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Parkinson’s Disease (PD) patients often struggle with daily function due to their 

slowed and rigid movements. Electrical brain waves in the "beta band” (frequencies 

between 13-30 Hz) fluctuate throughout movement, but PD patients have elevated beta 

band synchrony across brain thalamo-cortical-basal ganglia networks. Currently, it is 

unclear if beta synchrony causes impaired movement in PD or slowed movement in 

general. My project addressed how the beta band modulates with movement speed in 

healthy people. Our task led participants to have longer reaction times in Slow blocks 

than Fast blocks. As they completed the task, electrodes were recording from their 

scalps (i.e., electroencephalography). We saw that Slow blocks had reduced beta 

activity after movement compared to fast blocks and also examined movement 

uncertainty but did not observed any systematic differences. Since the beta band was 

modulated less in slow blocks, like in PD patient studies, this could mean that 

participants were in an experimentally induced “slowed movement state” and perhaps 

did not form comprehensive motor plans. We conclude that beta synchronization after 

movement may influence motor speed on a continuum with PD patients as an extreme 

example of impaired movement. 
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Introduction  

Our nervous system allows us to move seamlessly in our environments. 

However, the hallmark symptom of Parkinson’s Disease (PD) is bradykinesia—slowed 

movement—which causes many PD patients to struggle to walk, eat, and even dress 

themselves. Neuroscientists have gained mechanistic insights into PD pathophysiology 

by examining the electrical brain waves generated by the motor system. This thesis 

examines the neural oscillations during the slowed movement of healthy controls (HC) 

in hopes to better understand PD bradykinesia. As an additional investigation, we 

examined movement uncertainty. Researchers can manipulate a subject’s temporal 

expectation of an upcoming movement, by changing when subjects are instructed to 

move. Our results suggest a continuum of movement with a common neural correlate 

that has PD bradykinesia on one end, HC eukinesia (normal movement) on the other, 

and HC slowed movement somewhere in the middle. 

Researchers can study the brain’s electrical activity with electroencephalography 

(EEG): a procedure where recording electrodes are placed on the scalp. It is non-

invasive and has excellent temporal resolution—voltage changes on the scale of 

milliseconds—but poor spatial resolution—it is difficult to determine exactly where in 

the brain the signal originates. An informative technique to analyze EEG is to transform 

the signal from the time domain to the frequency domain with the Fourier transform. 

Just as a glass prism can separate white light into a rainbow of colors, the Fourier 

transform decomposes the EEG signal into brain waves at different frequencies. The 

saturation or intensity of each color in the rainbow can be thought of as the amplitude of 

each frequency band in the EEG signal. Squaring this amplitude gives us the power per 
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frequency.  From recordings over the sensorimotor cortex, modulations in power for 

frequencies between 13-30 Hz—the so-called beta band—have been implicated in 

preparing and generating movement1. 

Canonical beta band activity throughout movement 

Simple sensorimotor tasks allow researchers to manipulate movement 

parameters and examine behavioral outcomes. A typical task consists of repeated trials 

that each have two stimuli: the set cue and GO cue. The former indicates to “get set” for 

an upcoming movement while the latter indicates to “GO ahead” and perform the 

experimental movement. The time duration between the set cue and GO cue—the 

period right before movement—is known as the foreperiod (FP). While the time frame 

between the GO cue of the current trial and the set cue of the following trial is known as 

the inter-trial interval (ITI). A trial contains the sequential presentation of the set cue, 

FP, GO cue, and ITI. After the ITI, a new trial starts with the set cue. In some 

experimental designs the main manipulation varies between groups of many trials 

known as blocks. To evaluate how an experimental block affects behavior, the mean 

reaction time (RT) between blocks is often compared. 

Beta oscillations modulate canonically during sensorimotor tasks1 (Fig. 1). 

Below the terms event-related synchronization (ERS) and event-related 

desynchronization (ERD) refer to beta power increases (ERS), and decreases (ERD) 

over the contralateral sensorimotor cortex of the activated muscle. In motor tasks, once 

the set cue is presented an ERD occurs for 300-500 ms during the FP2–6. A transient 

ERS then follows for 500-1000 ms in tasks with supra-second FPs (FP < 1 second) 3–6. 

Starting around 500 ms before movement, a steeper ERD occurs with minimal beta 
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power during movement2–6. For sub-second FPs, (FP < 1 second), the set cue and 

movement ERDs will “blur” into one continuous ERD. Importantly, this does not 

indicate the precise source of each ERD. After a phasic motor response—a quick 

contraction—an ERS occurs for 300-1000 ms2–4 that often described as the “beta 

rebound.” If the response is a sustained, the rebound occurs generally when movement 

is over7,8.  

 

Figure 1: Typical beta activity throughout a sensorimotor task 

Beta power drops after set cue presentation, and if the FP is longer than about one 

second will begin to increase. During movement preparation, beta desynchronizes and 

is minimal during movement. Beta then synchronizes or rebounds at movement offset. 

This figure was directly inspired/stylized from a review by Kilavik and collegues1. 
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Beta activity during experimentally versus pathologically slowed movement 

Slower movements may reduce the magnitude of the pre-movement ERD and 

post-movement ERS in healthy individuals. For an implicitly learned spatial-temporal 

sequence task, higher beta power prior to and during movement predicted longer RTs9. 

Since there was no correlation with the beta rebound, this suggests as RT increases the 

difference between the pre-movement ERD and post-movement ERS decreases. 

However, this correlation was calculated from the contralateral versus ipsilateral 

sensorimotor differences—a less common analysis—which limits its comparability to 

other studies. Stronger evidence comes from smaller pre-movement ERDs during 

movements with less certain direction5 and timing3 with longer RTs. After movement in 

a task that cued different movement rates (finger extensions per second), the magnitude 

of the beta ERS paralleled the speed of the previous movement10. Similarly in a task 

where the color of the GO cue indicated to respond ballistically (as fast as possible) or 

at slower comfortable speed, faster movements were associated with a larger beta 

rebound11. However, no difference in the beta ERS magnitude was observed for self-

initiated (i.e. non-cued) brisk versus sustained finger movements7,8. Their null result 

may be explained through the lens of motor planning. For sustained movements, 

participants precisely displaced their finger downwards (0.8s) and then upwards (0.8s) 

which may have required as much motor planning as brisk finger movements. The 

reduced rebounds with slower movement conditions discussed above10,11 may have had 

required less rigorous/precise motor planning due to less pressing task conditions. 

Altogether healthy individuals show a reduced ERD and ERS before and after slowed 

movement, respectively, perhaps due to less comprehensive motor planning. 



 

5 
 

Resting cortical beta power does not differ between HC and PD but has reduced 

modulation during sensorimotor tasks. The post-movement rebound is attenuated in PD 

patients after proprioceptive stimulation12 (displacing the index finger to induce passive 

movement) and self-paced movements13 compared to HC. While the pre-movement 

ERD is reduced during temporally predictable trials for PD patients versus HC14. In a 

simple motor task, the pre-movement ERD and post-movement ERS have been 

simultaneously reduced in PD versus HC15. The excessive beta synchrony throughout 

cortico-basal ganglia loops seen in PD16 could be preventing the normal amplitudes of 

the pre-movement ERD and post-movement ERS—constraining the neurons into 

inflexible patterns thus preventing the dynamic fluctuations necessary for eukinesia. 

While resting beta power does not differentiate PD from controls, novel waveform 

biomarkers such as cortical phase-amplitude coupling17,18 and non-sinusoidal 

oscillations19,20 do. Perhaps movement acts to unmask cortical beta power differences 

between PD and controls not observed during rest. 

This thesis addresses whether beta activity during slowed movements in healthy 

individuals’ mirrors that of PD patients. If reduced beta band modulation is seen for 

slower movements than faster movements, this could suggest that healthy slowed 

movement exists on a continuum with PD pathologically slowed movement. We 

therefore explored beta activity in an experimentally induced “slowed movement state” 

through a behavioral paradigm with so-called Slow and Fast blocks. Our primary 

hypothesis was that beta power would be higher overall during Slow blocks than Fast 

blocks, and that the pre-movement ERD and post-movement ERS would be reduced. 



 

6 
 

As an additional investigation, we also designed explored the effects of 

movement uncertainty on beta oscillations. We hypothesized that the pre-movement 

ERD—as a representation of temporal certainty—would be larger in blocks with a FP 

of a fixed duration than blocks with FPs of varied durations. The idea being that on this 

sub-second scale participants would implicitly anticipate when the GO cue was 

presented in Fixed FP blocks, but not Varied FP blocks. Within Varied blocks, we 

hypothesized that the longer Varied trials would have faster RTs than the shorter Varied 

trials. As the FP elapses for a given Varied trial, the probability that the GO cue is 

presented at any given moment increases. We expected participants to implicitly detect 

this fact and respond accordingly. Along with these behavioral differences, we expected 

to see larger pre-movement ERDs for longer Varied trials.  
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Methods 

Participants 

All participants provided written informed consent in accordance with the 

institutional review board of the University of Oregon and the Declaration of Helsinki. 

Subjects were recruited for the study via flyers around the University of Oregon’s 

campus and online advertisements. These participants were paid $10-12/hour for their 

participation. The eligibility for participants included: 18-40 years old, not diagnosed 

with a movement or motor impairment disorder, no neurological disorders, not taking 

neurological or psychiatric medications (including those for depression or ADHD), 

fluent in English, right-hand dominance, and normal or corrected-to-normal. The study 

comprised of one 1.5-2-hour EEG recording. 

 

Task design 

A GO task was implemented while participants sat facing a computer monitor 

within a Faraday cage.  A single trial consisted of a set cue, FP, GO cue and ITI (Fig. 

2A). The set cue was a dot in the center of the screen presented during the FP before the 

GO cue. Between movement uncertainty blocks, the FP had a contrasting temporal 

structure.  In Fixed blocks, the FP was always 500 ms, while in Varied blocks the FP 

was randomly selected to be 300, 400, 500, 600, or 700 ms per trial. Following the FP, 

the GO cue (a white right or left facing arrow) appeared indicating which keyboard 

arrow key to press. Subjects were instructed to respond with their right hand before the 

GO cue disappeared. The GO cue’s duration—the response window—was manipulated 



 

8 
 

between movement speed blocks. For Fast blocks, the response window was set as the 

mean RT calculated from 20 initial practice trials. In contrast, the response window for 

the Slow blocks was four times the mean RT. Once the response window was over, the 

GO cue disappeared and there was a 2.5 ± .2s ITI (i.e., a blank screen for a few 

seconds). This behavioral task was created with MATLAB (release R2017a) using the 

Psychophysics Toolbox Version 3 (PTB-3) functions 21–23. 

Together movement speed and uncertainty manipulations occurred 

simultaneously as Fixed/Slow, Fixed/Fast, Varied/Slow, and Varied/Fast blocks (Fig 

2B). For example, the Varied/Slow block would have a 300-700 ms FP followed by 

4*mean RT response window. Preceding experimental blocks, participants completed 

20 practice trials with a Varied FP and response window of 800 ms to get familiar with 

the task and determine their mean RT for the experimental blocks. The task was broken 

into 8 blocks of 75 trials (600 trials total) with each of the four experimental blocks 

presented twice in a shuffled order. At the end of every block, the percentage of correct 

trials was shown to incentivize task performance. Trials were considered incorrect if 

participants: (1) responded within 100 ms of the GO cue presentation—to minimize 

premature responses not related to the GO cue, (2) after the response window to 

encourage quicker responses in Fast blocks, and (3) if the wrong keyboard arrow was 

pressed which ensured subjects paid attention to their responses. However, after data 

was collected, we noticed a much higher rate of incorrect Fast trials compared to Slow 

trials due to criteria (2). The responses of these “missed” Fast trials were not recorded 

altogether due to a coding oversight. This artificially cut off the Fast trials RT 

distribution. To conservatively correct for this, we took whatever percentage of Fast 
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trials were missed and removed that same percentage of the slowest Slow trials per 

subject (e.g., if 5% of Fast trials were missed, only the fastest 95% of Slow trials based 

off RT were kept). This behavioral task was created with MATLAB (release R2017a) 

using the Psychophysics Toolbox Version 3 (PTB-3) functions 21–23. 

 

  

 
Figure 2: Operationalizing movement speed and uncertainty within task 

(A) A trial began with a set cue, a dot in the center of the screen, which indicated to 

“get set” for an upcoming response. Next, a white arrow serving as the GO cue 

appeared indicating to the subject which keyboard arrow key to press. The time 

elapsed between the set cue and GO cue was known as the fore period (FP). After 

participants responded or enough time passed without a response, a blank screen 

appeared for 2.5 ± .2s before the next set cue known as the inter-trial interval (ITI). 

(B) This 2 by 2 matrix shows the possible four block combinations. Movement speed 

(Slow versus Fast blocks) and movement uncertainty (Fixed versus Varied) were 

manipulated by the duration of the GO cue and FP, respectively.  
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EEG recording and pre-processing 

The BioSemi ActiveTwo system recorded 64 channel EEG at 1024 Hz based on the 

10/20 standard layout24 while subjects completed the task. Additional electrodes were 

placed on the left mastoid, the right mastoid, and two electrodes were placed on the 

right extensor carpi radialis longus to record electromyography (not considered in this 

thesis). Electro-oculographic electrodes were placed lateral to each eye and inferior to 

the right eye to monitor blinks throughout recording.  

EEG data was preprocessed using custom MATLAB scripts and EEGLAB 

toolbox25 in-line with previous work18. Each individual channel was re-referenced to the 

common average of all the channels. In theory the outward positive and negative 

currents within a closed sphere must cancel out. Therefore, the common average 

reference extracts individual channel brain potentials from other channels. This is a 

useful but limited assumption because the head is not a sphere, the electrodes are not 

equally placed around the head, and there is some current passing from the neck. 

Regardless this is a widely used approach to isolate channel activity from global noise.  

Slow drifts due to electrode conductance changes from sweat , and the DC offset—the 

mean amplitude from zero—were removed with a 0.5 Hz high pass filter. Regardless of 

the exact source, these low frequency signals were far below the frequencies of interest. 

The EEG was decomposed by Independent Component Analysis (ICA) to 

separate eye movement activity from brain activity. Since the eyeball has a positive 

electrical polarity, movements from the eye confound brain potentials when detected by 

EEG electrodes. The EEGLAB ‘pop_runica()’ function runs a version of the ICA 

algorithm that essentially transforms EEG data into components that are the most 
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temporally distinct26. Since ICA does not consider the location or source of its inputs, 

this suggests that components are from physiologically unique sources. After running 

ICA on each subject’s task data, the outputted components were rejected by visual 

inspection for blinks and saccades (stereotyped by alpha-hump-like waves and alpha-

block-like waves, respectively). These rejections were confirmed by the 2-D 

topographical representations that showed hyperpolarization over frontal channels. The 

remaining components were backpropagated into channel space for further processing. 

Individual epochs were then rejected based on extrema, and kurtosis to remove 

likely neck and face muscle activity. Each epoch consisted of the EEG from 1000 ms 

before a trial’s set cue to 2000 ms after that trial’s set cue. The EEGLAB functions 

‘pop_jointprob()’ and ‘pop_rejkurt()’ rejected epochs with absolute values, and/or 

kurtosis values, that were 5 standard deviations above their respective means. With 

blinks, saccades, and muscle artifacts removed, the remaining epoched data were then 

used for the following time-frequency analyses. 

Time-frequency analyses 

After pre-processing, event-related spectral perturbations (ERSP) were 

generated to compare movement speed and uncertainty blocks. A two-way FIR1 filter 

with a 3 Hz bandwidth was used via the EEGLAB function ‘eegfilt()’ from 4-64 Hz and 

the power of this signal was extracted using a Hilbert transform. This allowed the EEG 

to be transformed from a time-voltage space to a time-frequency-power space. For this 

thesis, analyses were just on the single midsagittal/left sensorimotor channel C3 which 

was contralateral to the right task responding hand. 
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To make ERSPs less sensitive to noise, a single-trial z-scored normalization was 

used (described below). While the previous preprocessing methods reduced electrical 

noise from outside sources, the purpose of the single-trial z-scored normalization was to 

isolate the task-related EEG signal from other simultaneous neural processes.  This 

method has shown to be more resistant to noise than subtracting or dividing by baseline 

to normalize the EEG signal27.  

Calculating the single-trial z-scored normalization ERSP was individually over 

all conditions and subjects. For a given trial, the mean and standard deviation of power 

was calculated over time per frequency. Each time-frequency point was subtracted from 

its frequency’s mean and then divided by its frequency’s standard deviation to produce 

time by frequency z-score matrix per given trial. The time-frequency matrices over all 

trials were then averaged within experimental blocks (e.g., the mean of all Fixed/Fast 

trials z-scores). Next, the z-scored ERSPs per block were averaged across subjects (e.g., 

the Fixed/Fast z-scored ERSP was generated per subject and then averaged across 

subjects). The final output represents the average per condition over all subjects and 

trials—a so-called grand averaged ERSP.  

The non-parametric cluster-based permutation test was used to evaluate spectro-

temporal differences between the grand averaged ERSPs28 and is briefly described here. 

Since ERSPs contain tens of thousands time-frequency samples, they are suspect to the 

multiple-comparisons problem which produces false positive results at an enormously 

high rate with traditional statistical tests. This can be circumvented by first running a 

cluster-mass test and then generating a permutation distribution to evaluate the cluster-

level statistic between grand averaged ERSPs. The cluster-mass test begins by running a 
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t-test between the time-frequency points of the two conditions being compared. I want 

to highlight that this is a t-test between the two z-scored grand averaged ERSPs which 

has some precedent29. The z-score was used to normalize neural activity within blocks 

while the t-test identifies neural differences between blocks. From the t-test, any 

samples above the t-score corresponding to a p-value of 0.05 were clustered together if 

the samples were adjacent in the time and/or frequency domain. The cluster-level 

statistic was then found by summing the t-values within the cluster. Between the two 

experimental blocks, the cluster-level statistic was said to be significant when it was 

larger than 95% of the cluster-level statistics in the permutation distribution (i.e., a 

permutation p-value < 0.05). Each of the 2000 cluster-level statistics constituting the 

permutation distribution were calculated from a random partition—two subsets 

containing the randomly swapped condition labels between the two condition subsets 

(which contain their respective subject ERSPs). To evaluate multiple clusters, the 

largest cluster-level statistic of the experimental blocks and the random partitions were 

compared, the second largest cluster-level statistic of the experimental block and 

random partition were compared and so on. The big idea is that if the experimental 

blocks generated a cluster that is statistically significant, then running the same t-test 

while swapping the labels of the conditions should not generate significant clusters. 

This approach addresses the multiple comparisons problem by comparing clusters rather 

than sample points—greatly reducing the number of comparisons—while not relying on 

any predetermined distributions like parametric tests do or assuming individual tests are 

independent as is assumed by Bonferroni or false-discovery rate corrections. 
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Results 

Movement speed, but not movement uncertainty blocks changed subjects’ responses  

Slow blocks had longer RTs than Fast blocks, but no differences between 

movement uncertainty blocks were observed (Fig. 3). An example subject’s RTs during 

Slow and Fast trials show that the Slow block manipulation positively shifted the 

distribution of RTs (Fig. 3A). A 2-way ANOVA was used to evaluate the effects of 

movement speed and uncertainty. Slow blocks had significantly longer RTs than Fast 

blocks (p-value = 0.003), but no RT difference was found between Fixed and Varied 

blocks (p= 0.9384) or any interaction effects between movement speed and certainty 

blocks (p = 0.4419). While we did not see differences in RT between movement 

uncertainty blocks, we examined if RT changed within the Varied blocks (Fig. 3C & 

3D). A one-way ANOVA showed no differences between the subjects’ RTs across the 5 

possible 300-700 ms FPs of Varied/Slow trials (p = 0.9076). Similar non-effects were 

also seen across the RTs of Varied/Fast trials (p = 0.88).  



 

15 
 

 

Figure 3: Slow blocks had longer responses than Fast blocks, but FP duration had no 

effect on reaction time. 

(Fig. 3A) A single subject’s RTs during Slow (brownish orange) versus Fast (light blue) 

trials. The distribution of Slow trials RTs is shifted positively compared to Fast trials 

RTs. (Fig. 3B) A two-way ANOVA showed that the effect of movement speed was 

significant, but not movement uncertainty or interaction effects. There was no effect of 

FP duration on RT within Slow/Varied blocks (Fig. 3C) or Fast/Varied blocks (Fig. 

3D). For all box plots, the black line shows the mean, the light grey box represents the 

SEM, and the dark grey edges around the SEM show the standard deviation of the 

subjects’ mean RT per block (Fig. 3B) or trial (Fig. 3C and Fig. 3D). 
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The power spectral density looked similar across experimental blocks 

As a control we examined the power spectral density (PSD) per subject and 

block (Fig. 4A & 4B). With the EEGLAB function ‘spectopo()’, we found the power 

per each frequency (μV2 /Hz) within a given subject for each condition (Fig. 4A). We 

saw the classic inverse power versus frequency relationship seen in electrophysiological 

data with most subjects also having canonical peaks in the alpha band. While there was 

inter-subject variability, no systematic differences were observed between experimental 

blocks as shown in the subject grand averaged PSD in Fig. 4B. As our baseline was 

dependent on the entire power spectrum per trial (see Methods), seeing no differences in 

the PSDs suggests that any differences between blocks are not driven by differences in 

the baseline power. We then confirmed canonical beta activity during movement. Fig. 

4C shows the averaged EEG data across every condition and subject without any 

baseline correction. This “typical trial” shows a beta desynchronization prior to 
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movement and the following beta synchronization 500-800 ms after movement which is 

strongly in line with sensorimotor EEG activity during a visuomotor task1. 
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Figure 4: No systematic power spectral density difference between experimental blocks 

Power spectral densities (PSD)s per subject with the 4 experimental blocks 

distinguished by color (Fig. 4A). The conditions in grand-averaged PSD from all 

subjects are similar and show the characteristic EEG alpha peak (Fig. 4B). An average 

of all trials and subjects (not z-score normalize, just raw power values) to demonstrate 

canonical beta around movement (Fig. 4C). Beta desynchronizes 500 ms (blue cluster 

with black arrow) before movement, is minimal during movement and rebounds around 

600-800 ms after movement (yellow cluster with black arrow). The black line 

represents when subjects’ responses were recorded. 

 

Grand averaged ERSPs reveal a reduced beta rebound in Slow blocks 

The grand averaged ERSP per block was compared between movement speed 

and uncertainty blocks (Fig. 5). The top two rows of the middle and left columns show 

the grand averaged z-scored ERSP per each experimental condition while the right most 

column and bottom row shows the significantly different t-scored clusters between 

blocks outlined in red. 4-10 Hz power was elevated 900-400 ms before movement in 

Fixed/Slow versus Varied/Slow blocks which is difficult to interpret as no behavioral 

differences were observed—especially since no differences were seen between 

Fixed/Fast and Varied/Fast blocks. For the movement speed comparison, Fixed/Slow 

compared to Fixed/Fast blocks had elevated 4-8 Hz power 1500-700 ms before 

movement and decreased 4-16 Hz power 200-1000 ms after movement. There was also 

a non-significant 10-13 Hz increase 0-100 ms after movement. Similarly, Varied/Slow 

blocks compared to Varied/Fast blocks had increased 10-20 Hz power 0-200 ms after 

movement and decreased 10-25 Hz power 500-1000 ms after movement. Together this 
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suggests that after slowed movements beta power initially increases faster and then has 

a smaller rebound than faster movements. 

Figure 5: Grand averaged ERSPs shows a smaller beta desynchronization during 

movement and smaller beta rebound after movement in Slow blocks. 

The z-score normalized (see text for details) grand averaged ERSPs for Fixed/Slow, 

Fixed/Fast, Varied/Slow, and Varied/Fast blocks are in the first two rows in the 

left/middle column. Each exhibit canonical beta activity around movement, but with 

different magnitudes. Non-parametric cluster-based permutation statistics (see text for 

details) reveals significant clusters outlined between experimental blocks in the left 

most column and bottom row.  
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Beta traces show simpler visualization of experimental blocks as ERSPs 

As our a priori hypotheses were beta band oriented and we observed ERSP 

differences from 4-25 Hz, we isolated beta (13-30 Hz) activity between Slow and Fast 

blocks (Fig. 6). This was done by taking the mean of z-scored samples from 13-30 Hz 

over all time points which allowed the ERSP (with time-frequency-power dimensions) 

to be viewed as a beta band trace (with time-power dimensions). The non-parametric 

cluster-based permutation statistics were then used between beta band traces based on 

temporal adjacency. We found no significant time clusters between Fixed/Slow and 

Fixed/Fast grand averaged beta traces (Fig. 6A). However, we saw elevated beta power 

in the Varied/Slow block compared to the Varied/Fast block around 300 ms after 

movement as well as a decreased beta rebound 500-800 ms post-movement (Fig. 6B). 

This movement speed effect of a smaller—yet apparently steeper—beta rebound was 

upheld in the Varied/Slow block’s beta trace. 
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Figure 6: Grand averaged beta traces maintain smaller beta modulation in Varied/Slow 

blocks, but not in Fixed/Slow blocks. 

The mean z-scored time-frequency points from 13-30 Hz was calculated per each 

experimental block. No differences were found between Fixed/Slow and Fixed/Fast 

blocks. The magnitude of the beta rebound in the Varied/Slow block is smaller than the 

Varied/Fast block. Significantly different time points are indicated with horizontal 

black bars below the traces. 
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Discussion 

We examined beta oscillations generated between task blocks that sought to 

modulate movement speed and uncertainty. While the FP’s temporal structure did not 

affect RTs or distinctly impact beta activity, the GO cue’s duration (the length of the 

response window) did. In ERSPs, Slow blocks had a reduced beta rebound compared to 

Fast blocks (Fig. 5), but this effect was not perfectly upheld in the grand averaged beta 

traces (Fig. 6). 

The beta rebound of Slow blocks parallels the impaired movement of PD 

The longer RTs seen in Slow blocks (Fig. 3B) was driven by either later 

movement initiation and/or reduced movement velocity. Zhang and colleagues found 

reduced movement velocity in self-paced GO trials versus ballistic GO trials, however, 

they did not report on movement initiation11. As they also found a reduced beta rebound 

in self-paced GO trials, like we did in our Slow blocks (Fig. 5), this suggests that our 

longer RTs could be driven by reduced movement velocity. In the future, we will 

analyze muscle activity to clarify how our Slow block manipulation affected movement 

velocity and initiation.  

Regardless of the movement specifics, our results still suggest that participants 

were in a “slowed movement state.”  A reduced sensorimotor beta resynchronization in 

PD patients has been seen after proprioceptive stimulation12, self-initiated movements13, 

and task-related movements15 and for healthy individuals in the context of slower task-

related movements10,11 as also seen in our Slow blocks. This suggests that slowed 

movement may exist on a sort of continuum with PD bradykinesia through the 

magnitude of the post-movement beta rebound. Future studies need to compare the beta 
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rebound between slowed movement blocks from HC to PD patient movement. This 

would directly show whether the reduced beta rebound represents PD pathology or 

slowed movement in general.  

However, not all our results tell as clear of a story. First, we observed no 

differences between the RTs of Fixed and Varied blocks, or an interaction with 

movement speed blocks (Fig. 3B), but we still observed a 4-10 Hz power increase 

around 900-500 ms before movement in Fixed/Slow blocks compared to Varied/Slow 

blocks (Fig. 4). Second, the reduced beta rebound seen between the Fixed/Fast and 

Fixed/Slow spectrograms (Fig. 4), was not significant in the grand averaged beta traces 

(Fig. 5A). This is less surprising because the effects seen in the ERSPs (Fig. 5) were 

mostly in the alpha band and lower beta frequencies. We will continue to explore this 

effect by generating grand averaged traces of the alpha band (8-12 Hz) between 

conditions. While more complicated effects were observed, the reduced beta rebound 

and longer RTs in Slow blocks were consistently observed and fit well within the 

movement speed and PD literature. 

Movement uncertainty blocks were not informative to participants 

RTs were not significantly modulated by our experimental manipulation of FP 

length. Perhaps, the more certain temporal structure of the Fixed block was not utilized 

because the Fixed and Varied blocks were not different enough to convey useful 

information to the participant. If the task was more difficult (e.g., by increasing the 

number of possible responses), or if Fixed and Varied blocks differed more (e.g., Fixed 

FP of 600ms and Varied FP of 300-1000ms), Fixed blocks may have had shorter RTs 

than Varied blocks. We also did not see longer Varied trials having quicker RTs than 
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shorter Varied trials. While we expected movement uncertainty to increase as the FP 

elapsed in Varied trials, earlier work suggests that only specific a FP range to mean FP 

ratio produces faster RTs with longer FPs with more effects such as movement 

repreparation, biases in FP time estimation and absolute value of the FP at play30. 

The beta rebound may “clear out” the motor plan and scale with its complexity 

I suggest that the reduced beta synchrony after slowed movements may be a 

manifestation of less comprehensive motor planning. In the pre-frontal cortex, since the 

post-stimulus beta rebound is thought to “clear out” information in working memory 

tasks, the sensorimotor post-movement rebound may have a similar function in motor 

tasks31. After movement, the beta ERS could scale with the complexity/specificity of 

the previous motor plan—consisting of information such as known the movement onset, 

duration, and motor effectors (i.e., what muscle-joint system is moving). Since the Fast 

blocks in our task had a shortened response window, participants had to be keyed into 

exactly when they responded—corresponding to a more comprehensive motor plan and 

enhanced beta rebound. However, due to the lengthened response window in Slow 

blocks, they could rely on a less temporally defined motor plan which could then be 

“cleared out” with a reduced beta rebound. This motor planning hypothesis also 

explains the similar beta rebound magnitude between self-initiated brisk and sustained 

finger movements7,8. This sustained finger movement required participants to 

continuously move their index finger up and down in equal 0.8 second phases. Perhaps 

these precise (but slower) sustained displacements required an equally comprehensive 

motor plan as the faster displacements of brisk finger movements—resulting in a similar 

magnitude of beta rebound. This also suggests that the motor plan rather than literal 
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velocity drove the decreased beta rebound observed in our experimentally “slowed 

movement state.” Considering bradykinesia, perhaps PD neuropathology diminishes the 

ability to form comprehensive motor plans which slows movement and reduces the 

post-movement beta synchronization. 

Conclusion 

The longer RTs and reduced beta rebound seen in Slow blocks manifests 

similarly to the reduced beta modulation seen in PD patients. This may be explained by 

less comprehensive motor planning. We suspect that the post-movement beta rebound 

represents a continuum of movement speed from HC eukinesia to HC slowed 

movement all the way to PD bradykinesia. 
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