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DISSERTATION ABSTRACT

Kendall Houghton

Doctor of Philosophy

Department of Economics

June 2021

Title: Essays in Public and Labor Economics.

This dissertation considers three topics in public and labor economics.

Chapter I introduces the work. In Chapter II, I consider the gender wage

gap in the United States by evaluating the di↵erences in work timing and

elasticity between men and women. Chapter III evaluates the interaction

between Supplemental Nutrition Assistance Program (SNAP) benefit

disbursement and drug-related fatalities. Chapter IV provides a general

empirical test of tax invariance (TIV). In Chapter V, I conclude the work.
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CHAPTER I

INTRODUCTION

This work contributes to our understanding of human behavior and

public policy in the United States.

In Chapter II, I contribute to work on the gender wage gap in the

United States. The gender wage gap in the United States is persistent and

especially pronounced at the top of the distribution. Recent worker surveys

suggest this gap partly driven by a di↵erence in average work hours, even

between men and women employed full-time. This paper examines gender

di↵erences in work timing and elasticity using hourly data on tech worker

activity. I find both genders work outside the traditional work week, but

men work more than women on nights and weekends — times when children

are typically present in the home. To isolate the impact of children at

home, I examine how work activity varies in response to unexpected winter

weather public school closures. Women respond to these unexpected breaks

in childcare by reducing work activity by 34%. Male work activity does not

respond to these unexpected breaks. These results are consistent with the

emerging theory that men and women in high-wage professions are working

di↵erent amounts and suggest asymmetric childcare responsibilities could be

a reason for the di↵erence.

Chapter III evaluates the interaction between Supplemental Nutrition

Assistance Program (SNAP) benefit disbursement and drug-related fatal

automobile collisions. Distributing SNAP benefits on days other than

the first of the month, adding an additional income shock to the monthly
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calendar, increases the number of drug-related fatal automobile collisions

by 1.21 percent. A one-percentage point increase in the share of SNAP

benefits distributed on a day leads to a .2 percent increase in the number

of drug-related fatal automobile collisions. This estimation utilizes a novel

dataset of variation in SNAP distribution dates across states, and switches

in distribution date regimes within states over time to identify the causal

relationship.

Chapter IV provides a general empirical test of tax invariance (TIV).

When a 25 percent tax remitted by manufacturers was eliminated in

Washington state and the retail excise tax was simultaneously increased

from 25 to 37 percent—a shift intended to be revenue-neutral—TIV did not

hold. Manufacturers kept two-thirds of their tax savings instead of passing

all their savings through to retail firms via lower prices as predicted by TIV.

One-third of the retail tax increase was passed on to consumers via higher

retail prices – TIV would have predicted constant or even declining tax-

inclusive retail prices.

Chapter V concludes.
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CHAPTER II

CHILDCARE AND THE NEW PART-TIME: GENDER GAPS IN

LONG-HOUR PROFESSIONS

2.1. Introduction

The median female worker in the United States makes approximately

$10,000 less than the median male worker in the United States [1]. Over the

course of a lifetime, this di↵erence in earnings leads to a significant wealth

gap. Women hold 65% of U.S. student loan debt1 [3] and are more likely to

live below the poverty line at every age2 [5]. A large body of work seeks to

explain the persistent earnings gap (for a thorough review, see [6]), and finds

that a di↵erence in weekly work hours can explain much of the di↵erence.

Historically, the di↵erence in work hours was largely a di↵erence in

part-time versus full-time employment. As technology has made it possible

to work remotely, workers have been faced with the both the possibility and,

in some cases expectation, that they work much more than traditional full-

time. This phenomenon has been documented in the press ([7]; [8]; [9]), and

described in surveys of the workforce ([10]; [11]). This high-hour equilibrium

is present in the top of the distribution and features strongly in professions

that reward wage as a strongly nonlinear function of work hours [12].

Female MBAs and JDs self-report working more than 40 hours a week,

but less than the hours self-reported by men in the same samples ([11], [13]).

1For the past 18 years, women have earned 57% of bachelor degrees in the U.S. [2].

2For individuals aged 65 to 74, 9.8% of women are in poverty and 7.7% of men. For
individuals above the age of 75, 8% of men and 12.1% of women live in poverty, although
this statistic is confounded by more women living later in life than men [4].
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Self-reports from workers across all fields indicate this gender di↵erence is

a broad phenomenon [10]. In this paper, I use high-frequency records of

tech worker programming activity to verify the presence of work activity

outside of the traditional 9am to 5pm period in STEM professions. I then

document precisely when during the week and day men are participating in

programming labor and women are not, and find that women are less likely

than men to work on nights and weekends.

Women may have a greater taste for leisure than men, and cultural

factors may make leisure more rewarding during these hours. On the other

hand, these are also times when formal childcare is less readily available.

Female labor force participation is inextricably connected to childcare

availability [14]. We know that the percent of mothers who work more than

forty hours a week is significantly below the percent in other demographic

groups, and the gap between the share of mothers and the share of non-

mothers participating in these hours has been increasing since the 1990’s

([15]; [10]; [11]). This is suggestive that childcare is the factor that limits

mothers from working the hours that women without children and men are

working.

In order to separate childcare availability from other potential

mechanisms, I consider shocks to childcare availability. In my estimation,

I exploit winter weather public school closures as a natural experiment in

which childcare is unexpectedly unavailable. I consider female and male

work activity on these days.

Male work activity does not respond to unexpected shocks in the

public school calendar, but female work activity does. Female activity

4



decrease by 34% on these days. These results are consistent with a story

that households plan for childcare external to the household, but that

women are more likely to be responsible for within-household childcare when

external childcare is unavailable.

It is possible that the parental status of the women in my data is

systematically di↵erent than the parental status of the men in my data. I

could, for example, be comparing single men to women with children. In

order to increase the likelihood that I am comparing men with children to

women with children, I augment my primary data with estimated age for a

subset of individuals. I use publicly available information from LinkedIn to

estimate the individual’s age using their education levels and corresponding

graduation years3. I match individuals by limiting my LinkedIn search

to those working in STEM fields, in the geographic location listed in my

primary dataset, with a matching name and company a�liation. When

age is included, the average e↵ect for women disappears, and a much larger

e↵ect for women between the age of 30 and 40 emerges.

The wage gap is widest among college graduates and at top of the

wage distribution [17]. Science, technology, engineering, and math (STEM)

are often highlighted as fields in which increased gender parity is wanted,

but increases in the number of female college students enrolled in these

majors have not been reflected in the workforce [18]. Female STEM

graduates are less likely to take STEM jobs, and are more likely to leave

the STEM workforce. Women who stay in STEM advance more slowly, and

are less likely to hold management positions. These gaps have been resistant

3“Scraping” data from LinkedIn in this manner has been ruled legal by federal courts
[16]
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to intervention [19]. A lessened ability to work long hours may be the cause

of the slow advancement and lower participation rate. My work suggests

that in STEM careers, and perhaps other high-hour professions, the wage

gap is not only an issue of childcare during traditional work hours, but all

the other times as well.

2.2. Data

2.2.1. GitHub

In order to document worker activity at a precise timescale, I use a

publicly available record of worker activity from GitHub, a version-control

platform with more than 40 million users repo. Workers who use technology

use version control to manage solo and collaborative projects. A basic

example of version control involves saving multiple versions of a file to a

local hard drive. Consider a common example of this practice, for File.

A user might save this file as File1, File2, File3, etc. as both minor and

major changes are made to the file. For complex projects, version control

software provides a more user-friendly version of this practice. The worker

first creates one file. After making changes to this file, the worker saves

these changes using version control. These changes, and the lines of code

or text within them, are tracked by the version control software in order to

allow the worker to return to any previous version at any point. Crucially

for this project, these changes as well as other activity on the version control

platform are tracked by time and date. I am able to exploit the time-date

system of tracking to create a dataset that describes the types of users

interacting with code in a given time period.
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FIGURE 2.1. GitHub Activity by Time of Day and Day of Week

In GitHub, activity is referred to as an event. For a detailed list

and description of these events see Table A.2. Table A.1 summarizes how

frequently each type of activity occurs. The second most common type of

event is a “push” event, which is when a user takes file changes from their

local computer to the remote copy of the file. Inside the push event details,

I am able to observe each time the user has made a change to that file on

their local machine. These local changes are “commits”, the most common

event type, and I observe portions of their content and the timestamp of

when the file was saved. Together, commits and push events represent

70% of the data. In my analysis, I limit my sample to these events. In

the appendix, Figures A.1 and A.2, show activity across the day for each

event type. Figure A.1 displays this for each event type, and Figure A.2

7



displays this for the ten most common events. All events outside the top

ten represent less than 1% of the data. The data pattern for all types is

qualitatively similar, with less noise as event type frequency increases.

I access the record of GitHub activity from two sources, GitHub

Archive and GitHub Torrent. GitHub Archive is log of all public events that

happen on GitHub. This data source is updated hourly and covers activity

from 2011 forward. GitHub Torrent is meant to capture the relationships

between the di↵erent aspects of GitHub – the relationships between users,

files and users, and files with each other. This dataset records the stated

location of users as well. GitHub torrent is updated monthly and covers

2013 to present.

I gather user name and event activity for all events except for commits

from GitHub Archive. I use GitHub Torrent to collect the user location and

commit activity. I merge these datasets together using the login name of

the user. The raw data is processed minimally. The timestamp of activity

is standardized to Universal Coordinated Time in both GitHub Archive

and GitHub Torrent. In order to track when the user is working during

the day, I adjust timestamps by the timezone provided in their geographic

information. In the appendix, Figure A.3 shows the daily activity of users

by timezone after this transformation. Each timezone follows a similar daily

pattern.

I use two subsamples of the worker data for this analysis. I consider

activity between 2017 and 2019 for users with a stated location in the

United States and an identifiable first name. This sample is 145,333 users.

I also analyze the sample of users with a stated location in Seattle or
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Bellevue, Washington. There are 4,392 users in this smaller sample. Please

see Table 2.1 for summary statistics on these samples, including the total

number of observations and the gender compositions.

TABLE 2.1. Data Description

United States Seattle
Total Observations 59,400,105 4,493,618

Total Users 145,333 4,392

Obs. Per User (Percentile)

25 24 49
50 97 199
75 328 715
90 858 2075
95 1501 3813

Gender Composition Women Men Women Men

No. Users 18339 126994 340 4,052
Percent of Users 12.6% 87.4% 7.7% 92.3%

Mean Users Observed Per Week 2931 22068 197 2259
Mean Users Observed Per Day 984 8584 70 794

This table describes the data for the United States sample and the sample for Seattle and

includes the total number of observations and the total number of users. I include a description

of the number of observations per user across di↵erent percentiles of frequency in the data.

The final portion of the table provides various descriptors on the gender composition of the

data.

2.2.2. Gender Imputation

I impute gender for each user. In the GitHub data, I am able to

identify the first name of users who provide a first name in their profile

information. In order to impute gender for each user, I use the the R

package, ‘gender’, which uses Census and Social Security Administration

data to predict the gender of an individual when given their first name and

geographic location [20]. I provide the first name of the user as collected

from GitHub Archive and the geographic location as collected from GitHub

Torrent.

9



2.2.3. School Snow Closure Records

In my analysis of winter weather school closures, I use a subsample

of users in Seattle, Washington. I use the Twitter page of Seattle Public

School District to identify snow and winter weather school closure dates.

Most school districts do not maintain public, formal records of closures

due to snow. Fortunately, Seattle Public School District maintains an

active Twitter page that communicates news of school closures, delays, and

changes to activity schedules. The tweets announcing these decisions remain

on the Twitter page for the district. I locate relevant tweets on the Seattle

Public School District page and verify these dates by searching for tweets

by other users on the same day documenting the school closure and winter

weather conditions.

2.2.4. LinkedIn

As part of my robustness analysis, I impute the age of users to identify

likely parents. Through the GitHub data, I am able to identify user first

name, last name, and company a�liations. With this information, I identify

these users in LinkedIn using a web-based LinkedIn URL finder application,

PhantomBuster. From the LinkedIn profiles, I scrape user education and

dates of graduation using Selenium4. Using this information, I impute a

likely age for the users.5

4For more information on the scraping process and code, see my co-authored work on
COVID-19 with Ben Hansen, Grant McDermott, and Caroline Weber

5I assume individuals graduate with a Bachelor’s degree at age 22, with a Master’s
degree at age 25, and with a PhD at age 30. The earliest listed degree and graduation
date is used, as deviations from the average education path timing become more likely
over time.
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2.3. Overall Work Patterns

I first document the typical behavior of all users in my data. Given

the high frequency of the data, it is possible to track the daily work schedule

of the average user. In Figure 2.1, I plot the total amount of activity that

occurs for all users on any given day of the week for every hour of that day.

I scale this total amount of activity by dividing by the max total amount of

activity observed for a day-of-week, hour-of-day combination.

On average, users are most active between 2pm and 3pm on

Wednesday and Thursday. Activity is lowest between the hours of 1am and

7am across all days. On workdays, activity increases most sharply between

8am and 9am. There is a dip in activity between 11am and 1 o’clock that

is consistent with the lunch hour. Activity decreases most sharply between

5pm and 6pm. This decrease is most pronounced on Friday.

Evenings follow a similar pattern across the week. Monday, Tuesday,

Wednesday, Thursday, and Sunday nights are closely related as are Friday

and Saturday nights. These grouping correspond to nights before work days

and nights before weekend days. Monday and Tuesday night have the most

activity, followed by Wednesday, then Thursday, and then Sunday. For the

nights that occur on a work day and before a work day, there is a decrease

in activity as the week progresses. After 5pm, the most work occurs at 9pm,

regardless of day. Friday and Saturday are very similar from 8pm onward.

2.4. Description of Male and Female Work Habits

I begin the analysis of gender di↵erence by examining the di↵erences in

male and female work timing across the day and week.

11



2.4.1. Empirical Method

For my analysis, I use the following general specification, which

compares the activity for men and women over some time scale. For the

following equation, I am using the example of comparing male and female

activity across the work week.

Log(Activitytgd) = �0 + ✓Femaleg +
7X

d=1

�dDayt +
7X

d=1

�dFemaleg ⇥Dayt + ✏tgd

Activity is a general term that refers to the combination of push and

commit events as described in Section 2.2. This is the total amount of

activity on date t for users of gender g on day of the week d. I include

a fixed e↵ect for activity by users identified as female, Female, in order

to control for baseline di↵erences in activity levels. In each specification,

I consider various fixed e↵ects, including month of year. In other

specifications, these day of week e↵ects are included as controls. I allow

for errors with heteroskedasticity and auto-correlation by using Newey-West

estimator and allowing for a two week lag. I am interested in the coe�cients

attached to the interaction between day of week and the female indicator

variable, �d, which capture the di↵erential day of week e↵ects for women.

2.4.2. Results

Men and women display di↵erent daily and weekly work timing, on

average. Figure 2.4 illustrates the di↵erence in activity by hour of day

during the work week, and Figure 2.2 illustrates the di↵erence in activity

by hour of day during the weekend. In Figure 2.3, I plot activity by day of

12



week. Men tend to have a more di↵use work schedule, while female users are

more active during times associated with a traditional work schedule.

FIGURE 2.2. Work Activity by Gender on Weekends

13



FIGURE 2.3. Work Activity by Gender Across the Week

2.4.2.1. Work Week

During the week, men and women both have the most activity during

traditional 9am to 5pm work hours. However, the di↵erence between work

during this time and other hours is much more pronounced for women. The

precise estimates for these di↵erences are reported in Table 2.3. Between

6pm and 2am, female work activity declines more than male work activity

for every hour, but the magnitude of the di↵erence varies. The largest

di↵erence occurs between 6 and 7pm. The smallest di↵erence occurs between

8 and 10pm. These details are shown in Figure 2.4.
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TABLE 2.2. Di↵erence in Week Between Men and Women

(1) (2) (3)
VARIABLES

Female ⇥ Monday -0.054 -0.054 -0.055
(0.078) (0.074) (0.074)

Wednesday -0.003 -0.003 -0.003
(0.074) (0.071) (0.071)

Thursday 0.008 0.008 0.007
(0.079) (0.076) (0.076)

Friday 0.023 0.023 0.022
(0.075) (0.072) (0.072)

Saturday -0.268*** -0.268*** -0.270***
(0.072) (0.069) (0.069)

Sunday -0.260*** -0.260*** -0.262***
(0.071) (0.068) (0.068)

Observations 2922 2922 2922
R-squared 0.841 0.853 0.853

Month No Yes Yes
Female ⇥ Month No No Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression of the log of activity. The reported

coe�cients above are the di↵erential change for woman for the specified time period. E.g.

Female activity decreases 27% more than male work activity on Saturday as compared to

Tuesday. An observation is the total activity for a date for each gender. The reported errors

are Newey-West with a two week lag. The coe�cients are interpreted as percent changes in

the amount of work from the baseline day of Tuesday. In all specifications, gender is controlled

for.
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TABLE 2.3. Di↵erence in Workday Between Men and Women

VARIABLES (1) (2) (3) (4)

Female ⇥ 2am to 8am -0.272*** -0.272*** -0.272*** -0.272***
(0.024) (0.024) (0.024) (0.024)

9am to 3pm 0.019 0.019 0.019 0.019
(0.021) (0.021) (0.021) (0.021)

4pm to 5pm 0.109*** 0.109*** 0.109*** 0.109***
(0.027) (0.027) (0.027) (0.027)

6pm to 7pm -0.283*** -0.283*** -0.283*** -0.283***
(0.032) (0.032) (0.032) (0.032)

8pm to 10pm -0.193*** -0.193*** -0.193*** -0.193***
(0.033) (0.033) (0.033) (0.033)

11pm to 2am -0.226*** -0.226*** -0.226*** -0.226***
(0.031) (0.031) (0.031) (0.031)

Observations 50020 50020 50020 50020
R-squared 0.743 0.743 0.753 0.754

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week No Yes Yes Yes
Month No No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression of the log of activity on the hour of

the day. An observation is the total activity for a date-hour combination for each gender

and includes observations from weekdays only. The reported errors are Newey-West with a

two week lag. The coe�cients are interpreted as percent changes from the baseline hour of

10am. In all specifications, gender is controlled for. The reported coe�cients above are the

di↵erential change for women for the specified time period. E.g. Female activity decreases

19.3% more than male work activity during 6pm to 7pm as compared to 10am work activity.
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FIGURE 2.4. Work Activity by Gender on Weekdays

During the traditional work day, women have less variable work

activity. There is no statistically significant di↵erence between men and

women during 9am to 3pm. Women allocate their work to the 4pm to 5pm

period of time 11% more than men do, but as illustrated in Figure 2.4, this

is because male work decreases during these hours and female work does

not.

In Section 2.5, I explore how child care responsibilities contribute

to di↵erences in male and female work activity. The large di↵erence

between 6pm and 7pm with the lessened di↵erence between 8pm and

10pm is consistent with a story of women having non-work responsibilities

in the household while children are awake and during traditional dinner

preparation hours.
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2.4.2.2. Weekends

On weekends, male work activity is allocated in a pattern that closely

resembles the weekday work pattern. As shown in Figure 2.2, activity is

highest at 3pm, which is the same as during the week. The sharpest increase

in activity occurs between the hours of 8am and 9am, which is the same as

during the work week as well. Female work activity on weekends is much

flatter across the day, in contrast to the pattern during work days. As

shown in Table 2.4, between 9am and 11pm, male work increases by 45%

compared to the night hours. Female work increases by 19% less than this,

or alternatively, 26%.

One explanation for this flat pattern for women on the weekends is

that women are working less than men on these days. In Figure 2.3, I plot

the coe�cients of the regression of work activity by day of week. Activity

by men and women decreases on Saturday and Sunday, but decreases more

for users identified as female. As reported in Table 2.2, female work activity

decreases by an additional 27% and 26% on Saturday and Sunday over the

male decrease in activity. This is roughly equivalent to the magnitude of the

di↵erence between men and women at night.
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TABLE 2.4. Di↵erence in Weekend Day Between Men and Women

VARIABLES (1) (2) (3) (4)

Female ⇥ 9am to 11pm -0.185*** -0.185*** -0.185*** -0.185***
(0.046) (0.046) (0.046) (0.046)

9am to 11pm 0.457*** 0.457*** 0.457*** 0.457***
(0.021) (0.021) (0.021) (0.021)

Observations 20056 20056 20056 20056
R-squared 0.759 0.759 0.768 0.769

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week No Yes Yes Yes
Month No No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression of the log of activity for each hour of the

day. The reported coe�cients above are the di↵erential change for woman for the specified

time period. E.g. Female activity decreases 18.5% more than male work activity from 9am

to 11pm. The reported errors are Newey-West with a two week lag. An observation is the

total activity for a date-hour combination for each gender. This table includes observations

from Saturday and Sunday only. The coe�cients are interpreted as percent changes from the

baseline hour of 7am. In all specifications, gender is controlled for.

2.4.3. Conclusion on Work Patterns

Worker surveys show that women, and especially women with children,

work fewer hours per week than non-mothers even when fully employed.

Using observational data, the above sections show when in the work week

men are working when women are not. Women work a more traditional

Monday through Friday, 9am to 5pm week than men in this data.
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2.5. Gendered Reactions to Childcare Shocks

There a variety of reasons why women may choose to schedule their

work hours di↵erently than men. Women may have a greater taste for

leisure time on nights and weekends than men do. Women could also be

engaged in informal labor that is time-sensitive. In this section, I consider

childcare availability as a key explanation for this variation. Formal

childcare is less available on nights and weekends, and so the comparative

drop in activity on nights and weekends may be because women are taking

care of children more than men are. In order to separate childcare from

other mechanisms, I evaluate unexpected interruptions in the school

calendar.

2.5.0.1. Identification Strategy

I utilize unexpected breaks in the school calendar in order to identify

how men and women respond to childcare availability. I specifically look at

school closures due to snow and other winter weather conditions. Snow days

are helpful in two primary ways. First, snow closures are unexpected and so

individuals are not able to plan for alternative childcare options in advance.

Second, severe weather conditions leading to school closures typically cause

a cancellation in daycare and can impact the ability of at-home childcare

workers (nannies, babysitters, etc.) to commute to the individual’s home or

vice versa. This means that most childcare options will be unavailable to

parents,

For my analysis, I use the following general specification, which

compares the activity on a winter weather school closure day to activity
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on a normal day for both men and women.

Log(Activitytgd) = �0 + ✓Femaleg + �Snowdaytd + ↵Snowdaytd ⇥ Femaleg +
7X

d=1

�dDayt + ✏tgd

Activity is a general term that refers to GitHub push and commit events

as described in Section 2.2. This is the total amount of activity on date t

for users of gender g on day of the week d. I include a fixed e↵ect for users

identified as female, Female, in order to control for baseline di↵erences in

activity levels. Snowday is a indicator variable for winter weather school

closures. The attached coe�cient � is the impact of one of these school

closures on the activity of the baseline group. The baseline group in the

specification is the set of users identified as male. The coe�cient ↵ captures

the di↵erential e↵ect of a school closure on female activity. I include fixed

e↵ects for the day of the week, �d.

Both ↵ and � are parameters of interest, as they capture the impact

of a snowday on men and women. This paper is specifically interested in the

di↵erential impact of a childcare shock on women, ↵. I allow for errors with

heteroskedasticity and auto-correlation by using Newey-West estimation and

allowing for a two week lag.6

2.5.0.2. Results

Table 2.5 summarizes the results of this analysis. My preferred

specification is shown in Column (4). The estimated impact of a school

closure on female-identified users is consistent across the four columns,

although statistical significance does vary. In all four specifications, the

6Estimations with robust standard errors produce similar results.
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impact of a school closure on male users is not statistically significant. In

my preferred specification, a snow day decreases the amount of activity by

female-identified users by 34%. In my preferred specification, I include day

of week, month of year, female interacted with day of week, and day of week

interacted with month of year fixed e↵ects.

TABLE 2.5. Di↵erence Between Men and Women in Public School
Snowday Response

VARIABLES (1) (2) (3) (4)

Female ⇥ Snowday -0.310 -0.343* -0.343*** -0.343***
(0.192) (0.192) (0.115) (0.112)

Snowday 0.115 0.132 0.008 0.010
(0.136) (0.136) (0.084) (0.084)

Observations 1032 1032 1032 1032
R-squared 0.917 0.917 0.971 0.974

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week No Yes Yes Yes
Month No No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression of the log of activity. An observation

is the total activity for a date for each gender. The reported errors are Newey-West with a

two week lag. The coe�cients are interpreted as percent changes from a non-snowday. In

all specifications, gender is controlled for. The reported coe�cients above are the di↵erential

change for woman on a snowday and the change overall.

2.5.1. Threats to Identification

In the following section, I more carefully explore two aspects of the

childcare causality story I am considering.
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It is possible that I am identifying a change in github activity, but

that this activity is hobby- and not work-related. In order to evaluate this,

I conduct my analysis again, but limit the analysis to the subset of activity

that is explicitly associated with top tech companies. 7

In the second part of this section, I proxy for parental likelihood by

controlling for the estimated age of the users. In order to more carefully

identify female users who are likely to have parental obligations, I consider

the e↵ect on women between the ages of thirty and forty. Women in this age

group are more likely to have young children in their household ([21]). As

described in Section 2.2, I connect LinkedIn and GitHub user information to

construct a variable with the approximate age of these users.

2.5.1.1. Company-Owned Projects

In GitHub, I am able to identify if user activity is associated with

a project that is owned by a major tech company. I conduct my main

analysis again using the subsample of activity that is associated with

these companies. This analysis is reported in Table 2.6. When we examine

activity that is explicitly related to a top tech company, the magnitude of

the decrease in activity by women is larger. In this subsample, the decrease

in activity is 66%, whereas the larger sample shows a 34% decrease.

7These companies are as follows: Amazon, Comcast, Facebook, Google, Intel, IBM,
Microsoft, Red Hat, and SAP.
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TABLE 2.6. Snowday Response, Explicitly Company-Related
Activity

VARIABLES (1) (2) (3) (4)

Female ⇥ Snowday -0.541* -0.666** -0.666** -0.666**
(0.306) (0.304) (0.299) (0.293)

Snowday 0.105 0.167 0.056 0.154
(0.217) (0.215) (0.219) (0.219)

Observations 914 914 914 914
R-squared 0.865 0.868 0.874 0.888

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week No Yes Yes Yes
Month No No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression on the log of activity. An observation

is the total activity for a date for each gender. The reported errors are Newey-West with a

two week lag. This analysis only includes activity that is explicitly associated with a major

Seattle technology company. The coe�cients are interpreted as percent changes from a non-

snowday. In all specifications, gender is controlled for. The reported coe�cients above are

the di↵erential change for woman on a snowday and the change overall.

2.5.1.2. Estimated Age

In Table 2.7, I report the estimated e↵ect of a school closure on female

activity when considering women between the ages of 30 and 40. When an

indicator variable for women between these ages is included, the overall

e↵ect for women loses statistical significance. Instead, the estimated e↵ect

on women between 30 and 40 is statistically significant and much larger at

approximately -80%. This suggests that the decrease in work activity for
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women overall is being driven by an increase in childcare responsibilities, as

women in this age group are more likely to have young children.

TABLE 2.7. Snowday Response, Estimated Age Included

VARIABLES (1) (2) (3) (4)

Female ⇥ Snowday -0.377*** -0.126 -0.125 -0.125
(0.146) (0.145) (0.145) (0.140)

Female ⇥ Thirty to Forty ⇥ Snowday -0.794*** -0.795*** -0.794***
(0.226) (0.226) (0.213)

Observations 972 2834 2834 2834
R-squared 0.904 0.876 0.881 0.885

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week Yes Yes Yes Yes
Month Yes No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression on the log of activity. An observation is

the total activity for a date for each gender-age group. The reported errors are Newey-West

with a two week lag. This analysis includes two age groups, individuals who are estimated to

be between thirty and forty in one group and all others in the other. This age group is used

to identify individuals who are likely to be parents of younger children. The coe�cients are

interpreted as percent changes from a non-snowday. In all specifications, gender is controlled

for.

2.6. Robustness

2.6.0.1. Random Female Assignment to Male Coders and Placebo

Snowdays

In the first robustness check, I remove all users identified as female

from the sample. In this new sample, I randomly assign 11 % of users to a

“female” group and evaluate the impact of the snow day school closures on

work activity. I also construct a set of placebo school closures by moving the
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true school closures back one year in time. In this analyses, as reported in

Table 2.9 and Table 2.8, I do not find equivalent statistical significance for

our parameters of interest.

TABLE 2.8. Snowday Response for “Placebo” Snowdays

VARIABLES (1) (2) (3) (4)

Female ⇥ Placebo Snowday 0.063 0.066 0.066 0.066
(0.191) (0.192) (0.115) (0.112)

Placebo Snowday 0.196 0.195 0.114 0.125
(0.135) (0.136) (0.084) (0.084)

Observations 1032 1032 1032 1032
R-squared 0.917 0.917 0.971 0.974

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week No Yes Yes Yes
Month No No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

I construct “placebo” snowdays by moving the snowday dates to the previous year. These

are dates when Seattle Public Schools did not have public school closures. This table reports

the coe�cients from the regression which is run on the log of activity. An observation is the

total activity for a date for each gender. The coe�cients are interpreted as percent changes

from a non-snowday. In all specifications, gender is controlled for. The reported coe�cients

above are the di↵erential change for woman on a snowday and the change overall.
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TABLE 2.9. Snowday Response, “Placebo” Female

VARIABLES (1) (2) (3) (4)

Placebo Female ⇥ Snowday 0.018 0.014 0.014 0.014
(0.166) (0.167) (0.092) (0.088)

Snowday 0.128 0.130 -0.029 -0.026
(0.118) (0.118) (0.068) (0.066)

Observations 1032 1032 1032 1032
R-squared 0.925 0.925 0.977 0.981

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week No Yes Yes Yes
Month No No Yes Yes
Day of Week ⇥ Month No No No Yes

*** p<0.01, ** p<0.05, * p<0.1

I construct “placebo” female observations by limiting the sample to only male users and

randomly assigning 11% of these users to a new female group. An observation is the total

activity for a date for each gender. This table reports the coe�cients from the regression

which is run on the log of activity. The coe�cients are interpreted as percent changes from

a non-snowday. In all specifications, gender is controlled for. The reported coe�cients above

are the di↵erential change for woman on a snowday and the change overall.

2.6.0.2. Individual Analysis

In Table 2.10, I consider an alternate specification style. In previous

analyses, the unit of observation is the aggregate activity for a given gender.

In this table, the unit of observation is the individual user. By doing this,

I am able to include individual fixed e↵ects that account for di↵erences

in GitHub interaction style. By doing so, I can control for compositional

changes in the users who are active on any given day. This is not my
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primary specification style as individual users are not typically observed

at a high enough frequency to support this specification style.

TABLE 2.10. Snowday Response, Individual Analysis

(1) (2) (3) (4)
VARIABLES Individual Individual

Aggregate Individual 25% of Days 50% of Days

Female ⇥ Snowday -0.343*** -0.072*** -0.173*** -0.214**
(0.112) (0.026) (0.061) (0.102)

Snowday 0.010 -0.028*** -0.027 -0.003
(0.084) (0.007) (0.017) (0.030)

Observations 1032 2.259e+06 913836 435504
R-squared 0.974 0.023 0.050 0.083

Day of Week Yes Yes Yes Yes
Female ⇥ Day of Week Yes Yes Yes Yes
Month Yes Yes Yes Yes
Day of Week ⇥ Month Yes Yes Yes Yes
Number of Individuals 4,378 1,771 844

*** p<0.01, ** p<0.05, * p<0.1

This table reports the coe�cients from a regression of the log of activity where the unit of

observation is varied. In Column (1) the preferred specification in my analysis is reported

where a unit of observation is the total activity on a date by gender. The reported errors are

Newey-West with a two week lag. In Columns (2)-(4), a unit of observation is an individual’s

total activity on a date. In Column (2), all users in the Seattle Area with identifiable gender

are included. In Column (3), I limit the analysis to users who are present in the data at least

25% of work days. In Column (3), I limit analysis to users who are present in the data at

least 50% of days.

In Column (1), I repeat the preferred column from Table 2.5, the

main specification of this paper. In Column (2), I consider the model

with individual observations and fixed e↵ects. In this column, all users

are included. The decrease for women is statistically significant, but much

smaller in magnitude. In this data, there are many users who interact with

the platform very infrequently which causes the log specification to be less
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than ideal. In Column (3), I repeat this analysis, but only keep users who

are present in the data at least 25% of work days. In Column (4), this is

increased to 50% of work days. As I increase the frequency that users must

be present in the data, we approach the magnitude of the decrease found in

the aggregate analysis.

2.7. Conclusion

For women, there is an increase in happiness associated with having

a family, and an increase in happiness associated with having a career

[22]. Unfortunately, these two increases do not add together to lead to a

happiness premium for women with families and careers [22]. In response to

the demanding nature of raising children while working, we see women exit

the labor force in their 30s and 40s, re-enter as children age, and postpone

retirement [23]. For women who continue in the labor market, there is a

motherhood penalty that has remained near constant in magnitude since

1986 [24].

In this work, I document that the female work week follows a more

traditional pattern than the male work week for the tech workers in my

sample. For women as compared to men, we see that work is concentrated

between 9am to 5am and that work decreases more on the weekends. I use

a natural experiment of unplanned public school closures due to winter

weather to demonstrate that changes in childcare availability impact female

work activity in my sample, but not male. This second analysis is consistent

with the story that appears in the first half of the paper — women are not

working when children are not in school, but men are.
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In this work, I consider the impact of school closures on female work

activity. The implications are potentially much broader. There are many

situations in which households may be faced with an increase in childcare

responsibilities. These circumstances may be idiosyncratic to the individual

household, as in the case of a medical issue for example, and they may also

appear during larger shocks. The results in this paper suggest that school

closures during COVID19 are likely to impact female work activity much

more than male activity. Statistics coming out of the United States Bureau

of Labor and Statistics echo this. In September 2020, approximately 78,000

men and 617,000 women exited the labor force ([25]).

Broadly, life and parenthood are rife with shocks that demand

increased household labor. The results from this paper suggest that these

shocks will impact female workforce activity much more than male. Over a

career, these di↵erences may lead to broad di↵erences in career trajectories

and compensation.
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CHAPTER III

FATALITIES AND GOVERNMENT TRANSFERS

This chapter is co-authored with Benjamin Hansen and Caroline

Weber.

3.1. Introduction

A fundamental pretext of economics is that increased income should

improve individual outcomes and welfare, holding all else constant. Despite

this axiomatic assumption underlying all economic models (due to free

disposal), only recently have experimental and quasi-experimental papers

begun to explore how income a↵ects labor supply, welfare, and health

[26, 27, 28, 29].

While a variety of studies have concluded that generally increased

income improves outcomes, other evidence has pointed to unseen nuances

not captured in standard models of utility maximizing behavior. For

instance, Ruhm [30] finds recessions, typically seen as avoidable and

undesirable, actually led to fewer deaths in develop countries like the United

States. Likewise, Evans and Moore [31, 32] find evidence mortality increases

substantially on days when paychecks arise. Dobkin and Puller [33] find

overdoses increase on the first of the month when disability payments arrive,

and become more evenly distributed when income payments are distributed

in a staggered manner. Thus despite the broadly accepted conclusion that

income improves welfare, the receipt of income increase human activity

which carries some level systemic risk. This particularly pronounced in
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populations with credit constraints where consumption smoothing is limited

and the permanent income hypothesis appears to fail.

One population that is traditionally credit constrained are recipients of

the Supplemental Nutrition Assistance Program (SNAP). Due to concerns

about subsidizing drug use and abuse, some states test for drug use, while

others ban SNAP receipt for those convicted of drug o↵enses. Moreover,

while many studies find SNAP benefits largely increase spending on food,

households have the potential to fiscally substitute between SNAP and other

income. How does drug use respond to in-kind government transfers like

SNAP?

This paper exploits the variation in SNAP receipt timing within the

calendar month to identify the public health e↵ects of government transfers.

Although the federal government funds SNAP, each state is in charge of

administering the program to its eligible residents. We use the variation in

the calendar day(s) of benefit distribution between states, and variation in

distribution regime across time within states, to identify the e↵ect of SNAP

transfers on drug and alcohol related fatal car accidents. Drug related fatal

car accidents proxy for drug and alcohol use within the population.

A state may choose to distribute benefits to all recipients on one

day of the month, or spread distribution out over multiple days. When

distribution is spread over multiple days, each individual within the state

receives all her benefits on one day, but that day is one of a subset of days

that the state distributes benefits on. Considerable research documents

that individuals near their budget constraint do not smooth income shocks

([34]; [35]; [36]; [37]). Instead, an individual rapidly expends income on
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immediate consumption ([35]; [38]; [37]). This spike in consumption allows

us to identify the e↵ect of the transfer. The variation in SNAP distribution

date allows us to construct a control group.

The interaction between government transfers and drug use is of

considerable interest to policymakers [39]. Fifteen states spent 1.3 million to

screen Temporary Assistance for Needy Families (TANF) applicants for drug

use in 2016 alone [40]. Screened applicants tested positive at rates between

0 and 2.14, depending on the state [40], which is lower than the national

rate of 9.4 percent [41]. The positive rate of drug testing among TANF

applications should not be misconstrued as the drug use rate, however,

as applicants are aware that testing could be required, and have time to

adjust their behavior accordingly. A benefit of our data is that individuals

do not alter their behavior in response to the data collection. States are

not currently allowed to test SNAP recipients for drug use, but the federal

government is considering allowing them to [42].

Related literature. Our paper is related to a large literature in public,

labor, and behavioral economics studying the e↵ects of government

transfer receipt and timing on household and individual behavior. For a

thorough review, see [43] and [44]. Our work contributes to three strains:

(1) evaluations of the fungibility of in-kind transfers, (2) exploration of

intertemporal smoothing, and (3) documentation of SNAP externalities.

Nearly all empirical research shows the average SNAP household

increases food expenditures more from SNAP receipt than if it received a

cash transfer, but does not spend the entirety of the additional income on

food. Various studies have estimated the marginal propensity to consume
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food (MPCF) out of SNAP income. Administrative records of SNAP

transactions show a MPCF of .5 to .6 [45]. An evaluation of SNAP roll-out

using survey data finds the SNAP MPCF is .16 to .32 with a confidence

interval from .17 to .27 [46]. Additional analysis of survey data, using

a SNAP expansion as variation, finds a MPCF of .53 to .64 [47]. Retail

scanner data, augmented with method of payment data to identify SNAP

consumers, finds a MPCF of .3 [48]. Notably, the SNAP MPCF are all

strictly less than one – which suggests consumers are using the in-kind

transfer to consume non-food goods. We explore a potential outlet for these

remaining funds – drugs and alcohol.

We leverage the cyclicality of spending following income receipt

for our identification strategy. Many studies document the decrease in

food expenditures throughout the month ([49]; [50]; [34]; [51]), where

the beginning of the month is associated with income receipt. For SNAP

specifically, food spending peaks in the first three days after benefit receipt

[37]. Of course, food expenditure is not the same as consumption, and it

possible that consumers purchase storable goods at the beginning of the

month while still smoothing consumption through the month. However,

recent work has shown a decrease in food consumption over the course of the

month as well ([35]; [38]; [37]).

The cyclicality of consumption is connected to a number of

externalities. Test scores for children in SNAP households decrease near

the end of the benefit cycle [52]. Crime increases at grocery stores at the

end of the month [53] and over the course of the welfare benefit cycle [54].

There appear to be significant public health consequences as well. Hospital
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admissions for hypoglycemia increase at the end of the month for low-

income individuals, but not high-income [55]. Hypoglycemia is associated

with a lack of nutrition [56]. On the other side, the initial receipt of income

increases intimate partner violence [57], which the author suggests may be

due to an increase alcohol consumption.

Our work most closely relates to Dobkin and Puller [33], which

documents the relationship between government transfer payments and

hospitalizations for drug-related illness. Drug-related admissions increase

by 23% in the first five days of the month, with a large component of this

driven by Supplemental Security Income recipients. Our work di↵ers in

that we estimate a causal relationship by using exogenous changes in SNAP

distribution dates over time. Additionally, our introduction of expenditure

data allows us to identify the relationship between dollar amount and the

resulting drug and alcohol related mortality.

Structure of paper. In Sections 3.2 and 3.3 we provide an overview

of the SNAP program, its implementation in each state, and describe our

SNAP and car crash data. Section 3.6 outlines our research design, including

a detailed explanation of our identifying variation and econometric model.

We provide our results in Section 3.7. We conclude in Section 3.8. An

outline of the next steps in our research is presented in two parts: in the

data section, specifically, Section 3.4 and Section 3.5 we describe the data

components of our extensions. In Section 3.6.1, we describe the research

designs.
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3.2. Supplemental Nutrition Assistance Program

The Supplemental Nutrition Assistance Program (SNAP) provides

low-income residents of the United States with food-purchasing assistance.

Participants in the program receive a transfer of funds each month that

can only be spent on food. Although the funds are not cash, they are

redeemable for cash by supermarkets, convenience stores, and food retailers.

The monthly amount varies for each household participating in the program,

and is based on the number of individuals in the household, total income,

and total expenses. The Federal Government pays for the program, and the

Department of Agriculture Food and Nutrition Service Division oversees it.

Each state is in charge of administering the distribution of SNAP benefits to

its residents.

SNAP is the second largest government transfer program in the United

States – only Medicaid is larger (Congressional Budget O�ce, 2013). 42

million individuals were enrolled in SNAP in 2017 [58], which was around

13% of the population at the time [59]. The average participant receives

125.51 per month in SNAP funds [58], and the total cost of the program was

68 billion in 2017 [58].

Federal food assistance has existed in some form in the United States

since the Great Depression [60]. A pilot program, which eventually became

the Food Stamp Program, was trialed between 1961 and 1964. The Food

Stamp Act of 1964 made the pilot program permanent and extended it to

every state [60]. The 2008 Farm Bill renamed the program the Supplemental

Nutrition Assistance Program [61].
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Distribution Schedules. Each state administers SNAP benefit

distribution for its residents, although the benefit amount is set and paid

for by the federal government. Seven states distribute benefits to every

resident on the same day. The remaining states disburse benefits over

multiple days. Although a state may distribute over multiple days, each

individual within the state receives the entirety of her monthly benefits on

one day. States that distribute over multiple days have a system of assigning

participants to a distribution day. As such, states have chosen to assign

the distribution date by SSN, birthday, last name, and case number. The

last name, birthday, and SSN numbers allow for an additional layer of

identification, which we discuss in Section 3.6.1. See Table 3.1 for a detailed

listing of the date assignment scheme and distribution dates for each state in

2018.

Schedule Transitions. As mentioned above, each state selects the number

of days to distribute SNAP benefits over. Within a state, this choice can

vary over time. Sixteen states switch between distribution regimes, with

three of those states switching more than once. When switching between

distribution regimes, states have chosen to transition in one of three ways: a

simple transition, a 50-50 transition, and a smoothed transition.

Consider some new distribution schedule, Distnew, and an old distribution

schedule, Distold.
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TABLE 3.1. SNAP Distribution Schedules and Schemes, 2017

State Date Range Scheme

Alabama 4 - 23 case number
Alaska 1 -
Arizona 1 - 13 last name
Arkansas 4 - 13 SSN
California 1 - 10 case number
Colorado 1 - 10 SSN
Connecticut 1 - 3 last name
Delaware 2 - 23 last name
District of Columbia 1 - 10 last name
Florida 1 - 28 case number
Georgia 5 - 23 case number
Hawaii 3 - 5 last name
Idaho 1 - 10 birthday
Indiana 1 - 10 last name
Iowa 1 - 10 last name
Kansas 1 - 10 lastname
Kentucky 1 - 19 case number
Louisiana 5 - 14 SSN
Maine 10 - 14 birthday
Maryland 3 - 21 last name
Massachusetts 1 - 14 SSN
Michigan 3 - 21 case number
Minnesota 4 - 13 case number
Mississippi 4 - 21 case number
Missouri 1 - 22 last name - birthday
Montana 2 - 6 case number
Nebraska 1 - 5 SSN
Nevada 1 -
New Hampshire 5 -
New Jersey 1 - 5 case number
New Mexico 1 - 20 SSN
North Carolina 3 - 21 SSN
North Dakota 1 -
Ohio 2 - 20 case number
Oklahoma 1 - 10 case number
Oregon 2 - 20 SSN
Rhode Island 1 -
South Carolina 1 - 19 case number
South Dakota 10 -
Tennessee 1 - 20 SSN
Texas 1 - 15 case number
Utah 5 - 15 last name
Vermont 1 -
Virginia 1 - 9 case number
Washington 1 - 10 case number
West Virginia 1 - 9 last name
Wisconsin 2 - 15 SSN
Wyoming 1 - 4 last name

The above table is a list of the distribution schedules for each state in the United States. We have
omitted Illinois, New York, Ohio, and Pennsylvania. These states await data confirmation. The Date

Range refers to the first date of SNAP distribution and the last day. The Scheme is the method of
assigning dates to SNAP recipients. “Case number” means that recipients are assigned a monthly SNAP
receipt date based on their SNAP case number. “Last name” means the receipt date is based on the first
letter (or first three letters) of the recipient’s last name. “SSN” means the last digit of the recipient’s
Social Security Number is used and “birthday” means some aspect of the birthday (year, day, etc.) is

used.
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1. If a state uses a simple transition at some month t:

Distt�1 = Distold

Distt = Distnew

2. If a state uses a 50-50 transition at some month t:

Distt�2 = Distold

Distt�1 = .5Distold + .5Distnew

Distt = Distnew

3. If a state uses a smoothed transition at some month t:

This state will smooth the transition over some period of months, k

Distt�k = Distold

Distt�k+1 = Distk+1
int

...

Distt�2 = Dist2int

Distt�1 = Dist1int

Distt = Distnew

where Distint is some distribution schedule with dates between Distold

and Distnew, and each Distint may or may not be the same. These

switches provide additional identifying variation. Table 3.2 lists each

switch we observe from 1998-2017.
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TABLE 3.2. Changes in Distribution Schedule, 1998-2017

State 1998 Dates 2017 Dates Transition

Alabama 4 - 18 4 - 23 50-50
Delaware* 5 - 11 2 - 23 simple
Florida 1 - 15 1 - 28 50-50
Georgia 5 - 14 5 - 23 50-50
Idaho* 1 - 5 1 - 10 simple
Indiana 1 - 10 1 - 23 50-50
Kentucky 1-10 1-19 smoothed
Maryland* 6 - 10 3 - 23 simple
Michigan 1 - 9 3 - 21 smoothed
Mississippi 5 - 19 4 - 21 simple
Montana 1 2 - 6 simple
North Carolina 3 - 12 3 - 21 simple
Oklahoma 1 1 - 10 smoothed
South Carolina 1 - 10 1 - 19 simple
Tennessee 1 - 10 1-20 simple
Virginia 1 1-9 smoothed

*State experienced more than one switch.
This table describes the transition between distribution schedules for each state that

transitioned. It also lists the old date range and the new date range. The “range” lists the
first date that SNAP benefits are distributed as well as the last date. A few states have
multiple transitions. These states are denoted with a *. To date, each state with multiple
transitions has chosen to transition in the same way, and so we choose to only list the

state and its transition style once.
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Data Collection. We construct a novel dataset that details the

distribution dates and date assignment scheme for each state and month

for years 1998 - 2017. We construct our data using a time-series panel

of distribution date ranges for the years 1998 - 2012 from the Economic

Research Service of the United States Department of Agriculture (USDA).

We augment this dataset with the specific days within in the range,

see Table 3.3, the distribution scheme, and the transition method for

distribution switches. We also carry the dataset forward to 2017.

These additions are added using the current schedules posted on

the USDA Food and Nutrition Service “When Are Benefits Available?”

webpage, https://www.fns.usda.gov/snap/snap-monthly-benefit-issuance-

schedule, and historical versions of this webpage available at the Internet

Archive, https://archive.org.

Program Cost and Scope. We use state-month SNAP expenditures

and the count of individuals served for 1998-2017, as detailed in the SNAP

National Data Bank Monthly State Participation and Benefit Surveys.1

3.3. Automobile Collisions

Our analysis focuses on the e↵ect of SNAP distribution on the number

of drug and alcohol related fatal car crashes. Ideally, we would measure

drug and alcohol consumption for each individual who is treated and

not treated with SNAP benefits. We could monitor alcohol and tobacco

expenditures, but this ignores (1) the di↵erence between expenditure and

consumption, and (2) the vast black market for non-legal drugs. Drug and

1https://www.fns.usda.gov/pd/supplemental-nutrition-assistance-program-snap
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alcohol related car crashes are a consistent measure of the level of alcohol

and drug consumption in a given community at a specific time.

We use Fatality Analysis Reporting System (FARS) data to measure

the number of fatal crashes. FARS is a publicly available dataset maintained

by the National Highway Tra�c Safety Administration of the United

States Department of Transportation. FARS records person, vehicle, and

crash information for all fatal car crashes from 1975 to the present. This

information includes if the driver of any vehicle involved in the car is under

the influence of drugs or alcohol.

3.4. Medical Data

We have received approval from the Center for Disease Control’s

National Health Statistics Division (https://www.cdc.gov/nchs/nvss/index.htm)

to extend our study to mortality at large using National Vital Statistics

System (NVSS) data. NVSS micro-data and compressed vital statistics files

contain the cause of death codes, exact date of death, and state of death.

Using this data, in future work, we will extend our analysis to every death

in the United States related to drug and alcohol use, and strengthen our

identification by utilizing the variation in disbursement by last name and

social security number (SSN).

3.5. SNAP Roll-Out

At the time of program introduction, SNAP was known as the Food

Stamp Program (FSP). FSP began as a pilot program in 8 counties and

eventually expanded to 43 counties during this pilot program period. The
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Food Stamp Act of 1964 opened the program to all counties in the United

States, but, crucially for our identification strategy, allowed counties to

choose whether to participate [46]. In 1973, the Food Stamp Act was

amended to mandate that all counties participate in FSP by 1975. We use a

dataset of county-month FSP participation as provided in [44].

During this time-period, the NVSS micro-data is publicly available in

pdf files. We are transcribing the pdf files into datasets that track the cause

of death codes, exact date of death, and county of death for all fatalities in

the United States during the FSP rollout period and the years preceding it.

We will use this information in our future work.

3.6. Research Design

Identifying Variation. We use the variation in SNAP disbursement

schedules between states and within states over time to identify the causal

e↵ect of SNAP income on fatal car crashes involving drugs or alcohol. We

are able to use the exogenous variation in SNAP disbursement time, random

across individuals, to approximate random assignment of SNAP treatment.

For each state, we know the percent of SNAP disbursement that occurs on

each day of the calendar month and the average SNAP income per person.

We use this information to estimate three e↵ects: (1) the e↵ect of

distributing SNAP benefits on a day other than the 1st of the month, (2)

the daily e↵ect of SNAP disbursement on drug related fatal accidents, and

(3) the e↵ect of benefit generosity.

The majority of social services distribute benefit checks on the first of

the month, and most paychecks are distributed near the first of the month
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as well. Following in the work of [53], we examine the impact of adding an

additional income shock to the monthly calendar. This occurs when a state

chooses to move SNAP disbursement from the first of the month, where it

would be grouped with other income, to its own day in the month.

We then consider the impact of SNAP disbursement on the daily

amount of drug and alcohol related tra�c fatalities. We construct construct

a “weighted” treatment variable for each day-state combination over time,

that describes the percent of SNAP distributed each day in every state. We

compare the number of fatal accidents involving drugs and alcohol between

states, for each day of the month, as a function of the SNAP distribution

that day for the state. The identifying assumption is that in the absence of

SNAP disbursement, the trend in the number of drug and alcohol related

fatal car accidents would be parallel in all states. We relax this assumption

by including fixed e↵ects, which are detailed in the following section.

Our last analysis examines the impact of benefit generosity on the

number of these fatalities.

Econometric Models.

Our first estimation considers the di↵erence between total monthly

tra�c fatalities related to drug and alcohol use in states that distribute

SNAP on the first of the month, and states that distribute SNAP away from

the first of the month. This classification can vary within states across time.

Consider the following estimating equation,

crashsmy = �1multiplesdmy + ↵sy + ✏sdmy
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where crash is the number of drug and alcohol related car crashes in a

state s in month m during year y. Multiple is an indicator variable for

distribution away from the first of the month, in reference to the multiple

income shocks faced by the individuals. We include state-year fixed e↵ects.

Our following two estimations utilize a generalized di↵erences-in-

di↵erences estimation strategy. The first estimation is described by the

following,

crashsdmy = �1percentsdmy + ↵smy + �d + ✏sdmy

where crashsdmy is the number of drug and alcohol related car crashes in

a state s on day d in month m during year y. Our explanatory variable of

interest is percentsdmy, which is the percent of SNAP benefits distributed on

that day. We include state-month-year fixed e↵ects, ↵smy and day of week

fixed e↵ects �d.

The second estimation is described by the following,

crashsdmy = �1benefitsdmy + ↵smy + �d + ✏sdmy

where benefit is the average dollar amount distributed to a SNAP

participant.

Our dependent variable, the number of fatal accidents involving drugs

and alcohol, is a non-negative count variable and therefore we use a Poisson

regression model and assume E(Y |X) = exp(X 0�). We thus reform our
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estimating equations into the following log-likelihood function,

lnL(�) =
NX

sdmy=1

{crashsdmyx
0
i� � exp(x0

i�)� ln crashsdmy!}

For all estimations, we allow the standard errors to cluster at the

state level, which has the additional e↵ect of relaxing the Poisson model

assumption of equality between the mean and variance.2 The coe�cients in

the Poisson regression can be interpreted as semi-elasticities, or how a 1 one

unit change in our independent variables predict a percentage change in the

count of fatal car crashes involving drugs and alcohol.

3.6.1. Future Work

National Vital Statistics System. We use the same variation to

identify the e↵ect of SNAP disbursement on drug and alcohol related

mortality at large. NVSS includes patient level data that allows us to add

an additional layer of identification. A subset of states distribute SNAP

benefits based on the last name, the birth date, or social security number

(SSN) of the recipient. This allows us to identify a more narrow group of

potentially treated individuals for our analysis.

Consider the following equation,

deathsdmyi = �1treatsdmyi + ↵smy + �d + ✏sdmyi

2We consider two-way clustering for state and year, but find similar results. Our panel
extends from 1998 to 2017, which provides fewer year clusters than ideal and so we select
year clustering in our preferred regression
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where deathsdmyi is the count of drug and alcohol fatalities in state s

on day d in month m for year y , for individuals that have identifier i. The

identifier can be the first letter of the last name, the last digit of the SSN, or

some aspect of the birth date of the recipient - whichever method the state

uses to select the day of disbursement for residents. Table 3.5 and 3.4 detail

how states chose to distribute SNAP across last names and SSN numbers on

2017. The estimating equation is the same as the car crash analysis except

our key explanatory variable is now treatsdmyi instead of SNAPsdmy, where

treat is an indicator variable for individuals who would receive all of their

benefits on that day if eligible for SNAP.

As before, we are working with count data, and use a Poisson

approach.

lnL(�) =
NX

sdmyi=1

{deathsdmyix
0
i� � exp(x0

i�)� ln deathsdmyi!}

Introduction of SNAP. Using the county level rollout of SNAP, we

examine the total number of drug and alcohol related fatalities per month in

SNAP-participating counties compared to non-SNAP-participating counties.

Consider the following equation,

deathcmy = �1treatcmy + ↵c + �y + ✏cmy

where deathcmy is the number of deaths in county c in month m and

year y. Our coe�cient of interest is attached to treatcmy which indicates if

a county is participating in SNAP or not. We control for county and year

fixed e↵ects.
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3.7. Results

Distribution of SNAP on a day other than the first of the month

leads to a 1.21 percent increase in the number of drug and alcohol related

automobile fatalities per month. This point estimate is included in Table

3.6. Our preferred specification, Column(1), includes state-year fixed e↵ects.

The additional specifications include di↵erent fixed e↵ects.

TABLE 3.6. Drug and Alcohol Related Fatal Car Crashes and
Multiple Day SNAP Disbursement

(1) (2) (3)

Multiple 1.26*** .155***
(.474) (.059)

Observations 10,902 10,902

Fixed E↵ects

State X
Year X
State-Year X

These are the results of our estimation of the e↵ect of SNAP benefit disbursement on multiple days on
drug and alcohol related fatal car accidents. Multiple is an indicator variable for distributions that occur
on more than one days of the month. We estimate the e↵ect using a Poisson distribution. The coe�cients
in the Poisson regression can be interpreted as semi-elasticities, or how distributing SNAP on more than
one day predicts a percentage change in the count of fatal car crashes involving drugs and alcohol. We

include combinations of fixed e↵ects. An “X” indicates this set of fixed e↵ects was included. Our
preferred specification is Column (1).

We find a one percentage point increase in the share of SNAP benefits

distributed in a state on a day leads to a .11 percent increase in the number

of car crashes involving drugs and alcohol in a state on the distribution day.

Table 3.7 shows this point estimate and its confidence interval and the point

estimates and confidence intervals for three alternate specifications. These

additional specifications include di↵erent fixed e↵ects. In our preferred

specification, Column (1), we include state-year-month fixed e↵ects. These
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fixed e↵ects relax our identifying assumption of parallel trends in drug and

alcohol related fatal car accidents across states across time, to parallel trends

within a a specific year-month combination. Column (2) includes day of

week and state-year fixed e↵ects. In Column (3), we consider year fixed

e↵ects and state fixed e↵ects. In Column (4), we only include day of week

e↵ects. The point estimate is steady throughout the alternate specifications,

with the exception of Column (4), which does not control for time-invariant

di↵erences in unobservables across states.

TABLE 3.7. Drug and Alcohol Related Fatal Car Crashes and
SNAP Disbursement

(1) (2) (3) (4)

Percent .112*** .112*** .113 *** .070**
(.037) (.038) (.038) (.035)

Observations 331,798 331,798 331,798 331,798

Fixed E↵ects

Day of Week X X X X
State X
Year X
State-Year X
State-Year-Month X

These are the results of our estimation of the e↵ect of SNAP benefit disbursement on drug and alcohol
related fatal car accidents. Percent is the percent of SNAP benefits distributed on a day. We estimate the

e↵ect using a Poisson distribution. The coe�cients in the Poisson regression can be interpreted as
semi-elasticities, or how a 1 percentage point change in the amount of SNAP distributed in a day predicts

a percentage change in the count of fatal car crashes involving drugs and alcohol. We include
combinations of fixed e↵ects. An “X” indicates this set of fixed e↵ects was included. Our preferred

specification in Column (1).

Table 3.8 holds the same information for our estimation of the e↵ect

of benefit generosity. We find a one hundred dollar increase in benefit

generosity leads to a .06 percent increase in drug and alcohol related

automobile fatalities.
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TABLE 3.8. Drug and Alcohol Related Fatal Car Crashes and
SNAP Disbursement Amount

(1) (2) (3) (4)

Benefit .00055* .00058 .00089 *** -.0041 ***
(.000) (.000) (.000) (.000)

Observations 331,767 331,767 331,767 331,767

Fixed E↵ects

Day of Week X X X X
State X
Year X
State-Year X
State-Year-Month X

These are the results of our estimation of the e↵ect of SNAP benefit amount on drug and alcohol related
fatal car accidents. Benefit is the per person benefit amount distributed on a given day. We estimate the

e↵ect using a Poisson distribution. The coe�cients in the Poisson regression can be interpreted as
semi-elasticities, or how a 1 dollar increase in the amount of SNAP benefits distributed on a day predicts

a percentage change in the count of fatal car crashes involving drugs and alcohol. We include
combinations of fixed e↵ects. An “X” indicates this set of fixed e↵ects was included. Our preferred

specification is Column (1).

3.8. Conclusions

Income is something that increases welfare theoretically in essentially

every model of economics. Moreover, empirical evidence largely bears

this out, as non-labor income allows individuals to consume more leisure,

increases in income increase birth weights, reduces stress, and improves

health [26, 27, 28, 62]. However, the activity increased income brings also

increases systemic risk particularly for external causes of injury and death

[30, 32? ]. Despite an extensive literature documenting the benefits of

SNAP, it’s possible and consistent with other evidence on the timing of

income receipt, that SNAP could influence some external risks. Moreover,

based on the extent to which SNAP is fungible with income, and SNAP

receipt allows credit constraint individuals to increase their consumption of
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non-SNAP goods, it’s feasible some of the patterns of income timing and

drug or alcohol use would also manifest themselves with SNAP.

This paper uses SNAP and the variation in SNAP benefit

disbursement across states and time to identify the causal e↵ect of

government transfers on drug and alcohol related car crashes. Distributing

SNAP benefits on days other than the first of the month, adding an

additional income shock to the monthly calendar, increases the number of

drug-related fatal automobile collisions by 1.21 percent. A one-percentage

point increase in the share of SNAP benefits distributed on a day leads to a

.2 percent increase in the number of drug-related fatal automobile collisions.

A one hundred dollar increase in benefit generosity leads to a .06 percent

increase in drug and alcohol related automobile fatalities. Future research

should more fully investigate potential channels, impacts on drug overdoses

more generally, and compare the di↵erences in how income increases map

into drug use versus in-kind transfers like SNAP.
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CHAPTER IV

GETTING INTO THE WEEDS OF TAX INVARIANCE

This chapter is co-authored with Benjamin Hansen, Keaton Miller, and

Caroline Weber.

4.1. Introduction

Tax invariance (TIV)—the principle that who remits taxes does

not influence incidence—is a bedrock principle of tax design. TIV allows

policymakers to focus on minimizing administrative and evasion costs

without worrying about the welfare e↵ects of alternative tax collection

strategies. TIV is routinely taught in “Principles of Economics” courses

[63, 64]. While recent empirical work suggests that TIV can fail under

specific circumstances—when tax evasion opportunities vary along the

supply chain [65, 66, 67], when there are price rigidities [68, 69, 70], or if tax

salience is di↵erent for consumers and firms [71, 72]—it is unclear whether

TIV simply does not hold, or just that it cannot be applied in particular

settings.

We provide a more general test of TIV than has previously been

possible by studying the cannabis market in Washington state.1 The

frequently-audited comprehensive regulatory reporting system makes tax

evasion di�cult. Prices both increase and decrease often, which means

rigidities are unlikely. Tax salience is likely high for manufacturers, retailers,

and consumers. Regulatory requirements ensure that owners are highly-

1We describe the market in Section 4.2.
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skilled and well-capitalized. The posted retail prices include all taxes, so

tax-inclusive prices are likely salient to consumers. Finally, tax leakage and

competition are not relevant as the market is closed. Each gram of cannabis

purchased in Washington was grown in Washington, and vice versa, and

neighboring states did not have legal cannabis markets at the time.

We study an ideal reform for testing TIV. Prior to July 1, 2015, a 25%

gross receipts tax applied to each transfer of cannabis. Cultivators remitted

the tax when they sold to manufacturers, manufacturers remitted the tax

when they sold to retailers, and retailers remitted the tax when they sold to

consumers. The retail tax was required to be included in the posted price

making it functionally equivalent to other excise and sales taxes. After

the reform, the retail tax was increased to 37% and all other taxes were

eliminated. Crucially, this change was unexpected by market participants;

the reform was passed on June 27, 2015, and signed by the Governor on

June 30 [73].

We measure the e↵ects of this reform using an interrupted time series

regression in first di↵erences; that is, we ask how prices change in the

week of the reform relative to weeks surrounding the reform. Identification

rests on the assumption that, after controlling for product characteristics,

prices would not have changed in the week of the reform (relative to a

baseline trend) in the reform’s absence. We conduct event study and placebo

analyses which provide no evidence to reject this assumption. We employ

this approach rather than a di↵erence-in-di↵erences design as the only

potential comparison state is Colorado, which had a significantly di↵erent

regulatory and industry structure—the assumption that prices in the two
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states co-move in the period of the reform is likely much stronger than the

assumptions we impose.

Our setting features imperfect competition—retailers have substantial

market power [74, 75] and manufacturers, while more competitive, retain

market power too (see Table 4.1). Given the the emphasis on imperfect

competition in tax incidence analysis [76], we examine how TIV predictions

vary for a percent-based tax—the relevant tax in our setting—depending on

the level of competition. We compare two extremes: perfect competition

and a monopolist retailer and monopolist manufacturer. We show that

manufacturers pass along their entire savings in response to the elimination

of their tax in both situations. Under perfect competition, retailers leave

their tax-inclusive prices unchanged. Under monopoly, retailers cut their

prices to maximize profits under the new system. Our setting lies between

these extremes.

We then examine how manufacturer prices change post-reform. Our

framework predicts that manufacturers’ prices should decrease 28.7% from

pre-reform levels. Given that per-gram tax revenue would fall slightly

in that scenario,2 we also consider a second benchmark, the amount

manufacturers needed to pass-through to leave retailers’ per-gram profits

and consumer-facing tax-inclusive prices constant post-reform (17.7%). We

find that manufacturers reduce their prices by only 7.2%; we reject the null

hypothesis of TIV based on either benchmark at the 0.1 percent level.

Finally, we examine retail behavior. Our framework predicts that

retailers should either leave their tax-inclusive prices constant or decrease

2Revenue would have remained roughly constant if tax-exclusive prices remained
constant—i.e. retailers had passed along their entire tax increase to consumers.
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them. Instead, we find tax-inclusive retail prices increased by an average of

2.5%. Retailers pass through one-third of the tax increase to consumers.

Another roughly one-third is borne by manufacturers, leaving retailers

to bear about one-third of the increase. We find evidence that retailers

maintained constant tax-exclusive markups, consistent with our model’s

pricing rule.

In summary, we find that TIV fails. A reform that should have left the

welfare of manufacturers, retailers, and consumers unchanged or improved

instead increased the profits of manufacturers at the expense of retailers and

consumers. We conclude by discussing potential mechanisms for this result

and implications for policymakers and future research.

4.2. Background

Our analysis focuses on the adult-use cannabis market in Washington

state, which opened in July 2014 after a successful ballot initiative in 2012.

We have written elsewhere about the history of this market [77, 78]—here

we focus on features of the market and the reform that underlie our analysis.

Washington’s cannabis market consists of three types of firms:

cultivators, who grow cannabis plants, manufacturers, who transform

plant material into marijuana products, and retailers, who sell products

they obtain from manufacturers to consumers. Potential entrants have

to pass background checks and undergo a lengthy regulatory process

requiring substantial capital investment before entry. Cultivators face

capacity constraints—the largest firms may cultivate 30,000 sq. ft. of plant

canopy and may not merge to increase capacity. While retailers must be
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financially independent from other firms, a cultivator and a manufacturer

may vertically integrate, though the capacity constraint remains. When

the reform was implemented, approximately 94% (by weight) of usable

marijuana—dried and cured cannabis flowers—was produced through a

vertically-integrated process [79]. Thus, we focus our analyses on two types

of firms, “manufacturers” and “retailers”.3

The market features a closed supply: all cannabis sold by retailers

is grown in the state, and every ounce grown legally within the state

is sold at a Washington retailer. These rules are enforced through the

state’s “seed-to-sale” traceability system, which tracks each plant from

cultivation through processing and retail. This system was implemented

to respond to the informal federal regulations created by the “Cole Memo”

[80]. The system provides information that can be used to check for tax

evasion: retailers cannot sell cannabis without manufacturing records, which

forces manufacturers to report accurately.4 Reporting is enforced through

frequent audits—firms typically face one or more visits per year—backed by

significant penalties for non-compliance.

Washington’s initial tax regime consisted of a 25% tax collected at

every transfer of cannabis. Vertically-integrated manufacturers owed no tax

on intra-firm transfers. The reform we analyze eliminated the 25% excise

taxes within the supply chain and increased the retail excise tax rate to

37%. The excise tax applied to the sales-tax-inclusive price pre-reform and

3State law calls cultivators “producers” and manufacturers “processors”—we choose
nomenclature to represent functional equivalents in other markets.

4Retailers can under-report their sales, but such behavior is detectable as retail sales
can be compared to purchases from manufacturers. Our estimates are una↵ected by
dropping the few retailers that engage in significant under-reporting.
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the sales-tax-exclusive price post-reform. Accounting for changes to the base

and rate of the retail tax, the reform changed the retail tax rate by 6.93%.5

This change was designed to be revenue neutral under the assumption that

tax-exclusive prices remained constant (whereas TIV predicts constant tax-

inclusive prices). We account for both the change in the rate and the base

of the retail excise tax in our analyses. We provide calculations of revenue

pre- and post-reform in Section 4.4. Other regulations concerning cannabis

production, distribution, and sales were una↵ected.

Our identification assumes that the policy change was unanticipated.

The bill originated and was passed in the Washington House during the

2015 Regular Session, but stalled in the Senate. The bill was reintroduced

in the First Special Session, but again stalled. Finally, on June 27, the

last day of the Second Special Session, the bill passed both chambers.

The Governor signed it on June 30 and the law went into e↵ect the next

day. Contemporaneous reporting portrayed the industry as unprepared.

According to one retail manager, “[we] have a few hours to change an entire

market’s pricing structure. It is an exceptionally short window for such a

tremendous change” [73].

4.3. A Framework for Tax Invariance

To motivate our empirical analyses, we introduce stylized models

of manufacturers, retailers, and consumers. We assume a constant

manufacturing marginal cost of mc. Given tax-inclusive retail price p, we

5The average sales tax rate during this period was 8.9%, thus log
⇣

1.25(1+.089)
1.37+.089

⌘
=

�0.0693
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assume demand has constant price elasticity, that is q(p) = kp✏ with ✏ < �1.

We evaluate two extremes: (1) perfectly competitive manufacturers and

perfectly competitive retailers and (2) a monopolist manufacturer and

monopolist retailer. We expect our empirical setting lies between the two

(see Section 4.4).

Let pim be the price charged by manufacturers to retailers including all

taxes. Let pem be the price charged by manufacturers to retailers exclusive of

taxes. Given a manufacturing tax rate of ⌧m, pem = pim(1� ⌧m). Similarly, let

pir be the tax-inclusive retail price and let per be the tax-exclusive retail price.

Given a retail tax rate of ⌧r, pir = per(1 + ⌧r). While these definitions are not

parallel, they match our empirical setting.

4.3.1.

Perfect Competition-Perfect Competition In perfect competition,

the tax-exclusive price earned by manufacturers is equal to their marginal

cost, and so the tax-inclusive price is pim = mc
1�⌧m

. Perfectly competitive

retailers face this price as their marginal cost, and so the tax-inclusive

retail price is pir = mc 1+⌧r
1�⌧m

. The total tax revenue collected is TR =

k
⇣

mc(1+⌧r)
1�⌧m

⌘✏
mc

1�⌧m
(⌧r + ⌧m). To see TIV holds, define ⌧ = 1+⌧r

1�⌧m
. Then

pir = mc · ⌧ and TR = k(mc)✏+1⌧ ✏(⌧ � 1). Given some ⌧ , a policy maker

can freely move one of ⌧r or ⌧m, solve for the other, and hold pir and TR

constant.
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4.3.2. Monopolist-Monopolist

Under monopoly, the retailer’s profit maximization problem is

maxpim

⇣
pir

1+⌧r
� pim

⌘
k(pir)

✏ which implies pir = ✏
1+✏p

i
m(1 + ⌧r). Note that

the retailer’s tax-exclusive price is a constant markup over their marginal

cost pim. The quantity is q = b(pim)
✏ where b ⌘ k

⇥
✏

1+✏(1 + ⌧r)
⇤✏
. The

wholesaler’s problem is maxpim [p
i
m(1 � ⌧m) � mc]b(pim)

✏ which implies

pim = ✏
1+✏

mc
1�⌧m

. Thus, the tax-inclusive price charged by the manufacturer

is independent of the retail tax and pri =
�

✏
✏+1

�2 1+⌧r
1�⌧m

mc and TR =

k
�

✏
✏+1

�2✏+2
⇣
mc 1+⌧r

1�⌧m

⌘✏+1 h
⌧r

1+⌧r
+ ⌧m

1+⌧r
✏+1
✏

i
. Mechanically, if ⌧ is defined

as above, the term in brackets cannot be simplified to be a function of ⌧

alone. Given some pr, if a policy maker shifts ⌧r and ⌧m to hold pr constant,

TR must change. Thus, TIV fails. Intuitively, the percentage taxes act

as demand shifters as in Weyl and Fabinger [76], but the wholesaler does

not internalize the retailer’s response to retail percentage taxes because its

e↵ective demand elasticity is unchanged.

Given TIV generally does not hold in this monopolist-monopolist case,

we want to understand the e↵ect of a movement from a manufacturing tax

to a retail tax. First, suppose that the policy !1 = {⌧r = 0, ⌧m = ⌧}

is replaced with !2 = { ⌧
1�⌧ , 0}. From the equations above, it is clear

that pir (and thus quantities) remains constant. The manufacturer passes

through all of its tax savings, and earns identical profits. However, the

retailer’s profits decrease because the ⌧ savings on the manufacturer’s

price is more than o↵set by the ⌧
1�⌧ tax on their price. By the same logic,

TR increases as "+1
" < 1. Now consider the policy !3 = {⌧ 0, 0} where

⌧ 0 = pim(!1)⌧
pir(!1)�pim(!1)⌧

is “naive-revenue-neutral”: it would raise the same total
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revenue if the tax-inclusive retail price was the same after the reform. In

this case, since ⌧ 0 < ⌧
1�⌧ , p

i
r(!3) < pir(!1) and q(!3) > q(!1). Since " < �1,

profits for both firms and total tax revenues increase. Finally, suppose !1

is replaced with !4 = {⌧ 00, 0} where ⌧ 00 is chosen to be “true-revenue-

neutral”: TR(!1) = TR(!4). Since TR(!3) > TR(!1), ⌧ 00 < ⌧ 0 and thus

!4 increases profits for both the retailer and the manufacturer beyond !3.

This is consistent with the notion that, under monopoly, ad valorem taxes

improve welfare over unit taxes [81, 82, 83].

In summary, the combination of market power and percent taxes leads

traditional TIV to fail. However, revenue-neutral policies (whether “naive”

or “true”) that shift taxes from manufacture to retail lead to full pass-

through from the manufacturer to the retailer and a decrease in tax-inclusive

retail prices. Firms and consumers benefit from the change.

4.4. Data and Methods

Our data consist of administrative records from the “traceability”

(or seed-to-sale) system maintained by the Washington State Liquor and

Cannabis Board (WSLCB). We obtain data on all plants, products, and

sales. We restrict our analysis to “usable marijuana” products—74.5%

of the total transactions observed in our data. Within this category,

products are di↵erentiated by “strain” (analogous to fruit cultivars),

potency, and whether the marijuana is loose or pre-rolled into a joint. These

characteristics are captured by our fixed e↵ects.

Harvested flowers and other plant material are converted into an

“inventory lot” that is assigned a unique identifier (ID). Products or
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material within a single inventory lot are assumed to be homogeneous.

Large inventory lots of finished product are split into smaller “retail” lots

for sale to retailers. Each retail lot consists of multiple sealed packages of a

specific weight of cannabis (e.g. 1 gram, 3.5 grams, etc) which are considered

identical. When lots are sold to retailers, the system records the date,

quantity, and price, and assigns a new lot ID. Thus, retail lot IDs uniquely

identify the retailer, manufacturer, cultivator, product, and package size.6

We observe each retail sale and link the price, quantity, and transaction time

to the relevant inventory lots.

We aggregate by inventory-lot-week. We exclude firms with less

than two months of pre- and post-reform data. The reform also changed

technical reporting rules which a↵ect the price data. We clean the price data

for each firm to reflect the prices faced by consumers using an algorithm

based on rounding behavior verified by spot checks of historical menus.7 See

Appendix B for details.

Table 4.1 reports summary statistics for retail inventory lots for the

six weeks pre-reform (the basis for our analyses in Section 4.5). The average

tax-inclusive retail price was $13.03 per gram and the tax-exclusive price

was $9.57 per gram. Retailer tax-exclusive prices are more than double

manufacturer tax-inclusive prices. Both manufacturer and retail prices

change week-over-week by more than one percent almost 40 percent of

6A small number of lots have multiple package sizes, which we identify and correct for.

7Cannabis retailers have limited access to financial services and so choose to set tax-
inclusive prices that are round numbers (e.g. $8 or $10.25) to lower cash-handling costs.
While this represents a potential friction, the e↵ective minimum price change is smaller
than the e↵ects we estimate.
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the time, split fairly evenly between price increases and price decreases,

suggesting prices are not rigid.

The average market share of retailers in the 10-mile radius around

their location was 31%, suggesting that there is substantial market power

at retail, consistent with Hollenbeck and Uetake [74] and Mace et al. [75].

The manufacturer market is e↵ectively state-wide and the average market

share is 1.4%. No manufacturer has more than 7% of the total market share.

However, manufacturers may exert market power on individual retailers—on

average, about seven manufacturers supply 75% of a retailer’s inventory.

Across competitive environments, our framework predicts that

manufacturers should pass through their savings to retailers via a log(1 �

0.25) = �28.7% decrease in manufacturer tax-inclusive prices. If we estimate

a di↵erent price response to the reform, we can reject the framework. Since

the reform was not quite revenue-neutral, it may be possible to construct

alternative models which both rationalize any price responses we observe

and which feature a TIV result. To rule out this concern, we construct a

second benchmark for manufacturer price changes: given pre-reform prices,

to maintain both a constant tax-inclusive retail price and constant per-gram

retail profits (and therefore to satisfy TIV), manufacturers would have to

decrease their prices by an average of 64 cents, or 17.7%.8

Under a revenue-neutral reform, TIV predicts that retailers would

reduce their tax-exclusive prices by 6.93% (the amount of the change in the

retail tax rate) and maintain constant tax-inclusive prices. Under monopoly,

we predict tax-inclusive prices will decline. As we calculate the reform is

813.03/(1.37+0.089)-13.03/(1.25*(1+0.089)) = 64 cents.
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TABLE 4.1. Pre-Reform Retail Summary Statistics

Variable Obs. Mean Std. Dev.

Prices and Taxes
Tax-Inclusive Retail Price ($/g) 63,668 13.033 3.798
Tax-Exclusive Retail Price ($/g) 63,668 9.570 2.783
Probability of > 1% Retail Price Increase 63,668 0.17 0.375
Probability of > 1% Retail Price Decrease 63,668 0.204 0.403
Manufacturer Price ($/g) 63,668 4.103 1.309
Probability of > 1% Manufacturer Price Increase† 7,954 0.177 0.382
Probability of > 1% Manufacturer Price Decrease† 7,954 0.196 0.397
Retail State + Local Sales Tax Rate 63,668 1.089 0.006
Tax Revenue Pre-Reform ($/g) 63,668 4.489 1.246

Competition
Market Share of Retailer in 10 Mile Radius 63,668 0.313 0.282
Market-level Manufacturer Market Share 63,668 0.014 0.016
Retail-Level Manufacturer Concentration Index 63,668 6.997 2.691

Benchmarks Assuming TIV
Expected Tax Revenue Post-Reform ($/g) 63,668 4.104 1.200
Manufacturer Pass-Through Cents 63,668 -0.640 0.185
Manufacturer Pass-Through Percent Change 63,668 -0.177 0.058

An observation is an inventory-lot-week pre-reform. The data come from our retail
analysis set and cover the six weeks prior to the tax reform. Tax revenue is calculated

using both excise and state and local sales taxes. The retail-level manufacturer
concentration index is calculated as follows: for a given retailer, we sort their suppliers by
the weight of inventory sold, and count the number needed to comprise at least 75% of
total sales. The “benchmarks assuming TIV” account for changes in the base and rate of

the retail excise tax. The “manufacturer pass-through” statistics assume constant
tax-inclusive retail prices and indicate the post-reform changes to manufacturer prices

that would have left retailer variable-profit-per-gram constant.
† These probabilities are calculated for the subset of retail-processor-strain-weight
group-weeks when the inventory lot changes (and thus a new purchase from a

manufacturer has occurred).
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slightly revenue-decreasing,9 our framework suggests retailers should reduce

tax-inclusive prices further.

To summarize, if we estimate a decrease in average manufacturer tax-

inclusive prices of less than 28.7% (in a statistically significant sense), we

reject our model and reject TIV indirectly. If we estimate a decrease in

average manufacturer tax-inclusive prices of less than 17.7%, we reject TIV

directly. If we estimate any increase in retailer tax-inclusive prices, we reject

TIV directly.

Figure 4.1 plots the panel of retail tax-exclusive prices normalized

to the week before reform. For each week, we take inventory lots in their

first week of sale and match them with the price paid to the manufacturer,

restricting observations to those where the first retail sale and manufacturer

sale both happened pre- or post-reform; thus, this illustrates the relation

between retailer per-gram revenue and variable costs. The two series move

in a highly correlated way through the entire pre- and post-reform period

(including the period around April 20, an industry promotional event). This

implies a constant markup of the retail tax-exclusive price over variable

costs (the manufacturer price) that appears to be preserved in response to

the tax reform. This figure depicts a set of products that is changing over

time. To disentangle the e↵ects of the reform from long-run trends and

control for potential compositional changes, we employ regression and (in

Section 4.5.3) event study analyses.

9If prices had remained constant, the reform would have decreased the average total
tax revenue per gram from $4.49 to $4.10.
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FIGURE 4.1. Retail and Manufacturer Prices

This figure plots average prices in Washington’s cannabis industry for four months before
and after the tax reform, normalized to 100 in the week before the reform. For each week,
we take inventory lots in their first week of sale and match them with the price paid
to the manufacturer, restricting observations to those for which the first retail sale and
manufacturer sale both happened pre- or post-reform (before any applicable taxes are
paid from the manufacturer to the government). This therefore illustrates the relation
between retailer per-gram revenue and variable costs. The left dashed line in the figure
marks 4/20 (an industry promotional period) and the right dashed line marks the week
before the tax reform.
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We model responses to the tax reform as an interrupted time-series in

first di↵erences:

�log(pit) = ↵0 + ↵1�TaxReformt + ↵2FEi + uit, (4.1)

where i is described below, and t indicates the week. p is the wholesale or

retail price per gram, TaxReform is an indicator variable that is one after

July 1, 2015 and zero before, and FE are fixed e↵ects. ↵1 is the parameter

of interest.10 Our analysis window spans six weeks before and after the

reform—we examine the robustness of our estimates to this bandwidth.

We two-way cluster standard errors on manufacturer and retail location

[84].11 Our identifying assumption is that within a given product, there

are no shocks in the week of the reform that would have a significant and

systematic impact on prices besides the direct e↵ect of the tax reform.

Given the short interval between observations (i.e a week, not a year), this

assumption is plausible and we will provide placebo regression evidence that

this assumption is reasonable.

For the manufacturer analysis, we aggregate to the manufacturer-

retailer-strain-week level, so that i is a manufacturer-retailer-strain tuple,

and then take first di↵erences.12 Each manufacturer-retailer-strain tuple

does not sell every week. We thus calculate the minimal-length di↵erence

10Without fixed e↵ects, this regression is equivalent to an interrupted time series
regression in levels with fixed e↵ects at the level of our first di↵erences and a control
for time to the reform.

11Firm clusters or two-way clusters on firm and week yield similar standard errors.

12Aggregation beyond the inventory lot is required because each lot is sold only
once. Other possible aggregations produce similar estimates with lower power (though
statistical significance remains).
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and include di↵erence-length fixed e↵ects.13 The maximum di↵erence-length

allowed is 4 weeks. We are thus estimating the magnitude of price changes

in response to the reform within a specific firm-product pairing. When

we add retailer-manufacturer-strain fixed e↵ects, we allow each retailer-

manufacturer-strain to have a separate time trend.

For our main retail analysis, we aggregate to the inventory-lot-week

level so that i is an inventory lot.14 Retail sales from an inventory lot are

frequent, so we construct one-week di↵erences. We are thus estimating the

change in the retail price of an inventory lot in response to the tax reform

holding all possible product and firm variation constant. Sales of retail

inventory lots typically last multiple weeks, so we include fixed e↵ects for

the week since the first week a particular inventory lot sold. When we add

inventory lot fixed e↵ects, we allow prices in each inventory lot to have a

separate time trend.

We separately examine the first week of retail sales for each inventory

lot and include only those that were purchased from manufacturers in the

same week. Similar to our manufacturer analysis, we aggregate by retailer-

manufacturer-strain and take varied di↵erences. We include di↵erence-length

fixed e↵ects. In these regressions, we ask how prices for new inventory lots

purchased post-reform change relative to pre-reform lots of the same strain

from the same manufacturer. This allows us to examine whether prices

13These fixed e↵ects are not significant. Our estimates are similar when restricted to
one-week di↵erences, but with less power.

14We are able to work at this level because retailers repeatedly sell out of a single
inventory lot.
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change more or less if the inventory was purchased post-reform relative to

inventory that had already been purchased and was selling pre-reform.

4.5. Results

4.5.1. Manufacturer Price Response

Table 4.2 reports estimates of Equation (4.1) for manufacturers. The

estimate in Column (1), which includes no fixed e↵ects, implies that prices

changed by -6.5% in response to the tax reform (statistically significant at

the 0.1% level). When we include manufacturer-retailer-strain fixed e↵ects

in Column (2)—our baseline specification—the point estimate becomes -

7.2% (significant at the 0.1% level). This is roughly one-third of the 17.7%

price decrease needed to preserve retailer per-gram profits (and therefore to

minimially satisfy TIV), and one-quarter of the 28.7% decrease predicted

by our framework. We can reject the null hypothesis that our estimate is

consistent with TIV at the 0.1% level. Column (3) repeats Column (2)

for the price in levels instead of logs—we find that the reform decreased

manufacturer prices by 23 cents, about one-third of the 64 cent bound.

Across specifications, the observed price adjustment was greater than 1%

for more than 75% of our observations—suggesting firms were aware of this

reform and prices are not rigid. Even if we rescaled our estimate assuming

that any observation with minimal adjustment was caused by rigidities or

lack of awareness, the data would still reject the null hypothesis of TIV.

The bottom panel of Table 4.2 repeats the specification of each column

for a placebo reform dated one year later. The estimates are near zero across

all four columns, providing support that our regression specifications are
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TABLE 4.2. Manufacturer Price Response

(1) (2) (3)
�log(Price) �log(Price) �Price

Tax Reform

�Tax Reform �0.065⇤⇤⇤ �0.072⇤⇤⇤ �0.228⇤⇤⇤

(0.015) (0.018) (0.068)

Observations 12,087 12,087 12,087
Manufacturer Firms 199 199 199

P-Value for Test of
0.000 0.000 0.000

TIV-Predicted Pass-Through

Placebo

�Placebo 0.001 0.000 0.014
(0.012) (0.014) (0.040)

Observations 21,288 21,288 21,288
Manufacturer Firms 180 180 180

Bandwidth 6 weeks 6 weeks 6 weeks
MRS FE? No Yes Yes

This table reports estimates of Equation (4.1) – other variables in that equation are

included, but not reported. An observation is a manufacturer-retailer-strain-week. The

outcome is the change in the log of the price per gram charged by the manufacturer to the

retailer (except for in column (3) which is the same outcome, but not logged). MRS

stands for manufacturer-retailer-strain fixed e↵ects. The estimates are weighted by the

total grams sold across the two weeks of the di↵erence. The P-value tests the null

hypothesis that the estimated pass-through is equal to that predicted by TIV. For the

placebo regressions, we repeat the analysis one year later. These regressions are estimated

with reghdfe in Stata. Standard errors twoway-clustered by manufacturer and retailer

are in parentheses [84]. ⇤5% significance level. ⇤⇤1% significance level. ⇤⇤⇤0.1% significance

level.
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valid. The top panel of Figure B.1 considers bandwidths from 2 to 8 weeks

and confirms that our estimates are not sensitive to the bandwidth chosen.

We provide an event study of these results in Section 4.5.3.

4.5.2. Retail Price Response

Table 4.3 reports estimates of Equation (4.1) for retailers. The

estimate in Column (1), which includes no fixed e↵ects, implies that the

reform decreased the tax-exclusive price by 4.5% (significant at the 0.1%

level). We include inventory lot fixed e↵ects in Column (2)—our baseline

specification. The estimates are very similar; the coe�cient in Column

(2) implies that the reform reduced tax-exclusive retail prices by 4.4%

(significant at the 0.1% level). Combined with the rate change, this implies

that tax-inclusive prices increased by 2.5%; retailers passed through roughly

one-third of the tax to consumers. We find that we can reject the null

hypothesis of TIV-consistent pricing behavior at the 0.1 percent level.

As firms might have taken time to adjust (and the Independence Day

holiday may have generated temporary price adjustments), Column (3)

repeats Column (2) for two week di↵erences and drops the first week after

the reform, so that the e↵ect of the reform is identified from the di↵erence

between the week before and the week after the reform. The estimates are

approximately the same, indicating that neither of these concerns play a

large role. We will return to a broader discussion of timing in Section 4.5.3.

Table 4.3 Column (4) repeats Column (2) with the dependent variable

in levels—we estimate that average retail tax-exclusive prices fell by 41 cents

per gram. This implies that retailers are an average of 41 cents per gram
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TABLE 4.3. Retail Tax-Exclusive Price Response

(1) (2) (3) (4) (5) 6)

�log(Price) �log(Price) �log(Price) �Price �log(Price) �log(Price)

Tax Reform

�Tax Reform �0.045⇤⇤⇤ �0.044⇤⇤⇤ �0.046⇤⇤⇤ �0.413⇤⇤⇤ �0.049⇤⇤ 0.011
(0.006) (0.007) (0.006) (0.065) (0.018) (0.017)

�log(Manufacturer Price) 0.887⇤⇤⇤

(0.084)

Observations 145,357 145,357 145,357 145,357 11,265 11,265
Retail Firms 110 110 110 110 110 110

Implied Tax-Inclusive Price Change 0.024 0.025 0.023 0.230 0.020 0.080
P-Value for Test of

0.000 0.000 0.000 0.000 0.270 0.000
Constant Tax-Inclusive Price

Placebo

�Placebo �0.006⇤ -0.004 0.001 -0.029 -0.016 -0.004
(0.003) (0.003) (0.002) (0.017) (0.012) (0.009)

�log(Manufacturer Price) 0.642⇤⇤⇤

(0.053)

Observations 253,123 253,123 253,123 253,123 11,534 11,534
Retail Firms 106 106 106 106 105 105

Bandwidth 6 weeks 6 weeks 6 weeks 6 weeks 6 weeks 6 weeks
MRS FE? No No No No Yes Yes
Inventory Lot FE? No Yes Yes Yes No No
Di↵erence Length 1 week 1 week 2 weeks 1 week 1-4 weeks 1-4 weeks
Restricted to First Week Sales? No No No No Yes Yes

This table reports estimates of Equation (4.1) – other variables in that equation are

included but not reported. An observation is an inventory-lot-week. The outcome is the

log of the tax-exclusive price per gram charged by the retailer to consumers (except for in

column (4) which is the same outcome, but not logged). MRS stands for

manufacturer-retailer-strain fixed e↵ects. The estimates are weighted by the total grams

sold in the first week of the di↵erence. The P-value tests the null hypothesis that the

tax-inclusive price remained constant as predicted by TIV. For the placebo regressions, we

repeat the analysis one year later. These regressions are estimated with reghdfe in Stata.

In the last two columns we only include observations in their first week of being sold at

retail and only if the cannabis was also purchased from the processor in that same week.

Standard errors twoway-clustered by manufacturer and retailer are in parentheses [84].
⇤5% significance level. ⇤⇤1% significance level. ⇤⇤⇤0.1% significance level.
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worse o↵ on existing inventory as a result of the reform. On fresh inventory,

firms were roughly 18 cents per gram worse o↵ (41 less the estimated 23 cent

decrease in manufacturer prices estimated in Table 4.2). In other words,

under TIV this reform should have caused manufacturer and retail tax-

exclusive prices to fall by 64 cents leaving profit and consumers una↵ected.

Instead, it caused smaller manufacturer price cuts leaving both retailers and

consumers worse o↵.

Table 4.3 Columns (5) and (6) take an alternative approach to

identification examining inventory lots only in their first week and only if

retailers purchased the inventory lot from the manufacturer in that week.

For this, we create a panel of retail-processor-strain-weight group-weeks.

The estimates are quite similar—a 4.9% decrease in Column (5) versus a

4.4% decrease in Column (2), suggesting that retailers’ price responses are

largely una↵ected by whether they are still selling inventory lots purchased

pre-reform or selling new inventory lots purchased post-reform. Column

(6) adds the first-di↵erenced log manufacturer price. When included, the

coe�cient on the wholesale price is not statistically di↵erent from one and

the coe�cient on �TaxReform is now approximately zero. This suggests

that retailers largely maintained a constant tax-exclusive markup. This is

consistent with the pricing rule derived in Section 4.3. In other words, while

retail behavior as a whole is inconsistent with TIV, after conditioning on the

pass-through from manufacturers, retailers behaved, on average, in a way

consistent with marginal-cost pricing (and therefore potentially consistent

with TIV).
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The bottom panel of Table 4.3 repeats each column in the top panel

for a one-year-later placebo reform. If our estimates are valid, the coe�cient

on �Placebo should be roughly zero—exactly what we find. Even in

Column (1) where the estimate is marginally significant, the coe�cient is

very close to zero. The bottom panel of Figure B.1 considers bandwidths

from 2 to 8 weeks and confirms that our estimates are not sensitive to the

bandwidth chosen.

4.5.3. Event Studies

The analyses above indicate that prices changed at the time of the

reform—yet it is possible that these changes were part of the ongoing

evolution of the market, something that the placebo tests one year later

cannot rule out. Moreover, the estimates above do not indicate whether

there is additional adjustment towards TIV beyond the first week. To

address these issues, we conduct event studies for both the manufacturer and

retailer responses using our baseline specifications from Tables 4.2 and 4.3.

For manufacturers, we do not drop the t � 1 tax reform coe�cient due to

our varied di↵erence lengths.15 Figure 4.2 plots the relevant coe�cients and

confidence intervals.

In both event studies in Figure 4.2, there is no clear trend in prices

pre-reform. The entire response happens in period t, the reform date.

Given the varied di↵erence lengths for manufacturers, this implies that

manufacturers adjust their prices the first time they sell a particular retail-

strain pair post-reform. This is compelling evidence that our estimates are

15E.g., for a two week di↵erence that spans t-1 to t+1, both the t and t+1 coe�cients
are relevant.
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unlikely to be driven by the ongoing market evolution and are instead a

true response to the reform. The immediate nature of the response suggests

that prices in this market follow a unit root, further supporting our first-

di↵erence specification. Moreover, this suggests that our results are not

driven by learning in the short run and there is no evidence in Figure 4.1

to suggest substantial adjustments based on long-run learning either [85, 86].

Appendix Figure B.2 replicates the event study plots one year

later, further emphasizing the placebo findings in previous sections—our

identification strategy is e↵ective in this setting when tested in other periods

with similar cyclicality and holiday patterns. If one wanted a di↵erence-in-

di↵erences design, one could subtract the placebo estimates from the main

estimates in Tables 4.2 and 4.3 and take the same approach here for the

event studies. The estimates would be very similar.

4.6. Discussion and Conclusion

TIV is a key component of tax policy design and analysis—it states

that taxes may be collected at any point in the supply chain without

concern as to the ultimate incidence. While the literature has documented

cases in which TIV fails, these results have come with caveats driven by

specific frictions or asymmetries present in the markets studied. We study a

reform in a market with none of the these issues and show that TIV fails.

A reform intended to be welfare-neutral or even welfare-enhancing had

negative consequences for both retailers and consumers.

This result is driven by manufacturers, who on average reduced prices

significantly less than TIV would predict. Conditional on manufacturer
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FIGURE 4.2. Manufacturer and Retail Price Event Study

This figure plots estimates of Table 4.2 Column (2) (top panel) and Table 4.3 Column (2)
(bottom panel) with additional leads and lags of �TaxReform. The plotted coe�cients
are leads and lags of �TaxReform. We include in the regression (but do not plot) leads
and lags are for periods t � 4 and before and t + 4 and after as is standard in event study
designs. The dots indicate the point estimates and the lines indicate 95% confidence
intervals. See the notes for Tables 4.2 and 4.3 for regression details.78



prices, we find evidence that retailers applied a constant markup over

marginal costs, consistent with our model.

These results are not likely driven by market power; the wholesale

market is more competitive than the retail market and thus we would expect

violations of TIV to be more likely for retailers than for manufacturers.

Similarly, if manufacturers employed average-cost pricing mechanisms

[87, 88], we would expect the reform to cause similar or larger price drops

than under marginal-cost pricing. While the reform eliminated incentives for

ine�cient vertical integration and, in the long run, production increased

[79], increased production e�ciency should similarly drive down prices.

The frequency of price changes—and the prevalence of at least some drop

in manufacturer prices in response to the reform—suggest that managerial

inattention is not relevant [89]. Our event studies suggest the response is

immediate, which decreases the likelihood that learning can explain our

findings.

Others have found asymmetric firm behaviors in related settings.

Benzarti et al. [90] is particularly relevant—they find increases in value-

added taxes are passed-through to consumers at twice the rate of decreases.

In our setting, retailers, which experienced a tax increase, passed-

through taxes in a way that is consistent with standard models of profit

maximization, while manufacturers, which experienced a tax decrease,

failed to pass-through their savings as predicted. Unlike the VAT context,

however, our setting features a simultaneous change and a marketplace

where firms and consumers are highly aware of relevant prices; furthermore

both retailers and manufacturers engage in repeated transactions with each
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other over a long period of time. More broadly, the industrial organization

literature has identified potential asymmetries in firm responses to changes

in demand and costs [91, 92].

We view our results as consistent with models that generate

asymmetric responses to changes in market conditions due to behavioral

phenomena, as opposed to information, transaction, or competitive frictions.

In particular, anchoring and loss aversion may explain the outcomes we

observe [93, 94, 95]. While the modal response by manufacturers in the

week of the reform was to adjust their prices, the default option of “doing

nothing” by maintaining constant tax-inclusive manufacturer prices (and

thus realizing a significant increase in variable per-unit profits) may have

anchored their negotiations with retail firms. The relatively common and

small changes in manufacturer prices we do observe may be a result of

competition—manufacturers may “do something” if they incorporate

quantity or reputation e↵ects into their analysis of post-tax outcomes [96]

and competitors may be compelled to act as a consequence. In contrast, in

aggregate, retailers may have overcame their default “do nothing” option

(constant tax-inclusive prices) because this option represented a loss in

variable per-unit profit. Once the default was overcome, they made decisions

consistent with profit maximization.

Our findings have wide-ranging implications for tax policy. First,

designers of new taxes may face welfare tradeo↵s when choosing where in

a supply chain to locate a tax. Both e�ciency and equity considerations

arise. When considering e�ciency, variation in elasticities or competitive

structures across the market may a↵ect optimal tax placement. In terms
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of equity, if a policy goal is to ensure all market participants bear portions

of the tax, it may be necessary to impose taxes on these di↵erent groups

directly.

Second, policymakers considering changes to existing tax policy face

greater consequences for doing so. While it may be possible to implement

revenue-neutral reforms, restructuring will create clear winners and losers.

In this case, manufacturers benefited—despite being in an arguably more

competitive market—while retailers and consumers were harmed.

Taken together, these concerns point to broader political economy

issues surrounding tax policy [97, 98]. Political systems may be designed

to limit the ability of policymakers to enact tax reforms and thus rational

actors may unknowingly design systems which have additional ine�ciencies

as described here. Indeed, in Washington state, the legislature may not

reform measures passed by ballot initiative for two years after passage.

Though local government o�cials knew from the moment of passage that

the gross receipts tax was likely to have negative consequences on the

market, their hands were tied. Flexibility in political and policy systems

may help avoid these concerns—though at the cost of volatility and

asymmetric responses.

Finally, these results demonstrate a need for further experimental and

modelling work. Modern models of competition, growth, trade, inflation,

and the business cycle generally make assumptions about taxes which are

appealing from a tractability standpoint. These assumptions generally imply

TIV [e.g. 99, 100, 101]. Instead of failures of TIV being the exception, our

work provides evidence that TIV simply may not hold in practice because of
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the ubiquitous nature of default options. In the absence of TIV, it may be

necessary to conduct experiments which examine the way in which firms

and consumers respond to tax policy and construct models which more

accurately capture these responses.
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CHAPTER V

CONCLUSION

In this dissertation, I consider questions related to public and labor

economics in the United States.

In Chapter II, I find both men and women work on evening and

weekends, but men work more than women during these times. I examine

how work activity responds to unexpected winter weather public school

closures and find that Women reduce work activity by 34%. These

results are consistent with the emerging theory that asymmetric childcare

responsibilities could be a reason why men and women in high-wage

professions are working di↵erent amounts on average.

In Chapter III, my co-authors and I find distributing SNAP benefits

on days other than the first of the month increases the number of drug-

related fatal automobile collisions by 1.21 percent and a one-percentage

point increase in the share of SNAP benefits distributed on a day leads to a

.2 percent increase in the number of drug-related fatal automobile collisions.

The public policy implications of these findings are nuanced and should be

taken in context with the marginal propensity to consume drugs and alcohol

from income of all forms.

In Chapter IV, I find, in joint work with co-authors, that tax

invariance does not hold. When a 25 percent tax remitted by manufacturers

was eliminated in Washington state and the retail excise tax was

simultaneously increased from 25 to 37 percent, manufacturers kept two-

thirds of their tax savings instead of passing all their savings through to
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retail firms via lower prices as predicted by TIV. One-third of the retail

tax increase was passed on to consumers via higher retail prices – TIV

would have predicted constant or even declining tax-inclusive retail prices.

These findings suggest that tax policy should be carefully designed from the

beginning, as tax restructuring could have welfare implications.

These insights contribute to our understanding of human behavior and

optimal public policy.
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APPENDIX A

CHAPTER II SUPPLEMENTARY FIGURES

FIGURE A.1. Work Day for All Event Types

We observe all public activity in GitHub. This public activity comes in the form of di↵erent

“events”. In the figure above, each line represents one type of event. The majority of event

types follow the same daily cycle, but a few event types are significantly noisier and reflect

a di↵erent temporal pattern. Each of these event types with a di↵erent temporal pattern

represents less than 1% of the data.
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FIGURE A.2. Work Day for Common Event Types

We observe all public activity in GitHub. This public activity comes in the form of di↵erent

“events”. In the figure above, each line represents one type of event. For this plot, we limit

the data to types of events that represent more than 1% of observations. For these event

types, the daily pattern is qualitatively similar. The greatest heterogeneity occurs in the

evening. Events that involve interactions between users are less common in the evening.

For the majority of my analysis, I use “commit” and “push” events. These event types

follow each other closely.
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FIGURE A.3. Work Day Across United States’ Time Zones

All data in GitHub Archive and GitHub Torrent is recorded in Coordinated Universal

Time. I restore local time using the geographic state of the user and the time zone

associated with that state. For states with multiple time zones, I use the time zone that

covers the majority of the state. In the figure above, the data from each time zone is

shown as an individual line. These lines reflect that data after the event times have been

converted from Coordinated Universal Time to local time. The daily work pattern is

similar across time zones.
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TABLE A.1. Observations by Event Type

Event Type Percent of Observations
Commit 39.43
Push 30.49
Issue Comment 6.71
Create 6.26
Pull Request 4.17
Watch 3.97
Issues 3.14
Pull Request Review Comment 1.73
Delete 1.54
Fork 1.12
Gollum .47
Commit Comment .26
Release .22
Member .20
Follow .12
Gist .08
Public .06
Event .02
Download .01
Fork Apply .00
Team Add .00

I observe public activity by all users in GitHub. This activity is described as “events”, and

there are many types of events. This table documents the relative occurrence of each type

of event in the data. Commit Events and Push Events are by far the most common events.

Together, these events are 69.9% of the data. A commit event changes the local copy of

a file. A push event changes the copy on the remote server. The remote server is shared

across users who have access to a project. All event types listed above are described in

detail in the Data Appendix, see Table A.2.
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TABLE A.2. Description of Event Types

Event Type Description

Commit Save changes to the local copy of a file.

Push Save changes to the remote copy of a file.

Issue Comment An issue comment has either been created, edited, or deleted. This

comment is attached to an issue that has been filed with existing

code.

Create A new branch or tag has been created. A branch is a copy of the

main work that can be edited without impacting the main work. A

user may choose to make the branch the main work at a later point.

Pull Request When a user would like to contribute code to a project, this new

code is issued as a pull request.

Watch A watch event occurs when someone stars a repository. When a user

stars a repository, they are choosing to follow this project.

Issues The user identifies an issue with existing code.

Pull Request Review Comment A pull request is being reviewed by another member of the project.

Delete A branch or tag is deleted.

Fork A user copies an existing project. This copy is not linked to the

original project.

Gollum Create a Wiki page.

Commit Comment Comment on a commit that has already occurred.

Release Release a new version of a software package.

Member Add or remove a member of a project.

Follow Follow the activity of another user.

Gist Create or update a gist. A gist is a snippet of code.

Public Switch a repository from public to private.

Download Download a package.This event is no longer supported.

Fork Apply Apply a patch to a fork. A patch covers the parts of someone’s fork

that you would like to apply to your code. This event is no longer

supported.

Team Add Add a repository to a team. A team is a group of members. This

team is a subgroup of an organization.

We observe all public activity in the GitHub user platform. This activity can be one of the

types listed above. All activity is described as an “event”. The left column is the event and

the right column describes the event. Files are edited locally. These changes are first saved

locally. These changes can then be saved to the remote server. The events listed above

include actions that a user takes on the local file, actions on the remote version of the file,

and actions on other users’ files.
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APPENDIX B

CHAPTER IV SUPPLEMENTARY INFORMATION

In this appendix, I detail our data cleaning procedure for Chapter IV

and provide supplementary figures.

I begin by detailing our methods for cleaning prices in the face of

changing reporting requirements and tax rates. I then discuss other cleaning

steps to transform the raw data into the set used in our analyses.

The retail sales prices reported by firms in the “seed-to-sale”

traceability system were supposed to be all-tax-inclusive pre-reform and

tax-exclusive post-reform. However, compliance varied from firm to firm and

changed over time. For example, some firms reported prices with the sales

tax included and some reported prices without the sales tax.

This reporting confusion means that we must infer, for each firm,

how they reported their prices and therefore the true tax-inclusive and tax-

exclusive prices they charged. For each firm-week, we assign a “multiplier”

that reveals the relationship between the reported price and the price faced

by consumers. This chosen multiplier is selected from a set of multipliers

based on possible tax rates for the firm. We merge in the state and local

sales tax rates for each firm in order to construct this choice set.1 To

understand the relationship between the multiplier, reported prices, and

1For five firms, the state and local tax rates do not match the rates they are using, so
we adjust these. And a few firms do not ever change their local tax rate for reporting
purposes—we make that adjustment as well. This transforms these firms from very
unround to very round, but otherwise has approximately no e↵ect on the data as the
di↵erence between the statutory and reported local tax rates is very small.
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faced prices, consider the following equation:

PriceConsumer = PriceReported ⇥Multiplier

We algorithmically determine which tax-based multiplier makes the prices

faces by consumer’s (PriceConsumer) most round for each week, where

roundness is the closeness of the price to a 25 cent increment of a dollar. For

each product type, PriceReported is the modal observed price for the week,

where idiosyncratic discounts have been removed.2

We consider two orthogonal methods of determine the proper set of

multipliers. Our results are robust to the method used. Ultimately, we find

the modal firm never included the sales tax, included the excise tax pre-

reform, and excluded the excise tax post-reform.

B.1. Cash Market Identification

In order to determine how each firm reports their prices in the

traceability system, we take advantage of two characteristics of retail prices.

First, publicly advertised prices (or ‘list’ prices) are nearly universally all

tax-inclusive. Second, retailers nearly always choose to set prices in whole-

dollar or (rarely) quarter-dollar increments.3 We use these two facts to

determine the di↵erence between the list prices faced by consumers and the

prices reported in the traceability system.

2We determine that a price is a one-o↵ discount if the price for that transaction is 5%
to 95% (in increments of 5 percentage points) or 33%/66.67% less than the previously
reported price.

3We verified this through conversations with retailers as well as using historical menus
available through The Internet Archive and a full set of menus for almost all firms we
took screen shots of on 7/18/2017.
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We assign each firm a multiplier before and after the tax change. We

begin by assigning the modal firm’s multiplier choices to all firms—all firms’

prices were adjusted by the state and local sales tax pre-reform and all

firm’s prices were adjusted by the excise tax plus state and local sales tax

post-reform. We then make the following adjustments based on the results

from our algorithm:

1. We leave prices unadjusted (i.e. a multiplier of 1) where are algorithm

finds that this choice maximizes roundedness and at least 85 percent

of weekly sales are round with this multiplier choice.4 This applies to

16% of firms.

2. We adjust the multiplier post reform to account for only the excise tax

when the algorithm finds that this choice maximizes roundness and at

least 85 percent of weekly sales are round with this multiplier choice.

This applies to one firm (out of 110).

There are three additional firms for whom an only excise tax

adjustment makes them most round, but their roundness in the

immediate post period is less than 85 percent. We leave two of the

firms alone because they were also left alone in the pre-reform period

because of unroundness and we could either adjust them both before

and after the reform or leave them both alone with similar e↵ects to

the log price change. The third firm becomes more round a few weeks

4For the 4.5% of firms that suggest the multiplier could be 1 but are quite unround,
there is too much uncertainty to confidently make an adjustment. Leaving these firms’
multipliers unchanged, if wrong, will bias our estimates towards our main null hypothesis
in the retail section of the paper—that firms did not adjust their prices in response to the
reform.
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after the reform and keeps this multiplier through the end of our data

(and we have confirmed the multiplier in the menu screen shots), so we

make this multiplier adjustment.

3. There are two firms for whom the multiplier that makes them round

post-reform is the excise tax + state and local sales taxes divided by

the state and local sales tax rate. In both cases, we have clear evidence

that this is because they adjusted their prices post-reform by making

their prices sales-tax exclusive post-reform. One firm keeps this choice

permanently and we see this in the menu screen shots at the end

of our data. The other firm eventually adjusts to the modal firms’

multiplier. Our assumption keeps prices roughly constant through this

reporting change.

B.2. Product Batch Price Stability

To provide additional evidence that our multiplier decisions are not

systematically biasing our estimates, we consider a completely di↵erent

mechanism for determining multipliers—we pick the set of multipliers that

makes the tax-inclusive prices for the most number of inventory lots for a

given firm the same pre- and post-reform.

There are a couple of reasons why this is a reasonable alternative to

consider. A number of inventory lots did leave prices constant in response

to the tax reform and the main null hypothesis in our retail analysis is that

firms did not change their tax-inclusive prices—this is what we would expect

if the tax reform was indeed tax invariant.
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We consider two variants of this. One is to begin with the modal

firms’ multipliers and adjust it to another multiplier if it decreases the

number of price changes by any margin. The second variant is to begin

with our estimates based on roundedness and then make adjustments for

firms that under the best set of multipliers leaves at least 25% of their

inventory lots constant in response to the reform. The latter changes the

multipliers for only four firms and three of those four leave the percent price

changes quite similar. The former method decreases our baseline estimate

by 0.4 percentage points and the latter decreases our baseline estimate by

0.2 percentage points. This evidence strongly supports our price cleaning

methods and suggests that any remaining bias is extremely small.

B.3. Additional Cleaning

In addition to adjusting retail prices, we also drop some extreme

outliers in the data. In particular, we drop all wholesale transactions with

a usable weight above 2,500 grams5 and all retail transactions if the usable

weight was above 28.5 grams.6 We also drop all wholesale or retail price per

grams above $42.7 We censor the THC content data if it is zero or above 40

in both the manufacturer and retailer data.8 We also drop wholesale prices

less than $1. This e↵ectively drops samples from our data, which are sold

5This is about 0.025% of wholesale transactions.

6This is because the maximum legal sale was one ounce. This step drops 0.15% of
retail transactions.

7This is less than 0.03% of wholesale transactions and less than 0.04% of retail
transactions.

8This a↵ects 0.2% of wholesale transactions and 5% of retail transactions.
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well below market value. We typically see these as the first recorded sale

from a parentlot.

Lastly, we drop some firms or firm-days in our data set. In particular,

we require for each firm that the first sales transaction occurs two months

before the tax reform and continues to have transactions through the two

months after the reform (either because they had not yet opened, had

closed, or because they took a long hiatus from selling any cannabis). A

few retailers conduct a “soft opening” by opening briefly, closing for more

than a month, and then re-open permanently. In these cases, we drop the

first brief selling period and consider their first activity date the first date

upon re-opening in our data. We also drop 20 retail firms for whom at some

point in the 8 weeks before or after the reform report their data only once

per day—this is a clear indicator of poor overall data quality and, because of

this, determining the appropriate multipliers for these firms is di�cult.

B.4. Supplementary Figures

FIGURE B.1. Manufacturer and Retail Price Bandwidth Choices

This figure plots estimates of Table 4.2 Column (2) in the top panel and Table 4.3 Column (2) in the
bottom panel, varying the bandwidth. The bandwidth in our baseline specifications is 6 weeks. The
estimates plotted are for the coe�cient on TaxReform. The dots indicate the point estimates and the
lines indicate 95% confidence intervals. See the notes for Tables 4.2 and 4.3 for regression details.
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FIGURE B.2. Manufacturer and Retail Price Event Study

This figure plots placebo estimates of Table 4.2 Column (2) (top panel) and Table 4.3 Column (2)
(bottom panel) with additional leads and lags of �P lacebo. The plotted coe�cients are leads and lags of
�P lacebo. We include in the regression (but do not plot) leads and lags are for periods t � 4 and before
and t + 4 and after as is standard in event study designs. The dots indicate the point estimates and the
lines indicate 95% confidence intervals. See the notes for Tables 4.2 and 4.3 for regression details.
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