminal paper, 

Nealson et al. reported that Vibrio fischeri produced extracellular molecules that induced 

population-wide luminescence (1). While at first this was thought to be a unique trait to 

V. fischeri, by the 1990’s the idea of bacterial cell communication and group behaviors 

was widely accepted as true for many bacterial species.  This method of bacterial cell-to-

cell communication would be coined quorum sensing (QS)(2). 

 QS is a type of bacterial cell signaling mechanism that involves the production, 

secretion, and detection of small molecules known as autoinducers. Autoinducers 

accumulate in the local environment in a cell density dependent manner and are detected 

via autoinducer specific receptors (3–9). Group-wide detection of autoinducers results in 

altered global gene expression patterns that trigger collective behaviors such as 

bioluminescence, the production of public goods, the secretion of virulence factors, 

changes in motility, and biofilm formation (5–19).While these behaviors can be costly for 

individual cells, they become effective when performed by the entire population (2, 8, 20)       
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Fostering interspecies communication with Autoinducer-2   

Several autoinducers have now been identified and grouped into two broad 

categories: small peptides produced by Gram positive bacteria and Acyl-Homoserine 

Lactones (AHLs) produced by Gram negative bacteria (2–9). These QS signals are often 

species or genus specific, promoting intraspecies communication (2–9). However, one 

autoinducer, known as Autoinducer-2 (AI-2), falls outside of these two categories and is 

shared by both Gram positive and Gram negative species (6, 12, 25). AI-2 is a furanol 

diester that is produced by the enzyme LuxS as a byproduct of the activated methyl cycle 

(6, 12, 25). The luxS gene is found in over 500 species of bacteria, suggesting that AI-2 

production is extremely common (26). Due to its ubiquitous nature, AI-2 has been 

suggested to foster interspecies communication (6, 12, 25, 26). 

Interestingly, while AI-2 is produced by a variety of bacterial species, the 

receptors for AI-2 and the collective behaviors mediated by AI-2 differ across species. To 

date, four unique AI-2 binding proteins have been identified one in Vibrio harveyi, one in 

Escherichia coli, and two in Helicobacter pylori (27–29). These three bacteria also 

display unique responses to the AI-2 molecule. In V. harveyi AI-2 induces luminescence, 

in E. coli it serves as a chemotactic cue and induces biofilm formation, and in H. pylori it 

serves as a chemotactic cue that promotes biofilm dispersal (27–29). It is important to 

note that while only four AI-2 binding proteins have been identified, AI-2 has been 

shown to elicit QS behaviors in a much larger number of species (19, 30–35).  
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The effects of AI-2 QS on host-associated community composition 

As our knowledge about the molecular mechanisms underlying QS expands, we 

are shifting our interests to understanding the role of QS in the context of host associated 

microbial communities. Evidence suggesting that AI-2 QS modulates host-associated 

community composition is limited but is none the less striking. Work done in the Gordon 

lab showed that after co-colonizing gnotobiotic mice with Vibrio cholerae and a 

community of human species, a human isolate of Ruminococcus obeum restricted 

colonization of V. cholerae and did so by increasing its own production of AI-2 (36). R. 

obeum AI-2 was then shown to cause QS mediated repression of several V. cholerae 

genes (36). Further, work done by the Xavier lab showed that altering AI-2 

concentrations in the mouse gut resulted in changes in the microbial community 

composition (37). In this case, the authors gave mice a treatment of antibiotics and found 

that this induced dysbiosis of the mouse intestinal community, nearly clearing out the 

Firmicutes. However upon colonization with E. coli strains that were engineered to 

increase intestinal AI-2 concentrations, expansion of Firmicutes was observed (37). 

These studies demonstrate that AI-2 QS in the vertebrate intestine can alter community 

composition through both intraspecies and interspecies interactions.  

While these examples demonstrate AI-2 mediated bacterial community 

composition shifts, the mechanism by which AI-2 regulated bacterial behaviors to alter 

colonization and membership have not been elucidated. In fact, the majority of AI-2 QS 

research does not focus on composition changes but rather on revealing the mechanisms 

by which AI-2 mediates in vitro biofilm formation and spatial structure. AI-2 has been 
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shown to regulate biofilm formation in a number of  diverse organisms such as 

Escherichia, Helicobacter, Bacillus, Streptococcus, Aggregatibacter, Pseudomonas, 

Staphylococcus, and Klebsiella (18, 19, 27, 31–34, 38, 39). Work done in the Guillemin 

lab investigated the role of AI-2 in H. pylori biofilm formation and found that AI-2 

results in dispersal from biofilms (27). They further elucidated the mechanism governing 

this behavior and discovered that H. pylori perceives AI-2 as a chemotactic cue that the 

bacteria swim away from (17, 27, 40). In a high cell density community such as a 

biofilm, where AI-2 accumulates to higher concentrations, cells experience 

chemorepulsion from AI-2, ultimately causing them to leave the biofilm (17, 27, 40). 

Cells unable to chemotax away from AI-2 produced larger biofilms with a more 

homogenous organization of bacterial cell clusters (27). Agent-based modeling was then 

used to simulate H. pylori biofilm growth of strains with varying AI-2 producing and 

sensing capabilities (40). The simulations recapitulated the previous observations and 

provided a more detailed view of the biofilm structures (40). Ultimately the modeling 

supported the idea that cells that dispersed from biofilms due to chemorepulsion from AI-

2 formed smaller and more heterogeneously spaced biofilms, whereas cells that were 

defective for AI-2 chemotaxis produced larger and more evenly spaced structures (27, 

40). While this example of how AI-2 signaling mediates biofilm formation and structure 

may seem disconnected to the mechanisms by which AI-2 influences host-associated 

microbial composition, it is important to recognize the role of biofilm formation as 

analogous to aggregate formation. Although there is debate in the field about whether 

biofilms and bacterial aggregates are one in the same, ultimately both are cell clusters 
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that have the capacity to be sources of AI-2. To further expand on this connection, in the 

following section I will review the key features connecting aggregation to host 

microbiota community composition and biogeography.  

 

Bacterial cohesion in the zebrafish intestine 

In an effort to characterize the behavior of the zebrafish resident microbiota, the 

Guillemin and Parthasarathy labs conducted a high-resolution comparative study of 

bacterial distribution patterns throughout the intestine of live, larval zebrafish (41). The 

bacterial symbionts that were used showed large differences in cohesion (the degree to 

which they aggregate) and spatial distribution (41). The study revealed a striking 

correlation between each strain’s position along the intestine and its cohesive properties 

within the intestine. Those strains that experienced more aggregation tended to localize in 

the distal regions of the intestine (41). Strains that experienced less aggregation and thus 

had more planktonic individuals in the population, tended to localize to the anterior 

regions of the intestine (41). The strong correlation between the cohesive nature of strains 

and their localization along the gut illustrated the generality of the role of cohesion in the 

stability of bacterial populations in the intestine. In depth analysis of certain bacterial 

strains with live imaging demonstrated that the larval zebrafish intestine undergoes 

peristalsis-like movements that result in the expulsion of bacterial communities (41–44). 

Bacteria that are highly clustered experience these peristaltic contractions more acutely 

and are displaced in the distal intestine. Here they are subject to more expulsion events as 

these peristaltic movements are amplified in the distal portion of the intestine (41–44). 
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These expulsion events, depending on the cohesive nature of the bacteria, can result in 

the expulsion of up to ~90% of the population (41–44). The continuous movement of the 

intestinal walls means that all bacteria experience expulsion events and it is the remaining 

planktonic cells that go on to repopulate the intestine by proliferating. However, for those 

populations that are highly aggregated, an expulsion event can result in complete 

extinction from the intestine (42, 43). This was shown in a subsequent study where 

zebrafish were singly colonized by highly aggregated Enterobacter or highly planktonic 

Vibrio and treated with antibiotics (42). While the antibiotics were shown to induce 

aggregation in both strains, increased aggregation of Enterobacter, which started off 

highly clustered, resulted in depletion of all planktonic cells. When Enterobacter was 

then expelled from the intestine, there were no remaining cells to repopulate, leading to 

the disappearance of Enterobacter from the intestine (42).  

In a separate study, the impact of bacterial cohesion was investigated in the 

context of competition between two bacterial species in the intestine (43). In this study, 

larval zebrafish were colonized with a single, highly aggregated strain of Aeromonas, or 

were colonized by a two species community consisting of Aeromonas and a highly 

planktonic strain of Vibrio (43). When Aeromonas was on its own, it experienced 

expulsion events but was able to repopulate the intestine. Interestingly, when invaded 

with Vibrio, the Aeromonas was unable to repopulate (43). This same experiment was 

carried out in zebrafish that exhibited reduced peristalsis due to a mutation in the ret 

gene, and in this case Aeromonas was able to persist in the presence of Vibrio (43). This 

work suggests that the inherent cohesiveness of the bacterial population in conjunction 
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with host intestinal movements can have a large impact on the composition and spatial 

distribution of the microbiota. These findings motivate the hypothesis that factors that 

govern bacterial aggregation, such as AI-2, are likely to impact the composition and 

spatial distribution of bacterial communities within the intestine. Therefore, in a first 

study of AI-2 impacts on bacterial population spatial dynamics in vivo, I will use the 

larval zebrafish system to investigate a role for AI-2 QS in host colonization and 

determine the role of AI-2 mediated cohesion on the spatial distribution of bacterial 

populations in the intestine.  

 

Bridge 

In the following chapters of my dissertation I will discuss my efforts to determine 

the role of AI-2 QS in host colonization and bacterial spatial distribution. Chapter II will 

center on my work using the larval zebrafish model to demonstrate that AI-2 QS results in 

distal displacement of bacterial populations and leads to reduced intestinal colonization 

levels. From this work, I identified two closely related Vibrio species that carry the same 

AI-2 QS receptors and associated genes yet display different phenotypes when exposed to 

AI-2. Chapter III will discuss a bioinformatic approach I took to explain why these two 

Vibrio isolates differ in AI-2 responses despite carrying the same AI-2 QS gene network. 

Finally, in chapter IV I will put my work into the larger context of the impacts of AI-2 QS 

on the composition of multispecies bacterial communities. 

Chapters II and III contain co-authored, unpublished material by myself and 

collaborators: Dr. Brandon Schlomann (Parthasarathy Lab, University of Oregon) who 
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performed the light sheet fluorescence microscopy imaging in chapter II and Claire 

Pokorny (Guillemin lab, University of Oregon) who helped generate genetic tools, 

performed gut dissections, and carried out Vibrio sequence alignments for chapters II and 

III. 
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CHAPTER II  

AUTOINDUCER-2 SIGNALING ALTERS INTESTINAL 

COLONIZATION AND SPATIAL DISTRIBUTION OF BACTERIAL 

COMMUNITIES IN THE ZEBRAFISH INTESTINE 

 
This chapter contains unpublished, co-authored material. Brandon Schlomman 

(Parthasarathy Lab, University of Oregon) collected the light sheet imaging data and 

assembled Figure 2 panels A-C and Figure 3 panel A.  Claire Pokorny (Guillemin Lab, 

University of Oregon) aided in data collection for Figures 1, 3 and 4.  

Introduction 

Quorum sensing (QS) is a form of bacterial cell communication by which bacteria 

coordinate group-wide behaviors in response to changes in cell density (1-8). QS 

involves the cellular production, secretion, and detection of small signaling molecules 

known as autoinducers (1-8). Detection of autoinducers leads to altered gene expression 

patterns that give rise to population-wide behaviors (1–8). QS can regulate an expansive 

set of behaviors including bioluminescence, motility, virulence factor production, and 

biofilm formation (2, 4–8).  

Many QS signals are species or genus specific, allowing only intraspecies 

communication to take place. However, one molecule known as Autoinducer-2 (AI-2) is 

thought to foster interspecies communication due to its prevalence in both Gram positive 
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and Gram negative bacterial species (6–8, 25, 45). AI-2 has been implicated in 

aggregation and biofilm formation in a wide variety of bacterial species such as 

Escherichia, Helicobacter, Bacillus, Streptococcus, Aggregatibacter, Pseudomonas, 

Staphylococcus, and Klebsiella (11, 18, 19, 27, 30–35, 39). In the case of Escherichia 

coli AI-2 has been shown to induce aggregation both via changes in gene expression 

patterns and as a chemoattractant that recruits cells to aggregates (11, 18, 28, 46, 47). In 

contrast, Helicobacter pylori perceives AI-2 as a chemorepellent and in turn this 

chemorepulsion causes cells to disperse from biofilms (17, 27, 40). The widespread 

nature of AI-2   However, much of the research involving AI-2 has been carried out in 

monoculture in vitro biofilms and has not addressed the role of AI-2 as a mediator of 

multi-species behaviors in host-associated microbial communities. 

A few studies suggest a role for AI-2 QS in multispecies host colonization. For 

example, the Gordon lab showed that co-colonizing gnotobiotic mice with Vibrio 

cholerae and a community of human bacterial species, restricted colonization of V. 

cholerae (36). This was shown to be dependent on AI-2 production by a Ruminococcus 

obeum isolate from humans, which resulted in QS mediated repression of V. cholerae 

genes (36). Further, in work done by the Xavier lab, mice were treated with antibiotics to 

induce dysbiosis of the mouse intestinal community resulting in a dramatic reduction of 

the Firmicutes (37). The mice were then colonized with E. coli strains that were 

engineered to increase intestinal AI-2 concentrations resulting in recovery of Firmicutes 

(37). This showed that altering AI-2 concentrations in the mouse gut results in changes to 

bacterial community composition.   
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While these studies demonstrate that AI-2 QS in the vertebrate intestine can alter 

community composition, they fail to provide a mechanistic understanding of how the 

cellular behavior regulated by AI-2 results in altered colonization. Research in 

gnotobiotic larval zebrafish has demonstrated how the bacterial cellular response of 

increased cohesion can result in bacterial community changes in colonization by altering 

how the bacterial community experiences gut motility, with more aggregated populations 

being more readily displaced (41–44). Therefore, we decided to use the zebrafish gut 

ecosystem to investigate the role of AI-2 signaling in intestinal colonization and 

structuring of bacterial communities residing in the vertebrate gut. Here we 

predominantly work with E. coli due to the fact that it has a well characterized AI-2 

signaling pathway and can effectively colonize the larval zebrafish intestine (11, 28, 47, 

48). 

We observed that disruption of E. coli AI-2 sensing leads to increased intestinal 

colonization. We also observed that treating E. coli communities already residing in the 

gut with exogenous AI-2 leads to a drop in their abundance. We further show that native 

gut bacteria of the zebrafish exhibit analogous responses to AI-2, suggesting that inter-

species AI-2 signaling could play an important role in microbiome composition and 

biogeography in the vertebrate intestine. 
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Results 

  

AI-2 signaling decreases intestinal abundance of E. coli 

  
To investigate the role of AI-2 QS during intestinal colonization we generated E. coli 

single gene knockouts of AI-2 synthase gene luxS and the AI-2 transcriptional regulation 

gene lsrR. The ∆luxS mutant lacks AI-2 production, but this strain should still be 

responsive to AI-2 provided from other bacteria or AI-2 added exogenously. The ∆lsrR 

mutant should be blind to AI-2 and is also expected to act as an AI-2 sink due to the fact 

that in the absence of LsrR, cells increase production of  AI-2 uptake machinery (49). To 

confirm that our mutants behaved as previously reported in the literature, we measured 

the AI-2 activity in their cell free supernatant that induced luminescence in a Vibrio 

harveyi reporter strain (50).  All measurements were normalized to the AI-2 activity in 

the cell free supernatant from the wild type E. coli strain (Fig1A). As expected, the ∆luxS  

strain lacked appreciable AI-2 activity.  We were able to restore this activity by 

complementation of the gene (∆luxS+). AI-2 activity of ∆lsrR was significantly reduced, 

consistent with previous reports that ∆lsrR strains scavenge environmental AI-2 (Fig1A) 

(49). We also generated an AI-2 over producer strain (luxSOP) with an extra copy of luxS 

and confirmed that this strain produced increased AI-2 activity. To assess if disruption of 

AI-2 signaling plays a role in host colonization we inoculated the water column of germ 

free larval zebrafish with either wild type E. coli, ∆luxS, ∆lsrR, ∆luxS+, or luxSOP at 4 

days post fertilization (dpf), when the larval gut is patent and accessible to environmental 

microbes. Following 72 hours post inoculation, which provides ample time for bacteria to 

colonize, proliferate, and reach a climax community (48, 51), we dissected the intestines 
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of the mono-associated fish, and assessed intestinal abundance by dilution plating. We 

observed that compared to the wild type E. coli strain, the ∆luxS strain reached a 

significantly higher abundance in the intestine (Fig1B).  
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Figure 1. AI-2 signaling reduces intestinal abundance of E. coli 

(A) AI-2 activity in the cell free supernatant of WT E. coli, ∆luxS, ∆lsrR, ∆luxS+ (luxS

complement), and luxSOP (luxS overproducer). AI-2 activity was measured through
bioluminescence of V. harveyi reporter strain TL26. AI-2 reporter activity levels for the
mutants were normalized to WT levels. Data shown are the mean with error bars
corresponding to SD (n > 6).  Letters denote significant differences. p<0.05,Tukey’s
multiple comparison test. (B) Violin plots of intestinal abundance of WT E. coli, ∆luxS,

∆lsrR, ∆luxS+ (luxS complement), and ∆luxSOP (luxS overproducer) during mono-
association (n>22). Each dot represents one fish intestine, thicker bars in the violin plots
denote median and thinner bars denote interquartile ranges. Letters denote significant
differences. p<0.05, Kruskal-Wallis and Dunn’s multiple comparisons test. Experimental
timeline is displayed above the graph. (C) Table of Kolmogorov-Smirnov test statistics
and corresponding p-values. Used to compare relative frequency distributions of mono-
association abundance data in Fig1B. (D)Intestinal abundance of WT E. coli, ∆luxS, or

∆lsrR during mono-association after exposure to 100µM AI-2 (n>14). Thicker bars in the
violin plots denote median and thinner bars denote interquartile ranges. Significant
differences were determined by Mann-Whitney and are denoted by asterisks.

**p=0.0013. (E) Table of Kolmogorov-Smirnov test statistics and corresponding p-
values. Used to compare relative frequency distributions of mono-association abundance
data in Fig1D.

When we complemented back the luxS gene (∆luxS+) we saw the mean 

abundance decrease to that of wild type levels (Fig1B). Because luxS serves ant 

metabolic function in the methionine biosynthesis pathway, we wanted to establish 

whether the difference in intestinal abundance was due solely to the disruption of AI-2 

QS or to an altered metabolic state of the cell. In order to do this, we used ∆lsrR, a mutant 

that lacks the transcriptional regulator required for AI-2 QS but in theory maintains a 

similar metabolic state to wild type. Similar to ∆luxS we found that ∆lsrR has an 

increased abundance relative to wild type (Fig1B). This indicates that abolishing AI-2 

signaling is the cause of increased bacterial abundance in the zebrafish intestine. This led 

us to hypothesize that if rather than disrupting AI-2 QS we increased AI-2 signaling we 

would see a decrease in intestinal abundance. To test this, we measured the intestinal 
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abundance of  luxSOP a strain which produces higher amounts of AI-2 (Fig1A). Although 

we expected a decreased abundance with the AI-2 over-expresser strain, we observed no 

change when compared to wild type levels (Fig1B). This result may suggest that levels of 

AI-2 inside the intestine during mono-association with the wild type strain reaches a 

saturation level for E. coli responses that mediate colonization levels. 

In addition to exhibiting altered intestinal colonization, the AI-2 signaling mutants 

also experienced a change in the  distribution of abundances across hosts (Fig1B). We 

note that the fish colonized by wild type E. coli, ∆luxS+, or luxSOP (i.e. strains that are 

capable of AI-2 QS in the mono-association context) exhibited frequency distributions 

skewed to lower levels  of colonization, with a fraction of fish colonized by just 10 or 

fewer bacterial cells (Fig1B). However, those fish colonized by ∆luxS or ∆lsrR (i.e. 

strains that are unable to experience AI-2 QS in a mono-association) had distributions 

with a higher percentage of fish being colonized to high levels. As evaluated by the 

Kolmogorov-Smirnov test, the abundance distributions of both  ∆luxS and ∆lsrR differed 

significantly from the wild type distribution (Fig1C). 

We next tested whether exposure to exogenous sources of AI-2 would lead to 

changes in intestinal abundance of established E. coli communities. To do this we 

colonized gnotobiotic larval zebrafish with either wild type, ∆luxS, or ∆lsrR. Following 

24 hours after inoculation we added 100µM of purified AI-2 to the water column. After 

48hrs of exposure to the exogenous AI-2 we dissected the fish intestines and determined 

bacterial loads (Fig1D). Addition of AI-2 to the wild type populations did not decrease 

intestinal abundance, supporting the idea that wild type levels of AI-2 are at a saturation 
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point. However, the addition of AI-2 resulted in a dramatic increase in the frequency of 

fish with low colonization levels (Fig 1D). When ∆luxS mono-associated fish were 

exposed to exogenous AI-2, we observed both a significant decrease in the intestinal 

abundance of ∆luxS populations and a shift in the frequency distribution with the group 

exposed to AI-2 showing an increase in fish colonized to low levels (Fig1D). This change 

in distributions was confirmed with Kolmogorov-Smirnov test (p<0.05) (Fig1E). In 

contrast, the fish colonized by the ∆lsrR that is blind to AI-2 had no observable drop in 

abundance and the frequency distribution remained largely unchanged after treatment 

with exogenous AI-2 (Fig1D-E).  Collectively, these data support the idea that AI-2 

signaling leads to a decrease in intestinal abundance of E. coli. 

 

AI-2 signaling reduces the bacterial population in the anterior region of the 

zebrafish intestine 

Based on  previous work establishing that aggregated bacterial populations in the 

intestine are more vulnerable to displacement by gut motility, we hypothesized that the 

decreased intestinal abundance of E. coli in response to AI-2 could be due to increased 

aggregation. To investigate this possibility, we imaged fluorescent protein expressing E. 

coli in larval zebrafish intestines using both high resolution light sheet microscopy for 

qualitative assessment and lower resolution stereomicroscopy to evaluate larger numbers 

of colonized larvae.  

         Using light sheet fluorescence microscopy we captured images of fish that were 

colonized with either wild type or ∆luxS bacteria. Imaging revealed that E. coli was 
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highly aggregated with almost no planktonic cells  (Fig2A-C). In our previous work 

imaging different bacterial populations in the larval zebrafish, we found that aggregated 

populations tended to localize to the midgut and occasionally be distally displaced as they 

were expelled from the gut, whereas populations that consisted of planktonic cells tended 

to be found in the anterior region of the intestine known as the bulb (41). Consistent with 

this pattern, E. coli  aggregates were predominantly localized to the midgut region 

(Fig2A-C). In some larvae, the ∆luxS populations appeared to have a few planktonic cells 

in the bulb region, but the extremely low number of planktonic cells overall made it 

difficult to quantify the levels of aggregation between the two populations.  

Figure 2. Exposure to exogenous AI-2 displaces ∆luxS populations in the zebrafish 

intestine (next page) 

(A) Schematic of a larval zebrafish. Dashed rectangle marks intestinal region imaged by 
LSFM or with fluorescence dissection microscope. (B) Anatomical regions of the larval 
zebrafish intestine.(C) Representative maximum intensity projections of WT and ∆luxS 

E. coli in mono-association. Images captured by LSFM (n>6). Dashed lines mark 
intestinal boundaries. The arrowhead points to a multicellular aggregate and the inset is a 
zoom in of the aggregate designated by the arrowhead. (D) Representative image of 
∆luxS mono-associations captured with a fluorescence dissecting microscope. Graph 
depicts the mean intensity curve of ∆luxS across length of the intestine (n=15). Shaded 
region corresponds to SEM and the dotted vertical line corresponds to mean center of 
mass of the bacterial population. (E) Representative 
image of ∆luxS mono-associations after exposure to 100uM AI-2. Image captured with a 
fluorescence dissecting microscope. Graph depicts the mean intensity curve of ∆luxS 
across length of the intestine (n=19). Shaded region corresponds to SEM. Dotted vertical 
line corresponds to mean center of mass of the bacterial population after exposure to 
exogenous AI-2. 
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We then turned to stereomicroscopy to determine whether AI-2 treatment altered 

the large-scale spatial distribution of E. coli populations in the intestine. For these 
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experiments, we used the ∆luxS strain which was the most responsive to treatment to 

exogenous AI-2 in our previous experiments (Fig1D), likely because it has a functional 

AI-2 reception system without any AI-2 to activate signaling endogenously. We 

inoculated fish with ∆luxS E. coli and 24 hours following the inoculation we added 

purified AI-2 to the water, exposing the bacterial populations to AI-2 for the following 48 

hours prior to imaging on a fluorescent stereomicroscope. We then imaged the entire 

length of the intestine to evaluate the distribution of the entire intestinal bacterial 

population. Our analysis of the intensity profiles of ∆luxS populations along the intestine 

revealed that AI-2 treatment resulted in a distal displacement of the bacterial population, 

with a decrease in the fraction of the population observed in the anterior region and a 

shift of the center of mass shifted to a more distal region of the midgut (Fig2D-E). These 

data support the idea that AI-2 signaling increases E. coli aggregation, resulting in distal 

displacement, more frequent expulsion events, and decreases overall intestinal 

abundance. 

 

In dual-species communities, mutants that alter environmental AI-2 concentrations 

influence the colonization of their partner strain. 

Our results showed that AI-2 signaling differentially altered the intestinal 

distributions of individual E. coli strains with varying AI-2 production and sensing 

capacities. We next explored how AI-2 would impact mixed communities of these 

bacterial strains. When we performed di-associations of gnotobiotic larval zebrafish and 

captured light sheet images of communities composed of the WT and ∆luxS strains, we 
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typically observed aggregated populations organized in  multi-strain clusters (Fig3A). We 

wondered whether co-colonized strains  would influence  the local AI-2 concentrations 

experienced by each other. Furthermore, we wondered whether co-aggregating strains 

would influence each other’s susceptibility to distal displacement, resulting in altered 

patterns of colonization abundances and frequency distributions.  

To test if this were the case, we co-inoculated fish with two-strain communities 

composed of either the wild type or the ∆luxS strain paired with either itself, each other, 

or the ∆lsrR or with luxSOP strains and then assessed intestinal abundance of both strains 

in these di-associations (Fig3B). In each combination, both co-colonizing strains were 

found at similar abundances, with no apparent competitive advantage for any particular 

strain in the di-associations with the exception of wild type and luxSOP di-associations 

(Fig3C). Notably, the abundance of the wild type strain differed significantly as a 

function of its partner strain (Fig3B). In the presence of ∆lsrR, a strain that depletes 

environmental AI-2, the wild type strain abundance was significantly greater than when 

co-colonized with either ∆luxS, itself, or luxSOP(Fig3B), strains that would add no or 

some additional AI-2 to the environment. The colonization frequency distribution of the 

wild type strain in the presence of ∆lsrR shifted upward resulting in a reduction in the 

frequency of fish colonized by low levels of bacteria and an increase in fish colonized 

with high bacterial loads (Fig3B). Comparison of the distributions with a Kolmogorov-

Smirnov test, confirms that in the presence ∆lsrR and luxSOP the abundance distributions  

of wild type differed significantly from that of  wild type partnered co-colonized with 

itself (Fig3D). 
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Figure 3. Co-colonization with AI-2 signaling mutants alters intestinal       

abundance of E. coli 

(A) Representative maximum intensity projection of WT E. coli and ∆luxS di-
associations. Images captured by LSFM (n>6). Dashed lines mark intestinal boundaries. 
Inset is a zoom in of the bacterial cluster designated by the arrowhead. (B) Violin plots of 
intestinal abundance of WT E. coli and AI-2 signaling mutants when co-colonized. 
p<0.05, Kruskal-Wallis and Dunn’s multiple comparisons test. The comparisons here are 
between the WT or ∆luxS abundances in each pairing. (C).Table of statistical 
comparisons of abundances of each strain in the pair using a Wilcoxon test. Bold rows 
indicate pairings with significantly different abundances. (D) Table of Kolmogorov-
Smirnov test statistics and corresponding p-values. Used to compare relative frequency 
distributions of mono-association abundance data in Fig3B. Distributions compared are 
those of capitalized strain, the subscript indicates what strain it was co-colonized with.  
 

We observed a similar pattern with the ∆luxS strain, which differed in mean 

abundance as a function of its co-colonizing strain (Fig3C).  The abundance of ∆luxS 

dropped significantly in the presence of wild type or luxSOP but not when co-colonized 

with ∆lsrR (Fig.3B). It is interesting to note that in all di-associations with ∆luxS, the 

partner strain provided an exogenous source of AI-2 that could reduce its colonization 

level, as observed with exogenous AI-2 (Fig1D),  however it appeared that the amount of 

AI-2 provided by ∆lsrR was insufficient to alter ∆luxS abundances. The colonization 

frequency distributions of ∆luxS were also altered dramatically when it was co-colonized 

with wild type (Fig3D). Collectively our data  provide evidence that co-colonizing 

bacteria, by altering local AI-2 concentrations and by co-aggregating, can influences each 

other’s colonization behaviors. 
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Exposure to exogenous AI-2 alters intestinal abundance of zebrafish bacterial isolates 

The experiments reported so far used a human E. coli isolate because of the wealth 

of knowledge about E. coli AI-2 signaling and the genetic tractability of the strain. We next 

sought to extend these findings to the resident microbiota of the zebrafish. To get a sense 

of how ubiquitous the production of AI-2 is among native zebrafish gut bacteria, we 

measured AI-2 activity from overnight cultures of various isolates from our zebrafish gut 

bacteria culture collection (52). We found that all strains tested, with the exception of a 

Pseudomonas, produced AI-2 (Fig4A).  

 

C 
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Figure 4. Exposure to AI-2 alters intestinal abundance of zebrafish bacterial isolates. 

(A) AI-2 activity in the cell-free supernatant of various bacterial isolates native to the
zebrafish.Teal and orange bars indicate the AI-2 activity in supernatants of Vibrio strains
Z20 and Z36 respectively. (B) Violin plots of intestinal abundance of Vibrio-Z20 and
Vibrio-Z36 during mono-association after exposure to 100µM AI-2 (n>16). Each dot
represents one fish intestine, thick bars denote median and lighter bars denote interquartile
ranges. Asterisks denote significant differences. ****p<0.0001, Kruskal-Wallis and
Dunn’s multiple comparisons test. Dotted line denotes limit of detection for the abundance
data. (C) Table of Kolmogorov-Smirnov test statistics and corresponding p-values. Used
to compare relative frequency distributions of mono-association abundance data in Fig4B.

We then searched for the presence of known AI-2 receptors in the genomes of these 

isolates and found multiple Vibrio strains containing known AI-2 receptors luxPQ and 

other AI-2 signaling associated genes. We chose to focus on strains Vibrio-Z20 and Vibrio-

Z36 because their genomes resembled that of Vibrio cholerae, a species with a well 

characterized AI-2 signaling pathway (53). Interestingly, these two Vibrio strains colonize 

the zebrafish intestine very differently, with Z20 being highly planktonic and achieving 

high colonization levels in the anterior region, whereas Z36’s population is partially 

aggregated in the midgut (41). To determine how these strains responded to AI-2, we 

colonized germ free larval zebrafish with either Vibrio- Z20 or Vibrio-Z36 and then 

exposed the populations to purified AI-2 for 48 hours before assessing intestinal abundance 

(Fig4B). We found that despite their genomic similarities, these two Vibrio strains 

responded very differently to AI-2. Vibrio-Z20 displayed no change in intestinal abundance 

in response to AI-2. In contrast, Vibrio-Z36 shows a significant drop in abundance after 

AI-2 exposure (Fig4B). A Kolmogorov-Smirnov test further revealed that treatment with 

purified AI-2 alters the data distribution of Vibrio-Z36 (Fig4C). 
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Discussion 

Using the larval zebrafish model we revealed that AI-2 signaling results in 

decreased intestinal abundance of E. coli and shifts bacterial populations from a more 

anterior region of the intestine to a more distal region (Fig1B,D; Fig2D,E). Additionally, 

our data demonstrated that in dual-strain communities, strains will influence how their 

partner strain experiences AI-2 in the intestine resulting in non-autonomous responses to 

AI-2 that are not predicted by the mono-association data (Fig3B). Bearing in mind that 

bacterial communities in nature consist of multiple species that have variable capacities 

to produce and detect environmental AI-2, our work suggests complexities of responses 

of multispecies communities that can alter local AI-2 environments and change aggregate 

behaviors through co-aggregation.   

Further, we demonstrated that these observations extended to the resident bacteria 

of zebrafish. We identified several zebrafish isolates that secreted AI-2 (Fig4A) and 

contained AI-2 receptors in their genomes. We also identified Vibrio-Z36 as a Vibrio 

species that experiences intestinal collapses after exposure to AI-2. A second zebrafish 

isolate, Vibrio-Z20, that carried the same AI-2 associated genes observed in Vibrio-Z36 

but did not demonstrate any response when exposed to AI-2. This diversity in response to 

AI-2 from two strains containing the same AI-2 signaling machinery raises the question 

of why there is an inconsistency between in vitro and in vivo AI-2 associated phenotypes.  

In conclusion, this work established a role for AI-2 signaling in host colonization 

and bacterial spatial distribution. By characterizing the AI-2 mediated behavior of E. coli 

and extending it to the resident zebrafish isolates we have established a system that will 
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allow us to  pursue remaining questions regarding AI-2 QS in community composition of 

host associated bacteria. In particular, we now have multiple zebrafish resident bacteria 

that have been proven to respond to AI-2 in different manners. This allows us to explore 

the role of AI-2 QS in multi-species communities that have members with varying 

capacities to produce and sense AI-2. We know from our work with dual strain 

communities that bacteria that alter environmental AI-2 concentrations in turn affect the 

response of their neighboring strains to AI-2. While our work was conducted in single 

species communities, we now propose to extend it to more complex communities which 

are better representations of communities observed in nature. Lastly it would be 

interesting to explore why AI-2 mediated in vitro behaviors do not translate to an in vivo 

system. Our characterization of in vivo AI-2 mediated behaviors in combination with our 

plate based assays and our capacity to carry out live imaging has expanded our ability to 

explore the multifaceted role of this ubiquitous bacterial signal.  

Methods 

Gnotobiotic zebrafish 

All zebrafish experiments were performed in accordance with protocols approved 

by the University of Oregon Institutional Care and Use Committee. Zebrafish husbandry 

was performed following standard protocols (54). Wild-type (AB x TU strain) zebrafish 

embryos were derived germ free (GF) as previously described (55). For bacterial 

associations, bacterial cultures in lysogeny broth (LB) were grown overnight in shaking 

conditions at 30°C or 37°C. Bacteria were prepared for inoculation by gently pelleting 1 

ml of cells and resuspending in sterile embryo media (EM). Bacteria were then added to 
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the water column of GF flasks at 4 days post fertilization (dpf) at a final concentration of 

106 CFU/ml. The inoculated flasks were then incubated at 28°C for 72hrs before the 

zebrafish larvae were sacrificed at 7dpf.  

 

Bacterial strains and culture 

Wild- type HS and all E. coli HS mutants were grown shaking at 37°C in LB.  

To generate E. coli HS gene deletions we used established protocols (Datsenko and 

Wanner, 2000; Baba et al., 2006). In brief, we used primers with 40bp homology extensions 

of the gene of interest to PCR amplify a kanamycin resistance gene flanked by FLP 

recognition sites. The template used for this amplification was purified from pKD4 plasmid 

(56, 57). E. coli HS carrying pKM208, a plasmid that encodes lambda Red recombinase 

(58) was then transformed with the PCR product to allow a recombinase mediated 

replacement of the gene of interest with the kanamycin cassette. Clones were then selected 

on LB plates with 50µg/ml kanamycin and the pKM208 plasmid, which is temperature 

sensitive, was cured by growth at 37°C. AI-2 overproducer luxSOP and the luxS complement 

∆luxS+ were generated by inserting a copy of luxS with its native promoter into the Tn7 

insertion site of wild type E. coli HS and ∆luxS, respectively (Wiles et al., 2018). Both 

luxSOP and ∆luxS+ carry a gentamicin resistance gene that was used to select for clones. 

Fluorescently tagged versions of each strain were generated by Tn7 mediated insertion of 

a constitutively expressed gene encoding dTomato or sfGFP (59). All fluorescently marked 

strains carry a gentamicin resistance gene. All zebrafish bacterial isolates, including 

Aeromonas ZOR0001, Aeromonas ZOR0002, Enterobacter ZOR0014, Plesiomonas 
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ZOR0011, Pseudomonas ZWU0006, Vibrio ZOR0018, Vibrio ZWU0020, and Vibrio 

ZOR0036 (previously describe in PMID: 26339860) were grown shaking at 30°C in LB. 

All zebrafish bacterial isolates listed were previously described in Stephens et al 2016 (52). 

AI-2 reporter strain Vibrio harveyi TL26 was grown shaking at 30°C in Autoinducer 

Bioassay liquid media (AB).  

 

Measurement of relative AI-2 in liquid culture 

An overnight culture of V. harveyi TL26 was diluted 1:100 in sterile AB. The 

diluted culture of V. harveyi was then transferred into a white flat bottom 96 well plate 

(Corning Inc.) with each well holding 190µL of culture. 10µL of cell free supernatant 

(CFS) harvested from specified bacterial strains were then added into each well holding 

the 190µL of V. harveyi for a total volume of 200µL per well. Bioluminescence and 

OD600 were then monitored over time using a FLU- Ostar Omega microplate reader. V. 

harveyi TL26 only emits light in the presence of exogenous AI-2, therefore only CFS 

from bacterial strains that produce AI-2 should induce bioluminescence. Readings were 

taken every 10 minutes until the bacteria were well in stationary phase (approximately 14 

hours). The plate reader maintained temperature at 30°C and the plate was shaken 

between readings. A minimum of three replicate measurements were taken for each CFS 

sample per experiment and experiments were repeated independently at least twice. In 

each experiment we included wells with sterile AB that were used as blanks, wells of V. 

harveyi with added buffer that were used as negative controls, and wells of V. harveyi 

with added 10µM purified AI-2 (Omm scientific) that were used as positive controls. We 
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note that the CFS was harvested on the day of use. To harvest CFS we centrifuged 1ml of 

an overnight culture for 3 minutes at  >11000 x g and then filtered the supernatant 

through a 0.22-mm sterile tube top filter (Corning Inc.). To determine relative AI-2 

activity of all the E. coli HS strains, we divided bioluminescence units (LU) by the OD600 

value for each timepoint. We then normalized the peak LU/ OD600 of each strain by 

dividing the value by the average peak LU/ OD600 of wild-type E. coli. These resulting 

values were reported in a bar graph (Fig.1A) as “Relative AI-2 activity.” Tukey’s 

multiple comparison test was used to compare the mean relative AI-2 activity of all 

groups. Statistical analysis and data plotting were done using GraphPad Prism 7. 

 

Quantification of bacterial populations 

At 7dpf larvae were euthanized with tricaine and mounted in 3% methylcellulose. 

Dissection of larval intestines was done as previously described (60). Dissected intestines 

were placed in an Eppendorf tube with 500µl of sterile 0.7% saline and 100µl 0.5 mm 

zirconium oxide beads. Intestines were then homogenized using a bullet blender tissue 

homogenizer for 1.5 minutes on power 4. Lysates were then serially plated on LB (for 

samples containing E. coli) or TSA (for samples containing Vibrio). After overnight 

incubation at 30°C, colonies to determine CFUs/gut. Samples with no detectable colonies 

on the plate with the lowest dilution were set to the limit of detection (5 bacteria per gut). 

For each experiment, a sample of the water column was also serially plated to enumerate 

the CFUs in each flask. The water samples used for plating were collected at 4dpf after 

inoculation of the water column and at 7dpf after dissection of larvae. Each experiment 
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contained a minimum of 8 fish per group and was repeated at least twice. Statistical 

differences between multiple groups (Fig.1B, Fig.3B) were determined by Kruskal-Wallis 

and Dunn’s multiple comparisons tests. Statistical differences between two groups were 

determined by the Mann-Whitney test (Fig.1C). Statistical differences between two paired 

groups of data were determined by the Wilcoxon test (Fig.3B). To compare the frequency 

distributionof bacterial abundances across groups, the Kolmogorov-Smirnov test was 

performed. GraphPad Prism 7 was used to perform all statistical analysis and plot data.  

 

Addition of exogenous AI-2 to established bacterial communities 

GF zebrafish flasks were inoculated with the specified bacteria at 4dpf. 24 hours were 

allowed for the bacteria to colonize the larvae and at 5dpf purified AI-2 (Omm Scientific) 

was added to the water column for a final concentration of 100µM. The purified AI-2 used 

for these experiments arrived dissolved in 0.5mM NaHSO4 with a pH of 2-3 (depending 

on the batch), therefore as a control we added the same volume of 0.5mM NaHSO4 to a 

second flask that was inoculated with the same bacterial strain. After addition of either the 

AI-2 or the NaHSO4, we measured the pH of the water column of each flask to ascertain 

that there were no dramatic shifts in pH following the addition of the acidic compounds. 

The pH of the water columns always fell between pH 7.5-8 and was not notable difference 

between the control and treatment flasks. After 48 hours of exposure to the AI-2 or 

NaHSO4, the zebrafish at 7dpf were either imaged or processed for quantification of 

bacterial populations by dilution plating. Each experiment contained a minimum of 7 fish 

per group and each experiment was performed at least twice. 
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Live imaging of larval zebrafish 

Fluorescent light sheet microscope: For high resolution, qualitative analysis of 

bacterial aggregation in the larval intestine, live larval zebrafish that had been colonized 

with fluorescent bacteria were imaged at 7dpf using a custom built light sheet fluorescence 

microscope previously described (51). Larvae were anesthetized with tricaine and mounted 

into small glass capillaries containing 0.5% low melt agarose. The zebrafish larvae were 

then suspended in a custom imaging chamber containing sterile EM and tricaine until the 

agarose set. The agarose embedded larvae were then extruded from the end of the capillary 

and oriented so that the digestive tract was facing the imaging objective. The entire length 

of the intestine was then imaged in 4 subregions. Six fish were imaged for each group.  

Fluorescent stereomicroscope: For higher throughput, lower resolution imaging, 

live larval zebrafish that had been colonized with fluorescent bacteria were imaged at 

7dpf using a Leica MZ10 Fluorescence stereomicroscope with a 1.0X objective. Larvae 

were anesthetized with tricaine and mounted onto a glass slide coated with 3% 

methylcellulose. Fish were oriented so that they lay on their left side with their gut facing 

the imaging objective. An image of the entire intestine was then captured. Quantitative 

image analysis was performed in Fiji. Using a free hand line tool set at 30 pixels, a line 

was drawn from the anterior to the posterior end of the digestive tract, following the 

natural curve of the intestine and encompassing all fluorescently labelled colonizing 

bacterial clusters. To remove any background fluorescence produced by the tissues 

surrounding the intestine, we used the background subtraction tool in Fiji with a rolling 

ball radius set at 15 pixels. We then used the plot profile tool to display the fluorescence 
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intensity profile along the line spanning the length of the intestine. This tool provides an 

intensity value (y-value) at each point along the length of the line (x-value). To account 

for differences in the size of fish, all x-values were divided by the total length of line to 

report the relative length of the intestine of each fish. GraphPad Prism 7 was used to plot 

the average intensity profiles across the relative length of the intestine for each group of 

fish. The center of mass of the bacterial populations were determined for each fish using 

the following equation:  

Center of mass = Sum(position × intensity) / Sum(intensity).  

A minimum of 13 fish were imaged for each treatment group.  
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CHAPTER III 

BIOINFORMATIC COMPARISON OF AI-2 QS GENES 

IN VIBRIO STRAINS 

Introduction 

In Fig.4 of chapter II we determined that AI-2 QS phenotypes observed with E. 

coli extend to the resident microbiota of the zebrafish. Not only was AI-2 production 

wide-spread among zebrafish commensal isolates but several Vibrio isolates contained 

AI-2 QS gene networks. We chose to focus on strains Vibrio-Z20 and Vibrio-Z36 due to 

the fact that their genomes resembled that of Vibrio cholerae, a species with a well 

characterized AI-2 signaling pathway. We determined that larval zebrafish colonized 

with Vibrio-Z36 and then exposed to exogenous AI-2 experienced drops in intestinal 

abundance of Vibrio. This did not hold true for Vibrio- Z20 where no change in intestinal 

abundance was observed (Fig 4B). Of interest, we note that in liquid culture Vibrio- Z20 

grows as motile, planktonic cells while Vibrio-Z36 forms large clusters that settle out of 

solution. A similar observation is made in the larval intestine where Vibrio-Z20 resides in 

the bulb as a predominantly planktonic motile population while Vibrio-Z36 has a subset 

of its population that is clustered in non-motile aggregates and localizes in the midgut 

(24). We wondered whether similar to E. coli, AI-2 was mediating aggregation or biofilm 

formation in Vibrio-Z36 resulting in displacement of cells in the intestine. If this were the 

case, it raises the question of why two Vibrio species that contain the same AI-2 QS gene 
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networks respond so differently to AI-2. To answer these questions, we tested the 

hypothesis that AI-2 mediates aggregation in Vibrio. Further we compared the genetic 

sequences of the AI-2 associated genes in the genomes of these two strains in an attempt 

to identify dissimilarities that might result in the differing AI-2 responses between the 

Vibrio-Z20 and Vibrio-Z36. 

Results and Discussion 

AI-2 treatment induces Vibrio-Z20 aggregation in a chemotaxis dependent manner 

We carried out a crystal violet biofilm assays to determine if either Vibrio-Z20 or 

Z36 displayed an aggregation phenotype in response to exogenous AI-2 treatment. 

Unexpectedly, we observed that Vibrio-Z20 but not Vibrio-Z36 showed increased biofilm 

formation when treated with purified AI-2 (Fig 5A-B). Interestingly, when this biofilm 

assay was performed with a chemotaxis mutant of Z20 (∆cheA2/3) the AI-2-responsive 

biofilm formation was no longer observed, suggesting that AI-2 mediated biofilm 

formation in Z20 is dependent on chemotaxis (Fig5A).  

Figure 5. Vibrio- Z20 but not Vibrio- Z36 exhibits AI-2 mediated aggregation in vitro 

(next page) 

(A) Biofilm formation assay of Vibrio- Z20 (teal) and ∆cheA2/3 Z20 (black) after
treatment with purified AI-2. Letters denote significant differences between wild type
groups, p<0.5. There were no significant differences between ∆cheA2/3 Z20. One way
ANOVA was performed for comparison of treatments. Each dot represents one biofilm.
(B) Biofilm formation assay of Vibrio- Z36 (orange) after treatment with purified AI-2.
One way ANOVA was performed for comparison of treatments, but no significant
difference was detected. (C) Capillary assays of Vibrio- Z20 (teal) and ∆cheA2/3 Z20

(black) to test chemotaxis response to AI-2. Asterisks denote significant differences as
identified by unpaired t-tests, p< 0.0001. (D) Capillary assays of Vibrio- Z36 (orange) to
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test chemotaxis response to AI-2. Unpaired t-tests were performed but no significant 
differences were identified. Each dot represents one sample.  

Our finding that the ∆cheA2/3 Z20 mutant failed to form biofilms in response to 

AI-2 inspired us to perform a chemotaxis assay to determine if similar to E. coli and H. 

pylori, Vibrio perceived AI-2 as a chemoeffector. A capillary assay revealed that AI-2 was 

a chemoattractant for Vibrio-Z20 but not Vibrio-Z36 (Fig5C-D). These finding were 
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notable because they constitute the first report of any Vibrio species sensing an autoinducer 

as a chemotactic cue and suggested that similar to E. coli and H. pylori, AI-2 has the 

potential to alter spatial structuring of Vibrio-Z20 communities. 

Variation in the LuxP AI-2 binding pocket 

Taking into consideration the data presented in Fig4B where it is Z36 not Z20 that 

shows a change in abundance in the zebrafish gut when exposed to AI-2, we expected to 

see Z36 not Z20 show a response of aggregation in the in vitro biofilm assays. The 

unexpected results made us wonder why two genetically similar strains that reside in the 

same environment and carry the same AI-2 quorums sensing networks show such variation 

in AI-2 responses. To further explore this we carried out amino acid sequence comparisons 

to search for regions of the known proteins involved in AI-2 response. AI-2 signaling in 

Vibrio spp have been extensively studied (25, 53, 61–63) but briefly involves the detection 

of AI-2 via binding of periplasmic protein LuxP which initiates a signaling cascade that 

travels through membrane bound protein LuxQ, and cytoplasmic proteins LuxO and LuxU 

ultimately resulting in changes in gene expression (Fig6A). Amino acid sequence 

alignments of LuxP, LuxQ, LuxO, and LuxU revealed a high conservation between these 

Z36 and Z20 (Fig6B). We chose to look more closely at the differences in LuxP as it was 

the least conserved. The residues important for establishing hydrogen bonding in the LuxP 

- AI-2 binding pocket had been previously identified in a LuxP structure of V. harveyi

(Fig6C). We noted that  in particular residue 266 which is normally an arginine, is actually 

a glycine in Vibrio-Z20. While we do not have the structure of Vibrio-Z20 we know from 
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the V. harveyi that this residue plays an important function in establishing polar contacts 

with AI-2. It is therefore possible that in Z20 the lack of arginine makes Z20 LuxP less 

capable of binding AI-2 and therefore less sensitive to AI-2 exposure in the intestine. 

However this difference does not explain why we observe AI-2 responses in vitro for this 

strain but not for Z36. We also looked more closely at the amino acid changes in each gene 

but were not able to identify important residue changes. It is possible that some of the 

observed changes are of importance but we lack annotations of important residues for each 

protein involved in AI-2 sensing.  

Figure 6: AI-2 QS genes have high sequence conservation of amino acids 

(A) Simplified AI-2 sensing pathway in Vibrio characterized by production of AI-2 via
LuxS and detection of AI-2 via LuxP binding and a phosphorelay with LuxO. (B) Table
showing amino acid sequence conservation in AI-2 associated genes between Z20 and
Z36. (C) Structure of LuxP with bound AI-2. Arrow points to a zoom in of the AI-2
binding pockets with important binding residues annotated. The boxed residue 266
arginine in the Vibrio harveyi structure is predicted to be conserved in Z36 but changed to
a glycine in Z20.
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While it is clear that there is high conservation of AI-2 QS associated genes between 

these two strains and while one notable difference was observed in the LuxP binding site, 

we still lack an understanding for why these two isolates experience AI-2 so differently in 

the intestine and in biofilms. In the future it would be interesting to further explore what 

results in these discrepancies between strains and between in vivo and in vitro contexts.  

Methods 

Bacterial Cultures 

Vibrio ZWU0020 and Vibrio ZOR0036 were grown overnight shaking at 30°C in 

Tryptone Broth (TB). 

Crystal Violet Biofilm Assays 

Overnight cultures of Vibrio ZWU0020 or Vibrio ZOR0036 were diluted 1:1000 in sterile 

TB. 100µL of diluted culture were then added to the wells of a polystyrene 96 well plate. 

Purified AI-2 was then added to the wells with cells for a final concentration of either 

0µM AI-2, 1µM AI-2, 10µM AI-2, or 100µM AI-2. The plate was then incubated at 30°C 

for 24 hours. After incubation the plate was inverted and the cells were gently shaken out 

of the wells and discarded. The wells were then gently washed with ddH2O three times to 

dislodge any non-adherent cells. The wells were then filled with 150µL 0.3% crystal 

violet and the plate was allowed to sit at room temperature for 10 minutes. The crystal 

violet was then discarded and the plate was washed with ddH2O three times to remove 

any excess crystal violet. The wells were then filled with DMSO to de-stain the biofilms 

of crystal violet. The plate was then incubated at room temperature for 15 minutes. A 100 
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µL sample was then taken from each well and transferred to a clean microtiter plate. The 

absorbance at 550 was then measured for each well.  

Capillary Assays 

Overnight cultures of Vibrio ZWU0020 or Vibrio ZOR0036 were diluted 1:1000 in 20mL 

of sterile TB and placed at 30°C shaking until the culture reached OD600 of 0.4-0.6. 1mL 

of cells were then gently pelleted and resuspended in 5 mL of sterile 1xPBS. The cells in 

PBS were then kept at room temperature and allowed to recover for 15-25 minutes. The 

motility of the cells was monitored to assure that cells were swimming. Once cells were 

observed to be motile, 100µL of cells were added to the wells of a microtiter plate. 5µL 

pipette tips were then filled with the chemoeffectors to be tested. The pipette tips were then 

settled into the cell suspensions and allowed to remain there for 30 minutes to allow cells 

to swim into the pipette tips. After 30 minutes the pipette tips were removed and the 

contents were expelled into a microtiter plate with sterile LB. The plate was then placed in 

FLU- Ostar Omega microplate reader and OD600 was  monitored over time for ~14 hours. 

Readings were taken every 10 minutes. Experiment was repeated 2-3 times and each 

experiment had a minimum of 8 replicates. For each sample we then determined the time 

it took for OD600 to reach 0.5 and was normalized to the time it took the control to reach 

OD600 0.5 .The inverse of this value was then reported as the “chemotaxis response.”  Those 

samples that reached this OD faster (had a chemotaxis response larger than 1) started off 

with more cells suggesting that the chemoeffector in the pipette tip was a chemoattractant. 

For those samples that took longer to reach this OD (had a chemotaxis response smaller 

than 1) started off with less cells suggesting that the chemoeffector in the pipette tip was a 
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chemorepellent. This assay was modified from the high throughput capillary assay 

described by Bainer et al 2003 (64).  

Bioinformatic Analysis 

Sequences of Vibrio ZWU0020 and Vibrio ZOR0036 were taken from Joint Genome 

Institute. IMG Genome ID for Vibrio ZWU0020 is 2703719078 and for Vibrio ZOR0036 

is 2703719079. IMG Genome ID for Vibrio cholerae C6706  is 2663763252. Sequence 

alignments were carried out using ApE genome editor. Pymol was used to look at PDB 

structures of V. harveyi. 
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CHAPTER VI 

CONCLUDING REMARKS 

Characterization of the zebrafish gut ecosystem has revealed that the inherent 

cohesiveness of the bacterial communities, in combination with host intestinal 

movements, impacts the composition and spatial distribution of the microbiota (41–44). 

Therefore, factors that govern bacterial cohesion, such as AI-2, are likely to shape the 

membership and biogeography of bacterial communities within the intestine. Using the 

larval zebrafish model, we have described the role of widespread QS signal, AI-2, in 

colonization and spatial distribution of bacteria in a vertebrate host. We revealed that AI-

2 signaling results in decreased intestinal abundance of E. coli and leads to the 

displacement of bacterial populations from a more anterior region of the intestine to a 

more posterior region. Our data further demonstrated that in dual-strain populations, 

strains will influence how the other experiences AI-2 in the intestine, resulting in non-cell 

autonomous responses to AI-2. Considering that microbial communities in nature are 

complex, consisting of multiple species that have varying capacities to produce and 

detect environmental AI-2, our work suggests possible complexities of responses of 

multispecies communities that can alter local AI-2 environments and change community 

behaviors through co-aggregation.   

Our observations also extend to the resident bacteria of zebrafish. We found that a 

majority of strains secrete AI-2 and several contain AI-2 receptors in their genomes. In 

particular we identified Vibrio-Z36 as a Vibrio species that experiences intestinal 
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collapses after exposure to AI-2. We identified a second zebrafish isolate, Vibrio-Z20, 

that carried the same AI-2 associated genes observed in Vibrio-Z36 but did not exhibit 

any response when exposed to AI-2 in vivo. Interestingly, we observed that in vitro 

Vibrio-Z20 aggregates and forms biofilms in response to AI-2 exposure. This behavior 

was chemotaxis dependent and AI-2 was further proven to serve as a chemoattraction 

signal for Vibrio-Z20. Surprisingly, we did not observe any response to AI-2 from Vibrio-

Z36 using in vitro methods. This diversity in response to AI-2 from two strains 

containing the same AI-2 sensing machinery, indicates that there are unaccounted 

complexities in host system. In particular this poses the question of why there is a 

discrepancy between in vitro and in vivo AI-2 associated phenotypes.  

Currently AI-2 is the only autoinducer known to serve as both a QS signal and a 

chemotaxis signal. Although not a chemoeffector for all bacteria, AI-2 has been shown to 

be a repellant for the gastric pathogen H. pylori and an attractant for both pathogenic and 

commensal E. coli (13, 27, 28, 40, 46, 47, 49). My work adds to this list by 

demonstrating that AI-2 is a chemoattractant for Vibrio-Z20. These findings suggests that 

AI-2 not only has the potential to alter distribution of bacterial populations through the 

slower acting mechanism of gene regulation but also, by serving as a chemotactic cue, 

AI-2 has the potential to recruit or disperse bacteria to bacterial aggregates on fast time 

scales (11, 17, 27, 47). In work I contributed to, agent based modeling demonstrated how 

AI-2 chemotaxis could alter the architecture of bacterial biofilms (40).  

While quorum sensing has traditionally been considered as a bacterial specific 

form of communication, there are a growing number of reports indicating that the host 
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can also join in on the conversation. In fact both mammalian cells and plant cells have 

been reported to have QS signal receptors (5, 65, 66). For example, human upper airway 

epithelial cells detect QS signals of both Gram negative and Gram positive microbes. 

When the upper airway epithelium senses the presence of  autoinducers, they produce the 

antibacterial molecule, Nitric Oxide (NO) (67, 68).It was also reported that mammalian 

epithelial cells exposed to AI-2 produced inflammatory cytokine interleukin-8 (69).  

These two mechanisms provide a way for the host to clear particular bacterial members 

via detection of autoinducers. Although similar host responses to AI-2 have not yet been 

described in the zebrafish intestine, it would not be surprising for processes described in 

mammals and plants to be found in fish.  

In addition to detecting bacterial autoinducers, mammalian epithelial cells were 

also shown to secrete AI-2 mimics in response to the presence of bacteria (50). This AI-2 

mimic was detected by the traditional AI-2 receptors, LsrB (E. coli) and LuxP (V. 

harveyi) both of which are receptors found in the strains we worked with (50). Given the 

ubiquity of AI-2 QS among bacterial residents of the zebrafish intestine, it may be 

advantageous for this tissue to produce an AI-2 mimic to influence the behavior of its 

microbiota members and ultimately promote or exclude particular bacterial strains by 

inducing aggregation or dispersal from aggregates. 

In conclusion, my work establishes a role for AI-2 signaling in vertebrate 

intestinal colonization and bacterial spatial distribution. By characterizing the AI-2 

mediated behavior of E. coli and extending it to the resident zebrafish isolates I have laid 

the foundation to pursue further questions regarding AI-2 QS in community composition 
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of host associated bacteria. In particular, I have demonstrated the AI-2 production and 

responses of multiple zebrafish resident species. This knowledge will allow us to explore 

the role of AI-2 QS in multi-species communities that have members with varying 

capacities to produce and sense AI-2. We know from my work with dual strain 

communities that bacteria that alter environmental AI-2 concentrations in turn affect the 

AI-2 responses of their co-habiting strains. The next stage of this work will be to extend 

characterizations to more complex communities which are better representations of 

communities observed in nature. Our gnotobiotic zebrafish system is amenable to live 

imaging studies that can be used to separate the impacts on bacterial population spatial 

distributions of AI-2 QS versus AI-2 chemotaxis, which operate on different time scales. 

Lastly it would be interesting to explore why AI-2 mediated in vitro behaviors do not 

translate to an in vivo system. Our characterization of in vivo AI-2 mediated behaviors in 

conjunction with our plate-based assays and our capacity to carry out live imaging has 

expanded our ability to explore the multifaceted role of this widespread bacterial signal.  
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