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The public’s opinion on mathematics is overwhelmingly negative. Millions of individuals su�er from a

diagnosable condition called math anxiety. There are, however, ways to combat this issue. Evidence-based

practices such as explicit instruction have been shown to decrease the load on working memory, something

math anxiety limits. By using explicit instruction and other evidence-based practices and high-leverage

practices we can reduce math anxiety and increase math achievement. Another compounding issue is the

public perceived lack of relevancy of mathematics in schools. This issue can be alleviated by teaching

discrete mathematics, a branch of mathematics that has close ties to computer science which is essential

in our current society. Teaching python coding concurrently with discrete mathematics only increases

the connection to "the real world". Additionally, teaching about diverse individuals in computer science

and mathematics, along with other methods of reducing math anxiety and alternative testing methods can

further decrease, or make more manageable, the prevalence of math-related anxiety.
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Introduction

Background

The construct of math anxiety was �rst introduced in 1957 by Dreger and Aiken who said that "Many

persons report in clinical sessions and in academic classes that they are emotionally disturbed in the pres-

ence of mathematics. It has been the writers’ experience that reactions of this nature to mathematical and

arithmetical materials constitute a major �eld of emotionality in academic situations" [A1]. However, people

have been expressing math anxiety for centuries. A verse from the sixteenth century says "Multiplication is

vexation ... and practice drives me mad". Mathematics education has come a long way since then but math

anxiety still exists and is prevalent in our society. Math anxiety is a diagnosable condition characterized by

feelings of frustration and anxiety that limit the individual’s capability to interact with mathematics in a

meaningful way. It has been de�ned as "a feeling of tension and anxiety that interferes with the manipula-

tion of numbers and the solving of mathematical problems in a wide variety of ordinary life and academic

situations" [A2].

Math anxiety seems to consist of multiple components. The two components are worry and emotion-

ality. "Worry is the cognitive component of anxiety, consisting of self-deprecatory thoughts about one’s

performance. Emotionality is the a�ective component of anxiety, including feelings of nervousness, ten-

sion, and unpleasant physiological reactions to testing situations" [A3]. While the a�ective part of math

anxiety e�ects the actual performance of the student with math anxiety, the cognitive part in�uences their

daily life and career path; an individual with math anxiety is less likely to pursue careers that require ex-

tensive mathematics education. Furthermore, studies have shown that math anxiety increases with age and

that women are more likely to su�er math anxiety than men [A4].

One consequence of math anxiety is its limiting e�ect on working memory. Working memory plays a

vital role in mathematical cognition. Working memory capacity is the range of information that an individ-

ual can process at the same time to perform complex tasks, and selectively shines on relevant information

from one moment to another. Learning new information requires a substantial amount of working memory,

something that, if you have math anxiety, is more di�cult to procure. For individuals with disabilities or



conditions that further limit working memory, the process of learning more information is signi�cantly

harder. In addition to limiting working memory, the symptoms of math anxiety include panic, paranoia,

passive behavior, and a lack of con�dence. Studies have also found that there exists an inverse relationship

between math anxiety and self-e�cacy [A5]. Here we de�ne self-e�cacy as in individual’s con�dence in

their ability to perform mathematics, something which directly impacts motivation to pursue mathematics

[A6]. Math anxiety is pervasive, studies have shown it a�ects anywhere from 6% to 68% of the population

depending on the study [A7].
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An Ode to Discrete Mathematics

Discrete mathematics emerged as a separate area of study in the 1960s. An essential part of the mathe-

matics behind computer science, it includes combinatorics, graph theory, counting, probability, and more.

Unlike other areas of mathematics discrete mathematics allows students to very quickly answer the question

"When am I going to use this in the real world?" by using non-trivial "real world" questions that are inter-

esting and challenging. While high school curriculums cover some discrete mathematics, its coverage is

limited and depends highly on which school district you are looking at, as the United States has no national

or even state-wide curricula. Elements of discrete mathematics are however in the NCTM standards. Dis-

crete mathematics is also featured in many middle school and high school mathematics competitions. While

other areas of mathematics like algebra and geometry are done by rote memorization, discrete mathematics

requires creative, �exible thinking and problem-solving. In the words of Susan Picker:

An important aspect of discrete mathematics is, that it enables students to see mathematics

more accurately, as having many problems which are still unsolved. With only a small amount

of technical background students can understand enough about a class of problems such as graph

colouring to understand that no algorithm exists which will always guarantee the most e�cient

colouring. It means that students can stand at the cutting edge of mathematical knowledge with

the real possibility of making a contribution; something they could not have previously believed.

There are a number of other student beliefs about mathematics that discrete mathematics se-

riously challenges. Such widely held beliefs as mathematics problems can only have one right

answer, that doing maths means memorizing formulas and giving them back in the right order

at the right time, that most math problems can be solved within minutes, and that mathematics

can only be created by geniuses, are disproved in a discrete mathematics class where there may be

many answers to a problem, there may be no formula to follow, students may work on a problem

over several days, and where students may see something that the teacher has never seen that way

before [A8].
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Incorporating Python

Under normal circumstances, discrete mathematics is taught in college after students have had some

experience with programming. Discrete mathematics is, however, often taught abstractly and disjointed,

without the use of programming. This can make some concepts more di�cult to grasp. By incorporating

a language such as Python, whose syntax is relatively intuitive and has its similarities to mathematical no-

tation and algorithmic pseudocode, we can teach students abstract concepts in practical ways. Python is a

simple but powerful object-oriented programming language used by novices and experts alike. Best of all,

it’s free. Using Python allows students to study the mathematics not only theoretically, but practically. It

also helps answer the question of "When will we use this in real life?" as knowledge of computers is consid-

ered essential in this day and age. This is not just a one way relationship, learning discrete mathematics can

help to improve coding skills as experts often use discrete mathematics knowledge to approach the design

of a problem.
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Motivation

I have been a teacher’s assistant and tutor for 8 years and in that time I’ve seen a lot of students with math

anxiety. Being able to help them understand math is one of my greatest joys. I created this curriculum as a

way to connect to them as I believe that teaching discrete mathematics using e�ective educational practices

may be the key to turning attitudes towards math from fear to understanding. Furthermore, I believe that

discrete mathematics it in itself important to teach not only in college but in high school as well. There is a

whole other world of mathematics that a large majority of students never get to see because they don’t go

into computer science. However, discrete mathematics can be very disjoint and hard to understand. This is

why I believe it is important to enact these high-leverage and evidence-based practices. I also believe that

adding computer science to the curriculum can help the sca�olding of the course to be clearer and more

de�ned.
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Educational Practices

Research to Practice Gap

One of the systemic problems that exists in education is the gap between research and practice. While

a key goal of research is the improvement of practice, little of said research makes its way into teaching

practices in the classroom. This means that, despite the proven e�ectiveness of the evidence-based and

high-leverage practices mentioned here, the practices are not widely implemented. Four conceptual is-

sues, as identi�ed by Broekkamp and van Hout-Wolters, constitute the gap between research and practice

[B9]. The �rst is that educational research yields only few conclusive results. This can be due to a myriad

of factors including the complexity of education, the marginal amount of research compared to other ap-

plied disciplines, the narrow or one-sided focus of researchers, etc. The second problem is that educational

research yields only few practical results. This could be due to inconclusive results or, if unambiguous ev-

idence exists, the results often have no practical value. Other times evidence relates to problems that are

too insigni�cant or too remote from the context of interest. Thirdly, practitioners believe that educational

research is not conclusive or practical, an issue that is fed by the previous two issues mentioned. A study

by Gore and Gitlin found that teachers dismissed research as they found it to be not "practical, contextual,

credible, or accessible" [B10]. Finally, the fourth issue they found was that practitioners make only little

(appropriate) use of educational research. This could be partly due to their mistrust of research but could

also be caused by the limited ful�llment of the following two conditions. First, that practitioners " - at least

some of them - should be trained to access information about research results (e.g., through reading re-

search articles), and to critically evaluate and test them. Furthermore, practitioners should receive support

from their organizations for actively using research in the form of time, money, assistance, and ultimately,

collaboration" [B9]. The limited ful�llment can also explain the frequent sloppy and inappropriate use of

research by practitioners.

Another article views the gap di�erently. Vanderlinde and van Braak pose that there are two opposing

types of knowledge at play here: research-based knowledge, i.e. what is published in scienti�c journals,

and pedagogical knowledge, i.e. the knowledge used in classrooms [B11]. The problem there is the tension
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formed by the practitioner asking for solutions to current and ongoing issues while the research seeks

new knowledge. McIntyre expands on this, saying that another contrasting feature is that practitioners

are looking for practical knowledge whereas researchers are prioritizing other values such as clarity and

coherence. Furthermore, research must be, to have any value, abstract, theoretical, or generalized while

teachers need research that enables them to solve the unique and context-rich problems they are facing in

the classroom everyday [B12].

While it is beyond the scope of this thesis to solve this systemic of a problem, possible solutions can

be touched on. First, Broekkamp and van Hout-Wolters propose four possible solution models. One possi-

ble solution is the Research Development Di�usion Model, where "practice-oriented research expands on

fundamental research" [B9]. The model assigns a central role to mediators who make decisions on what to

include, discard, or adapt from research for practitioners. The Evidence-Based Practice model describes the

"systematic application of research results in educational practice" [B9]. Unlike the RDD model which is

diverse in what it includes, the EBP model is concerned only with empirical evidence for e�ective teaching

methods. The model of Boundary-Crossing Practices concerns cooperation between di�erent professional

domains towards a common task. Finally, the model of Knowledge Communities believes in intense collab-

oration between di�erent professional domains, that they pro�t from each other’s expertise and generate

new knowledge.

McIntyre suggests that it would be helpful if research is intelligently planned from the beginning with

the intention of informing practitioners of ways to adjust their practices [B12]. One interpretation of this,

is the suggested use of high-leverage practices. High-leverage practices are "practices that are essential

to e�ective teaching and fundamental to supporting student learning" [B13] They are essential practices

designed provide a clear focus for teacher preparation. Despite their proven e�ectiveness, these practices

are not widely used. There are multiple possible explanations for why this is:

1. Teacher preparation largely occurs in settings that are removed from the practice of teaching,

and most coursework emphasizes re�ection, investigation, and knowing about practice rather than

directly focusing on the use of practices in classrooms (Ball et al., 2009)

2. Most teacher education programs have very limited connections between coursework and �eld
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experiences. When this fragmentation occurs between theory and practice, practice primarily fo-

cuses on the ’conceptual underpinnings of teaching as opposed to the concrete practices new teachers

may need to enact when they begin teaching – practice is not at the core of the curriculum’ (Gross-

man et al., 2009, p.275).

3. The speci�c practices that PSTs learn to use are largely left to chance. This occurs primarily

because teacher educators expect that practices will be learned during �eld experiences, the com-

ponent of their programs over which they have the least control (Grossman & McDonald, 2008).

PSTs thus learn practices that they happen to encounter in �eld settings, and these may or may not

be e�ective practices.

4. E�ective instructional practices that are critical to the success of beginning teachers are seldom

systematically taught during teacher preparation through closely aligned coursework and �eld

experiences (Forzani, 2014). [B14]

Changes to teacher preparation were proposed in 2010 by the National Council for Accreditation of Teacher

Education [B15]. A work group convened by the Council for Exceptional Children developed several high-

leverage practices intended to be paired with culturally responsive teaching [B16].

8



What are Evidence-Based and High Leverage Practices?

According to one article entitled Unraveling Evidence-Based Practices in Special Education by Brian G

Cook and Sara Cothren Cook, evidence-based practices are practices "that are supported by multiple, high-

quality studies that utilize research designs from which causality can be inferred and that demonstrate

meaningful e�ects on student outcomes" [B17]. Evidence-based practices are e�ective, they create a real

di�erence in student life and performance. It is important to note that no one evidence-based practice will

work for everyone. Evidence-based practices originated in the 1990s in the �eld of medicine. The iden-

ti�cation of evidence-based practices soon spread to other �eld such as nursing, psychology, agriculture,

and education. They represent what has the most potential for improving student performance, especially

for struggling students who require as e�ective of instruction as is possible to succeed. The problem with

evidence-based practice is a problem previously discussed, teachers have a noticeable lack of faith in re-

search which leads to a lack of implementation of evidence-based practices. What these teachers might not

necessarily know is that evidence-based practices go through an evidence-based review which examines

the research design, quality of research studies, quantity of research studies, and magnitude of e�ect [B17].

Teachers currently face higher demands to prepare a diverse range of students for the high levels of

performance required of them by colleges or careers. It is essential that whatever time teachers have is

spent using the most e�ective practices possible. However, teachers are often entering schools without

su�cient initial preparation for them to have the skills to enact those practices [B18]. Therein lies the

problem that high-leverage practices are trying to resolve. Researchers believe that by incorporating these

22 educational practices across four areas (collaboration, assessment, social/emotional/behavioral, and in-

struction) into teacher preparation and education [B16]. 1-3 are collaboration, 4-6 are assessment, 7-10 are

social/emotional/behavioral, and 11-22 are instruction.
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Table 1: High-Leverage Practices for K-12 Special Education Teachers

1. Collaborate with professionals to increase student success

2. Organize and facilitate e�ective meetings with professionals and families

3. Collaborate with families to support student learning and secure needed services

4. Use multiple sources of information to develop a comprehensive understanding of a student’s
strengths and needs

5. Interpret and communicate assessment information with stakeholders to collaboratively design and
implement educational programs

6. Use student assessment data, analyze instructional practices, and make necessary adjustments that
improve student outcomes

7. Establish a consistent, organized, and respectful learning environment

8. Teachers provide positive and constructive feedback to guide student’s learning and behavior (behav-
ior focus)

9. Teach social behaviors

10. Conduct functional behavioral assessments to develop individual student behavior support plans

11. Identify and prioritize long- and short-term learning goals

12. Systematically design instruction toward a speci�c learning goal

13. Adapt curriculum tasks and materials for speci�c learning goals

14. Teach cognitive and metacognitive strategies to support learning and independence

15. Provide sca�olded supports

16. Use explicit instruction

17. Use �exible grouping

18. Use strategies to promote active student engagement

19. Use assistive and instructional technologies

20. Teach students to maintain and generalize new learning across time and settings

21. Provide intensive instruction

22. Teachers provide positive and constructive feedback to guide students’ learning and behavior (learn-
ing focus)

10



Explicit Instruction

Explicit Instruction is a highly structured, systematic method that breaks instruction down into small

steps. It is direct and uses clear, concise, and consistent language both in designing and delivering instruc-

tion. Explicit instruction uses sca�olds, a series of supports that are lessened over time as the students

gain independent mastery of the subject in question. Rosenshine (1987) characterized explicit instruction

as "a systematic method of teaching with emphasis on proceeding in small steps, checking for student

understanding, and achieving active and successful participation by all students" [B19]. Reviews on the

e�ectiveness of explicit instruction include Jere Brophy’s and Thomas Good’s chapter in the Handbook of

Research on Teaching entitled "Teacher Behavior and Student Achievment" which reviewed dozens of stud-

ies [B20], N.L Gages’ and Margaret C Needels’ article "Process-Product Research on Teaching: A Review

of Criticisms" in The Elementary School Journal [B21], and Barak Rosenshine’s and Robert Stevens’ chapter

in the Handbook of Research on Teaching entitled "Teaching Functions". Between 2008 and 2009, three gov-

ernment reports were released that recommended the use of explicit instruction: a report by the National

Mathematics Advisory Panel in 2008, a 2008 report by the Institute of Education Sciences, and a report in

2009 by the National Center for Education Evaluation and Regional Assistance. Meta-analyses have been

conducted in the �eld of special education by Sharon Vaughn, Russell Gersten, and David J Chard [B22];

and H. Lee Swanson and Maureen Hoskyn [B23], among others.

There are 5 essential components of explicit instruction; explicit instruction should segment complex

skills, use modeling and "think-alouds" to draw attention to important content features, use systematically

faded supports and prompts, provide frequent opportunities for students to respond and receive feedback,

and create purposeful practice opportunities. Other important and commonly used components of explicit

instruction include selecting critical content, using logic to sequence skills, ensuring students have the

requisite prerequisites and background knowledge necessary for success, presenting a wide range of exam-

ples and non-examples, and maintaining a brisk pace [B24]. Though explicit instruction has been viewed

through many di�erent lenses and talked about in many di�erent forms, the essential components remain

constant. The reasoning on why e�cient instruction is so e�ective is not constant. Researchers have argued

that explicit instruction is e�ective because it reduces the cognitive load and resulting stress on working
11



memory [B25], while others contend that the teaching behaviors align with several applied behavior anal-

ysis principles [B26]. Regardless of the reasoning, the truth remains evident, explicit instruction is e�ective

for both special and general education purposes.

Explicit instruction can be taught in many formats. One such format is the explicit instruction cy-

cle. It consists of seven phases: curriculum-based assessment, planning, advance organizer, demonstration,

guided practice, independent practice, and maintenance. CBA has evolved over the last few decades as a

measurement system that uses data regarding student performance and progress to make data-based deci-

sions which helps to design e�cient and e�ective education. "CBA helps to pinpoint curricular objectives

that act as the criteria for the identi�cation of instructional targets and for the assessment of students’ skills

upon entry into an academic curriculum." [B27] Curriculum-based assessment (or measurement) was orig-

inally developed for special education as a way of testing the e�ectiveness of a intervention model called

data-based program modi�cation (DBPM). The University of Minnesota’s Institute for Research on Learn-

ing Disabilities ran a 6 year long study which ultimately generated a set of criteria which established the

technical adequacy, treatment validity, and logistic feasibility of the measures [B28].

CBA is technically adequate, time e�cient, and easy to teach. It can be used to improve individual

instruction programs, predict performance, screen for at-risk students, enhance instructional planning, re-

duce bias in assessments, and more [B29]. There are also di�erent kinds of CBAs which accomplish di�erent

things. The three types of curriculum-based measurements are survey CBAs, untimed focused CBAs, and

timed focused CBAs (also called probes). A survey CBA’s purpose is to measure a wide range of concepts

and skills. This provides the instructor is a comprehensive view of the student’s mathematical ability. It can

also help pinpoint individual strengths and weaknesses. Focused CBAs are designed to test very speci�c

concepts or skills. They aim to represent all problem types of a speci�c skill area in order for the instructor

to understand a student’s level of understanding of a certain topic area. Untimed focused CBAs allow as

much time as needed to complete whereas timed focused CBAs are given a more limited time frame, usually

one minute. Probes (timed focused CBAs) aim to develop and measure declarative knowledge by testing

�uency and recall [B30].

The next phase of the explicit teaching cycle is the planning phase. There are two key principles that
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go into planning the lesson: data-based decision making and instructional alignment. Data-based decision

making entails using the information and data gathered during the curriculum-based assessment to inform

the decisions made in planning the lesson. There are multiple types that teachers can draw on to make

data-based decisions: input data, output data, process data, and context data. Input data is data on student

or teacher characteristics. Outcome data is the data regarding student achievement and well being. Process

data is data about instruction and types of assessments. Context data is on the school culture, building, or

the curriculum. Most commonly, teachers use outcome data to make decisions [B32]. Depending on the

type of CBA used, you will learn di�erent outcome data. For example, survey CBAs help make decisions

about the appropriate place in the curriculum and how to group students according to instructional needs.

Regardless of the type or purpose of the CBA, an important step in data-based decision making is, when

looking at outcome data, determining whether or not the student in question has met the criteria for the

rate of accuracy.

The other key principle to take into consideration when planning lessons is instructional alignment.

"Instructional alignment exists when there is a match in the stimulus conditions of intended outcomes,

instructional processes, and instructional assessment" [B31]. This means that what a teacher is wanting

to teach must match the activities or worksheets the students complete. There are three components of

instructional alignment: objectives, instruction, and evaluation. Teachers should decide, when planning

the lesson, what the core objectives of that lesson are. This lets them choose worksheets and activities that

follow the same objectives. In keeping instruction in mind, they should take care in choosing the correct

instructional strategies to match the context of the lessons. Teachers should also share the objectives with

their students as students can gain autonomy by knowing the rationale of a particular activity or lesson.

The �nal component of instructional alignment is evaluation. Evaluations are important for a myriad of

reasons, one of which is enhancing student motivation by letting students track their progress. It is essential

that evaluations cover material and objectives explicitly learned in class [B33].
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The next step in the cycle to consider is the advance organizer. The purpose of an advance organizer is

to link new ideas to existing knowledge and thereby enable students to learn new ideas and information. "It

is designed to cue the relevant prior knowledge of a learner and it is usually presented at a higher level of

abstraction, generality, and inclusiveness than that of the planned lesson" [B34]. This manifests as teachers

asking questions, presenting an outline, or linking new knowledge to previously learned material. Advance

organizers can take many forms, whether they be charts and diagrams, or concept maps. There are two types

of advance organizers: expository and comparative. "Expository organisers function to provide the learner

a conceptual framework for unfamiliar material, and comparative organisers are used when the knowledge

to be acquired is relatively familiar to the learner" [B34]. Additionally, there are three phases of advance

organizer teaching. The �rst stage is presentation of the advance organizer and consists of introducing the

goals of the lesson, the topic, and the materials required. It is important that it provides the framework

for the learning that later takes place. The next step is the presentation of the actual material, paying

special attention to the ordering of the material and what it means to the students. Student participation is

important at this juncture. The last stage consists of the teacher asking questions to cement the knowledge

and extend the thinking of the students.

Also included in advance organizer teaching are some necessary components. One such component

is review. An advance organizer should include review because it allows teachers to check that the stu-

dents know the necessary prerequisite knowledge and prepares the students for success in the oncoming

lesson. An important question to ask is what skills, knowledge, or concepts are needed for the students

to obtain success in the lesson. It is helpful to consult a scope and sequence chart to determine the con-

cepts necessary to review. The review should be brief and engage all students in order to get an accurate

view of each student’s preparedness for the lesson. The teacher should be continuously checking student

progress, providing feedback, and assessing whether to move onto the lesson or continue review. Another

such component to include in advance organizer teaching is stating the lesson objective and linking it to

prior knowledge. The statement of the lesson objective should be brief and contain simple language. One

last component to include is the development of relevance. It has been shown that when students know

why they are learning a new skill, motivation and learned are elevated [B30].
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There are several strategies involved in the next phase of the explicit teaching cycle, demonstration.

During demonstration, it is important to incorporate teacher modeling. Teacher models should use clear,

consistent, and concise language and be unambiguous in their explanations. They should show the students

what they are learning and how to apply it [B35]. Critical aspects of teacher modeling includes the use

of clear language, inclusion of student involvement, and su�cient number of examples to promote real

understanding. When determining the number of examples, teachers should examine the di�culty of the

task, the knowledge brought to the classroom by students, and student response to instruction. One way

to implement teacher modeling is by using think-alouds. "The think-aloud is a technique by which the

individual voices her or his thoughts during the performance of a task" [B36]. It is as simple an idea as it

sounds, someone explaining their actions out loud while doing a task. Think-alouds help guide students

through making critical connections in their thinking and generalizing the information learned to other

applications. They "provide students with an opportunity to witness the expert thinking that is typically

hidden and thus an abstract concept to the students" [B37].

Another important strategy is maximizing student engagement. One de�nition of student engagement

says that student engagement is multifaceted and is de�ned under three aspects: behavioral engagement,

emotional engagement, and cognitive engagement. Behavioral engagement "draws on the idea of partic-

ipation" [B38]; it is considered essential for obtaining a positive educational outcomes and includes the

participation in academic, social, and extracurricular activities. Emotional engagement is all about creating

ties to the school and supplying the motivation to complete academic tasks. It encompasses reactions, both

positive and negative, to a myriad of factors including teachers, academics, classmates and the school itself.

Finally, cognitive engagement "draws on the idea of investment" [B38] and incorporates the motivation to

exert the necessary e�ort to master complex skills and ideas. The three types of engagement are interrelated

and constitute a dynamic process that has its in�uences on learning and achievement. Another de�nition

of student engagement is as follows: "the student’s psychological investment in and e�ort directed toward

learning, understanding, or mastering the knowledge, skills, or crafts that academic work is intended to

promote" [B39].

An article on student engagement identi�ed four motivational constructs which represent major con-
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structs in the �eld of achievement motivation. The �rst construct, belongingness, is about the necessity

of establishing meaningful connections and relationships to others. Belongingness theory says that hu-

mans have a "pervasive drive to form and maintain at least a minimum of lasting, positive, and signi�cant

interpersonal relationships" [B40]. When applied to education and school achievement, the premise of be-

longingness theory is that "caring and supportive relationships facilitate student engagement and other

adaptive school behaviors" [B41]. Instructional practices that o�er opportunities to foster belongingness

are demonstrating and encouraging mutual respect and teaching students to work together in a productive

manner. The next construct is competence, the necessity for humans to meet one’s goals successfully and

be successful in their interaction with their environment. One theory of competence is self-e�cacy. Self-

e�cacy means a person’s belief that they can be successful when completing a certain task or achieving

a certain goal. Studies show that "students who feel e�cacious about learning tend to be competent and

engaged and are likely to set learning goals, use e�ective learning strategies, monitor comprehension, eval-

uate goal progress, and create supportive environments" [B42]. Teachers can help increase competence by

showcasing that mistakes provide information, thusly encouraging student persistence. The use of scaf-

folding, feedback, and appropriately challenging assignments can also help foster feelings of competence

[B43].

Autonomy, the third construct, is a psychological need. It is a need to behave and make decisions and

choices according to one’s own values and interests. As for the e�ectiveness of nurturing autonomy to

increase student engagement, one study showed that "teachers’ autonomy support was an even better pre-

dictor of students’ classroom engagement than was students’ own engagement during an earlier class" [B44].

Strategies important for nurturing autonomy include using language that isn’t controlling, providing ratio-

nales for tasks, acknowledging and respecting student perspectives, and allowing students to debate and

ask questions freely. One study said that teachers who were autonomy supportive "(a) adopt the students’

perspective; (b) welcome students’ thoughts, feelings, and behaviors; and (c) support students’ motivational

development and capacity for autonomous self-regulation" [B45]. The �nal construct, meaningfulness, is

the only one of the constructs that is not considered a basic human need. When learning is meaningful, it

involves the development of interest or the appreciation of the topic being learned. To foster meaningful-
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ness, one study recommends building on the prior knowledge of students, emphasizing your own interest

in the topic, invoke universal human experiences, and o�er opportunities for students to think complexly

and participate in conversations with fellow peers to achieve shared understandings. [B43]

One additional strategy to promote student engagement is to provide opportunities to respond (OTR).

E�ective delivery is characterized by three aspects: type of delivery, rate of presentation, and method of

response. OTRs are a subset of teacher questioning which features two types of questions: fact and higher

order (cognitive). Fact questions require mere regurgitation of information, while higher order questions

require independent thinking. Various modes of responding can also be provided. Students could respond

individually or by choral responding (as a group). Another strategy that promotes student engagement

is providing feedback. This has the added bene�t of also increasing student achievement. Feedback can

be positive or negative and timely feedback helps to cement concepts in student minds and correct any

errors that arise. Feedback can also help regulate student behavior. While feedback can be positive or

negative, the ratio between the two should heavily favor positive feedback. Increasing positive feedback

has been shown to increase productivity and accuracy. A myriad studies concluded that the ratio of positive

to negative feedback should be at least 4:1 [B37]. Additional e�ective strategies for questioning include

creating a classroom culture open to dialogue; using both preplanned and emerging questions; selecting an

appropriate level of questions based on learners’ need; avoiding trick questions and those that require only

a yes or no response; phrasing questions carefully, concisely, and clearly; addressing questions to the group

or to individuals randomly; using su�cient wait time; responding to answers given by students; deliberately

framing questions to promote student interest; and using questions to identify learning objectives for follow-

up self-study. [B46]

The next stage in the explicit instruction cycle is guided practice. Here we make use of a practice

called sca�olding. Sca�olding supports means to "provide temporary assistance to students so they can

successfully complete tasks that they cannot yet do independently and with a high rate of success" [B47].

The concept behind guided practice is to start with a high level of support and to slowly decrease support as

the students become more capable of independently solving the problems until you can withdraw support

completely without a loss of success. Worked solutions is a primary example of this strategy. They are
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"matched carefully to students’ current understanding of learning objectives and are systematically faded

to include fewer supports as students learn to solve the problems independently" [B48]. In addition to

algebraic problems and skills, sca�olding can also be used to teach higher level cognitive strategies. Above

mentioned think-alouds are a sca�old that can be used to teach such skills and strategies. It is essential

that during this process of sca�olding, that feedback, both positive and constructive, is frequently given.

Student engagement is also crucial at this stage.

Especially during the instruction of higher level cognitive skills, but also generally, it is important to

consider the load on students’ working memory. Working memory is a "processing resource of limited ca-

pacity, involved in the preservation of information while processing the same or other information. Tasks

that measure [working memory] assess an individual’s ability to maintain task-relevant information in an

active state and to regulate controlled processing" [B49]. The capacity of working memory is typically de-

scribed as the amount of information that an individual can process while also performing complex tasks.

The functioning of working memory is akin to a "spotlight" that shines selectively on relevant information

from one moment to the next. Ine�ective functioning of working memory can lead to overloading of infor-

mation and forgetfulness. The use of clear, concise, and consistent language as well as activation of prior

knowledge, sca�olding instructional supports, frequent review, and su�cient practice time with visual aids

and feedback, when well integrated, are ideal for facilitating working memory [B50]. Guided practice, with

adequate use of visual aids, is one way to facilitate working memory.

As students reach independency in their ability to complete problems using a certain skill or strategy,

you can transition into independent practice. The goal of independent practice is to "develop unitization

of the strategy, that is, the blending of elements of the strategy into a single, uni�ed whole" [B51]. It also

aims to decontextualize learning so the strategy can be applied easily and with little working memory. You

want to build and maintain skill pro�ciency. It is important at this stage to try to limit prompting, with

the intention of using the students’ performance at this stage to assess their understanding of the topic or

skill. Independent practice can take many forms including homework, in-class worksheets, quizzes, etc..

It is important that independent practice, regardless of form be distributed, i.e. take place over a longer

period of time. This helps to cement skills, entering them into long-term memories. The practice that takes
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place when learning is occurring, during demonstrations and guided practice, is called massed practice and

is equally as important. The goal for independent practice is to move on when 80% of students are accurate

80+% of the time. If students are not achieving that accuracy level, it may be necessary to reteach the

speci�ed skill.

The last stage in the explicit instruction cycle is maintenance, which refers to the student’s continued

ability to accurately complete mathematics problems related to a certain skill or strategy. It is the stage in

which distributed practice takes place. It is also the stage where you make data-based decisions to change,

adjust the curriculum, or reteach a certain skill or strategy. Data-based decision making should also occur

at signi�cant stages during instruction. These stages include when to move from review to demonstration,

when to move from demonstrations to guided practice, and when to move from guide practice to indepen-

dent practice. Data collected should not be only acquired from tests but rather come from four di�erent

places: input data is data about demographics of the student population, outcome data is data such as stu-

dent test scores and well-being, process data is data about the quality of instruction, and context data is

about policies and resources. Good data-based decision making should use data from all four types.

Data on their own, however, do not provide judgement, interpretation, or basis for action; they need to

be transformed to be useful. This process of transforming data should always begin with a clear purpose

as to why it’s being sought. This makes it possible to know what data should be collected. After data is

collected, the analyzing of the data can begin. Analyzing consists of "contextualizing, categorizing, calcu-

lating, connecting, and/or summarizing the data in a way that meets the purpose"[B52]. The next step is to

interpret the data. This consists of trying to make sense of what the data means and their implications for

the future and any action that is taken. Once all of that is clear, then you can take action on the data. Over-

all, the steps in data-based decision making should be to 1.) Using data, determine the instructional needs

of individual students, 2.) De�ne the SMART (Speci�c, Measurable, Attainable, Realistic, Time-bound) and

challenging goals, 3.) Based on the information in Steps 1 and 2, decide which instruction approach is most

promising to achieve those goals, and 4.) Execute the strategy proposed in Step 3. [B53]. For data-based

decision making that takes place you can just use data to decide whether or not to move on. This four-step

process is designed for the maintenance stage of the explicit instruction teaching cycle.
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Logistics

Diverse Individuals in Mathematics & Computer Science

"Despite decades of e�ort to increase the participation of women and people from underrepresented

minority groups (URM) in STEM majors and careers, and despite the increasing diversi�cation of the US as

a whole, participation in STEM majors and careers remains stubbornly male and white" [C56]. There are a

myriad of possible reasons as to why this is the case but one possible reason is that they don’t see women

and URM in STEM careers. One potential solution is to provide students with a list of women and URM in

the �eld of mathematics now and in the past. The following are examples of some diverse individuals in

computer science and mathematics.

Muhammad ibn Musa al-Khwarizimi

The words algebra and algorithm stem from one man, Muhammad ibn Musa al-Khwarizimi, an Per-

sian polymath born around A.D.780 in what is now Uzbekistan. Al-Khwarizimi accomplished most of his

work between 813 and 833, part of which was spent working in Baghdad in the House of Wisdom. He

was commissioned by the caliph (spiritual head of Islam) to do research and translate the treatises of Greek

mathematicians. Al-Khwarizimi’s work on elementary algebra in 820 included the writing of a book en-

titled "The Compendious Book on Calculation by Completion and Balancing", which was where the term

algebra derives from. The term algorithm originates from the title of another of his books which was on

Hindu-Arabic numerals and arithmetic entitled "Al-Khwarizimi Concerning the Hindu Art of Reckoning"

and written in 820. Al-Khwarizimi also wrote a another book entitled "The Image of the Earth" which is

based on Geography of Ptolemy but used improved values. In his book "The Compendious Book on Calcu-

lation by Completion and Balancing" Al-Khwarizimi talks about two mathematic operations: al-jabr which

means restoring or completion and al-muqabala which means balancing. Al-jabr is the process that consists

of removing negatives (whether they be units, roots, or squares) by adding the same quantity to each side.

Ex.

x2 = 40x − 4x2
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becomes

5x2 = 40x

Al-muqabala is about taking all of the terms of the same type and bringing them to one side of the equation.

Ex.

50 + 3x + x2 = 29 + 10x

becomes

21 + x2 = 7x

"The Compendious Book on Calculation by Completion and Balancing" also features lattice multiplication,

something Al-Khwarizimi is credited with developing. [C57, C58]

Winifred "Tim" Alice Asprey

Asprey was born on April 8th, 1917 and died on October 19th, 2007. She was an American mathematician

and computer scientist. Asprey was one of only 200 or so women to earn a PHD from an American university

during the 1940’s. She was responsible for bringing Vassar College its �rst computer in 1967 making it only

the second college in the United States to acquire a IBM System/360 computer. As an undergraduate, Asprey

attended Vassar College, where she met Grace Hopper also known as the "First Lady of Computing". She

then taught at a myriad of di�erent private schools in New York City and Chicago before obtaining her

masters in 1942 and doctorate in 1945 from the University of Iowa. After which, Asprey returned to Vassar

college as a professor, where she stayed for 38 years. There, she campaigned tirelessly for Vassar College

to have its own computer, succeeding in 1967. Alongside her work with Vassar college, Asprey conducted

research at IBM. Asprey retired from Vassar in 1982 and in 1989 Vassar’s Asprey Advanced Computation

Laboratory was named after her. [C59, C60]

Enriqueta González Baz y de la Vega

González Baz was born on September 22nd in Mexico City. She studied to be a teacher at Escuela número

8 for women before being sent by her father to Escuela Doméstica for domestic studies. There, González
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Baz caught the attention of one of her teachers, Elena Picazo de Murray, who encouraged González Baz to

pursue higher education. In 1994, at age 29, she became the �rst women to earn a degree in mathematics

from the National Autonomous University of Mexico where she wrote her thesis on Special Functions (i.e.

Bessel, Gama, and Legender). González Baz completed her postgraduate work in Philadelphia at Bryn Mawr

College. González Baz went on to teach in various secondary schools including the National Preparatory

School. Additionally, she was a researcher at the Institute and taught mathematics at the Faculty of Sciences.

González Baz was also one of �ve founding women who founded the Mexican Mathematical society. in 1943

She died on December 22nd, 2002. [C61, C62]

Farida Bedwei

Farida Nana Efua Bedwei is a software engineer from Ghana. She was originally born in Lagos, Nigeria

where she was diagnosed with cerebral palsy a day after she was born. Farida Bedwei is the cofounder of

a �nancial technology company called Logiciel. She is also known for her accomplishments in the �elds

of software architecture and deploying mobile services. She has won several awards including the Winner

of Most In�uential Women in Business and Government Award Financial Sector. She is also a member of

The Girls in ICT Committee, a group dedicated to encourage the increase of women in IT careers. Farida

Bedwei also created a superhero named Karmzah who has cerebral palsy and gets her power from her

crutches. [C63]

Manjul Bhargava

Born to an Indian family, his mother Mira Bhargava was his mathematics �rst teacher. Manjul Bhargava

was valedictorian of his high school before earning his BA at Harvard. He completed his doctoral disserta-

tion at Princeton where he teaches today. Manjul Bhargava has earned over 10 awards and prizes including

the Field’s Medal which is one of the highest prizes a mathematician can earn; it is often described as the

Nobel Prize of Mathematics. Manjul Bhargava is also the third youngest full professor in the history of

Princeton. [C64]
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Anita Borg

American-born computer scientist Anita Borg got her �rst programming job in 1969 at age 20. She was

awarded her PHD in 1981 by New York University. Borg founded the Institute for Women and Technology

and the Grace Hopper Celebration of Women in Computing. Her goal was to have 50% representation for

women in computing by 2020. The �rst Grace Hopper Celebration of Women in Computing took place in

Washington DC in June of 1994 and brought together over 500 women in computer science. Anita Borg

won many awards and wa recognized by Bill Clinton who appointed her to the Presidential Commission

on the Advancement of Women and Minorities in Science, Engineering, and Technology. [C65]

Kimberly Bryant

Kimberly Bryant was born in Memphis, Tennessee in 1967. A scholarship student to Vanderbilt Univer-

sity she majored in Electrical Engineering with minors in Computer Science and Mathematics. Bryant is

best known for her founding of Black Girls Code in 2011. Inspired to create a better life for her daughter

who was interested in coding Bryant hopes that Black Girls Code will help young women from minority

populations to stay in STEM. Black Girls code teaches computer programming to young women via after

school and summer programs. The nonpro�t organization has a goal of teaching one million black girls to

code by the year 2040. [C66]

Stephanie Castillo

Stephanie Castillo is the executive director of Latin Girls Code. Latin Girls Code is a Chicago based

program which seeks to provide education and resources on technology to interested young Latina women,

from ages 7-17. Seeking to teach not only technology but also entrepreneurial skills, the group holds work-

shops, hackathons, and week-long programs. In addition to teaching, Castillo also provides advice as an

immigration advisor as many of the young women who are interested in technology are also undocumented.

[C67]
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Lynn Conway

Lynn Conway was born in Mount Vernon, New York in 1938. As a child she was shy and experienced

gender dysphoria. Conway entered MIT in 1955 but dropped out due to a failed gender transition in 1957-58.

Lynn Conway worked for several years as an electronics technician before attending Columbia University’s

School of Engineering and Applied Science, earning degrees in 1963. Recruited by IBM, Conway worked

on an architecture team designing an advanced supercomputer. On hearing of Harry Benjamin’s work

on gender transitions Conway sought out transitioning for the second time. On hearing of the intent to

transition, Lynn Conway was �red from IBM. Upon completing her transition in 1968, Lynn Conway began

a new life working at several di�erent tech companies including Computer Applications, Inc, Memorex,

Xerox PARC, and DARPA. Conway even served as a visiting associate professor at MIT. After going public

with her story in 2000, Conway became a transgender activist. 52 years after being �red from IBM, IBM

apologized and warded Conway with the rare IBM Lifetime Achievement Award. [C68]

Marian Croak

Marian Croak grew up in New York City. She attended Princeton University before obtaining her doc-

toral degree from University of Southern California in 1982. Directly after graduating from USC she began

work at Bells Labs, part of AT&T. After over 30 years working at AT&T, Marian Croak left AT&T to join

Google as their Vice President for Engineering. One remarkable thing about her is that she holds more

than 200 patents. More than 100 of those patents have to do with Voice over IP which has to do with the

movement of voice communications and other multimedia sessions over the internet. Marian Croak was

inducted into the Women in Technology Hall of Fame in 2013. [C69]

Shakuntala Devi

Shakuntala Devi is an Indian mathematician also known as the "Human Computer". Her father worked

in the circus but quit when he realized what she could do. Devi could memorize large numbers, something

her father discovered when teaching her a card trick at the tender age of three. Her father took her on road

shows to exhibit her unusual gift for calculation. Devi toured Europe in 1950 and showcased her abilities

24



in New York in 1976. In 1977 Devi calculated the 23rd root of a 201-digit number in 50 seconds at Southern

Methodist University. The answer was 546,372,891 which was con�rmed by the UNIVAC 1101 in the US

Bureau of Standards. A special program had to be made in order to perform such a large calculation, and the

speed at which the calculation was done was less than the time it took for Devi to do the same. In 1980 she

made the Guinness Book of World Records when she calculated the multiplication of two 13-digit numbers,

7,686,369,774,870 and 2,465,099,745,779. The numbers, which were picked at random by the Department of

Computing at Imperial College London multiply to 18,947,668,177,995,426,462,773,730, an answer she gave

in 28 seconds. In 1988 Devi agreed to be studied by Arthur Jensen, a professor of educational psychology

in California. Shakuntala Devi calculated the seventh root of 170,859,375 and cube root of 61,629,875 before

Jensen could even write down the problems in his notebook. Note: the answers are 15 and 395 respectively.

Devi also wrote a book on homosexuality despite not being one herself in which she advocates for total

acceptance of homosexuals in India. [C70]

Annie Easley

Annie Easley was born before the Civil Rights Movement which means that options for African-Americans

were extremely limited. Despite this her mother encouraged her to get an education. Easley graduated

valedictorian from Holy Family High School then went on to major in pharmacy at Xavier University. In

1955 Annie Easley applied for and was hired by the NACA (National Advisory Committee for Aeronautics)

as a "computer". Of the 2500 employees at NACA, she was one of only four African-American women. In

the 1970s she helped other female and minority students to pursue careers in STEM during college career

days and in 1977 received her Bachelors in Mathematics from Cleveland State. At NASA she was also held a

position as an Equal Employment Opportunity counselor where she fought discrimination. Easley worked

at NASA for 34 years. In 2015, after her death in 2011 she was inducted into the Glenn Research Hall of

Fame. A crater on the moon was named after Easley in February of the year 2021.
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Other Individuals

• Elizebeth Friedman

• Jorge Galicia Urrutia

• Sophie Germaine

• Laura Gomez I.

• Evelyn Granville

• Frank Greene

• Jon Hall

• Pamela Harris

• Piper Herron

• Grace Hopper

• Mary Horton Ann

• Emma Iwao Haruka

• Mary Jackson

• Katherine Johnson G.

• Brian Katz

• Autumn Kent

• Sal Khan

• So�a Kovalevskaya

• Peter Landin

• Ada Lovelace

• Yukihiro Matsumoto

• Maryam Mirzakhani

• Victor Neumann-Lara

• Emmy Noether

• Maria Ong

• Radia Perlman

• Srinivasa Ramanujan

• Mina Rees

• John Resig

• Adriana Salerno

• Nicholas Saunderson

• Mary Somerville

• Christoper Strachey

• Audrey Tang

• Terence Tao

• Valerie Thomas

• Alan Turing

• John Urschel

• Dorothy Vaughan

• Gladys West

• Sophie Wilson

• Edith Windsor

• Lixia Zhang

• Miguel de Icaza

• Jesus de Loera A.

• Juana de la Cruz Ines
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Methods of Reducing Math Anxiety

It has been shown in several studies that there exists a direct relationship between math anxiety and math

performance. One way to alleviate math anxiety is by expressive writing. Expressive writing is the process

where students write freely for 10-15 minutes about their thoughts and feelings regarding an upcoming

mathematics exam (or other important stressor). Studies have shown it reduces negative thoughts and

feelings in depressed individuals as well as having other physical and psychological bene�ts for all parties,

whether they be depressed individuals, college students, or both. Studies have also shown that expressive

writing can increase the availability of working memory, something which persons with math anxiety have

a limited amount of [C71]. Expressive writing may also help with emotion regulation and distancing of

oneself from their sources of stress.

Other studies have shown that "psychological techniques emphasizing self regulation, emotional con-

trol, and reappraisal of physiological threat responses hold promise" [C72]. Retrieval practice has also been

found to decrease math anxiety. Retrieval practice is frequent, occurring at least once a week, quizzes and

practice tests that accounted for little or no change to a student’s grade. An important component of re-

trieval practice is automatic feedback. In one study, 72% of students surveyed said that they experienced

less anxiety towards tests because of retrieval practice, 22% said that it made no di�erence and 6% said that

they were more nervous [C73].

Another study advocated for digital game-based learning (DGBL) as a method of alleviating math anx-

iety. An article entitled E�ects of anxiety levels on learning performance and gaming performance in digital

game-based learning said that "Unlike learning performance, where learners with high anxiety demonstrated

worse learning performance than those with low anxiety, the former and later demonstrated similar gam-

ing performance [C74]. One such game that been shown to help reduce anxiety is the game Kahoot!. A

literature review done of over 70 studies noted that 70% of studies that mentioned student anxiety noticed

a reduction in anxiety due to playing Kahoot!. Only one study reported that it caused anxiety [C75].
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Testing

An alternative to conventional testing which can cause test anxiety as well as math anxiety, is dynamic

testing. Dynamic testing is designed to "assess developing or yet-to-develop abilities that are the products

of underlying, but often unrecognized, cognitive capacities" [C76]. Dynamic testing consists of, according

to article entitled Learning Potential and Anxious Tendency, allowing students to ask for and receive hints

on their tests with the caveat of being docked points for doing so [C77]. In this way, the bias in educational

testing towards individuals with anxious tendencies can be at least partially alleviated. This is one option

for decreasing math anxiety.

Another option to decrease math anxiety is collaborative testing as shown by multiple studies [C78].

Collaborative assessments have been shown to promote critical thinking, improve test performance, reduce

test anxiety, support long-term retention of the material, and more. There are, of course, drawbacks to

collaborative testing, it is di�cult to assess individual performance as well as cheating. The bene�ts are

however are an increase in understanding, performance, and con�dence.
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Content

Mathematics Topics

Table 2: Table of Topics Covered in Example Syllabi
HU[D79] FTU[D80] LU[D81] UV[D82] KAU[D83] DLSU[D84] ACC[D85] AU[D86] IVC[D87] DSC[D88] NYU[D89] VTU[D90]

algebraic systems x
algorithms x x x x

boolean algebra x x x x
combinatorics x x x x x x x

counting x x x x
functions x x x x x x x x x

graph theory x x x x x x x x x
lattices x

logic x x x x x x x x x x x
matrices x x x

modular arithmetic x x x x
number systems x

pigeonhole principle x x x x x
probability theory x x x

proofs x x x x x x x x x x x
recursion x x x
relations x x x x x x x x x

sequences x x x x x
set theory x x x x x x x

state machines x x x
summations x x

turing machines x

In an e�ort to understand the importance of individual topics covered under the broad category of dis-

crete mathematics I surveyed 12 di�erent college syllabi to see in what frequency select topics were covered.

The result is the table pictured above. To better illustrate my �ndings I also created a bar chart that lists the

percentage coverage of each topic by the syllabi aforementioned. The result is illustrated on the next page.

The colleges that I chose were Harvard University, Florida Tech University, Liberty University, University

of Virginia, King Abdulaziz University, De La Salle University, Austin Community College, Anna Univer-

sity, Imperial Valley College, Daytona State College, New York University, and Visvesvaraya Technological

University. These colleges and universities were chosen by virtue of their discovery whilst conducting

research.
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Figure 1: Bar Chart of Topics Covered in Example Syllabi
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The topics that are covered here are, for the most part, broad categories. They give useful information

as to what broad categories should be covered but are of little help in deciding what individual concepts or

ideas should be addressed in the curriculum. To get a better idea of what topics are covered in textbooks I

obtained and extracted data from 32 di�erent discrete mathematics textbooks and noted what topics were

covered from a list of more speci�c topics. The result is shown on the next two pages. The list of textbooks

is as follows:

· Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications by

Gerard O’Regan

· Discrete Mathematics and Its Applications by Kenneth H. Rosen

· Discrete and Combinatorial Mathematics: an Applied Approach by Grimaldi

· Discrete Mathematics with Applications by Susanna S. Epp

·DiscreteMathematical Structures with Applications to Computer Science by Jean-Paul Tremblay and R Manohar
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· Applied Discrete Mathematics by William Shoa�

· Introduction to Discrete Mathematics via Logic and Proof by Calvin Jongsma

· Mathematics for Computer Science by Eric Lehman, et al

· Theory and Problems of Discrete Mathematics by Seymour Lipschutz and Marc Lipson

· A Beginner’s Guide to Discrete Mathematics by W. D. Wallis

· Discrete Mathematics Using a Computer by John O’donnell

· DISCRETE MATHEMATICS : An Open Introduction by Oscar Levin

· Discrete Mathematics by Jean H. Gallier

· DISCRETE MATH WORKBOOK : A Companion Manual Using Python by Sergei Kurgalin

· Essential Discrete Mathematics for Computer Science by Todd Feil and Joan Krone

· Handbook of Discrete and Combinatorial Mathematics by Kenneth H. Rosen

· Foundations of Discrete Mathematics by K.D. Joshi

· Discrete Mathematics with Graph Theory by Edgar G Goodaire and Micheal M Parmenter

· Discrete Mathematics by Martin Aigner

· Foundations of Discrete Mathematics by Albert D Polimeni and H Joseph Straight

· Discrete Mathematics by K. A. Ross and C. R. B. Wright

· Mathematics : A Discrete Introduction by Edward R. Schneinerman

· Discrete Mathematics by James Hein

· Discrete Mathematics by Nomran L. Biggs

· An Introduction to Discrete Mathematics by Steven Roman

· Discrete Mathematics for New Technology by Rowan Garnier and John Taylor

· Discrete Mathematics by R. K. Bisht and H. S. Dhami

· Discrete Mathematics for Computer Science by Kenneth P. Bogart, et al

· Discrete Mathematical Structures : Theory and Applications by D. S. Malik and M. K. Sen

· Discrete Mathematical Structures by Bernard Kolman, et al

· Logic and Discrete Mathematics by Winfried K. Grassmann and Jean-Paul Tremblay
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Table 3: Table of Topics Covered in Example Textbooks
Topic [D91] [D92] [D93] [D94] [D95] [D96] [D97] [D98] [D99] [D100] [D101] [D102] [D103] [D104] [D105] [D106]

Algebraic Structures x x
Algorithm E�ciency x x

Binomial Theorem & Coe�cients x x x x x x x
Boolean Algebra x x x x x x x x x x x x

Circuits x x x x x x
Coding Theory x x x
Combinatorics x

Computability & Decidability x x
Congruences x x x x

Counting x x x x x x x x x x
Cryptography x x x x x x x

Financial Math x x x
Determinants x x

Directed Graphs x x x x x
Discrete Structures x x x

Equivalences x x x x x x x x x
Euler Trails & Circuits x x x x x x x x

Fields x x x
Finite-State Machines x x x x x x x

Functions x x x x x x x x x x x x x x x
Gaussian Elimination x x
Generating Functions x x x x

Graph Coloring x x x x x x x
Groups & Semigroups x x x x

Hamiltonian Paths & Cycles x x x x x x x x x
Inclusion & Exclusion x x x x

Induction x x x x x x x x x x
In�nite Sets x x x

Isomorphisms x x x x
Lattices x x x x x

Mathematics History x x
Matrices x x x x x

Modular Arithmetic x x x x x x
Networks x x

Permutations & Combinations x x x x x x
Pigeonhole Principle x x x x x x x

Planar Graphs x x x x x x x x
Posets x x x x x

Predicate Calculus x x
Prime Numbers x x x x

Probability x x x x x x x
Proofs x x x x x x x x x x x

Propositional Calculus x x
Recurrence Relations x x x x x x x x

Recursion x x x x x x x x x
Relations x x x x x x x x x x x x

Rings x x x
RSA Encryption x x x x x x

Sequences x x x x x
Set Theory x x x x x x x x x x x x x x x x

Sums x x x x
Trees x x x x x x x x x x

Truth Tables x x x x x
Turing Machines x x x x x

Vector Spaces x x
Venn Diagrams x x x x x

Well-Ordering Principle x x x

Note: The top row of the table lists the citations of the textbooks.
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Table 4: Table of Topics Covered in Example Textbooks Part 2
Topic [D107] [D108] [D109] [D110] [D111] [D112] [D113] [D114] [D115] [D116] [D117] [D118] [D119] [D120] [D121] [D122]

Algebraic Structures x x x x x
Algorithm E�ciency x x x x

Binomial Theorem & Coe�cients x x x x x x x
Boolean Algebra x x x x x x x x x x

Circuits x x x x x
Coding Theory
Combinatorics x

Computability & Decidability
Congruences x x

Counting x x x x x x x x x x x
Cryptography x x x

Financial Math
Determinants x

Directed Graphs x x x x
Discrete Structures x x x

Equivalences x x x x x x x x x x
Euler Trails & Circuits x x x x x x x

Fields x x x x
Finite-State Machines x x x x x

Functions x x x x x x x x x x x x x
Gaussian Elimination x
Generating Functions x x x

Graph Coloring x x x x x x x x
Groups & Semigroups x x x x x x x

Hamiltonian Paths & Cycles x x x x x
Inclusion & Exclusion x x x x

Induction x x x x x x x x x
In�nite Sets x x x

Isomorphisms x x x x x x x x
Lattices x x x

Mathematics History x
Matrices x x x x x

Modular Arithmetic x x x x x
Networks x x x x x x x x

Permutations & Combinations x x x x x x x x x x x
Pigeonhole Principle x x x x x x x

Planar Graphs x x x x x x x x
Posets x x x x x

Predicate Calculus x x x
Prime Numbers x x

Probability x x x x x
Proofs x x x x x x x x x x x

Propositional Calculus x x x
Recurrence Relations x x x x x x x x x x

Recursion x x x x x x
Relations x x x x x x x x x x

Rings x x x x
RSA Encryption x x

Sequences x x x x
Set Theory x x x x x x x x x x x x x x

Sums x
Trees x x x x x x x x x x x x x

Truth Tables x x x x x
Turing Machines

Vector Spaces x
Venn Diagrams x x

Well-Ordering Principle x

As with the data regarding the discrete mathematics syllabi, I constructed a bar chart that lists the

percentage coverage of each topic by the 32 textbooks I collected. The result is on the next page. The

next logical step after conducting research is analyzing and deciding how to use the data. After much

deliberation I made the decision to include a topic covered by the syllabi if at least 30% of the syllabi cover

it. Likewise I will include the more speci�c topics that pass the 30% coverage by discrete mathematics

textbooks. This means that the broad categories I will include in my curriculum are algorithms, boolean

algebra, combinatorics, counting, functions, graph theory, logic, modular arithmetic, pigeonhole principle,

proofs, sequences, and set theory. The more speci�c topics I plan on covering include:

· Binomial Theorem & Coe�cients

· Boolean Algebra 33



· Circuits

· Counting

· Cryptography

· Equivalences

· Euler Trails & Circuits

· Finite-State Machines

· Functions

· Graph Coloring

· Groups & Semigroups

· Hamiltonian Paths & Cycles

· Induction

· Isomorphisms

· Modular Arithmetic

· Networks

· Permutations & Combinations

· Pigeonhole Principle

· Planar Graphs

· Posets

· Probability

· Proofs

· Recurrence Relations

· Recursion

· Relations

· Set Theory

· Trees

· Truth Tables
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Figure 2: Bar Chart of Topics Covered in Example Textbooks
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Computer Science Topics

Based on reviews, the computer science textbook I chose was Bite-Size Python: An Introduction to Python

Programming by April Speight. I chose this book because it was marketed towards beginners and used clear,

consistent, and concise language to explain topics. It also was written by a female person of color and the

graphics in the book are of diverse individuals. The chapters in the book are listed below. While I want to

use this book as my main textbook to work out of, in order to cover more complex topics, it can’t be my only

textbook. The second textbook I chose was also designed to be easy for beginners to grasp as well as being

open sourced. The textbook is Think Python: How to Think Like a Computer Scientist by Allen Downey. In

addition to the topics covered by Bite-Size Python it also covers interface design, recursion, iteration, tuples,

data structures, �les, classes and objects, inheritance, more debugging, and analysis of algorithms.

1. What is Python?

2. Install Python

3. IDLE

4. Variables

5. Numbers

6. Strings

7. Conditionals and Control Flow

8. Lists

9. for Loops

10. while Loops

11. Functions

12. Dictionaries

13. Modules

14. Next Steps
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Sample Lesson Plans

Mathematics Lessons: Truth Tables

Lesson objective: Given a statement in symbolic form, students will create a truth table with a success

rate of 4/5 problems or 80%.

Advance Organizer:

Professional of the Day: (Display individual in mathematics and computer science �eld who is from an

underrepresented minority ex. Winifred "Tim" Alice Asprey)

Review: Let’s begin today’s lesson by reviewing some vocabulary. Can anyone give me the de�nition of

the word negation? Student Response That’s right, a negation of a statement is the denial of a statement

and is represented by the tilde symbol. If I were to say the statement "Math is hard", what’s the negation

of that statement? Student Response That’s correct, the negation of the statement "Math is hard" is the

statement "Math is easy". Now, what does the word conjunction mean? Student Response You are correct!

Conjunction means the joining of two statements by the word and. What does the word disjunction mean?

Student Response That’s great! The word disjunction means the joining of two statements by the word

or. Now, we can interpret the word or in two ways, inclusive or and exclusive or. If I said the compound

statement "[Student Name] is at school or at home" would that be an example of an inclusive or exclusive

or? That’s right, the statement "[Student Name] is at school or at home" is an example of an exclusive or.

Final vocabulary word to review. What is a conditional statement? Student Response You are correct, a

conditional statement is a statement that can be written in the form "if p then q". [Student Name], can you

give me an example of a conditional statement? Student Response Good job! [Statement] is a great example

of a conditional statement.

Let’s review turning statements into symbolic logic which is what we covered in class last week. (Display

�gure 3) Please translate the following compound statement into symbolic logic and write the answer on

your whiteboard and hold it up.
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Figure 3: Review Question: Turning Statements to Symbolic Logic

p: The grass is brown
q: It is summer
r: It is raining

If it is summer and the grass is brown then it is not raining.

Nice job! I see most of you got it correct. The correct answer is (Display following)

(q ∧ p)→∼ r .

Objective and Link: You already learned how to turn statements into symbolic logic. Now we are going to

something di�erent. We are going to take those statements written in symbolic logic and construct truth

tables using them.

Relevance: Truth tables are used to determine if two logical statements are equivalent or if the structure of

a logic statement is valid.

Demonstration: Truth tables are a way of telling if a compound statement is true of false. The entries in

a truth table are called truth values. Truth values represent either true or false. Often times a T is used to

denote true and a F is used to denote false but you could also use a 0 to denote false and a 1 to denote true. A

truth table list all possible combinations of the individual statements that make up a compound statement

to determine if the statement is true or not. Let’s start with the negation. Take a look at the following truth

table (Display �gure 4)
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Figure 4: Truth Table for Negation of p

p ~p
T F
F T

Figure 5: Truth Table for Conjunction of p and q

p q p ∧ q

T T T
T F F
F T F
F F F

Look at the �rst column, the truth values T and F represent all the possible values that p can be. The

statement p can either be true or false. The next column indicates the possible values of the negation of p.

When p is true, p̃ is false and when p is false, p̃ is true. Does that make sense? Let’s look at another example

of a truth table. Let’s look at the truth table for the conjunction of p and q. (Display �gure 5)

Now, there are more rows here because there are more possible combinations of what values p and q

can be. You could have p be true and q be true, p be true and q be false, p be false and q be true, and p be

false and q be false. If you have n simple statements p, q, r, ect., there will be 2n rows. So here we have

two simple statements and so we have 22 = 4 rows. Now let’s look at the last column. The last column

represents the values the conjunction of p and q. As you can see, only in the case where both p and q are

true is the conjunction true.

Now let’s construct a truth table for a disjunction, p or q. How many simple statements does the com-

pound statement p or q have? Student Response That’s correct, the compound statement p or q has two

simple statements p and q. So how many rows does our table need to have? Student Response That’s right!

Our table should have four rows. Let’s construct our truth table. I’ll set up the possible values for p and q

for you. (Display �gure 6)

Our �rst two columns are going to be the same, it’s just our last column that is going to be di�erent.

Let’s �ll that column. If p is true and q is true is p or q going to be true or false? Student Response That’s

correct. If p is true and q is true then p or q is true also. What about if p is true and q is false? Student
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Figure 6: Empty Truth Table for Disjunction of p and q

p q p ∨ q

T T -
T F -
F T -
F F -

Figure 7: Full Truth Table for Disjunction of p and q

p q p ∨ q

T T T
T F T
F T T
F F F

Response That’s right! If p is true and q is false then p or q is true. If p is false and q is true is p or q going to

be true or false? Student Response You all are doing great! If p is false and q is true then p or q is going to be

true. Last one, if both p and q are false is p or q going to be true or false? Student Response Great job y’all.

If both p and q are false then p or q is going to be false. Here’s the �nished truth table. (Display �gure 7)

Before we get into some more complicated examples, let’s go over the truth table for a conditional

statement if p then q. How many rows are we going to have? Student Response That’s correct, we are going

to have four rows because we have two simple statements and 22 = 4. Now let’s �ll in our table (Display

�gure 8)

If p and q are both true, what is the value of our truth value? Remember those are the T and F values.

Student Response That’s right, if p and q are both true then the conditional if p then q is true. What about if

p is true and q is false? Student Response That’s correct. If p is true and q is false, if p then q is false. Now,

this is a tricky one, if p is false and q is true, what is the value of our truth value? Student Response Great

Figure 8: Empty Truth Table for Conditional If p Then q

p q p → q

T T -
T F -
F T -
F F -
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Figure 9: Demonstration Question 1

Statement: I have a diploma or I have a full-time job and no diploma.
p: I have a high school diploma

q: I have a full-time job

Figure 10: Demonstration Question 1 Empty Truth Table

p q ~p q∧~p p ∨ (q∧~p)
T T - - -
T F - - -
F T - - -
F F - - -

job! Yeah, if p is false and q is true then the conditional if p then q is what is called vacuously true. It’s sort

of like the expression "when pigs �y", it doesn’t matter what you promise to do when pigs �y because pigs

are never going to �y. What about our last case, if p and q are both false? Student Response Correct! If p

and q are both false then the conditional if p then q is going to be false. Are you ready to try something

trickier? Let’s try this problem: (Display �gure 9)

First let’s write the statement in symbolic logic. Can I have a volunteer to come write the symbolic logic

on the board? Thank you [Student Name]! Student writes Thank you, you may sit down now. What do

you all think abut what [Student Name] wrote? Give a thumbs up if you agree and a thumbs down if you

disagree. Student Response I see most of you with your thumbs up. In symbolic logic the statement "I have a

diploma or I have a full-time job and no diploma" is p ∨ (q∧~p). Now let’s construct our truth table. When

we construct our truth table we want to break the statement into its smallest parts and build up. Let me

show you what I mean. (Display �gure 10)

So, what I did was use something very similar to PEMDAS. I started at the innermost operation, the

negation of p and work my way out. That way, at each step I am only doing one operation. Let’s start

with column three. What is going to be the �rst entry in column three? Remember negation means do the

opposite. Student Response That’s correct! If p is true then the negation of p is false. Now let’s do the second

entry. Put your thumb up if you think the truth value that goes in the second row of column 3 should be

true and put your thumb down if you think it should be false. Student Response Good job! It should be false
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Figure 11: Demonstration Question 1 Full Truth Table

p q ~p q∧~p p ∨ (q∧~p)
T T F F T
T F F F T
F T T T T
F F T F F

Figure 12: Demonstration Question 2

Statement: I own a handgun and it is not the case that I am a criminal or a police o�cer.
p: I own a handgun
q: I am a criminal

r: I am a police o�cer
Answer:

p q r q ∨ r ~(q ∨ r ) p∧~(q ∨ r )
T T T T F F
T T F T F F
T F T T F F
T F F F T T
F T T T F F
F T F T F F
F F T T F F
F F F F T F

again. Now the next entry, if p is false the negation of p is... Student Response Correct! It should be true.

What about the last entry? Put your thumb up for true and thumb up for false. Student Response That’s

right, it should be true. Now let’s move to the next column. if q is true and the negation of p is false, what

is conjunction of q and not p? Student Response That’s right, it should be false. What about the next entry

in column 4? If q is false and the negation of p is false what should our truth value be? Student Response

That’s right! It should be false. Repeat for rest of truth table (See �gure 11). As indicated in the truth table,

the statement "I have a diploma or I have a full-time job and no diploma" is true under all conditions except

one. The statement is false if you don’t have a high school diploma or a full-time job.

Repeat for �gure 12, �gure 13, �gure 14, and �gure 15. Then repeat with new problem and decreased

prompts. Decrease prompts gradually until students can complete problems without assistance.

The problems provided are sourced from a textbook entitled Mathematics: A Practical Odyssey [E123].

42



Figure 13: Demonstration Question 3

Statement: I walk up the stairs if I want to exercise or the elevator isn’t working.
p: I walk up the stairs
q: I want to exercise

r: The elevator is working
Answer:

p q r ~q p∨ ~q (p∨ ~q)→ r

T T T F T T
T T F F T F
T F T T T T
T F F T T F
F T T F F T
F T F F F T
F F T T T T
F F F T T F

Figure 14: Demonstration Question 4

[(p → q)∧ ~q]→~p

Answer:

p q p → q ~q (p → q)∧ ~q ~p [(p → q)∧ ~q]→ ~p
T T T F F F T
T F F T F F T
F T T F F T T
F F T T T T T

Figure 15: Demonstration Question 5

[(p →~q)∧ ~q]→ p

Answer:

p q ~q p →~q (p →~q)∧ ~q [(p →~q)∧ ~q]→ p

T T F F F T
T F T T T T
F T F T F T
F F T T T F
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Computer Science Lessons: Conditionals

Lesson objective: Given a statement students will create a if statement with a success rate of 4/5 problems

or 80%.

Advance Organizer:

Professional of the Day: (Display individual in mathematics and computer science �eld who is from an

underrepresented minority ex. Annie Easley)

Review: Let’s begin today with some review. Last week we talked about functions. I want you to write down

on your paper a function that takes no arguments but prints out your name. I’ll give you a minute do do

that then I’ll come around and check. Wait one minute then check answers Good job everyone, you all wrote

excellent functions. Now can I have a volunteer come up to the board and write a function that take two

arguments a and b, and returns what a mod b is. Thank you, [Student Name] for volunteering! Wait What

does everyone think of this function? Does the function return a mod b? Student Response That’s correct,

that is a great example of a function that returns a mod b.

Objective and Link: You already learned how to write functions. Now we are going to learn how to write

functions using conditionals or if statements.

Relevance: If statements are really useful if you only want a block of code to run under certain conditions.

Demonstration: First let’s talk about comparison operators. Comparison operators are similar to those

used in mathematics. One example of a comparison operator is "greater than". Can anyone give me another

example of a comparison operator? Student answer Yes, that’s a good example of a comparison operator.

Can anyone give me another? Continue until you have most of the operators then display table 5

Table 5: Comparison Operators

Operator Name Example
== Equal 5 == 5
!= Not Equal 26 != 3
> Greater Than 100 > 67
< Less Than 89 < 216

>= Greater Than or Equal To 90 >= 54
<= Less Than or Equal To 23 <= 77

[E124]
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When you use a comparison operator like the ones shown, python will return a Boolean value of either

True or False. In all of the examples shown, python will return True because they are all true statements.

Will you all please write on your boards one example of a statement that is False using a comparison

operator? Give feedback You can also have more complex comparisons. Some examples include: Display

�gure 16

Figure 16: Complex Comparisons
34 - 3 < 24 * 2$

13 % 3 == 17 - (8*2)

15 - (2*3 + 4) >= 36/4 + (5**2 - 4*7)

I will give you a minute to calculate whether each of these lines of code will return a True or False. Wait

Okay, thumbs up if you think the �rst line of code will return the Boolean value True, thumbs down if you

think it will return False. Student Response That’s correct. The �rst line will return True because 31 is not

equal to 48. Second line: thumbs up if it will return True. Student Response That’s right, the second line

will return True because 1 is equal to 1. What about the third line? Student Response Good job! The third

line will return False because 5 is not greater than or equal to 6. You can also use comparison operators to

compare strings. For example: Display �gure 17

Figure 17: String Comparisons
sentence1 = "This string is short"
sentence2 = "This string is shorter"
print(len(sentence1) < len(sentence2))

favColor = "Blue"
color = "blue"
print(favColor == color)

What will that �rst block of code print? [Student Name] what do you think? Will the �rst block of code

print True or False? Student Response That’s correct. The �rst block of code will print True because the

�rst sentence has fewer characters than the second sentence. What about the second block of code? Will

it print True or False? Can I have a volunteer? Yes, [Student Name]? Student response That is right. That
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was a tricky question wasn’t it? The second block of code will print False because a capital "B" is not the

same as a lowercase "b". Comparison operators are not the only type of operators that exist. Another type

of operator is a logical operator. These are very similar to what you’ve seen with symbolic logic. There are

three logical operators They are "and", "or" and "not". Display table 6

Table 6: Logical Operators

Operator Description Example
and Returns True if both statements are true 4 > 3 and 2 * 3 < 6
or Return True if either statements are true 3 + 2 == 2 ** 2 + 1 or 22 < 5
not Returns the opposite Boolean value of the statement not 64 >= 4 ** 3

Please write on your boards what each of the examples will return. Student response Good job everyone.

The �rst example will return False because the �rst statement is True and the second statement is False.

Remember, 6 is not less than 6. The second example will return True because the �rst statement is True and

the second statement is False. Finally, the third example will return False because the statement is True.

You can use logical operators with strings as well. Now let’s move on to if statements. An if statement lets

you write code that will only run if certain conditions are met. If statements look like this: Display following

if some condition:

action

The formatting is similar to functions, anything you want in your if statement needs to be indented.

Let’s look at some examples. Display following

a = 12

b = 23

if a < b:

print("a is less than b")

dayOfTheWeek = "Tuesday"

temperature = 80

if dayOfTheWeek == "Saturday" and temperature >= 80:

print("Let’s go to the beach!")
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For the �rst block of code, will the line inside the if statement run? Put your hand up if you think it

will run. Student response That’s correct. Because a is less than b, i.e. 12 is less than 23, the code inside the

if statement will run and "a is less than b" will be printed. How about the second block of code? Will the

code inside the if statement run or not? Hands up if you think yes. Student response That’s correct, it will

not run because the dayOfTheWeek variable is not equal to "Saturday". Now, what if we want some code to

run under a certain condition but if that condition is not met we want di�erent code to run? Here is where

we use if-else statements. If-else statements look like this: Display following

if some condition:

action

else:

different action

Now let’s write our own if-else statement. Say we wanted to know if a number, say, 27378 is divisible by

three. If it is, we want to print out "This number is divisible by 3" and if it is not we print out "This number

is not divisible by 3". How might we do that? Let’s start with the if statement. How do we tell if a number

is divisible by three? What code can we use to �gure it out? [Student Name]? What do you think? Student

response That’s correct. A number is divisible by three if the number modulo 3 is equal to 0. Let’s put that

into code: Display following

x = 27378

if x % 3 == 0:

What do we need to put in the if statement? Student response That’s correct. The code inside the if

statement needs to say print("This number is divisible by 3"). Display following

x = 27378

if x % 3 == 0:

print("This number is divisible by 3")

Now we need to write the else condition. With the else condition you don’t have to specify a condition

because the condition is the negation of the if statement condition so all we have to do is write the code

that will go in the else condition. And that code is what? Student response That’s correct, the code that goes

in the else condition is print("This number is not divisible by 3") Display following47



x = 27378

if x % 3 == 0:

print("This number is divisible by 3")

else:

print("This number is not divisible by 3")

Which line will print, the one inside the if statement or the one inside the else condition? Thumbs up

if you think the code inside the if statement will run and thumbs down if you think the code inside the

else statement will run. Student response That’s correct, since 27378 is divisible by three, the line inside the

if statement will run and "This number is divisible by 3" will print. Sometimes you need the code to have

more than one condition. This is where if-elif-else statements come in. If-elif-else statements are similar to

if statements and if-else statements in the way they function. The formatting of if-elif-else statements look

like this: Display following

if some condition:

action 1

elif some other condition:

action 2

else:

action 3

Python �rst looks at the if statement and determines whether or not to run the code inside based on

whether the condition is True or False. If the condition is False, Python looks at the elif condition. If that

condition is True, Python runs the code inside. If not, Python runs the code inside the else condition. Let’s

look at an example. Say that you want to print if a number is bigger than, equal to, or less than another

number. You would use an if-elif-else statement. You have two expressions x and y. Display following

x = 12*14 - 7(8**2 + 34*3) + 1000

y = (42%13) + 14(5-13*2) + 11*3 **3

You want to print whether x is less than, greater than, or equal to y. Let’s write the if statement �rst. If

x is less than y we want to print "x is less than y" Display following
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x = 12*14 - 7(8**2 + 34*3) + 1000

y = (42%13) + 14(5-13*2) + 11*3 **3

if x < y:

print("x is less than y")

If x is greater than y we want to print "x is greater than y". This will be our elif condition. Display

following

x = 12*14 - 7(8**2 + 34*3) + 1000

y = (42%13) + 14(5-13*2) + 11*3 **3

if x < y:

print("x is less than y")

elif x > y:

print("x is greater than y")

If neither is True, i.e. x == y, we want to print "x equals y". This will be our else condition. Display

following

x = 12*14 - 7(8**2 + 34*3) + 1000

y = (42%13) + 14(5-13*2) + 11*3 **3

if x < y:

print("x is less than y")

elif x > y:

print("x is greater than y")

else:

print("x equals y")

Which print statement will run? I’ll give you a minute to calculate. When you are ready, write 1 on your

board if you think the �rst print statement will run, 2 if you think the second print statement will run, and

3 if you think the last print statement will run. Student response The answer is that the third print statement

will run because both x and y equal 6.

Repeat with new problem and decreased prompts. Decrease prompts gradually until students can complete

problems without assistance.
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Connection Project: Truth Tables & Conditionals

Project objective: Given sample code, students will create functions that evaluate the truth of logical

operators for Boolean variables.

Project Instructions: Attached to this thesis is code I found while doing research on coding truth tables.

While not perfect, it serves as the basis for a project that combines the use of truth tables with if statements

and conditionals. If you were to use this project you might provide the code and have them write the

conditional, biconditional, and_func, or_func, and negate functions themselves. The source for this code is:

https://codereview.stackexchange.com/questions/145465/creating-truth-table-from-a-logical-statement
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Conclusion

Math anxiety is a pervasive problem that spans centuries. There are several ways to combat this issue.

Some ways to combat the issue are evidence-based practices such as explicit instruction or high leverage-

practices, practices that are intended to be easily implemented and have been shown to be e�ective. It

also helps to teach mathematics where the relevancy is clearly de�ned. One such branch of mathematics is

called discrete mathematics. Discrete mathematics largely consists of the mathematics needed for computer

science. By implementing discrete mathematics alongside computer coding lessons the mathematics is

made more accessible and less anxiety inducing. Incorporating expressive writing, retrieval practice, digital

game-based learning, alternative testing methods and examples of diverse individuals in the mathematics

and computer science �eld, are further methods of reducing math anxiety. All of these methods culminated

in a lesson plan on truth tables as an example of what this kind of teaching might look like. Future research

would include testing to determine the e�ectiveness of the practices not already evidence-based.
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