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The survival of microbes depends on their ability to acquire space and nutrients 

as well as compete with other groups of microbes. Relatively fit microbes should 

completely outcompete their weaker counterparts, but such outcomes are not commonly 

observed in nature. In structured environments, such as soil or the mammalian gut, the 

structure itself may determine which microbes dominate and which are driven to 

exclusion. Our goal was to create a stochastic simulation that approximated the chance 

nature of ecological interactions to predict dynamics and timescales on which steric 

structure influences microbial competition. Future work will derive more data from this 

model and compare them with previous models from our lab. 
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Introduction  

Between species and/or within an isogenic population, groups of microbes 

frequently compete and cooperate with other groups of microbes. These interactions 

influence which microbes live, which microbes die, and which mix of species will persist 

in a particular environment1.  The species composition of a microbial ecosystem alters 

environmental nutrients and their concentrations, which can have downstream effects on 

other organisms, such as plants, fungi, and animals (including humans)2. Ecological 

principles suggest that mutually competing organisms that occupy the same niche cannot 

stably coexist, due to a mechanism known as ‘competitive exclusion’3, yet natural 

ecosystems routinely contain numerous competing and coexisting microbial species at 

similar trophic levels4. Multiple mechanisms have been proposed to account for this 

unexpected multi-species stability4–7. Our lab is characterizing a potentially generic 

mechanism that robustly maintains competitive stability8, by examining how steric 

structure within an environment impacts the stable representation of species that mutually 

compete for the same space and resources. Such mechanisms are likely relevant because 

most natural environments—like soils9, sea water10, and the mammalian gut11 —are not 

isotropic, rather they contain varying degrees and length-scales of steric structure.  

In the context of our work, competition primarily occurs for critical resources such 

as nutrients and space, which are themselves frequently linked. In response to the 

challenge of securing nutrients and space, microbes have evolved methods for actively 

targeting and killing competing species12. These methods frequently take the form of one 

species injecting proximal cells with a toxin or secreting a toxin into the local 

environment13. Not all such secreted or injected compounds are equally potent and thus 
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the efficacies with which one species kills another are not necessarily equal. This 

competitive asymmetry suggests that if two mutual competitors initially grow free from 

competition in a uniform environment (e.g., a petri dish), they will each increase in 

population until they contact the other species and form an approximately one-

dimensional competition interface. From there, both species would begin to secrete their 

respective toxins, and the species that produces the most effective toxin (either by potency 

or concentration) would eventually be the single dominant competitor to the exclusion of 

other species. The local extinction of a weaker competitor occurs when the interspecies 

boundary moves to reduce the territory of a weaker species, until none of the weaker 

species remains. This is a spatial example of the ecological principle of competitive 

exclusion, wherein different species competing for the same resources cannot coexist 

indefinitely as one will eventually outcompete the other, often to the point where one 

species is locally dominant3,14. In natural environments, however, multiple species are 

observed stably competing within a single niche or closely related niches4,15, and thus 

ecosystems can maintain a level of species diversity that is incommensurate with the 

assertion of competitive exclusion. This type of competition is thought to occur in 

microbial ecosystems, including soils9, sea water10, and the mammalian gut11.  

Our work seeks to understand how the presence of solid ‘steric’ objects—from 

the size of a cell or larger—distributed throughout an environment affect ecosystem 

dynamics and ultimately the persistence of multiple competing species, by modulating 

the movement and stability of competitive interfaces between species. Previous work in 

our lab demonstrated that the presence of structure in the environment can maintain 

multiple competing species even with relatively large competitive asymmetries. This 
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stabilization results from curved interspecies boundaries between steric objects in an 

environment. Geometrically, curved interfaces have more of one species on the outer side 

of the curve than the inner, allowing a weaker species to locally outnumber a stronger 

species, and thereby to compensate for deficiencies in competitive potency with increased 

numbers at the interface of interspecies competition.  

While our previous work clearly indicates the potential for steric structure to alter 

population dynamics, natural systems are subject to multiple sources of stochasticity, 

including stochastic processes that control cell death at the hands of a competitor and 

acquisition of open territory by surrounding microbes16–18. My thesis work built on these 

previous continuum models of ecosystem dynamics to create a computational model of 

microbial competition in structured environments with the key addition of species-

specific stochastic processes and discretization of space roughly on the length scale of a 

cell. Our model accounts for varying size and spacing between steric objects to 

approximate a range of particle sizes and densities, for instance, like those seen in power 

law distributions of particle size in soils19. We used a stochastic model to approximate 

the chance nature of interactions by discretizing interactions between microbes into a 

stepwise decision-tree with weighted random outcomes.  

Our computational model quantitatively incorporates differences in the innate 

growth and expansion rates of each species and incorporates variations in the killing 

efficacy for each species -- for instance, species 𝐴𝐴 may be more effective at killing species 

𝐵𝐵 than 𝐵𝐵 is at killing 𝐴𝐴. Our 2D simulation environment includes steric objects as zones 

that exclude microbes and any chemical signals akin to the impermeable surfaces / 

particles frequently found in natural contexts, for example particles in soil.  
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Unlike earlier work from our lab that examined competition in structured 

environments, this model will approximate the ‘chance nature’ of interactions and 

competitive outcomes, and more accurately approximate the discrete, individual nature 

of microbes. This means that when two species meet in space, on average individuals 

with more potent toxins will advance and kill individuals of species presenting a less 

potent toxin – relevant parameters will be discussed in Results section. However, weaker 

species can gain territory and kill members of the fitter species during the course of 

dynamical fluctuations that result from underlying stochastic processes. In our model, 

fixed rate parameters establish the probability over a single time step that one species 

kills competitor species, and subsequently propagates into empty space. These chance 

outcomes alter the dynamics of competition in structured environments, and ultimately 

the fate of the species involved.  

In previous work8, our lab used a continuum and deterministic model to examine 

microbial interactions in model ecosystems with many competing species and on length 

scales of 10,000’s of thousands of cell, without implementing the stochastic framework. 

This work showed that regularly spaced, steric structure in an environment could preserve 

many competing species on long time scales across a range of geometric and competitive 

parameters; an example8 is shown in Figure 1. This work also found that the competitive 

asymmetry between species could be compensated by the curvature of interspecies 

boundaries, with competitively weaker species residing on the outer curvature that 

provides a local numerical advantage. It was also observed that the greater the competitive 

asymmetry, the larger the difference in relative boundary area between species that could 

establish a stable interface. 
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Expanding on these findings, new work from our lab on multispecies competition 

using the continuum model revealed that these same patterns hold true for multi-species 

competitive communities20, as exemplified in Figure 2. Work from this thesis will likely 

be expanded in to incorporate such multi-species communities in structured 

environments. 

 

Figure 1: Structured environments halt competitive exclusion between two species. 

The top row is a selection of stills from competition between two species which ends in 

the magenta species eliminating the green species. The lower panels show competition 

in a structured environment that settles into a stable orientation relatively quickly and 

remains diverse over extremely long timescales. The diagram in the lower right shows 

competitive advantage and numeric advantage at a boundary between two pillars acting 

as equal and opposing ‘forces’ that keep the boundary stable. 

Thus far, we have simulated hundreds of these situations, varying the placement 

and size of the solid objects, as well as the competition parameters that reflect toxin 

potency (i.e. the neighborhood size, and killing and filling rates; see Algorithm Design 

section). The outputs of these simulations are beginning to reveal how geometric and 

competitive parameters affect which species survive, how competing species are 
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positioned in space, and how long it takes a given simulated ecosystem to reach a stable 

state or to become unstable--meaning a loss in biodiversity through competitive 

exclusion. These data will contribute to a mechanistic understanding of how relevant 

variations in the environment confer or hinder species stability in real-world ecosystems, 

and they will contribute to our future ability to engineer specific microbial ecosystems 

for use in industry, agriculture, and medicine. 

 
Figure 2: Structured environments halt competitive exclusion in competition 

between many species.  Snapshots (A) and population levels (B) showing spatial 

competition between 8 species in an environment without steric structure – here 

eventually the magenta species dominates over all other species.  Snapshots (C) and 

population levels (B) showing competition between 8 species in an environment that 

presents steric structure – here the model ecosystem rapidly reaches a population 

equilibrium in which all species are stably represented. This qualitatively different 

outcome is due to the present structure, and specifically the slowing effect of structure 

on interface movement.
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Results 

In the following sub-sections we discuss the design and underlying calculations 

of an algorithm that implements stochastic spatial competition. We explain the layout and 

control parameters of the simulations and display results from a subset of our first run of 

simulations that demonstrate stochastic fluctuations in this context. We present 

demonstrative examples of qualitatively distinct outcomes—not encompassed in the 

previous continuum work—that depend on parametric inputs and spatial stochasticity.  

 

Algorithm Design 

The design of our stochastic spatial algorithm begins with discretization of space 

into a square grid that can easily be represented and manipulated via matrix computations. 

The length-scale of a pixel corresponds to the size of a cell, though notably cells are not 

generally square, thus this correspondence sets a scale but should not be interpreted as a 

literal representation of a cell. Each point on this square grid has one of four identities (or 

states) and the design of the algorithm is an effort to describe the stochastic dynamics of 

transition between those states on each pixel. First, some pixels are immutable and do not 

host species nor do they contribute to the competitive dynamics, they are steric pixels 

whose positions construct solid objects in the space, represented computationally as not-

a-number (NaN). Second, some pixels are 0, which indicates a free pixel that could, under 

suitable circumstances, be colonized by either species 𝐴𝐴 (+1 pixel state) or species 𝐵𝐵 (-1 

pixel state). Lastly, colonized pixels have identities as either species 𝐴𝐴 (+1 pixel state) or 

species 𝐵𝐵 (-1 pixel state). We started with two species competition (+/- 1 pixel states), 
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but the algorithm we designed has straightforward extensions to an arbitrary number of 

competing species via this state-space approach.  

In our simulations, steric objects are circular (to within pixel resolution), 

immobile and do not change size or shape during the simulation; in other words, the 

number and position of NaNs in any particular simulation is fixed. All simulations had 

the same basic layout, as shown in Figure 3. Circular pillars were created with NaNs 

linked to the edge of the simulation box by NaN-barriers that constrained competition to 

occur in the space between the pillars. Each simulation was initialized with an interspecies 

interface exactly between the pillars; this symmetry ensured that each simulation started 

without a bias toward either species, regardless of their competitive fitness.  The length 

and width of the simulated rectangular space span tens to hundreds of cells on each side, 

large enough that quasi-stable stochastic fluctuations do not contact the edge of the 

simulation box. 

A second ‘interaction’ length scale is set by the radius of the pixel neighborhood 

that affects a given central pixel. Depending on the type of killing, cells can compete and 

influence the viability of proximal cells on varying length scales. For diffusible toxins 

secreted by cells21, the effective length scale of competition may be several cells long, 

whereas contact-mediated competition22,23 is restricted to one or two cell lengths away. 

Our model reflects these distinct biological mechanisms with a local pixel neighborhood 

whose size can vary across simulations; a range of isotropic neighborhoods are shown in 

Fig 4.  Whichever the underlying mechanism of competition, cells of one species must 

be able to differentially compete with cells from another species, meaning our model must 

account for the possibility that one species is a stronger competitor than the other. 
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Figure 3: Basic layout of the simulation space. Each simulation is a rectangular box containing 

two circular NaN pillars, and corresponding NaN barriers that together restrict the competition 

interface to the space between the pillars. In visual display, we show steric pixels as gray, open 

pixels as black, species A as red, and species B as green. Each simulation is initialized with the 

species boundary exactly between the pillars, as shown above. This ensures that there is no bias 

in the boundary structure that could influence the stochastic dynamics.  The center-to-center 

spacing of the pillars and their radius are the primary geometric, which ultimately set the height 

of the simulation space. The width of the simulation box is set to be large enough that a stable, 

fluctuating interface does not make contact with the edge of the simulation box, accomplished by 

setting the width to be roughly twice the distance set by the maximum curvature (gray dashed 

line). 

Our model accounts for such differences through a pair of kinetic parameters 

𝑘𝑘𝐴𝐴𝐴𝐴 and 𝑘𝑘𝐴𝐴𝐴𝐴 that characterize the rate at which an individual 𝐴𝐴 pixel kills an individual 𝐵𝐵 

pixel, and vice versa. Further, each species has a rate at which it fills (grows into) a vacant 

pixel, 𝑘𝑘0𝐴𝐴 and 𝑘𝑘0𝐴𝐴, respectively. Throughout this work, we set 𝑘𝑘0𝐴𝐴  =  𝑘𝑘0𝐴𝐴  =  1, which 
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equalizes the spreading rate of each species and sets the natural timescale in the system, 

𝑘𝑘0𝑋𝑋−1, used as the unit of time in the current simulations; here 𝑋𝑋 meaning either species. 

The simulation space is structured so that competitive interactions are localized 

to the interfacial region between the pillars. Each pillar is specified by a radius 𝑅𝑅 and a 

center-to-center separation 𝐷𝐷 – these are the fundamental geometric parameters of the 

simulation. Within the model, steric pillars are represented as non-interacting not-a-

number (NaN’s), as are regions above and below each pillar to limit the interactions to 

the desired interface between the pillars. Each interaction neighborhood is characterized 

by a pixel radius (see Fig. 4), which defines a particular neighborhood structure and 

corresponding number of pixels 𝑛𝑛ℎ𝑜𝑜𝑜𝑜𝑜𝑜, excluding the central pixel. Within each 

neighborhood there is some number of vacant sites, some number of 𝐴𝐴’s (𝑛𝑛𝐴𝐴) and some 

number of 𝐵𝐵’s (𝑛𝑛𝐴𝐴). The central pixel in a neighborhood is the pixel whose identity has 

the potential to change. Two trivial cases cannot result in a state change of the central 

pixel:  (i) if all of the pixels in a neighborhood (excluding the central pixel) are vacant 

and (ii) if the species identity of every non-vacant pixel in the neighborhood is identical, 

for instance, a central 𝐴𝐴 pixel surrounded by some number of 𝐴𝐴’s and no 𝐵𝐵’s. 

Outside those cases, the state of the central pixel can change according to a 

decision tree with probabilistic weights, as schematically described in Figure 5. The 

decision tree begins with determination of whether the central pixel is empty or occupied. 

If the central pixel is occupied by species 𝑋𝑋  (i.e. either 𝐴𝐴 or 𝐵𝐵) it will switch to a vacant 

site with probability  

𝑝𝑝𝑋𝑋0 = 1 − 𝑒𝑒−∆𝑡𝑡𝑛𝑛𝑌𝑌𝑘𝑘𝑌𝑌𝑌𝑌  
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where ∆𝑡𝑡 is the simulation time-step (see Coding Methods), and 𝑘𝑘𝑌𝑌𝑋𝑋 is the per-pixel rate 

at which 𝑌𝑌 kills 𝑋𝑋. Here we generalize the species labeling to 𝑋𝑋 and 𝑌𝑌, to indicate that 

there is an equivalent formula for each species (i.e. 𝑝𝑝𝐴𝐴0 and 𝑝𝑝𝐴𝐴0). Note that if 𝑛𝑛𝑌𝑌 = 0 (no 

competitors in the neighborhood), then 𝑝𝑝𝑋𝑋0 = 0 (no chance of state change).  This 

probability is compared to a random number between 0 and 1, and if that number is less 

than 𝑝𝑝𝑋𝑋0, then the pixel changes state from occupied to vacant. This scheme implicitly 

assumes that the probability for neighboring 𝑋𝑋 pixels to kill a central 𝑋𝑋 pixel is 

 
Figure 4: Examples of four different competition neighborhoods.  The 4- and 8-connected 

neighborhoods approximate competition between proximal cells, as might be encountered in 

contact-mediate killing, whereas the larger 2 and 3 pixel-radius neighborhoods approximate the 

longer ranges of diffusible toxins.  

 

identically zero (the ‘no cannibalism’ rule).  Similarly, this scheme does not admit the 

possibility that other 𝑋𝑋’s in the neighborhood have a protective effect on the central 𝑋𝑋 

(though this would not be difficult to incorporate). This scheme is applied to every 

occupied pixel that is not part of the trivial case mentioned above.  

 If a pixel is vacant and has occupied pixels of either species in its neighborhood, 

then the probability that its state changes from vacant to occupied is given by 

𝑝𝑝0𝑋𝑋 = 1 − 𝑒𝑒−∆𝑡𝑡(𝑛𝑛𝐴𝐴𝑘𝑘0𝐴𝐴+𝑛𝑛𝐵𝐵𝑘𝑘0𝐵𝐵) 
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and a random number between 0 and 1 determines whether this state change occurs.  If 

the state changes to occupied then the probability that the pixel will be occupied by 

species 𝐴𝐴 is 

𝑝𝑝𝐴𝐴 =
𝑛𝑛𝐴𝐴𝑘𝑘0𝐴𝐴

𝑛𝑛𝐴𝐴𝑘𝑘0𝐴𝐴 + 𝑛𝑛𝐴𝐴𝑘𝑘0𝐴𝐴
 

and we note that 𝑝𝑝𝐴𝐴 + 𝑝𝑝𝐴𝐴 = 1. These processes repeat over all pixels in a given time-step, 

and a single update to the ecosystem matrix happens after all pixel state changes are 

determined. Repeated over many time steps this evolves the state of the system as a whole 

according the four kinetic parameters, and subject to the two geometric parameters. The 

total number of simulation time steps is a ‘soft’ parameter that affects the actual time to 

simulate (approximately linearly) and, depending on the boundary dynamics and 

competitive asymmetry, affects the statistical view of boundary dynamics at a particular 

point in phase space and may allow the simulation to encompass dynamical transitions 

(e.g. from stable boundaries to unstable boundaries, see next section). 

The dynamics that emerge from this algorithm, on average, follow the expected 

trends from the relative values of the killing rates.  If 𝑘𝑘𝐴𝐴𝐴𝐴 > 𝑘𝑘𝐴𝐴𝐴𝐴 then the boundary will 

tend, albeit with stochastic fluctuations, to move in the direction that favors species 𝐴𝐴, 

and vice versa if 𝑘𝑘𝐴𝐴𝐴𝐴 > 𝑘𝑘𝐴𝐴𝐴𝐴.  Even in the absence of explicit simulation, a few trends can 

be determined, given that 𝑘𝑘0𝐴𝐴  =  𝑘𝑘0𝐴𝐴  =  1.  If the killing rates are fast in comparison to 

the spreading rates, then killing is essentially deterministic (𝑝𝑝𝑋𝑋0 → 1), vacant sites are 

relatively common at the interface, and spreading stochasticity controls boundary 

dynamics. If killing is slow in comparison to the spreading rate, then vacant sites are rare 

and boundary dynamics slow. Finally, it is worth noting that as a stochastic simulation in 
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a finite simulation space (i.e. a finite number of pixels), ‘anything can happen’. For 

instance, if 𝑘𝑘𝐴𝐴𝐴𝐴 > 𝑘𝑘𝐴𝐴𝐴𝐴 there is a small, but non-zero probability that a series of stochastic 

fluctuations lead to species 𝐵𝐵 dominating and excluding species 𝐴𝐴, whereas that would 

be impossible in a continuum simulation. In the next section we present first results of 

this stochastic model and discuss types of dynamics that emerged in our first run of 

simulations. 
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Figure 5: Probabilistic decision tree for spatial competition. At each time step, any pixel that 

is not a steric pixel (NaN) can change in accordance with the identities of pixels in its interaction 

neighborhood. The decision tree shown here indicates the series of steps that lead to a possible 

identity change with the inclusion of weighted stochastic decisions. For a given pixel that is a 

number and is not surrounded by identical pixels in its neighborhood, the tree is sampled.  Every 

such pixel is either empty (0) or occupied (+/- 1).  If a pixel is empty, a stochastic decision 

determines if the pixel is colonized, and in a subsequent step, by which species. If a pixel is 

occupied, a stochastic decision determines if it is killed by local competitors, and thus left vacant.  
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Figure 6: Visualizations of filling and killing operations in a hypothetical 8-connected 

neighborhood. (A) Upon identifying a vacant pixel, a stochastic binary decision is made to 

determine if that pixel becomes occupied. If that stochastic outcome indicates filling, a 

(hypothetical) filling operation ensues; the algorithm then rolls for which species takes over. 

Under the conditions of identical spreading rate, the probability of state change from vacant to 

occupied is set by the total number of occupied pixels in the neighborhood, and the identity of the 

possible occupant is set by the relative numbers of each species in the neighborhood.  (B) The 

central pixel is occupied by a red cell. The green cells in the neighborhood each contribute to the 

cumulative rate at which the red cell will be killed and hence the site will be vacated. The 

probability that the central red cell will be killed depends on the killing rate of green on red, the 

number of green cells in the neighborhood, and the size of the simulation time-step. 
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Simulation Results 

In our initial simulations, we explored neighborhood sizes of two and three, which 

approximate the biological scale of nearest-neighbor type VI contact-mediated killing22,23 

and near-field secreted toxins.  Strictly speaking, stochastic dynamics within a finite 

simulation space always have a non-zero rate at which a single species dominates, but, 

relative to the natural time-scale set by the spreading rate, interface dynamics can be 

classified by long-time averages of the interfacial curvature and the time-scale on which 

dominance occurs. Preliminary simulations over different sets of the competition 

parameters 𝑘𝑘𝐴𝐴𝐴𝐴 and 𝑘𝑘𝐴𝐴𝐴𝐴  show four general cases: (1) symmetric and stable, (2) 

asymmetric and stable, (3) asymmetric and semi-stable, and (4) asymmetric and unstable. 

Inter-pillar distances and pillar radii geometrically dictate the largest interfacial curvature 

that steric objects can support under asymmetric competition (shown in the following 

figures as a dashed line)8. The combination of kinetic and geometric parameters then 

correspond to a point in the six-dimensional phase that belongs to one of these classes, 

with symmetric competition being strictly stable in the case of an arbitrarily large 

simulation space. 

In a manner similar to previous work in the Ursell Lab, we observed interspecies 

interfaces that are formed between these steric pillars and exhibited stochastic 

fluctuations that are not observed in our previous continuum model of spatial competition. 

We selected kinetic parameters that correspond to similar levels of competitive 

asymmetry from previous continuum work and geometric parameters that might be found 

in environmental contexts with steric objects on the order of tens of cells (i.e. tens of 

microns).  
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In the case where competition is symmetric, the boundary, on average, remains 

exactly between the two pillars with a characteristic fluctuation width set by the kinetic 

parameters and the radius of the interaction neighborhood (Fig 7). The interface displays 

no net curvature as there is no overall bias in interface movement that would result from 

competitive asymmetry.  Fluctuations away from a straight boundary occur, but curvature 

induced fluctuations in the killing and filling rates bring the boundary back to a straight 

configuration between the pillars. The asymmetric and stable case, while not strictly 

stable, are those cases that have asymmetric killing kinetics, but remain sufficiently far 

from the maximum curvature boundary that stochastic interface fluctuations do not push 

the interface into the unstable configuration on the (very long) time-scale of the 

simulation. The asymmetric killing rates do however cause the long-time average of the 

interface configuration to adopt a uniformly curved configuration (Fig 8), consistent with 

results from previous continuum simulations8,20. 
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Figure 7: Interspecies average location over time and single time point for symmetric 

and stable case. The gray panel (top left) is a snapshot from the stochastic simulation. 

The image on the white panel (top right) is the time average across the whole simulation. 

The gray dashed lines demarcate the largest curve supported by these pillars. The relative 

population of the equal cases does not shift much, but it does shift because of the creation 

of empty spaces. These empty spaces cause the populations to not exchange exactly one-

for-one. This can be seen by the graph of population differences over time (bottom left) 

as the differences in population linger around zero. The histogram on the bottom right is 

the population data for the two species. The apparent average is near zero as there is not 

competitive asymmetry between the species in this case. 
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Figure 8: The boundary of the stable case remains curved on long time scales. The average 

arrangement of two asymmetrically competing species displays a curved interface that lies below 

the critical interface curvature. The top left panel shows a frame from the simulation and the top 

left represents location of the interspecies boundary over time. This boundary is curved to support 

more members of the weaker, red species on one side and fewer, stronger species on the other 

side. The population difference of the two species remains relatively stable throughout the course 

of the simulation, as seen in the lower left graph. This can also be seen in the lower right histogram: 

the histograms are roughly symmetric, but the presence of open spaces removes true symmetry.  

Like stable cases, semi-stable cases adopt average uniform interface curvatures 

for long periods of time, but the asymmetry in competition parameters position the 
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stochastic interface near the critical curvature boundary, and eventually push the interface 

past the critical curvature boundary well within the simulation time (Fig 9). Given enough 

time, semi-stable simulations will become unstable, and a single species will dominate. 

This phenomenon is similar to the gambler’s dilemma in which there is no condition 

under which a gambler ‘wins’, rather stochastic fluctuations will always, eventually 

absorb the gambler into a state of money ‘extinction’. Similar to the gambler’s dilemma, 

the weaker species in our simulation is always attracted to the state of extinction, though 

that is not to say that it is impossible for the weaker species to dominate—stochasticity 

necessitates this possibility—but it is extremely unlikely. 

Unlike the previous cases, the boundary of the unstable case does not linger in the 

zone defined by the maximum interface curvature, rather the interface continuously 

moves until the stronger competitor completely dominates and the simulation ends (Fig 

8). Macroscopically, the movement is visually similar to a wildfire or tsunami in that the 

fitter species consistently and progressively dominates the competition space. 



 

21 
 

 
Figure 9: Semi-stable boundary temporal average and two snapshots Semi-stable 

simulations maintain a stable boundary near the critical curvature (upper left), but 

eventually cross that boundary and become unstable (upper middle), at which point the 

strong competitor dominates the simulation domain. This is accompanied by population 

levels remaining stable for some number of timesteps, then they diverge quickly as one 

species overtakes the other, as seen in the lower left graph. The histogram in the lower 

left shows a few time points where the population difference is very large. This would be 

near the end of the simulation as the strong competitor takes over. The location of the 

interspecies boundary (upper right) looks like an asymmetric, stable case at first glance 

as this simulation is mechanistically similar until it suddenly becomes unstable. 
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Figure 10: Unstable Boundaries continuously move until one species conquers the 

other. Unstable conditions result when the curvature that could potentially stabilize the 

boundary is greater than the maximum interface curvature set by pillar geometry (denoted 

by the dashed line). In this case, the system does not exhibit any stable dynamics, rather 

the interspecies interface consistently and progressively moves toward the dominance of 

the stronger competitor (lower right). Population levels diverge from the start of the 

simulation (lower left).  



 

23 
 

Discussion and Future Directions 
This work lays the foundation for multiple rich directions of inquiry into the 

effects of stochasticity on competitive ecosystem dynamics. We identified a number of 

qualitatively distinct classes of dynamics that both expand our understanding of these 

systems and suggest crucial differences between continuum and discrete / stochastic 

models. Importantly, key takeaways thus far are: (i) that neighborhood size has significant 

effects, albeit not yet fully characterized, on the dynamics and stability of asymmetric 

competition that are not revealed by continuum simulations, and (ii) that stochasticity 

‘blurs the line’ between stable and unstable systems, in particular suggesting that all 

finite-sized stochastic ecosystems have the possibility of single-species dominance. 

Within the language used, the current code is optimized in terms of computational 

efficiency and data handling, and four directions of inquiry immediately follow from our 

current code and results. 

First, we seek to understand the structure of the wait-time distribution for single-

species dominance, which requires many tens of thousands of simulations of the current 

code. Technically, because the simulation is stochastic, even symmetric competition has 

some (very long) timescale on which a finite-sized system is expected to reach a state of 

single-species dominance. In such stochastic processes it is difficult to pin-point when a 

system transitions from stable to unstable, but system geometry gives a clear delineator, 

specifically, the time at which all points along the competition interface lie beyond the 

line of maximum curvature between the pillars. Coupled with comparison to possible 

theoretical studies, the structure of the wait-time distribution may indicate different 

classes of expectation.  In particular, if the wait time distribution decays with certain 
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power-law exponents, which themselves may depend on the kinetic parameters, there 

may be finite or infinite average wait times for single-species dominance, which 

constitute qualitatively distinct behavior. 

Second, we are in the midst of developing additional tools for analysis of the 

simulations. We are developing relaxation algorithms that find the approximate curvature 

of the interspecies interface as a function of time. As interface curvature is the geometric 

factor that influences the spatial balance of asymmetric competitors, we hypothesize that 

in the quasi-stable situations, the stability transition is ‘nucleated’ by fluctuations in 

interface curvature.  We will test this hypothesis with kymograph analysis of the temporal 

evolution of interface curvature. In general, we will test different potential ‘reaction 

coordinates’ that characterize the transitory nature of the dynamics – for instance, one 

potential reaction coordinate might be a measure of distance or area between the current 

interface and the line of maximum interface curvature. Such metrics may prove useful in 

characterizing the kinetic landscape that leads to the wait-time distribution discussed 

above. We are also developing analysis tools to measure effective system dynamics. 

Using both whole-population and spatial time-series data, we will characterize how 

autocorrelation times (effective dynamics) depend on kinetic parameters. 

 Third, building on these kinetic metrics, we will map out a portion of the 

parametric phase space of the system – in particular, characterizing wait-time 

distributions and stability kinetics as a function of geometric parameters—primarily pillar 

spacing—and competition parameters.  With sufficient computational power, we will 

map out features (e.g. scaling exponents) of the wait-time distribution to determine if 

certain regions of the kinetic phase space obey qualitatively different dynamics. 
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Fourth, while the size of the parameter space is daunting, multispecies competitive 

ecosystems (3+ species) existing within structured environments (i.e. containing steric 

objects) are of significant interest as a step toward modeling more realistic natural 

contexts. 

As a student, this project has been educational – it gave me experience in 

algorithm design, code implementation, debugging, and optimization, specifically within 

the context the powerful MATLAB language; it provided opportunities for narrative 

construction around my project – both in written and presented forms; it allowed me to 

observe and engage with the trajectory of a multi-year research project, and I developed 

skills for scientific inquiry and organizational techniques for long-term project 

management. I look forward to seeing this project progress and the insights it will 

uncover. 
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Coding Methods 
In addition to the fundamental parameters that control geometries and stochastic 

processes in the simulations, the simulation script offers control over many aspects of 

simulation setup, data structures, visualization and saving of simulation data and meta-

data. In this section we discuss some of the more salient control parameters; the full code 

designed and used in this work can be found in Appendix A. The simulation gives the 

option to use a random or preset seed for the random number generator. If a random (time-

based) seed is chosen, simulations with the same kinetic and geometric parameters sample 

distinct stochastic trajectories through phase space with the same underlying statistical 

ensemble. While our initial simulation run did not perform large-scale sampling of this 

type, this is how future simulations will sample (for instance) residence-time 

distributions. Conversely, preset seeds that follow the same stochastic trajectory are 

useful for unit testing, diagnostics, and code improvement. All simulations are initialized 

with a flat interspecies boundary exactly between the pillars – this ensures that there are 

no biases from initial conditions. Choosing an appropriate time step is critical, as time 

steps that are too short waste computational cycles and times steps that are too long will 

not accurately simulate the underlying stochastic dynamics. The killing and filling 

probabilities, associated with the first steps of the decision tree, monotonically increase 

with the size of the time step. If the time step is too large these probabilities approach 1 

and killing and filling become semi-deterministic, which eliminates stochasticity from 

the simulation and inaccurately represents the dynamics. To ensure an appropriate choice 

of time step we calculated the maximum possible rate of a pixel-state change 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, which 

depended both on the fastest of the kinetic parameters (𝑘𝑘0𝐴𝐴,𝑘𝑘0𝐴𝐴, 𝑘𝑘𝐴𝐴𝐴𝐴,𝑘𝑘𝐴𝐴𝐴𝐴) and on the 
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number of pixels in the local interaction neighborhood.  We then chose the simulation 

time step to be a fraction of this inverse rate; for the simulations shown here we used 

∆𝑡𝑡 = (4𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚)−1.  

The temporal resolution of recorded species matrix data, images, and other meta-

data during the simulation was set by the user-specified parameter 𝑡𝑡_𝑐𝑐𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑒𝑒, measured 

in natural time units of 𝑘𝑘0𝑋𝑋−1. This resolution was chosen to balance output data size with 

the requirement that successive images had substantially non-zero autocorrelations (i.e. 

the flow of time displayed continuity from one image to the next). Each simulation also 

saves all relevant simulation parameters and data into a standardized and labeled output 

data structure, called 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐. Each such output data structure can be used as the input 

to reinitialize / repeat that simulation and/or to re-construct the visualizations of a 

particular simulation.  

The main body of the simulation can be split into the three conceptual parts. First, 

the code determines the minimum rectangular area of pixels where any possible state 

changes in pixel identity can occur.  This significantly improves computational efficiency 

because the vast majority of the time, dynamics are spatially localized to a curved, 

approximately 1D interface between the pillars.  Pixels more than a neighborhood-radius 

away cannot change state and hence are excluded from the current calculation to save on 

computational time. This rectangular region is dynamically updated at each time-step.  

Second, within the entire simulation area, a group of ‘active’ pixels are determined by a 

series of logical evaluations that determine exactly which pixels could possibly change 

state, and the decision tree is only applied to those pixels, again to save on computational 

time. Active pixels that can change state must either be open pixels with at least one 
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occupied pixel in their neighborhood, or occupied pixels with at least one competitor 

pixel in their neighborhood. This combination of dynamic update rules ensures that at 

each time step only those pixels that have a chance of changing identity are subjected to 

the relatively costly process of the decision tree.  Finally, for each of the active pixels, the 

appropriate rates of killing (if occupied) or filling (if open) are calculated given the 

composition of the local neighborhood, the change probabilities are calculated, stochastic 

selection against a uniform random distribution occurs, and the stochastic decision tree is 

followed as described earlier.  
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Appendix A: Simulation Code (Matlab2019B) 
%Isa Richter & Tristan Ursell 
%May 2021 
%Stochastic competition in 2D environments with steric structure 
% Matlab R2019B 
% 
% Parameters: 
% 
% - each pixel = ~ 1 cell = ~ 1 micron 
% - set k0A = k0B, set k0X = 1, which gives dt meaning 
% - 'biology' of contact-mediated killing suggests 'minimal' values for r_hood = 2 (4 or 
8-conn) 
% - fix R, vary L -- this will sample kappa_max 
% - t_total & W -- pick high enough value, but no point in full sampling 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%simulation parameters 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% DIMENSIONS 
% L_box = box height (pixels) 
% W_box = box width (pixels) 
% D = center-to-center pillar distance (pixels) 
% R = pillar radius (pixels) 
% x_pillar = x position of pillar (pixels, width) 
% 
% RATES & TIME 
% t_total = total simulation time (k_{0X}) 
% k0A = rate of empty space colonization of A (=1 for now, sets time scale) 
% k0B = rate of empty space colonization of B (=1 for now, sets time scale) 
% kAB = rate of A killing B (k_{0X}) 
% kBA = rate of B killing A (k_{0X}) 
% 
% BOOLEANS 
% save_image_q = save (8-bit) images every t_capture? 
% disp_fig_q = display live figure in real time? 
% save_data_q = save 'compdata' to mat-file? 
% save_fig_q = save output figure? 
% rand_q = 0, uses fixed rng seed, = 1 uses varying, clocked-based seed 
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% test_q = unit testing for fast convolution (not important generally) 
% 
% HARD WIRED (change in code) 
% dt = proportional to a fraction of the fastest time scale (max([k0A,k0B,kAB,kBA])) 
% t_capture = rate of capture in natural units 
% 
% 
%stochastic_competition_v4(L_box,W_box,D,R,x_pillar,r_hood,t_total,k0A,k0B,kAB,kBA,
save_image_q,disp_fig_q,save_data_q,save_fig_q,test_q) 
% 
function compdata = 
stochastic_competition_v4(L_box,W_box,D,R,x_pillar,r_hood,t_total,k0A,k0B,kAB,kBA,s
ave_image_q,disp_fig_q,save_data_q,save_fig_q,rand_q) 
%------------------------------------------------------------------------
- 
%randomize seed 
seed0 = 128248780; 
seed1 = round(prod(clock)); 
if rand_q ==0 
    rng(seed0) 
else 
    rng(seed1) 
end 
 
%Initial layout conditions and set up 
%random initial conditions 
%here M(i,j) = +1 --> species 1 
%here M(i,j) = -1 --> species 2 
 
%%%%%%%% NEIGHBORHOOD / STREL for Pixel of Interest (POI) %%%%%%%%%% 
if r_hood==0 
    conn_nb = [ 1 1 1; 1 0 1; 1 1 1]; %8 connected neighborhood w/o poi 
else 
    strel1 = strel('disk',r_hood,0); 
    conn_nb = strel1.Neighborhood; % circular neighborhood 
    conn_nb(r_hood+1,r_hood+1) = 0; %set center to zero 
end 
 
%get conn_nb radius 
r_conn = (size(conn_nb,1)-1)/2; 
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%%%%%% RANDOM IC / PILLAR CENTERED ON EDGE %%%%% 
%M = 2*(rand(L,L)>(1-f))-1; %rand conditions 
 
%%%%%% 50-50 CENTERED IC / PILLAR WITH EXTRA SPACE 
%x-position of pillars (hardwired for now) 
if x_pillar==0 
    x_pillar = round(W_box/2); 
end 
 
M = zeros(L_box,W_box); 
M(:,1:x_pillar) = 1; 
M(:,x_pillar+1:end) = -1; 
 
%pillar centers 
origin_x1 = x_pillar; 
origin_y1 = round((L_box - D)/2); 
origin_x2 = x_pillar; 
origin_y2 = round(L_box - (L_box - D)/2); 
 
%create pillars 
strel_R = strel('disk',R,0); 
temp1 = zeros(size(M)); 
temp1(origin_y1,origin_x1)=1; 
temp1(origin_y2,origin_x2)=1; 
mask1 = imdilate(temp1,strel_R); 
 
%apply pillars to M and set to NaNs 
M(mask1==1) = NaN; 
M(1:origin_y1,x_pillar - r_conn:x_pillar + r_conn) = NaN; 
M(origin_y2:end,x_pillar - r_conn:x_pillar + r_conn) = NaN; 
mask_nan = isnan(M); 
 
%matrix whose values are the number of local (conn_nb) non-nans 
strel_mat = conv2(~isnan(M), conn_nb, 'same'); 
 
%get size of non-nan area 
non_nan_area = sum(~isnan(M(:))); 
 
%%%%%%%%%% TIMING %%%%%%%%%%%%%%%%%%%% 
%set dt to be smaller than any inverse rate constant 
kmax = max([k0A,k0B,kAB,kBA]); 
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dt = 0.25/(kmax*sum(conn_nb(:))); 
 
%t_capture = round(0.25/dt); %very fine scale 
%t_capture = round(2/dt); %fine scale 
t_capture = round(5/dt); %medium-fine scale 
%t_capture = round(10/dt); %medium scale 
t_vec = 0:(dt*t_capture):t_total; 
 
%population record 
popRecord = zeros(round(t_total/dt*1/t_capture),2); 
%--------------------------------------------------------------- 
%create image matrix 
if save_image_q 
    %image_out = zeros([size(M),length(t_vec)],'uint8'); 
    image_out = zeros([size(M),length(t_vec)],'single'); 
end 
 
%generate output file base name 
basename1 = ['stochastic_competition_R-' num2str(R) '_dt-' num2str(dt) '_r-hood-' 
num2str(r_hood) ... 
    '_k0A-' num2str(k0A) '_k0B-' num2str(k0B) '_kAB-' num2str(kAB) '_kBA-' 
num2str(kBA) '_ID-' num2str(seed1)]; 
 
%save parameters to output 
compdata.name = basename1; 
compdata.L = L_box; 
compdata.W = W_box; 
compdata.D = D; 
compdata.R = R; 
compdata.r_hood = r_hood; 
compdata.r_conn = r_conn; 
compdata.Reff = sqrt(sum(strel_R.Neighborhood(:))/pi); 
compdata.Rmin = compdata.Reff*sqrt(((D-1)/(2*compdata.Reff))^2-1); % 
1/kappa_max 
compdata.x_pillar = x_pillar; 
compdata.IC = M; 
compdata.t_total = t_total; 
compdata.dt = dt; 
compdata.t_capture = t_capture; 
compdata.conn_neighborhood = conn_nb; 
compdata.k0A = k0A; 
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compdata.k0B = k0B; 
compdata.kAB = kAB; 
compdata.kBA = kBA; 
compdata.save_image_q = save_image_q; 
compdata.save_data_q = save_data_q; 
compdata.save_fig_q = save_fig_q; 
compdata.rand_seed = seed0; 
compdata.unique_ID = seed1; 
 
%determine initial species amounts at perfect pillar center-line 
temp_bound = sum(isnan(M),2); 
bound_IC_length = sum(temp_bound==0); 
compdata.A0 = sum(M(:)==1) - bound_IC_length/2; 
compdata.B0 = sum(M(:)==-1) + bound_IC_length/2; 
 
%Initial parameters/conditions for simulation 
disp('v1.2') 
if save_image_q 
    w1 = whos('image_out'); 
    disp(['output image size (GB): ' num2str(w1.bytes/1e9)]) 
end 
pause(1) 
close all 
clc 
drawnow 
 
%this is boundary calculation stuff 
Madd = zeros(size(M)); 
 
%------------------------------------------------------------------------
- 
%Simulation time! 
meanA = zeros(size(M)); 
meanB = zeros(size(M)); 
mean0 = zeros(size(M)); 
tic 
cond1_mat = isnan(M); %is nan 
v = 0; 
for p = 1:round(t_total/dt) 
    %get species matrices 
    temp_Mp1 = M== 1; 
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    temp_Mm1 = M==-1; 
     
    %counts species numbers in active neighborhood 
    %this creates a continually updated, much smaller matrix for convolution (hence 
faster) 
    %on p=1, will automatically go to 'catch' -- this needs to happen 
    try 
        %get sub-matrix of M 
        min_r_act = min(r_act); 
        max_r_act = max(r_act); 
        min_c_act = min(c_act); 
        max_c_act = max(c_act); 
         
        Mtemp = M(min_r_act - r_conn-1:max_r_act + r_conn+1,min_c_act - r_conn-
1:max_c_act + r_conn+1); 
         
        tempA_nb = conv2(Mtemp == 1, conn_nb, 'valid'); 
        tempB_nb = conv2(Mtemp ==-1, conn_nb, 'valid'); 
         
        indsY = min_r_act-1:max_r_act+1; 
        indsX = min_c_act-1:max_c_act+1; 
         
        A_nb(indsY,indsX) = tempA_nb; 
        B_nb(indsY,indsX) = tempB_nb; 
         
        fast_convq = 1; 
    catch 
        A_nb = conv2(temp_Mp1, conn_nb, 'same'); 
        B_nb = conv2(temp_Mm1, conn_nb, 'same'); 
         
        fast_convq = 0; 
    end 
     
    %remove pixels with trivial conditions 
    cond2_mat = and(temp_Mp1,A_nb==strel_mat); %A surrounded by A's 
    cond3_mat = and(temp_Mm1,B_nb==strel_mat); %B surrounded by B's 
    cond_all = (cond1_mat + cond2_mat + cond3_mat)==0; 
     
    %get active block and vectorize active positions 
    [r_act,c_act] = find(cond_all); 
    active_vec = sub2ind(size(M),r_act,c_act); 
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    Mpoi = M(active_vec); 
    Apoi = A_nb(active_vec); 
    Bpoi = B_nb(active_vec); 
     
    %run through active pixels 
    Mcopy =  M; 
    for q=1:length(active_vec) 
        % Is it an open spot? 
        if Mpoi(q) == 0 
            Ao_potential = Apoi(q)*k0A; 
            k_sum_colonize = Ao_potential + Bpoi(q)*k0B; 
             
            %Does our poi get colonized? 
            if rand < (1 - exp(-dt*k_sum_colonize)) 
                if rand < (Ao_potential/k_sum_colonize) 
                    Mcopy(active_vec(q)) = 1; %set to species A 
                else 
                    Mcopy(active_vec(q)) = -1; %set to species B 
                end 
            end 
        end 
         
        % Is poi an A with any non A's around (B's)? 
        if and(Mpoi(q) == 1, Bpoi(q) > 0) 
            %Does the A poi get killed by a B? 
            if rand < (1-exp(-dt*Bpoi(q)*kBA)) 
                Mcopy(active_vec(q))=0; 
            end 
        end 
         
        % Is poi a B with any non B's around (A's)? 
        if and(Mpoi(q) == -1, Apoi(q) > 0) 
            %Does the B poi get killed by an A? 
            if rand < (1-exp(-dt*Apoi(q)*kAB)) 
                Mcopy(active_vec(q))=0; 
            end 
        end 
    end 
     
    %update to new matrix 
    M = Mcopy; 
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    %save average of M over t_capture time steps 
    %(for contour finding) 
    Madd = Madd + M; 
     
    %output figure 
    if mod(p,t_capture)==1 
        toc 
        if fast_convq==0 
            disp('Error (edge?) disabling fast sub-matrix convolution.') 
        end 
        v = v + 1; 
         
        %split current data by species 
        temp_Mp1 = M==  1; 
        temp_Mm1 = M== -1; 
        temp_0   = M==  0; 
         
        %update means 
        meanA = meanA + temp_Mp1; 
        meanB = meanB + temp_Mm1; 
        mean0 = mean0 + temp_0; 
         
        %record population levels 
        temp_p1 = sum(temp_Mp1(:)); 
        temp_m1 = sum(temp_Mm1(:)); 
        popRecord(v,1) = temp_p1; 
        popRecord(v,2) = temp_m1; 
         
        if or(disp_fig_q,save_image_q) 
            %%{ 
            temp = 255*mat2gray(Madd.^2); 
            temp(mask_nan) = -1; 
            Madd = zeros(size(M)); 
            %} 
             
            %{ 
            temp=M; 
            temp(temp_Mm1) = 0; 
            temp(temp_0) = 1; 
            temp(temp_Mp1) = 2; 
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            temp(isnan(M)) = 3; 
            %} 
         
            if disp_fig_q 
                imagesc(temp*3/255,[-1 3]) 
                xlabel('X') 
                ylabel('Y') 
                box on 
                axis equal tight 
                title([num2str(p) ' of ' num2str(t_total/dt) ', [k_{0A}, k_{0B}, k_{AB}, k_{BA}] = 
['... 
                    num2str(k0A) ', ' num2str(k0B) ', ' num2str(kAB) ', ' num2str(kBA) '], 
r_{conn} =' num2str(r_conn)]) 
                drawnow 
            else 
                disp([num2str(p) ' of ' num2str(t_total/dt)]) 
            end 
        end 
         
        if save_image_q 
            %image_out(:,:,v) = uint8(temp); 
            image_out(:,:,v) = single(temp); 
        end 
         
        %check condition for terminal (case of all one type) 
        if or(temp_p1 == non_nan_area,temp_m1 == non_nan_area) 
            break 
        end 
        tic 
    end 
end 
disp('Sim done.') 
 
%collect output population data, terminal time 
compdata.t_vec = t_vec(1:v); 
compdata.popA = popRecord(1:v,1); 
compdata.popB = popRecord(1:v,2); 
compdata.meanA = meanA/v; 
compdata.meanB = meanB/v; 
compdata.mean0 = mean0/v; 
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%estimate autocorrelation 
[acf,lags,~] = autocorr(compdata.popA,round(v/2)); 
ind1 = find((acf-exp(-1)).^2==min((acf-exp(-1)).^2),1,'first'); 
t_corr = compdata.dt*compdata.t_capture*lags(ind1); 
compdata.t_corr = t_corr; 
 
%create and save RGB mean output image 
%T(:,:,1) = isnan(M)*0.4 + 0.9*compdata.meanA; 
%T(:,:,2) = isnan(M)*0.5 + 0.9*compdata.meanB; 
%T(:,:,3) = isnan(M)*0.9 + 0.9*compdata.meanA; 
T(:,:,1) = isnan(M)*0.5 + 0.9*compdata.meanA; 
T(:,:,2) = isnan(M)*0.5 + 0.9*compdata.meanB; 
T(:,:,3) = isnan(M)*0.5 + 0.9*mat2gray(compdata.mean0); 
compdata.mean_im_rgb = T; 
 
%************************************ 
%to re-create figs, execute from here 
%************************************ 
 
%mean-adjusted population vectors; 
popA = compdata.popA - compdata.A0; 
popB = compdata.popB - compdata.B0; 
 
%figure output 
f1 = figure('Position',[250 300 1640 550]); 
subplot(1,3,1) 
hold on 
plot(compdata.t_vec,popA,'linewidth',2,'color',[1 0.2 0]) 
plot(compdata.t_vec,popB,'linewidth',2,'color',[0 0.2 1]) 
xlabel('Time (units of k_{0X}^{-1})') 
ylabel('Population Levels (r = A, b = B)') 
box on 
title(['[k_{0A}, k_{0B}, k_{AB}, k_{BA}] = ['... 
    num2str(compdata.k0A) ', ' num2str(compdata.k0B) ', ' num2str(compdata.kAB) ', ' 
num2str(compdata.kBA) ']']) 
 
subplot(1,3,2) 
hist_vec = min([popA; popB]):4:max([popA; popB]); 
histA = hist(popA,hist_vec); 
histB = hist(popB,hist_vec); 
hold on 
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b1 = bar(hist_vec,histA,1,'r','edgecolor','none'); 
b2 = bar(hist_vec,histB,1,'b','edgecolor','none'); 
xlabel('Population Levels (r = A, b = B)') 
ylabel('frequency (a.u.)') 
box on 
title(['autocorrelation time (k_{0X}) \sim ' num2str(t_corr)]) 
b1.FaceAlpha = 0.6; 
b2.FaceAlpha = 0.6; 
 
subplot(1,3,3) 
hold on 
imagesc(compdata.mean_im_rgb) 
 
Reff = compdata.Reff; 
Rmin = compdata.Rmin; 
D = compdata.D; 
alpha_c=atan2(sqrt(-4*Reff^2/D^2+1),2*Reff/D); 
x0 = (1/2)*(2*cos(alpha_c)^2*Reff+2*sin(alpha_c)^2*Reff-
cos(alpha_c)*D)/sin(alpha_c); 
y0 = (origin_y1 + origin_y2)/2; 
 
theta0 = pi/2:0.01:(3*pi/2); 
plot(x0 + x_pillar + Rmin*cos(theta0),y0 + Rmin*sin(theta0),'--
','linewidth',2,'color',[0.25 0.25 0.25]) 
axis equal tight 
xlabel('X') 
ylabel('Y') 
box on 
title(['r_{conn} = ' num2str(compdata.r_conn)]) 
 
axes('pos',[.675 .83 .07 .07]) 
imshow(compdata.conn_neighborhood) 
 
%fig-file output 
if save_fig_q 
    savefig(f1,[basename1 '.fig']) 
end 
 
%mat-file output 
if save_data_q 
    save([basename1 '.mat'],'compdata') 
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end 
 
%image output 
if save_image_q 
    save([basename1 '.mat'],'image_out','-append')     
    %{ 
    out_name = [basename1 '.tif']; 
    for i =1:v 
        image_save(uint8(image_out(:,:,i)),out_name) 
    end 
    %} 
End 
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