Thinking About My Future While Sitting in Science Class:
 Future Thinking and Motivation to Learn

Madeleine Smith, Jennifer Vuong, Matthew C. Graham, Jenefer Husman
University of Oregon, Department of Educational Studies

Results: Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA; Hastie et al., 2009) was used to create profiles based on multiple aspects of students' motivation and how different profiles relate to students' self-regulation and performance. The profiling approach illustrates how independent psychological constructs interact to form clusters, which are referred to here as motivational and self-regulated learning profiles (Nelson et al., 2015). HCA was conducted in SPSS v. 27. A dendrogram and icicle plot were extracted using Ward's method and squared Euclidian distance.

We found that three profiles best explained our data and mirrored prior research findings (Shell \& Soh, 2013; Entwistle \& McCune, 2004). Cluster 1 represents 24.42% of students. This cluster had high PIEX ($M=3.28, S D=.93$, high PAP ($M=3.34, S D=.92$), and high PAV ($M=3.77$, $S D=.76$). Compared to the other clusters derived with HCA, we inferred that Cluster 1 represents students who are motivated by performance outcomes. Cluster 2 represents 35.06% of students. The mean scores for each variable were below the grand mean except for PIEX ($M=3.14, S D=.99$). Therefore, Cluster 2 is inferred to be low in motivation and selfregulation strategies. Cluster 3 represents 40.52% of students. This cluster is high in SE, MG, and self-regulation strategies and low in PIEX ($M=2.21, S D=.72$), PAP $(M=2.17, S D=.92)$, and PAV $(M=2.48, S D=.89)$. Cluster 3 is inferred to be the learning profile of students with personal interest in the course and who are high in motivation and self-regulation.
 their future thinking, goals, confidence, self-regulation their future thinking, goals, confide
and knowledge building strategies.
and knowledge building strategies.

	N	$\%$
Gender		
Male	117	30.2
Female	264	68.2
Prefer not to say	7	1.6

Note. Total $N=385$. Age ranged from 18 to 45 years old ($M=19.31, S D=2.13$).

Variables		
Measure	Abbr.	$M(S D)$
aSelf-efficacy	SE	$4.25(1.35)$
bPerception of Instrumentality	PIEN	$3.72(.84)$
Endogenous		
bPerception of Instrumentality	PIEX	$2.80(1.00)$
Exogenous	MG	$4.00(.79)$
cMastery Goals	PAP	$2.36(1.00)$
cPerformance-approach Goals	PAV	$2.70(1.04)$
cPerformance-avoid Goals	KB	$3.57(.85)$
dKnowledge Building	SR	$3.36(.81)$
dSelf-regulation		
Note. Mean and standard deviation for complete sample. MSLQ		

R

Conclusion

A one-way ANOVA was used to test cluster profile differences in end of term grades. A statistically significant difference was found between Cluster 1 and Clusters 2 and $3, F(2,342)=35.81, p<$.01. We conducted post-hoc comparisons using Bonferroni's correction which indicated that Cluster 1 and Cluster 2 are not statistically different. When compared to Cluster 3, both 1 and 2 are statistically different, $p<.01$.

A myriad of factors work in tandem to support student learning and performance. Learning goals, confidence in ability, valuing of the course, and self-regulation strategies influence students' performance in a science course. Using cluster analysis to identify the relations between these variables, three motivational and self-regulated learning profiles were found. 1) Students who have high performance goals, 2) students who are taking the class simply because they must, and 3) students who learn deeply and are personally interested in the course. Cluster 1 and 3 are similar, which indicates that Cluster 3 is better for students' grades. While both clusters have students who are confident and utilizing self-regulation strategies, the difference in performance goals and exogenous perception of instrumentality may be an indicator of the difference between end of term grades for the two clusters. Understanding the different learning profiles students adopt can help secondary science instructors alter the course structure to decrease the emphasis on performance goals.

