

Content Overload And Its Effects On Learning

Erika Moe¹, Sarah DuBrow²

Departments of Human Physiology¹ and Psychology²
University of Oregon

Introduction

- COVID-19 forced-remote learning has had mixed results, with some students preferring online classes^{1,2}.
- Content overload, or "decision paralysis": Presenting an individual with too many options causes them to "freeze" and their later decisions to be less decisive³.
- Content overload may create stress, which at high rates would impact learning mechanisms⁴.

Hypothesis

- 1. Increasing presented workload will have detrimental effects on learning.
- 2. Remote learning preference -> better memory larger presented workloads. In-person learning preference -> better memory structured, condensed presented workload.

Methods

Figure 1a. Study Design outline. Day 1 activities shown in blue (Day 1 questionnaire not included in figure). 24 hours later: comprehension test - green (Day 2 questionnaire not included in figure).

Topic: Psychology – Read the following description of the speech areas of the brain:

Broca's area, located in the frontal lobe of the brain, is responsible for...

What signs would a patient with a damaged Broca's area exhibit?

- a) Blindness
- b) Inability to comprehend words
- c) Inability to speak, but can comprehend

Figure 1b. Example topic selection passage and question.

Predicted Results

Test Score by Learning Condition and Preference O.9 (b) O.7 Online Pref. Neutral Pref. Pref.

Figure 2. # of Topic Conditions (and preference) vs. Average Test Score. Predicted negative effect of increased workload

Figure 3. Preference vs. Difference in Score (8 Topic – 2 Topic). Predicted negative cost of topic presentation number for in-person preference.

References

- I. Freeman, S.; Eddy, S. L.; McDonough, M.; Smith, M. K.; Okoroafor, N.; Jordt, H.; Wenderoth, M. P. Active Learning Increases Student Performance in Science, Engineering, and Mathematics. *Proc. Natl. Acad. Sci.* 2014, 111 (23), 8410–8415. https://doi.org/10.1073/pnas.1319030111.
- 2. Meet the students who say school remote learning in the pandemic is a big win Vox https://www.vox.com/first-person/21433095/coroanavirus-covid-19-school-reopening-online-learning-remote (accessed Dec 14, 2020).
- 3. Huber, F.; Köcher, S.; Vogel, J.; Meyer, F. Dazing Diversity: Investigating the Determinants and Consequences of Decision Paralysis: DAZING DIVERSITY.
- Psychol. Mark. 2012, 29 (6), 467–478. https://doi.org/10.1002/mar.20535.
 4. Luksys, G.; Sandi, C. Neural Mechanisms and Computations Underlying Stress Effects on Learning and Memory. Curr. Opin. Neurobiol. 2011, 21 (3), 502–508. https://doi.org/10.1016/j.conb.2011.03.003.

Acknowledgements

- Professor Sarah DuBrow, University of Oregon
- Dr. Bjarne J. Aasum, University Hospital of Trondheim, Norway
- David Han, University of Oregon
- DuBrow and Hutchinson Labs