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As the prevalence of both obesity and mental disorders continues to rise, 

researchers aim to determine the physiological mechanisms of these conditions.  Many 

people with obesity have medical comorbidities such as hypertension and 

cardiovascular disease, but there are often many psychological comorbidities to obesity 

as well.  The newly developing idea of the gut-brain axis has been theorized to play a 

role in linking many conditions via the gut microbiome, which exhibits distinct 

differences in obese and depressed individuals when compared to lean/healthy controls.  

Bariatric surgery, the frontier treatment method for sustained weight loss and improved 

metabolic functioning in morbidly obese patients, drastically changes the anatomy of 

the gastrointestinal tract along with the composition of the gut microbiome.  Depression 

is also associated with distinct changes to the gut microbiome.  The purpose of this 

review is to compare changes in the gut microbiome caused by bariatric surgery to the 

alterations of the gut microbiome in depressed individuals.  When obesity and 

depression co-occur following bariatric surgery, the role of the gut microbiome may be 

amplified, and further researching the mechanisms by which obesity, depression, and 

the gut microbiome interact will allow for more personalized treatments for both obesity 

and depression in the future.  
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Introduction 

All systems that require a balance can be modeled using the concept of 

homeostasis, the use of feedback loops to maintain a set equilibrium point when a 

system changes in response to changing stimuli.  Overall physiological and 

psychological health is regulated by thousands of homeostatic feedback loops, and the 

disruption to any one of these loops can cause many pathways to sway from 

equilibrium.  Oftentimes in the treatment of clinical conditions, patients are asked to 

consciously alter the state of their psychological homeostasis to maintain or improve 

one’s physical and mental health.  As the prevalence of both obesity and depression 

continue to rise, researchers are looking into the imbalances that are associated with 

these conditions and how various treatments affect the reinstatement of patients’ 

homeostatic equilibrium.  Although it would be incorrect to point out a single reason as 

to why a person has obesity or depression, developing understanding of how all 

variables may cause or prevent against said conditions will make way for 

individualizing treatment and improving population health. 

There is an abundance of theories which attempt to explain how any condition 

comes to fruition.  One such theory which utilizes the basic concept of homeostasis has 

been presented by David Marks.  Marks proposes that health is maintained through four 

main categories:  physical health, life satisfaction (measured via subjective well-being), 

consumption (measured via restraint), and affect (positive or negative).  An imbalance 

in any of these categories will alter the outcoming affect.  Marks applies the 

relationships between these four attributes to obesity, introducing the idea that general 

homeostasis is out of balance in obese individuals.  He claims that obesity is induced by 
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the Circle of Discontent, a collection of feedback loops between these four main points 

in which any disequilibria are hard to control (Figure 1).   

 
Figure 1:  The Circle of Discontent 

The application of homeostatic health as a cause of obesity.  Imbalance of any one 

pathway connecting any two of the variables can induce poor homeostatic health.  

Disequilibrium of multiple pathways may result in a more severe affect.  Arrows 

connecting body dissatisfaction and energy-dense consumption are dashed due to 

inconsistent evidence (Marks, 2015). 

There are many ways this chart can be viewed.  For one, as weight gain changes 

physical health, food is overconsumed, body dissatisfaction increases, and the result is 

negative affect.  The cycle could also begin with other categories such as energy-dense 

consumption which causes weight gain, leading to body dissatisfaction and negative 

affect.  Due to the dual nature of these homeostatic relationships, it may not even be 
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necessary for all factors to be out of alignment to result in negative affect.  Considering 

body positivity, body dissatisfaction may not play a large role for some individuals.  

This could possibly reduce the overall negative affect established by the remaining 

impact of overweight/obesity and energy dense consumption in Marks’ Circle of 

Discontent (Marks, 2015).  This theory describes obesity as a disruptive feedback loop 

that requires conscious intervention to return to equilibrium.  Marks considers a very 

broad view of the causes of health and disease.  Research is now narrowing the scope to 

understand how smaller internal systems impact the overall state of the host. 

Conforming to the idea of homeostasis, a person’s ideal body weight can be 

viewed as the set equilibrium weight.  This equilibrium, which seeks to maintain overall 

body composition at any weight, is carried out via many hormonal pathways that aim to 

physiologically control body weight via the control of food intake (Harris, 

1990).  Among these regulatory hormones are anorexigenic (appetite suppressing) 

glucagon-like peptide 1, cholecystokinin, leptin, and peptide YY along with orexigenic 

(appetite stimulating) ghrelin and pancreatic polypeptide.  A summary of body weight 

regulatory hormones and their physiological roles can be seen in Table 1.  These 

hormones often work by targeting either the vagus nerve, enteric nervous system, and/or 

the immune system to communicate with the central nervous system (Lean & Malkova, 

2016).  The hypothalamus works as a relay station for neural and hormonal signals from 

the body.  After processing, the hypothalamus propagates appropriate signals to bring 

about desired changes in the autonomic nervous system and behavior (Toni et al., 

2004). 
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Table 1:  Common Gut Hormones and their Corresponding Physiological Roles 

These hormones bring about the mentioned physiological affects upon secretion.  The hormones 

cause affect via homeostatic loops which aim to maintain a set equilibrium point for appetite, 

gastric motility, energy expenditure, etc. (Martin et al., 2019). 

Definition and Prevalence of Obesity and Depression 

According to the World Health Organization, obesity rates have nearly tripled 

since 1975.  Obesity is often defined using the Body Mass Index (BMI), calculated by 

dividing one’s weight (in kilograms) by the square of their height (in meters).  Those 

with a BMI of 25 or above are considered overweight and those with a BMI of 30 or 

above are considered obese.  BMI, while an indicator, is not a perfect tool to predict 

body composition and health risk.  Having an elevated BMI, like seen in many highly 

trained athletes, does not definitively mean someone is at risk for comorbid diseases 

associated with obesity such as type two diabetes, hypertension, non-alcoholic fatty 

liver disease, and cardiovascular disease to name a few (Apovian, 2016; Chooi et al., 

2019).  Discussing obesity is made complicated because the condition differs based on 

gender, race, ethnicity, sex, and age.  For example, men tend to accumulate more fat 

Hormone Physiological Role

Ghrelin Increase appetite, lipogenesis, glucose output from the liver, and gastric 
motility.

Pancreatic Polypeptide Increase appetite, lipogenesis, glucose output from the liver, and gastric 
motility.

Leptin Decrease appetite, energy balance.
Oxyntomodulin Decrease appetite, energy balance.
Cholecystokinin Decrease appetite, glucose output from the liver, and intestinal motility.
Glucagon-like Peptide 1 Decrease appetite, glucose output from the liver, and intestinal motility.

Peptide YY Decrease appetite, intestinal motility, and secretion of pancreatic enzymes.

Serotonin
Increase lipolysis, gastric motility, pancreatic enzyme secretion, and bile fluid 
turnover.  Decrease uptake of glucose by the liver.



 

5 
 

within the abdominal cavity (i.e., visceral fat) than women which is more highly 

associated with risk for cardiovascular disease than subcutaneous fat (Tchernof & 

Després, 2013).  Obesity often results from complex relationships between genetic 

factors, socioeconomic status, and cultural influences.  Overall obesity prevalence is 

impacted by lifestyle habits, consumption patterns, and urban development (Apovian, 

2016).  

The World Health Organization identifies depression as a major contributor to 

global disease and disability that affects more than 264 million people worldwide.  

There are many types of depressive disorders that differ in severity but generalized 

moderate depression can be described as having a “sad, empty, or irritable mood, 

accompanied by somatic and cognitive changes that significantly affect the individual’s 

ability to function” (Diagnostic and Statistical Manual of Mental Disorders, 2013).  

People with depression often experience symptoms of dissatisfaction and loneliness that 

affect a person’s homeostatic category of subjective well-being.  Many studies have 

determined that obesity is a risk factor for depression and vice versa, although it may be 

impossible to determine if one causes the other.  A common component of both obesity 

and depression is loss of self-esteem, and it is theorized that this loss may often be a 

result of distorted body image in obese patients (Gutiérrez-Rojas et al., 2020).  Simon et 

al. (2008) interviewed thousands of middle-aged women.  The study showed that 

prevalence of depression increased from 6.5% in women with a BMI below 25 to 26% 

in women with a BMI above 35.  Further, they determined that obesity prevalence 

increased from 25% in women who did not claim to have depression to 58% in women 

with depressive symptoms.  Together this data suggests a positive correlation between 
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obesity and depression and determining the mechanisms of this bi-directional 

relationship has become increasingly popular among researchers over the last decade.   

Treatments for Depression 

Depressive disorders are often treated using selective serotonin reuptake 

inhibitors (SSRIs), increase the amount of free serotonin available to bind to serotonin 

receptors (Harmer et al., 2017).  The neurotransmitter serotonin regulates behavioral 

and neuropsychological processes of mood, perception, reward, aggression, appetite, 

memory, sexuality, and attention (Berger et al., 2009).  Serotonin can carry out such an 

array of effects due to the complex system of peripheral and neural serotonergic 

neurons accompanied by approximately 14 subtypes of serotonin receptors located 

throughout the body.  The 14 receptor types are categorized into five families based on 

receptor structure, and each type is associated with its own physiological functions 

(Stahl, 1998).   

Central serotonin is produced primarily by the raphe nuclei, located in the 

midline of the brain stem.  Neuronal projections from the raphe nuclei innervate the rest 

of central nervous system to create the neuronal serotonergic system (Berger et al., 

2009).  The serotonin produced by the raphe nuclei is the population of serotonin 

capable of binding behavior-modulating serotonin receptor types located in the central 

nervous system.  The majority of the body’s serotonin is produced and released from 

enterochromaffin cells (also known as enteroendocrine cells) that line the digestive 

tract.  This population of serotonin can then travel throughout the body, binding to 

many subtypes of peripheral serotonin receptors to induce its effects (Mawe & 

Hoffman, 2013).  Enterochromaffin cells are activated by and respond to the presence 
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of carbohydrates, short chain fatty acids (lipids), and bile acids (Martin et al., 2019).  

Peripheral serotonin has been found to regulate glucose homeostasis, lipolysis, bone 

density, and metabolic disorders such as Type 2 diabetes (Martin et al., 2017).  

However, peripheral serotonin does not easily cross the blood brain barrier, meaning 

peripheral serotonin cannot directly target mood regulating central serotonin receptors.  

Some studies have shown that supplementation with 5-Hydroxytryptophan, an 

intermediate of serotonin synthesis, may help increase central serotonin concentration.    

The rate limiting step of serotonin synthesis takes place when L-tryptophan is converted 

into 5-Hydroxytryptophan via the enzyme tryptophan hydroxylase.  By supplementing 

5-Hydroxytryptophan, this slow step is surpassed.  The blood brain barrier is permeable 

to 5-Hydroxytryptophan, meaning the molecule can supplement serotonin synthesis in 

the raphe nuclei after crossing, resulting in greater production of serotonin capable of 

modulating mood (Birdsall, 1998).  Supplementation of tryptophan, an essential amino 

acid as well as a precursor to serotonin, has also shown this same ability to cross the 

blood brain barrier where it can be synthesized into serotonin to induce positive 

behavioral outcomes (Steenbergen et al., 2016).  Although many see improved mood 

and social behavior with supplementation of tryptophan, tryptophan is also a precursor 

to other molecules such as melatonin which plays a role in regulating the sleep-wake 

cycle. This may impact efficacy of tryptophan supplementation on serotonin synthesis 

based on the variability of the supplementing individual’s metabolic needs (Bartlett, 

2017). 
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Bariatric Surgery as a Treatment for Obesity 

Aside from lifestyle changes to diet and physical activity levels recommended 

for losing weight, bariatric surgery has been shown to be the most effective for long-

term weight loss and metabolic improvement in morbidly obese patients (Buchwald et 

al., 2004).  There are many types of bariatric surgical procedures (Figure 2), the two 

most common being the sleeve gastrectomy (SG) and the Roux-en-Y gastric bypass 

(RYGB).   

 
Figure 2:  Anatomy of Bariatric Surgery Procedures 

Sleeve gastrectomy (A) and Roux-en-Y gastric bypass (B) (Ulker & Yildiran, 2019).  

In SG, approximately 70 percent of the stomach is removed with an incision, leaving 

behind a smaller pouch that resembles a banana.  This procedure does not affect the 

absorption of nutrients because it does not alter the anatomy of the intestines where 

absorption takes place.  In the RYGB procedure, the top of the stomach is separated 
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from the rest to create a small pouch capable of holding only approximately 30 

milliliters in volume.  This pouch is then connected directly to the jejunum, so the 

bypassed remaining stomach and the duodenum attached to the small intestine create a 

Y-shape.  The bypassed stomach and duodenum continue to secrete gastric acid and 

hormones, but the patient’s nutrient absorption is greatly reduced because food no 

longer travels through the bypassed organs.  In general, these procedures work to limit 

the amount of food that can be consumed, leading to lesser caloric intake and weight 

loss which often allows for the betterment of comorbidities while also affecting the 

production and usage of gastrointestinal hormones that control hunger and satiety, as 

well as the composition of the gut microbiome (Cӑtoi et al., 2019). 

Crosstalk Between Obesity, Bariatric Surgery, and Depression  

Given the prevalence of coexisting obesity and depression discussed earlier, 

many patients seeking esthetically enhancing surgery, bariatric or others such as 

liposuction, show moderate to severe symptoms of depressive disorders and body image 

dysmorphia (Brito et al., 2016).  Every bariatric surgery candidate must undergo 

extensive psychological evaluations before bariatric surgery.  It is required that bariatric 

surgery patients be given increased access to resources like support groups, mentor 

programs, and nutritional support post-surgery in an attempt to lessen pre-existing 

and/or prevent the worsening of depressive symptoms during the period of rapid change 

following bariatric surgery.  However, these interventions cannot always be utilized or 

maintained by the patient, and body image dissatisfaction often increases after surgery 

as the rapid surgically induced weight loss can cause patients to seek unrealistic body 

shapes (Munoz et al., 2010; Sarwer & Fabricatore, 2008).  One study indicates that 
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bariatric surgery results in improved long-term depressive symptoms when measured 

two years after surgery (Gill et al., 2019).  However, other studies provide evidence of 

immediate decreases in depression levels following bariatric surgery, but these are not 

maintained as in the years following surgery symptoms of decreased mood and body 

dissatisfaction increase once again (Canetti et al., 2016).  When following a group of 

adolescence that underwent bariatric surgery over a span of five years, Järvholm et al. 

(2020) found that, while self-esteem and binge eating were improved, general mood did 

not.  Despite substantially greater weight loss compared to control, patients often report 

the same or worse overall mood, which then also positively correlates with decreased 

weight loss and/or increased weight regain following surgery (Monpellier et al., 2018). 

As part of the surgical process, patients are expected to attend follow up 

appointments for both physical and psychological care, but long-term attendance at 

these appointments is not reliable due to financial requirements, time availability, and 

geographic location limitations (Bradley et al., 2018).  Remote care has been on the rise 

and is proving beneficial thus far, particularly in the time of the Covid-19 pandemic and 

may be a useful tool to fight attendance issues in the long-term future (Rubino et al., 

2020).  Literature emphasizes the need for active intervention that targets mental health 

via life coaching to prolong weight loss, but the problem of patient attendance has yet to 

be solved (Belligoli et al., 2020; Rudolph & Hilbert, 2013). 

Cognitive Behavioral Therapy (CBT) has been associated with improved eating 

patterns, psychological symptoms, and decreased weight regain.  The current question 

being asked about CBT is when it should begin.  Some suggest that participation before 

and/or after surgery (Cheroutre et al., 2020), but some report that pre-surgery CBT 
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alone does not result in any significant benefits.  When postoperative benefits of a 

normal treatment group are compared to that of a group that received CBT emphasizing 

nutritional and activity management, cognitive restructuring, and relapse prevention, 

there was no significant improvement in long-term eating behavior or depression post-

surgery (Paul et al., 2020).  However, CBT taking place briefly before and for at least 

three months following surgery, before any weight regain or problematic eating 

behaviors develop, positively correlates with improved postoperative psychological 

wellbeing (Beaulac & Sandre, 2015; David et al., 2020).   

Maintenance of pharmacotherapy for comorbidities such as hypertension and 

diabetes following bariatric surgery is vital to survival, and psychological findings 

suggest that pharmacotherapy regarding antidepressants should be no different (Bland et 

al., 2016).  With the high prevalence of psychiatric disorders in those who seek out 

bariatric surgery, approximately 35% of patients already take antidepressants before 

surgery (Hawkins et al., 2020).  The rate of antidepressant drug discontinuation is 

significantly lower than that of drugs that treat physical symptoms like hypertension, 

indicating a need for further research on how bariatric surgery affects the effectiveness 

of antidepressants (Kennedy et al., 2014).  Antidepressant medications normally come 

in the form of selective serotonin reuptake inhibitors SSRIs or selective serotonin-

norepinephrine reuptake inhibitors (SNRIs).  Patients taking SNRIs rather than SSRIs 

one year after surgery have a statistically higher percent total weight loss (Hawkins et 

al., 2020).  Sources of tryptophan can deplete when an enzyme involved in immune 

activation is overactivated.  This overactivation via chronic inflammation in obese 

patients and resulting tryptophan depletion are highly present in morbidly obese 
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individuals and persist even after surgical weight loss (Brandacher et al., 2006).  The 

decreased amount of serotonin available likely contributes to depressive symptoms after 

bariatric surgery and SSRI/SNRI drugs may not be enough to efficiently correct the 

concentration of serotonin. 

Serotonin type 2C receptor signaling is essential for weight loss, but it has been 

shown that this receptor’s signaling is not what causes post-surgical weight loss.  It may 

be possible that serotonergic drug activation of these receptors could cause weight loss 

therapeutically (Carmody et al., 2015).  Neuronal serotonin differs in obese individuals 

in that there is a much higher rate of serotonin binding to type 2A receptors, binding of 

which positively correlates with weight regulation (Haahr et al., 2015).  Significant 

decreases in the availability of SSRIs one month after bariatric surgery correlates with 

increased depressive symptoms that get better as drug availability, an indicator of 

serotonin levels, normalizes over time (Hamad et al., 2012).  This indicates that simply 

prescribing SSRIs to every bariatric surgery patient will not efficiently treat drooping 

serotonin levels, and therefore depressive symptoms, post-surgery.  A large amount of 

current research focuses on the pharmaceutical and behavioral aspects of treating 

depressive symptoms following bariatric surgery, but these are not the only possible 

targets.  Given the sheer alteration to the anatomy of the gastrointestinal tract in 

bariatric surgery, perhaps there are alterations in how the gut and the brain are 

communicating. 

The Gut-Brain Axis 

The collection of enterochromaffin cells that line the gut, the largest endocrine 

organ in the body, form the enteroendocrine system.  This system works to secrete over 
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20 known hormones that play a major role in bodily homeostasis (Martin et al., 

2019).  These hormones interact with the enteric nervous system which propagates 

signals to the brain for processing.  After processing, the brain responds with signals to 

the gut as needed.  But these enterochromaffin cells function at the hand of the 

supporting gut microbiome (GM), the highly diverse and variable collection of bacteria 

(mostly anaerobes), fungi, viruses, and protozoa that reside in the intestines.  The GM 

differs slightly in each person and has been found to regulate vital physiological and 

neurological processes vital for homeostasis.  The GM greatly influences hormone 

production, and therefore neurological response. The circular communication between 

the GM and central nervous system, deemed the gut-brain axis, often occurs via the 

vagus nerve, immune system, and the enteric nervous system.  Many neuronal pathways 

connecting the gastrointestinal tract to the brain travel along the vagus nerve.  Secretion 

of enteroendocrine hormones, discussed earlier, activates receptors of afferent 

pathways, sending various signals to the brain for processing.  Each hormone, receptor, 

and neural pathway will bring about a specific response, such as changing appetite 

and/or energy expenditure to maintain homeostasis (Lyte & Cryan, 2014). 

The makeup of the GM in lean, healthy individuals has been extensively studied 

for use as a baseline when analyzing changes to the GM in any specific circumstance.  

The compositions are more broadly categorized into main phyla, and further analysis 

can determine species presence and concentration.  The main phyla that make up the 

GM are Firmicutes (genera such as Clostridium, Ruminococcus, Lactobacillus, and 

Faecalibacterium), Bacteroidetes (genera such as Bacteroides, Porphyromonas, and 

Prevotella), Proteobacteria (examples include Helicobacter and Escherichia), 
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Actinobacteria (mainly Bifidobacterium), and less of the phyla Verrucomicrobiota 

(species Akkermansia muciniphila in particular).  Fungi and archaea compose less than 

1% of the GM (Ruan et al., 2020).  It is also important to note that the composition of 

the GM varies by location (Figure 3).  Utilizing location-specific populations of 

microbes in congruence with disorder anatomy can aid in treatment development. 
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Figure 3:  Gut Microbiome Composition based on Location 

The composition of microbes in the gastrointestinal tract varies depending on location.   

Dominant genera of bacteria in the oral cavity, esophagus, stomach, small intestine, and 

colon are depicted (Ruan et al., 2020). 

Dysbiosis of the Gut Microbiome 

When an individual possesses a healthy GM, there is a symbiotic (i.e., mutually 

beneficial) relationship between the GM and the host.  For example, mice models have 

demonstrated that a healthy GM plays a vital role in the development of the central 

nervous system.  With dysbiosis of the GM, there is an imbalance of microorganisms 

that can result in an innumerable number of symptoms.  The GM actively 

communicates via pathways that utilize the immune system, vagus nerve, enteric 
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nervous system, and neuroactive compounds.  For example, some bacteria in the GM 

can produce neurotransmitters, such as serotonin and dopamine, which are capable of 

activating pathways associated with the gut-brain axis (Foster & McVey Neufeld, 2013; 

Strandwitz, 2018).   Changing the GM in turn alters the signaling to and from the brain.  

Dysbiosis of the GM has been linked to many diseases, many of which are 

neuropsychological, such as irritable bowel disease, cardiovascular disease, 

Alzheimer’s disease, Parkinson’s disease, schizophrenia, as well as obesity, depression, 

or even daily stress (Barko et al., 2018).  When the microbiota of depressed patients is 

transferred to a microbiota-deficient (i.e., germ free) rat, the transplanted rat begins to 

show behavioral and psychological features that are associated with depression, 

indicating a causal role for the GM in the gut-brain axis (Kelly et al., 2016).  Similarly, 

transplantation of microbiota from obese to germ free mice results in a significantly 

larger increase in adiposity than when transplanted with microbiota from lean mice 

(Turnbaugh et al., 2008).  Transplantation of obese gut microbiota into germ free mice 

also induced neurobehavioral disruptions even in the absence of increased adiposity, 

further indicating that the GM plays a role in neurological functioning (Bruce-Keller et 

al., 2015).  As the importance of the GM in regulating brain function comes to light, 

researchers are investigating the physiological basis for the GM’s modulation of 

neurological function (Cryan et al., 2019).   

Changing a subject’s diet is the primary method of altering the GM.  Dietary 

changes have been shown to cause large adjustments to microbial concentration within 

a 24-hour period, but these changes are temporary if the healthy GM promoting diet is 

not maintained.  Various diet components affect the GM in a specific manner.  Eating a 
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high fat diet correlates with decreased GM diversity, while increasing animal protein 

intake helps increase microbial diversity (Singh et al., 2017).  The recent development 

of microbiota transfer therapy is being used as a method to alter the GM of patients with 

conditions such as autism spectrum disorders, which often presents with gastrointestinal 

symptoms as symptom severity increases.  In an extended clinical trial using microbiota 

transfer therapy, symptoms of constipation, diarrhea, indigestion, abdominal pain, and 

behavioral symptoms of autism spectrum disorders all improved eight weeks after the 

completion of microbiota transfer therapy.  Increases in Bifidobacterium, Prevotella, 

and Desulfovibrio were noted as the main changes to GM composition (Kang et al., 

2017).  Continuing to develop the understanding of functions modulated by the GM for 

the treatment of disorders is a promising field of study. 

The Obese Microbiome 

Human studies demonstrate that obese individuals present with a decreasingly 

diverse community of microbes in the GM.  Specifically, obese individuals have a 

higher Firmicute to Bacteroidetes ratio and functional disturbances to metabolic 

pathways affected by the GM (Cӑtoi et al., 2019).  Bacteria involved in weight gain are 

thought to induce increases in the expression of genes involved with carbohydrate and 

lipid metabolism, resulting in greater energy absorption from dietary foods.  As obesity 

is already associated with greater energy intake than energy expenditure, increased 

absorption due to the GM only further complicates the development and treatment of 

obesity (John & Mullin, 2016).  Short chain fatty acids produced by the GM can 

become concentrated enough to harm lipid metabolism, possibly contributing to the 

development of non-alcoholic fatty liver disease and hyperlipidemia.  Gene expression 
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of proteins involved in essential and nonessential amino acid metabolic pathways are 

significantly reduced in obese individuals (Sanmiguel et al., 2015).  One major aim of 

bariatric surgery is to restore metabolic functions in obese individuals, and some may 

argue that improving one’s state of mind is a secondary goal as it is a major component 

of overall health.  The mechanisms by which GM bacteria regulate metabolic and neural 

functions are actively being examined by current researchers. 
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Methods 

Using the PubMed database, a systematic review of the literature regarding how 

bariatric surgery and depression individually change the profile of the GM will be 

formed.  Further, studies that evaluate the gut microbiota in individuals who undergo 

bariatric surgery and individuals with depression will be analyzed in search of precise 

changes in composition corresponding to each condition (phyla, genus, etc.).  The 

relative trends in taxa were then compared to one another in search of common 

directional changes in GM abundance.  Common shifts in GM composition may 

indicate mechanisms/pathways that contribute to the continued presence of depressive 

symptoms after bariatric surgery. 

The selected term(s) for GM changes caused by bariatric surgery were “bariatric 

surgery” AND “gut microbiome.”  For analyzing GM changes with depression, the 

terms “bariatric surgery” AND “depression,” and “gut microbiome dysbiosis” AND 

“depression” were used. All searches were filtered to require a publication date on or 

after January 1, 2015.  All articles were screened based on title and abstract.  

Prospective cohort studies, pilot studies, reviews, and systematic reviews were selected. 
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Results 

For GM alteration caused by bariatric surgery, 3606 articles were retrieved and 

41 were selected for further analysis based on title.  For GM alteration influenced by 

depression, 930 articles were retrieved and 32 were selected for further review based on 

title.  Article abstracts were the evaluated in search of reporting species-specific 

changes in the GM.  Nine studies researching the GM after bariatric surgery and eight 

studies researching the GM in depression (17 total) were selected for demographic and 

GM content analysis.  Study demographics are described in Tables 2 and 3 and include 

citation, study description, participant number (n), population descriptions, and 

findings/outcomes.  Tables 4 and 5 reports changes in GM population expression for 

bariatric surgery and depression, respectively.  Table 6 identifies similarities in GM 

changes associated with both bariatric surgery and depression. 

In general, the analysis revealed that both post-bariatric surgery and depressed 

GMs showed an increased relative abundance of Streptococcus, Proteobacteria, 

Citrobacter, Enterobacter, Klebsiella pneumoniae, Bacteroidetes, Alistipes, 

Fusobacteria, Akkermansia, and Actinobacteria, and decreased levels of Firmicutes, 

Lactobacillus, Faecalbacterium, Ruminococcus, and Bifidobacterium.  Trends in 

Anaerostipes, Clostridium, Blautia, Veillonella, Roseburia, Escherichia, Escherichia 

coli, Bacteroides, Prevotella, and Verrucomicrobiota were divergent.  Table 7 indicates 

where bacterial genera that show the same trend are located throughout the 

gastrointestinal tract. 
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Table 2:  Selected Studies that Report Changes to the Gut Microbiome After Bariatric 

Surgery 

General demographics and findings of selected studies that examine changes in the GM 

after bariatric surgery.  Abbreviations are SR (systematic review), P (pilot study), and 

PC (prospective cohort study). 

Author and Publication Year Study Design Sample Population (n) Topic(s) Examined Main Findings

Cook et al., 2020 SR n=20 human studies           
n=21 invertebrate studies

GM changes in humans 
compared to 

invertebrate sham 
bariatric surgery 

controls.  Probiotic 
usage, psychological 
states and behaviors.

Could not determine a direct linkage to 
psychological conditions due to insufficient data 
in the context of bariatric surgery, increases in 
Proteobacteria and the Akkermansia  species 

of the Verrucomicrobiota phylum follow 
bariatric surgery.

Davies et al., 2019 SR
n=14 clinical studies          
n=222 participants

Metabolic benefits of 
BS

Diet, medication, and Type 2 Diabetes are 
discussed in the context of bariatric surgery and 

future research.  Bariatric surgery results in 
increased micriobial diversity in the gut.

Guo et al., 2018 SR
12 human studies, 9 animal 

studies
Metabolic benefits of 

BS

Increases of four main phyla (Bacteroidetes, 
Fusobacteria, Verrucomicriobiota, and 
Proteobacteria) follow baraitric surgery, 

mentioning of specific species follows.  More 
research is needed to determine causal and 

mechanistic metabolic affects caused by 
changing GM in bariatric surgery patients.

Lee et al., 2019 P
n=4 medical weight loss n=4 
adjustable gastric band n=4 

RYGB

GM changes in bariatric 
surgery vs. medical 
weight loss patients

Bariatric surgery increases GM diversity more 
than medical weight loss.  More research is 

needed to determine how different GM changes 
affects remission of Type 2 Diabetes.

Luijten et al., 2019 SR n=21 studies

GM changes in 
association with 

improving comorbidities 
that follow bariatric 

surgery

Changes in GM composition positively correlate 
with weight loss and Type 2 Diabetes remission, 

but an exact causal relationship has yet to be 
determined.

Mabey et al., 2020 PC n=16 bariatric surgery     
n=19 medical weight loss

GM composition after a 
decade in patients that 
had bariatric surgery 
compared to obese 

individuals that did not 
have surgery.

Long term differences in GM composition were 
reported for the surgical group, but not for the 

control group.  Subjects that underwent surgery 
had increased amounts of the families 

Verrucomicrobiaceae and Streptococcaceae, 
but decreased levels of the Bacteroidaceae 

family 10.6 years after surgery compared to the 
non-surgical group.  Increased in the 

Akkermansia  species may be linked to Type 2 
Diabetes remission.

Magouliotis et al., 2017 SR n=22 studies

Metabolic functioning 
and microbe contents 

following bariatric 
surgery

Postoperative GM compisition is more similar to 
lean and less obese patients.  Decreased 

branched chain amino acids (BCAA's) along 
with increased GLP-1 and PYY were observed 

after surgery.

Pajecki et al., 2019 PC n=9 RYGB subjects
Post surgical GM 

composition compared 
to before surgery.

Higher levels of Firmicutes and decreased levels 
Bacteroidetes after surgery were associated 
with less weight loss.  A general decrease in 

Proteobacteria was observed.

Steinert et al., 2020 P n=16 RYGB                       
n=9 control

Bacterial and fungal 
GM composition before 

and 3 months post 
bariatric surgery 

compared to healthy 
controls.

Bacterial GM diveristy significantly increased 
after surgery, but was still significantly different 

from healthy controls.  Changes in fungal 
microbiota were significant before and after 

surgery but dependent on the individual.
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Table 3:  Selected Articles that Report the Altered Gut Microbiome in Depressed Individuals 

General demographics and findings of selected studies that examine changes in the GM 

relating to depression.  Abbreviations are SR (systematic review), R (review), and PC 

(prospective cohort study). 

 

Author and Publication Year Study Design Sample Population (n) Topic(s) Examined Main Findings

Aizawa et al., 2016 PC n=43 depressed                      
n=57 control

Association between 
Bifidobacterium  and 

Lactobacillus  in the gut 
of patients with MDD 
compared to control.

Significantly lower Bifidobacterium  and 
trending lower Lactobacillus  counts were 
observed in MDD patients.  Consumption 

of fermented milk was associated with 
higher Bifidobacterium  counts.

Cheung et al., 2019 SR n=6 case-control studies
Relationship between GM 

composition and MDD 
compared to contols.

No clear outline of GM changes in MDD 
patients was determined.  Reports genera 

of microbiota that increased, decreased, or 
were divergent with MDD.

Du et al., 2020 R N/A

Methods by which the 
GM alters the HPA axis 
and induces depressive 

symptoms.

Alterations to the HPA axis by the GM can 
decrease levels of brain-derived 

neurotropic factor (BDNF), leading to 
depression.  Much more research is needed 

to determine causative mechanisms of the 
GM relating to depression.

Heym et al., 2019 PC n=40 subjects

Comparing GM 
composition of faecal 

samples to depression via 
self-report questionnaires

Increased Lactobaccilus  content positively 
correlated with positive self judgement, but 
further research is needed to determine the 

role of Lactobacillus  in depression.

Jiang et al., 2015 PC n=46 depressed                      
n=30 control

Comparing GM 
composition in patients 

with active and recovered 
MDD to controls.

Active MDD patients had increased 
bacterial diversity compared to healthy 

controls.  Active MDD was associated with 
increased Proteobacteria, Actinobacteria, 

and Bacteroides but decreased Firmucutes.  
Higher Faecilibacterium  levels positively 

correlated with severity of MDD 
symptoms.  Temporal and causal 

relationships still need to be determined in 
further studies.

Naseribafrouei et al., 2014 PC
n=37 depressed                      

n=18 control

GM composition of 
depressed compared to 

healthy controls

Significant differences in GM were seen at 
the order taxonomic level.  The Alistipes 
species significantly related to depression 

severity.

Macedo et al., 2017 SR n=120 studies

GM associated with 
depression and treating an 

altered GM with SSRIs 
and antimicrobials

Depression associated GM phenotype 
reported.  Explains the possible 

neuroprotective effects of antidepressants 
and antimicrobials which may act by altering 

GM composition.

Slyepchenko et al., 2017 R N/A
Relationship between GM 

and diet on the 
pathophsyiology of MDD

Dysbiosis of the GM and a leaky gut my 
greatly influence MDD via immune 

activation and neuroplasticity.  More 
research is needed to determine exact 

causal relationships between microbiota and 
MDD.
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Table 4:  Trends in Gut Microbiome Dysbiosis Associated with Bariatric Surgery 

Trend data extracted from selected articles relating bariatric surgery to changes in the 

gut microbiome.  Microbiota are categorized by phyla, with genus or species listed 

below belonging to the above phylum.  Trends were increase (↑, pink), decrease (↓, 

blue), or reports of increased and decreased prevalence (↑/↓, yellow), or not reported 

(NR, grey).   
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Firmicutes Phylum ↓ ↓ ↓ ↓ ↓ NR ↑/↓ ↑/↓ ↓
Anaerostipes Genus NR ↓ ↓ NR NR NR ↓ NR NR
Lactobacillus Genus NR ↓ NR NR ↓ NR ↓ ↓ NR
Clostridium Genus NR NR ↓ NR ↑/↓ NR ↓ ↓ NR
Blautia Genus NR NR ↓ NR NR NR ↓ NR ↓
Faecalibacterium Genus NR ↓ ↓ ↑ NR NR ↓ NR ↓
Streptococcus Genus NR NR NR ↑ ↑ ↑ ↑ NR ↑
Ruminococcus Genus NR NR ↓ NR NR NR ↓ NR NR
Veillonella Genus NR NR ↑ ↑ ↑ NR ↑ NR NR
Roseburia Genus NR ↓ NR ↓ ↑ NR ↓ NR ↓
Proteobacteria Phylum ↑ ↑ ↑ ↑ ↑ NR ↑ ↓ ↑
Citrobacter Genus NR NR ↑ ↑ NR NR ↑ NR NR
Enterobacter Genus NR NR ↑ ↑ ↑ NR ↑ NR NR
Escherichia Genus ↑ ↑ ↑ NR ↑/↓ NR ↑ NR ↑
Eschericha coli Species ↑ ↑ ↑ ↑ ↑ NR ↑ NR ↑
Klebsiella pneumoniae Species NR ↑ ↑ NR ↑ NR ↑ NR ↑
Bacteroidetes Phylum ↑/↓ ↑ ↑ ↑/↓ ↑/↓ ↑/↓ ↑ ↑/↓ ↑/↓
Parabacteroides Genus NR NR ↑ NR NR NR NR NR NR
Bacteroides Genus NR NR NR NR ↑ NR ↑ ↑/↓ NR
Prevotella Genus NR NR NR NR ↑ NR ↑ NR ↑/↓
Alistipes Genus NR NR ↑ NR NR NR ↑ NR NR
Fusobacteria Phylum NR NR ↑ ↑ ↑ NR NR NR NR
Verrucomicrobiota Phylum ↑/↓ NR ↑ ↑ NR ↑ NR NR ↑/↓
Akkermansia Genus ↑ ↑ ↑ ↑ ↑ ↑ ↑ NR NR
Actinobacteria Phylum ↑/↓ ↓ NR ↑ ↑ NR ↑ NR ↓
Bifidobacterium Genus NR ↓ ↓ NR ↓ NR ↓ ↓ ↓
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Table 5:  Trends in Gut Microbiome Dysbiosis Associated with Depression 

Trend data extracted from selected articles relating the gut microbiome to depression.  

Microbiota are categorized by phyla, with genus or species listed below belonging to 

the above phylum.  Trends were increase (↑, pink), decrease (↓, blue), or reports of 

increased and decreased prevalence (↑/↓, yellow), or not reported (NR, grey).   
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Firmicutes Phylum NR ↑/↓ ↓ NR ↓ ↑ ↓ ↑
Anaerostipes Genus NR ↑ NR NR NR NR NR NR
Lactobacillus Genus ↓ ↓ ↓ ↓ NR NR NR ↓
Clostridium Genus NR ↑ NR NR ↑ NR ↑ ↑
Blautia Genus NR ↑ NR NR ↑ NR NR NR
Faecalibacterium Genus NR ↓ ↓ NR ↓ NR ↓ ↓
Streptococcus Genus NR ↑ NR NR NR NR NR NR
Ruminococcus Genus NR ↓ ↓ NR ↓ NR NR ↑
Veillonella Genus NR NR NR NR NR NR NR NR
Roseburia Genus NR ↑/↓ NR NR ↑ NR NR NR
Proteobacteria Phylum NR ↑/↓ ↑ NR ↑ NR ↑ NR
Citrobacter Genus NR NR NR NR NR NR ↑ ↑
Enterobacter Genus NR NR NR NR ↑ NR ↑ NR
Escherchia Genus NR ↓ NR NR NR NR NR NR
Escherchia coli Species NR ↓ NR NR NR NR ↑ NR
Klebsiella pneumoniae Species NR ↑ NR NR NR NR ↑ ↑
Bacteroidetes Phylum NR ↑/↓ ↑ NR ↓ ↑ ↑ ↑
Parabacteroides Genus NR ↑ NR NR ↑ NR NR ↑
Bacteroides Genus NR ↑/↓ NR NR ↓ ↑ NR NR
Prevotella Genus NR ↑/↓ NR NR ↓ NR NR NR
Alistipes Genus NR ↑/↓ ↑ NR ↑ ↑ ↑ ↑
Fusobacteria Phylum NR ↑/↓ NR NR ↑ NR NR NR
Verrucomicrobiota Phylum NR NR NR NR NR NR NR NR
Akkermansia Genus NR ↑ NR NR NR NR NR NR
Actinobacteria Phylum NR ↑ ↑ NR ↓ NR ↑ ↑
Bifidobacterium Genus ↓ ↓ ↓ ↓ NR NR NR ↓
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Table 6:  Overall Trends in Gut Microbiome Dysbiosis from Tables 4 and 5 

Overall trends of each microbiota for changes associated with bariatric surgery and 

depression.  The * symbol represents similar trends, indicating a positive correlation 

between bariatric surgery and depressive GM phenotypes.  Trends were increase (↑, 

pink), decrease (↓, blue), or cannot determine (CD). 
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Firmicutes* Phylum ↓ ↓
Anaerostipes Genus ↓ ↑
Lactobacillus* Genus ↓ ↓
Clostridium Genus ↓ ↑
Blautia Genus ↓ ↑
Faecalibacterium* Genus ↓ ↓
Streptococcus * Genus ↑ ↑
Ruminococcus* Genus ↓ ↓
Veillonella Genus ↑ CD
Roseburia Genus ↓ ↑
Proteobacteria* Phylum ↑ ↑
Citrobacter* Genus ↑ ↑
Enterobacter* Genus ↑ ↑
Escherichia Genus ↑ ↓
Eschericha coli Species ↑ CD
Klebsiella pneumoniae* Species ↑ ↑
Bacteroidetes* Phylum ↑ ↑
Parabacteroides* Genus ↑ ↑
Bacteroides Genus ↑ CD
Prevotella Genus ↑ CD
Alistipes* Genus ↑ ↑
Fusobacteria* Phylum ↑ ↑
Verrucomicrobiota Phylum ↑ CD
Akkermansia* Genus ↑ ↑
Actinobacteria* Phylum ↑ ↑
Bifidobacterium* Genus ↓ ↓
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Table 7:  Location of Bacteria with Similar Trends of Abundance in the Gut 

Microbiome of Depressed and Bariatric Surgery Patients 

Known locations of bacteria along the gastrointestinal tract for identified bacterial taxa 

that mutually change in depressed and bariatric surgery gut microbiomes (Ruan et al., 

2020; Shigwedha & Ji, 2013) 

Location Increased Abundance Decreased Abundance

Oral Cavity

Proteobacteria 
Actinobacteria 
Fusobacteria 

Streptococcus

Firmicutes      
Lactobacillus 

Bifidobacterium

Esophagus Fusobacteria 
Streptococcus

N/A

Stomach Streptococcus 
Enterobacter

N/A

Small Intestine

Streptococcus 
Enterobacter 
Akkermansia 
Fusobacteria      
Klebsiella

Lactobacillus 
Ruminococcus 

Bifidobacterium

Colon

Proteobacteria 
Actinobacteria 
Bacteroidetes 
Fusobacteria 

Ruminococcus     
Alistipes         

Enterobacter

Firmicutes    
Lactobacillus 

Faecalibacterium 
Ruminococcus 

Bifidobacterium
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Discussion 

Although bariatric surgery has generally been shown to alter microbial diversity 

in the GM, the surgery does not restore a lean/control GM and beneficial changes may 

begin digressing as soon as six months after surgery (Shen et al., 2019).  GM 

composition is often still compared to lean/healthy individuals so that relative changes 

can be compared between patient/intervention and control groups.  By comparing 

changes in the GM in depressed and bariatric surgery populations to that of lean 

individuals, similar trends indicate similar markers of GM dysbiosis.  Some studies 

indicate that the changes to the GM caused by both surgical and medical/dietary weight 

loss may be harmful.  In medical weight loss, the nutrient absorbing abilities of the GM 

increase, making it difficult for people to continue losing weight in this manner 

(Damms-Machado et al., 2015).  Even though surgical intervention has been shown to 

increase the abundance of some beneficial bacteria, such as Faecalibacterium, these 

changes are not large enough to restore a lean phenotype.  There are also some 

alterations in potentially harmful bacterial populations following bariatric surgery, such 

as the phyla Proteobacteria which impacts intestinal absorption and pH, possibly 

resulting in long-term detriments in colonic function, preventing weight loss and 

contributing to neurobehavioral deficits (Seganfredo et al., 2017).  The lack of lean GM 

restoration indicates the need for other treatment targets, such as plant fibers that feed 

beneficial bacteria known as prebiotics, which aim to restore the composition of a lean 

GM phenotype in obese and depressed individuals. 

Other than diet, a common method used to alter GM composition is probiotic 

treatment, the oral administration of live bacteria and yeast.  Taking prebiotics and 
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probiotics together could increase the efficacy of lean GM restoration (Damms-

Machado et al., 2015).  Studies looking into how administration of microbe specific 

probiotics may be able to alleviate a variety of symptoms is actively underway, 

particularly for the use of bacteria belonging to the Lactobacillus and Bifidobacterium 

genera.  The species tested to treat depressive symptoms are often the same as those that 

have obesity fighting affects (Dinan et al., 2013).  Administration of Bifidobacterium 

longum and Lactobacillus helveticus, both from genuera that decrease in both bariatric 

surgery and depressed GM phenotypes, has been shown to improve symptoms of 

depression and decrease levels of cortisol by inhibiting activation of the hypothalamic-

pituitary-adrenal axis, important for immune activation, stress response, digestion, and 

mood (Ait-Belgnaoui et al., 2014; Messaoudi et al., 2011).  Alterations in pro-

inflammatory cytokine release have been restored to normal along with the resolution of 

separation-induced depressive behavior by administering Bifidobacterium infantis 

(Desbonnet et al., 2010).  Treatment with Bifidobacterium infantis is also correlated 

with greater levels of peripheral tryptophan available for serotonin synthesis, perhaps 

leading to increased neural serotonin production and improved mood (O’Mahony et al., 

2015).  The effect caused by the probiotic depends on its specific formula of bacterial 

taxa, and the roles of many species have yet to be determined. 

Some species within the GM have been found to produce precursors to 

neurotransmitters, such as tryptophan, or even some neurotransmitters themselves 

including serotonin, dopamine, and gamma (γ) aminobutyric acid (GABA), all of which 

are associated with the neurochemical aspects of depression.  Both Lactobacillus brevis 

and Bifidobacterium dentium are efficient at producing GABA, the main inhibitory 
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neurotransmitter of the central nervous system, and probiotic supplementation with 

several species from the Bifidobacterium genus have been seen to produce elevated 

levels of dopamine and serotonin (Du et al., 2020).  A higher abundance of Alistipes, a 

bacterium capable of utilizing tryptophan, may also decrease serotonin production by 

limiting tryptophan availability (Slyepchenko et al., 2017).  Many studies are focusing 

on how the GM modulates production of brain derived neurotrophic factor, a factor 

involved in neuroplasticity that is often reduced in patients with depression and/or 

obesity (Naseribafrouei et al., 2014).  High fat diet induced dysbiosis of the GM in mice 

results in decreased levels of brain derived neurotrophic factor and reduced cognitive 

ability, indicating a role for the GM in the regulation of neuroplasticity and mood 

symptoms via regulation of brain derived neurotrophic factor levels (Schachter et al., 

2018).   

Obesity is associated with chronic, low-grade inflammation in peripheral tissues, 

first examined when the pro-inflammatory cytokine known as tumor necrosis-factor 

alpha (TNF-α) was found to be significantly elevated in the blood and adipose tissue of 

obese individuals (Hotamisligil et al., 1995).  Obesity related inflammation is often 

linked to metabolic syndrome, the coexistence of hypertension, hyperglycemia, altered 

cholesterol (dyslipidemia), and visceral fat accumulation which together increases one’s 

risk for cardiovascular disease, diabetes, and stroke (Alberti et al., 2005).  Adipose 

tissue possesses immune cells that secrete inflammatory factors (cytokines, adipokines), 

and increased adiposity in obese individuals results in higher levels of circulating 

inflammatory factors which results in what is known as chronic low-grade 

inflammation.  The release of adipokines such as TNF-α and interleukin-6 (IL-6) 
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recruits macrophages to adipose tissue in an inflammatory response, contributing to 

comorbidities such as insulin resistance that are associated with obesity (Ouchi et al., 

2011).   

Similarly, inflammatory response has been shown to play a cyclical and dose-

dependent role in depression.  Individuals with major depressive disorder often respond 

to stressors with a greater inflammatory response compared to controls, and increased 

inflammatory immune activation can induce depressive symptoms.  Higher levels of 

pro-inflammatory factors TNF-α, IL-6, and C-reactive protein have been found in 

depressed individuals (Kiecolt-Glaser et al., 2015).  Cytokines released during sickness 

can cross and/or disrupt the functioning of the blood brain barrier, causing inflammation 

within the central nervous system which may contribute to symptoms of depression.  

Hyperactivation of the hypothalamic-pituitary-adrenal axis by cytokines IL-6 and TNF-

α activates a cascade that induces a greater stress response via release of cortisol, the 

stress hormone also associated with conditions like obesity and anxiety, from the 

adrenal gland.  These cytokines also inhibit the homeostatic loop that tells the 

hypothalamic-pituitary-adrenal axis to slow and decrease cortisol release (Dantzer et al., 

2008).  Cytokines have also been found responsible for increasing the activity of the 

enzyme that converts the amino acid tryptophan into kynurenine, decreasing available 

tryptophan molecules and slowing serotonin production.  In addition, IL-6 and TNF-α 

are associated with the increased breakdown of serotonin molecules, further depleting 

serotonin levels necessary for mood regulation (Rosenblat et al., 2014). 

The mechanisms by which the microbiota in the gut contribute to inflammatory 

responses are still being determined.  Many studies are working to link populations of 
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microbiota to inflammatory diseases.  For example, decreases in the phyla Firmicutes 

and increases in the phyla Proteobacteria, essential for regulating intestinal absorption, 

pH, and digestion speed, have been documented in patients with irritable bowel disease, 

of which 49% also have depression, characterized by chronic inflammation of the 

gastrointestinal tract (Rosenblat et al., 2014).  Studies show that the presence of an 

inflammation-promoting GM, such as that seen in obese individuals, increases intestinal 

permeability and subsequently peripheral and central inflammation, encouraging 

neurological dysfunction (Bruce-Keller et al., 2015; Seganfredo et al., 2017).  

Depressed and obese subjects have been seen to have a decreased abundance of anti-

inflammatory Faecalibacterium along with an increased abundance of pro-

inflammatory Alistipes (Du et al., 2020).  One possible mechanism for an increased 

inflammatory response comes from the GM’s production of lipopolysaccharides which 

activate TNF-α synthesis and increase gut permeability.  When injected with 

lipopolysaccharides, human subjects had higher levels of cytokines in the blood and 

demonstrated increased anxiety and negative mood (Cani et al., 2008; Grigoleit et al., 

2011).  Increased gut permeability may allow for greater translocation of pathogenic 

bacteria across the intestinal membrane, further contributing to levels of inflammation.   

Altered GM states may also alter the ability of bacteria to produce short chain 

fatty acids (SCFAs) in the gut.  However, the mechanisms as to how SCFAs affect 

obesity and/or depression are up still up for debate.  SCFAs are produced when bacteria 

ferment dietary fibers, starches, unabsorbed sugars, and undigested proteins within the 

large intestine.  These SCFAs can be used as energy by epithelial cells and may also 

activate intestinal gluconeogenesis, both of which add to the pool of energy substrates 
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available for host use, making the host susceptible to energy substrate accumulation and 

fat deposition at higher concentrations.  Communication via the gut-brain axis also 

occurs via SCFAs which stimulate the release of anorexigenic hormones peptide YY 

and glucagon-like peptide 1 upon binding to enterochromaffin cell receptors (Cӑtoi et 

al., 2019).  Some suggest that increased SCFA production is protective against obesity 

and associated with improved host metabolism, glucose homeostasis, and energy 

balance.  For example, increased levels of the SCFA butyrate in the gut, primarily 

produced by Firmicutes, Lactobacillus, and Bifidobacterium which are all decreased in 

depressed and obese individuals after bariatric surgery, has been associated with higher 

insulin sensitivity, whereas subjects with lower levels of butyrate are at greater risk for 

Type 2 Diabetes (Sanna et al., 2019; Seganfredo et al., 2017).  It has also been 

suggested that SCFAs regulate the host’s immune response by decreasing the secretion 

of pro-inflammatory cytokines.  While the mechanism is unclear, decreased production 

of SCFAs may be a cause of chronic inflammation which may cause neural 

inflammation that impacts neurological functioning (Sun et al., 2017).  The mechanisms 

by which gut derived SCFAs and other bacteria within the GM impact host physiology 

and psychology are largely yet to be determined, but ongoing research proves promising 

for developing treatments for GM modulated disorders in the future. 
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Conclusion 

As can be inferred from the results, changes in the GM are quite dependent on 

the individual.  While there are clearly trending similarities between the general GM 

makeup of bariatric surgery and depressed patients, recognizing relative changes in 

composition is only the beginning.  The GM can be altered by nearly anything.  

Whether it be diet, surgery, stress levels, medication, etc., variances in GM composition 

are expected whether they are permanent or not.  This makes studying dysbiosis of the 

GM difficult and indicates a requirement for the determination of exact species-host 

response mechanisms for successful personalized treatment via the GM.  Ongoing 

research aims to determine said mechanisms that relate specific phyla and species to 

host physiology in accordance with all types of physiological and psychological 

conditions, and much more research must be performed to determine how a seemingly 

infinite number of systems are homeostatically regulated according to the state of the 

GM. 

As demonstrated, the interplay between the gut and the brain is extremely 

complex and depends on a wide variety of factors.  As the search for which species play 

a role in modulating host response, it is important that the mechanism of action by 

which a species induces said affect is also examined.  Dysbiosis of the GM is associated 

with many conditions and regulating the composition of the GM has become a very 

popular method of treating physical and psychological symptoms.  Ongoing symptoms 

of depression following bariatric surgery may be associated with a lingering pro-

inflammatory GM phenotype capable of inducing neurobehavioral deficits via a variety 

of possible mechanisms, as discussed above, such as neurotransmitter production or 
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immune response.  Fecal sample analysis and transplantation will continue to play a key 

role in determining both the correlation and causation between the GM and host 

physiology as the taxonomical characterization of GM dysbiosis according to 

diagnosable conditions could prove an invaluable tool for personalizing treatments for 

obesity, depression, and countless other conditions in the future. 
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